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Abstract

A common …nding in the empirical literature on the validity of purchasing
power parity (PPP) is that it holds when tested for in panel data, but not in
univariate (i.e. country speci…c) analysis. The usual explanation for this mis-
match is that panel tests for unit roots and cointegration are more powerful
than their univariate counterparts. In this paper we suggest an alternative ex-
planation for the mismatch. More generally, we warn against the use of panel
methods for testing for unit roots in macroeconomic time series. Existing
panel methods assume that cross-unit cointegrating or long-run relationships,
that tie the units of the panel together, are not present. However, using
empirical examples on PPP for a panel of OECD countries, we show that
this assumption is very likely to be violated. Simulations of the properties
of panel unit root tests in the presence of long-run cross-unit relationships
are then presented to demonstrate the serious cost of assuming away such
relationships. The empirical size of the tests is substantially higher than the
nominal level, so that the null hypothesis of a unit root is rejected very often,
even if correct.
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1 Introduction

The last few years have seen a veritable explosion of papers on testing for purchasing
power parity (PPP) using panels of macroeconomic data. A selection would include
inter alia Mark (1995), Frankel and Rose (1995), Jorion and Sweeney (1996), Oh
(1996), Rogo¤ (1996), O’Connell (1998), Papell (1997), and more recently Bayoumi
and MacDonald (1999), Pedroni (1999a) and the papers by Papell and co-authors
given below.

The real dollar (or Deutsche mark) exchange rate for country i is constructed as:

qit = eit + p¤t ¡ pit;

where qit is the logarithm of the real exchange rate, p¤t is the logarithm of the US
(or German) CPI and pt is the logarithm of the CPI for country i. The strong form
of the test for PPP consists of testing the null of a unit root in the qit series, either
individually (i.e. country by country) or using panel methods, discussed brie‡y in
the next section.

More generally, a weak form of the hypothesis may be tested by constructing the
series eqit, where

eqit = eit + ®p¤t ¡ ¯pit:

An acceptance of a unit root in the series eqit is taken to be a rejection of the weak
form of the PPP hypothesis. The ® and ¯ can be either taken to be known a priori
or derived from single-equation- or system-cointegration methods, since all three
component series of eqit are assumed to be I(1). The test of the weak form in panels
may thus be seen to be tests for cointegration in panel data.

Among the large number of papers available in the literature, special attention
should be drawn to the work of Papell and his co-authors who have investigated and
drawn attention to a large number of issues that are relevant to a proper consider-
ation of the evidence derived from panel tests.

The starting-o¤ point for the use of panel unit root and panel cointegration tests
is the presumption that univariate (i.e country-speci…c) tests have low power. Within
this framework, Papell (2000) for example has noted that the use of panel tests does
not always rescue the various forms of the PPP hypothesis. In particular, Papell and
Theodoridis (2000) …nd that the choice of the numeraire currency is important in
determining rejections or acceptance of a unit root in the real exchange rate series.
Using a recursive estimation exercise, they show that the choice of the Deutsche
mark as the numeraire currency leads to rejections of the unit root hypothesis for
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sample sizes of steadily increasing lengths (with a …xed starting point) much more
strongly than when the dollar is taken to be the numeraire.

Papell (2000) argues in favour of the use of methods analogous to those em-
ployed by Perron (1989) in his much-cited paper that introduced the possibility of
deterministic breaks in tests for unit roots. Papell showed that by modelling the
appreciation and then depreciation of the dollar in the 1980’s as shifts in the deter-
ministic components of the series, stronger rejections of the unit root hypothesis in
real exchange rate series are obtained. While the experience with such models in
a purely time-series context does not make this a particularly surprising …nding, it
nevertheless alerts us to some of the subtleties that need to be tackled in determining
whether or not weak- or strong-form PPP holds in the data.

The origin of our research in this paper is the evidence presented in Banerjee,
Marcellino, and Osbat (2000) (BMO). There we investigated the properties of tests
of cointegration in panels of data, particularly those proposed by Groen and Kleiber-
gen (1999) and Larsson and Lyhagen (1999), and showed that not taking account
of the cointegrating relationships across the units of the panel would lead to serious
di¢culties in inference about cointegration within the units of a panel. These tests
are extensions to panels of the Johansen approach to estimating cointegrating rank
among time series, and the main restriction imposed is that there are no cointe-
grating relationships among the variables across the units (typically countries) of
the panel. We showed that when this restriction is valid, the tests have the correct
size and high power to detect cointegration. If the restriction is invalid however,
the tests for cointegration tend to be grossly over-sized especially as T increases,
so that the null of no cointegration is rejected too often in relation to the nominal
con…dence level (or size) of the test.1

In the context of the equations above, the panel approach (both to testing for
unit roots and cointegration) as currently advocated, rules out the existence, for
example, of cointegrating relationships between eit and ejt or pit and pjt, for all
i 6= j. In this paper we demonstrate the consequences of the violation of this
assumption by looking at the properties of the panel unit root tests commonly used
to test for stationarity of the real exchange rate. We show that over-sizing is a major
problem also here. While the analysis in BMO is therefore more directly relevant for
the consideration of the weak form of PPP, our main aim here is to explore further
the arguments within the context of the strong form of the PPP hypothesis:

1This over-sizing property of panel unit root tests has also been discussed by Engel (2000)
and O’Connell (1998) in slightly di¤erent contexts. Engel’s paper does not deal with panels
while O’Connell shows the e¤ect of short-run linkages among the units (for example through the
non-zero covariances of the errors across the units) on unit root tests.
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In the next section, we provide a brief overview of three of the most commonly
used tests for unit roots in panels. These are the Levin and Lin (1992) and Levin and
Lin (1993) (LL), Im, Pesaran, and Shin (1997) (IPS) and Maddala and Wu (1999
Special Issue) (MW) tests. More comprehensive summaries are provided inter alia
by Baltagi and Kao (2000) and Banerjee (1999), and readers not interested in tech-
nical details may skip this section. Section 3 provides a set of motivating empirical
examples demonstrating that while unit-by-unit ADF tests typically tend to accept
the null of a unit root for the real exchange rate, panel unit root tests often reject
this null. Such rejections must however be treated with a great deal of caution since
there is strong evidence, detailed here, of cross-unit or cross-country cointegrating
relationships. Therefore, in the light of our discussion above, these rejections instead
of being attributed to the higher power of panel unit root tests may be attributed
simply to the over-sizing that is present when cointegrating relationships link the
units of the panel together. This claim is demonstrated in more detail in section 4
with a set of Monte Carlo experiments that analyze the size and power properties
of the LL, IPS and MW tests in a series of cases. The cases studied include notably
the presence or absence of cross-unit cointegration and the presence or absence of
weak exogeneity of some of the variables. Section 5 o¤ers conclusions and closing
remarks.

2 Testing for Unit Roots in Dynamic Panels

2.1 Levin and Lin (1992, 1993)

The model adopted by Levin and Lin allows for …xed e¤ects and unit-speci…c time
trends in addition to common time e¤ects (which may in practice be concentrated
out of the equation) and is given by

¢yit = ®i + ±it+ µt + ½iyit¡1 + ³ it; i = 1; 2; :N; t = 1; 2; :::; T: (1)

The null hypothesis of interest is H0: ½i = 0 for all i against the alternative HA:
½i = ½ < 0 for all i.

Levin and Lin (1992) derive the asymptotic distributions of the panel estimator
of ½ under di¤erent assumptions on the existence of …xed e¤ects or heterogeneous
time trends. For example, if ³ it » IID(0; ¾2) for …xed i; the errors are also assumed
to be independent across the units of the sample, ®i = ±i = 0 for all i and there
are no common time e¤ects, then the asymptotic distributions of the ordinary least
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squares (OLS) pooled panel estimator and associated t-statistic are given by

T
p
Nb½ =) N(0; 2); T;N ! 1 (2)

t½=0 =) N(0; 1):

Note that, compared to unit-by-unit Dickey-Fuller tests, the LL statistics have
(a) a faster rate of convergence to their asymptotic distributions and (b) the limiting
distributions are normal.

In a slightly more general model, where ®i 6= 0; ±i = 0 in (1),

T
p
Nb½+ 3

p
N =) N(0; 10:2);

p
N=T ! 0; T;N ! 1 (3)

p
1:25t½=0 +

p
1:875N =) N(0; 1);

p
N=T ! 0; T;N ! 1:

The null hypothesis for this second model is given by H0 : ½ = 0; ®i = 0 for all i
against the alternative HA : ½ < 0; ®i unrestricted.

As a further generalisation, let us now consider the second of the two models dis-
cussed above with the error process following a stationary invertible ARMA process
for each unit but still being distributed independently across units. Thus,

³ it =
1X

j=0

µij³ it¡j + "it; t = 1; 2; :::T: (4)

A multi-step procedure is prescribed by Levin and Lin (1993) for this case. The
starting point is the application of augmented Dickey-Fuller (ADF) test to each
individual series. Thus, the regression

¢yit = ®i + ½iyit¡1 +
piX

j=1

µij¢yit¡j + "it; i = 1; 2; :N; t = 1; 2; :::T (5)

is estimated (for each i) by regressing …rst ¢yit and then yit¡1 on the remaining
regressors in the ADF regression above, providing the residuals beit and bVit¡1 respec-
tively. Then the regression of beit on bVit¡1

beit = ½ibVit¡1 + "it (6)

is estimated to derive b½i from the i-th cross-section. The following expressions are
next required:
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b¾2ei = (T ¡ pi ¡ 1)¡1
TX

t=pi+2

(beit ¡ b½ibVit¡1)2 (7)

eeit = beit=b¾ei
eVit¡1 = bVit¡1=b¾ei

b¾2yi = (T ¡ 1)¡1
TX

t=2

¢y2it + 2
KX

L=1

wKL

Ã
(T ¡ 1)¡1

TX

t=L+2

¢yit¢yit¡L)

!2

bSNT = N¡1
NX

i=1

(b¾yi=b¾ei);

where K is the lag truncation parameter and wKL = (L=(K + 1)).
The …nal step is to estimate the panel regression (making use of all i and t)

eeit = ½eVit¡1 + e"it (8)

and compute the t-statistic

t½=0 =
b½

RSE(b½) ; (9)

where

RSE(b½) = b¾"
"
NX

i=1

TX

t=pi+2

eV 2
it¡1

#¡1=2
(10)

b¾2" = (N eT )¡1
NX

i=1

TX

t=pi+2

(eeit ¡ b½eVit¡1)2

p = N¡1
NX

i=1

pi; eT = (T ¡ p¡ 1):

The Levin and Lin statistic is an adjusted version of the t-statistic above and is
given by

t¤½ =
t½=0 ¡N eT bSNTb¾¡2" RSE(b½)e¹eT

¾ eT
; (11)

where e¹eT and , ¾ eT are mean and standard deviation adjustment terms which are
computed by Monte Carlo simulation and tabulated in their paper for three separate
speci…cations of the deterministic terms above.

The main result of the Levin and Lin analysis is that under the null hypothesis
that ½ = 0, the panel test statistic t¤½ has the property that

t¤½ =) N(0; 1); T;N ! 1; (12)

5



provided the ADF lag order pmax increases at some rate T p where 0 < p · 1=4
and the lag truncation parameter K increases at rate T q where 0 < q < 1. Under
the alternative hypothesis, t¤½ diverges to negative in…nity at rate

p
NT , a property

that can thereby be exploited to construct a consistent one-tailed test of the null
hypothesis against the alternative.

2.2 Im, Pesaran and Shin (1997)

Im, Pesaran, and Shin (1997) extend the Levin and Lin framework to allow for
heterogeneity in the value of ½i under the alternative hypothesis. Let

¢yit = ®i + ½iyit¡1 + ³ it; i = 1; 2; :::; N ; t = 1; 2; :T; (13)

where the errors ³ it are serially autocorrelated with di¤erent serial correlation (and
variance) properties across the units. The null and alternative hypotheses are given
by H0 : ½i = 0 for all i; against the alternative HA : ½i < 0; i = 1; 2; :::;N1; ½i = 0;
i = N1 + 1;N1 + 2; :::N:

Following the critique of Pesaran and Smith (1995) on pooled panel estimators,
such as those used by Levin and Lin (1992) and Levin and Lin (1993), Im, Pesaran,
and Shin (1997) propose a group-mean Lagrange multiplier (LM) statistic. The
ADF regressions

¢yit = ®i + ½iyit¡1 +
piX

j=1

µij¢yit¡j + "it; t = 1; 2; :::T (14)

are estimated for each i and the LM-statistic for testing ½i = 0 is computed. De…ning

LMN;T = N¡1
NX

i=1

LMiT (pi;µi); (15)

where µi = (µ11; µ12; :::µ1pi)0 and LMiT (pi;µi) is the individual LM -statistic for test-
ing ½i = 0, the standardized LM -bar statistic is given by

ªLM =

p
N

n
LMN;T ¡ N¡1 PN

i=1E [LMiT (pi;0 j½i = 0]
o

q
N¡1 PN

i=1 V ar [LMiT (pi;0 j½i = 0]
: (16)

The values of E [LMiT (pi;0 j½i = 0] and V ar [LMiT (pi;0 j½i = 0] are obtainable by
stochastic simulation and are tabulated in their paper using 50,000 replications for
di¤erent values of T and pi’s.

Im, Pesaran, and Shin (1997) show that under H0: ½i = 0 for all i,

ªLM =) N(0; 1) (17)
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as T;N ¡! 1 and N=T ¡! k where k is a …nite positive constant. For the test to
be consistent under the alternative, it is also required that lim N¡!1(Ni=N) = ¸1;
0 < ¸1 · 1. Under this further assumption, ªLM diverges to positive in…nity at
rate T

p
N under the alternative.

Im, Pesaran, and Shin (1997) also propose the use of a group-mean t-bar statistic
given by

ªt =

p
N

n
tN;T ¡ N¡1 PN

i=1E [tiT (pi;0 j½i = 0]
o

q
N¡1 PN

i=1 V ar [tiT (pi;0 j½i = 0]
(18)

where,

tN;T = N¡1
NX

i=1

tiT (pi;µi) (19)

and tiT (pi;µi) is the individual t-statistic for testing ½i = 0 for all i: E [tiT (pi;0 j½i = 0]
and V ar [tiT (pi;0 j½i = 0] are tabulated in the paper. The convergence result stated
for ªLM holds for ªt also, and consistency is guaranteed under the controlled rate
of divergence of N and T to in…nity.

In a Monte Carlo study, Im, Pesaran, and Shin (1997) demonstrate better …nite
sample performances of the ªLM and ªt tests in relation to the Levin and Lin test
given by t¤½. We undertake a comparison of these tests in section 4 below for our
various cases of interest. In the comparison we also include the Maddala and Wu
test, which is described next.

2.3 Maddala and Wu (1999)

Maddala and Wu, relying on Fisher (1932), suggest combining the p-values of a
test-statistic for a unit root in each cross-sectional unit. The Fisher test is an exact
and non-parametric test, and may be computed for any arbitrary choice of a test
for the unit root in a cross-sectional unit. The statistic is given by

MW : ¡2
NX

i=1

ln(¼i);

and is distributed as a chi-squared variable with 2N degrees of freedom under the
assumption of cross-sectional independence. ¼i is the p-value of the test statistic in
unit i, the p-value of the ADF test statistic in the cases that we consider.

The obvious simplicity of this test and its robustness to the choice of lag length
and sample size make its use attractive. However, our experience with the MW test
is somewhat less encouraging, as reported below.
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3 Testing for PPP

In this section we evaluate empirically whether the strong version of the purchasing
power parity (PPP) holds, namely, whether the real exchange rate (rer) is stationary.
This question has attracted considerable interest, as mentioned in the Introduction.
Following Pedroni (1999b) and Mark (1995), we use quarterly data on nominal
exchange rates and cpi, for the period 1973:1-1997:4, for 19 OECD countries.

The rers when US is used as the numeraire country are graphed in Figure 1.
Note that the nominal exchange rates are expressed as US$ per national currency, so
that a decline in the rer corresponds to a depreciation of the national currency. It
is di¢cult to determine from the graphs whether the rers are stationary or not, but
it is evident that most rers tend to move together, in particular for the countries
currently in the European Monetary Union. This suggests that if the rers are
integrated, they are also cointegrated across countries.

The augmented Dickey-Fuller (ADF) test accepts the null hypothesis of a unit
root in the rer for each country and any choice of lag length, see Table 1.

The results of the panel unit root tests are reported in Table 2. Both versions
of the IPS tests and the MW statistic reject the presence of a unit root at the
5% signi…cance level, while the LL test in general accepts. Overall, on the basis
of the panel tests we would conclude that PPP holds. Yet, before drawing such
a conclusion, we should check that the countries under analysis are not linked by
cointegrating relationships, an important hypothesis underlying all panel unit root
tests (for the tests to have correct size).

As mentioned earlier, it may be seen from Figure 1 that there appear to be
substantial comovements of the rers across countries. To evaluate more formally
whether the rers are cointegrated, we calculate the Johansen trace test for the rers
of all pairs of countries, using in each case a VAR(4) with an unrestricted constant
to model the variables (the outcome is not sensitive to the choice of the lag length).
The results are reported in Table 3. In many cases the null hypothesis of no bivariate
cointegration is rejected at the 10% and also at the 5% signi…cance level. Given that
this test can be also expected to be biased toward acceptance of the null hypothesis
in small samples, even more cross-country cointegration can be presumed to exist.2

Another interesting tool to analyze jointly the properties of large systems of
possibly non-stationary variables was developed by Gonzalo and Granger (1995).
It allows the determination of the total number of nonstationary trends driving all
the variables under analysis. To implement this procedure, …rst we extract the

2If the rers were stationary, the hypothesis of cointegrating rank equal to one versus rank equal
to two should be also rejected, while it is not in most cases.
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common trend from each of 7 bivariate systems that are cointegrated according
to Table 3 (UK-Austria, Belgium-Netherlands, France-Germany, Japan-Australia,
Finland-Norway, Spain-Italy, Greece-Switzerland). Then, we extract the trends from
a 4-variable system for Denmark, Canada, Korea and Sweden. The rers for these
countries turn out not to be cointegrated, hence we have 4 additional stochastic
trends. Finally, we test for cointegration among the 11 trends (7 obtained in the
…rst step plus the 4 trends obtained in the second step) using the Johansen trace
statistic in a VAR(3). The hypothesis of cointegrating rank equal to 5 is accepted
at the 10% level, while that of rank equal to 4 is accepted at the 5% level. Hence,
on the basis of the Gonzalo and Granger (1995) procedure, only 6 or 7 stochastic
trends drive the joint evolution of the 18 rers. As a consequence, there exist 12 or
11 cointegrating relationships among the rers.

Both the bivariate cointegration analysis and the Gonzalo and Granger procedure
indicate the presence of many cointegrating relationships across the countries, so that
a basic assumption underlying the panel unit root tests is violated. The simulations
in the next section show that in this case the panel tests can be substantially biased.
The actual size is much larger than the nominal level, i.e. the null hypothesis of a
unit root is rejected too often, and this can help to explain the con‡icting outcomes
of the univariate and panel unit root tests. From the results of the simulation
experiments in Tables 10 and 13 for T = 100, whose parameters are very close to
those of our empirical analysis, it may be seen that LL is the least distorted panel
test. Indeed this is the test which accepts the null hypothesis of a unit root at the
5% level for our empirical example, in agreement with the unit by unit ADF tests,
and provides evidence against the validity of the strong version of PPP.3

According to Papell and Theodoridis (2000), the choice of the numeraire country
can a¤ect the procedures to evaluate the presence of PPP in the long run. Hence,
we repeat our analysis using Germany as the numeraire. The resulting rers are
graphed in …gure 2. Though there are some changes with respect to the graphs in
Figure 1, the overall pattern is quite similar.

The ADF test still accepts the null hypothesis of a unit root in the rer for each
country, see Table 1. The IPS and the MW panel tests reject this hypothesis, while
the LL statistic accepts it, see Table 2. As for the case with US as the numeraire,
both the graphs in …gure 2 and the formal bivariate cointegration analysis indicate
the presence of several cross-country cointegrating relationships among the rers,

3Alternative explanations for the failure of Levin and Lin tests to reject the null hypothesis of a
unit root have been proposed by Papell (2000), as discussed in the introduction to this paper. In
some sense these arguments must be weighed o¤ against those proposed here since these provide
grounds for over-rejection of the null.
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see Table 4, even though the pattern of bivariate cointegration is di¤erent when
Germany is the numeraire. The presence of cross-country cointegrating relationships
among the rers is also con…rmed by the Gonzalo and Granger method. Applying
the step-wise procedure we described before, it turns out that in this case only 3 or
4 stochastic trends drive the evolution of the 18 rers.4 Hence, the panel tests can
be even more biased towards over-rejection in this case.

In summary, the unit by unit ADF tests favor the hypothesis of a unit root in the
real exchange rates, while the IPS and MW panel unit root tests reject this hypoth-
esis. This mismatch can be due to a bias in the panel tests, that reject too often
the presence of a unit root when there are cross-unit cointegrating relationships.
The panel LL test appears to be more robust in this case, and indeed it accepts the
presence of a unit root, in agreement with the ADF tests. These …ndings are robust
to the choice of the numeraire country, which instead in‡uences the number and
composition of the cross-country cointegrating relationships.

4 Simulation results for panel unit root tests

In this section we describe the Monte Carlo design, and then evaluate the per-
formance of the panel unit root tests, with and without cross-unit cointegrating
relationships. This provides evidence on the reliability of the panel methods when
applied to test for PPP and, more generally, to evaluate the stationarity of macroe-
conomic time series for several countries.

4.1 The Monte Carlo Design

Let us consider the variables yit, xit, where i = 1; :::N indexes the units and t =
1; :::; T is the temporal index. We group the y and x variables for each unit into
the N £ 1 vectors Yt = (y1t; :::; yNt)0 and Xt = (x1t; :::; xNt)0. Then we consider the
following Error Correction Model (ECM) as the data generating process (DGP ):

Ã
¢Yt
¢Xt

!
= ®¯ 0

Ã
Yt¡1
Xt¡1

!
+ "t; (20)

4We consider in the …rst step 7 bivariate VARs(4), for the pairs US-UK, Austria-Switzerland,
France-Spain, Australia-Japan, Finland-Norway, Netherland-Sweden, and Greece-Denmark. Then
we analyze a 4-variable VAR(4) for Belgium, Canada, Italy and Korea, but no cointegrating rela-
tionships are found. Finally, we run a VAR(3) for the 7 stochastic trends we obtain in the …rst
step, plus the 4 trends from the second step. The cointegrating rank is 7 or 8 when using 5% or
10% critical values, so that 4 or 3 stochastic trends drive the 18 rers.
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where "t is i:i:d: N(0;§), with

§ =

0
BBBB@

¾1 0 ¢ ¢ ¢ 0
0 ¾2 :::: 0
... . . . ...
0 0 ¢ ¢ ¢ ¾2N

1
CCCCA
;

and ¾j is extracted from a uniform distribution on [0:5; 1:5], for j = 1; :::; 2N .
We also considered DGP s with lagged di¤erences as regressors and serially cor-

related errors. There were no qualitative di¤erences in the results, and hence we
focus on the speci…cation in (20). The di¤erent experiments for size and power, with
or without cross unit cointegration, are obtained by imposing proper restrictions on
the ® and ¯ matrices, as detailed below. In all cases the results are based on 5000
replications, and are reported for di¤erent values of N (5, 10, 25, 50, 100) and of T
(25, 50, 100), to mimic situations often encountered in empirical applications.

4.2 No cross-unit cointegration

The …rst case we consider is testing for unit roots when there are no cross-unit coin-
tegrating relationships, i.e., we are in a situation where the assumptions underlying
panel tests hold. We are interested in evaluating the small sample size and power
of the tests, to have a benchmark for the other cases.

For the size experiments we set ® = 0 in the DGP, so that Xt and Yt are
independent random walks. For the power experiments we use

® =

0
@
I
N£N

I
N£N

0
N£N

0
N£N

1
A ; ¯0 =

0
@

¡I
N£N

0
N£N

c I
N£N

0
N£N

1
A ;

where c = 0:9 or c = 0:8. Hence, Xt is an N variate random walk, while Yt is made
up of N stationary AR(1) processes, with roots equal to c.

The estimated model for each unit is

¢yit = °0yit¡1 + °1¢yit¡1 + °2¢yit¡2 + eit: (21)

This choice re‡ects the fact that when the lag length is underspeci…ed relative
to the DGP the tests become very undersized, while overspeci…cation improves the
size, even though the power can deteriorate slightly. The choice of the lag truncation
in computing b¾2yi in (7) is also important in determining size, and we follow Levin
and Lin’s recommendations for comparability with existing results in the literature.
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The empirical sizes of the unit root tests are reported in Table 5. We can read
this table along three directions: for varying N , for varying T , and for both N and T
varying. For …xed T , in general the performance of the IPS-LM test improves when
N increases, while it deteriorates for the IPS-t and, in particular, for the MW tests;
the size is always decreasing for LL. When N is …xed, in general the size distortions
of all tests decrease with T , and this is particularly evident for MW. When both
N and T vary, we consider the cases where N=T is about 0.25 ((N = 5; T = 20),
(N = 10; T = 50), (N = 25; T = 100)) or 0.5 ((N = 10; T = 20), (N = 25; T = 50),
(N = 50; T = 100)). The size improvements for larger dimensions are clear, in
particular when N=T = 0:5. Overall, the IPS-LM has very low size distortions when
N > 25 and T > 50, while the other three tests experience deviations from the
nominal level also for these rather large values of units and temporal observations.
It is worth noting that the LL test performs better when N is small, less than 25.

The power results are reported in Tables 6 and 7 for, respectively, c = 0:8 and
c = 0:9. For T = 20 and N increasing, the IPS-t and the MW have the highest
power, which is not surprising because of their large size distortions. The IPS-LM
and the LL tests, with better size properties, have good power for N large when
c = 0:8, but not for c = 0:9 (the power is less than 40% also for N = 100). When
T = 50, the situation improves substantially, in particular for the IPS-LM and
already for N = 25, also with c = 0:9. When T = 100 the power is close or equal
to one for all tests, with the exception of LL when N = 5; 10 and c = 0:9. For …xed
N , the power increases substantially with T already for N = 5, and a similar result
holds when N and T vary jointly.

Overall, these …gures indicate that the temporal dimension is quite important
for high power also in a panel context, and that the IPS-LM test has not only good
empirical size but also rather high power, particularly when N > 25 and T > 50.5

4.3 Cross-unit cointegration, weak exogeneity

We now consider the following speci…cation of the DGP, to allow for cross-unit
cointegrating relationships to be present:

® = 0:1

0
@

¡I
N£N

0
N£N

0
N£N

¡I
N£N

1
A ; ¯ 0 =

0
@

¡I
N£N

I
N£N

0
N£N

B
N£N

1
A ;

5We also considered di¤erent values for c across the units. This violates the condition of the LL
test on the alternative hypothesis, and the LL test turns out to have systematically lower power
than the IPS tests and MW in this case.
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B =

0
BBBBBBBBBBB@

1 ¡1 0 0 0 0 ::: 0
0 1 ¡1 0 0 0 ::: 0
0 0 1 ¡1 0 0 ::: 0
0 0 0 0 0 0 ::: 0
0 0 0 0 0 0 ::: 0
:::
0 0 0 0 0 0 ::: 0

1
CCCCCCCCCCCA

: (22)

Hence, all the variables are I(1), but the system is driven by a number of independent
random walks equal to the number of zero rows of B, say b. For example, in the
formulation in (22), b = N¡3. The remaining 2N¡b stationary roots of the system
are equal to 0:9. There exist N within unit cointegrating relationships, (yit ¡ xit),
i = 1; :::; N , plus N¡b cross-unit cointegrating relationships of the type (xit¡xi+1t),
i = 1; :::N ¡ b. Moreover, the xi variables are weakly exogenous in the subsystem
for the yi variables.6 In BMO, weak exogeneity was an important factor in reducing
the size distortions, which is our reason for considering it here. The next subsection
deals with the case of cross unit-relationships but without weak exogoneity.

The estimated model for each unit remains

¢yit = °0yit¡1 + °1¢yit¡1 + °2¢yit¡2 + eit; (23)

and we are interested in evaluating if and how the presence of cross-unit cointegration
a¤ects the performance of the panel unit root tests. Note that each yi is I(1), so
that the empirical rejection frequencies of the tests should be around 5%.

The results are reported in Tables 8 to 12, for di¤erent values of N and vary-
ing percentages of cross-unit cointegration, q, where q = ((N ¡ b)=N) ¤ 100. The
parameter q typically ranges from 20% to 80%, i.e., from 20% to 80% of the units
are related by bivariate cointegrating relationships. Five points are worth making.
First, the distortions for IPS-t and MW are substantial in all cases, with values often
in the range 20% ¡ 50% when N > 25 and T = 20. Second, the IPS-LM performs
reasonably well for T = 20, while the LL test appears to be quite robust to the
presence of cross-unit cointegration, with only minor distortions. Third, focusing on
IPS-LM and LL, when T increases the distortions increase. Fourth, the distortions
decrease for larger N in the case of LL, and do not increase with N for IPS-LM.
Fifth, for N > 25 the distortions increase with q, while for fewer units the outcome
is less clear cut.

6Essentially this requires that the cointegrating relationships between yi and xi do not a¤ect the
xi variables. See Johansen (1995) for a more precise de…nition of weak exogeneity in cointegrated
systems.
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4.4 Cross-unit cointegration, no weak exogeneity

We still want all the variables to be I(1), with the system driven by fewer than 2N
stochastic trends and the xi variables no longer weakly exogenous in the subsystem
for the yi variables. Hence, we consider the following speci…cation of the DGP:

® = 0:1

0
@

¡I
N£N

0
N£N

A
N£N

¡I
N£N

1
A ; ¯ 0 =

0
@

¡I
N£N

I
N£N

B
N£N

0
N£N

1
A ;

A =

0
BBBBBBBBBBB@

1 0 0 0 0 0 ::: 0
0 1 0 0 0 0 ::: 0
0 0 1 0 0 0 ::: 0
0 0 0 0 0 0 ::: 0
0 0 0 0 0 0 ::: 0
:::
0 0 0 0 0 0 ::: 0

1
CCCCCCCCCCCA

; B =

0
BBBBBBBBBBB@

1 ¡1 0 0 0 0 ::: 0
0 1 ¡1 0 0 0 ::: 0
0 0 1 ¡1 0 0 ::: 0
0 0 0 0 0 0 ::: 0
0 0 0 0 0 0 ::: 0
:::
0 0 0 0 0 0 ::: 0

1
CCCCCCCCCCCA

:

(24)

There are 2N ¡ b stationary roots equal to 0:9, where we recall that b is the
number of zero rows of B (i.e., the system is driven by b stochastic trends). The
stationary roots are associated with N within unit cointegrating relationships, (yit¡
xit), i = 1; :::; N , plus N ¡ b cross-unit cointegrating relationships of the type (yit¡
yi+1t), i = 1; :::N ¡ b. The cointegrating relationship between yi and yi+1 a¤ects xi,
which is therefore not weakly exogenous.

The estimated model for each unit remains that in equation (21).
The results are summarized in Table 13. Ranking the tests in terms of size

distortions, MW is the worst, followed by IPS-t, which though performs much better
than in the weakly exogenous case. IPS-LM is reasonably well behaved for T = 20
and T = 50, but still presents substantial size distortions for T = 100, that increase
with the number of units, N . The LL statistic appears again to be the most robust,
with empirical size in the range 3%-8% also for T = 100 and N = 100. It may
also be noted by comparing Tables 8 to 12 with Table 13 that the lack of weak
exogeneity does not pose any special problem in the context of our analysis here,
while the consequences were much more serious for the results in BMO.

5 Conclusions

The empirical analysis in our paper demonstrates clearly the importance of taking
proper account of the presence of cross-unit cointegrating relationships in inter-
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preting the results of unit root tests in panel. These cross-unit relationships are
detectable by means of bivariate or small-system cointegration analysis and by the
Gonzalo and Granger (1995) procedure on the estimated common trends. Using the
latter, the amount of cross-unit cointegration in the PPP panel in section 3 is found
to be around 50% with US as the numeraire and around 80% with Germany as the
numeraire country. Looking at the relevant entries of Tables 8-13, for T=100, N=25
and q=50% or 80%, the size-distortions are in the range of 0.07 to 0.32 when xt is
weakly exogenous. When xt is not weakly exogenous, the corresponding numbers
are 0.03 and 0.24 respectively. It should also be noted that of all the tests con-
sidered, the LL test appears to su¤er the least from size distortion in the presence
of cross-unit cointegrating relationships, but the DGPs considered here are on the
whole those most favourable to the LL testing framework because of the homogene-
ity across the units of the autoregressive parameter. In some results not reported
here, we also …nd that when heterogeneity is allowed for in the DGP, the power of
the LL test is lower than for the other panel tests considered.

Overall, our results provide yet a further serious warning against the use of
standard panel unit root tests but also a stimulus for further research. In particular,
the aim should be to understand the theoretical properties of these tests under
various relaxations of the underlying assumption of cross-unit long run independence
and to devise procedures that are robust to such generalisations.
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Tables

Table 1: Univariate ADF unit root tests for real exchange rates

US numeraire Germany numeraire
lags 1 2 3 4 1 2 3 4
US ¡ ¡ ¡ ¡ ¡2:96¤ ¡3:04¤ ¡2:41 ¡2:26
UK ¡2:35 ¡2:01 ¡2:41 ¡2:48 ¡1:81 ¡1:71 ¡1:90 ¡1:94

Austria ¡1:90 ¡1:67 ¡2:04 ¡2:43 ¡1:76 ¡1:63 ¡1:81 ¡1:97
Belgium ¡1:76 ¡1:54 ¡2:04 ¡2:36 ¡1:98 ¡1:81 ¡2:22 ¡2:45
Denmark ¡1:95 ¡1:63 ¡2:12 ¡2:32 ¡1:83 ¡1:64 ¡1:92 ¡2:02
France ¡2:01 ¡1:84 ¡2:18 ¡2:53 ¡2:10 ¡1:99 ¡2:23 ¡2:46

Germany ¡1:93 ¡1:72 ¡2:11 ¡2:47 ¡ ¡ ¡ ¡
Netherland ¡2:02 ¡1:71 ¡2:15 ¡2:58 ¡2:09 ¡1:86 ¡2:14 ¡2:38

Canada ¡0:95 ¡0:95 ¡1:47 ¡1:34 ¡1:50 ¡1:52 ¡1:71 ¡1:72
Japan ¡1:69 ¡1:61 ¡1:79 ¡2:06 ¡1:62 ¡1:59 ¡1:62 ¡1:70

Finland ¡2:06 ¡1:88 ¡2:53 ¡2:92¤ ¡2:14 ¡2:08 ¡2:32 ¡2:47
Greece ¡1:55 ¡1:48 ¡1:52 ¡2:28 ¡1:13 ¡1:13 ¡1:16 ¡1:62
Spain ¡1:83 ¡1:88 ¡2:28 ¡2:36 ¡1:90 ¡1:92 ¡2:13 ¡2:14

Australia ¡1:81 ¡1:74 ¡1:96 ¡1:90 ¡1:98 ¡1:98 ¡2:32 ¡2:29
Italy ¡2:14 ¡2:00 ¡2:15 ¡2:51 ¡1:72 ¡1:65 ¡1:73 ¡1:95

Switzerland ¡2:19 ¡2:01 ¡2:26 ¡2:67 ¡1:98 ¡1:90 ¡1:98 ¡2:13
Korea ¡0:84 ¡0:77 ¡0:99 ¡1:24 ¡1:45 ¡1:45 ¡1:44 ¡1:45

Norway ¡2:11 ¡1:76 ¡2:11 ¡2:18 ¡1:96 ¡1:84 ¡2:01 ¡2:01
Sweden ¡1:83 ¡1:63 ¡2:24 ¡2:04 ¡1:96 ¡1:83 ¡2:41 ¡2:21

¤ and ¤¤ indicate rejection at the 5% and 1% of the null hypothesis of a unit root
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Table 2: Panel unit root tests for real exchange rates

US numeraire
lags 1 2 3 4

IPS-LM
3:47

(0:0003)
2:42

(0:008)
2:43

(0:008)
2:83

(0:002)

IPS-t
¡3:56
(0:0002)

¡2:91
(0:002)

¡3:00
(0:001)

¡3:39
(0:0003)

LL
¡2:23
(0:013)

¡1:38
(0:083)

¡1:36
(0:087)

¡1:58
(0:057)

MW
66:57
(0:001)

55:74
(0:019)

56:04
(0:018)

59:51
(0:008)

Germany numeraire

IPS-LM
3:16

(0:0008)
2:03

(0:021)
2:37

(0:009)
2:90

(0:002)

IPS-t
¡3:34
(0:0004)

¡2:63
(0:004)

¡2:97
(0:001)

¡3:46
(0:0003)

LL
¡1:73
(0:042)

¡0:86
(0:195)

¡1:17
(0:120)

¡1:50
(0:066)

MW
63:40
(0:003)

51:90
(0:042)

55:19
(0:021)

60:06
(0:007)

p-values in parentheses
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Table 3: Rejection of the null hypothesis of no cointegration (rank=0) using Jo-
hansen trace statistic, US is numeraire

UK Au Be Fr Ge Ne Ca Ja Fi Gr Sp Aul It Sw Ko No Swe De
UK ** ** * * * – ** ** – ** – ** ** – – * **
Au ** – – ** – – – – ** – – – ** – – – –
Be ** – * * * – – – * – – – – – – – –
Fr * – * ** ** – – – * – – – – – – – **
Ge * ** * ** – – – – ** – – – * – – – *
Ne * – * ** – – – – – – * – – – – – –
Ca – – – – – – – – – – – – – – – – –
Ja ** – – – – – – – * – * – * – – – –
Fi ** – – – – – – – ** – ** ** – * ** – –
Gr – ** * * ** – – * ** – – * ** – – – **
Sp ** – – – – – – – – – – ** * – – – –
Aul – – – – – * – * ** – – – – – – – –
It ** – – – – – – – ** * ** – – – – – –
Sw ** ** – – * – – * – ** * – – – – – –
Ko – – – – – – – – * – – – – – – – –
No – – – – – – – – ** – – – – – – – –
Swe * – – – – – – – – – – – – – – – –
De ** – – ** * – – – – ** – – – – – – –

** and * indicate rejection at 5% and 10%. Results are based on a VAR(4) with unrestricted

constant.
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Table 4: Rejection of the null hypothesis of no cointegration (rank=0) using Jo-
hansen trace statistic, Germany is numeraire

UK Au Be Fr US Ne Ca Ja Fi Gr Sp Aul It Sw Ko No Swe De
UK – – – ** – – ** ** – – * – * – – – –
Au – – ** – – – * – ** – ** – ** – – – –
Be – – – – – – – – ** – ** – – – – – –
Fr – ** – – ** – * – ** * ** – * – – – **
US ** – – – – – * – – – ** – – – – * –
Ne – – – ** – – – – ** – ** – – – – * –
Ca – – – – – – – * – – – – – – – – –
Ja ** * – * * – – * ** * ** – ** – * – –
Fi ** – – – – – * * * * ** ** – – * – –
Gr – ** ** ** – ** – ** * – – – ** – – * **
Sp – – – * – – – * * – ** – – – ** – –
Aul * ** ** ** ** ** – ** ** – ** – ** ** ** ** **
It – – – – – – – – ** – – – – – * – –
Sw * ** – * – – – ** – ** – ** – – – – –
Ko – – – – – – – – – – – ** – – – * –
No – – – – – – – * * – ** ** * – – – –
Swe – – – – * * – – – * – ** – – * – –
De – – – ** – – – – – ** – ** – – – – –

** and * indicate rejection at 5% and 10%. Results are based on a VAR(4) with unrestricted

constant.
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Table 5: Unit root tests, no cross-unit cointegration - Size

N/T 20 50 100

5

IPS LM
IPS t
LL

MW

0:067
0:137
0:091
0:185

0:073
0:083
0:056
0:092

0:070
0:071
0:060
0:067

10

IPS LM
IPS t
LL

MW

0:066
0:132
0:090
0:181

0:073
0:081
0:055
0:097

0:073
0:072
0:061
0:070

25

IPS LM
IPS t
LL

MW

0:041
0:189
0:049
0:325

0:056
0:098
0:039
0:118

0:055
0:069
0:044
0:075

50

IPS LM
IPS t
LL

MW

0:041
0:271
0:042
0:480

0:052
0:109
0:031
0:143

0:050
0:071
0:037
0:081

100

IPS LM
IPS t
LL

MW

0:031
0:382
0:023
0:674

0:047
0:129
0:019
0:176

0:049
0:077
0:029
0:097

22



Table 6: Unit root tests, no cross-unit cointegration - Power, roots=0.8

N/T 20 50 100

5

IPS LM
IPS t
LL

MW

0:165
0:324
0:176
0:329

0:780
0:844
0:465
0:767

1:000
1:000
0:944
1:000

10

IPS LM
IPS t
LL

MW

0:227
0:532
0:232
0:511

0:970
0:990
0:748
0:967

1:000
1:000
0:999
1:000

25

IPS LM
IPS t
LL

MW

0:412
0:859
0:380
0:797

1:000
1:000
0:987
1:000

1:000
1:000
1:000
1:000

50

IPS LM
IPS t
LL

MW

0:661
0:988
0:586
0:966

1:000
1:000
1:000
1:000

1:000
1:000
1:000
1:000

100

IPS LM
IPS t
LL

MW

0:903
1:000
0:822
0:992

1:000
1:000
1:000
1:000

1:000
1:000
1:000
1:000
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Table 7: Unit root tests, no cross-unit cointegration - Power, roots=0.9

N/T 20 50 100

5

IPS LM
IPS t
LL

MW

0:100
0:218
0:128
0:252

0:338
0:413
0:161
0:346

0:870
0:905
0:402
0:826

10

IPS LM
IPS t
LL

MW

0:114
0:305
0:133
0:348

0:523
0:690
0:241
0:542

0:992
0:998
0:717
0:986

25

IPS LM
IPS t
LL

MW

0:156
0:553
0:181
0:569

0:870
0:978
0:502
0:890

1:000
1:000
0:987
1:000

50

IPS LM
IPS t
LL

MW

0:228
0:780
0:231
0:793

0:991
1:000
0:800
0:993

1:000
1:000
1:000
1:000

100

IPS LM
IPS t
LL

MW

0:374
0:971
0:333
0:965

1:000
1:000
0:978
1:000

1:000
1:000
1:000
1:000
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Table 8: Unit root tests, cross-unit cointegration, weak exogeneity - N=5

q/T 20 50 100

20%

IPS LM
IPS t
LL
MW

0.091
0.176
0.101
0.205

0.118
0.140
0.080
0.132

0.132
0.136
0.087
0.122

40%

IPS LM
IPS t
LL
MW

0.176
0.292
0.117
0.303

0.328
0.361
0.126
0.335

0.363
0.369
0.144
0.340

60%

IPS LM
IPS t
LL
MW

0.081
0.165
0.103
0.208

0.165
0.198
0.095
0.178

0.338
0.358
0.121
0.313

80%

IPS LM
IPS t
LL
MW

0.080
0.171
0.103
0.207

0.193
0.240
0.105
0.194

0.432
0.473
0.158
0.393

q: percentage of cross-unit cointegration

(q = ((N-b)/N)*100)
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Table 9: Unit root tests, cross-unit cointegration, weak exogeneity - N=10

q/T 20 50 100

20%

IPS LM
IPS t
LL
MW

0:055
0:157
0:071
0:237

0.076
0.105
0.048
0.113

0.110
0.123
0.070
0.120

50%

IPS LM
IPS t
LL
MW

0.050
0.158
0.070
0.232

0.091
0.128
0.055
0.126

0.175
0.199
0.084
0.174

70%

IPS LM
IPS t
LL
MW

0.066
0.183
0.083
0.255

0.148
0.211
0.071
0.183

0.347
0.398
0.119
0.324

90%

IPS LM
IPS t
LL
MW

0.062
0.177
0.082
0.240

0.132
0.196
0.065
0.162

0.271
0.337
0.116
0.251

q: percentage of cross-unit cointegration
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Table 10: Unit root tests, cross-unit cointegration, weak exogeneity - N=25

q/T 20 50 100

25%

IPS LM
IPS t
LL

MW

0:044
0:202
0:051
0:340

0:081
0:137
0:046
0:145

0:133
0:160
0:060
0:161

50%

IPS LM
IPS t
LL

MW

0:049
0:227
0:059
0:359

0:118
0:206
0:052
0:192

0:246
0:310
0:073
0:255

70%

IPS LM
IPS t
LL

MW

0:053
0:227
0:064
0:362

0:129
0:210
0:055
0:188

0:238
0:316
0:078
0:245

90%

IPS LM
IPS t
LL

MW

0:054
0:246
0:069
0:376

0:134
0:235
0:064
0:201

0:265
0:356
0:087
0:266

q: percentage of cross-unit cointegration
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Table 11: Unit root tests, cross-unit cointegration, weak exogeneity - N=50

q/T 20 50 100

25%

IPS LM
IPS t
LL

MW

0:043
0:287
0:044
0:500

0:081
0:156
0:039
0:177

0:108
0:159
0:04
0:144

50%

IPS LM
IPS t
LL

MW

0:051
0:317
0:049
0:513

0:114
0:232
0:041
0:219

0:190
0:273
0:051
0:221

70%

IPS LM
IPS t
LL

MW

0:053
0:343
0:051
0:523

0:147
0:298
0:053
0:260

0:301
0:425
0:065
0:326

90%

IPS LM
IPS t
LL

MW

0:060
0:364
0:060
0:535

0:183
0:354
0:060
0:296

0:365
0:504
0:084
0:381

q: percentage of cross-unit cointegration
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Table 12: Unit root tests, cross-unit cointegration, weak exogeneity - N=100

q/T 20 50 100

25%

IPS LM
IPS t
LL

MW

0:037
0:407
0:028
0:694

0:069
0:187
0:023
0:212

0:112
0:178
0:032
0:165

50%

IPS LM
IPS t
LL

MW

0:044
0:464
0:036
0:719

0:115
0:290
0:034
0:281

0:242
0:360
0:042
0:298

75%

IPS LM
IPS t
LL

MW

0:059
0:521
0:046
0:745

0:198
0:467
0:053
0:396

0:444
0:631
0:073
0:485

90%

IPS LM
IPS t
LL

MW

0:064
0:540
0:051
0:757

0:228
0:504
0:057
0:416

0:487
0:668
0:075
0:522

q: percentage of cross-unit cointegration
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Table 13: Unit root tests, cross-unit cointegration, no weak exogeneity

q=50% q=80%
N/T 20 50 100 20 50 100

5 (a)

IPS LM
IPS t
LL

MW

0.077
0.068
0.091
0.179

0.069
0.097
0.054
0.095

0.121
0.124
0.057
0.112

0.081
0.072
0.092
0.197

0.098
0.137
0.060
0.128

0.235
0.260
0.067
0.209

10

IPS LM
IPS t
LL

MW

0.063
0.055
0.067
0.229

0.054
0.095
0.039
0.097

0.100
0.121
0.042
0.099

0.062
0.060
0.070
0.231

0.056
0.103
0.032
0.100

0.127
0.163
0.037
0.122

25

IPS LM
IPS t
LL

MW

0.050
0.046
0.050
0.348

0.055
0.127
0.034
0.133

0.114
0.157
0.038
0.129

0.058
0.055
0.058
0.365

0.062
0.167
0.033
0.153

0.171
0.241
0.035
0.181

50

IPS LM
IPS t
LL

MW

0.060
0.054
0.049
0.515

0.066
0.208
0.031
0.205

0.176
0.268
0.036
0.214

0.071
0.068
0.056
0.538

0.062
0.224
0.023
0.185

0.376
0.546
0.049
0.404

100

IPS LM
IPS t
LL

MW

0.071
0.057
0.033
0.715

0.060
0.307
0.024
0.289

0.252
0.417
0.032
0.322

0.077
0.071
0.041
0.739

0.116
0.485
0.038
0.394

0.478
0.726
0.040
0.528

q: percentage of cross-unit cointegration, (q = ((N-b)/N)*100)
(a) For N=5, q=40% and 80%.
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Figure 1: Real exchange rates, US is numeraire
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Figure 2: Real exchange rates - Germany is numeraire
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