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Abstract

This paper is a general investigation of temporal aggregation in time series analysis. It encompasses tra-
ditional research on time aggregation as a particular case and extends the analysis to irregular intervals
of aggregation. The Data Generating Process is allowed to evolve at regular, deterministic-irregular or
even stochastic intervals of time (operational time). The time scale of this process is then transformed
to generate the observational time process. This transformation can be deterministic (such as the famil-
iar aggregation of monthly data into quarters) or more generally, stochastic (such as aggregating stock
market quotes by the hour). In general, the observational time model exhibits persistence, time-varying
parameters and non-spherical disturbances. Consequently, we review detection, specification, estimation
and structural inference in this context, provide new solutions to these issues, and apply our results to
high frequency, FX data.
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1 Introduction

This paper explores the following question: What happens to dynamic econometric analysis when
the time scale at which the data is generated does not coincide with the time scale at which the
data is observed? Traditional research on time aggregation is almost entirely concerned with the

L (for example,

following two problems: (1) the consequences of fixed-interval time aggregation
data generated monthly but recorded quarterly), and (2) analysis of continuous-time models from
fixed-interval observed data.? This paper, however, treats these lines of research as particular
cases of a more general problem, namely, that the time scales native to the data generating process
(D.G.P.) and the frequency of data recording possibly evolve at irregular (usually stochastic)
intervals of time.

The motivation for this analysis is natural in economics. Theoretical models typically result in
a set of dynamic equations that describe some aspect of economic behavior. The dynamic evolution
of the economic system and the timing with which changes in the variables occur are therefore
determined internally by this behavioral model. This is the time scale at which the data will be
generated. We call this the operational time scale, data based scale or economic time, following
the nomenclature in Stock (1987) and use the subscript 7 to index variables. However, empirical
validation of the hypotheses put forth by the economic model necessarily relies on available data.
The timing with which the data is recorded will, in general, not coincide with the operational time
scale. We denominate the frequency of data collection as the observational time scale and use the
subscript ¢ to index variables.

Depending on whether each of these time scales evolves at regular intervals of time (i.e., the

time elapsed between realizations is a fixed time unit, such as a week, a month, a quarter, and so

on) or irregular intervals (when the time elapsed between realizations follows a stochastic process

! See, e.g., Telser (1967), Brewer (1973), Wei (1981), Weiss (1984), Christiano and Eichenbaum (1987) and
Marcellino (1999).

2 See, e.g., Sims (1971), Geweke (1978), Bergstrom (1984) and Stock (1987).



instead), we contemplate four types of time aggregation

Operational time-scale 7 Observational time-scale ¢
Type 1 Regularly spaced Regularly spaced
Type 11 Irregularly spaced Regularly spaced
Type 111 Regularly spaced Irregularly spaced
Type IV Irregularly spaced Irregularly spaced

The literature on time aggregation typically assumes that the true economic decision interval
is finer than the data sampling interval and in addition, assumes that economic decision-making
is done at fixed intervals. For example, the observational time scale is in quarters while the
operational time scale is in months. This example of type I aggregation has been well studied
in the literature. Examples of type Il aggregation are common in finance, where time series
are analyzed at daily or even weekly frequencies although transactions in these markets happen
anywhere from a second apart to hours apart and beyond. More formally, Jord4 (1999) shows that
partial adjustment models naturally generate irregularly spaced data in operational time although
empirical analyses necessarily rely on observational quarterly or monthly data at best.

The analysis of Friedman and Schwarz (1982) in which monthly and quarterly data are phase-
averaged across different stages of the business cycle; the literature on time deformation introduced
by Stock (1987); and situations in which the data have missing observations can be viewed as
examples of type I aggregation. Finally, type IV aggregation is common in finance. To distinguish
between uninformed and informed traders, tick by tick financial data are often “thinned” by some
statistical procedure (see Engle and Russell (1998)), the result of which is a new series in which
observational time is also irregularly spaced. The findings in this paper thus encompass the
traditional results on time aggregation. Some of the cases studied can be interpreted as the

discrete-time analog to Stock’s (1987) time deformation model while previous work on unequally



spaced data by Robinson (1977) and Dunsmuir (1983) can also be viewed as particular cases in
our framework.

The most interesting results in the paper correspond to situations in which the frequency
of aggregation is stochastic. This produces observational time processes that have time-varying
parameters and non-spheric disturbances. We provide propositions to support these claims and
introduce new methods to model the frequency of aggregation as a stochastic point process from
the maximum likelihood principle. These models are well suited to capture the specific non-
linearities introduced by generic transformations of the time scale, improving the estimation of
structural parameters and providing more accurate forecasts. In addition, the autoregressive
conditional intensity model (ACI) that we introduce here can be used in a general context to deal
with dynamic count-data problems.

The paper is organized as follows. Sections 2 and 3 introduce the general framework we use,
and present the theoretical results on representation, estimation, and inference. Section 4 analyzes
in further detail the implications of the results in sections 2 and 3, and proposes practical methods
and models to deal with time aggregation problems. Section 5 reviews the main characteristics of
high frequency foreign exchange (FX) data, and illustrates how they can be generated by time scale
transformations, both theoretically and by means of simulation experiments. Section 6 presents a
simple dealer’s inventory model to highlight the problems with structural inference in the presence
of unaccounted time scale transformations. Section 7 applies the models of section 4 to study the
behavior of the bid-ask spread in the US Dollar - Deutsche Mark FX market. Finally, Section 8

summarizes and concludes.

2 Time Scale Transformation of Discrete-Time Models

This section studies the transformation of a generic, operational, discrete-time ARIMA process
into the corresponding observational time process. We begin by introducing the notation and

framework to be used hereafter and then derive the conditional generating mechanisms. Consider



a generic stochastic process that evolves in operational time 7, namely, x = {x,}22,. The available
data, however, are the realizations of a different process, x= {x;}$2,, whose elements are functions
of those of z. x is said to evolve in observational time t. The transformation from the operational

time scale 7 into the observational time scale ¢ is given by

¢
T=pt) = (k) =) ki fork={k};=, (1)

j=1
k is termed the frequency of aggregation which can be thought of as a sequence of numbers or
more generally a stochastic process itself. Note that ¢(t) — ¢(t — 1) = k¢, that is, the number of
operational time observations per sampling interval (¢t — 1,¢]. In order to accommodate different

types of aggregation, define the lagged polynomial W;(Z), termed the aggregation scheme, as

follows

Wt(Z) = weo + wt,lZ + wt,QZQ + ...+ wt,(k[,,l)Z(kt_l) (2)

where Z is the lag operator in operational time such that x,Z = x,_1. Traditionally, W;(Z) =1
for point-in-time aggregation schemes while W;(Z) = (1 + Z + Z%+ ... + Z*-«=1)/k, for phase
averaging aggregation schemes, although in principle one need not restrict attention to these two
alternatives.

In this paper, we analyze the following transformation of the data

t

x={)ity = (Wi Do}y o) =D ke (3)

Jj=1

or more specifically

(k1—1)
x; = Wi(2)xg, = Z W1,5T(ky —j5) = (4)
=0

W1,0Tk, + W1,1T(k;—1) T - T W1 (ke —1)%1



(k2—1)

x2 = WaZ)T(kyhs) = D W2 iT(k+hs)—j =
=0

W2,0T (kg +ky) T W2,1T (kg +ko)—1 T oo T W2 (kg —1) T (fey +1)

This framework allows us to treat time aggregation comprehensively. For example, type I
aggregation from monthly to quarterly data implies k; = 3 V¢t and W;(Z) = 1 Vt (point-in-time)
or Wi (Z) = (1 + Z 4 Z?) /3 (phase averaging). Alternatively, type II aggregation corresponds to
allowing k; to be a stochastic process (in Jordd 1999, k; is a Poisson random variable). Other
types of aggregation are easily accommodated as well.

In principle, given the finite dimensional cumulative density function of x, one can derive the
density of x simply by application of standard techniques for the linear transformation of random
variables (see e.g. Mood et Al. (1974)). However, this involves marginalization and integration
with respect to several variables, thus making the problem intractable. In this paper we follow an
approach that is common in the literature. Assume that the operational time process x follows a
general ARIMA process, and that k = {k:},-, is a generic stochastic process which in some cases
is related to the process that generates x.

Therefore, x evolves according to the following stochastic linear difference equation
O(Z)rr =V(Z)er (5)

where ®(Z) =1 — 1 Z — o 2% — ... — ¢pp ZP; W(Z) = 1 =1 Z — 02 2% — ... —1hy Z9 and & is a white

noise error, ¢, ~ WN(0,02). Under these assumptions, we define the auxiliary vectors

Yt - (7¢1a7¢2a"'a7¢p705"')0)/ (6)

g X1

Be = (Bi1Br2s s Bin,)

b, x1



where g; = Z?;é ki_j; by = Z?;é ki—j —p. The B ; for i = {1,2,...,b;} are the coefficients of the

polynomial B(Z) = (1 + BiaZ 4 BioZ? + ... + Bip, Zb") and the matrix I'; is defined as

1 0 0 0
—p; 1 0 o 0
—¢y —1 1 . 0
t X0t
J *(ﬁp *d)p—l *(Z?p—z

0 _d)P _(/)p—l

0 0 0 0 1

In addition, denote I'} to be a b; x by matrix and ~; to be a b; x 1 vector obtained by deleting the
ki—; rows of I'y and ~y; respectively for j =0,1,2,...,p — 1. Then, we introduce the following two
propositions:

Point-in-Time Sampling
Proposition 1 If x is the operational time process generated according to the gemeral discrete
time model defined in equation (5), k = {ki},—, and x is the observational time process obtained

from a point-in-time sampling scheme such that x = {x¢},o, = {z,, T(ky4ka)> T(kyhotha)s )
then x follows the linear stochastic difference equation

Ct(L)Xt = Ht(L)Ut Vg ~ WN(O, 5?) (8)
where L is the lag operator in observational time such that Lx; = x;_1. The coefficients of Cy(L)
=(1—caL—cioL? — ... — ¢ pLP) are the ky_j 1 rows of —Ty(T}) 197 + v for j =1,...,p while
the coefficients of Hy(L) = (1 — hy1 L — ... — hy,, L") and &2 are the solutions to the non-linear
system

Ty bi+q
Z hf,ith—i = Z 7Tt2,i”2 9)
i=0 i=0
(re—3) by+q—1
—he€ D Pty = a0t Y Wm0 )
i=1 =1

for j=1,...r¢, where II,(Z) = By(Z)¥(Z); B = —(T}) "1y and | = an:l Eti1—m.

Proof. See Appendix.



Phase Averaging
Let vy, B; and Ty be defined as in (6) and (7) but with g, = Z?:o K—jy —1; by = Z?:o Ke—j) —

p — 1. In addition, define

/

\ 1 . dy 1 . dyi,2 . di p .
t — | 7€k — ke 1y ki oy ey ke

gr X1 ky ki1 ko kt—p v

where ey, is a 1 X k; vector of ones and the d;; are the coeflicients of L in the polynomial Dy(L).

Let A} be the b, x 1 vector obtained by deleting the k;_; rows of A, for j =0,1,...,p — 1.

Proposition 2 If x is generated by (5), k = {k}io,, Wi(L) = (1 + Z + Z% + ... + Z(ke =) /|y
and x = {x},o, = {Wt(L)xw(t)}z1 with ¢(t) = 22:1 k; Vt then

Dy(L)xy = My(L)uy for ug ~ WN(0,02) (10)

The coefficients of Dy(L) are the solutions of the linear system of p equations which correspond
to the ky_ji1 rows of To(TF) ™ NF — %) + v = A for j = 1,...,p. The coefficients of My(L) =

(I —my L — ... —mys, L%) are the solutions to the non-linear system
St bi+q—1
2 2 2 2
th,in—i = Z 0::0 (11)
1=0 =0
st—J bi+q—1
2 2 = —6,,0° 0 29 ;
MVt ) M=)V ) T 00 (=), Ot,(1+44)
i=1 i=1

for j =1,...,8, where ©4(Z) = By(Z)W(Z)¥(Z); By = (T;)"L(A\; — ;) and | = Zi:l ki1 n.

Proof. See Appendix.

These propositions show that the coefficients of the aggregated process x are, in general, time-
varying (whenever k is non-constant) and rather different from the coefficients of the original
process x. The order of the autoregressive polynomial is typically preserved although the observa-
tional time process x can now exhibit a moving average component. For a point-in-time sampling
scheme, the MA component will usually be of order p — 1, while under phase-averaging the usual
order is p (lower/higher values can be obtained when p —q > k;/q — p > k¢, a well known result
in the context of fixed interval time aggregation). We note that the proofs in propositions 1 and 2
make no assumptions regarding the roots of ®(Z) in (5) and therefore, they apply to stationary,

integrated or even explosive processes.



In the particular case where k; = k Vt, propositions 1 and 2 simplify to the results obtained
by Brewer (1973), Wei (1981), Weiss (1984) and Marcellino (1999). Following Marcellino (1999),
propositions 1 and 2 can be readily extended to multivariate processes as long as the aggregation

frequency, {k:},-, is common to all the elements of the vector process.
3 Maximum Likelihood Estimation

This section derives the maximum likelihood estimators for the observational time parameters
from the state space representation of the operational time process assuming that the sequence
{k¢} is observed. The asymptotic distribution of the maximum likelihood estimators is then
derived. In conjunction with propositions 1 and 2, one can then recover the parameters of the
operational time model. When k; = k, Vt, the aggregated model will be an ARIMA model with
constant parameters, for which traditional modelling and estimation results are readily available.
Thus, here we concentrate on situations where k; changes over time. Let Xyo1= {%¢—1,%t—2, ..},
Et,lz {kt_1,kt_2,...}, then, assuming fixed initial conditions, the joint likelihood for a sample of

T observations can be written as

T
L) = H Fxil Xiz137%i)- (12)

Yet, this expression is not suited for the derivation of the ML estimators, {¥,}, ¢ = p, ..., T, since
the number of parameters is typically larger than the available observations. Alternatively, the
likelihood can be reparametrized in terms of the parameters of the disaggregate process x.-, say 6.
Therefore, we propose a general Kalman filter based approach for the derivation of L(#). We begin
by casting the operational time 7 ARMA process (5) in state space form. Next we consider the
state space form for the aggregated process. Then we write the Kalman filter equations, derive
the prediction errors, and use them to construct the likelihood function. These derivations are
based on Harvey (1989, Ch. 6), and extend his results to the case of a time varying aggregation

frequency and generic aggregation weights.



The state space form for the ARMA(p,q) process in (5) is

with

where r = max(p,q + 1), o, is an r dimensional vector of state variables, 7 =1,...,T.

’
= 207,

SOé.,-,l +er,

= ag, V(w)=Fo,

E(e;ap) =0V1,

[} -1 — P2 .. —wH},_

b1

1

0

P2
0

1

(i)'rfl
0

0

br

0

0

€r

respect to (5) we further assume that e, is Normally distributed.

Let us now define the variables s; = 2221 kj,i=1,..,N, with sg =0, sy =T, and

i
Bsi_yri = E Wiri—jTs; 145, Po=0, mi=1..k,

=1

where w; »,_; are the weights in W;(Z) in (2), so that

The state space representation for the aggregated process in 7 time (SSR(7)) is

Br

Pr

507'67'71 + Z/aT = 907'67'71 + Z/SOé‘rfl + Z/e-,—,

0 T:Si,1+1,

1 otherwise.

/ .
Tr = 9%, T=85i, Z:]-a"*

Vr

N,

D;vr—1+ Ry, 7=1,..T,

(13)

With

(14)



with

g/ = 0 1|, v= [a‘r ﬂ‘r}/a
_1><r
S 0 I 0 er
DT - 5 R= 5 n: =
Z/S o, 20 0

>From SSR(7) we can also derive a state space representation for the aggregated process in

observational time, i.e. in ¢ time (SSR(t)). It is

9 (15)

Gkt 0 I 0 ne
Y& = Ye—1 + ,
2 (Wi, —1) 0 0 2 n?

Xt

. ] i ks
with WJ = Zi:o SS’ 77? - Z;tzl S jesz,—l+j7 ntﬁ = Zj;l Wkt—TteSt—l'H“z,'
To derive the ML estimators of the disaggregate parameters, it is more convenient to adopt
the SSR(7). Defining the optimal estimators of ., by ¢,, with covariance matrix 3., the Kalman

filter equations are:

Crir—1 = Drer (16)
Yrro1 = D.¥, 1D, + RQR
Crir—1 T#8i, i=1,..,N
cr = ,
Crir—1 + E’Tl‘l’—lg/f;lg(x‘r - g/ch’T—l) otherwise
ZT|T*1 ’7'7581‘, i = 1,...,N
Xr = ,
ET|T_1 + ET|T_1g’f;1gET‘T_1 otherwise
(e74] Py O
o = ) EO - 3
0 0 0

where fr = ¢'>;|,_19, and Q is the variance of 7,. The relevant prediction errors are

Vr = X7 _‘/x\’rh’—l :g/(,YT _C’TlT—l)’ T=8;, (= 17"'7N‘ (17)



Hence, the likelihood can be written as

N - N 1 & 1 L w2
log L(6) =log [ | f(xil X 1;6) = —5 log2m — 2 > log fs, — 5 > (18)
=1 =1 =1

=0
Maximization of this expression with respect to 0 = (¢, ¢ = 1,...,p, ¥, j = 1,...,q, 0) yields the
ML estimators of the parameters of the operational time model, 8. The formulae in propositions 1
and 2 can then be used to recover the ML estimators of the parameters of the aggregated process.

In order to derive the properties of the ML estimators, we make the following additional

assumptions:

(a) The eigenvalues of S are inside the unite circle.
(b) The true parameter values, §%, are in an interior point of the parameter space.

(c) 6° is globally identifiable in the sense of Rothenberg (1971).

Now, it can be easily checked that all the conditions in Theorem 4.2 and 6.5 in White (1994, pp.

42 and 94) are satisfied and thus,
N1

VN@® —6°) % N(0,IA7Y),

where A is the asymptotic Information matrix. Assumption (a) can be relaxed to allow for
non-stationary processes, but this substantially complicates inference, see e.g. Sims et al. (1990).
Assumption (b) is a standard assumption to guarantee asymptotic normality of the normalized
estimators. Assumption (c) is needed to ensure convergence to #°. Notice that standard conditions
for identification of ARMA models, e.g. Hannan (1971), are necessary but not sufficient for
assumption (c) to hold, see e.g. Marcellino (1998). Temporal aggregation can transform globally
identifiable parameters into locally identifiable ones (e.g. when an AR(1) process is subject to
point-in-time sampling with k&, = k and k is even), or into non-identifiable ones (e.g. when an

MA(q) process is subject to point-in-time sampling with k; > ¢). The pre-existing hypothesis

10



of an ARMA process with i.i.d. normal errors makes the other assumptions in White’s (1994)

theorems valid.

4 Practical Modelling Strategies

A transformation of the time scale from 7-time to t-time will yield an observational time process
x¢ and a sequence {k;} which corresponds to the frequency of aggregation. We begin this section
by assuming that both x; and k; are observable and that the practitioner’s task is to estimate
the parameters of interest by jointly modelling these two stochastic processes. Consequently, we
propose a number of models and estimation strategies. In practice there are also cases where k;

is not observable. The second subsection presents solutions when this situation occurs.

4.1 Stochastic and observable k; : The ACI Model

Consider modelling the joint probability distribution of x; and k; conditional on past information,

given the distribution of x,, the aggregation scheme W;(Z), and possibly a vector of exogenous

variables, z, ;. Assume for simplicity that k; can only take a finite number of integer values,

ke € {0,1,2,..., N} with P(k = j| XH,EH;H) = P(k; = j) = m;. These assumptions will be

relaxed later but make the exposition clearer here. Then the joint distribution of x; and k; can
be factored as follows

Fxeske = 3l Xeo1, ke138) =
9| ke= . Xe 1, ke 136) - Pl = 5) (19)
Under the assumption of Gaussianity, the conditional distribution of x; from this expression

becomes

g — Xt = )¢ 2
9(Xe| ke= 7, X1, ki 1;0) = 27r17(j)texp{ ( 20(5)(5) ) } (20)

were (j) and o(j) are indexed by j to indicate their dependence on the frequency of aggregation.

From (19), the joint likelihood is

POk = 4] Koot keo156) = ——t—ea — (= lg)e)” (21)
ts Rt = J| Xt—1, Kt—1;5 \/ﬂn(j)t P 2(r(j)%

11



If k; is weakly exogenous for 6 (see Engle et al. (1983)), that is, if the parameters of interest
are a function of #, and 6 and the 7's are variation free, then joint estimation is not required, and
0 can be estimated by maximizing (20) alone. >From a computational point of view, the Kalman
filter based approach proposed in section 3 can be used to estimate this likelihood. Under the
additional assumption of Granger non-causality of x; for k; (which holds in this case), inference
on 6 can also be conducted without any reference to the distribution of k; (see e.g. Govearts et al.
(1995)). Otherwise, the joint likelihood for x; and k; has to be used, and it can be easily obtained
from (19).

When £k, is observable but with a one period delay, the unconditional density of x; has to be
used. Assuming the operational time process is Gaussian, this is a mixture of normal distributions,

which is obtained by summing up (21) over all the possible values of k,

N
P (x| ;{t—la ki—1;0) = Zf(xtak't =Jl \;t—la ki—1;0). (22)

j=0

Consequently, the joint unconditional log-likelihood can be written as

L(§) = ﬁi tog (P(xe| Xe-1, ki-130)) (23)

t=maxz(p,q)

One natural generalization of P(k; = j) = m; is to assume that k; is Poisson distributed. Jordd
(1999), based on the Law of Rare Events, presents formal arguments that justify this choice. In
recent work, Engle and Russell (1998) and Hamilton and Jorda (1999) have introduced time series
models for the analysis of duration data. Based on the correspondence between stochastic point
processes and duration data analysis, a natural parametrization for the distribution of k; under

the Poisson assumption is

g ~ e_)‘f')\{
P(ky = j| x¢—1, ke—130) = i (24)
l _ kt—l /
og(\) = w+alog(A—1)+ 8 N +0"%, 4
t—

where x,_; = (X¢—1,X¢—2, -..,;X¢—r)". A¢ is the conditional intensity of the Poisson process, in our

application, the average number of operational time periods over which we aggregate in the interval

12



of observational time [t,t — 1). Consequently, it is natural to term the model in (24) as the
autoregressive conditional intensity model, ACI(1,1). The specification of the conditional intensity
function ensures that the intensity remains strictly positive without restricting the parameter

space. The term log(A;—1) makes explicit the autoregressive nature of the specification, while the

ki1

At—1

term log ( ) captures the dynamic effect of surprises in k;. This ratio will be approximately

an 1.i.d. sequence, with the approximation becoming exact as §'x, ; becomes negligible. The role
played by the term log (%) is similar in nature to the moving average term in a typical ARMA
model. The model will be stationary for |a + 8| < 1, when ¢’ = 0.

The unconditional density of x; is just a mixture of normals given by the product of expressions
(22) and (24), so that the joint likelihood can be maximized given an initial guess for Ag, which for
convenience can be set equal to the unconditional intensity. Section 7 will apply the ACI model
to explain the price quotes in the FX market and their arrival rate. The ACI model is obviously

not limited to the range of problems that we pursue here. Rather, it is a very general, time-series

formulation for dynamic, count-data problems.

4.2 Stochastic non-observable k; : The Markov Switching Regimes Model

A situation often encountered in applied work is that in which k; is not observable. This prevents
us from directly using the ACI model introduced above. An alternative assumption that we
recommend for this situation is to let P(k; = j] ;t_l, Et_l; 0) be an N-state Markov chain, that
is

P(ky = j| x4_1, Et71;9) = P(ky = jlhki—1 = 1) = pyj (25)
fori,5 =1,2,..., N. This assumption can be generalized as in Lam (1990), Durland and McCurdy
(1994), Filardo (1993) and Diebold, Lee and Weinbach (1994). We restrict our attention to the
basic formulation for clarity of exposition. Based on (21) and (25), it is immediately apparent
that this specification boils down to that proposed in Hamilton (1989) for the popular Markov

switching regimes (MSR) model, and Tjgstheim’s (1986) doubly stochastic model, even if here it

13



arises because of aggregation issues. An example illustrates the particulars of this technique.

Consider the following, operational-time, ARMA(2,0) model

Ty = p1Tr_1 + p2xr_2+er  &r ~ N(0,02) (26)

For simplicity, assume k; = {1,2}, that is, every operational time period there is some probability

that the corresponding observation will be recorded or that it will be skipped. The two-state

Markov chain that describes k; is P(ky = jlki—1 = i) = p4j for i,j = 1,2. Consequently, the

resulting observational-time process is described as follows

l.i=1;7=1
2.0=1;7=2
Xt
Ut
3.1=25=1
Xy =
Uy =
4.i=2j=2
X
E(ut)

Xt = P1Xi—1 t+ poXe—2 + ug ARMA(Q, 0)

w = e Blw)=0;  E(uy)=o0?

g

= (P34 p2)xi_1+pipoxe 2 +u,  ARMA(2,0)

= &+ pirer—1; E(u) = 0; E(u}) = o2(1+ pi)

2
(m + P2> oot — Pt — Puy ARMA(2,1)
p1 p1 P1

Er; E(us) = 0; E(uf) =0o?

€

= (p? +2p2)X¢—1 — Paxi_2 + Uy — Potls_y ARMA(2,1)

= 0;  E(@i) =021+ p} +p3)

Following Hamilton (1994), define the new variable s; which characterizes the regime at date

t as follows

14



se=1 if k=1 and ki_1=1
s =2 if k=2 and k_;=1
se=3 if k=1 and ki 1=2
s =4 if k=2 and ki_1=2
Recall, since p;; = P(k; = j|lki—1 = i), then s, follows a four state Markov chain with transition

matrix

pii 0 pur O
pi2 0 pi2 O
0 pa O  px

0 p2 0 p2

The appendix contains the expression for the conditional densities and the form that the estimation

algorithm proposed by Hamilton (1994) takes in this case.

5 Time-scale Transformations in Practice: The FX Market

This section explains several stylized facts peculiar to the intra-daily foreign exchange market
(FX) as possibly stemming from a time scale transformation. The next section investigates the
pitfalls in structural inference of the dealer’s inventory control models in the presence of time
aggregation while section 7 estimates the dynamic behavior of the bid-ask spread in the U.S.
Dollar - Deutsche Mark, FX market. These data provide unique opportunities for understanding
the behavior of financial markets and concepts like risk and market efficiency as well as revealing
the micro-structure and decision making of traders in this market.®> However, the econometric
analysis of high frequency data (for example, there are an average of 3,100 quotes per day for the

USD-DM FX rate in a typical business day? ) has required the development of a variety of new

3 Surveys on the FX market at daily or weekly frequencies include Hsieh (1988), Baillic and McMahon (1989),
and Guillaume et al. (1995).

4 See Dacorogna et al. (1993).
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econometric techniques that range from long-memory models in volatility? to developing time

scales that depend on the geographical peculiarities of the three main trading regions’® (Europe,
East Asia and America) to developing new time series models for irregularly spaced data’ . The
next three subsections will: (1) enumerate the principal statistical stylized facts, documented

elsewhere in the literature; (2) discuss the role of time aggregation in theory; and (3) present a

Monte-Carlo study as an illustration.

5.1 Stylized facts

Denote the price at time 7 or tick 7 as

xr = log(fxr) (27)

that is, the log of an exchange rate quote. For simplicity, we do not distinguish between “asks”
and “bids” in which case, x, is typically taken to be the average of the log ask and log bid quotes.

Consequently, the change of price or return is defined as

rr = [Xr — 2r_1). (28)

The volatility associated with this process will be defined as

vy =

S

Z ‘TT7k| (29)

where n will depend on the size of the operational time interval. The absolute value of the returns
is preferred to the more traditional squared value because it captures better the autocorrelation
and seasonality of the data (Taylor, 1988; Miiller et al., 1990; Granger and Ding, 1996). There
are a variety of other quantities of interest such as the relative spread, the tick frequency, the

volatility ratio, etc. that fall beyond the scope of this discussion.

% See Baillie (1996) for a survey.
6 See Dacorogna et al. (1993).

7 See Engle and Russell (1998).
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The following is a list of the most salient stylized facts:

1. The data is non-normally distributed with “fat tails.” However, temporal aggregation tends

to diminish these effects. At a weekly frequency, the data appears normal.
2. The data is leptokurtic although temporal aggregation reduces the excess kurtosis.

3. Seasonal patterns corresponding to the hour of the day, the day of the week and the presence
of traders in the three major geographical trading zones can be observed for returns and
particularly for volatility. However, Dacorogna et al. (1993, 1996), via a change in the time-
scale based on a business time-scale, transform the data such that seasonality and conditional
heteroskedasticity are eliminated. Their time-scale basically consists on “expanding” periods
of high volatility and “contracting” those of low volatility. The reader is referred to the

references for a detailed discussion.

4. Let the scaling law reported in Miiller et al. (1990) be defined as:

o (%)D (30)

where k is a constant that depends on the FX rate and D = 1/F is the drift exponent.
For a Gaussian random walk, the theoretical value of D = 0.5. However, it is observed that
D =~ 0.58 for the major FX rates. The scaling law holds with a similar value of D for the

volatility.
5. The volatility is decreasingly conditionally heteroskedastic with the frequency of aggregation.

6. Seasonally filtered absolute returns data exhibits long-memory effects, that is, autocorrela-

tions that decay at a slower than exponential rate.

5.2 The Role of Random Time Aggregation

Under common forms of market efficiency, it is natural to assume that the price process follows

a martingale. We will assume that the driving process for prices is a random walk — a more
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stringent assumption than a martingale in that it does not allow dependence in higher moments.

Accordingly, let

Ty = fr+pr, 1+er e; ~ WN(0,0?), (31)

where the random walk condition would imply p = 1 and f; = 0, a deterministic, possibly time
varying drift which is useful to accommodate for the fact that prices might grow over time.
Consider a simple scenario in which the frequency of aggregation is deterministic and cyclical,
ie, k= ki, ko, ....kj, k1,ko,...,kj,.... This is a convenient way to capture the seasonal levels of
activity in different hours, or days of the week and serves to illustrate some important results. The
(point-in-time) aggregated process resulting from (31) and the frequency of aggregation described

above is therefore a time-varying seasonal AR(1):

k 2
X = pPUx—1 g ug ~ (0,07 4), (32)
k: 2
X1 = POt ur g ~ (0,07 449),
) — ki ) ; ) 0. 02
Xppj—1 = P Xeqpj—2 + Ugpj—1 Uppj—1 ~ ( a”u,t+j—1)a
=k ) ) ; 0.2
Xtpj = P K1 T Uty Uryj ~ (0,0%4),

where the errors are uncorrelated, (73 tHi—1) = (1+p2+... +p2(ki_1))(r§, i=1,...,7, and t is mea-
sured in hours or days. Further aggregation by point-in-time sampling with k = Zle ki, Z?Zl ki, ...,

yields the constant parameter AR(1) process
XT = p%xT_l +erp er ~ WN(0,0?), (33)

with 02 = Zf;& P20 b 0%+ i» ko = 0. Time (T') is measured in days or weeks.
Most of the properties described in the previous subsection are referred to the first differ-

ences of the variables, so that we also derive their generating mechanism. From (32), after some
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rearrangements, we get:

pFz —1 pFz —1 k
AXt_H = pkl — 1p lAXt +ut+1 — (pkl — 1p b — P 2+ 1) U, (34)
Axypo = Zkz — 1Pk2AXt+1 + Uy — (Zkz — 1pk2 —pFe 4 1) Upt1,

that is, a time-varying seasonal ARMA (1,1) process, except for p = 1 (the model collapses to a

random walk with time-varying variance). Instead, from (33), it simply becomes:

Axp = pTCAXTA + Aer. (35)

Consider the stylized facts from the previous subsection in light of this simple example.

1. Non normality of Ax; and normality of Axy is coherent with the fact that u; is a weighted

sum of a smaller number of original errors (e,) than e;. The time-varying nature of (34) can
also contribute to the generation of outliers, that in turn can determine the leptokurtosis in

the distribution of Ax;.

. (34) can also explain why the value of D in (30) is not 0.5: x; is not a pure Gaussian random
walk. It is more difficult to determine theoretically whether (34) can generate a value of D
close to the empirical value 0.59. We will provide more evidence on this in the simulation

experiment of the next subsection.

. The long memory of Ax; can be a spurious finding due to the assumption of a constant
generating mechanism, even if particular patterns of aggregation can generate considerable

persistence in the series.

. The presence of seasonality in the behavior of Ax; is evident from (34). (35) illustrates that

this feature can disappear when further aggregating the data.

. Conditional heteroskedasticity can also easily emerge when a constant parameter model is

used instead of (34). That it disappears with temporal aggregation is a well known result,
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see e.g. Diebold (1988), but (35) provides a further reason for this to be the case, i.e., the

aggregated model is no longer time-varying.

6. The time-scale transformations by Dacorogna et al. (1993, 1996) can be interpreted in
our framework as a clever attempt to homogenize the aggregation frequencies, i.e., from
k = ki,ko, ... kj ki, ko, Ky, .. to k= 7%, E, ..., by redistributing observations from more
active to less active periods. This changes the ¢ time scale, which can be still measured in
standard units of time, and makes the parameters of the Ax; process stable over time. This
transformation attenuates several of the mentioned peculiar characteristics of intra daily or

intra weekly exchange rates.

5.3 A Monte Carlo Study

This subsection analyzes the claims presented above and illustrates some of the theoretical results
just derived via Monte-Carlo simulations. The D.G.P. we consider for the price series is the

following operational time AR(1) model:

Tr = Wby + PpTr_1+ &7

where ¢, ~ N(0,1). Under a strong version of market efficiency, it is natural to experiment with
1 =0 and p = 1. However, we also consider p = 0.000005 and p = 0.99 to study the consequences
of slight deviations from the random walk ideal. We simulated series of 50,000 observations in
length. The first 100 observations of each series are disregarded to avoid initialization problems.

The operational time D.G.P. is aggregated three different ways:

1. Deterministic, seasonal, irregularly spaced aggregation: Following the discussion of
the previous subsection, let the auxiliary variable s, = 1 if observation 7 is recorded, 0 oth-
erwise. Then, the following deterministic sequence determines the point-in-time aggregation

scheme:
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sr =1 if re{l,2,3;26,27,28;36,37;41,42; 56,57, 58; 76, 77}
sr =0 otherwise

and $,4100n = 8 for r € {1,2,...,100} and n € {1,2,...}. In other words, the aggregation

scheme repeats itself in cycles of 100 observations. Within the cycle there are periods of

high frequency of aggregation and low frequency of aggregation that mimic the intensity

in trading typical of the FX market. Note that from the sequence {s, }i&?oo it is straight
forward to obtain the sequence {k;}7_,. For example, the first few terms are: 1, 1, 23, 1, 1,

8, ...

2. Deterministic, fixed interval aggregation: This consists on a simple sampling scheme

with k; = 100 V¢ or in terms of the auxiliary variable, s, = 1if r € {100, 200, ...}, 0 otherwise.

3. Random, seasonal, irregularly spaced aggregation: Let h, = P(s, = 1) which can
be interpreted as a discrete time hazard.®  Accordingly, the expected duration between
recorded observations is ¢, = h7!. Think of the underlying “innovations” for the process
that generates s. as being an i.i.d. sequence of continuous-valued logistic variables denoted

{v;}. Further, suppose there exists a latent process {\;} such that:
P(sh =1)=P(v, > \;) = (1+eM)7!

Notice, A; = log(1; —1). Hamilton and Jorda (1999) show that one can view this mechanism
as a discrete-time approximation that generates a frequency of aggregation that is Poisson
distributed. For the sake of comparability, we choose A\, to reproduce the same seasonal

pattern as in bullet point 1 above but in random time. Accordingly:
Ar =A—15\s,

where A = log(15 — 1), since 15 is the average duration between non-consecutive records

described by the deterministic, irregular aggregation scheme introduced above. In other

® We use the notation s!. to distinguish it from its deterministic counterpart introduced in bullet point 1 above.
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words, the probability of an observation being recorded is usually 0.07 except when s, = 1

in which case this probability jumps to 0.8.

Tables 1-4 report the following information for the original and aggregated data: (1) the coef-
ficient of kurtosis of the simulated price series; (2) the p-value of the null hypothesis of normality
from the Jarque-Bera statistic; (3) the estimated coefficient D of the scaling law; (4) the presence
of ARCH in absolute returns (|r;| in (28)) ; and (5) the presence of ARCH in volatility for averages

over 5 periods (v; in (29)).

Table 1 - Operational Time Data

Kurtosis Jarque-Bera D ARCH |r,] ARCH v,

p=1pu=0 3.0041 0.4283 0.5002 No No
p=1u=5x10"° 3.0019 0.5797 0.5044 No No
p=09% =0 3.0108 0.4213 0.4842 No No
p=099u=5x10"° 2.9985 0.4214 0.4832 No No

Table 2 - Deterministic, Seasonal, Irregularly Spaced Aggregated Data

Kurtosis Jarque-Bera D ARCH |r;] ARCH v,

p=Lu=0 7.7214 0.0000 0.5506 Yes Yes
p=1;u=5x10"6 7.7385 0.0000 0.5716 Yes Yes
p=099%u=0 7.3839 0.0000 0.4464 Yes Yes
p=099u=>5x10"6 7.4858 0.0000 0.4483 Yes Yes
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Table 3 - Deterministic, Fixed Interval, Aggregated Data

Kurtosis Jarque-Bera D ARCH |r;] ARCH v,

p=1pu=0 2.9406 0.5149 0.5105 No No
p=1;u=5x10"6 2.9371 0.5457 0.7246 No No
p=099% u=0 2.8761 0.5000 0.0467 Yes* No
p=099u=5x10"% 29657 0.5414 0.0502 Yes* No

* Barely significant at the conventional 5% level.

Table 4 - Random, Seasonal, Irregularly Spaced, Aggregated Data

Kurtosis Jarque-Bera D ARCH |r,] ARCH v,

p=Lpu=0 6.4773 0.0000 0.5351 Yes No
p=1u=5x10"° 6.4035 0.0000 0.5531 Yes No
p=09% =0 6.1091 0.0000 0.4454 Yes No
p=099u=5x10"° 6.2055 0.0000 0.4462 Yes Yes*

* Barely significant at the conventional 5% level.

Several patterns are worth noting from the tables. Both forms of irregularly spaced data
generate fat tailed distributions away from the normal with excess kurtosis and ARCH in absolute
returns. The coefficient for D is very close to the analytical level of 0.5 for the original and the
regularly spaced data but it takes on values of approximately 0.55 for irregularly spaced data
for both cases of p = 1. This is close to the 0.58 reported for most FX series. In addition, the
seasonal patterns induced through the deterministic, irregularly spaced aggregation, are readily
apparent in the shape of the autocorrelation function of absolute returns but not for the returns
series per se, in a manner that is also characteristic of FX markets. This simple experiment thus
demonstrates that time aggregation may be behind many of the stylized facts common to high

frequency FX data.
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6 Time Aggregation and Structural Inference

The previous section illustrated that many of the stylized properties of the returns in FX markets
can be explained as the outcome of time scale transformations, that is, as an artifact of the irregular
arrival of price quotes in time rather than as an intrinsic property of returns. Another important
element in most financial markets concerns the microstructure of the dealer’s preferred inventory
levels. This section presents a simplified version of such inventory control problems to illustrate the
potential pitfalls of structural inference when the practitioner assumes fixed interval aggregation
(which includes the no-aggregation case k = 1 as a particular class) when the aggregation is over
stochastic intervals of time.

Consider the following stock adjustment model. Let z, describe the disequilibrium existing at
time 7, that is, the distance between the desired and the actual levels of inventories. Under rather
general assumptions, Jordd (1999) shows that the dynamics of z; are described by the first order

autoregressive process
zr =(1—a)z,_1+¢er er ~ N(0,0%); ac (0,1] (36)

The assumption of normality is not fundamental but simplifies the derivation of the maximum
likelihood estimator (MLE) below.

The interpretation of the model is fairly intuitive. Let the operational time-scale T denote the
timing with which the dealer decides to adjust the disequilibrium variable z. The disequilibrium
existing at the decision node 7 is the sum of two components: (1 — )z, _; indicates the amount
of disequilibrium left unadjusted at the decision node 7 — 1, and ¢, denotes a stochastic dise-
quilibrium component that is accumulated since the previous decision node, 7 — 1. When a = 1
the model becomes an (s,.5) type model, while values of « between 0 and 1 are indicative of
linear-quadratic inventory adjustment costs. Accordingly, « plays a critical role in describing the
“speed of adjustment” and constitutes the structural parameter of interest.

Next, assume that the inventory position z is not recorded at each decision node but rather at
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regular intervals of time. In this context, k; denotes the number of decision nodes per sampling
interval [¢t,¢ — 1). Under general conditions, Jordd (1999) shows that k; is best described as a
stochastic Poisson point process.

In the language of this paper, the process z, is said to be time-scale transformed with fre-
quency of aggregation k; under a point-in-time sampling scheme. According to proposition 1, the

observational-time process, z;, is described by,

2t = N(j)t_'—a(j)tut utNN(O’]-); j:172a"°aN
p(ie = (1—af (37)
o(§); = (1+(17a)2+...+(1704)2j)(72202—1_(1_a)2j+1 E(TJQ'

(07

Following equation (21), the joint likelihood for this problem becomes,

- — T —(z — (1 —a)iz_4)?
flze ke = 3| 241, ki) = \/ﬁglefp{ (2 (202 Vzi) } (38)
J J

Summing up over all possible values of j to obtain the unconditional density of z;, the joint
likelihood can be written as in (23). Suppose the m; were constant (for expositional convenience)

and let I; denote the information set at time t, that is, {;t, Et} Then, it is easy to check that,
E(z|li—1) = (m(1—a) + m(1—a)* + ...+ 7n(1—a)™) 21 (39)

Now, consider that one correctly understands that the observable process z; is the outcome of
fixed-interval sampling of a process that evolves in economic time. However, rather than assuming
that k; is stochastic, traditional time-aggregation imposes that economic time also evolves in fixed

intervals of time, or in our notation, k; = k Vt. Thus, z is incorrectly perceived to be,

z = Gzt vy ~ N(0,€?)

52 _ 11— (1 7 a)QE—*_l 0,2 (40)
a

= 1-a)f
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with unconditional density,

F(alli1.0) e ga) } ' (41)

1
= ex
Vame { 262
Estimation of the structural parameters would then proceed under traditional MLE techniques

or more simply by least squares on (40). Both methods yield estimates of % and E from which,

unconditionally with respect to k;, we obtain,
E(z|li1) = ¢z 1 = (m (1 —a) + ma(1 — a)?+ ..+ (1l — )Mz,

Naturally, the 7; and the « cannot be separately identified, even if one were to know that E(k;) =
k. Assuming fixed interval time aggregation, it is common to thus set b= (1-— a)E and then
calculate @ from this expression. However, this estimate of the speed of adjustment is obviously
downward biased. Consider a numerical example. Let N = 4, with my =714 = 0.5, mo =73 =0
and thus k& = 2.5. Suppose a = 0.75, then Zf;l 7i(1 — a)® = 0.13, or in other words, % ~ 0.13.
Let @ be incorrectly computed from 1 — %W = 0.56. Compare this to a = 0.75 , the original
assumption. The estimated “speed of adjustment” parameter is almost 1/4 lower.

In general, a time-scale transformed process x; where k; is stochastic will yield a model like in

equations (37) and (38), that is,
xe = p(j)e +o(er e~ WN(0,1)

Estimation of a constant parameter model will yield estimates of E(x;|I;—1) unconditionally with

respect to k; where it is important to note that

N

N
D ominli)e # | D iw
j=1

j=1

7 The Bid-Ask Spread

This section illustrates with an empirical example some of the techniques developed in previous

sections. In particular, we use high frequency data on market makers’ FX, USD - DM quotes. The
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data corresponds to the HFDF-93 data set available from Olsen & Associates, originally released
to researchers for the 1993 High Frequency Data in Finance Conference in 1993. Although most
of the research done on this data has focused on forecasting, here we explore the dynamics of the
bid-ask spread as a function of information flows. The explanations for the width of the spread
vary widely (see O’Hara, 1995), ranging from “market failure” and “market power” explanations
(less likely to apply in the FX market) to more transactions, cost-related “dealer risk-aversion”
and “gravitational pull” theories. The simple approach we take here is to investigate the dynamics
of the bid-ask spread as a function of information flows measured by the level of activity in the
market and cast the problem as a time aggregation exercise.

The FX market is a 24 hours global market although the activity pattern throughout the day
is dominated by three major trading centers: East Asia, with Tokyo as the major trading center;
Europe, with London as the major trading center; and America, with New York as the major
trading center. Figure 1 displays the activity level in a regular business day as the number of
quotes per half hour interval. The seasonal pattern presented is calculated non-parametrically
with a set of 48 time-of-day dummies. Figure 2 illustrates the weekly seasonal pattern in activity
by depicting a sample week of raw data.

The original data set spans one year beginning October 1, 1992 and ending September 30,
1993, approximately 1.5 million observations. The data has a two second granularity and it is
pre-filtered for possible coding errors and outliers at the source (approximately 0.36% of the data
is therefore lost). The subsample that we consider contains 3500 observations of half hour intervals
(approximately 300,000 ticks) constructed by counting the number of quotes in half hour intervals
throughout the day. For each individual half-hour observation we then record the corresponding
bid-ask spread. A comprehensive survey of the stylized statistical properties of the data can be
found in Guillaume et al. (1995). Here, we report only some of the salient features of the data.

The average intensity is approximately 120 quotes/half hour during regular business days

although during busy periods this intensity can reach 250 quotes/half hour. The activity level
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significantly drops over the weekend although not completely. The bid-ask spread displays a
similar seasonal pattern, with weekends exhibiting larger spreads (0.00110) relative to regular
business days (0.00083).

Let k; denote the number of quotes per half hour interval (a count variable which we have
termed at times as the aggregation frequency) and let x; denote the bid-ask spread that corre-
sponds to the half hour interval ¢. Thus, the problem consists on estimating the joint density of

k; and x; which can be decomposed without loss of generality as in equation (19) in section 4.1,

e~ M W

P(k, = j| Ty, ki—1,6h) = 7

and

g(x| Ky :j,ét—l,kt—h%) (42)

More specifically, the ACI model described in section 4 can be used to express \; as
log(A) = seasonals + 0(L)log(Ai—1) + U(L)ky—1 + TI(L)xy—1 (43)

where the seasonals are a collection of dummies for time-of-day effects, day-of-week effects, and

holiday effects. The corresponding lag polynomials are

o(L) = (01 + ..+ 97L7) (1 _ gdL48) 1- ewL336) (44)
U(L) = (14 +PrL7) (1= aL®®) (1 — 1, L3%)
() = (7T1+...—|—7T7L7)

that is, the dynamic formulation of the intensity allows for deterministic as well as multiplicative,
stochastic, time-of-day and day-of-week seasonal effects. We include up to 7 lags to capture some
of the periodicity in the “lunch” and other breaks that recur across the trading areas. The model

for x; is the following:

xy = seasonals(1+ Fo(kt)) + O(L, ky)ap—1 + &4
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with

(L, ke) = ¢1(1+ Fy(ke)) + do(1 + Fo(ke)) L + bs(1 + Fa(ke))L? (45)

where Fj;(k;) for ¢ = 0,1,2,3 is a non-parametric estimate based on a sixth order polynomial
designed to capture the effects of the intensity level on the short-run dynamics of the spread
variable. There are at least two ways in which the formulation of the model in (45) may appear
incomplete. One is that we do not consider multiplicative, stochastic seasonal effects. The second
is that we do not specify the variance in a dynamic way. However, to avoid distractions from the
central issue that concerns this exercise, we opted for a more parsimonious model. The residuals
of the fitted model did not show any evidence of ARCH effects which indicates that modelling the
variance may not be central to learning about the short-run dynamics of the bid-ask spread.
Table 5 below compares the estimates of a simple Poisson count regression model exclusively

based on the seasonal dummies against the ACI model in equations (42) and (43).

Table 5. Poisson and ACI Estimates

Poisson ACI

Log-Likelihood -28562.37 -18145.52
# parameters 55 80
AIC 19.729 12.565
SIC 19.842 12.730
Ljung-Box Q5 1608 99
Ljung-Box Q19 1903 128
Ljung-Box Qs 2398 372

LR test ACI vs. Poisson (p-value) 0.000

These results are rather encouraging. The improvement on the overall fit of the data is quite

remarkable by any measure. The Ljung-Box statistics reveal that the ACI model dramatically
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reduces the amount of left-over serial correlation in the residuals although there seems to be room
left for improvement. The data has a mean of 87.33 and a standard deviation of 88.31 which
suggests that the existing minimal amount of overdispersion is not a concern and that the Poisson
assumption is a reasonable one for these data.

The second part of the exercise analyses the dynamics of the spread as a function of the
level of activity. Figure 3 depicts the estimated autoregressive parameters as a function of the
intensity. In the limit, as k; — 0 then ¢y — 1,3 — 0, and ¢3 — 0 as we should expect when the
sampling frequency is so high as to record observations were no activity has elapsed. However,
as the aggregation frequency becomes higher, the parameter estimates display a fair amount of
non-monotonic variation, ranging from high persistence to negative correlation and back into
higher levels of persistence. Figure 4 reports the fluctuation in the average, seasonally-adjusted
residual spread as a function of the intensity. After accounting for the intra-day trading patterns,
the spread exhibits two well defined peaks: One at low levels of activity and another when the
intensity reaches 140 quotes per half-hour (recall that the average trading intensity in a regular
business day is around 120 quotes per half hour). These results highlight the enormous amount
of variability in the dynamic behavior of the spread when one accounts for the activity level in
the market, a result that is consistent with the view that different intensity levels are related to

different information flows, thus affecting the spread.

8 Conclusions

Time scale transformations are quite common in econometrics since there is often a mismatch
between the decision time of agents and the data collecting time of statistical agencies, the former
is usually substantially finer than the latter. FEven when the original disaggregated data are
available, the econometrician often chooses to analyze aggregated data. This mismatch poses
serious problems for estimation of structural parameters, testing of hypotheses of interest, and

forecasting with standard time series models. The effects can be even more dramatic when the
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frequency of aggregation varies over time, perhaps because it is itself a random variable.

In this paper we have highlighted these problems, but also suggested solutions by explicitly
keeping into account the presence of time scale transformations. We have developed maximum
likelihood techniques for estimation and inference on the original parameters of interest, suggested
new models for the aggregated process, such as the autoregressive conditional intensity model, and
proposed alternative explanations for adopting already existing nonlinear specifications, such as
the Markov switching model. Our empirical investigation of the USD-DM FX market illustrated
how some of these techniques work in practice.

An interesting topic for further research is testing for time-scale transformations. In the case
of misspecification tests, the aim is to check the assumptions underlying a constant parameter
linear dynamic model that should be violated in the presence of time-scale transformations. Of
course, they could be not satisfied for other reasons, such as intrinsic non-linearities or structural
breaks, so that rejection of the null hypotheses should not be interpreted as direct evidence
in favor of the presence of time-scale transformations. Examples include tests for parameter
constancy, nonlinearity, autocorrelation, heteroskedasticity, normality, and ARCH effects. Despite
these techniques, however, time aggregation problems and their solutions will heavily depend on
the practitioner’s knowledge of the economic problem that provides the backdrop for how the data

was generated.
9 Appendix

Proof. Proposition 1: First we derive the AR component of x from that of x given that the
aggregation scheme is point-in-time. For each period ¢, we want to find a polynomial, B;(Z), such

that

Bi(Z)®(Z) =1 — i1 2" — cozBethe) ¢, zRetkitedhepn) — 0y(L) (46)
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Without placing any restriction on B;(Z), the coefficient on the i*" power of the lagged polynomial
corresponding to the product B;(Z)®(Z) coincides with the i*" element of the vector T';3; + ;.
In order for (46) to hold, it must be that I';3; +v; = 0 from where 3, = —(I';)~'4;. Notice
that the columns of I'} are linearly independent, so the matrix is full rank and its inverse always
exists. The coefficients of C;(L) are the k;_; 1 rows of the vector —I'4(I';) 1y; +v, for j = 1,...,p.
Therefore, in general, the order of C;(L) (the AR component of x) is at most p, the same as the
order of ®(Z) (the AR component of z).

Next, we derive the MA component. Define the following variables

G = Bl2)Y(Z)ew,+q) = Mi(Z)eb,+q) (47)
G-1 = Bia(2D)¥(2)ew, +q) =Mi-1(Z2)ep, 1 +q)
such that
bi+q
cov(Cy, G) = Z W?,i(TQ (48)
1=0
(be+q—1)
COU(Cta thj) = _Trt,lUQ =+ Z W(t—j),i(rQﬂ-t,(l-i-i) for j = ]., Tt
i=1
cov(Giig) = 0 forj >y

where in general r; = p — 1 (lower/higher values can be obtained when p — ¢ > ki/q — p > ky).
This is the autocorrelation function of a time-varying MA process, which has to be equal to that
of the MA component in the generating mechanism of x. Therefore, the coefficients of the latter
have to satisfy (9). The MA coefficients from the corresponding autocovariance function can be
obtained through a Kalman filter approach (see Hamilton (1994), p. 391), or using the method
in Tunnicliffe Wilson (1972). In addition, it is easy to show that v, is the residual of a projection

of (; on v4_1,v4_9,v;_3,... This ensures that the error terms from the observational time-scale
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process are serially uncorrelated. The v; are random linear combinations of independently and
identically distributed WN(0, ) random variables ¢,. Il

Proof. Proposition 2: This time, we want to determine the polynomial B;(Z) such that

B(2)®(Z) =
wkz,(Z) - dtJZk[’wkt—l(Z) - dt,QZ(krFktil)wkt—z (Z) -

—dypZ kR, (2)

where wy, = (Zgi};l) Zi) /ke so that By(Z)®(Z)x, = Dy(L)x;. For such a restriction to be
satisfied, it must be that T'; 3, +~; = A\; which requires 8; = (I';) = (A\; —~;). This in turn implies
that T;(T}) 2 (A\f — v) + v = Ar. Now we need to determine the coefficients of D;(L). Given the
expressions for A\; and A} this can be accomplished by solving the linear system of p equations
which correspond to the k;j11 rows of T4 (I';) ™ (A\f — ;) +7% = M, j = 1,..,p. The proof for the

coefficients of the MA component is similar to that of Proposition 1. B

The observational time Markov Switching model

The four conditional densities corresponding to each of the four states are given by

-~ 1 — (Xt — prxe—1 — paxi—2)’
x¢| X¢e—1,8¢ = 1,0)= ex
FOxe| xe—1,8¢ ) Noro p{ 207
2
= 1 — (¢ — (pT + pa)xi 1 — -
flxe| Xe—1,80 = 2,0) = exp (Xt (p1 ZZ)Xt 12 P1P2X¢ 2)
V2mo2(1+ pi) 202(1 + p1)
J— _ p§+92 P2 P2 2
- 1 X¢ o ) X1 + o1 Xt—2 + o1 Ut—1
fxe| x¢m1,80 = 3,0) = exp
V2o, 202
- 1
fOe| x¢-1,8¢ = 4,0)

CV2r2(L+ 4 D)
2
{ — (%t — (0} + 2p2)xt—1 + P3x1—2 — pPRus_1) }
exp

202(1 4 p§ + p3)
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Let 7; denote a 4 x 1 vector that collects the above four densities. Collect the conditional
probabilities P(s; = l|I;;0) for { =1,2,3,4 in a 4 x 1 vector denoted Zﬂt. Further, denote Et_H‘t as
a 4 x 1 vector whose ['"* element represents P(s;y1 = [|I;,0). Hamilton (1994) shows that optimal
inference and forecasts for each date ¢ in the sample can be found by iterating on the following

pair of equations

~ (gt\t—l © 77t)
ft|t = 7=~ (A2)
v (§t|t71 © 77t)
Zt+1|t =P Zt|t (A3)

where 1’ is a 4 x 1 vector of ones and the symbol ® denotes element by element multiplication.
Given a starting value, 21\0 and an assumed value for the population parameter 6, one can iterate
on (49) and (49) for ¢t = 2,3, ..., T to calculate the values of Et‘t and gt+1|t for each date ¢ in the
sample.

Furthermore, Hamilton (1994) shows that the log-likelihood for the observed data evaluated
at the value 6 that was used to perform the iterations, can also be calculated as a by-product of

this algorithm from

T
L(0) = logf(xe|I;-1,0)

t=2

where
f(xe|Ty—1,0) =1 (Et\tfl © 77t) (A4)

For a given 0, the value of the log-likelihood implied by that value of 8 is given by (49). The
value of 6 that maximizes the log-likelihood can be maximized numerically. Further details on the
estimation algorithm just described, inference on the transition probabilities p;;, and forecasting

can be found in Hamilton (1994).
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Figure 1

Seasonal Intraday Pattern
Diurnal Dummies
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Figure 2

A Typical Week of Trading
Exchange Rate Quotes by 30 Minute Interval-Counts
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Figure 3

Nonparametric Estimates of the Autoregressive Parameters of the
Spread Model as a Function of the Intensity
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Figure 4

Nonparametric Estimate of the Mean Spread as a Function
of the Intensity of Quote Arrivals
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