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Abstract

In this paper we study dynamic properties of trade and price durations
of currency futures (Japanese yen/US dollar) traded on the Chicago Mer-
chantile Exchange using a model consisting of two parts: a non-stochastic
seasonal component and a stochastic component that follows the Stochas-
tic Conditional Duration (SCD) model. We assume that the multivariate
seasonal component has a multiplicative (additive in logarithms) form and
estimate it using a backfitting algorithm and kernel regression. The SCD
model is estimated using the QML approach with the Kalman filter for
computing the quasi-likelihood. We investigate implications of the infor-
mation structure of the SCD model for the problem of estimation and
identification of the latent process. We find evidence that trade and price
durations may have long-memory properties. In the appendix, we pro-
pose a Fractionally-Integrated SCD (FISCD) model that can account for
long-memory properties of the data. We estimate the FISCD model for
trade and price durations of currency futures using the QML approach in
spectral domain.
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1 Introduction

Recent technological progress has made the computing facilities necessary to
process high-frequency financial data easily available, as companies providing
financial services and research have eased their grip on high-frequency trad-
ing records. There has been an academic response to these new opportunities
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including a number of publications that make use of high-frequency financial
data1.
Trading data (trade records, prices, trade volumes) can be viewed as ob-

servable manifestations of the economic process that involves interaction of the
market participants given the institutional structure and the flow of economic
and financial information. These data are the empirical basis of modeling the
economic process and its components. Financial models where asset prices are
described by a stochastic process have become a de facto standard in the science
of finance. Models featuring stochastic volatility, jumps and other refinements
reflect how we see the reaction of the market participants to the heterogeneous
flow of economic information to which they are exposed.
Price in economics is realized only through transactions. Thus, if we consider

a dynamic asset pricing model (continuous-time or discrete time, or mixed),
price variables of such a model are not usually directly observable, in con-
trast with the textbook wisdom, but manifest themselves through transactions.
Whatever inference we desire to obtain about the constituent parts of financial
markets, it will be based on the transactions data plus some exogenous data
series.
Fitting a dynamic model to transactions data may serve two purposes: first,

the dynamic model may give insights into operation of financial markets, and
second, it may be used as a black-box for the purposes of forecasting. Transac-
tions data are usually modeled within the framework of so-called point processes.
A (temporal) point process is a sequence of events (points) on the time line, with
each point representing a random arrival time, and a set of associated random
variables called marks (in our case it may be, for example, the price or the
volume of a transaction). A point process with marks can serve as a generator
for associated thinned processes, the arrival times of which are a sub-sequence
of the arrivals of the original process. The criteria to select these sub-sequences
are functions of the arrival times and of the marks of the generator.
Several models have been proposed recently to describe dynamics of arrival

times (these models are often termed in the literature models of durations).
Engle and Russell (1998) were among the pioneers in this area of research and
proposed the autoregressive conditional durations model (ACD) which has been
amended in several ways by other researchers. Parametric assumptions about
the distribution of innovations different from those of Engle and Russell (1998)
were considered (Grammig and Maurer 1999); Jasiak (1998) suggested the FI-
ACD model that allowed for long-memory properties in the dynamics of du-
rations; Bauwens and Giot (2000) suggested a logarithmic ACD model (the
logarithmic specification avoids positivity restrictions on the parameters nec-
essary in the original ACD model). Ghysels, Gourieroux, and Jasiak (1997)
noticed that modeling only the conditional mean of the durations might be not
sufficient to capture the properties of empirical series. These authors intro-

1The financial industry has been studying high-frequency data long before the recent surge
of interest in the academia. The industry had the resources and the data. Results of this re-
search were usually available only in-house, and also the research in the industry has somewhat
different objectives and methods from the academic research.
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duced the stochastic volatility duration (SVD) model in which the conditional
second moment of durations also followed a stochastic process. Bauwens and
Veredas (1999) suggested a somewhat different approach to modelling dynamics
of durations. In their model called the stochastic conditional durations (SCD)
model the conditional expectations of durations are presented as eψi where {ψi}
follow an AR (1) process with normal i.i.d. innovations. The relation between
the ACD class of models and the SCD models is similar to that between the
GARCH models and the SV models.
Approaches have also been suggested that look jointly at the dynamics of

trades and of the marks of the process; Ghysels and Jasiak (1998) is one example
These later models are important because they are a step towards connecting
the econometrics of financial point processes and the theories of dynamic asset
pricing.
The main subject of interest of this paper is the empirical study of trading dy-

namics (the dynamics of trade and price durations) of currency futures. We use
ten years of transactions data on Japanese yen (JPY)/US dollar (USD) futures
traded at the Chicago Mercantile Exchange (CME). Following the approach
adopted by other researchers we represent the durations process as consisting
of two components: the non-stochastic seasonal component and the stochastic
component2. The assets that has been most often analyzed in empirical studies
of durations are stocks. The seasonal component of futures, compared to that
of the stocks, has a dimension related to the life-cycle of the contract; we model
and describe the seasonal behavior of JPY/USD futures with respect to their
life cycle. We model the stochastic part of dynamics of currency futures using
the SCD model of Bauwens and Veredas (1999), which we estimate using the
QML approach and Kalman filter.
Standard specification diagnostics of the model with SCD dynamics esti-

mated on the futures data (we test how well the model fits the dependency
properties of the data and we test parametric specifications about the distri-
butions of the innovations) show that the SCD model with an AR (1) latent
process does not capture very well the dependency properties of the data. The
analysis of the joint information structure of the model and the estimation al-
gorithm suggests that increasing the order of the of the latent process is not a
feasible alternative, at least with the QML approach to estimation. We suggest
in the appendix an extension to the SCD model that allows for long memory in
the latent process. We call this extended model Fractionally Integrated SCD,
FISCD(p, x, q)3 (the FISCD(p,d,q) model is mathematically equivalent to the
LMSV model of Breidt, Crato, and de Lima (1998)). Coming back to basics,
SCD FISCD and LMSV are all essentially models of a discrete signal measure
with white, possibly non-Gaussian, noise. Using the spectral QML approach we
estimate the FISCD (1, x, 0) model for trade and price durations of currency
futures. Breidt, Crato, and de Lima (1998) have proved strong consistency of
such estimates but other properties of these estimates are not known and will

2In models developed in Engle and Russell (1998) or in Veredas, Rodriguez-Poo, and Espasa
(2002), all the components of the dynamics of durations are estimated simultaneously.

3The latent process of the FISCD follows ARFIMA(p,x,q).
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be a subject of future research.
The data set we analyze in this paper spans a much longer period of time

than the data used in previous publications on a similar subject. Thanks to this
fact we are able to look at the evolution of estimated model parameters over
a period of years. We are also able to investigate how the parameters of the
SCD model differ over the periods of the life-cycle of the futures contracts. The
analysis of such behavior allows to draw conclusions about how well models like
SCD or FISCD capture invariant dynamic properties of the trading process.
We also investigate the asymptotic properties of the QML estimates of the

SCD model in the case when the durations process is not considered to be
seamless but is initialized in the beginning of every trading day.
Our exposition proceeds as follows. Part two describes the data and the

transformations that have been applied to the data. Part three formulates
the econometric model. Part four describes the estimation and specification
diagnostic methods. Part five presents estimation results, their interpretation
and discussion. Part six concludes. Some technical details as well as notes on
specification and estimation of the FISCD model are brought to the Appendix.

2 Description of the data

We examine the dynamics of currency futures traded on the CME. Specifically,
we study JPY/USD futures. CME currency futures contracts follow the usual
March-June-September-December cycle. New contracts are listed the day after
the front month expires; the contracts expire on the second business day before
the third Wednesday (in our data set, it is always Monday). For example, the
first trading date of the March 2003 futures contract (the tick symbol - JYH3)
was the 18th of September, 2001 and the last trading date is the 17th of March,
2001. Trading opens at 7:20 and ends at 14:00 Central time.
The data set we analyze spans the period from January 2, 1991 to August

31, 2001 and consists of almost 4 million records. The records of trades of 47
contracts are present in the set, from the contract expiring in March of 1991
to that expiring in January of 2002. For the purposes of our analysis the data
had to be filtered. The records in the data set represent either transactions,
bid quotes or ask quotes. We removed records that are marked as ask or bid
quotes and do not represent actual transactions. As well, we do not consider
contracts that have fewer than 130 trading days within the time span of the
data set and we excluded contracts that expire after August 31, 2001. This
leaves 37 contracts in the set , from the contract expiring in June of 1991 to the
June, 2001 contract. The data after filtering consist of 2,743,740 records.
Trade durations are defined as time intervals between consecutive trades;

the last duration of a day precedes the first duration of the next day in the
duration series. One of the problems that we have had to resolve was the
treatment of multiple trades that happened within one second (one second is
the precision of the time stamp) i.e. when recorded trade durations were equal
to zero. There are several possible ways to deal with this problem, some more
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sophisticated than others. Here we have taken a simple solution to this problem
of censored measurements. We assign the value 1

k−1 to every zero duration,
where k is the number of trades happened within the current second, and we
increase the subsequent duration by 1

k−1 so that the sum of all durations is not
changed. Another naive approach would be, following Bauwens and Veredas
(1999), deleting all null durations. Bauwens and Veredas (1999) motivated the
latter approach by arguing that the trades that happened within a very short
period of time were likely to be from the same trader who split a large block of
shares.
A price duration is defined as the lapse of time that is required to observe a

price change not less that a given amount. It is in some sense natural to measure
the change of the price in percentage points (or to measure the logarithm of the
change of the price): dynamic models in finance are most often formulated with
respect to the logarithm of the price. The matter is complicated by the fact
that the transaction price is quoted with a given number of significant digits,
i.e. that the observed prices take their values on a discrete set. This is yet
another illustration that transactions may be seen as a manifestation of the
latent economic process; finite accuracy of the reported prices is a property of
the ”transmission mechanism” - the market. Russel and Engle (1998) develop a
model of price durations where the prices are explicitly discrete-valued. We have
chosen to use a change in the logarithm of price as the criterion for thinning.
The empirical results presented here are for the case when the change in the
logarithm of the price is equal or larger than 0.05%4.

3 Modelling trade and price durations of cur-
rency futures

Let {Di} denote the recorded durations (trade durations or price durations). In
what follows, when there is no ambiguity, we shall use small letters to denote
logarithms of the values denoted by the corresponding capital letters i.e. di ≡
ln (Di) , .ψi ≡ ln (Ψi) etc. The model that we are estimating is formally specified
as follows:

Di = Φ (κi)Ψiεi (1)

We assume that εi|Ii−1 ∼ iid D(η) where Ii−1 denotes the information set at
the beginning of the spell of the duration di and D(η) is a distribution with
a positive support with a parameter η. The fourth moment of D(η) exists
and is finite. Usual choices of the parametric form of the distribution D(η) in
the context of duration studies are the Weibull distribution and the standard
Gamma distribution. The process ψi = lnΨi follows, in the general case, a
stationary ARMA (p, q) with Gaussian innovations.

4Stocks prices are usually recorded with lower accuracy that the currency futures, which
is why accounting for discretization error is more important in the former case.
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The function Φ (κ) is assumed to be non-stochastic and strictly positive for
all admissable values of θ. Taking the logarithm of the equation above,

di = φ (κi) + µ (η) + ψi + ξi (2)

where (ξi + µ (η)) is distributed as logarithm of εi and E [ξi|Ii−1] = 0. Un-
der the specifications above log-durations are sums of the non-stochastic part
φ (κι) + µ (η) and the stochastic part ψi + ξ. If we define d̂i = di − φ (κi) and

assume that ψi follows AR (1), the model in terms of d̂i will be the SCD model
as it has been formulated and studied in (Bauwens and Veredas 1999).
We shall argue later in this study that it is not practical to consider SCD

models with the latent process of order higher than AR (1) . FISCD model in-
troduced in Appendix (7.3) is a more flexible alternative than SCD. FISCD is a
complex econometric object; many properties of the parameter estimates under
the FISCD are unknown and are a subject of future research.

3.1 Seasonality in the dynamics of durations

The literature presents strong empirical evidence for seasonality of trade and
price durations (for example, in Engle and Russell (1998), Gouriéroux, Jasiak,
and Fol (1999) and in Bauwens and Veredas (1999)), which is why the seasonal
component Φ (κ) is present in Equation 1. Unlike stocks that may be thought
of as having an infinite time horizon, assets like derivative contracts and bonds
have a life cycle, from contract inception to its expiration. This life cycle is
reflected in the ”seasonal” behavior of time series describing dynamics of such
contracts. This form of seasonal behavior of trade and price durations of futures,
due to their life cycle, has been give less attention in the empirical literature
that the diurnal or weekly seasonality5.
Under the model adopted in this study, duration series have two components:

the deterministic seasonal component and the stochastic component that follows
the SCD dynamics. We can approach the estimation of the seasonal component
parametrically, semi-parametrically or non-parametrically, and there exist sev-
eral possibilities in each of these classes of estimation techniques. An attractive
feature of non-parametric modelling is its flexibility. We shall model the sea-
sonal dynamics of the durations in the non-parametric spirit (strictly speaking,
the approach that we use is semi-parametric, as the reader will see from the
exposition below), similar to the approach adopted in .Veredas, Rodriguez-Poo,
and Espasa (2002) and in Bauwens and Veredas (1999) with the difference that
the the futures considered in this paper have a more complex seasonal structure.
The multiplicative presentation (1) and the additive presentation in loga-

rithms (2) are equivalent at the stage of modelling. When it comes to estima-
tion, whether one applies seasonal adjustment before taking the logs or after
leads to different results. In Bauwens and Veredas (1999) the data are season-
ally adjusted before taking the logarithms. The advantage of this approach is

5Gerhard and Hautsch (2002) desrcibe the seasonality over the maturity of intra-day volatil-
ity for BUND futures. They estimate intra-day volatility based on price durations.
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that the results are easier to interpret and easier to apply to forecasting (we
are interested ultimately in durations and not in the logarithms of durations).
We have chosen however to apply the seasonal adjustment after taking the log-
arithms of the data, for two reasons. First, we shall assume later in this study
that φ (κ) follows the additive model with the logarithm as the link function6.
Properties and estimation of additive models are known better than properties
of GAM, and we would like to build upon this knowledge. Second, the SCD is
a model with dynamics linear in the logarithm of durations; estimation using
the Kalman filter is based on this linearity property. Seasonal adjustment of
the dynamic variable of the model seems to be more transparent than adjusting
the non-linear transformation of this variable.
As we have mentioned just above, we impose additional structure on the

seasonal component of the durations. Specifically, we assume that

lnΦ (κ) ≡ φ (κ) = Aδ + χ (t) + ζ (τ) , (3)

where κ = {δ, t, τ}, Aδ (δ ∈ {Monday, ..., Friday}) describes the weekly season-
ality, χ (t) - the seasonality due to contract life cycle, t is the time to expiration,
and ζ (τ) corresponds to the diurnal seasonal component, τ is the time elapsed
from the beginning of the trading session. We test later in the paper the assump-
tion that the weekly, the life-cycle and the diurnal components are orthogonal.
The additive form of φ reduces the dimensionality of the non-parametric regres-
sion problem. The data set that we analyze is large. Preliminary analysis shows
however that even with this size of the data set the curse of dimensionality can-
not be escaped, especially when we estimate the seasonal component at longer
horizons to expiration t where the trading is sparse. Under the assumption of
the additive model one can achieve, under certain conditions, the same rates of
convergence of non-parametric regression as in the univariate case (Linton and
Nielsen 1995).

4 Estimation Methods

4.1 Estimation of the seasonal component

We model the seasonal deterministic component of log durations in the following
manner:

E [di|δi, ti, τ i] = α+Aδi + χ (ti) + ζ (τ i)

6Φ (θ) follows in this case the Generalized Additive Model (GAM). It is said that a non-
parametric regression function follows the GAM if

f (m (X)) = α+
dX
j=1

χj (Xj)

where f (·) is a known link function, χ1, ...,χj are unknown univariate functions and
X =(X1, ...,Xj) .
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One of the approaches to estimating additive models is the so-called backfitting
algorithm Fan and Gijbels (1996), pp.266-267). In application to our problem,
the algorithm works as follows:

1. Initialization: α = 1
N

PN
i=1 di. We subtract the sample mean from {di}

and make initial guesses about all but one seasonal components (about
Aδ and χ (t) , for example) We force the sample expectation of each of
these components to be equal to zero, so that the mean of the seasonally
adjusted data is equal to zero.

2. d
(k+1)
τ ,t,v = d(k) − A(l)δ − χ(l), where A

(l)
δ , χ

(l) are the latest estimates of A

and χ d(k+1) is used to obtain an updated estimate of ζ via a univariate
non-parametric smoother.

3. We repeat step 2 for each of the seasonal components until convergence is
achieved. (2 or 3 rounds are usually sufficient in practice).

The term backfitting referring to the action above was first used in Friedman
and Stuetzle (1981). If the additive specification is not the true model, the algo-
rithm is expected to give the estimates that are the best additive approximation
to the regression surface (Breiman and Friedman 1985).
We have to specify a univariate smoother that will be used at the step 2 of

the algorithm above. Our current choice is the kernel regression (other choices
like smoothing splines, for example, will probably work equally well). The form
of kernel regression is otherwise known as the Nadaraya-Watson estimator and
it is defined as

f (x) =

PN
i=1K

¡
x−xi
h

¢
diPN

i=1K
¡
x−xi
h

¢
We have chosen the quartic kernel for our regression because it is fast to compute
and it has a compact support which helps to reduce the complexity of the
computations. For the results reported in the paper the values of the bandwidth
parameters were chosen by their visual performance.
The component Aδ is somewhat different from χ and ζ. We estimate it as

the mean duration for a given day of a week (formally, this is equivalent to
setting h = 1, if we want to preserve the uniformity of exposition). Taking into
account that we force the sample mean of each component of φ (κ) to zero, Aδ

has four degrees of freedom, four parameters to be estimated, that is why we
have mentioned that our approach can be called ”semi-parametric”.
The argument of χ (t) , the life-cycle seasonal component, is the time to

expiration in business days, t ∈ N. We consider in our study the records with
1 ≤ t ≤ 130. The argument of the diurnal component ζ (τ) represents the time
from the beginning of the trading day in seconds, τ ∈ [0, 24000).
We should point out that the whole data set is used to estimate the seasonal

component of durations φ (κ) . This will allow us to capture invariant proper-
ties of the seasonal components across the years spanned by the data set. We
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estimate SCD parameters individually for each contract in the date set. Part of
the variation of trading intensity will be also accounted for by the parameter ω
of the SCD model that we shall keep free.

4.2 QML estimation of the SCD model

After the seasonal component of the logarithm of durations has been estimated,
we use adjusted series to estimate the SCD model. The sample mean of sea-
sonally adjusted log durations and the average value of each of the adjustment
factors are equal to zero over the whole sample of thirty seven contracts, but
not for each individual contract. To account for this we allow the conditional
duration to have a non-zero mean and we subtract from each of the seasonal
components their average values over that specific sample. We assume that the
seasonally adjusted log durations follow the model

di = µ (γ) + ψi + ξi

ψi = ω + βψi−1 + ui, |β| < 1
where {ξi + µ (γ)} follows a log-Weibull distribution with parameter γ, E [ξi] =
0, and we use QML and Kalman filter to estimate the parameters of the model.
Note that

E

"
1

N

NX
i=1

di

#
= E [di] = µ (γ) +

ω

1− β
.

Making the change of variable ψ∗ = ψ − ω
1−β , the model can be written as:

d∗i = ψ∗i + ξi (4)

ψ∗i = βψ∗i−1 + ui,

where ω has been concentrated out of the likelihood, as has been suggested in
Ruiz (1994) for estimating stochastic volatility models. The vector of parame-
ters of the quasi-likelihood to be minimized is θ =

©
σ2u, γ,β

ª
. The asymptotic

theory for the QML estimate of θ was developed in Dunsmuir (1979) yielding

T
1
2

³
θ − θ̂

´ d
˜N (0, C (θ)) . The expression for C (θ) and details of computation

are given in the appendix.
The estimation results presented in this paper were obtained for the case

when the data are treated as continuous series, i.e. the end of one day precedes
directly the beginning of the next except that we have cut out the first 20
minutes in the beginning of each day. We use a Kalman filter initialized with
the diffuse prior to compute the quasi likelihood function of the model (4).

4.3 Diagnostic methods

As far as it concerns the nonstochastic part of the model, our primary concern is
whether the seasonal components of the additive model are close to being inde-
pendent or not. We use graphical methods to investigate this: we estimate the
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diurnal component for each day of the week and draw them on the same graph;
in the same manner we draw the life cycle seasonal component for different days
of the week and for different periods of the day. If the is no interdependence
between seasonal variables, the lines on each of these graphs will not be far
apart one from another.
To assess how the SCD model describes the dynamics of seasonally adjusted

durations we want to investigate two issues: first, how well the model accounts
for the dependency properties of the process; second, how good are the para-
metric assumptions about the distributions of the innovations. Since the SCD
model is a model with one latent variable, we can compute two series of residuals
resulting from the model estimation:

ξ̂i = d
∗
i − ψ̂

∗
i and

ûi = ψ̂
∗
i − βψ̂

∗
i−1.

The serial dependence structures of the series
n
ξ̂i

o
and {ûi} are similar one

to another: their ACF are different only by a scalar under the model. Under

the correct specification
n
ξ̂i + µ (γ)

o
has a log-Weibull distribution and {ûi} is

distributed log-normally.
We use the traditional ACF and PACF analysis as well as the Spearman’s

coefficient to investigate the serial dependence in the residuals. Bauwens and
Veredas (1999) argue that Ljung-Box statistic (or similar statistics based on
the sample autocorrelations) would not be a correct measure of dependence in
the context of irregularly spaced data which is why the Spearman’s coefficient
should be preferred. This argument has its merits. However, within a framework
of a discrete time model, Ljung-Box statistic will detect the presence of linear
dependence in the series, regardless whether the measurements are taken at
equal physical time intervals or irregular.

Under the model, the residuals
n
ξ̂i

o
are distributed as log-Weibull with pa-

rameters (γ, 1), and {ui} have a standard normal distribution. In order to judge
the compatibility of our parametric assumptions with the empirical observations
we shall use p-value plots and p-value discrepancy plots as well as commonly
used non-parametric goodness-of-fit tests such as the Anderson-Darling test and
the Cramèr-von Mises test7.

5 Estimation results: interpretation and discus-
sion

5.1 Seasonality in trade and price durations

Figure 1 presents graphs of the seasonal components Aδ, χ and ζ of trade
durations (left column) and of price durations (right column). We observe that

7These statistics, their properties and their critical values for normal and log-Weibull dis-
tributions can be found in (Stephens 1976) and (Stephens 1977).
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over a week the trading is the least active on Mondays and then its intensity
increases towards Friday. This is in line with the results reported in the financial
literature. Over a day, the trading activity is high in the morning, then it is
decreases gradually to its lowest level at some moment between 12:30CT and
13:00CT, and increases again near the end of the trading day. The observed
diurnal pattern is similar to those described for stocks by Bauwens and Veredas
(1999) or by Gouriéroux, Jasiak, and Fol (1999). The lowest levels of daily
activity for the stocks studied, Boeing in the former case and Alcatel in the
latter, has been observed between 13:30ET and 14:00ET (Central time is equal
to Eastern time minus one). The conclusion that we can draw is that the there
is a synchronicity between the life of the market in Chicago and the market in
New York. The increase in the level of trading activity at the end of a day is
more pronounced for the CME currency futures than for the stocks studied in
the articles just mentioned. An explanation for this may be that the trading
at the CME closes at 14:00CT, just one hour after the lunch break responsible
presumably for the trough in trading activity, while the NYSE trades until
16:00ET. Therefore, the traders of CME currency futures have less time after
the lunch break to take their end-of-the-day positions than those trading the
stocks on the NYSE8.
The seasonal pattern due to the contract life cycle is in accordance with our

expectations. Trading is the most active for the contract closest to expiration,
the level of trading activity is relatively flat from 65 business days to about 5
business days to expiration. The closest to expiration contract is traded less
actively in the last few days of its existence because the traders switch to the
next contract. When the nearest to expiration contract has six business days to
expiration, the second to expiration contract has usually (not always because
of holidays) sixty nine business days to expiration. The change in the life-
cycle seasonal component of durations between 70 and 60 days to expiration
correspond to a more that tenfold change in the expected trade duration and
to a change of about four times in the expected price duration. Traders take
positions in the contract that is going to become the nearest to expiration.
We do not study the trading dynamics beyond 130 business days to expiration
because the trading there is very sparse, typically just a few trades per day, if
any.

5.2 Estimated parameters of the SCD model

Let us discuss now the results of estimation of the SCD log-Weibull model.
Figure 2 shows estimated values of the parameters β, σ2, γ for each of the
contract in the calendar order with two asymptotic standard deviation error
bars. The left column shows trade duration parameters, the right corner - the
price duration parameters.

8The strength of this argument is mitigated by the fact that the CME futures are traded on
GLOBEX 24 hours a day. The difference in the shapes of diurinal components for stocks and
CME currency futures may be also due to institutional differences and/or in the mechanism
how the trades are reported.
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A prominent feature of estimated parameters of trade durations is that
asymptotic standard errors are narrow. Given the sample sizes (the number
of observations per contract is in the range from 53, 000 to 135, 000), we be-
lieve that the asymptotic standard errors provide a good indication of the true
standard errors. This assertion is supported also by the results of Monte-Carlo
experiments reported in Bauwens and Veredas (1999), where the authors simu-
lated samples of the size N = 50, 000. Their simulated standard errors are very
close to the asymptotic values. If we allow for the possibility that the model
is misspecified and we want to evaluate how far apart are the estimated model
and the data-generating process, this distance (in some metric) will likely have
two contributing factors: the statistical error of estimation and the error due to
the model misspecification. Tight asymptotic standard errors of the estimated
model parameters and the fact that the asymptotic standard errors are close to
the finite sample standard errors may be interpreted as indicating that the first
contributing factor, the model estimation error, is small. The argument just
above is not so relevant for the model parameters of price durations because
the sample sizes of price durations are smaller, hence, the asymptotic standard
errors of parameter estimates are wider.
The estimates of β of the latent process lie between 0.961 and 0.987 for

trade durations series and between 0.882 and 0.981 for price durations: i.e.
both the price and the traded durations the processes are very persistent. The
values of β are significantly less than 1 at conventional levels of significance.
For trade durations, the estimated values of the parameter γ of the Weibull
distribution are significantly less than one for the contracts before June, 1995
and significantly greater than one for later contracts. The price durations γ̂
are between 1.1 and 1.33 and are always significantly greater than one. The
estimated values of σ2u vary from 0.011 to 0.040 for trade durations and from
0.0057 to 0.019 for price durations. One can observe that the values of the model
parameters β, γ and σ2u are significantly different, based on the asymptotic
standard errors, across the contracts considered, both for trade durations series
and for price durations. Qualitatively, however, we may conclude the behavior
of the durations process as described by the SCD model is similar for all the
contracts studied: we observe high persistence and low signal-to-noise ratio
(SNR)9, ranging from 1.18 to 1.36 for trade durations and from 1.49 to 2.94 for
price durations. As we shall see in a moment, low SNR will have interesting
implications from the point of view of model identification.

5.3 SCD parameters and the horizon to expiration

It is interesting to investigate the question of stability of model parameters
across different horizons to expiration. There is a natural split in the trading
data for each contract: the records when the contract is the nearest to expiration
and the records when the contract is the second nearest. If we find out that
the model parameters are stable over the horizon to expiration, this will provide

9We define SNR here as the ration of the unconditional variance of {di} to that of {ψi} .
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some evidence for the correctness of the seasonal adjustment algorithm used and
of the model itself; this shows that the model captures some invariant properties
of the dynamics of the data.
Let us first consider trade durations series. The left column of Figure 3 shows

the estimated values of the SCD model parameters for contracts with horizon
to expiration from ranging from 70 to 130 business days. The values of the
corresponding parameters estimated using the whole sample are given on the
same graphs as a reference. A futures contract is traded much less actively when
it is the second closest to expiration than when it is the closest to expiration,
which is why the subsample corresponding to the trades with time to expiration
from 70 to 130 days comprises only a small fraction of all trading records of a
contract (less than 5% for some of the contracts).
The estimates of β and σ2u for trade durations based on records with 1 to 130

days to expiration and on records with 70 to 130 days to expiration are close.
Informal analysis suggests that the estimates of β in the former case are higher
than in the latter; the estimates of σ2u are smaller in the former case than in
the latter. This difference in the estimated parameter values can be explained,
in part at least, by our approach to modelling. We treat the data as continuous
series which is merely an approximation. The second to expiration contract, as
has been mentioned, is traded much less actively than the closest to expiration;
hence, the links between intraday spells of trades constitute a larger proportion
of the data in the former case. The conditional distribution of a duration will
intuitively depend less on the previous measurement if this measurement has
been taken at the end of the previous trading day but we do not account for
this in the model. That is why we can expect to observe lower persistence for
contracts with longer horizons of expiration within our modelling framework,
and also a higher variance of innovations of the latent process.
The estimates of trade durations γ based on records with 70-130 days to

expiration are definitely lower than those based on contracts with 1-130 days to
expiration.
The SCD parameters of price durations for different horizons to expiration

differ less than those of trade durations. We still observe that the estimates of
the persistence parameter are lower at longer expiration horizons, and we can
use the same rationale as for the trade duration to explain why. The estimates of
σ2u and of γ of price durations based on records with longer expiration horizons
are not statistically different from those based on all records.
Price durations change less with the expiration horizon than the trade dura-

tions. Thus, the proportion of links between trading days in the price durations
data does not increase as much, when we consider only trades with 70 to 130
business days to expiration, as in the trade durations data. This may be one
of the explanations why the estimated SCD parameters of price durations differ
less across expiration horizon than that of trade durations. Another part of
the explanation may be that the dynamics of trade durations depend more on
the specifics of the trading system than do the dynamics of price durations; the
model used in this study accounts for the properties of the trading mechanism
only in very general terms.
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The dynamics of price durations do depend on the trading mechanism how-
ever. Futures price follows very closely (virtually one-to-one) the price of the
underlying asset. One could expect that price durations would not change as a
function of the horizon to expiration, but we definitely observe life-cycle season-
ality in the price durations, albeit weaker than in trade durations. The reason
that we observe life-cycle seasonality is that the number of futures contracts in
circulations is smaller when the contract is the second to expiration that when
it is the closest to expiration. This latter property, the number of contracts in
circulation, is more closely related to the transmission mechanism that to the
information process determining the dynamics of the ”latent” futures price.

5.4 Specification diagnostics

Figure 4 depicts the estimated additive contributions of the life-cycle and di-
urnal component for each day of a week and the contributions of the life-cycle
components for three two-hour periods of a trading day. We can conclude from
the analysis of these graphs that the assumption of additivity is not grossly
incompatible with the data, either for trade durations or (to a lesser extent) the
price durations.
Figures 5 and 6 illustrate how well the SCD model accommodates the de-

pendence properties of the (seasonally adjusted) trade and price durations series
correspondingly10. The measures of dependence for the seasonally adjusted log
durations are in the left columns of figures 5 and 6, the measures of depen-
dence for the model residuals are in the right columns11. Both trade and price
durations exhibit strong dependence, as has been documented in the financial
literature. The SCD model fails to describe fully the dependence properties of
the data: the residuals retain a degree of dependence.
Bauwens and Veredas (1999) have also found that the residuals of the SCD

model with AR (1) latent process estimated using trade durations of a stock
are not independent (the authors used Spearman’s ρ statistic as a measure of
dependence). They mentioned as a possible explanation, citing Jasiak (1998),
that trade durations may be fractionally integrated. Our preliminary analysis
also suggests the presence of long memory in the duration series (the estimates of
the fractional integration parameter x of the FISCD model given in the appendix
are between 0.4 and 0.6).
One may think that a mechanical increase of the order of the latent process

will allow the model to better accommodate the dependency properties of dura-
tions. This simple approach does not work as well as one might have expected.
The reason ”Why?” lies in the analysis of the structure of the model. The
resolution a system measuring a mixture of signal and noise, i.e. the ability
to distinguish between different signals (latent processes), as it is known in the
theory of signal processing, depends among other factors on the geometry of

10We use the data of one specific contract to illustrated the dependence properties of the data
and the model residuals and the goodness of fit of the parametric distributional assumptions.
The results are representative of all contracts considered.
11We use {ûi} residuals to computed the ACF, PACF and Spearman coefficient shown.
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the space of the solutions and on the signal-to-noise ratio. Given the parameter
values typical for our data the SNR is low, especially for the trade duration
series. If we allow an increase of the order of the latent process to AR (2) , we
increase the domain of the possible solutions. Moreover, in the presence of white
noise the QML estimation algorithm used loses its resolution abilities primarily
at higher frequencies, but this is exactly where the AR (1) and AR (2) differ one
from another.
To illustrate the argument above let us compute the inverse of the infor-

mation matrix (see 5 in the Appendix) of ML estimates of the parameters
of a Gaussian AR (2) process measured with Gaussian noise (we ignore the
correction for non-normality of the measurement noise for the sake of trans-
parency of the exposition). The values of the parameters used in this example
are β1 = 0.95,β2 = 0.02,σ

2
u = 0.02 and γ = 1 (γ is used to compute the variance

of the measurement noise, σ2ξ =
π2

6γ2 ) βi are the parameters of the AR(2) latent

process12 The model is parametrized as θ =
©
β1,β2,σ

2
u, γ

ª
:

IF−1 ∼=


5323356.3 −5166653.3 −208937.10 −32404.133
−5166653.3 5014563.3 202786.57 31450.200
−208937.10 202786.57 8200.6707 1271.8867
−32404.133 31450.200 1271.8867 197.83256


We observe that the estimates of β1 and β2 have very high variance and the

correlation between them is almost −1 (this will be especially true when β1 is
close to one and β2 is relatively small). In practical terms this means that we
cannot discriminate changes in β1 from the changes in β2 (we can estimate the
quantity (β1 + β2) well however).
Let us compare the inverse information matrix above to that of the AR (1)

process measured with white noise. We assume that β = 0.95, the values of γ
and σ2u remain unchanged from the above:

IF−1 ∼=
 0.177 −0.0885 −0.0591
−0.0885 0.0778 0.0555
−0.0591 0.0555 0.584


The difference is striking. Keeping in mind that the inverse of the Fisher

matrix puts the lower bound the norm of the variance-covariance matrix of the
estimates, we see how much uncertainty is introduced by extending the class of
possible latent processes from AR (1) to AR (2) .
The analysis above shows that the problem of identifying the structure of

the latent process of the SCD model using the QML approach has properties
which make it similar to an ill-posed problem. It is not an ill-posed problem in
the strict sense of the definition because the unique solution exists, and for any
given accuracy there is a sample size at which this accuracy can be achieved.
For practical purposes, however, acceptable variance of the parameter estimates

12It is possible to compute the components of the inverse Fisher matrix analytically but the
expressions are very bulky. Therefore we present a numerical illustration here.
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given available sample sizes can be achieved by restricting the space of possible
solutions to the class of AR (1) models which is a standard approach to solving
ill-posed problems.
It has been noticed above that the asymptotic standard errors of the SCD

model when the latent process is AR (1) are very narrow, and the goodness of
fit is determined primarily by how well the model is specified. We see that the
class of SCD models with the AR (2) is too wide given the information available
which results in large asymptotic errors. Intuition suggests to look for a model
in a class more flexible than the SCD with AR (1) latent process but which
would have a different structure than the SCD with AR (2) latent process The
FISCD model introduced in the Appendix is an attempt to find such class of
models.
As far as the parametric distributional assumptions concerned, analysis of

the p-value plots and of the p-value discrepancy plots of the empirical distri-

bution of
n
ξ̂i

o
against the log-Weibull distribution shown on figures 7 and 9

does not indicate gross incompatibilities of the adopted parametric form either
for the trade durations data or for the price durations data. The shape of the
p-plots is very similar to the shape observed in Bauwens and Veredas (1999) for
trade durations of Boeing stocks.
Analysis of the p-value plot of the empirical distribution of trade and price

durations {ûi} against the normal distribution suggests a distinct departure
from normality (Figure 8) In both cases the empirical distribution has fatter
tails than the normal distribution. Our observations with respect to the tails
of the empirical distribution of {ui} are opposite to those reported in Bauwens
and Veredas (1999) for the trade and price durations of the Boeing stocks; in
the latter case, the empirical distribution had thinner than normal tails.
Formal goodness-of-fit tests based on the Anderson-Darling statistic and

Cramèr-von Mises statistics reject the parametric distributional assumptions of
the model at any conventional level. We expected that the parametric assump-
tions would be rejected by these tests because they were very powerful given a
typical size of the sample and because our model was capable, by design, of cap-
turing only the most general features of the data. However, a closer look at the
behaviour of the goodness-of-fit statistics illuminates directions for improvement
of the model and for further research.
We expect that our model which treats the data as continuous series, does not

describe well transitions from one day to another. The values of the goodness-
of-fit the statistics decrease multiple times if we censor from the samples the
residuals corresponding to initial and final moments of trading in every day
(the statistics still remain in the rejection region however). These quantitative
results confirm the graphical analysis above: the rejection of the assumption of
normality of {ûi} is overwhelmingly stronger than the rejection of the assump-
tion about the parametric form of

n
ξ̂i

o
, the latter being still significant on the

1% level.
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5.5 Discussion

Our empirical analysis suggests several ways to improve the performance of
the model. When estimating the seasonal components non-parametrically, we
chose the bandwidth parameters based on visual analysis of the graphs. A more
formal approach based, for example, on cross-validation, is of course possible.
The difficulty with automated choice of the bandwidth parameters is related
to the fact that the methods of automated selection break down if the errors
are dependent. There are few methods that can handle the dependent data
(for example, Francisco-Fernandez, Opsomer, and Vilar-Fernandez (2001)) but
they are relatively complicated algorithmically and have been developed only
for univariate nonparametric regression.. Thus, even if we adopt an automated
algorithm to choose the bandwidths, we shall still have to accept a degree of
sub-optimality in this choice.
Treating the data as continuous series leaves may be inappropriate when

we study the trade durations of contracts with longer horizons to expiration,
where we typically have a few records per day, or when we study price durations.
The asymptotic theory developed in Dunsmuir (1979) is directly applicable to
Kalman QML estimation provided that the filter is initialized with the diffuse
prior. We have amended the asymptotic theory of QML estimation in a way
that it is applicable to the case when the data consists of a set of independent
subsamples (see part 7.2 of the Appendix). We have also tried two alternative
approaches: we initialized the Kalman filter at 8:00 each day using the average
logarithm of trade durations (seasonally adjusted) between 7:40 and 8:00 and we
initialized the Kalman filter in the beginning of each day with the sample mean.
The estimation results were very close for all the three methods when we analyze
the whole data set, especially in the case of trade durations. This is because
the records corresponding to the nearest to expiration contract constitute a
larger part of the data, and the number of records per day is large, hence, the
initialization of the Kalman filter affects only marginally the value of the quasi-
likelihood function. We shall include the estimation of the SCD model with
daily re-initialization of the Kalman filter in the later versions of this study. We
would like to notice in the end that the initialization of Kalman filter in the
beginning of every day provides us with at tool to introduce in a non-trivial
way the information accumulated overnight.
We have observed that the empirical distribution of {ûi} departs from the

normal distribution, especially in trade durations series. We expect that this
problem will be mitigated if daily initialization of the Kalman filter is used:
large overnight innovations may be responsible in part for fatter tails for {ui} .
One can attempt however using a different parametric form of the distribution of
{ui}: a Student t distribution, for example. The model with normal innovations
of the latent process will be nested into Student t parametrization.
Finally, it would be interesting exercise to investigate forecasting abilities of

our model.
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6 Conclusions

We have mentioned in the introduction that, when we talk about a financial
asset, the latent economic process can be viewed as manifesting itself through the
transmission mechanism of the institutional structure of trading. A relatively
simple model used in this study is far from describing the economic process
and the transmission mechanism in details; it captures dynamic properties of
the data without revealing the structure of the data-generating mechanism.
Nonetheless, if we adopt a constructive approach to modeling the generating
mechanism for high-frequency financial series, a parsimonious description of the
output signal given by the SCD model will be a valuable resource in synthesising
the transmission function which given as an input a signal described by one of
existing models of asset price dynamics will generate the output with dynamics
similar to that of empirical point processes investigated in this study.
We believe that the synthesis of models of trading mechanism which would

bridge the gap between the dynamic financial models and the empirical models
of high-frequency financial series will be a promising area of research. Design of
a realistic model of trading would be a very complex task requring substantial
resourses. However, even a simple stylized model may provide further insights
into the microstructure of financial markets. Imagine, for example, that the
latent price process follows a stochastic volatility model and that a new trans-
action occurs when the latent price deviates from the last observed price by a
given margin13. This model has a continuous-time process as an input and a
point process as an output and is probably the simpliest imaginable model of
the trading mechansm. Empirical evidence suggests the presence of long mem-
ory in the volatility process and in the durations process. We conjecture that in
the model just described long memory in the volatility of the laten price process
will translate into long memory in the durations process.
Summarising empirical findings of this study, we observed that while the

estimated parameters of the SCD process are statistically different from contract
to contract, qualitatively the process does not change much over the years.
This is an indication that the model captures some invariant properties of the
economic process and the transmission mechanism. We observed that the SCD
parameters, with a certain leeway, are also stable across the expiration horizon,
the last statement being more accurate with respect to the price durations
process. Price of a future has almost a functional relationship with the price
of the underlying asset. From this it follows that the life-cycle seasonality of
futures durations depends on more on characteristics of the trading mechanism
than of the properties of the latent economic process.
Preliminary analysis shows that the fit of the model improves noticably if the

overnight and the weekend interruptions in trading are taken into account. The
simpliest way to do this is to assume that in the beginning of every trading day
the durations process is initialized with the unconditional mean. This approach
has the advantage that the existing asymptotic theory of the QML estimators

13The framework with informed and uninformed traders can be used to explain the liquidity
of our stylized market.
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can be applied with minor modifications (see 7.2 of the Apendix). Alterna-
tively, the durations process can be initialized in the beginning of every trading
day using auxiliary information available to the econometrician. Designing var-
ious initialization procedures is probably not very interesting for an academic
researcher because these procedures would vary depending on the specific ex-
change and the asset considered, and other factors. However, the initialization
of the process will be crucial in any practical application of the model. The
difficulty which one faces when using an informative prior to initialize the pro-
cess in the beginning of every trading day is that the asymptotic theory for the
estimates cannot be derived from the results of Dunsmuir (1979) because the
essential assumption of ergodicity is violated, and the theory would have to be
developed from scratch.
The science of signal processing has traditions of the analysis of maximal

achievable resolution of a system and of informational analysis of a transmis-
sion channel. We believe that the econometrics of high-frequency financial data
can develop on these traditions. A simple example of informational analysis of
the SCD model given in this study is a modest contribution to this interest-
ing direction of research. We illustrate the practical limitation, given the model
structure and the information available, of our abilities to estimate and/or iden-
tify the signal (the latent process), and how these limitations can be discovered
through the informational analysis of the system comprising the model and the
estimation algorithm” (our analysis of the SCD model applies also to stochastic
volatility models that have a similar mathematical structure). Our estimation
and identification capabilities can be improved either by introducing new a pri-
ori information14 or by using an estimation algorithm, if there exists one, that
makes a better use of the existing information. In economics, choosing an al-
ternative model of the transmission channel and of the signal itself can often
be a productive, in contrast with the natural sciences where due to the estab-
lished methodological paradigm the acceptable choice of models is much more
restricted.
Finally, a dynamic model of durations should accommodate the possibility

of long memory because the empirical evidence strongly suggests the presence
of long-range dependence in the durations process It is not a very difficult task
to estimated the long-memory parameter; it is more difficult to estimate both
the high-frequency dynamics and the long-memory of the process. The FISCD
model provides a parametric framework that allows, in theory, modelling both
the high-frequency dynamics and the low frequency (long-memory) properties.
The advantage of QML estimation in the spectral domain of the FISCD model is
its algorithmic and computational simplicity. Investigation of the properties of
these estimates beyond the strong consistency, which is known to hold, remains
a challenging theoretical problem.

14For example, this a priori information can be in a form that the latent process is an AR (1)
process.
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7 Appendix

7.1 Computation of asymptotic standard errors for the
log-Weibull SCD model

Application of the Dunsmuir’s (1979) asymptotic theory to the case when the
quasi-likelihood function is estimated using the Kalman filter is described in
Harvey (1989), pp.220-221. The QML estimate of the parameter vector θ of
the model is asymptotically normal, unbiased and has the variance-covariance
matrix C = 2A−1 +A−1BA−1 where

A =
1

2π

Z π

−π

∂ log (g (λ))

∂θ

∂ log (g (λ))

∂θ0
dλ

is proportional to the information matrix of the process and

B = κ

·
1

2π

Z π

−π

∂ log (g (λ))

∂θ
dλ

¸ ·
1

2π

Z π

−π

∂ log (g (λ))

∂θ0
dλ

¸
.

Here, g (λ) is the spectral-generating function of the process. It is easy to write

down the spectral-generating function of the process d̂i, the spectrum of this
process will be different form the spectrum of the AR process with normal
innovations only by a constant. The spectrum of the log-durations of the SCD
model when the latent process is AR (1) and the observation error has a log-
Weibull distribution is

g (λ) =
π2

6γ
+

σ2¡
1− 2β cosλ+ β2

¢2 .
Analytical computation of the matrices A and B is a conceptually straight-

forward but tedious task. We opted to use approximate discrete representations
of these integrals in our computations. Given our sample sizes, the discrete
approximation is very accurate and much easier to implement.
As in (Harvey 1989), we define discrete analogs of the matrices A and B,

AT =
1

T

T−1X
m=0

∂ log g
¡
2πm
T

¢
∂θ

∂ log g
¡
2πm
T

¢
∂θ0

BT = κ

"
1

T

T−1X
m=0

∂ log g
¡
2πm
T

¢
∂θ

#"
1

T

T−1X
m=0

∂ log g
¡
2πm
T

¢
∂θ

#
,

limT→∞ (AT ) = A, limT→∞ (BT ) = B.
The information matrix that we are considering in the text of the paper is

defined as (we omit the component which is due to the non-normality for the
sake of simplicity):

IF= 1

4π

Z π

−π

∂ log (g (λ))

∂θ

∂ log (g (λ))

∂θ0
dλ (5)
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7.2 Asymptotic theory when the sample consists of T in-
dependent subsamples

Claim 1 Assume that the sample from the process {zi (θ0)} satisfying the condi-
tions of Theorem 2.1 of (Dunsmuir 1979) consists of T independent subsamplesn
Zji

oNj

i=1
, N =

PT
j=1Nj (we consider only scalar processes to simplify the ex-

position). Assume that N → ∞ in such way that
Nj

N → λi. Denote gθ (λ) the
spectral density of the process z (θ) and Ij (λ) - the periodogram of the subsample

Then if θ̄N = argmax L̄N (θ) , L̄N (θ) =
PT

j=1 L
j (θ) , where

Lj (θ) = log

µ
1

2π

Z
gθ (λ) dλ

¶
+
1

2π

Z
Ij (λ)

gθ (λ)
dλ

then the quantity N1/2
¡
θ̄N − θ0

¢
has an asymptotic normal distribution with

zero mean and the covariance matrixT−2 TX
j=1

λ−1j

Ω−1 (2Ω+Π)Ω−1
where

Ω =
1

2π

Z
∂ ln gθ (λ)

∂θ0
∂ ln gθ (λ)

∂θ
dλ

and

Π = κ

µ
1

2π

Z
∂ ln gθ (λ)

∂θ0
dλ

¶µ
1

2π

Z
∂ ln gθ (λ)

∂θ
dλ

¶
.

κ is the forth cumulant of the innovations.

Proof. The proof of the claim requires only a slight modification of the proof
of the theorem 2.1 of (Dunsmuir 1979). We can see that under the conditions of

the claim the quantity ∂2

∂θ∂θ0 L̄N (θ) →p TΩ (each L
j (θ) coverges to Ω), and the

quantity N1/2 ∂
∂θ L̄N (θ) is asymptotically normal with the variance-covariance

matrix

TX
j=1

λ−1j (2Ω+Π)

The result of the claim immediately follows.

7.3 Long-memory in the dynamics of durations

7.3.1 FISCD model

The fractionally-integrated stochastic conditional duration model is specified as
follows (we give here the general specification but we shall later consider only
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FISCD (1, x, 0)):

di = µ (γ) + ψi + ξi (6)

φ (L) (1− L)x ¡ψi − ψ̄
¢
= η (L)ui,

where E [ψi] = ψ̄, all roots of the polynomials φ (L) and η (L) are outside the
unit circle. As before, {exp (ξi + µ (γ))} are i.i.d. with a distribution having a
positive support, and {ui} ˜n.i.i.d.

¡
0,σ2u

¢
. The spectral density of this process

exists provided that x < 1
2 and it has the following form:

g (λ) =
1

2π

Ã
σ2ξ (γ) +

σ2u
¯̄
η
¡
e−iλ

¢¯̄2
2−x (1− cosλ)−x

|φ (e−iλ)|2
!
,

where σ2ξ (γ) is the variance ξi. The spectrum has a singularity at λ = 0 which
is integrable for the stationary range of the fractional integration parameter
x. When the process is stationary one can easily compute the autocovariances
of the process knowing the spectrum (they cannot be expressed in elementary
functions but it is not important for our exposition):

γk =

Z π

−π
g (λ) exp (iλk) dλ, k = 0, 1, ...

where γk denotes the k-th autocovariance. The expressions for the autocovari-
ances of the process {Di} are bulky and we do not give them here.

7.3.2 QML estimation of FISCD in spectral domain

The asymptotic theory of Dunsmuir (1979) is not applicable to fractionally-
integrated processes and the quasi-likelihood can not be computed using the
state-space representation. Several approaches have been suggested to esti-
mating models with latent variables that have the structure similar to that of
the equation 6. These approaches, either based on the generalized method of
moments or on computing the likelihood using simulations, have the common
property: they are very computationally intensive. It is possible to compute
the quasi-likelihood function of the FISCD(p, x, q) process based on the sam-
ple spectrum of the process (this approach has been suggested in the context
of stochastic volatility processes with long memory). The applicability of the
spectral QML estimation technique (which gives essentially a Whittle-type esti-
mator) to the problem in hand is based on results of Breidt, Crato, and de Lima
(1998) where it has been shown that the maximizer of the expression 7 is a
strongly-consistent estimator of θ provided that the parameter space is com-
pact and the parameter is uniquely identified at the true value. There is no
asymptotic theory available for the spectral QML estimator.
The first steps in estimating the FISCD model are the same as those in the

estimation of the SCD model. After the seasonal adjustment and subtracting
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the mean the model to be estimated has the following form:

d∗i = ψ∗i + ξi

ψ∗i = (1− βL)
−1
(1− L)−x ui

The logarithm of the spectral likelihood function of the process {d∗i } is

L (θ) = −2π
n

[N/2]X
k=1

µ
log gθ (λk) +

IN (λk)

gθ (λk)

¶
(7)

where gθ (λ) is the spectrum of the FISCD (1, x, 0) process with the parameter
vector θ =

¡
σ2u, γ, x,β

¢
,

g (λ) =
1

2π

Ã
π2

6γ2
+

σ2u2
−x (1− cosλ)−x

β2 − 2β cosλ+ 1

!

and IN (λ) is the sample periodogram. λk =
2πk
N , k = 0, 1, 2, ..., N .

7.3.3 Estimation results and discussion

The estimated FISCD(1, x, 0) parameters for trade and price durations are
presented on Figure 11 in a graphic format similar to that used for depicting in
this paper estimates of the SCD parameters. The estimates of x vary between
0.42 and 0.52 for trade durations and between 0.23 and 0.65 for price durations.
We have several contracts where the QML point estimates of x are greater than
0.5, i.e. are outside the stationarity region. This does not mean, of course, that
the durations process is non-stationary since the confidence intervals are not
available.
The estimates of the parameter γ of the Weibull distribution lie between

0.95 and 1.26 for trade durations and between 1.2 and 2.65 for price durations.
The estimates of σ2u and β are very volatile and the data indicates that these
two quantities have strong negative correlation. It seems also that we observe
two types of estimates: those with higher σ̂2u and β̂ close to 0 and those with
smaller σ̂2u and estimates of β in the range of 0.4− 0.6. Again, we cannot draw
definitive conclusions because we don’t know the distribution of the estimated
parameters even asymptotically. We can hypothesize that the instability of
parameter estimates may be caused in part by problems with the data. A
simulation study will probably provide a controlled environment and help to
discover properties of estimated parameter of the FISCD model.
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Figure 1: Estimates of the seasonal components Âδ, χ̂ (t) and ζ̂ (τ) of trade
durations (left column) and of price durations (right column)
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Figure 2: SCD parameters for contracts with different expiration dates. Left
column - trade durations, right column - price durations. Error bars correspond
to two SE.
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Figure 3: SCD parameters estimated using records with 70-130 business days
to expiration. Left column - trade durations, right column - trade durations.
Error bars correspond to two SE.
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Figure 4: Graphic verification of the additivity property. Top two rows - life-
cycle and diurnal contribution when the data is separated according weekday.
Bottom row - life-cycle contribution estimated for different periods of trading
day. Left column - trade durations, right - price durations.
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Figure 5: Measures of dependence for trade log-durations (left column) and for
SCD residuals (right column)
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Figure 6: Measures of dependence for price log-durations (left column) and the
SCD residuals (right column)
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Figure 7: Trade durations. Goodness of fit of the empirical distribuiton of ξ̂.
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Figure 8: Trade durations. Goodness of fit of empirical distribution of û.
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Figure 9: Price durations. Goodness of fit of empirical distribution of ξ̂
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Figure 10: Price durations. Goodness of fit of empirical distribution of û
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Figure 11: FISCD(1,x,0) parameters for contracts with varying expiration dates.
Trade durations are in the left column, price durations - in the right column.
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