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Abstract

This paper develops tests for selection of competing non-linear dynamic
models. The null hypothesis is that the models are equally close the Data
Generating Process (DGP), according to a certain measure of closeness.
The alternative is that one model is closer to the DGP. The models can
be non-nested, overlapping, or nested. They can be correctly specified or
not. Their parameters can be estimated by a variety of methods, includ-
ing Maximum Likelihood, Non-Linear Least Squares, Method of Moments,
where the choice depends on the selected measure of closeness to the DGP.
The tests are symmetric and directional. Their asymptotic distribution
under the null is either normal or a weighted sum of chi-square distribu-
tions, depending on the nesting characteristics of the competing models.
The comparison of ARMAX and STAR models, and of nested ARMAX-
GARCH models are discussed as examples.
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1. Introduction

The comparison of competing models has attracted considerable attention in the
literature, generating three main approaches to the problem: information criteria,
non-nested tests, and encompassing statistics, see e.g. Gourieroux and Monfort
(1994), Marcellino and Mizon (1999) for a detailed discussion of their relative
merits. In all these methods the underlying idea is that one of the models under
comparison is closer to the Data Generating Process (DGP), and in this sense it
can be preferred. Instead, Vuong (1989) proposed a statistic to test for the null
hypothesis that the models are equally close to the DGP, and therefore they are
equivalent. He studied the properties of such a test in the case of models for i.i.d.
processes, estimated by Maximum Likelihood (ML).

In this paper we suggest a statistic similar to Vuong’s test, that can be applied
to compare models for dependent and heterogenous processes. The models can be
linear or non-linear; nested, non-nested, or overlapping; correctly specified or mis-
specified. Their parameters are estimated by means of optimand estimators, that
include ML, Non-Linear Least Squares (NLS), and Method of Moments (MM).
This provides a powerful tool for model selection under general conditions.!

Several other results are obtained as a by-product. In particular, when ML
estimation is adopted, our statistic boils down to a Likelihood Ratio (LR) test.
We thus obtain the asymptotic distribution of the LR test under even weaker con-
ditions than those in Vuong (1989), by allowing for dependence and heterogeneity.
Moreover, under certain conditions, it is also possible to test for equality of the
information criteria (such as Akaike’s (1973) AIC) associated with the models. Fi-
nally, conditions for weak consistency of information criteria based on optimand
estimators (not necessarily MLE) are also derived.

The paper builds upon recent work on estimation, specification and inference
for possibly misspecified non-linear models of dependent and heterogenous pro-

I After the paper was completed, Hal White brought to my attention a related unpublished
manuscript by Rivers and Vuong (1999). They only deal with non-nested non-linear dynamic
models, but allow for a different objective function for model estimation and selection, which
may depend on nuisance parameters. Instead, I also consider the more common case where the
models under comparison are nested or overlapping, which yields quite different results from the
non-nested case, relate the results to weak consistency of information criteria, and analyze two
important time-series examples. Hence, the papers are more complementary than substitutes.



cesses, see in particular White (1984), Gallant (1987), Gallant and White (1988),
White (1994), and the references therein. Section 2 introduces assumptions and
definitions, and derives a set of preliminary results. The main results are presented
in Section 3, where the asymptotic distribution of the statistic is derived, and our
approach is compared with the use of information criteria, non-nested tests and
encompassing statistics. The comparison of ARMAX and STAR models, and of
nested ARMAX-GARCH models are discussed as examples in Section 4. Section
5 concludes. All the proofs are gathered in the Appendix.

2. Assumptions, definitions and preliminary results

In this section we briefly state the main assumptions. They are similar to those
in Gallant and White (1988), to whom we refer for further details. We also intro-
duce some definitions and derive preliminary results to be used in the subsequent
analysis.

Assumption 1 (Data Generation)

Let (2, F, P) be a complete probability space. The stochastic process {V;}, with
generic element V; : 2 — R, v € N, is a uniform mixing sequence with ¢,, of
size —r/(r — 1), r > 2, or a strong mixing sequence with «,, of size —2r/(r — 2),
r > 2. The observed data are realizations of the stochastic process {X,}, with
generic element X; : ) — R¥ w; € N, and

(w) =Wi(..., Vi1 (w), Vi(w), Vis1 (W), ...), w €, (2.1)

where W, @ x> ___RY — R"' are such that X, is measurable-F'/B(R"™), t =
0,+1,42,.... 1

Mixing conditions weakly limit the memory of a process, allowing for con-
siderable dependence and heterogeneity (e.g., White (1984)). In particular, the
autocovariance function, -y, decreases as a power of k (White and Domowitz
(1984, Lemma 2.2)), i.e., more slowly than for a finite ARMA process, whose
autocovariance function decays exponentially. Yet, trending or explosive behavior
is ruled out.

Measurable functions of a finite number of elements of a mixing processes are
still mixing, and of the same size as the argument, so that in this case X;(w) is also

¢—mixing of size —r/(r — 1), or a—mixing of size —2r/(r — 2). When instead X,
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can depend on an infinite number of elements of a mixing process, as in (2.1), it is
necessary to restrict somewhat the dependence on distant elements. Gallant and
White (1988, Lemma 3.18) formulate proper near epoch dependence conditions
that guarantee that X; is a mixingale (McLeish (1975)). The general formula-
tion for X; in (2.1) let us deal with several types of data, including time series,
cross-sections, and limited dependent variables, possibly aggregated, seasonally
adjusted or subject to other kinds of transformations.

Definition 1 (Model)
A model is a family of probability distributions D = {Dy : § € ©}, defined on the
measurable space (RY,B(RY)), with RY, = x> _R’". 1

More commonly, models are specified by making a parametric hypothesis on
the process generating X, such as X; = Wi(-) = S;(+; ), 8 € B. In this case, it
is Dg(A) = P{w : {S:(...,Vis1(w), Vi(w), Vi1 (w),...); B} € A}, for VA € B(RY).
Often, a model is also defined by means of a finite dimensional density function,
dy (X1, .oy X0; 0) = dDyg/dpty,, where Dyg(A) = Dp((X7, ..., Xy) € A) and D,y is
absolutely continuous with respect to the o—finite measure pu, for all # in ©. A
model is correctly specified when there exists 6y € © such that Dy, (A) = P{w :

{X;} € A}, VA € B(RY).

Once D is specified, ML techniques can be adopted to estimate the parameters
of the model, 6. In practice, the specification of D can be so complex as to
preclude analytical tractability. In these cases, it can still be feasible to derive a
set of moment conditions that have to be satisfied, such as

Eo(mu(X1, ..., X3 0)) = /mt(Xl, s X;0)dDy = 0.

The moment conditions can then be exploited to derive an estimator of #. Also,
the investigator may be unwilling to make an explicit distributional assumption,
and prefer to adopt an estimation method such as NLS. These three alternative
estimation methods, and others, all belong to the class of optimand estimators,
i.e., estimators that are obtained as the optimand of an objective function. To
establish the asymptotic properties of these estimators and related testing proce-
dures, we have to impose suitable regularity conditions on the objective function
that let laws of large numbers and central limit theorems for mixing processes or
mixingales to be applied, e.g. White (1984).
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Assumption 2 (Objective function)

© is a compact subset of R*. The objective function to be minimized, Q, :
2 x ©® — R, is defined as

Qn(w,0) = gu(¥n(w,0)), (2.2)
Up(w,0) = n_Ith(w,H), n=12, ..,

and

i) {g» : R" — R} is continuously differentiable of order 2 on compact subsets
of R" uniformly in n.

ii) ¢ :Q x © — R'is a random function continuously differentiable of order 2
on O a.s. (almost surely-P), t =1,2, ... .

i) (a) {q:(0)}, (b) {Veq:(0)}, (c) {V3q:(0)} are a.s. Lipschitz-L.

iv) The elements of (a) {g:(0)}, (b) {Veq:(0)}, (c) {Viq(0)} are near epoch
dependent on {V;} of size —1 on (O, p), where p is any convenient norm on
RF.

v) The elements of (a) {q:(0)}, (b) {Veq:(0)}, (c) {Vzq:(0)} are r—dominated

on © uniformly int =1,2,..., r > 2.

vi) The sequence {Q,,(0)}={gn(¥,,(0)}, ¥, (0) = n~1 >°" | E(q:()), has identi-
fiably unique maximizers {6} on O, interior to © uniformly in n.

vii) (a) {B;} = {Var[n'*V,Qa(6;)}, (b) {45} = {V5Q.(0,)}, (c) {G}} =
{Var[n'?Vo,(02)]}, and (d) {H}} = {VZ),,(0%)} are uniformly positive
definite. B

The conditions i) and ii) are sufficient (not necessary) to ensure the existence
of {6,,}, with 0,, : Q© — O, such that

Qu(w, B, (w)) =inf Qu(w,0), a.s.

0co®



Within this framework, ML estimators are obtained by setting g, (1) = ¥, =
—d, (X1, ..., Xp; 0), considered as a function of . For NLS estimators, g, (¢r,) = ¥,
and q;(w,0) = (z; — s,(0))?. For moment estimators, g,(1,) = 1?2 and g (w,0) =
my(X1, ..., Xn; 0). For GMM estimators, g, (¢,) = 1 P, where {P*} is a se-
quence of non stochastic matrices.?

The conditions iii)-a), iv)-a), and v)-a) impose, respectively, smoothness, mem-
ory, and moment conditions on ¢;(f) to ensure that v, (6) — ¥,,(6) — 0 a.s. uni-
formly in © (Gallant and White (1988, Theorem 3.18)). From i) it also follows
that Q,(0) — @Q,(0) — 0 a.s. uniformly in © and, under the additional condition
vi), 511—92 — 0 a.s. (Gallant and White (1988, Theorem 3.19)), i.e., the estimator
is consistent for 7.

Under the additional conditions iii)-b), iv)-b), v)-b), and vii)-a), the asymp-
totic distribution of By *n1/2V,Q,.(6%)" is N(0,1;,) (Gallant and White (1988,
Corollary 5.5)).

With the further conditions on the matrix of second derivatives of the objective
function in iii)-c), iv)-c, v)-c and vii)-b), from a mean value expansion of Van(an)
around 67, it follows that the asymptotic distribution of B */2A*n/2(g, — 67) is
N(0,I;) (Gallant and White (1988, Theorem 5.7)). The conditions in vii)-c) and
d) will be used in next section.

Definition 2 (Competing models)

The two competing models are D; = {Dy, : §; € ©1} and Dy = {Dy, : 6, € O3},
where ©; and O, are compact subsets of R and R?, respectively, with p > ¢q. D
and D, are defined on the same measurable space (R%,B(RY,)). Following Vuong
(1989), we say that

i) Dy and D, are strictly non-nested if and only if D; —~ Dy = {).

ii) Dy is nested in D; if and only if Dy C D;. In this case, there exists a
function continuously differentiable of order 2, ¢ : ©®3 — ©1, such that
DQ(A, 62) = Dl(A, ¢(02), V@g € @2, \V/A € B(joo)

iii) Dy and D, are overlapping if and only if (a) D1 —~ Dy # 0, (b) D1 € Dy
and DQ g Dl. |

2See Gallant and White (1988, p. 12-13) for the additional complications that can arise when
{P*} is a stochastic sequence.



The models are strictly non nested when there is no distribution common to
D, and D,. From ii), Ds is nested in D; when any distribution in Dy is also in
D1, and the function ¢ provides the mapping from D, to D;. The models overlap
when there exist common distributions, but neither model is nested in the other.

Assumption 3 (Selection Criterion)
The criterion to evaluate the model D; against the model Dy is

SCn(é\lny 5211) = an(w; é\ln)/\_ QQn(wy é\2n> R (23)
= 91n(¢1n(% eln)) - an(an(w7 0271))

= Jin (n_l ZQIt(wyé\ln)) — Gon (n_l ZQQt(wyé\Qn)) )
t=1 t=1

where g, : Q X ©7 — R, go; : 2 x O3 — R!'. The conditions in Assumption 2 are
satisfied for )1y and Q)o;. W

Lemma 1 (Convergence of SC’n(aln, é\gn))

Given Assumptions 1, 2 i), ii), iii)-a), iv)-a), v)-a) and vi),

SCn(é\ln’ 52”) - (@ln(w7 0?71) - @2?@(0}, egn)) =2 07

where @in(w7 ejn) = gln(nil Z:L:I EP(QZ'L‘(WJ 9:n>)>7 1= ]'7 2.n

We now introduce some additional mild requirements on the objective function.
They are all satisfied, e.g., when @),, coincides with the likelihood function.
Assumption 4 (Nesting and @Q,,)

i) If D; and D, are strictly non-nested, then P{Q1,(w,0},) = Q2n(w,65,)} =
0, uniformly in n.

ii) If Dy and D, are nested and 65, = ¢(65,,), then P{Q1,(w, 05,,) = Qan(w,65,)} =

1, uniformly in n.

iii) If D; and D, are overlapping, then [ Qq,(w,0;,)dP = [ Qapn(w,03,)dP,

uniformly in n. W

Lemma 2 (Overlapping and @)



If D; and Dy are overlapping and Assumption 4-iii) holds, then P{Q1,(w,6;,) =
Q2n(w,05,)} = 1 uniformly in n if and only if 62 = 0 uniformly in n, where
o2 = n*var(Qn,(w,0;,) — Qon(w,03,)). W

Next, we present a set of results on estimators, to be used in the derivation of
the tests for model selection in next section.
Lemma 3 (Joint Distribution of 51,1 and @n)

Given Assumptions 1 and 2 for Dy and Ds, it is

02” - QSn

nV/?y; 12 ( O = O > 2, N, 1), (2.4)

where

Bu(6;,) = Varn'*(VeQun(6;,)),
Bl]n(ejrm Q;n) = B]m(e* 0; )’ = COU[?’LI/Q(VgQin(Q:n), nl/Q(vern(e;n)L

jno Yin

fori,j=1,2,i%j. M

Lemma 4 (Distribution of quadratic forms in §; and 6,)

Let @ be a (p+ q) X (p+ q) real symmetric matrix and Y = (gm - an,ggn -
03,)". Then, the asymptotic distribution function of Y' QY is M, 4(-; \), where
M, 4(+; A) indicates the distribution function of the weighted sum of p 4 ¢ central
chi-square random variables, with weights A\ given by the eigenvalues of Q3,,. B
Lemma 5 (Distribution of Qy,,(6},,) — Q2.(6%,))

Given Assumptions 1 and 2 for Dy and Dy, if 02 is O(n), it is

noy! [Qun(61,) = Quu(05,) — (@ua(61,) — Qna(65,))] == N(0,1). M (2.5)

Now, we have to deal with estimation of o2 in (2.5), of the variance covariance
matrix ¥, in (2.4), and of G, and H,, in Assumption 2)-vii) that will be used in
next section. We have,

Lemma 6 (Estimation of A;,(0}) and H;,(67))
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Given Assumptlons 1 and 2 for D; and Dy, it is A, — Ain(67) 250 and H,, —
Hip(07) 2250, for i = 1,2, where Ay, = V2Qun( m) and Hy, = V2 ( m)
Estimation of By,(07), Bijn(0F,0%), Gin(6F) and o2 is more complex. Let us

RR

focus on By, (6;). From Gallant and White (1988, Theorem 5.4), it follows that

{Bi.} = {Var[n'*VyQn(6;,)]} = {Var[n WZ it} (2.6)

where

M:’;’Lt = S:nt (S:nt)

If we expand the expression in (2.6), we get

{Bz*n} = n_l Z E M;;ltM;’;’Lt +n_1 Z Z [ M:’;’LtM;;l t— T)) + E(Mz* (t— )Mz*nt) :
t=1

7=1t=7+1
(2.7)

The term E(S},) is generally unknown, so that an estimator for B}, can be

int
formulated as

_wnOn Zsznt znt+n 1an7 Z |: 'mtS (t—7) +Szn(t T)Sq,nt]7 (28)

t=7+1

where §int = mt(@n) In order to prove convergence of Em, the memory and
moment requirements in Assumption 2 have to be strenghtened, and requirements
on the truncation lag (m,,) and the weights (w,,) added. We have,
Assumption 5 (Convergence of Em)

i) The elements of (a) {¢:(0)} and (b) {Veq:(0)} are near epoch dependent on
{V;} of size —2(r — 1)/(r — 2) uniformly on (O, p).

ii) The elements of (a) {g:(0)}, (b) {Veq:(0)}, (c) {V3q(#)} are 2r—dominated
on © uniformly int=1,2,..., r > 2.

iii) {m,} is a sequence of integers such that m, is O(n'/*).



iv) The weights are wn, = > 3", 1 GnrGnr—r, Where {anp}, n = 1,2,..., A =
1,2,...,m,+1is any triangular array such that |w,,| <A <oo,n=1,2, ...,
T=1,2,...,m,, and for each 7, w,; — 1 as n — oo.

v) B(S5)=0. m

Defining
U;’;’L = Wpol Z E znt znt)

Yt 3 | B (S5 E(Sin-n) + E(Siuan) E(S)|

the following lemma follows from Gallant and White (1988, Theorem 6.8).
Lemma 7 (Convergence of B;,)
Under the conditions in Assumptions 1, 2 and 5-i) to 5-iv) for D1 and Dg, in
and Uy, are positive deﬁmte for all n, and Bj, — (B:, + Ur) 25 0. When 5-v)
also holds Bm B, 2,0 m

The additional condition E(S,) = 0 is usually imposed, e.g. Newey and
West (1987, Theorem 2), so that B, is consistent. Yet, for dynamic misspecified
models it can be E(S},) # 0. As pointed out by Gallant and White (1988, p.
102), sufficient conditions for E(S’,) = 0 are that either {X;} is stationary and
qi(w,0) = q(T*w, ), or that the model is correctly specified. Notice also that when
(M, F*) is a martingale difference sequence, it is { B, } = n 1y 1 (MZ’;LtM;;t)
which simplifies estimation, even if the estimator Bm =n ! Zt 18 Sint int remains
in general non consistent. Estimators for the other parameters, Bwn, G and o2
are obtained along the same lines.

Finally, we need additional conditions to derive the asymptotic distribution of
02 in next section.
Assumption 6 (Distribution of 52)

i) The elements of {q:(0)V3q:(0)} are near epoch dependent on {V;} of size —1
on (O, p), where p is any convenient norm on RF.

ii) The elements of {g;(0)V3¢:(0)} are r—dominated on © uniformly in ¢ =
1,2,y 7 >2. 1



3. Tests for model selection

In the first subsection we derive the asymptotic distribution of the model selection
criterion SC’n(é\ln,é\gn), that underlies the model selection tests. In the second
subsection we present the tests for selection of non-nested, nested, and overlapping
models. In the third subsection we compare the model selection tests with other
approaches in the literature, i.e., with information criteria, non-nested tests, and
the encompassing principle.

3.1. The SC,, statistic

Theorem 1 (Asymptotic Distribution of SC,(6y,,6:,))
Given Assumptions 1 to 6 for D; and D,

1) if lim,, o0 P{Q1(w, 05,) = Qon(w,05,)} =1, then
2.SC, (O1n, o) 2 Miyg(-: N), (3.1)

where A is the vector of eigenvalues of W, 3, with

W, = " )
( 0 AQTL (egn)

i) if limy, 0o P{Q1n(w, 67,) = Qan(w,65,)} = 0, then

071 [SCoBinsOo) — (@1a(65,) — Tunl03,))| - NO, 1) W (3.2)

Theorem 1 indicates that the asymptotic distribution of SC’n(é\ln, é\gn) depends
on whether, asymptotically, Q1,,(05,,) = Q2,.(65,,) or Q1,(05,,) # Q2,(03,,), i.e., on
whether the models are asymptotically nested and 6%, = ¢(63,), or D; and D,
are non-nested. Notice, in particular, that the additional information provided
by the condition Q1,(05,) = Q2,(63,) increases the speed of convergence by /n.
From Lemma 2, the crucial condition lim,, . P{Q1,(w,0],) = Q2,(w,65,)} =1
holds if and only if lim,, .., 02 = 0. Hence, a test for its validity can be based
on whether an estimator of o2, 52, is significantly different from zero or not. We
have
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Theorem 2 (Asymptotic Distribution of 72)
Given Assumptions 1-6 for Dy and Dy, if Qi (w, 0in) = Vin(w,0in), 1 = 1,2, 02 is
O(n), and ((qu(w, 05,) — qae(w, 63,), F') is a martingale difference sequence, then

i) n (@ - 02) = 1t (S (au(Bin) — (o) — 02) 0,
ii) Under Hy, : lim,, .o, 02 =0,

52 5 Myy(51), (3.3)

where 7 is the vector of eigenvalues of V,,%,,, with

V., = ( Gln(ein) GlQn(QTrwe;n) )
K G21n (03717 efn) GQ“(GSTJ .

T 2 ~9
Under Hy, : lim,, o0, > 0, 0, — co. A

The hypothesis Q;,(w, 0ir) = Vin(w, b;,) holds for several estimation methods
such as MLE or NLS. The requirement that ((qi;(w,6},) — qot(w, 65,), F') is a
martingale difference sequence let us use the estimator for the variance in i). This
assumption can be easily relaxed to deal with an m-dependent sequence, at the
cost of additional complications in the notation. The derivation of the distribution
of an heteroskedastic-autocorrelation consistent estimator, such as By, in (2.8), is
left for future research.

The following Corollary presents conditions under which the statistics in (3.1)
and (3.3) converge to a central chi-square distribution.

Corollary 1 (2 Distribution of SC,, (01, 0,,) and 52)
Given assumptions 1-6 for Dy and Ds, if Qun(w,0i) = Vin(w, i), Ain(05,) =
—Bin(0%,), i = 1,2, lim,, o P{t)1n(w,05,) = on(w,05,)} =1, and

n—0o0

then
. n n D 2
i) 2nSC,, (01, 02,) — Xp—q

i) 52 2 Xai 4 r» Where r = 2rank|Bia,(65,,63,)]. B
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The condition in (3.4) requires n'/?VyQs,(63,) to lie, asymptotically, in the
space spanned by n'/2VQ1,,(0%,). The hypothesis Q,(1in) = i and the infor-
mation matrix equivalence (A;,(65,) = —Bn(607,)) are not strictly necessary to
obtain the required result, but they lead to a substantial simplification in the cal-
culations. From Rao and Mitra (1971, Theorem 9.2.1) a necessary and sufficient
condition for the asymptotic distribution of 2nSC,, (é\ln; 52n) (62) to be chi-square
i8 11y o0 (S Wiy S Wiy S — S Wi S) = 0 (Lm0 (S VS Ve B — S Vo E) = 0).

To conclude, notice that when Q;,(w,6;,) is equal to (minus) the likelihood
function for model D;, ¢+ = 1,2, the SC,, statistic coincides with the LR test.
Hence, we also provide a characterization of the behavior of the LR test under
more general conditions than those by Vuong (1989), who analyzed the i.i.d.
case. In the i.i.d. case and for MLE it is Q(w, 6i,) = ¥(w,6;), @ = 1,2, which
substantially simplifies the derivations.

3.2. Model selection for non-nested, nested and overlapping models

We formulate the hypothesis of interest when comparing D, and D, as

Hy : lim v/n (Q,,(65,) — Q4,(63,)) =0, (3.5)

n—oo

namely, the difference of the loss functions from D; and D, is o,(n~'/?) when
evaluated at the expected value of v,(0%), and in this sense the two models
are asymptotically equivalent. When Qy,(w,0;n) = Ym(w,b0im), i@ = 1,2, un-
der Hy the difference of the expected loss functions is o,(n"*/2). For MLE and
i.i.d. observations Hj is equivalent to the null hypothesis in Vuong (1989), i.e.,
Ep(¢1(w,07)) = Ep(q2(w, 03)), and our results boil down to his.

The alternative hypothesis is either

Hy: hmﬂsup \/ﬁ (aln(efn) - 6271(9;71)) = =00, (36)
or

Under Hj, D; is preferred to Dy (Q,,,(0%,) < Q,(6%.)), and viceversa under Hs.

;From Lemma 1, SC,, (61, 02,) converges to (Qy,(05,) — @2, (63,)). Hence, it
is a natural candidate as a statistic to test for H, against H; or Hs. For the
comparison of non-nested models (Definition 2), we have

12



Corollary 2 (Non-nested models)
Given Assumptions 1-6 for Dy and Ds, if D; and D, are asymptotically non-
nested, then

i) under Hy, 5, 'nSCp(01n, 02n) —= N(0,1).
ii) under Hi, EglnSC’n(é\ln,agn) SN
iii) under Hs, EglnSC’n(@\ln, é\gn) ANERON |

Hence, the test is two-sided and directional. For a given significance level, a
critical value, ¢, is determined from the standard normal distribution. If 5, 'n.S Cn(@n, @n)
falls within the acceptance region, D, and D, are asymptotically equivalent. Oth-
erwise, o, 1nSC’n(§1n, é\gn) < —c (> ¢) implies that Dy (D5) is preferred.

To evaluate nested models, we have
Corollary 3 (Nested models)

Given Assumptions 1-6 for Dy and D-, if Dy is asymptotically nested in Dy, then

i) under H,, for any z > 0, PT{—?ﬂSCn(é\ln,é\gn) <z} — Mp+q(z;//{) 20,
where X is the vector of eigenvalues of W, %,,.

ii) under Hi, —2nSCn(51n, @n) RANERON |

The test is one sided, because, when Dy is nested in D, H; cannot hold. When
the models are estimated by MLE, following Vuong (1989, Theorem 7.2) it can be
shown that the non-zero eigenvalues of W, %, coincide with those of the lower di-
mensional matrix By, (0%,)[(0¢(02)/005) Ay, (05,) (09 (02)/005) — ALL(67,)], which
simplifies the calculations. Under MLE estimation and when the models are de-
fined as in Smith (1994, p.4), the distribution in i) coincides with that in Smith
(1994, Corollary 3.1). With the additional hypothesis that the information matrix
equivalence (A;,(0F,) = — By (65,)) holds, it can be shown that the condition in
(3.4) is satisfied, and the limiting distribution reduces to Xzf(p which coincides
with the distribution in Gallant and White (1988, Theorem 7.8).

For the comparison of overlapping models, we have
Corollary 4 (Overlapping models)

Given Assumptions 1-6 for D; and D,
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i) Iflim, o P{Q1n(w, 07,) = Qon(w, HSH)} = 0, then under Hy, 7,,'nSC,, (Hln,ﬁgn) N
N(0,1), under Hy, 0, 1nSC’ (Hln,ﬁgn) L5 —o0, under H,, 5;,'nSC, (91n,92n)
+00.

i) If limy oo P{Q1n(w, 07,,) = Qon(w, 05,)} = 1, then under Hy, for any z > 0,
Pr{—2nSC, (Hln,ﬁgn) < z}—My, (2 N) 2,0, under H; —2nSC,, (eln,egn)
+o0. l

When Qi (w, i) = Yin(w,0:), i = 1,2, a sequential testing procedure can be
adopted to decide whether the statistic in i) or ii) has to be used. More generally,
this procedure can be followed whenever it is not known whether for the two
models under comparison lim,, .., P{t1,(w,0},) = o.(w,85,)} is equal to zero
or to one. In the first step the hypothesis Hy, is tested with the statistic in
(3.3), using 7 instead of 1, where 7 is the vector of eigenvalues of V5. If Hyy is
accepted, the test for Hy is conducted using the statistic in ii); otherwise that in
i). Vuong (1989, p.321) shows that for the i.i.d. case an asymptotic upper bound
for the significance level of this sequential procedure is given by the maximum of
the asymptotic significance levels of the o2 test and the SC,, test, and the result
remains true in this broader context.

Finally, it is worth pointing out that when Assumption 5-v) is not satisfied
(E(S:,) # 0), 02 and S, overestimate 02 and ¥, (Lemma 7). In this case the
asymptotic size of the tests will be lower than the nominal size, i.e., the tests are
biased towards acceptance of the null hypothesis.

3.3. Comparison with other approaches

A common approach to model selection requires to adopt the model that optimizes
a penalized likelihood criterion, e.g., Akaike’s (1973) AIC, Schwarz’s (1978) SIC,
or Hannan and Quinn’s (1979) HQ. Model 1 is selected if IC,, > 0, where

w) = Z qe(w, 01) — Z Gt (@, B0) — Cu(W), (3.8)

and ¢ (w, 6) is equal to the likelihood function, so that the term n=1(3_7 | qui(w, é\ln)—
S gu(w, b2,)) is an estimate of the average Kullback-Leibler (1951) Infor-
mation Criterion (KLIC). The penalty function ¢,(w) favors the selection of a

14



parsimonious model, and it is typically (but not necessarily) a non stochastic
sequence, e.g., ¢,(w) = (p — q) for AIC, ¢,(w) = ((p — q)logn)/2 for SIC,
Cn(w) = (p — q)clog(logn) with ¢ > 1 for HQ.

The following Corollary gives conditions on ¢, for IC,, to select with proba-
bility approaching one as the sample size increases either the model with lower
average KLIC, or the more parsimonious model when the KLIC is the same (weak
consistency of model selection).

Corollary 5 (Weak consistency of IC,,)
Given Assumptions 1-6 for Dy and D,

i) If liminf,(Q1,(0;,) — Q2,(0%,)) > 0 and ¢, is o,(n), then lim, . P{w :
IC,(w) >0} = 1.

i) 1 lim sup, n'/2(@,,(65,) — Bu (07,) < 00 and Plw : n=/26,(w) — o0} = 1,
then lim,, o P{w: IC,(w) <0} = 1.

i) If n(Qy,(w, 05,) — Qan(w,07,)) is O,(1) and P{w : &,(w) — oo} = 1, then
lim,, oo P{w : IC,(w) <0} =1. 1

The conditions in Corollary 5 turn out to be the same as those in Sin and White
(1996, Proposition 4.2). For example, 5-i) indicates that when D, is preferred to
D5 on the basis of the likelihood function, it will be selected by the information
criterion with probability approaching one if the penalty function converges to
zero at the rate n. Sin and White (1996) also present stronger requirements that
guarantee strong consistency of model selection, i.e., the model with lower KLIC
is selected with probability one when the sample size increases. Notice that weak
consistency of selection is preserved even if the estimators in (3.8) are not ML, as
long as the conditions in Theorem 1 are satisfied.

It can also be of interest to test whether two models yield values for the infor-
mation criteria that are not statistically different from each other, i.e., whether
1C,, = 0. Given that

I1C,(w) = nSCp(w) — Cy(w), (3.9)

if ¢,(w) is 0,(1) when the models are non-nested, or ¢,(w) is 0,(n'/?) when the
models are nested, then the asymptotic distribution for I'C,, immediately follows
from Theorem 1. On the other hand, as pointed out by Vuong (1989), IC,, can
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also be interpreted as a small sample corrected version of the SC,, statistic, where
the correction is represented by the penalty function ¢, (w).

Another approach to model selection that has received considerable attention
since the pioneering work of Cox (1961, 1962) is that of non-nested testing. The
implicit null hypothesis of the Cox statistic for testing D; against D, can be
written as (Aguirre-Torres and Gallant (1983), White (1982), Vuong (1989)),

Hoc : Ep ($1(w,07) = a(w, 03)) = Ep, (¥1(w, 07) — ¢o(w,63)) . (3.10)

For models of i.i.d. processes estimated by MLE, Vuong (1989, p. 319) noticed
that Hype in (3.10) cannot hold under Hy in (3.5), when the models are strictly
non-nested. Actually, for (3.10) to hold under Hy it must be 1 (w, 07) = ¥a(w, 03),
that cannot be valid when the models are strictly non-nested (Assumption 4-i is
automatically satisfied for ML estimation). Hence, Hyc and Hy are mutually
exclusive. This point remains valid after relaxing the hypothesis of i.i.d. variables
as in Assumption 1, and for overlapping models when o2 > 0. The Cox test is not
suited for comparison of D; and Ds; when they are nested, or overlapping with
02 = 0: the statistic degenerates (e.g., Gourieroux and Monfort (1994, p. 2605)).

A third approach to model comparison is that of encompassing, e.g., Mizon and
Richard (1986), Gourieroux and Monfort (1995), Smith (1994). The underlying
idea is that D; can be preferred to Dy when the former can correctly predict
a set of characteristics of interest of the latter, typically its parameters. In the
formulation of Smith (1994) for models estimated by MLE, D; encompasses D,
when

Hog : Ep (an(w, 05,) — an(w, b(01,))) = 0, (3.11)
where b(6;,,) is the asymptotic binding function defined by

b(eln) = arg max ED1 (¢2n(w, egn))
02, €02
A comparison of Hyg in (3.11) and Hy in (3.5) suggests that the former is neither
necessary nor sufficient for the latter. This statement remains valid in the case of
mutual encompassing, i.e. when D; encompasses D; and D, encompasses D;.
Further details on the three approaches to model selection discussed in this
subsection can be found, e.g., in Marcellino and Mizon (1999).
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4. Examples

To illustrate the theoretical results, we now apply the SC,, test for model selection
in the case of two non-nested but possibly overlapping, models, ARMAX versus
STAR, and two nested ARMAX-GARCH models, estimated by ML.

For the ARMAX model, it is

Qulw,01) = n ') qulw,b), (4.1)
t=1
1 2 1 2 —2
qlt(w791) = _Elog(vt) - 57% (wael)vt (w>91)7

k !
n(w,01) = Y, — sz‘Ztﬂ' - Zamtfi(w, 01).
i=1 i=1
For the STAR model, it is

QQn(w7 92) = nil Z g2t (w7 92)7 (42)
t=1

f 2
gu(w, b)) = — {Y;f - Z lci + di F (Y0 Zs—f—1 — 7)) Zt—i} .

=1

The SC,, statistic for ARMAX-GARCH versus STAR is
SCri(B1ns 20) = Qun(w, 01) — Qan(w, ). (4.3)

For both models, we assume that {Y;} and {Z,_;, i = 0,1...,k} are strictly
stationary and ergodic processes. For simplicity, we also maintain all the other
assumptions in Sin and White (1996, Section 7), even if some of them could be re-
laxed. Basically, these assumptions guarantee that both ¢;(w, 6;) and Vg, g (w, 6;)
are near epoch dependent, and satisfy a central limit theorem, for + = 1,2. Un-
der the additional hypothesis that ((qu(w,05,) — g (w,03,), F*) is a martingale
difference sequence, we can also define

-~

52 =01 (qu() — gu(62))* (4.4)
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It can be easily shown that the ARMAX and the STAR models are partially
overlapping. Hence, the asymptotic distribution of the SC,, statistic is that in
Corollary 4, and it depends on whether lim,, .o, P{Q1n(w, 65,,) = Qop(w,03,)} is
equal to zero or to one. Thus, we follow the two-step procedure described in
Section 3.2. First, we test for lim,_ ., 0> = 0 using the asymptotic distribution
of 5% given in ‘Theorem 2. Notice that 7 can be estimated by 7, the vector of
cigenvalues of V%, (Davies (1980)), and estlmatlon of V, and %, is discussed in
Section 2.3 Second, if the hypothesis lim,, . 02 = 0 is accepted, it is

2n.8Ch (B, 0n) = Mpig(5 ), (4.5)
where \ is the vector of eigenvalues of I//I\/nfln Otherwise,

'S C (b1, Oan) HL N(0,1). (4.6)

Rejection of the null hypothesis in the second step provides evidence in favor of
the ARMAX (STAR) model when SC,, is positive (negative).

As far as the comparison of nested models is concerned, an ARMAX-GARCH
model is specified as in (4.1) with the additional recursive relationship

c d
v2(w,01) = ag + Zﬁivii(w,el) - Zamfﬁi(w,el). (4.7)
=1 =1

The nested model is obtained by imposing (p — ¢q) > 0 zero restrictions in (4.1)
and/or (4.7). The SC,, statistic can be written as

SCn(é\ln; 51n) = an(W, é\l) - an(W,gl), (4-8)

where 51 is the restricted estimator of 6;. In this case, the distribution of the SC,,
test is that in Corollary 3, namely,

2.SCh (O1n, O1n) 2 Myig(-5 M. (4.9)

A similar approach can be followed for the comparison of nested STAR models.

3For MLE the expression for 57, in (2.6) simplifies to S},,, = —Vgqit(03,)’, so that Sint in
(2.8) becomes Sin: = —Voqit (0in ), -
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5. Conclusions

In this paper we have proposed a statistic for model selection that can be applied
under weak assumptions on the processes and models under analysis. For i.i.d.
processes and ML estimation, the statistic reduces to Vuong’s (1989) test. Other-
wise, it can be thought of as a generalization thereof. Under the null hypothesis
the models under comparison are at the same distance of the DGP, under the
alternative hypothesis one model is closer. The test is symmetric and directional.
Its asymptotic distribution under the null is either a weighted sum of chi-squares
or it is normal, depending on whether the models are nested or not. A test for
the latter hypothesis is also suggested.

The extension of the procedure for the comparison of several models, possibly
for non-stationary processes, and an evaluation of its finite sample behavior, to-
gether with a comparison with other model selection criteria, are left for future
research.

APPENDIX

Proof of Lemma 1. Follows from Gallant and White (1988, Theorems 3.18,
3.19). =

Proof of Lemma 2. If Q,(0%,) = Q2.(03,) a.s. then o2 = 0. If 02 = 0, then
Q1n(07,,) = Q2,(03,) + C. Under Assumption 4-iii), integrating both sides of this
equality yields C'=0. R

Proof of Lemma 3. From a first order Taylor expansion of the normal equations
for Dy and D,, we obtain

0 = n'*VyQun(6;,) + Ain(05,)n"* (01 — 07,) + 0,(1),
0 = n'/2VoQun(05,) + Aza(03, )0 (02 — 63,) + 0p(1).

It immediately follows from Gallant and White (1988, Corollary 5.5) that

_ /2
Bia(6;,)  Bian(9 9*)) ' (ve@mw*)) D

1/2 1 in 12 1n’ Y2n in N 0 1.
" (Bmwsn,ern) By (63,) VoQun(tsy ) V0D
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Finally, from A2-vii)-b), A1,(63,
follows. B

Proof of Lemma /. Follows from Lemma 3 and Vuong (1989, Lemma 3.2). B

) and Ag,(65,) are nonsingular, and the result

Proof of Lemma 5. From a first order Taylor expansion of Q;,(6%,) around 1;, (6%,),

i=1,2, it is

Qun(05,) — Qun(03,) = Qua(05) — Qon(03,) + VoQua (¥4, (01,)) (V1 (07,) — Y1, (01,)) —
VoQun (2, (03,)) (V20 (05,) — 2 (03,)) + 0p(1).

Given Assumtpions 1 and 2 for Dy and Ds, from Gallant and White (1988, The-

orem 5.3), \/n(V1a(01,) = 1,(07,)) and v/n(12n(03,) — ¥, (65,)) have an asymp-

totically normal joint distribution, which yields the result. B
Proof of Lemma 6. Follows from Gallant and White (1988, Theorem 6.1). B
Proof of Lemma 7. Follows from Gallant and White (1988, Theorem 6.8). B

Proof of Theorem 1. From a first order Taylor expansion of Q,(w, 6%) around (/9\”,
we obtain

. 1 ~ , .
an(w, ein) = an(w, eln) + 5(9171 - eikn) Aln(efn)(eln - an) + Op(1)>

N ]_ -~ / -~
QQn(w7 0;7’) = QQTL(W7 92”) + 5(92% - 9;7’) Agn(0;n>(02n - egn) + OP(1>7
so that

o~ o~ 1 ~ , ~
SCu(O1n,02n) = SCu(07n,03,) — 5 (01 = 07) A1n(07,) (01 — O7,)
1 -~ ! -~
+5 (020 = 03,) A2a(0,) (020 — 03,) + 0p(1).

i) When lim,, .o P{Q1n(w, 07,) = Y2 (w, 05,)} =1, SC,(67,,03,) is 0,(1). The
asymptotic distribution of 2nSC,, (01, fa,) follows from Lemmas 3 and 4. R
ii) When lim,, oo P{Q1n(w,0;,) = tan(w,05.)} =0, 0, 'n(0;,,—07) Hi (05, (0, —

%) are 0,(1), i = 1,2, and the result follows from Lemma 5. H

2 — 02) follows from Lemma
7. ii) As in Vuong (1989, p. 328-329), a Taylor series expansion of n='5> around
(0;,,05,) yields, under Hg, : lim,, .o 02 =0,

0162 = (B1, — 03, 00 — 05, Vi (O — 07, 00 — 03,) + 0p(1),

Proof of Theorem 2. i) Convergence to zero of n~! (52
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with,

‘7 — Glr}\ggln)/ Glgn(glﬁ, 5271)
n Gan(GQn, 61n> GQn(GQn)

n

Gia(01n) = 71> Voqu(01a)Voq1(1a) + 11> (q1:(01n) — q2e(020)) Vique (B1n).

t=1 t=1

GlQn(51n7§2n> = n_lZVGQIt(gln)VGQQt(52n)IJ

t=1
n

Gon(fan) = 11> Voqou(020) Vo) + 11D (q1:(01n) — qee(020)) V32t (Bn).
t=1

t=1

for some 6y, and 6s, in the segments [0 | 51n] and (605, é;n], respectively. Given
assumptions A2-A6, the second terms in éln and égn converge to zero in proba-
bility under lim,,_,o, 02 = 0, and, from Lemma 7, 17“ -, V,. The distribution in
(3.3) follows from Lemma 4. Divergence of 6% under Hj, : lim,, .o, 0> > 0 follows

from i). W

Proof of Corollary 1. Follows from Rao and Mitra (1971, Theorem 9.2.1) and
Vuong (1989, Corollary 3.4 and 4.4). B

Proof of Corollary 2. Follows from Assumption 4-i) and Theorem 1. ®

Proof of Corollary 3. From a simple modification of Vuong (1989, Lemma 7.1),
under Hy, it is lim, 07, — ¢(03,) = 0. The latter, from Assumption 4-ii)
implies that lim, ..o P{Q1n(w, 0],) = Qon(w,03,)} = 1. The result then follows
from Theorem 1. R

Proof of Corollary 4. Follows from Corollary 2 and 3. R

Proof of Corollary 5. i) follows from Corollary 2-ii) and 2)-iii). ii) follows from
Corollary 2-i). iii) follows from Corollary 3-i).
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