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Abstract

We show how to extend the construction of in�nite hierachies of beliefs
(Mertens and Zamir (1985), Brandenburger and Dekel (1993)) from the
case of probability measures to the case of conditional probability systems
(CPSs) de�ned with respect to a �xed collection of relevant hypotheses. The
set of hierarchies of CPSs satisfying common certainty of coherency condi-
tional on every relevant hypothesis corresponds to a universal type space.
This construction provides a uni�ed framework to analyze the epistemic
foundations of solution concepts for dynamic games. As an illustration, we
derive some results about conditional common certainty of rationality and
rationalizability in multistage games with observed actions.

1. Introduction

In�nite hierachies of beliefs, that is, beliefs about beliefs about beliefs about ...,
are used to model interactive epistemic systems and to characterize the epistemic
assumptions underlying solution concepts in games (see e.g. Mertens and Zamir
(1985), Brandenburger and Dekel (1993) and Tan and Werlang (1988)). In this



paper we extend the standard construction of in�nite hierarchies of beliefs and
universal beliefs spaces from the case of hierarchies of probability measures to the
case of hierarchies of conditional probability systems. In our extension, we follow
closely the construction used by Brandenburger and Dekel (1993) (henceforth
BD) for the case of probability measures. We show that the space of hierarchies
of beliefs satisfying common certainty of coherency is a universal type space,
where a(n) (epistemic) type here does not (only) characterize the actual beliefs
of an individual, but rather her disposition to have certain beliefs conditional on
certain relevant hypotheses.

This framework can be used to clarify the foundations of the theory of dy-
namic games. One advantage of using this kind of type spaces is that one is able
to distiguish between a player's knowledge at a decision node x of a game, which
corresponds to the information set h containing x, and what she believes with
certainty at x; that is, what she believes with probability one conditional on h.
For example, a player cannot ever know that her opponent is rational, because
rationality involves a relationship between strategic choices (only partially ob-
servable as the play unfolds) and beliefs (unobservable); but her beliefs about her
opponent's strategy and beliefs can be such that she is certain of her opponent's
rationality at some point of the game. Similarly, mutual or common certainty
of rationality may obtain at some point of the game. As an illustration of our
approach, we derive some some results about common certainty of rationality and
rationalizability in multistage games with observed actions.

The rest of the paper is organized as follows. Section 2 de�nes hierarchies
of conditional probability systems and extends known results about hierarchies
of probability measures to these more general objects. Section 3 introduces an
extended notion of type space and shows that the set of hierarchies of condi-
tional systems satifying common certainty of coherency is a universal type space.
Section 4 introduces conditional belief operators. Section 5 uses this framework
to derive some results about common certainty of rationality conditional on col-
lections of histories and to provide an epistemic foundation for extensive form
rationalizability. Section 6 contains comments about closely related papers.
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2. In�nite hierarchies of beliefs

2.1. Conditional Probability Systems and Higher Order Beliefs

For a given Polish (complete, separable, metrizable) space Z, let A be the Borel
sigma-algebra on Z and B � A a non-empty, countable collection such that ; =2
B.1 The interpretation is that a certain individual i is uncertain about the \true"
element z 2 Z and B represents the collection of \relevant conditions" or \relevant
hypothesis." For example, Z may be the set of of sample paths in a repeated
experiment or the set of complete histories in a dynamic game and B may be a
set of cylinders. Other interpretations of Z are given below. In particular, Z may
be derived from a more basic state space. When we say \relevant" we informally
mean that, given the particular problem we are considering, it is interesting, or
it makes sense, to ask \what would the beliefs of individual i be if he were given
information B?" if and only if B 2 B.

A conditional probability system (or CPS) on (Z;A;B) is a mapping

�(�j�) : A� B ! [0; 1]

satifying the following axioms:

Axiom 1. For all B 2 B, �(BjB) = 1.

Axiom 2. For all B 2 B, �(�jB) is a probability measure on (Z;A).

Axiom 3. For all A;B 2 A, C 2 B such that B \ C 2 B, �(AjB \ C)�(BjC) =
�(A \BjC).2

It can be easily veri�ed that, given Axioms 1 and 2, Axiom 3 can be replaced
by the follwing weaker axiom:

Axiom 4. For all A 2 A, B;C 2 B, A � B � C ) �(AjB)�(BjC) = �(AjC).

1Alternatively, we may assume that Z is compact and B is an arbitrary non empty subcol-
lection of the Borel sigma algebra (not containing ;).

2The tuple (Z;A;B; �) is called conditional probability space by R�enyi (1955). When Z is
�nite, A = 2Z , B = 2Znf;g, we obtain Myerson's (1986) conditional probability systems.

3



The set of probability measures on (Z;A) is denoted by �(Z); the set of
conditional probability systems on (Z;A;B) can be regarded as a subset of [�(Z)]B

(the set of mappings from B to �(Z)) and it is denoted by �B(Z). Accordingly,
we often write � = (�(�jB))B2B 2 �B(Z). The topology on Z and A, the smallest
sigma-algebra containing it, are always understood and need not be explicit in
our notation. Thus we simply say \conditional probability system (or CPS) on
(Z;B)." It is also understood that �(Z) is endowed with the weak topology
and [�(Z)]B is endowed with the product topology. Thus �(Z) and [�(Z)]B (by
countability of B) are Polish spaces. Since �B(Z) is a closed subset of [�(Z)]B,
also �B(Z) is a Polish space (endowed with the relative topology inherited from
[�(Z)]B). The set X = Z ��B(Z) endowed with the product topology is also a
Polish space.

Let C : B ! 2X be de�ned by C(B) = B ��B(Z). Thus C(B) = fC � X :
9B 2 B; C = B ��B(Z)g is a set of \cylinders" generated by B and represents
a copy of B in X. Then we can de�ne the set of \second order" CPSs �C(B)(X).
Since X is a Polish space, it follows that also �C(B)(X) (endowed with the appro-
priate topology as above) is a Polish space. Each element �+1i 2 �C(B)(X) is a
countable collection of individual i's conditional joint beliefs about z 2 Z and �j 2
�B(Z) { individual j's conditional beliefs about z 2 Z{, whereby the conditions
or hypothesis are essentially the same as in B. Recall that B is the collection of
\relevant conditions or hypothesis," therefore it makes sense to condition only on
(appropriate copies of) elements of B when we consider higher order conditional
beliefs.

Note that �C(B)(X) can be regarded as a subset of [�(X)]B, thus we can sim-
plify our notation and write �B(X) even though B is not a collection of subsets of
X. More formally, letX = Z�Q, B � 2X , BX = fC � X : 9B 2 B; C = B �Qg;
then the set of CPSs on (X;BX) is denoted by �B(X). For any probability
measure � on the product space X = Z � Q let mrgZ� 2 �(Z) denote the
marginal measure on X. In what follows it is useful to keep in mind that, if
� = (�(�jB �Q))B2B 2 �B(X), then (mrgZ�(�jB �Q))B2B 2 �B(Z).

2.2. Inductive Construction

We are now ready for the inductive construction of the space of in�nite hierarchies
of beliefs and the universal type space. For the sake of simplicity, we assume that
there are only two individuals i and j with the same space of basic uncertainty
� and collection of relevant conditions B. They have conditional beliefs about �
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and about each other for every hypothesis B 2 B. For the sake of simplicity, we
omit to consider the beliefs of an individual about her own beliefs. As before we
assume that � is a Polish space and B is a countable subcollection of its Borel
sigma-algebra not containing the empty set. De�ne recursively Xn and Bn as
follows:

X0 = �, B0 = B;
for all n � 0,
Xn+1 = C(Xn) := Xn ��Bn(Xn),
Bn+1 = C(Bn) := fC � Xn+1 : 9B 2 Bn; C = B ��Bn(Xn)g.
An element�n+1 2 �Bn(Xn) is an (n+1)th-order CPS with elements�n+1(�jB) 2

�(Xn), B 2 Bn. It can be easily veri�ed that in our notation

�Bn(Xn) = �B(Xn); Xn+1 = � �
k=nY
k=0

�B(Xk):

The set of in�nite hierarchies of CPSs is H =
Q1

n=0�
B(Xn). An in�nite hi-

erachy represents an epistemic type and is therefore typically denoted by t =
(�1; �2; :::; �n; :::). Note that for all n � 0, Xn and �B(Xn) are Polish spaces. It
follows that also H and �B(��H) are Polish spaces. Note also that for all k � 0,
��H can be decomposed as follows:

��H = Xk �
1Y
n=k

�B(Xn):

2.3. Coherent Hierarchies

We have not yet imposed any coherency condition relating beliefs of di�erent
order. Of course, we want to assume that, conditional on any relevant hypothesis,
beliefs of di�erent order assign the same probability to the same event. For all
B 2 B and n = 1; 2; :::;1 let Cn(B) denote the element of Bn which is a copy of
B in Xn, that is Cn(B) is the element C 2 Bn such that the projection of C on �
is B (note that, as the notation suggests, C(Cn�1(B)) = Cn(B)). Recall that, for
any probability measure � on a product space X � Y , mrgX� 2 �(X) denotes
the marginal measure on X.

De�nition 2.1. An in�nite hierarchy of CPS's t = (�1; �2; :::; �n; :::) is coherent
if for all B 2 B, n = 1; 2; :::,

mrgXn�1�n+1(�jCn(B)) = �n(�jCn�1(B)): (2.1)

The set of coherent hierarchies is denoted by Hc.
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Proposition 2.2. (cf. BD, Proposition 1) There exists a \canonical" homeo-
morphism f : Hc ! �B(� �H) such that if � = f(�1; �2; :::; �n; :::), then for all
B 2 B, n = 1; 2; :::;

mrgXn�1�(�jC1(B)) = �n(�jCn�1(B)): (2.2)

We �rst prove the following lemma:

Lemma 2.3. Consider the following set:

D =
n
(�1; �2; :::) : 8n � 1; �n 2 �(Xn�1);mrgXn�1�n+1 = �n

o
:

There is a homeomorphism h : D ! �(��H) such that

8n � 1; mrgXn�1h(�1; �2; :::) = �n:

Proof. Let Z0 = X0 = �, 8n � 1; Zn = �B(Xn�1). Each Zn is a Polish
space and

D =
n
(�1; �2; :::) : 8n � 1; �n 2 �(Z0 � :::� Zn�1);mrgXn�1�n+1 = �n

o
:

The result then follows from Lemma 1 in BD.
Proof of Proposition 2.2. For each B 2 B, let �B : Hc ! D be the following

projection mapping:

�B(�
1; :::; �n; :::) =

�
�1(� j B); :::; �n(� j Cn�1(B); :::

�
:

�B is clearly continuous. By Lemma 2.3 the mapping

fB = h � �B : Hc ! �(��H)

is also continuous. Let �(� j C1(B)) = fB(�1; �2; :::). Clearly, �(C1(B) j
C1(B)) = 1 and for all n = 1; 2; :::, eq. (2.2) is satis�ed. Thus the mapping

f = (fB)B2B : Hc ! [�(��H)]B

is continuous and satis�es eq. (2.2). The latter fact implies that f is 1 � 1
and the restriction of f�1 to f(Hc) is continuous. We only have to show that
f(Hc) = �B(� �H).�

�B(��H) � f(Hc)
�
Take � 2 �B(� � H) and for all B 2 B, n � 1 de�ne

�n(�jCn(B)) using eq. (2.2). If t = (�1; :::; �n; :::) 2 Hc, then f(t) = � 2 f(Hc).

6



Thus it is su�cient to show that t = (�1; :::; �n; :::) 2 Hc; in order to do this we
only have to verify that each �n sati�es Axiom 4 (coherency of t is satis�ed by
construction). For each n, let An � Xn be measurable, B;C 2 B, Bn = Cn(B),
Cn = Cn(C) and suppose that An � Bn � Cn (thus B � C). Let A1 =
C1(An) = An � �B(Xn) � �B(Xn+1) � ::: � � � H. Similarly B1 = C1(B)
and C1 = C1(C). Then A1 is measurable in � � H, B1; C1 2 B1 and
A1 � B1 � C1. Thus we can use Axiom 4 for � and eq. (2.2) to show that
�n(AnjBn)�n(BnjCn) = �n(AnjCn).�

f(Hc) � �B(��H)
�
Take t = (�1; :::; �n; :::) 2 Hc and let � = f(t). We

must verify that Axiom 4 holds for �. Let A1 � ��H be measurable, B;C 2 B,
B1 = C1(C), C1 = C1(C), A1 � B1 � C1 (thus B � C). It is su�cient to
consider the case where A1 is generated as the limit of a sequence of cylinders,
that is, there is fAngn�0 such that for each n, An � Xn is measurable and
An � C(An�1) � Cn(B), and A1 =

T
n�0 C

1(An). Applying Axiom 4 to �n we
obtain

�n(AnjCn(B))�n(Cn(B)jCn(C)) = �n(AnjCn(C)):

Then eq. (2.2) yields

�(C1(An)jC1(B))�(C1(B)jC1(C)) = �(C1(An)jC1(C))

and by continuity we obtain

�(A1jB1)�(B1jC1) = �(A1jC1)

as desired.

2.4. Common Certainty of Coherency

Even if i's hierarchy of CPSs ti is coherent, some elements of f(ti) (i.e. some
fB(ti), B 2 B) may assign positive probability to sets of incoherent hierarchies
of the other individual j. We now consider the case in which there is common
certainty of coherency conditional on every B 2 B (note that B does not contain
epistemic events, thus there cannot be any inconsistency in assuming that there
is common certainty of coherency conditional on any B 2 B).

Individual i endowed with coherent hierarchy of CPSs ti is certain of some
(measurable) event E � � � H (concerning the basic state and/or the other
individual's beliefs) given B 2 B if fB(ti)(E) = 1. Thus we can give the following
inductive de�nition of common certainty of coherency given every B 2 B:
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H1
c = Hc;

for all k � 2,
Hk

c = ft 2 Hc : 8B 2 B; fB(t)(��Hk�1
c ) = 1g;

T =
T
k�1H

k
c .

T �T is the set of pairs of hierachies satisfying common certainty of coherency
conditional on every relevant hypothesis.

Proposition 2.4. (cf. BD, Proposition 2) The restriction of f = (fB)B2B to
T � Hc induces an homeomorphism g = (gB)B2B : T ! �B(� � T ) (de�ned by
gB(t) = fB(t) for all B 2 B, t 2 T ) such that, if � = g(�1; �2; :::), then for all
n � 1, B 2 B, mrgXn�1�(�jB � T ) = �n(�jCn�1(B)).

Proof. First verify that T = ft 2 Hc : 8B 2 B; fB(t)(B � T ) = 1g. Thus
f(T ) = f� 2 �B(� �H) : 8B 2 B; �(B � T jB �H) = 1g, T is homeomorphic
to f(T ), and each fB(T ) is homeomorphic to �(B � T ): Given the de�nition
of g in terms of f , one can check that for all t 2 T , g(t) satis�es Axioms 1, 2
and 4 and thus g is a homeomorphism between T and �B(� � T ) satisfying the
marginalization property.

Proposition 2.4 shows that each element t 2 T corresponds to an epistemic
type in the usual sense, except that here a type is associated to a conditional
probability system on (� � T;B) instead of an ordinary probability measure on
�� T .

3. Type Spaces

De�nition 3.1. A type space on (�;B) is a tuple T = (�;B; T1; T2; g1; g2) such
that for each i = 1; 2, Ti is a Polish space and gi is a continuous mapping

gi = (gi;B)B2B : Ti ! �B(� � Tj);

where i 6= j.

Remark 1. By Proposition 2.4 if we put T1 = T2 = T and g1 = g2 = g we obtain
a (symmetric) type space which is denoted by T u:

A type space is an \implicit representation" of an epistemic model because
the sets of types are not derived from the more basic elements � and B. On the
other hand, hierarchies of beliefs are \explicit" representations of epistemic types.
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A typical result about probabilistic epistemic models is that every type space can
be regarded as a belief closed subset of the type space explicitly constructed using
hierarchies of beliefs, which is therefore \universal".3 Here we provide such a
result for CPSs.

For any given measurable function ' : � � T ! � � T 0, let b' = ( b'B)B2B :
�B(��T )! �B(��T 0) be the corresponding function associating to each CPS
� on (� � T;B) the induced CPS �0 = b'(�) on (� � T 0;B). That is, for all
� 2 �B(�� T ), A0 � �� T 0 (measurable), B 2 B,

b'B(�)(A
0) = �('�1(A0)jB � T ):

De�nition 3.2. Let T = (�;B; T1; T2; g1; g2) and T 0 = (�;B; T 01; T
0
2; g

0
1; g

0
2) be

two type spaces on (�;B). A type-morphism from T to T 0 is a triple of functions
' = (' 0; ' 1; ' 2) whereby '0 is the identity function on � and for each i = 1; 2,
' i : Ti ! T 0i is a continuous function such that

g0i � ' i = d'�i � gi

(where '�i = (' 0; ' j) : � � Tj ! � � T 0j). If ' is a homeomorphism between
�� T1 � T2 and �� T 01 � T 02, then we say that T and T 0 are isomorphic.

If there is a type-morphism from T and T 0, then T1 � T2, up to renaming,
corresponds to a belief-closed subset of T 01�T

0
2 and thus T is essentially a subspace

of T 0.

Remark 2. Suppose ' is a type-morphism from T = (�;B; T1; T2; g1; g2) to T 0 =
(�;B; T 01; T

0
2; g

0
1; g

0
2) let E � � � T1 � T2 and E0 � � � T 01 � T 02 be measurable

subsets such that '(E) � E0. Then for all i 2 f1; 2g, �i 2 Ti, B 2 B,

gi;B(�i) (f(�; �j) : (�; �i; �j) 2 Eg) �

g0i;B('(�i))
�n
(�; � 0j) : �

0
j = 'j(�j); '(�; �i; �j) 2 E

0
o�
:

De�nition 3.3. A type space T 0 on (�;B) is universal if for every other type
space T on (�;B) there is unique type-morphism from T to T 0.

3See Mertens and Zamir (1985) and Heifetz and Samet (1996a,b). Heifetz and Samet show
that, if we drop the topological structure, the space of hierachies of beliefs (satisfying coherency
and common certainty of coherency) is \larger" than the set of hierarchies generated by some
type space.

9



Remark 3. Any two universal type spaces are isomorphic.

For any type space T = (�;B; T1; T2; g1; g2) there is a pair of canonical map-
pings (' 1; ' 2) associating to each type �i 2 Ti a corresponding hierarchy of CPSs

ti = 'i(�i) 2 H. The mappings 'i = ('1
i ; '

2
i ; :::) =

h
('1

i;B)B2B; ('
2
i;B)B2B; :::

i
,

i = 1; 2 are obtained with a canonical inductive construction:

� (1) For each i = 1; 2, �i 2 Ti, B 2 B,

'1
i;B(�i) = mrg�gi;B(�i):

For each i; j = 1; 2, i 6= j, �j 2 Tj, � 2 �,

 1
�i(�; �j) = (�; '1

j (�j));

that is,  1
�i = (Id�; '1

j ) (Id� is the identity function on �). Thus we have
'1
i : Ti ! �B(X0) and  1

�i : � � Tj ! X1 (recall that X0 = � and
Xn+1 = Xn ��B(Xn)).

� (n+1, n�1) Let 'n
i : Ti ! �B(Xn�1) and  n

�i : � � Tj ! Xn (i; j = 1; 2,
i 6= j) be given. For each i = 1; 2, �i 2 Ti, B 2 B, An � Xn (measurable),

'n+1
i;B (�i)(A

n) = gi;B(�i)
�
( n

�i)
�1(An)

�
;

that is, 'n+1
i = d n

�i � gi. For each i; j = 1; 2, i 6= j, �j 2 Tj, � 2 �,

 n+1
�i (�; �j) =

�
 n
�i(�; �j); '

n+1
j (�j)

�
;

that is,  n+1
�i = ( n

�i; '
n+1
j ). Thus we have 'n+1

i : Ti ! �B(Xn) and  n+1
�i :

�� Tj ! Xn+1:

Note that  n+1
�i (�; �j) =

�
�; '1

j (�j); :::; '
n
j (�j); '

n+1
j (�j)

�
:

Proposition 3.4. Let T = (�;B; T1; T2; g1; g2) be an arbitrary type space on
(�;B) and let '1 and '2 be the mappings de�ned above. Then for each i = 1; 2,
'i(Ti) � T and ' = (Id�; '1; '2) is the unique type-morphism from T = (�;B; T1;
T2; g1; g2) to T u = (�;B; T; T; g; g). Thus T u is the unique universal type space
(up to isomorphisms).
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Proof. ('i(Ti) � T ) We �rst verify that 'i(Ti) � Hc, that is, for all �i 2 Ti,
n � 1, B 2 B, mrgXn�1'n+1

i;B (�i) = 'n
i;B(�i). Take An�1 � Xn�1 (measurable).

Then

'n+1
i;B (�i)(A

n�1 ��B(Xn�1)) = gi;B(�i)
�
( n

�i)
�1(An�1 ��B(Xn�1)

�
=

gi;B(�i)
�n
(�; �j) :  

n�1
�i (�; �j) 2 A

n�1
o�

= 'n
i;B(�i)(A

n�1):

Claim. f � 'i = d'�i � gi, where '�i = (Id�; 'j).
Proof of the claim. Take An � Xn (measurable), B 2 B, and let A =

C1(An). Then
fB('i(�i))(A) = 'n+1

i;B (�i)(A
n) =

gi;B(�i)
�
( n

�i)
�1((An))

�
= gi;B(�i)

�n
(�; �j) : (�; '

1
j(�j); :::; '

n
j (�j)) 2 A

n
o�

=

gi;B(�i) (f(�; �j) : (�; 'j(�j)) 2 Ag) = gi;B(�i)
�
('�i)

�1(A)
�
:

The equality fB('i(�i))(A) = gi;B(�i) (('�i)�1(A)) is extended by continuity to
the sigma algebra generated by cylinders and the claim is proved.

Next we show by induction that for each i, 'i(Ti) � T :=
T
n�1H

n
c . Recall

that 'i(�i) 2 Hn
c , n � 2, if for all B 2 B, fB('i(�i))(��Hn�1

c ) = 1. We have just
shown that 'i(Ti) � H1

c for each i (by de�nition, H1
c = Hc). Now suppose that

'j(Tj) � Hn�1
c . Then for all �i 2 Ti, B 2 B,

fB('i(�i))(��Hn�1
c ) = gi;B(�i)

�n
(�; �j) : 'j(�j) 2 H

n�1
c

o�
=

gi;B(�i)(�� Tj) = 1;

where the �rst equality follows from the claim above and the second from the
induction hypothesis.

(Continuity) Continuity of 'i is also proved by induction. Since gi is continuous
and '1

i;B(�i) = mrg�gi;B(�i), '1
i is also continuous. Suppose that for i = 1; 2, k =

1; :::; n, 'k
i is continuous. Then  n

�i(�; �j) = (�; '1
j(�j); :::; '

n
j (�j)) is continuous

in (�; �j): Thus, also d n
�i is continuous. Continuity of d n

�i and gi implies that

'n+1
i = d n

�i �gi is continuous. Thus far we have proved that each 'i is a continuous
mapping from Ti to T and that g �'i = d'�i � gi. Therefore (Id�; '1; '2) is a type-
morphism from T to T u.
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(Uniqueness) Suppose that � = (Id�; �1; �2) is a type-morphism from T to

T u. We must prove that � = '. Since g � �i = d��i � gi and g is invertible,
�i = g�1 �d��i � gi. Thus we can write the (n+ 1)th element of �i(�i) as

�n+1i (�i) =
�
mrgXn��i;B(gi(�i))

�
B2B

;

where ��i;B(gi(�i)) is the probability measure conditional on B � T of the CPSd��i(gi(�i)) 2 �B(�� T ). Thus it is su�cient to show that for all n � 0, i = 1; 2,

B 2 B, �i 2 Ti, mrgXn��i;B(gi(�i)) = 'n+1
i;B (�i). The statement is true for n = 0:

take a measurable subset A0 � � := X0, then

mrgX0��i;B(gi(�i))(A
0) = ��i;B(gi(�i))(A

0 � T ) =

gi;B(�i)
�n
(�; �j) : (�; �j(�j)) 2 A

0 � T
o�

= gi;B(�i)(A
0 � Tj) =

mrg�gi;B(�i)(A
0) = '1

i;B(�i):

Suppose that the statement is true for n = 0; :::; k � 1. Then�
�;
�
mrgX0��i;B(gi(�i))

�
B2B

; :::;
�
mrgXk�1��i;B(gi(�i))

�
B2B

�
=  k

�i(�; �j):

Take Ak � Xk (measurable) and let A = C1(Ak), then

mrgXk��i;B(gi(�i))(A
k) = ��i;B(gi(�i))(A) =

gi;B(�i) (f(�; �j) : (�; �j(�j)) 2 Ag) =

gi;B(�i)
��

(�; �j) :
�
�;
�
mrgX0��i;B(gi(�i))

�
B2B

; :::;
�
mrgXk�1��i;B(gi(�i))

�
B2B

�
2 Ak

��
=

gi;B(�i)
�n
(�; �j) :  

k
�i(�; �j) 2 A

k
o�

= 'k+1
i;B (�i)(A

k):

This concludes the proof.

4. Conditional Belief Operators

Fix an arbitrary type space T = (�;B; T1; T2; g1; g2). A point (�; �1; �2) 2 � �
T1� T2 is a state of the world and a measurable set E � �� T1� T2 is an event.
For each �i 2 Ti, E�i � � � Tj is the set of pairs (�; �j) consistent with event E
and epistemic type �i (E�1 = f(�; �2) 2 �� T2 : (�; �1; �2) 2 Eg, E�2 is similarly
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de�ned). Type �i assigns to E a probability of at least p conditional on each
hypothesis B 2 F � B if 8B 2 F , gi;B(�i)(E�i) � p (we are implicitly assuming
that i is certain of her epistemic type). Thus, for every event E, probability
p 2 [0; 1], and collection of relevant hypotheses ; =2 F � B, the event \i would
assign to E a probability of at least p conditional on every B 2 F" is

�pi;F(E) := f(�; �1; �2) : 8B 2 F ; gi;B(�i)(E�i) � pg

(note that �pi;F(E) is measurable for each (measurable) E).
Let F � B be a collection of commonly observable events (technically, the

commonly observable events are the subsets E = F � T1 � T2, F 2 F). Then
it makes sense to de�ne the event \it would be common p-belief given F that
E"written c�pF(E). Let �

p
F (E) := �p1;F(E)\�

p
2;F (E) and (�pF)

0(E) := E. For each
n � 1,

(�pF)
n(E) := �pF

�
(�pF)

n�1(E)
�
;

then
c�pF(E) :=

\
n�1

(�pF)
n(E):

Thus the event \E occurs and it would be common p-belief given F that E;" is

E \ c�pF(E) =
\
n�0

(�pF)
n(E):

�pi;F , �
p
F and c�pF are examples of conditional belief operators. If F is a singleton,

we replace it with its unique element as a subscript. If p = 1 we omit the
superscript p. Thus c�F(�) is a conditional common certainty operator. If we have
to emphasize the type space T , we add T as a subscript to the belief operators,
e.g. we write �pF;T (E) and c�

p
F;T (E).

Note the di�erence between the events
T
B2F c�

p
B(E) (\for all B 2 F , it

would be common p-belief given B that E") and c�pF(E). In general, c�pF(E) �T
B2F c�

p
B(E).

4

Let E � � ��B(�) ��B(�) be measurable. The event corresponding to E
in type space T = (�;B; T1; T2; g1; g2) is denoted ET , i.e.

ET :=
n
(�; �1; �2) :

�
�; (mrg�g1;B(�1))B2B ; (mrg�g2;B(�2))B2B

�
2 E

o
:

4Reny (1993) illustrates this di�erence in the context of games for the case where E is the
event \every player is Bayesian rational." Although he does not explicitly use epistemic models,
his analysis and examples can be reformulated within our framework.
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Lemma 4.1. Suppose that ' is a type morphism from T = (�;B; T1; T2; g1; g2)
to T 0 = (�;B; T 01; T

0
2; g

0
1; g

0
2) and let E � ���B(�)��B(�) be measurable. Then

for all n � 0, ; =2 F � B, p 2 [0; 1],

'
�
(�pF;T )

n(ET )
�
� (�pF;T 0)n(ET 0)

and
'
�
c�pF;T (ET )

�
� c�pF;T 0(ET 0):

Proof. The second statement follows from the �rst. Since ' is a type-
morphism from T to T 0, for all i, �i, B, mrg�gi;B(�i) = mrg�g

0
i;B('i(�i)). This

implies '(ET ) � ET 0 . Thus the �rst stament is true for n = 0. Suppose that

'
�
(�pF;T )

n(ET )
�
� (�pF;T 0)n(ET 0):

Then Remark 2 implies

'
�
�pF;T

�
(�pF;T )

n(ET )
��
� �pF;T 0

�
(�pF;T 0)n(ET 0)

�
and thus the statement is also true for n+ 1.

5. Interactive Epistemology and Rationality in Dynamic Games

We now apply the foregoing analysis to the theory of dynamic games. For the
sake of simplicity we only consider �nite games with observed actions. On the
other hand, we allow for incomplete information because this does not alter the
analysis in any signi�cant way.

5.1. Games of Incomplete Information with Observed Actions

Consider a �nite, two-person, multistage game with observed actions and incom-
plete information (see e.g. Fudenberg and Tirole (1991, Chapter 8)) without the
probabilistic structure. Let H, Z and �i respectively denote the sets of non-
terminal and terminal feasible histories, and the set of payo�-relevant types for
player i. A payo�-relevant type �i 2 �i corresponds to i's private information
about feasibility constraints and payo�-relevant aspects of the game and has to
be distiguished from the epistemic type which speci�es i's attitudes to have cer-
tain conditional beliefs given certain events. We will omit the adjective \payo�-
relevant" whenever no confusion can arise. The set of feasible strategies (mappings
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from H to feasible actions) for type �i is denoted Si(�i). Player i preferences over
lotteries are represented by a VNM utility function ui : Z � �1 � �2 ! . The
game has private values if, for each i, ui is independent of �j; it has perfect infor-
mation if (a) for every historyh 2 H there is only one player, say �(h), with more
than one feasible action and (b) for each i, Si(�i) is constant.5

The basic elements of our analysis are feasible strategy-type pairs: (si; �i) is a
feasible pair if si 2 Si(�i). A generic feasible pair for player i is denoted �i and
the set of such feasible pairs is

�i := f(si; �i) : �i 2 �i; si 2 Si(�i)g

Thus here the basic uncertainty space is � := �1 � �2 with generic element � =
(�1; �2) = (s1; �1; s2; �2). When there is complete information � is simply the set of
strategy pairs. For each history h, �(h) = �1(h)��2(h) is the set of � consistent
with the occurrence of h. H(�i) is the set of non terminal histories consistent
with (the strategy in) �i, that is, H(�i) := fh 2 H : �i 2 �i(h)g. Considering non
terminal histories h 2 H, �j(h) is a strategic form representation of i's information
about j at h. Considering terminal histories z 2 Z, we can obtain a strategic form
payo� function Ui : � ! as follows: for all z 2 Z and (s1; �1; s2; �2) 2 �(z),
Ui(s1; �1; s2; �2) = ui(z; �1; �2).

We are interested in players' (mutual) conditional beliefs at each (commonly
observable) non terminal history h. Thus the collection of relevant hypotheses is
this context is B = fB : 9h 2 H; B = �(h)g. Note that � 2 B, because � = �(�),
where � 2 H is the empty history. In order to complete the model we have to
introduce a(n) (epistemic) type-space T = (�;B; T1; T2; g1; g2). A complete type
for player i is a pair (�i; �i) 2 �i � Ti corresponding to a vector (�i; gi(�i)) 2
�i � �B(� � Tj).6 This description of an interactive epistemic model based on
a dynamic game is consistent with several papers about the theory of extensive
form games. In particular, it can be regarded as a generalization of Ben Porath
(1996) (for more on this see Section 6).

5The reason why we add (b) to the more familiar condition (a) is that we can represent a
game with observed actions with an extensive form featuring perfect information (plus payo�
functions vi : � � Z ! , where Z is the set of terminal nodes) precisely when (a) and (b) are
satis�ed.

6In static games �i � Ti is the set of types in the sense of Harsanyi (1967-68). In most
applications of the theory of games with incomplete information �i is assumed to coincide with
Ti and the functions gi, i = 1; 2, are derived from a common prior on �1 � �2 and a Bayesian
equilibrium pro�le.
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Since each element of B represents the event that some history h occurs, we
simplify our notation on belief functions and belief operators replacing a strategic
form event B = �(h) 2 B with the corresponding history h 2 H in the subscript
denoting the conditioning event. We continue to identify singletons with their
unique elemants. For example, given h 2 H or F � H, we write gi;h(�i) :=
gi;�(h)(�i), c�F(E) := c�f�(h):h2Fg(E). In particular, the event \there is common
certainty of E at the beginning of the game" is denoted c��(E) := c�f�g(E).

We are formally assuming that a player has beliefs about about her own strat-
egy and payo�-relevant type, but not about her own epistemic type. However, we
have already noticed that we implicitly assume that a player is certain of her epis-
temic type. The same will be assumed for her strategy and payo�-relevant type,
that is, we will assume that a player is certain of her strategy and payo�-relevant
type at every history consistent with that strategy.

For any �i 2 �i let Bj(�i) denote the collection of \strategic information sets"
concerning player j and corresponding to histories consistent with �i, that is

Bj(�i) := fBj : 9h 2 H(�i); Bj = �j(h)g :

For any pair (�i; �) 2 �i ��B(�), de�ne the vector ��i = (��i(�jBj))Bj2Bj(�i) as
follows: for all Bj = �j(h) 2 Bj(�i), all Aj � �j ,

��i(AjjBj) = �(f�ig �Ajj�(h)).

Remark 4. If � 2 �B(�) is such that, for all h 2 H(�i), �(f�ig ��jj�(h)) = 1,
then ��i is a conditional probability system on (�j;Bj(�i)).

The assumption that a player is certain of her strategy and type is embedded
in the following de�nition of rationality:

De�nition 5.1. Let (si; �i) 2 �i, � 2 �B(�). Strategy si is a sequential best
response to � for type �i, written (si; �i) 2 ri(�), if for all h 2 H(si; �i), s0i 2 Si(�i)
(a) �(f(si; �i)g ��j j�(h)) = 1,
(b) if (s0i; �i) 2 �i(h) thenX

�j

[Ui(si; �i; �j)� Ui(s
0
i; �i; �j)]�(si;�i)(�jj�j(h)) � 0:

Two features of this de�nition are worth noting. First, we regard strategies
as plans of actions, because rationality is imposed only at histories consistent
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with the given strategy. Second, according to this particular de�nition, the set
ri(�) of best responses to � is either empty or a singleton. In fact, suppose
�i 2 ri(�). Then, by condition (a), the probability of �i conditional on the empty
history must be one: �(f�ig � �j j�(�)) = 1 (recall that �(�) = �). Thus no
other �0i can satisfy condition (a). We �nd (a) quite compelling as a rationality
condition. In particular, it implies that if �i 2 ri(�), where � represents the �rst
order conditional beliefs of player i, then player i is certain that she is rational
conditional on every history consistent with �i. Either feature could be changed
(asking for maximization at every history and/or ignoring the beliefs of a player
about her strategy) without a�ecting the following results in any essential way.

5.2. Common Certainty of Rationality

De�nition 5.2. Fix a type space T = (�;B; T1; T2; g1; g2). Player i is rational

at state (�; �1; �2) in T if �i 2 ri
�
(mrg�gi;h(�i))�(h)2B

�
. The set of states in T

where player i is rational is denoted Ri;T and RT := R1;T \R2;T . Let ; =2 F � H,
� 2 � is consistent with rationality and common certainty of rationality given F
if there is an epistemic type space T and a pair of epistemic types (�1; �2) such
that (�; �1; �2) 2 RT \ c�F;T (RT ).

7

A few remarks about this de�nition are worth mentioning.

7This is an appropriate point to comment on the assumption that there are observed actions.
The analysis can be extended to arbitrary extensive form games. However, the interpretation of
the conditional belief operators would change. In the observed actions case, a relevant hypothesis
B = �(h) represents an event that becomes common knowledge when history h occurs. Thus,
for example, it is legitimate to interpret the formula (�; �1; �2) 2 c�h` (E) \ �(h`) � T1 � T2,
where h` is a history of length `, as saying that at state (�; �1; �2) there is common certainty
of E after ` periods, that is, when it becomes common knowledge that history h` (induced by
�) has occurred. This interpretation is incorrect if there is imperfect, asymmetric information
about past moves. For some purposes this is irrelevant. For example, we may be interested in
what is commonly certain at the beginning of the game (as in Ben Porath (1996)). But if we
want to describe the dynamics of interactive beliefs as the play unfolds, we have to augment the
standard de�nition of an extensive form game with a speci�cation of each player's information
about past moves at each node of the game, including the decision nodes of other players. This
yields information partitions for each stage of the game (see Battigalli and Bonanno (1995)).
Let H`

i (h
`) denote the information set for player i at stage ` after history h`. Then B can be

chosen as the closure under union of the following collection:
�
B : 9i; 9h` 2 H; B = �

�
H`

i (h
`)
�	
.

Conditional common belief operators can be meaningfully de�ned with respect to the elements
of the �nest common coarsening of the information partitions.
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� RT is the event in T corresponding to the (measurable) set of strategy-type
pairs and �rst order beliefs for each player satisfying sequential rationality.

� Condition (a) of our de�nition of rationality implies that if at state (�1; �2; �1; �2)
player i is rational and is certain of her rationality conditional on history h,
then �i 2 �i(h). Therefore, if � is consistent with rationality and common
certainty of rationality given h, then � 2 �(h). For the same reason it is
impossible to have certainty of one's own rationality given F whenever F
contains incompatible histories, that is, if h0; h00 2 F and �(h0)\�(h00) = ;,
there is a player { say i { such that �i(h0) \ �i(h00) = ; and �i;F(Ri) = ;.8

� But the following example shows that there is a more interesting reason why,
typically, player i cannot be certain of her rationality after every history in
F : the fact that i knows her epistemic type.

Example. Consider the following two stage game with complete information.
The payo�s of the second stage are independent of the outcome of the �rst stage:

1st stage l r
U 6,0 0,0
M 5,0 5,0
D 0,0 6,0

2nd stage c d
a 1,1 0,0
b 0,0 1,1

8Let �i(�i) (an empty set or a singleton) denote the set of (si; �i) such that si is a sequential
best response to the CPS on (�;B) induced by gi(�i). Then

Ri \ �i;h(Ri) =

f(�; �1; �2) : f�ig = �(�i); gi;h(�i)(�(ti)� �j � Tj) = 1g =

f(�; �1; �2) : gi;h(�i)(f�ig ��j � Tj) = 1g � �i(h) ��j � Tj ;

where the latter inclusion follows from the fact that �i assigns probability one to �(h) conditional
on h.
Suppose that F contains incompatible histories. Then, for at least one player, say i, �i(h0)\

�i(h
00) = ;, where h0; h00 2 F . We have

�i;F (Ri) = f(�; �1; �2) : 8h 2 F ; gi;h(�i) [(Ri)�i ] = 1g =

f(�; �1; �2) : 8h 2 F ; gi;h(�i) (�i(�i)� �j � Tj) = 1g �

f(�; �1; �2) : 8h 2 F ; �i(�i) \�i(h) 6= ;g :

Since
T

h2F �i(h) = ; and �i(�i) is (at most) a singleton, �i;F (Ri) = ;.
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Suppose that F = H and the epistemic type �1 of player 1 (the Row player) is
such that she is certain of her rationality after U . Then no strategy choosing D
in the �rst stage can be a best response to the belief of �1 about player 2. But
after history (D; l) or (D; r) type �1 must assign positive probability only to such
strategies. Thus no type �1 can be certain that she is best responding after U and
after D.2

We can ask the following questions about common certainty of rationality:
(i) When we consider the set of strategy-type pairs consistent with common

certainty of rationality given F can we restrict our attention to �nite type spaces
(more generally, type spaces with the same cardinality of �)?

(ii) Can we restrict our attention to the universal type space T u containing all
the hierarchies of conditional systems satisfying common certainty of coherency?

(iii) How can we characterize the set of type-strategy pairs consistent with
common certainty of rationality given F without any reference to epistemic types?

We start from the last question. The answer should rely on an inductive
construction. For any � � �B(�), let r(�) := r1(�) � r2(�). For any b� � �,
F � H, let

�F (b�) := n
� 2 �B(�) : 8h 2 F ; �(b�j�(h)) = 1

o
:

(Note that, if F is \large" and b� is \small," �F(b�) is typically empty.) The
inductive construction is as follows:

� �0
F := �,

� for all n � 0, �n+1
F := r [�F (�n

F)].

Note that �1
F is independent of F and, for every type space T on (�;B),�n

(�; �1; �2) 2 �1
F ��B(�)��B(�) : �i = ri(�i); i = 1; 2

o�
T
= RT .

A perhaps obvious conjecture is that the set of � consistent with rationality and
common certainty of rationality given F is �1

F :=
T
n�1 �

n
F . But the example

above shows that this conjecture is not correct in general: one can check that in
that example �1

B = � even if c�B(R) = ;. We will see that, in general, �1
F is a

superset of of the set of � consistent with common certainty of rationality given
F and that the conjecture is essentially correct when F is a singleton.

Since the composite mapping r � �F is a monotone set to set operator, the
sequence f�n

Fg
1
n=0 is (weakly) decreasing. Thus, by �niteness of �, there is some

N such that for all n � N , �1
F := �n

F . This means that �1
F has the familiar
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�xed point property: �1
F = r [�F(�1

F )]. It is easy to prove (using monotonicity
of r��F ) that every rectangular subset �F such that �F � r [�F (�F )] is a subset
of �1

F . In general, �1
F may well be empty (cf. Reny (1993) and the related

comments in the next section). But it can be shown that �1
� is nonempty.9

Given the �xed point property of �1
F it is easy to verify that �1

F 6= ; if and only
if �F \ (

S
h2F �(h)) 6= ;.

Lemma 5.3. Let �� = ��
1 � ��

2 � �, h� 2 H. If �� � r [�h�(��)], then there is
a �nite type space T = (�;B; T1; T2; g1; g2) such that

8� 2 �� \ �(h�);9(�1; �2) 2 T1 � T2; (�; �1; �2) 2 RT \ c�h�;T (RT ):

Proof. The statement is trivially true if �� \ �(h�) = ;. Suppose ; 6= �� \
�(h�) � r [�h�(��)]. Construct T as follows. Let T1�T2 = �� \�(h�). Then, for
each �i 2 Ti = ��

i\�i(h�), we can choose a CPS �i(�i) = (�i;h(�i))�(h)2B 2 �h�(��)
such that �i 2 ri(�i(�i)). For all �i 2 Ti � �i(h�),

�i(�i) (f�ig � Tj) = 1; (5.1)

because �i(�i) 2 �h�(��) and �i and �i(�i) satisfy part (a) of De�nition 5.1.
Mapping gi(�) is derived from �i(�) as follows:

Let `(h�; �i) be the �rst history h such that �i;h(�i)(�(h
�)) > 0, that is

`(h�; �i) := min
�
fh 2 H : �i;h(�i)(�(h

�)) > 0g ;

where � is the (reexive) precedence relation over H. Note that, by de�nition,
`(h�; �i) � h�; thus T1�T2 � �(h�) � �(`(h�; �i)). For all �i 2 Ti, � 2 �, �j 2 Tj,
let

gi;`(h�;�i)(�i)(�; �j) =

8><>:
�i;`(h� ;�i)(�i)(�)= jTjj if � =2 �(h�)
�i;`(h� ;�i)(�i)(�); if (�1; �2) = �
0; if (�1; �2) 6= � 2 �(h�)

:

9The proof goes as follows: Take any non-empty rectangular subset �� � �. Then, for
each player i and opponent j, there is a CPS �ij 2 �Bj (�j) such that �ij(�

�
j j�j) = 1, and

for each �i we can �nd a strategy si 2 Si(�i) such that condition (b) in the de�nition of
sequential best response is satis�ed. Then we can construct a CPS �i 2 �B(�) such that
�i(f(si; �i)g � ��j j�) = 1. Thus (si; �i) 2 ri(�). When we apply this construction to �� = �,

we obtain that �1

� 6= ;. When we apply the construction to �� = �1

�, we necessarily have

(si; �i) 2 �1

i;�. Thus �i(�
1

�j�) = 1, which implies (si; �i) 2 �2

i;�. An induction argument yields
the result.
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where jTjj is the cardinality of Tj. (This is possible by equation 5.1.) Taking into
account that �i(�i) is a CPS and �i;h�(�i)(��) = 1, it can be checked that

8� 2 �;
X
�j2Tj

gi;`(h�;�i)(�i)(�; �j) = �i(�i)(�)

and X
�;�j

gi;`(h�;�i)(�i)(�; �j) = 1.

The second equation follows from the �rst, which we verify only for the less obvious
case. Let � 2 �(h�), �j =2 Tj, �i(�i) = �(�j�). Then

P
�j2Tj gi;`(h�;�i)(�i)(�; �j) = 0.

We must show that �(�j�(`(h�; �i))) = 0. Since � 2 �(h�) � �(`(h�; �i)),

�(�j�(`(h�; �i))) = �(�j�(h�))�(�(h�)j�(`(h�; �i)))

But �(�j�(h�)) = 0 because �j =2 Tj and �(f�ig � Tj) = 1.
For h 6= `(h�; �i), if �i;`(h�;ti)(�i)(�(h)) > 0 (which implies `(h�) � h), then

gi;h(�i) can be derived from gi;`(h�)(�i) via Bayes rule. Otherwise,

gi;h(�i)(�; �j) =
�i;h(�i)(�)

jTjj
:

It can be checked that gi(�i) 2 �B(� � Tj) and for all h, mrg�gi;h(�i) = �i;h(�i).
Furthermore,

gi;h�(�i)(�; �j) =

(
�i;h�(�i)(�); if (�1; �2) = �
0; if (�1; �2) 6= � 2 �(h�)

Thus, for every (�1; �2) 2 T1 � T2 = �� \ �(h�), (�1; �2; �1; �2) 2 RT and, for each
i,

1 = gi;h�(�i)
�n
(�0; � 0j) : �

0
i = �i; �

0
j = � 0j)

o�
�

� gi;h�(�i) ((RT )�i) :

An easy induction argument shows that for every � = (�1; �2) 2 �� \ �(h�) =
T1 � T2, (�; �1; �2) 2 RT \ c�h�;T (RT ).

Proposition 5.4. Fix ; 6= F � H. (a) The set of � 2 � consistent with ratio-
nality and common certainty of rationality given F is contained in �1

F .
(b) For all h 2 H, there is a �nite type space T such that, for all � 2 �(h),
� 2 �1

h if and only if there is some pair of types (�1; �2) such that (�; �1; �2) 2
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RT \ c�h;T (RT ). Since �(�) = �, this implies that �1
� is the set of � consistent

with rationality and common certainty of rationality at the beginning of the game.
(c) For all � 2 �, � is consistent with rationality and common certainty of ratio-
nality givenF if and only if there is some pair of hierarchies of CPSs (t1; t2) 2 T�T
such that (�; t1; t2) 2 RT u \ c��;T u(RT u).
(d) For all h 2 H and � 2 �(h), there is a pair of hierarchies of CPSs (t1; t2) 2
T � T such that (�; t1; t2) 2 RT u \ c�h;T u(RT u) if and only if � 2 �1

h .

Proof. (a) Fix a type space T on (�;B). We show that for all n � 0,
(�;�1; �2) 2

Tk=n
k=0 (�F)

k(RT ) implies � 2 �n
F . This implies the thesis. The state-

ment is true by de�nition for n = 0. Assume it is true for n. Let

(�; �1; �2) 2
k=n+1\
k=0

(�F)
k(RT ) := RT \

"
k=n\
k=0

�F
�
(�F)

k(RT )
�#
:

Let � = (mrg�gi;h(�i))�(h)2B. Then �i 2 ri(�) and

8h 2 F ;8k 2 f0; :::; ng ; gi;h(�i)
��

(�F)
k(RT )

�
�i

�
= 1;

that is,

8h 2 F ; gi;h(�i)

 (
(�0; � 0j) : (�

0; �i; �
0
j) 2

k=n\
k=0

(�F )
k(RT )

)!
= 1.

Therefore the induction hypothesis implies

8h 2 F ; gi;h(�i)(�
n
F � Tj) = �(�n

F j�(h)) = 1

and �i 2 �n+1
i;F .

(b) The \if" part follows from (a). The \only if" part follows from Lemma
5.3, because �1

h = r [�h(�1
h )].

(c) The \if" part is true by de�nition. The \only if" part is a consequence of
Proposition 3.4 and Lemma 4.1.

(d) This is a consequence of (b) and (c).

5.3. Common Certainty of the Opponent's Rationality

We have seen that �1
F may be larger than the set of � consistent with rationality

and common certainty of rationality given F , if F is not a singleton. The reason
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is that a player of a given type cannot be certain of her own rationality after
incompatible histories. But in game theory we are interested in the following
question (among others): \What might player i do if she is rational and (1) she
believes that her opponent is rational, (2) she believes that her opponent believes
that she is rational, (3) she believes that her opponent believes that she believes
that her opponent is rational, (4) ...?" In other words we ask for the consequences
of rationality and common certainty of the opponent 's rationality.

Formally, the statement \There is common certainty of the opponent's ratio-
nality given F from the point of view of player i" corresponds to the following
event:

c�ij;F (R1; R2) := �i;F(Rj) \ �i;F(�j;F(Ri)) \ �i;F(�j;F(�i;F(Rj))) \ ::: =24\
n�0

�i;F ((�j;F � �i;F)
n(Rj))

35 \
24\
n�1

((�i;F � �j;F)
n(Ri))

35 :
De�nition 5.5. We say that � is consistent with rationality and common cer-
tainty of the opponent's rationality given F if there are a type space T and a pair
of types (�1; �2) such that

(�; �1; �2) 2 [R1 \ c�12;F(R1; R2)] \ [R2 \ c�21;F(R1; R2)] :

Proposition 5.6. Let ; 6= F � H. The set of � consistent with rationality and
common certainty of the opponent's rationality given F is precisely �1

F .

One can �nd examples where some � is consistent with rationality and common
knowledge of the opponent's rationality given h even if � and h are incompatible
(� =2 �(h)). By Proposition 5.6 the same examples show that �F need not be
contained in

S
h2F �(h).

The proof of Proposition 5.6 relies on two lemmata. The �rst characterizes
�1
F in a way which is intuitively related to common certainty of the opponent's

rationality. De�ne b�n
i;F inductively as follows:

� b�0
i;F := �i, i = 1; 2;

� for n � 0, b�n+1
i;F = ri

h
�F(�i � b�n

j;F )
i
:

23



That is, b�n+1
i;F is the set of (si; �i) such that si is a sequential best response

for �i to some CPS � satisfying �(�i � b�n
j;F j�(h)) = 1 for all h 2 F . Note that

each sequence of subsets
nb�n

i;F

o
n�0

is (weakly) decreasing, because ri � �F is a

monotone set to set operator.

Lemma 5.7. For all n � 0, b�n
1;F �

b�n
2;F = �n

1;F � �n
2;F .

Proof. The statement is true for n = 0. Suppose that

b�n
i;F = �n

i;F , i = 1; 2:

Then �F (�n
F ) � �F(�i � b�n

j;F) and

�n+1
i;F = ri [�F(�F )] � ri

h
�F(�i � b�n

j;F )
i
= b�n+1

i;F :

We have to show that b�n+1
1;F � b�n+1

2;F � �n+1
1;F � �n+1

2;F . If b�n+1
1;F � b�n+1

2;F = ;; there
is nothing to prove: by the inclusion above, both sets are empty. Thus suppose
that b�n+1

1;F � b�n+1
2;F 6= ; and let �i 2 b�n+1

i;F . Then there is some � 2 �F (�i � b�n
j;F )

such that �i 2 ri(�). Since
nb�k

i;F

o
k�0

is a decreasing sequence, the inductive

hypothesis implies �i 2 b�n+1
i;F � �n

i;F . Using again the inductive hypothesis (for
j) and part (a) of De�nition 5.1, it follows that

8h 2 H(�i); 1 = �(f�ig � �n
j;F j�(h)) � �(�n

F j�(h)):

Now we construct � 2 �F (�n
F ) such that �i 2 ri(�), this shows that �i 2 �n+1

i;F .

We �rst note that the inductive hypothesis implies that, if b�n+1
1;F � b�n+1

2;F 6= ;,
then �F(�n

F ) 6= ;. To prove the contrapositive of this statement, suppose that
�F (�n

F) = ;. Then there is h 2 F such that �(h) \ �n
F = ;. By the inductive

hypothesis
�1(h)� �2(h) \ (b�n

1;F �
b�n
2;F) = ;;

that is
9i 2 f1; 2g ;�i(h) \ b�n

i;F = ;:

But this implies that �F (b�i;F��j) = ; and thus b�n+1
j;F = rj

h
�F (b�i;F ��j)

i
= ;:

Therefore we can assume that there is some �0 2 �F(�n
F ). We derive � from �

and �0:

8h 2 H; �(�jh) =

(
�(�j�(h)); if h 2 H(�i)
�0(�j�(h)); if h =2 H(�i)

:
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Since � and � coincide on H(�i), �i 2 ri(�). Taking into account the properties
of �, it can be checked that � is a CPS and, for all h 2 H, �(�n

F j�(h)) = 1, i.e
� 2 �F (�

n
F).

Lemma 5.8. Let �� = ��
1���

2 � �, ; 6= F � H. If �� � r [�F (��)], then there
is a �nite type space T = (�;B; T1; T2; g1; g2) such that

8� 2 ��;9(�1; �2) 2 T1 � T2;

(�; �1; �2) 2 [R1 \ c�12;F(R1; R2)] \ [R2 \ c�21;F(R1; R2)] :

Proof. This proof is similar to the proof of Lemma 5.3. The statement is
trivially true if �� = ;. Suppose ; 6= �� � r [�F (��)]. Construct T as follows.
Let T1 � T2 = ��. Then, for each i we can construct a mapping �i : Ti ! �B(�)
such that for all �i 2 Ti = ��

i , h 2 F ,

�i 2 ri(�i(�i)); �i;h(�i)(T1 � T2) = 1:

gi(�) is derived from �i(�) as follows:
Recall that for any history h� and type �i, `(h�; �i) denotes the least element

h � h� such that �i;h(�i)(�(h�)) > 0. Let `(F ; �i) be the image of F through
mapping `(�; �i), that is

`(F ; �i) := fh 2 H : 9h� 2 F ; �i;h(�i)(�(h
�)) > 0g :

We �rst de�ne gi;h(�i)(�; �) for histories h 2 `(F ; �i). For any such history h let
U(h; �i) be the union of the \strategic information sets" corresponding to histories
in `(F ; �i) following h, i.e.

U(h; �i) :=
[

h�2F;h=`(h�;�i)

�(h�):

Then 8�i 2 Ti;8h 2 `(F ; �i);8� 2 �;8�j 2 Tj;

gi;h(�i)(�; �j) =

8><>:
�i;h(�i)(�)= jTjj if � =2 U(h; �i)
�i;h(�i)(�); if � 2 U(h; �i); �j = �j
0; if � 2 U(h; �i); �j 6= �j

:

This de�nition of gi;h(�i) and the properties of �i(�i) imply that

8� 2 �;
X
�j2Tj

gi;h(�i)(�; �j) = �i;h(�i)(�)
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and thus X
�;�j

gi;h(�i)(�; �j) = 1.

We verify the �rst of these equations only for the less obvious case. Suppose that
� 2 U(h; �i), �j =2 Tj. In this case

P
�j2Tj gi;h(�i)(�; �j) = 0. Since � 2 U(h; �i),

there is some h� 2 F such that � 2 �(h�) � �(h). Let �i(�i) = �(�j�). Then

�i;h(�i)(�; �i) = �(�j�(h)) = �(�j�(h�))�(�(h�)j�(h)) = 0;

because �j =2 Tj and �(T1 � T2j�(h�)) = 1.
Fix �i and h0 2 H. Either there is a unique h 2 `(F ; �i) such that h � h0 and

�i;h(�i)(�(h)) > 0, or there no such h at all. We have just proved that for all h0

and all h 2 `(F ; �i), gi;h(�i)(�(h0)� Tj) = �i;h(�(h0)). Therefore, in the �rst case
we can derive gi;h0(�i) from gi;h(�i); otherwise, let

8� 2 �;8�j 2 Tj; gi;h0(�i)(�; �j) =
�i;h0(�i)(�)

jTjj
: (5.2)

It can be checked that for every i and �i, gi(�i) 2 �B(� � Tj) (thus we have
a well de�ned type space) and for all h, mrg�gi;h(�i) = �i;h(�i). Furthermore, for
all h� 2 F ;

8� 2 �;8�j 2 Tj; gi;h�(�i)(�; �j) =

(
�i;h�(�i)(�); if (�1; �2) = �
0; if (�1; �2) 6= �

:

It follows from this construction that in this type space

8� 2 �;8(�1; �2) 2 T1 � T2;

(�1; �2; �1; �2) 2 R1; (�1; �2; �1; �2) 2 R2 (5.3)

and
8(�1; �2) 2 T1 � T2;8i; j 2 f1; 2g ; i 6= j;8h 2 F ;

gi;h(�i)
�n
(�0; � 0j) : �

0
j = � 0j

o�
= 1: (5.4)

Equations (5.3) and (5.4) imply that

�1;F(R2) = �� T1 � T2 = �2;F(R1);
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which in turn implies that common certainty of the opponent's rationality given
F always holds:

�� T1 � T2 = c�12;F(R1; R2) \ c�21;F(R1; R2): (5.5)

Therefore, if for any � 2 �� = T1 � T2 we choose (�1; �2) = �, from (5.3) and
(5.5) we get

(�; �1; �2) 2 [R1 \ c�12;F(R1; R2)] \ [R1 \ c�12;F(R1; R2)]

as desired.
Proof of Proposition 5.6. Since �1

F = r [�F (�1
F )], Lemma 5.8 implies

that every � in �1
F is consistent with rationality and common certainty of the

opponent rationality. The opposite inclusion is proved in a way similar to the
proof of Proposition 5.4 (a) making use of Lemma 5.7.

5.4. Strong Beliefs and Extensive Form Rationalizability

Pearce (1984) has de�ned a notion of \extensive form rationalizability," which can
be reformulated as follows:10

� �0 := �, �0 = �B(�)

� for n = 0; 1; ; :::, �n+1 := r(�n),

�n+1 :=
n
� 2 �B(�) : 8k = 0; :::; n;8h 2 H;�(h) \ �k 6= ; ) �(�kj�(h)) = 1

o
:

Write �n = �n
1 � �n

2 . �1
i is the set of sequentially rational strategy-types

�i. �2
i is meant to represent the set of �i that are sequentially rational given

that player i continues to believe that (R1) everybody is rational, as long as (R1)
does not contradict the evidence. �3

i is meant to represent the subset of such �i
that are sequentially rational given that player i continues to believe that (R2)
everybody is rational and everybody continues to believe that everybody is ra-
tional as long as this does not contradict the evidence, as long as (R2) does not

10The analysis can be extended to cover all games with (incomplete information and) perfect
recall. As before � denotes the set of feasible pro�les of types and strategies. H is the collection
of information sets. B is the closure under union of the collection f�(h) : h 2 Hg of \strategic
form information sets" or any larger collection which is closed under union and does not contain
the empty set, e.g. 2�n f;g. See also Reny (1992) and Battigalli (1996a,b) for similar solution
procedures.
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contradict the evidence. And so on. Clearly, �n+1
i � �n

i . It is possible to show
by standard arguments that for all n, �n and �n are non empty. Finiteness of
� implies that there is an integer N such that �N = �n for all n � N . �N is
the set of extensive form rationalizable strategies. Extensive form rationalizabil-
ity provides a (non-equilibrium) formalization of the foward induction principle
and is outcome-equivalent to subgame perfection in generic games of perfect and
complete information (Battigalli (1996b)).

Does the intended interpretation of this solution concept correspond to an
appropriate formulation based on type spaces?

Fix a type space T based on (�;B) and consider the following notion of \strong
belief":

De�nition 5.9. For any event E and type �i in type space T , we say that type
�i strongly believes E if for all histories h 2 H,

E�i \ (�(h)� Tj) 6= ; ) gi;h(�i)(E�i) = 1:

Let ��i (E) denote the event that player i strongly believes E and let ��(E)
denote the event that everybody strongly believes E, that is:

� ��i (E) := f(�; �i; �j) : 8h 2 H; E�i \ (�(h)� Tj) 6= ; ) gi;h(�i)(E�i) = 1g ;

� ��(E) := ��1(E) \ �
�
2(E).

Note that, unlike standard epistemic operators, the strong belief operator ��i
is not monotone.

The event that everybody is rational and strongly believes in rationality is
R \ ��(E). According to its intended interpretation �2 should be the projection
on � of this event. Similarly, �3 should be the projection on � of the conjunction
of R \ ��(E) with the event that everybody strongly believes R \ ��(E), that is,
�3 should be the projection of event R \ ��(E) \ �� [R \ ��(E)]. For any event
E, let

(E) := E \ ��(E):

Iterations of operator  are de�ned in the usual way. In particular we obtain the
following identities:

0(R) = R;

1(R) = R \ ��(R);
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2(R) =  [R \ ��(R)] = R \ ��(R) \ �� [R \ ��(R)] ;

::: .

We continue to specify (when necessary) the given type space as a subscript of
events and operators writing, for example, RT , ��T (RT ), nT (RT ).

Remark 5. By inspection of the de�nitions above

n(R) =

"
R1 \

 
n�1\
k=0

��1(
k(R))

!#
\

"
R2 \

 
n�1\
k=0

��2(
k(R))

!#
:

Therefore (�; �1; �2) 2 n(R) if and only if, for each player i, �i 2 ri
�
(mrg�gi;h(�i))�(h)2B

�
and �i strongly believes k(R) for all k = 0; :::; n� 1.

We would like to show that �n+1 is the projection on � of n+1(R). But it
easy to �nd examples of games and type spaces T where this is not the case:
The reason is simple: T may have \too few types." If, for example, each Ti is
a singleton, then event RT and its projection on � are also singletons.11 If �1

contains more than one element, it cannot be the projection of RT . We stipulate
that the intended interpretation of �n+1 is appropriate if, for every \su�ciently
rich" type space T (including the universal type space T u), �n+1 is the projection
of nT (RT ) on �.

We �rst construct a \smallest" type space T � = (�;B; T1; T2; g1; g2) where this
is indeed the case. For each player i, let

Ti = �1
i :

By de�nition there is a mapping �i : �1
i ! �B(�) such that for all n = 0; 1; :::,

�i 2 Ti = �1
i ,

�i 2 �n+1
i ) [�i(�i) 2 �n and �i 2 ri(�i(�i))] .

Note that if there is some h such that 0 < �i;h(�i)(�1) < 1, then �i;h(�i) =2 �1,
and it must be the case that �i 2 �1

i n�
2
i . If �i 2 �2

i , then �i;h(�i) 2 �1 and
�i;h(�i)(�1) 2 f0; 1g for all h. Construct gi : Ti ! �B(� � Tj) as follows: for all
�i 2 Ti, (�1; �2) 2 �, �j 2 Tj, h 2 H,

11While this is necessarily true for our de�nition of rationality, it is only typically true for
other plausible de�nitions (up to equivalences between strategies). See our comments to the
de�nition of rationality.
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� (a) if �i 2 �2
i and �i;h(�i)(�

1) = 1, then

gi;h(�i)(�1; �2; �j) =

(
�i;h(�i)(�1; �2), if �j = �j
0, if �j 6= �j

,

� (b) if either �i 2 �1
i n�

2
i or �i;h(�i)(�

1) < 1, then

gi;h(�i)(�1; �2; �j) =
1

jTjj
�i;h(�i)(�1; �2).

To show that, for each �i, gi(�i) 2 �B(��Tj), we �rst prove thatmrg�g�i;h(�i) =
�i;h(�i). This is obvious in case (b). In case (a), if �j 2 Tj, thenX

�j2Tj

gi;h(�i)(�1; �2; �j) =

gi;h(�i)(�1; �2; �j) +
X

�j2Tjnf�jg

gi;h(�i)(�1; �2; �j) =

gi;h(�i)(�1; �2; �j) = �i;h(�i)(�1; �2):

If �j =2 Tj, then both �i;h(�i)(�1; �2) and gi;h(�i)(�1; �2; �j) are equal to zero.
We only have to show that gi(�i) satis�es Axiom 4, that is, whenever � 2

�(h0) � �(h) (h � h0),

gi;h(�i)(�; �j) = gi;h0(�i)(�; �j)gi;h(�i)(�(h
0)� Tj); (5.6)

for all �j 2 Tj. Recall that �i(�i) is a CPS on (�;B) and each �i;h(�i) is the
marginal of gi;h(�i) on � (�(h) 2 B). Thus Eq. (5.6) is obvious if �i =2 �2

i , because
we are always in case (b). Thus suppose that �i 2 �2

i and � 2 �(h0) � �(h).
Consider the following cases:

� �1 \ �(h0) 6= ;. Then �i;h0(�i)(�1) = �i;h(�i)(�1) = 1 and case (a) applies
for h and h0. Either �j 6= �j and both sides of Eq. (5.6) are equal to zero,
or �j = �j and

gi;h(�i)(�; �j) = �i;h(�i)(�) =

�i;h0(�i)(�)�i;h(�i)(�(h
0)) = gi;h0(�i)(�; �j)gi;h(�i)(�(h

0)� Tj).

� �1 \ �(h0) = ; and �1 \ �(h) 6= ;. Then �i;h(�i)(�1) = 1 and �i;h(�i)(�) =
�i;h(�i)(�(h0)) = 0. This implies that both sides of Eq. (5.6) are equal to
zero.
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� �1 \ �(h0) = �1 \ �(h) = ;. Then case (b) applies to h and h0 and the
result is obvious.

Thus T � is indeed a type space.

Lemma 5.10. Fix the type space T �. For all n = 0; 1; ::: and � = (�1; �2) 2 �;
(�; �1; �2) 2 n(R) if and only if (�1; �2) = (�1; �2) and � 2 �n+1:

Proof. The statement is obviously true for n = 0. Suppose by way of induc-
tion that the statement is true for n = k�1. We must show that (�1; �2; �1; �2) 2
k(R) if and only if (�1; �2) 2 �k+1.

Let (�1; �2; �1; �2) 2 k(R): Recall that k(R) = k�1(R) \ ��(k�1(R)).
Therefore (�1; �2; �1; �2) 2 k�1(R) and by the induction hypothesis (�1; �2) 2 �k:
Thus, for each i, �i(�i) 2 �k�1 and �i 2 ri(�i(�i)). We show that, for all h 2 H,
if �(h) \ �k 6= ; and �i 2 �i(h), then �i;h(�i)(�k) = 1. This implies that we can
�nd some CPS � 2 �k which coincides with �i(�i) at all such histories (take any
two histories h � h0 such that �i 2 �i(h), �(h) \ �k 6= ; and either �i =2 �i(h

0)
or �(h0) \ �k = ;, then �i;h(�i)(�(h0)) = 0 and this allows to modify �i(�i) at
histories like h0 obtaining � 2 �k). It follows that �i 2 ri(�) and �i 2 �k+1

i :
Thus assume that �(h) \ �k 6= ; and �i 2 �i(h) (hence �i 2 �i(h) \ �k

i ): By
the inductive hypothesis k�1(R) is the diagonal of �k � �k. Therefore

(�(h)� Tj) \ (k�1(R))�i =n
(�01; �

0
2; �j) : �

0
i 2 �i(h) \ �k

i \ f�ig; �j = �0j 2 �j(h) \ �k
j

o
6= ;:

Since (�1; �2; �1; �2) 2 ��i (
k�1(R)),

1 = gi;h(�i)
�
(k�1(R))�i

�
� gi;h(�i)(�

k � Tj) = �i;h(�i)(�
k):

Let (�1; �2) 2 �k+1. Then (�1; �2) 2 �k and by the induction hypothe-
sis (�1; �2; �1; �2) 2 k�1(R). We only have to show that, for each player i,
(�1; �2; �1; �2) 2 ��i (

k�1(R)), that is, for each h 2 H, if (�(h)�Tj)\(k�1(R))�i 6=

;, then gi;h(�i)
�
(k�1(R))�i

�
= 1. Suppose that (�(h) � Tj) \ (k�1(R))�i 6= ;.

Since k�1(R) is the diagonal of �k � �k, �i 2 �i(h) and �(h) \ �k 6= ;. Tak-
ing into account (1) that �i(�i) 2 �k, (2) that �i;h(�i)(f�ig � �j) = 1 (because
�i 2 �i(h)) and (3) the de�nition of gi;h(�i) in case (a), we get

1 = �i;h(�i)(�
k) =

X
�0
j
2�k

j

�i;h(�i)(�i; �
0
j) =
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X
�0j2�

k
j

gi;h(�i)(�i; �
0
j; �

0
j) = gi;h(�i)

�
(k�1(R))�i

�
:

This concludes the proof.

Lemma 5.11. Suppose that ' = (Id�; '1; '2) is a type-morphism from T � to
T 0 = (�;B; T 01; T

0
2; g

0
1; g

0
2). Then for all n = 0; 1; :::

(a.n) '(nT �(RT �)) � nT 0(RT 0) and
(b.n) 8� 2 �, � 2 �n+1 if and only if 9(�1; �2) 2 T 01 � T 02, (�; �1; �2) 2 

n
T 0(RT 0).

Proof. The statement is obviously true for n = 0. Suppose by way of in-
duction that the statement is true for n = k � 1. We �rst prove that (a.k)

'
�
kT �(RT �)

�
� kT 0(RT 0).

Let (�; �1; �2) 2 kT �(RT �). By Lemma 5.10, it must be the case that (�1; �2) = �

(recall that in T � �i 2 ri
�
(mrg�gi;h(�i))�(h)2B

�
i� (mrg�gi;h(�i))�(h)2B = �i(�i)

and �i = �i) and � 2 �k+1. We must show that (�; '1(�1); '2(�2)) 2 kT 0(RT 0).
Since kT 0(RT 0) = k�1T 0 (RT 0) \ ��(k�1T 0 (RT 0)) and by the inductive hypothesis
(�; '1(�1); '2(�2)) 2 

k�1
T 0 (RT 0), we only have to show that, for each i, (�; '1(�1); '2(�2)) 2

��i (
k�1
T 0 (RT 0)). Thus suppose that (k�1T 0 (RT 0))'i(�i) \ (�(h) � T 0j) 6= ;. We �rst

show that this implies �i 2 �i(h_). In fact, by the inductive hypothesis the pro-
jection of k�1T 0 (RT 0) on � is �k. Furthermore, by de�nition k�1T 0 (RT 0) � RT 0 and�
mrg�g

0
i;h('i(�i))

�
�(h)2B

= �i(�i). This implies:

(k�1T 0 (RT 0))'i(�i) \ (�(h)� T 0j) :=n
(�0; � 0j) : (�

0
i; �

0
j; 'i(�i); �

0
j) 2 

k�1
T 0 (RT 0) \ (�i(h)� �j(h)� T 0i � T 0j)

o
�

�
n
(�0; � 0j) : �

0
i 2 ri(�i(�i)); �

0 2 �(h) \ �k
o
=n

(�0; � 0j) : �
0
i = �i; �

0 2 �(h) \ �k
o
:

Since (k�1T 0 (RT 0))'i(�i) \ (�(h) � T 0j) 6= ;, it must be the case that �i 2 �i(h).

Using the inductive hypothesis and Lemma 5.10, it follows that (k�1T � (RT �))�i \
(�(h)� Tj) 6= ;. Therefore

gi;h(�i)
�
(k�1T � (RT �))�i

�
= 1:

By the inductive hypothesis '(k�1T � (RT �)) � k�1T 0 (RT 0). By Remark 2, this inclu-

sion and the equality above imply gi;h('i(�i))
�
(k�1T 0 (RT 0))'i(�i)

�
= 1 as desired.

This concludes the proof that '
�
kT �(RT �)

�
� kT 0(RT 0).

32



We now prove that (bk) 8� 2 �, � 2 �k+1 if and only if 9(�1; �2) 2 T 01 � T 02,
(�; �1; �2) 2 kT 0(RT 0). Suppose that � 2 �k+1. Then Lemma 5.10 and (a.k) imply
that (�; '1(�1); '2(�2)) 2 

k
T 0(RT 0). Suppose that (�; �1; �2) 2 

k
T 0(RT 0). We must

show that � 2 �k+1, that is, for each player i, there is some � 2 �k such that
�i 2 ri(�). Take an arbitrary CPS �0 in the (non empty) set �k. Construct � as
follows. For all h 2 H,

�(� j �(h)) =

8><>:
mrg�g

0
i;h(�i); if �i 2 �i(h) and �(h) \ �k 6= ;

�0(� j �(h)); if �i =2 �i(h) and �(h) \ �k 6= ;
�i;h(�i); if �(h) \ �k = ;

:

One can verify that, by construction, � 2 �B(�), �i 2 ri(�) and for all h 2 H
and ` = 1; :::; k � 1, if �(h) \ �k = ; and �(h) \ �` 6= ;, then �(�` j �(h)) = 1.
We only have to show that if �(h) \ �k 6= ; then �(�k j �(h)) = 1.

Suppose that �(h) \ �k 6= ; and �i =2 �i(h). Then �(�k j �(h)) = �0(�k j
�(h)) = 1.

Suppose that �(h) \ �k 6= ; and �i 2 �i(h). By the inductive hypothesis �k

is the projection of k�1T 0 (RT 0) on �. Therefore there is some (�̂1; �̂2; �̂1; �̂2) such
that

(�̂1; �̂2; �̂1; �̂2) 2 (�(h)� T1 � T2) \ 
k�1
T 0 (RT 0) 6= ;:

By assumption �i 2 ri
�
(mrg�g0i;h(�i))�(h)2B

�
, �i 2 �i(h) and �i strongly believes

`T 0(RT 0) for all ` = 0; 1; :::; k � 2: The same holds for �̂j and �̂j. Given the
Cartesian structure of event k�1T 0 (RT 0) (see Remark 5), it follows that

(�i; �̂j; �i; �̂j) 2 (�i(h)��j(h)� T 0i � T 0j) \ 
k�1
T 0 (RT 0):

Therefore
(�(h) � T 0j) \ (k�1T 0 (RT 0))�i 6= ;:

Since by assumption �i strongly believes k�1T 0 (RT 0), we obtain

g0i;h(�i)
�
(k�1T 0 (RT 0))�i

�
= 1:

By the inductive hypothesis �k contains the projection on � of (k�1T 0 (RT 0))�i.
Thus the equality above and the de�nition of � yield

�(�kj�(h)) = g0i;h(�i)(�
k � T 0j) = 1

as desired.
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As an immediate consequence of Lemma 5.11 and Proposition 3.4 we obtain
the following result:

Proposition 5.12. Consider the universal type space T u = (�;B; T; T; g; g). For
all n = 0; 1; :::, for all � 2 �, � 2 �n+1 if and only if there is a pair of hierarchies
of CPSs (t1; t2) 2 T � T such that (�; t1; t2) 2 n(R).

5.5. Common Certainty of Rationality and Iterated Dominance

The set of � consistent with rationality and common certainty of (the opponent's)
rationality given F can be further characterized for generic games in terms of
dominance relations. We say that a game has no relevant tie if the following
holds: for each player i, all (�1; �2) 2 �1��2 and all terminal histories z0; z00 2 Z,
if there is a history h 2 H and actions a01; a

0
2; a

00
1 ; a

00
2 feasible after h for �1 and

�2 (respectively) such that a0i 6= a00i , z
0 follows (h; (a01; a

0
2)) and z00 follows (h; (a001

; a002)), then ui(z
0; �1; �2) 6= ui(z00; �1; �2).

We say that strategy si 2 Si(�i) is weakly dominated by mixed strategy mi 2
�(Si(�i)) for type �i on c�j if

8�j 2 c�j ; Ui(si; �i; �j) �
X
s0
i

mi(s
0
i)Ui(s

0
i; �i; �j)

and
9�0j 2

c�j; Ui(si; �i; �j) <
X
s0
i

mi(s
0
i)Ui(s

0
i; �i; �j):

The de�nition of strict dominance is analogous (all weak inequalities are replaced
by strict inequalities). For any given rectangular subset b� = c�1�c�2 � � letW(b�)
(S(b�)) denote the set of (s1; �1; s2; �2) such that si is not weakly (strictly) domi-
nated for �i on c�j and let SW(b�) = S(b�) \W(�). The iterated operator SWn

is de�ned in the usual way: SWn(b�) := SW
�
SWn�1(b�)�, where SW0(b�) := b�.

A subscript p denotes that we only consider weak domination by pure strategies.
Thus SWp(b�) = S(b�)\Wp(�). Note that S is a monotone operator. Therefore,
also SW and SWp are monotone operators.

Proposition 5.13. (a) In every game with no relevant ties, if � 2 F , �1
F �

SW1
p (�).

(b) In every game with perfect information, private values, and no relevant ties,
if � 2 F , �1

F � SW1(�) and �1
� = SW1(�):
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Propositions 5.4 and 5.13 imply that, in every generic game with perfect in-
formation and private values, common certainty of rationality at the beginning
of the game is characterized by the following procedure: �rst eliminate all (si; �i)
such that si is weakly dominated for �i, then iteratively eliminate the (si; �i) such
that si is strictly dominated for �i in the residual strategic form (cf. Ben Porath
(1996, Theorem 1) and Dekel and Gul (1996), Proposition 7)). Note that the set
of outcomes (terminal histories) induced by strategies in SW1(�) is superset of
the set of outcomes induced by strategies inW1(�) and typically the inclusion is
sctrict (take, for example a three-legged version of Rosenthal's (1981) Centipede).
Therefore common certainty of rationality at the beginning of the game is not
related to iterated weak dominance. However, Battigalli (1996b) shows that ex-
tensive form rationalizability is outcome-equivalent to iterated weak dominance
in all (�nite) games of complete and perfect information with no relevant ties.
Therefore subsection 5.4 implicitly provides an epistemic characterization of this
controversial solution procedure.

Proof of Proposition 5.13. If (si; �i) 2 ri(�), then si is a best reply to the
(prior) belief �(�j�) for type �i. This implies that si cannot be strictly dominated
for type �i (see Pearce (1984, Lemma 3)). Thus �1

F = r(�B(�)) � S(�). If we
assume that the game has no relvant tie, then �1

F � Wp(�) (see Battigalli (1996b,
Lemma 3). Thus �1

F � S(�) \Wp(�) = SWp(�). Suppose that

�n
F � SWn

p (�):

Since we assume that F contains the empty history, it follows that

�n+1
F � r

�n
� 2 �B(�) : �(SWn

p(�)j�) = 1
o�

�

S(SWn
p(�)) \Wp(�) = SWn+1

p (�):

This proves statement (a).
In every perfect information game with private values, Wp(�) = W(�) (Bat-

tigalli (1996, Lemma 4) shows this result for games with perfect and complete
information, the proof can be easily adapted to cover the present more general
case). Thus, if the game has no relevant tie, �1

1;F � �1
2;F � W(�).12 The same

argument as above then proves the �rst part of statement (b). Now let F contain
only the empty history �. For all k,

�k
� = r

�n
� 2 �B(�) : �(�k�1

� j�) = 1
o�
:

12This is also proved by Ben Porath (1996, Lemma 2.1).
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Suppose that
�n
� = SWn(�)

and let (s1; �1; s2; �2) 2 SW
n+1(�). By the induction hypothesis and the de�nition

of operator SW , (s1; �1; s2; �2) 2 S(�
n
�) \W(�) � �n

�. Thus for each i, there are
�0; �00 2 �(�j) such that �0(�n

j;�) = 1, �00 is strictly positive and si is a best
response to �0 and �00 for type �i (Pearce (1984, Lemmata 3 and 4)). Costruct
� 2 [�(�)]B as follows: for all h 2 H(si; �i), Aj � �j(h),

�(f(si; �i)g �Ajj�(h)) =
�(Aj)

�(�j(h))
;

where � = �0, if �0(�j(h)) > 0, and � = �00 otherwise; for all h =2 H(si; �i),
�i 2 �i(h), Aj � �j(h),

�(f�ig �Ajj�(h)) =
�(Aj)

j�i(h)j � �(�j(h))
;

where jAj denotes the cardinality of A and � is chosen as before. It can be checked
that � 2 �B(�), �(�n

�j�) = 1 and (si; �i) 2 ri(�). Thus (si; �i) 2 �n+1
i;� .

6. Related Literature

In this section we o�er some comments relating the present work to a few papers
about interactive epistemology in dynamic games.13

Ben Porath (1996) considers �nite games of perfect and complete information.
His notion of type space (\world" in his terminology) is essentially the same as in
this paper, but his analysis is limited to an implicit representation of interactive
conditional beliefs.14 Lemma 4.1 shows that the epistemic models considered by

13For more on hierarchies of beliefs and type spaces see Heifetz and Samet (1996a). For more
on interactive epistemology in games see Dekel and Gul (1996).

14There are two related (minor) di�erences. First, Ben Porath implicitly requires that a
stochastic independence condition is satis�ed. In our notation, for every �i, gi(�i) 2 �B(��Tj )
is such that a \marginal" CPS �ij about j can be derived from gi(�i). Formally, there is some
�ij 2 �Bj (�j�Tj) satisfying: mrg�j�Tj

gi;h(�i) = �ij(�j�j(h)) for all h 2 H. This is a plausible
restriction, but given our de�nition of sequential rationality for plans of action, it has no con-
sequence at all. However { and this is the second di�erence { Ben Porath's notion of sequential
rationality requires expected utility maximization at every history (not only those consistent
with the given strategy). The foregoing assumption is relevant if we consider the strategies
consistent with this notion of rationality. But the set of plans of action (equivalence classes of
strategies) and hence the set of histories consistent with (common certainty of) rationality in
his sense and ours are the same.
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Ben Porath are isomorphic to belief-closed subsets of the universal type space con-
taining all the hierarchies of CPSs satisfying common certainty of coherency. Ben
Porath (1996, Theorem 1) characterizes the set of outcomes consistent common
certainty of rationality at the beginning of the game in �nite type spaces. Propo-
sitions 5.4 (c) and 5.13 generalize and extend Ben Porath's result also proving his
claim that considering only �nite type spaces is without loss of generality.

Reny (1993, 1995) also considers �nite games of perfect and complete informa-
tion, but without a formal reference to type spaces. He analyzes the possibility
that there is common certainty of rationality at particular decision nodes (non
terminal histories) as well as conditional on a given set of nodes. His main result
characterizes the set of (generic) \belief consistent" games. His analysis can be
reformulated in our framework.15 A jointly rational belief system (JRBS) for the
set of (non terminal) histories F is a pair of subsets (��

1;�
�
2) such that, for i = 1; 2,

; 6= ��
i = ri [�F (�

�
1 � ��

2)] \

24 [
h2F

�i(h)

35 :
A history h 2 H is relevant if it is reacheable by a pair of rational strategies
(�1

� \�(h) 6= ;) and no player has a strictly dominant choice given h. A game is
belief consistent if there is a JRBS for the set of relevant histories. Reny (1993)
shows that a generic game of perfect and complete information is belief consistent
if and only if every history o� the backward induction path is irrelevant. Reny
(1995) shows that in games like the Centipede there can be common certainty of
rationality only at the outset.16 Proposition 5.4 implies that there is a JRBS for a
single history h if and only if there is a � consistent with rationality and common
certainty of rationality conditional on h. Proposition 5.6 implies that there is a
JRBS for a set of histories F if and only if there is a � consistent with rationality
and common certainty of the opponent 's rationality given F .

Stalnaker (1996) analyzes counterfactual reasoning in games of complete infor-
mation. In his epistemic models each type corresponds to a complete conditional
probability system on the set of strategy pairs and types of the opponent. To use

15More details on this reformulation are available by request.
16This formalization is faithful to the spirit of Reny's (1993) analysis, but there are some

di�erences. First, Reny allows for the choice of mixed strategies. Second, players do not have
beliefs about themselves. Third, beliefs satisfy only a very weak form of bayesian updating.
The �rst two points are inessential, while weakening bayesian updating expands the collection
of F for which there exists a jointly rational belief system. But this has the only e�ect to make
Reny's \impossibility result" stronger. The analysis of Reny (1995) is fully consistent with ours.
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our terminology and notation, let gi(�i) 2 �B(�� Tj) be the CPS corresponding
to type �i. While in our notion of type space B is a collection of non emtpy
subsets of �, in Stalnaker (1996) B is the collection of all non empty subsets of
� � Tj.17 Thus there is an obvious (projection) mapping between Stalnaker's
epistemic spaces and our type spaces, but this mapping is not invertible.18 To be
more explicit, let P(X) denote the collection of all non empty subsets of a given
set X. Then every complete CPS � 2 �P(��Tj)(� � Tj) corresponds to a CPS
�B(�) 2 �B(� � Tj), where B � P(�) and the (projection) mapping �B sati�es
the following obvious condition:

8B 2 B, �B(�)(�jB � Tj) = �(�jB � Tj).

The projection mapping �B is not one to one (unless B = P(�) and Tj is a
singleton). But from the point of view of game theoretic analysis it is interesting to
know whether for every CPS � 2 �B(��Tj) one can �nd a corresponding complete
CPS � 2 �P(��Tj)(��Tj) such that � = �B(�), i.e. whether �B is onto. One can
show that if the collection of relevant hypotheses B corresponds to the set H of
histories of the game, as assumed in Section 5, then �B is onto (cf. Battigalli (1994,
Theorem 1)).19 Given our notion of rationality in terms of conditional expected
utility maximization, this implies that results about consistency of outcomes with
rationality and conditional mutual certainty of rationality do not change when we
use epistemic models �a la Stalnaker instead of type spaces as de�ned in this paper.
Actually, Stalnaker uses a notion \perfect rationality" (relying on lexicographic
utility maximization) which cannot be de�ned in our framework. But for generic
payo�s over terminal histories the two notions of rationality are equivalent.
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