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Abstract

We wish to analyze the consequences of strategically sophisticated bidding without
assuming equilibrium behavior. As a first step, we characterize interim rationalizable
bids in first-price auctions with interdependent values and affiliated signals. We show
that (1) every non-zero bid below the equilibrium is rationalizable, (2) some bids above
the equilibrium are rationalizable, (3) the upper bound on rationalizable bids of a
given player is a continuous, non-decreasing function of her signal/valuation. In the
special case of symmetric bidders with independent signals and quasi-linear valuation
functions, (i) the least upper bound on rationalizable bids is increasing and concave;
hence (ii) rationalizability is consistent with substantial shading for high valuations,
but only little shading for low valuations.

Our main technical contribution is to show that the set of rationalizable bids is
essentially determined by iteratively solving a simple one-dimensional optimization
problem.

We argue that our theoretical analysis may shed some light on experimental findings
about deviations from the risk-neutral Nash equilibrium.

1. Introduction

The analysis of simultaneous bidding games generally builds upon the notion of (Bayesian)
Nash equilibrium. Implicit in the latter solution concept are the assumptions that players
are rational and hold correct beliefs about the play of their opponents.
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This paper represents a first step toward the analysis of simultaneous bidding games
under the assumption that bidders’ beliefs are strategically sophisticated, but not necessarily
correct; the rationality hypothesis is maintained.

Strategic sophistication is defined as the conjunction of the following assumptions about
beliefs: (1) Bidders expect positive bids to win with positive probability; (2) Bidders are
certain that their opponents are rational and are certain of (1); (3) Bidders are certain that
their opponents are certain of (2); and so on.

We focus on first-price sealed-bid auctions with private or interdependent valuations,
and independent or correlated signals, and adopt the notion of (interim) rationalizability to
capture strategic sphistication.

Our approach is motivated by the following considerations. In our opinion, the equilib-
rium assumption that beliefs are correct should be justified in terms of more fundamental
hypotheses about the bidders’ belief formation process. In particular, one may attempt to
find a justification based on either introspection or learning in the specific context of auction
games.

This paper provides an analysis based on beliefs that are strategically sophisticated, and
hence consistent with a careful introspective analysis of the game. We show that, in first-price
auctions, although strategic sophistication has non-trivial implications for bidding behavior,
it is consistent with a wide range of non-equilibrium beliefs. Thus, introspection alone does
not provide a justification for equilibrium analysis.

One may then argue that, even if bidders initially hold heterogeneous non-equilibrium
beliefs, a learning process should nevertheless lead to an equilibrium.1 This argument, how-
ever, is subject to important qualifications. First, it applies only to situations where bidders
repeatedly play similar auction games with different competitors (a fixed set of bidders could
give rise to collusion). Second, whether convergence to an equilibrium occurs at all, as well
as the speed of convergence, crucially depend on how much feedback each player obtains
about the decision rules adopted by his competitors in previous plays. In auctions games,
this feedback is typically very poor: only the actual bids, and not the private information
that induced such bids, can typically be observed.2

Therefore, we find no compelling reasons to expect approximate equilibrium behavior
in the short run. Not surprisingly, experimental evidence shows significant and persistent
deviations from the risk-neutral Nash equilibrium in first-price auctions (cf. Kagel [13]).

These considerations suggest that it may be interesting to ascertain the extent to which
the predictions of “textbook” auction theory (cf. Milgrom and Weber [16], Myerson [18],
Riley and Samuelson [19], Vickrey [20]) are dependent on the assumption that bidders’ beliefs
are correct.

1On learning in games see, for example, Fudenberg and Levine [9].
2In a Dutch auction, whose reduced normal form is like a first-price auction, only the winning bid is

observed.
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Our analysis addresses this issue. We find that bid shading (bidding below the expected
value of the good conditional on private information) is a robust phenomenon in first-price
auctions. In settings with common values, shading is a consequence of rationality if a bidder
believes that higher types of his opponents bid higher; hence, the robustness of bid shading
in this context is not surprising. However, we also find substantial shading in settings with
private values. Moreover, our results are qualitatively consistent with the empirical finding
(cf. Kagel and Roth [14]) that higher types tend to shade proportionally more than low
types.

On the other hand, revenue equivalence appears to be dependent upon the equilibrium
assumption. In particular, our analysis of first-price auctions (with either private or inter-
dependent values) shows that (i) for every type, every positive bid below the corresponding
equilibrium bid is rationalizable, and (ii) for almost every type, the highest rationalizable
bid is above the equilibrium bid.

Note that our assumptions about beliefs and behavior imply that players do not use
weakly dominated bids. In a second-price auction with private values, analogous assumptions
imply that each player bids its valuation, as in the dominant-strategy equilibrium. Therefore,
in light of the standard (i.e. equilibrium) revenue equivalence results, we conclude that the
expected revenue of a seller with rationalizable beliefs in a second-price auction may be lower
or higher than the rationalizable expected revenue in a first-price auction.

However, when the number of (ex ante symmetric) bidders is large, the expected revenue
in a second-price auction is close to the expected valuation of the good, which is an upper
bound to the rationalizable expected revenue in a first-price auction. Therefore, when the
number of (risk-neutral) bidders is large, a seller with rationalizable but not extremely
optimistic beliefs should expect a higher revenue in a second-price auction than in a first-
price auction.

A further motivation for our work does not directly apply to this paper, but rather to the
general approach we are attempting to develop. In recent years, many novel auction designs
have been implemented in practice. When faced with such “novelties”, bidders cannot be
expected to have learned to play equilibrium strategies—even if, say, they may be reasonably
expected to have learned the shape of each other’s valuation functions, each other’s signal
distribution, and so on.

In such situations, we find the case for an analysis based on strategic sophistication alone
particularly compelling. We hope that the methodology of this paper can be extended to
more complex bidding games.

This paper employs an interim notion of rationality: different types of the same player
are allowed to hold different beliefs about the bidding behavior of his opponents. Corre-
spondingly, our results characterize interim rationalizability.

The latter solution concept involves the iterative deletion, for each possible type, of bids
that cannot be justified by beliefs consistent with progressively higher degrees of strategic
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sophistication. A direct application of this procedure to bidding games would be analytically
cumbersome and numerically intractable.

Our main technical contribution is to provide a more efficient implementation of interim
rationalizability in the setting under consideration. The methodology we propose entails
constructing bounds on the set of rational(izable) bids for a given type (valuation, signal),
and then proving that every bid within these bounds is rational(izable).

A stronger solution concept, ex ante rationalizability, may alternatively be adopted to
study bidding games. In particular, under the independent-types hypothesis, the beliefs
of a player about his competitors’ bidding functions are independent of his valuation (more
generally, his signal), while interim rationalizability allows for type-dependent beliefs. There-
fore, our analysis does provide bounds on ex ante rationalizable bidding strategies, but these
bounds need not be tight.

Which solution concept (interim or ex ante) is more appropriate depends on our interpre-
tation of the formal asymmetric-information model. If it represents a situation with genuine
incomplete information without an ex ante stage (as in some auctions with independent,
private values), then interim rationalizability is appropriate. If it represents a situation
where the bidders obtain information about the outcome of a random experiment (as in
most common-value auctions), then ex ante rationalizability is appropriate.3

The remainder of the paper is organized as follows. Section 2 introduces our basic
methodology and characterization result in the simplified setting of symmetric IPV auctions.
In particular, for each possible valuation, we characterize the highest bid of a rational player
(for each valuation) who believes that his opponents do not bid above a given type-dependent
upper bound (e.g., the identity function). Section 3 extends the result to asymmetric auctions
with interdependent values and affiliated signals. These results are used in Section 4 to obtain
an iterative characterization of interim rationalizable bids in auctions. Section 5 discusses
the relationship with experimental evidence, and indicates a number of extensions of our
results. The Appendix contains some proofs and ancillary results.

2. The Symmetric IPV Model

Consider the following game with asymmetric information representing a single-object, first-
price auction with private values and risk-neutral bidders. There are n players, or bidders.
Each bidder i knows her valuation for the object vi ∈ [0, 1], but does not know the valuations
of her competitors. Beliefs about the competitors valuations are derived from a common prior
cumulative distribution function (c.d.f.) F : [0, 1]n → [0, 1]. Each player chooses a bid b ≥ 0

3The difference between ex ante and interim rationalizability is related to the difference between ex ante
and interim dominance (see Fudenberg and Tirole [10], pp 226-228). Morris and Skiadas [17] compares ex
ante and interim rationalizability in trading games.
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which in general depends on her valuation. The object is assigned to one of the high bidders,
breaking ties at random. The winner pays her bid, losers do not pay anything.

2.1. Assumptions and Notation

We assume that valuations are identically and independently distributed according to a
continuous strictly positive density.

Assumption 2.1. For all (x1, ..., xn) ∈ [0, 1]n, F (x1, .., xn) =
∏n

i=1 G(xi), where G is an
absolutely continuous c.d.f. with continuous density g bounded away from zero.

We refer to an auction game satisfying Assumption 2.1 as the symmetric IPV model,
where “IPV” stands for Independent Private Values.

Random variables and beliefs. From the point of view of a bidder, her competitors’ bids
are random variables. We use boldface letters to denote random variables. A function
(random variable) bj : [0, 1] → R+ can be interpreted as a conjecture of Player i about
the bidding behavior of Player j—a description of how Player j would bid for any possible
valuation vj.

4 To allow for the possibility that a player is uncertain about the bidding
behavior of her competitors, we model beliefs as probability distributions over (n− 1)-tuples
of bidding functions (random variables). Let Bj denote the jth copy of the set of bounded
functions with domain [0, 1] and range R+, interpreted as the set of conjectures about j. The
set of possible conjectures for Bidder i about her competitors is B−i =

∏
j 6=i Bj. A belief for

Player i is a probability measure on B−i, that is, an element µ of the set ∆(B−i).
56 With a

slight abuse of notation we identify a belief µ assigning probability one to a tuple b−i ∈ B−i

with b−i itself. As a matter of terminology, we refer to elements b−i ∈ B−i as conjectures.
Thus, in our setting conjectures are degenerate beliefs.

Inequalities and probabilities of events. Inequalities between random variables are inter-
preted as pointwise inequalities which hold almost everywhere. For example, bj < Bj if and
only if the set of sj such that bj(sj) ≥ Bj(sj) has (Lebesgue) measure zero. Similarly, in-
equalities between tuples of random variables are interpreted as coordinate-wise inequalities:
b−i < B−i if and only if bj < Bj for all j 6= i. Degenerate random variables and tuples of
identical degenerate random variables are represented by the corresponding real numbers.

4We need not interpret bj as a bidding strategy chosen ex ante.
5Our results do not depend on the choice of a specific sigma-algebra of measurable subsets of B−i. We

only require that singletons be measurable, so that degenerate beliefs belong to ∆(B−i).
6Note that we allow for correlated choices of bidding functions, and hence spurious correlation among

opponents’ bids. However, the formulation in the text does entail a mild restriction: Player i cannot believe
that Player j’s bid is a function of the valuation of competitor k. This (plausible) restriction does play a
role in the analysis of the general interdependent values model, but not it in the present setting.
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The probability of subsets of [0, 1] or [0, 1]n−1 obtained from the c.d.f. G is denoted by Pr[·].
Thus, for example, Pr[b−i ≤ b] is the probability that b is the high bid given conjecture b−i.

Expected payoff. For any belief µ ∈ ∆(B−i), let P (b; µ) denote the probability of winning
the object with bid b given belief µ. Note that P (·; µ) is a nondecreasing7 function with (an
at most countable set of) discontinuity points at bids that yield ties with positive probability
according to belief µ. The expected payoff for a bidder with valuation v and belief µ who
bids b is

π(b, v; µ) = (v − b)P (b; µ);

also let π∗(v; µ) = supb≥0 π(b, v; µ).
Observe that, for any pair of real-valued functions π′ and π′′ with the same domain, if

π′(x) ≤ π′′(x) for all x, then supx π′(x) ≤ supx π′′(x). Therefore we obtain the following
obvious remark:

Remark 1. For any two beliefs µ′, µ′′ ∈ ∆(B−i), suppose that

∀b ≥ 0, P (b; µ′) ≤ P (b; µ′′).

Then
∀v ∈ [0, 1], π∗(v; µ′) ≤ π∗(v; µ′′).

In particular, this is true when µ′ and µ′′ are given by symmetric conjectures B′
−i =

{B′,B′, ...} and B′′
−i = {B′′,B′′, ...} where B′ and B′′ are functions such that B′ ≥ B′′.

Positive probability of winning. We assume that beliefs µ satisfy the following restriction:
for all bids b > 0, the probability of winning the object is positive. We let

∆+(B−i) = {µ ∈ ∆(B−i) : ∀b > 0, P (b; µ) > 0}

denote this restricted set of beliefs. Clearly, a rational bidder with belief µ ∈ ∆+(B−i) would
not choose a bid above her valuation, nor the zero bid (unless her valuation is zero). Thus,
restricting attention to beliefs µ ∈ ∆+(B−i) entails a form of cautiousness.

2.2. Upper Bounds on Best Responses

We now turn to the main result of this section. Consider a nondecreasing, bounded and
measurable bid function B. The intended interpretation is as follows: for every competitor
j 6= i and valuation v ∈ [0, 1], Bidder i is certain that, if Bidder j’s valuation is v, then he
bids less than B(v).

7Throughout the paper we call a function h increasing if x′ > x′′ implies h(x′) > h(x′′), and we call h
nondecreasing if x′ > x′′ implies h(x′) ≥ h(x′′).
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For instance, one may wish to assume that Bidder i is certain that her opponents never
bid above their valuations: to reflect this, let B(v) = v for every v ∈ [0, 1].

Let B−i = {B,B . . .}. We wish to characterize the set of interim best replies to beliefs
in ∆+(B−i) assigning probability one to bids below this common upper bound. The set of
such beliefs for Bidder i is

∆+(B−i;B−i) =
{
µ ∈ ∆+(B−i) : µ ({b−i : b−i < B−i}) = 1

}
.

Theorem 2.2. Let B : [0, 1] → R+ be a nondecreasing function such that B > 0, and define
B−i = {B,B . . .}. Then, for every bid b∗ > 0 and valuation v ∈ [0, 1],

(1) if b∗ > v − π∗(v;B−i), then b∗ is not a best reply for v to any belief µ ∈ ∆+(B−i;B−i);
(2) if b∗ < v−π∗(v;B−i), then b∗ is a strict best reply for v to some belief µ∗ ∈ ∆+(B−i;B−i);
(3) furthermore,

π∗(v;B−i) = sup
b≥0

{
(v − b) · Pr[B−i ≤ b]

}
= inf

µ∈∆+(B−i;B−i)
π∗(v; µ)

and the supremum is attained.

Proof. We prove (1) using (3). The proof of (2) is sketched below. See the Appendix
for a proof of (3) and a complete proof of (2).

(1) Fix a belief µ ∈ ∆+(B−i;B−i). If v = 0, then π∗(v; µ) = 0; since b∗ > 0 = v and
P (b, µ) > 0 for all b > 0, (1) follows. For the same reason, if v > 0, we can focus on bids
b∗ ∈ (0, v). Notice that, for such bids, 0 < π(b∗, v; µ) ≤ v−b∗; therefore, if v−b∗ < π∗(v;B−i),
we get

π(b∗, v; µ) ≤ v − b∗ <

< π∗(v;B−i) =

= inf
µ′∈∆+(B−i;B−i)

π∗(v; µ′) ≤
≤ π∗(v; µ)

where the equality follows form (3); thus, b∗ cannot be a best reply to belief µ. Since the
latter was chosen arbitrarily in ∆+(B−i;B−i), the proof is complete.

We now sketch the argument for (2); see the Appendix for the actual proof. First, note
that b∗ < v − π∗(v;B−i) implies that b∗ < v, because π∗(v;B−i) ≥ 0.

The proof is constructive; we exhibit a bid function gb∗ : [0, 1] → R+ such that the
conjecture gb∗

−i = {gb∗ ,gb∗ . . .} is consistent with the assumed restrictions on Bidder i’s
beliefs, and b∗ is the unique best reply to it. In particular, we ensure that Pr[gb∗

−i < b∗] = 1,
so that π∗(v;gb∗

−i) = v − b∗.
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Figure 2.1: The bid function gb∗ (L) and the corresponding payoff function for Bidder i (R).

The main features of the function gb∗ are apparent in Figure 2.1. Assume for simplicity
that the upper bound B is continuous, increasing, and such that B(0) = 0; also, choose
δ > 0 small. Then gb∗ approximates B from below until the point v̄ where B(v̄) = b∗ − δ;
for v > v̄, it is defined as the line segment joining the points (v̄, b∗ − δ) and (1, b∗).

If δ is sufficiently small, then Bidder i loses by decreasing her bid from b∗ to b ∈ [b∗−δ, b∗)
because the payoff reduction corresponding to a decrease in the probability of winning is
larger than the payoff increase due to the lower price paid conditional on winning.

On the other hand, gb∗ can be chosen to approximate B close enough for v ∈ [0, v̄] that
maxb∈[0,b∗−δ] π(b, v;gb∗

−i) ≈ maxb∈[0,b∗−δ] π(b, v;B−i) ≤ π∗(v;B−i) < v − b∗; hence, b∗ is the
unique best reply to b∗.

The proof in the Appendix allows for discontinuous and nondecreasing upper bounds, as
well as for the possibility that B > b almost surely for some b > 0.

As a consequence of Theorem 2.2, we can characterize our restriction on beliefs in terms
of weak dominance and best replies. A bid b is weakly dominated for valuation vi if there is
another bid b′ such that π(b, vi;b−i) ≤ π(b′, vi;b−i) for all b−i ∈ B−i and the inequality is
strict for at least one b−i.

Proposition 2.3. For all v > 0 and b∗, the following conditions are equivalent:
(i) there exists some µ ∈ ∆+(B−i) such that π∗(v; µ) = π(b∗, v; µ),
(ii) 0 < b∗ < v,
(iii) b∗ is not weakly dominated for valuation v.

Proof. The result is obvious for b∗ = 0 and b∗ ≥ v.
Suppose that 0 < b∗ < v and consider a high upper bound B−i = b > 1. Clearly,

π∗(v;B−i) = 0 and the set of best replies to beliefs in ∆+(B−i) and ∆+(B−i;B−i) coincide.
Therefore, Theorem 2.2 implies that (i) and (ii) are equivalent. Furthermore, Theorem 2.2
(2) implies that b∗ is the unique best reply to some belief b−i ∈ ∆+(B−i) for v. Therefore b∗

cannot be weakly dominated for v.
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Theorem 2.2 shows that for every (common) least upper bound B : [0, 1] → R+ on the
bids of the opponents we can derive a least upper bound on the interim best replies of Player
i. We denote by φB the new upper bound, that is,

∀v ∈ [0, 1], φB(v) = v − π∗(v;B−i),

where B−i = {B,B, ...}. The following proposition lists some useful properties of the map
φB.

Proposition 2.4. For every continuous, increasing function B such that B(0) = 0, the
function φB satisfies the following properties:
(1) φB(0) = 0 and 0 < φB(v) ≤ v for all v ∈ (0, 1].
(2) max{arg maxb≥0 π(b, v;B−i)} ≤ φB(v) ≤ B(1) (where B−i = {B,B, ...}).
(3) φB is concave (hence continuous).
(4) There exists a valuation vB such that φB is increasing on [0, vB) and φB(v) = B(1) for
all v ∈ [vB, 1].

Proof. First note that, since B is increasing, ties have probability zero and P (·;B−i)
is continuous. Therefore, π∗(v;B−i) = max0≤b≤1 π(b, v;B−i) and arg max0≤b≤1 π(b, v;B−i) is
nonempty and compact.

Let b∗(v) = max{arg max0≤b≤1 π(b, v;B−i)} and b∗(v) = min{arg max0≤b≤1 π(b, v;B−i)}.
(1) Since π∗(0;B−i) = 0, φB(0) = 0. Since B is continuous and B(0) = 0, P (b;B−i) > 0

for all b > 0, which implies B−i ∈ ∆+(B−i) (recall that we let B−i denote also the degenerate
belief assigning probability one to conjecture B−i). By Proposition 2.3, for all v > 0 and
b′ ∈ arg max0≤b≤v π(b, v;B−i), 0 < b′ < v. Thus, π∗(v;B−i) = (v − b′)P (b′;B−i) ∈ (0, v),
which implies φB(v) = v − π∗(v;B−i) ∈ (0, v).

(2) For all b < B(1) = maxw B(w), P (b;B−i) < 1 and π(b, v;B−i) = (v − b)P (b;B−i) <
v − b; while π(b, v;B−i) = v − b if b ≥ B(1). Therefore, either b∗(v) = φB(v) = B(1) or
b∗(v) < φB(v) < B(1).

(3) The payoff function π(b, v;B−i) = (v−b)P (b;B−i) is linear in v. Thus, by a standard
argument, the value function π∗(v;B−i) is convex in v, which implies that φB(v) = v −
π∗(v;B−i) is concave.

(4) By the envelope theorem, for any ∆v > 0

lim
α↓0

π∗(v + α∆v;B−i)− π∗(v;B−i)

α∆v
= P (b∗(v);B−i),

lim
α↓0

π∗(v;B−i)− π∗(v − α∆;B−i)

α∆v
= P (b∗(v);B−i),

where the first (second) limit exists because, by concavity of π∗, the right (left) incremental
ratio is non-increasing (non-decresing) in α (cf. [1], p. 133). Therefore

lim
α↓0

φB(v + α∆v)− φB(v)

α∆v
= [1− P (b∗(v);B−i)] ∈ [0, 1],
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lim
a↓0

φB(v)− φB(v −∆v)

α∆v
= [1− P (b∗(v);B−i)] ∈ [0, 1].

The same holds for the right derivative in v = 0 and the left derivative in v = 1. Define vB =
inf{v : P (b∗(v);B−i) = 1} (let inf ∅ = 1 for notational convenience). Since P (b;B−i) < 1 for
all b < B(1) and P (b;B−i) = 1 for all b ≥ B(1), φB is increasing on [0, vB) and constant on
[vB, 1].

3. The General Interdependent-Values Model

Consider the following game with asymmetric information representing a single-object, first-
price auction with (possibly) interdependent values and risk-neutral bidders. There are n
players, or bidders. Each bidder i observes a random signal si with realizations si in the
compact interval Si = [0, 1]. Signals are distributed according to the joint c.d.f. F : S →
[0, 1], where S =

∏n
i=1 Si.

After observing her signal, each player chooses a bid b ≥ 0. The object is assigned to one
of the high bidders, breaking ties at random. The winner pays her bid, losers do not pay
anything.

Bidder i′s value for the object is given by a function (random variable) vi : S → R.
For example, in an auction with private values vi(s1, ..., si, ..., sn) = si. In an auction with
common values vi(s1, ..., sn) = v(s1, ..., sn) is the expected value of the object conditional on
the realization (s1, ..., sn).

Conditional expectations and probabilities. The expected value of a random variable
x : S → R conditional on realization si is denoted E[x|si] and the expected value of x
conditional on si and event C−i ⊂ S−i is denoted E[x|si, C−i]. For example,

E[vi|si,b−i ≤ b] =

∫

[b−i≤b]

vi(si, s−i)dF−i|i(s−i|si)

is the expected valuation for Bidder i conditional on the signal and the event that b is the
high bid.

A similar notation is used for conditional probabilities: the probability of event A−i ⊂ S−i

given si and C−i ⊂ S−i is denoted Pr[A−i|si, C−i] and C−i is omitted if C−i = S−i. For
example,

Pr[b−i ≤ b|si] =

∫

[b−i≤b]

dF−i|i(s−i|si)

is the conditional probability that b is the high bid given conjecture b−i.
We consider beliefs assigning zero probability to ties. Given such a belief µ ∈ ∆(B−i),

the expected payoff of bidding b conditional on signal si is

πi(b, si; µ) =

∫

B−i

E[vi − b|si,b−i ≤ b] Pr[b−i < b|si]µ(db−i).
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As in Section 2, let
π∗i (si; µ) = sup

b≥0
πi(b, si; µ).

Bid b is a best reply to belief µ for type si if π(b, si; µ) = π∗(si; µ).

3.1. Assumptions

Assumption 3.1. The cumulative distribution function F is absolutely continuous, with
continuous density f bounded away from zero.

Assumption 3.2. For each bidder i, the value function vi : S → R is continuous, non-
negative, increasing in the i th argument and nondecreasing in all the other arguments.

Non-negativity and monotonicity of the value function imply that the expected valuation
conditional on a player’s signal is positive:

Remark 2. For each player i and each signal si > 0,

E[vi|si] > 0. (3.1)

We also assume that signals are affiliated. As is well-known from Milgrom and Weber [16]
(MW henceforth), this is equivalent to the supermodularity of log f . For any pair of vectors
(x, y) ∈ Rn×Rn let x∨y and x∧y denote the componentwise maximum and minimum respec-
tively, i.e., x ∨ y = (max(x1, y1), ..., max(xn, yn)) and x ∧ y = (min(x1, y1), ..., min(xn, yn)).

Assumption 3.3. For all s, s′ ∈ S,

f(s ∨ s′)f(s ∧ s′) ≥ f(s)f(s′), (3.2)

Two key properties of affiliated random variables will be employed here:

Remark 3. (cf MW, Theorem 4) For every nonempty J ⊂ N , and for every K ⊂ N disjoint
from J , the random variables {sj}j∈J are affiliated conditional upon the realizations of the
(possibly empty) collection of random variables {sk}k∈K .

Remark 4. (MW, Theorem 5) For every random variable H : S → R, if H is nondecreasing
in each argument, then the conditional expectation function

h(x1, y1, . . . , xn, yn) = E[H|x1 ≤ s1 ≤ y1, . . . , xn ≤ sn ≤ yn]

is nondecreasing in each argument.

We refer to an auction game satisfying Assumptions 3.1, 3.2 and 3.3 as the interdependent-
values model.
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3.2. Upper Bounds on Best Responses

It is often said that a player bidding close to her expected valuation E[vi|si] is subject to the
winner’s curse, because she is not taking into account that if she wins the object it must be
the case the competitors have observed low signals. This argument relies on the assumption
that Player i thinks that her competitors are using increasing bidding functions. To see
this, note that if Bidder i has conjecture b−i and b−i is increasing (in each component),
then the expected valuation conditional on (the signal and) the event of winning the object
is E[vi|si,b−i ≤ b] ≤ E[vi|si], where the inequality is strict in non-degenerate cases. But if
conjecture b−i is not increasing, then it may be the case that E[vi|si,b−i ≤ b] > E[vi|si] and
also the best response to b−i is above E[ vi|si].

To analyze the behavior of strategically sophisticated bidders who are not subject to
the winner’s curse, we restrict our attention to beliefs that assing positive weight only to
increasing bidding functions (including in the support of beliefs nondecreasing bidding func-
tions with flat segments involves technical complications that are briefly discussed in the
Appendix). Furthermore, we continue to assume that a player believes that every positive
bid yields a positive probability of winning the object. Formally, let Mj denote the set of
monotone increasing bidding functions for Player j and let M−i =

∏
j 6=iMj. Then the set

of Bidder i’s beliefs we restrict our attention to is

∆+(M−i) =

{
µ ∈ ∆(M−i) : ∀b > 0,

∫

M−i

Pr[b−i ≤ b|si]µ(db−i) > 0

}
,

where si on the right hand side is arbitrary.8

Let B−i = {Bj}j 6=i be an arbitrary upper bound on the bids of Player i’s competitor.
The main result of this section characterizes the set of interim best replies to “monotonic”
beliefs assigning probability one to bids below this upper bound. The set of such beliefs is

∆+(M−i;B−i) =
{
µ ∈ ∆+(M−i) : µ ({b−i : b−i < B−i}) = 1

}
.

Theorem 3.4. Let Bj : [0, 1] → R+, j ∈ N\{i}, be nondecreasing functions such that
Bj > 0. For every bid b∗ > 0 and signal si ∈ [0, 1],

(1) if b∗ > E[vi|si] − infµ∈∆+(M−i;B−i) π∗(si; µ), then b∗ is not a best reply to any belief
µ ∈ ∆+(M−i;B−i) for si;
(2) if b∗ < E[vi|si] − infµ∈∆+(M−i;B−i) π∗(si; µ), then b∗ is a strict best reply to some belief
µ ∈ ∆+(M−i;B−i) for si.
(3) Furthermore,

inf
µ∈∆+(M−i;B−i)

π∗(si; µ) = sup
b≥0

{ (
E[vi|si,B−i < b]− b

)
Pr[B−i < b|si] +

8By Assumption 3.1, for every si, the conditional density f−i|i(·|si) is bounded away from zero; hence
the expression on the right hand side is independent of si.
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+ max
{

0,
(
E[vi|si,B

max
−i = b]− b

)
Pr[Bmax

−i = b|si]
}}

and the supremum is attained.

Note that if B−i is increasing, then the right hand side of the above equality is simply
π∗(si;B−i) and the expression for the new upper bound on i’s bids is very similar to the one
found for the IPV model. Note also that the given bound B−i can be chosen so high that
infµ∈∆+(M−i;B−i) π∗(si; µ) = 0 (e.g. let minsj

BG
j (sj) > maxs vi(s)). Therefore we obtain:

Corollary 3.5. The set of best replies for si > 0 to beliefs in ∆+(M−i) is the interval
(0, E[vi|si]).

For any tuple of nondecreasing functions B−i = {Bj}j 6=i, define φ
B−i

i (si) = E[vi|si] −
infµ∈∆+(M−i;B−i) π∗i (si; µ). The following result generalizes Proposition 2.4:

Proposition 3.6. For every tuple of non-decreasing functions B−i ∈ B−i such that B−i > 0,
the function φ

B−i

i satisfies the following properties:

(1) 0 < φ
B−i

i (si) ≤ min
(
E[vi|si], maxj 6=i limsj↑1 Bj(sj)

)
for all si ∈ (0, 1].

(2) φ
B−i

i is continuous.

(3) There exists a signal s
B−i

i such that φ
B−i

i is increasing on [0, s
B−i

i ) and φ
B−i

i (si) =

maxj 6=i limsj↑1 Bj(sj) for all si ∈ [s
B−i

i , 1].

4. Rationalizable Bids

The standard definition of (interim) rationalizability captures the implications of the as-
sumption that bidders are (interim) rational and there is common certainty of this fact. We
analyze a strengthening of this definition because we also assume that bidders’ beliefs satisfy
some restrictions, and that there is common certainty of this fact (see, e.g., Battigalli [2]).

Let ∆i ⊂ ∆(B−i) be a restricted set of beliefs and let ∆ = (∆1, ..., ∆n). In particular,
we consider the case ∆i = ∆+(B−i) for the symmetric IPV model (see Section 2), and the
case ∆i = ∆+

i (M−i) for the interdependent values model (see Section 3). The following
definition of ∆-interim rationalizability captures the implications of the assumption that (a)
the bidders are expected payoff maximizers, (b) for each bidder i = 1, ..., n, i’s beliefs belong
to ∆i (but different bidders and different types of the same bidder may have different beliefs),
and (c) there is common certainty of (a) and (b).

Definition 4.1. For all i = 1, ..., n, si ∈ [0, 1] and k = 0, 1, ... let R∆
i (v; 0) = R+, ∆i(0) =

∆i,
R∆

i (si; k + 1) = {b ≥ 0 : ∃µ ∈ ∆i(k), πi(b, v; µ) = π∗(v; µ)} ,
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∆i(k + 1) =
{
µ ∈ ∆i : µ

({
b−i : ∀j 6= i,∀sj ∈ [0, 1],bj(sj) ∈ R∆

j (sj; k + 1)
})

= 1
}

.

Finally, for all i = 1, ..., n and si ∈ [0, 1], let R∆
i (si;∞) =

⋂
k>0R∆

i (si; k). A bid b is interim
∆-rationalizable for type si of Bidder i if b ∈ R∆

i (v,∞).

For k = 0, 1, . . . ,∞, we denote by R∆
i (k) the set of selections from R∆

i (·; k); that is,
for any conjecture bi ∈ Bi, we write bi ∈ R∆

i (k) if and only if, for all si ∈ [0, 1], bi(si) ∈
R∆

i (si; k).
The following remarks are immediate consequences of the preceding definition.

Remark 5. For all i ∈ N , si ∈ (0, 1] and b ≥ 0, b ∈ R∆
i (si;∞) if and only if there exists

some belief µ ∈ ∆i such that µ
(R∆

−i(∞)
)

= 1 and πi(b, si; µ) = π∗i (sj; µ).

Remark 6. Let (beq
1 , ...,beq

n ) be a Bayesian Nash equilibrium such that beq
−i ∈ ∆i, i ∈ N .

Then, for all i ∈ N and si ∈ [0, 1], the equilibrium bid beq
i (si) is interim ∆-rationalizable for

si.

4.1. Rationalizability in the Symmetric IPV Model

Consider the symmetric IPV model of Section 2 and let ∆i = ∆+(B−i) (i ∈ N), that is,
consider beliefs such that every positive bid yields a positive probability of winning the object.
To simplify the notation omit the superscript ∆ from the set of interim ∆-rationalizable
strategies. Since the model is symmetric, we also drop the bidder’s subscript whenever this
causes no confusion.

By Proposition 2.3, the procedure given by in Definition 4.1 is equivalent to performing
one round of elimination of all weakly dominated bids for each type, followed by the iterated
elimination of strictly dominated bids for each type.9

Remark 7. By Proposition 2.3, R(v; 1) = (0, v) for all v ∈ (0, 1] and R(0; k) = {0} for all
k. This implies that for all µ and all k = 1, 2, ..., µ ∈ ∆(k) if and only if

µ ({b−i : ∀j 6= i, ∀sj ∈ [0, 1],bj(sj) ∈ R(sj; k)}) = 1,

that is, the condition ∀b > 0, P (b; µ) > 0 is superfluous because it is implied by the condition
above.

We are now ready to state the main characterization result of this subsection. We derive a
pointwise (weakly) decreasing sequence of upper bounds on rationalizable bids. These bounds
exactly characterize each step k of the rationalizability procedure given by Definition 4.1,

9The “ex ante version” of this procedure was first put forward and motivated by Dekel and Fudenberg
[5]. Since then, several papers provided other epistemic characterizations. See Section 6 in the survey by
Dekel and Gul [6] and the references therein.
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hence each assumption of the form “(everybody is certain that)k−1 everbody is rational and
believes that positive bids win with positive probability” (k = 1, 2,...). Define B(v; 1) = v,
B(v; k + 1) = v − π∗(v;B−i(·; k)) for all v (where B−i(·; k) = {B(·;k),B(·; k), ...}). Since
π∗(v;B−i(·; k)) ≥ 0, we have B(·; 1) ≥ B(·; 2) and, by induction, Remark 1 yields B(·; k) ≥
B(·; k + 1) for all k. Therefore we can define B(v;∞) = limk→∞B(v; k) for all v. Note also
that, for all k, π∗(0;B−i(·; k)) = 0; thus, B(0, k) = 0.

Theorem 4.2.
(1) For all k = 1, 2, ... and v ∈ (0, 1], the interior of R(v; k) is the open interval (0,B(v; k));
the upper bound B(·; k) is increasing and concave.
(2) For all v ∈ (0, 1], the interior of R(v;∞) is the open interval (0,B(v;∞)), where
B(v;∞) = v − π∗(v;B−i(·;∞)); the upper bound B(·;∞) is nondecreasing and concave.

Proof. (1) The statement is true for k = 1. Suppose it is true for some k. Then Theorem
2.2 implies that the interior of R(v; k + 1) is (0, v − π∗(v;B−i(·; k)) = (0,B(v; k + 1) for all
v ∈ (0, 1].

By way of contradiction, suppose that B(·; k +1) is not increasing. Then Proposition 2.4
(4) implies that there is some vk < 1 such that B(v; k +1) = B(1; k) for all v ∈ [vk, 1]. Since
B(·; k) is increasing (by the inductive hypothesis), we obtain B(v; k+1) = B(1, k) > B(v; k)
for some v < 1, which contradicts B(v; k + 1) ≤ B(v; k).

Concavity is a consequence of Proposition 2.4 (3).
(2) Clearly, part (1) implies that the interior of R(v;∞) is (0,B(v;∞)) for all v > 0 and

that B(0;∞) = 0. Since each B(·; k) is increasing and concave, B(·;∞) must be nondecreas-
ing and concave. Moreover, the symmetric IPV model has a symmetric equilibrium beq which
satisfies beq(0) = 0, beq > 0 and, by Remark 6, beq < B(·; k). Hence 0 < beq ≤ B(·;∞), so
the function B(·;∞) satisfies the hypotheses of Theorem 2.2 and the interior of the set of
best responses for type v to beliefs in ∆+(B−i;B−i(·;∞)) must be (0, v − π∗(v;B−i(·;∞)).
Then, by Remark 5 (0, v − π∗(v;B−i(·;∞)) must coincide with (0,B(v;∞)), the interior of
R(v;∞).

It is instructive to compare the predictions of equilibrium analysis and interim ∆-rationalizability.
Observe that the symmetric IPV model has a unique symmetric equilibrium bidding func-
tion, which must be incresing and continuous. Let beq(v) denote the equilibrium bid of
type v. Theorem 4.2 and Remark 6 imply that every bid below the equilibrium is interim
rationalizable. Thus, we have:

Corollary 4.3. For all v > 0, all bids b ∈ (0,beq(v)] are interim rationalizable for type v.

Moreover, we can show that this implies that some bids above the equilibrium are ∆-
rationalizable. Recall that φB(v) = v−π∗(v;B−i) is the new bound on best replies obtained
by a given upper bound B on beliefs.
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Lemma 4.4. φbeq

(1) = beq(1), beq(v) < φbeq

(v) < beq(1) for all v ∈ (0, 1) , and φbeq

is
increasing. Every bid b ∈ (0, φbeq

(v)) is interim ∆-rationalizable for v, for all v ∈ (0, 1] .

Proof. The equilibrium condition and Proposition 2.4 (2) imply that π∗(v;beq
−i) = (v −

beq(v))P (beq(v);beq
−i) ≤ v − beq(v) and beq(v) ≤ φbeq

(v) ≤ beq(1). Since beq is increasing,
beq(v) ≤ beq(1), P (beq(v);beq

−i) ≤ P (beq(1);beq
−i) and all the previous inequalities are strict,

if v < 1, while they hold as equalities if v = 1. Then, Proposition 2.4 (4) implies that φbeq

is
increasing. The second part of the statement follows from Corollary 4.3 and Theorem 2.2.

Corollary 4.5. For all v ∈ (0, 1) there is some above-equilibrium bid b > beq(v) such that
b is interim ∆-rationalizable for v.

It is well known that equilibrium bid increase with the number of players. A similar result
is true for the upper bound on ∆-rationalizable bids. Let Bn(·; k) (k = 1, 2, ...,∞) denote
the least upper bound at the k-th step of the rationalizability procedure in the n-person
auction game.

Proposition 4.6. For each step k = 2, 3, ..., the upper bound on k-rationalizable bids is
increasing in the number of bidders, that is, Bn(·; k) < Bn+1(·; k) for all n = 2, 3, ... .

Proof. For any fixed n, the proof is by induction on k. We use superscript n to denote
that a given mathematical object is defined for the n-person game. Note that Bn(v; 1) =
v = Bn+1(v; 1).

Now suppose that, for some k ≥ 1, Bn+1(·; k) ≥ Bn(·; k). We show that this implies
Bn+1(v; k + 1) > Bn(v; k + 1) for all v ∈ (0, 1).

By Remark 1 and Theorem 2.2 we have

Bn+1(v; k + 1) = v − πn+1,∗(v;Bn+1
−i (·; k)) ≥ v − πn+1,∗(v;Bn

−i(·; k)).

Now observe that for any continuous and increasing bidding function B with B(0) = 0 (such
as Bn(·; k)), and for any b ∈ (0,B(1)),

0 < G(B−1(b)) < 1 and (4.1)

P n+1(b;B−i) =
[
G

(
B−1(b)

)]n
<

[
G

(
B−1(b)

)]n−1
= P n(b;B−i),

which implies πn+1,∗(v;B−i) ≤ πn,∗(v;B−i) for all v.
Now we show that πn+1,∗(v;Bn

−i(·; k)) < πn,∗(v;Bn
−i(·; k)) for all v ∈ (0, 1). By way of

contradiction, suppose that πn+1,∗(v;Bn
−i(·; k)) ≥ πn,∗(v;Bn

−i(·; k)). Then, for some b∗ ∈
(0, v),

(v − b∗)P n+1(b∗;Bn
−i(·; k)) = πn+1,∗(v;Bn

−i(·; k)) ≥
πn,∗(v;Bn

−i(·; k)) ≥ (v − b∗)P n(b;Bn
−i(·; k))
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(recall that 0 cannot be a best reply). By (4.1), this can happen only if b∗ = Bn(1; k),
P n+1(b∗,Bn

−i(·; k)) = 1 = P n+1(b∗,Bn
−i(·; k)) and b∗ maximizes also πn(·, v;Bn

−i(·; k)). But,
by Proposition 2.4 (2) and Theorem 4.2 (1), this would imply Bn(v; k + 1) = Bn(1; k) >
Bn(v; k), which contradicts Bn(v; k + 1) ≤ Bn(v; k).

Therefore, using Theorem 2.2,

v − πn+1,∗(v;Bn
−i(·;k)) > v − πn,∗(v;Bn

−i(·;k)) = Bn(·; k + 1).

We conclude that Bn+1(v; k + 1) > Bn+1(v; k) for all v ∈ (0, 1).
We now turn to bid shading. The following proposition shows that interim ∆-rationalizability

implies substantial shading for high valuations, but only little shading for low valuations (of
course, interim ∆-rationalizability is consistent with extreme shading for all valuations be-
cause infR(v;∞) = 0).

Proposition 4.7. For all k = 2, 3, ...,∞, the “minimum-shading” function S(w; k) = w −
B(w; k) is increasing and convex, with S(0; k) = 0 and S(v; k) > 0 for all v ∈ (0, 1]. Therefore

the “minimum-shading-ratio” function S(v,k)
v

is positive and nondecreasing. However,

lim
v↓0

S(v, k)

v
= 0.

Proof. S(v; k) = π∗(v;B−i(·;k−1)) and B−i(·; k−1) ∈ ∆+(B−i) for all k ≥ 2. Therefore,
by the same argument as in the proof of Proposition 2.4 (3)-(4), S(.; k) is increasing and
convex, and S(v; k) > 0.

Next note that, by Theorem 4.2 4.2 and Remark 6 6, beq ≤ B(v; k − 1). Therefore,

S(v; k) = π∗(v;B−i(·;k − 1)) ≤ π∗(v;beq
−i) ≤ vP (v;beq

−i) = v [G(v)]n−1 ,

where the first inequality follows from Remark 1 1. Thus

0 ≤ lim
v↓0

S(v; k)

v
≤ lim

v↓0
[G(v)]n−1 = 0.

4.2. Rationalizability in the Interdependent-Values Model

Consider the interdependent values model of Section 3 and let ∆i = ∆+(M−i) (i ∈ N).
To simplify the notation, continue to omit the superscript ∆ from the set of interim ∆-
rationalizable strategies. Since the model need not be symmetric, we have to allow for
different upper bounds on the bids of different players and different sets of ∆-rationalizable
bids. Asymmetries may also cause the upper bounds to have a flat segment at the top.
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Let Bi(si; 1) = E[vi|si], Bi(si; k + 1) = E[vi|si] − infµ∈∆+(M−i;B−i(·;k)) π∗i (si; µ) for all
si. Since infµ∈∆+(M−i;B−i(·;k)) π∗i (si; µ) ≥ 0, we have Bi(·; 1) ≥ Bi(·; 2); by induction, if
Bi(·; k − 1) ≥ Bi(·; k) for some k > 1,

∆+(M−i;B−i(·; k − 1)) ⊃ ∆+(M−i;B−i(·; k)),

so that, for every si ∈ [0, 1],

inf
µ∈∆+(M−i;B−i(·;k−1))

π∗i (si; µ) ≤ inf
µ∈∆+(M−i;B−i(·;k))

π∗i (si; µ),

and hence Bi(·; k) ≥ Bi(·; k + 1) for all k. Thus, we can define Bi(si;∞) = limk→∞Bi(si; k)
for all si, and we obtain the following counterpart to Theorem 4.2 (we omit the proof because
it is similar to the proof of Theorem 4.2).

Theorem 4.8.
(1) For all k = 1, 2, ... and si ∈ (0, 1], the interior ofRi(si; k) is the open interval (0,Bi(si; k));
the upper bound Bi(si; k)) is non-decreasing and continuous.
(2) For all si ∈ (0, 1], the interior of Ri(si;∞) is the open interval (0,Bi(si;∞)); the upper
bound Bi(si; k)) is non-decreasing.

Theorem 4.8 provides weaker results on the upper bounds on rationalizable bids, because
we have generalized the model along several dimensions. First, when bidders are asymmetric,
the upper bounds can be flat at the top. Second, signals may be correlated and the valuation
function of Bidder i need not be linear in her own signal. This implies that the value
function π∗i (si;B−i) need not be convex in the signal, and the derived bound φ

B−i

i (si) =
E(vi|si)− π∗i (si;B−i) need not be concave.

However, there are interesting examples of interdependent-values models where (a) bid-
ders are symmetric10, (b) signals are independent, and (c) valuations functions are quasi-
linear : that is, for each bidder i, the valuation function has the form vi(si, s−i) = υi(s−i)si+
κi(s−i), where υi and κi are nondecreasing and υi > 0. A well-know example is the “wallet
game” (see Klemperer [15]). For such models we can replicate all qualitative results of the
symmetric IPV-model.

Proposition 4.9. If the signals are independent, the valuation functions quasi-linear and
bidders are symmetric, then the upper bounds Bi(·; k) are (identical for all bidders) increasing
and concave for all k = 1, 2, ...,∞ and i.

10That is, the c.d.f. F is symmetric and there exists a function v : [0, 1]×[0, 1]n−1 → R such that: (i) for ev-
ery s1 ∈ [0, 1], s−1 ∈ [0, 1]n−1, and permutation {π(2), . . . , π(n)} of {2, . . . , n}, v(s1, s−1) = v(s1, (sπ(j))j 6=1).
(ii) For every i ∈ N , and s = (si, s−i) ∈ S, vi(s) = v(si, s−i). See also Milgrom and Weber [16].
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Sketch of proof. Fix a common increasing bound B. Since vi is quasi-linear, E[vi −
b|si,B−i ≤ b] and E[vi|si] are also linear in si. By independence, Pr[B−i ≤ b|si] = Pr[B−i ≤
b]. Thus, the payoff function π(b, si;B−i) = E[vi − b|si,B−i ≤ b] Pr[B−i ≤ b] is linear in si

and, by a standard argument, the value function π∗(si;B−i) is convex in si, which implies
that φB(si) = E[vi|si]− π∗(si;B−i) is concave.

The proof that each bound B(·; k) is increasing relies on symmetry and is similar to the
proof for that symmetric IPV-model.

5. Discussion

This section discusses the relationship between our findings and the experimental evidence
on first-price auctions, and indicates a number of extensions. To fix ideas, we begin with an
overview of our results so far.

Our key analytical tool is a characterization of the best responses for a type to beliefs
satisfying certain restrictions. Specifically, if a (risk neutral) rational player i of type si

believes that his opponents are not going to bid above a given (type-dependent) upper

bound B−i, then she can choose any bid in the interval (si, φ
B−i

i (si)), where the derived

upper bound φ
B−i

i (si) is not higher than E(vi|si), the expected valuation of the good for
type si.

We then use this result to obtain an iterative characterization of interim rationalizable
bids. In the first step of the algorithm, we eliminate all the bids b ≥ Bi(si, 1) = E(vi|si).
This reflects a form of cautiousness: positive bids are expected to yield a positive probability
of winning the object, and hence weakly dominated choices cannot be best responses. In
subsequent steps k = 2, 3..., we apply our characterization result and derive an upper bound

Bi(si; k) = φ
B−i(·;k−1)
i (si) from the previous upper bound B−i(·; k−1); all bids in the interval

(0,Bi(si; k)) are k-rationalizable. This provides a relatively simple implementation of interim
rationalizability.

Finally, we show that, in the symmetric IPV model, the upper bound on rationalizable bid
is increasing, concave and strictly above the Nash equilibrium. Therefore, rationalizability is
consistent with bids above and below the equilibrium, and it implies substantial proportional
shading (bidding below the valuation) for high types. On the other hand, we show that, for
low types, the highest rationalizable bid is close to the valuation. Some of these conclusions
also hold for specific classes of interdependent-values models, such as “generalized wallet
games” (cf. [15]) and the “general symmetric model” of Milgrom and Weber [16].

Our analysis has implications for revenue comparisons in auctions with private values.
The “cautiousness” assumption rules out weakly dominated bids. In second -price auctions,
this form of cautiousness implies that players will bid their valuation. On the other hand,
without the full strength of Bayesian Nash equilibrium analysis, expected revenues in a first-
price auction can be lower or higher than in a second-price auction.
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Perhaps more interestingly, expected revenues in a first-price auction can be arbitrarily
close to zero, and will always be lower than they would be under truthful bidding.

Observe that, as the number of bidders grow, the equilibrium bid function approaches the
identity function. Thus, in rough, intuitive terms, in the limit revenue equivalence obtains
only in the “best scenario” (from the point of view of the seller) where players bid close to
their upper bound.

5.1. Experiments and Deviations From the Risk-Neutral Nash Equilibrium

There are (at least) three “stylized facts” emerging from the experimental studies on first
price auctions with private values, which we find relevant in relation to our theoretical
analysis:11

Overbidding. A large majority of subjects show a persistent tendency to bid above the
risk-neutral Nash equilibrium (RNNE).

Decreasing Proportional Deviations. Deviations from RNNE are proportionally smaller
for subjects with smaller valuations; in other words, the ratio

|actual bid-RNNE bid|
valuation

is negatively correlated with subjects’ private valuations.12

Heterogeneity. Bidding behavior is heterogeneous across subjects. 13

In a series of papers, Cox, Smith and Walker try to explain the data with a family of
models featuring bidders with heterogeneous degrees of (constant relative) risk aversion. In
such models, equilibrium bidding functions are linear (like the RNNE function) except for the
largest valuations, but have heterogenous slopes and are steeper than the RNNE (e.g., Cox
et al. [3, 4]). The risk-aversion explanation of Overbidding is controversial. In particular, it
leaves Decreasing Proportional Deviations largely unexplained. Furthermore, it is at odds
with experimental findings concerning different auction settings.14

We think that our paper sheds light on a different explanation of these experimental find-
ings: different subjects have different beliefs about the bidding behavior of their competitors

11See, for example, Kagel [13] for a survey about experiments on auctions.
12See, e.g., Kagel and Roth [14], p 1381.
13For example, Cox et al [3] reject the null hypothesis of a common bidding function in symmetric IPV

auctions.
14Other partial explanations of Overbidding involve (i) psychological biases related to frame effects and

the complexity of the decsion problem (e.g., Kagel [13], Section I.B), and (ii) lack of experimental control on
subjects incentives due to a small expected cost of deviations from the optimal bid (Harrison [12]). Section
I.G in Kagel [13] provides a discussion of the debate about the risk-aversion explanation. Kagel and Roth
[14] presents Decreasing Proportional Deviations as one of the empirical findings at odds with the constant
relative risk aversion model. A recent experimental paper by Goeree et al. [11] provides support for the
risk-aversion explanation.
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and the limited feedback they get from the outcomes of previous auctions prevents them
from approaching the equilibrium sufficiently fast (e.g., Friedman [8]). But even if subjects
do not hold equilibrium beliefs, they may be sophisticated enough to take into account that
their competitors’ behavior satisfies some rationality restrictions and, possibly, that also
their opponents’ beliefs conform to analogous assumptions. Our paper identifies the least
upper bound on bids of strategically sophisticated, risk-neutral bidders with heterogenous
beliefs. Since the upper bound is above the (linear) RNNE and concave, Overbidding and
Decreasing Proportional Deviations are qualitatively consistent with risk-neutrality and (a
degree of) strategic sophistication.

We regard non-equilibrium (but strategically sophisticated) bidding as a complementary
explanation of experimental findings, which can be integrated with risk-aversion. We show
in the Appendix how risk-aversion can be incorporated into our analysis.

Experimental evidence suggests a number of extensions to our results. First, our analysis
so far does not offer an explanation of the asymmetry in subjects’ deviations from RNNE
(i.e. the tendency to bid above the RNNE), nor does it explain why very small bids are
so rare for subjects with intermediate or high valuations. Second, it may be argued that
rational bidders should form their beliefs about the competitors and make plans before they
are told their valuation, and therefore ex ante rationalizability is a more appropriate solution
concept in this context. Third, in most experimental settings there is an (explicit or implicit)
minimum bid increment. We discuss these issues in the following subsections.

5.2. Lower Bounds and Upper Bounds

Theorems 4.2 and 4.8 show that imposing successively higher-order mutual belief in the
assumptions that players are rational, and that positive bids win with positive probability,
yields a decreasing sequence of tight upper bounds B(·; k) on the set of best replies for every
bidder type. However, arbitrarily small but positive bids are interim rationalizable.

In view of the experimental findings mentioned above, it may be interesting to exoge-
nously specify a lower bound L ∈ B−i to players’ bids, and investigate the consequences of
the further assumption that (it is mutual belief that) players do not expect their opponents
to bid below L.

It turns out that Propositions 2.2 and 3.4 may be extended to characterize the set of
best replies to beliefs consistent with the assumption that positive bids win with positive
probability, and that opponents j’s bids always lie between a given upper bound Bj and a
given lower bound Lj. The Appendix provides some details for the symmetric IPV case and
in particular indicates necessary and sufficient conditions for the extension to be feasible.

It can be shown that the introduction of a lower bound only affects the derived upper
bound for low types. Moreover, calculations for IPV models commonly used in experiments
show that Proposition 2.2 and Theorem 4.2 do extend as required in a number of interesting
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cases; however, the differences between the derived upper bounds with and without a given
lower bound are numerically small.

Finally, it is interesting to note that, even in a symmetric IPV setting, derived lower
bounds may lie below the exogenously specified lower bound L, at least for some types. For
instance, this is always the case for type v = 1, provided the exogenous lower bound lies
below the Nash equilibrium bidding function.

We again refer the reader to the Appendix for a discussion of these issues.

5.3. Ex Ante Rationalizability

Our analysis of interim rationalizability provides an upper bound on ex-ante rationalizable
bidding functions, but we are not able to show the the upper bound is tight.15

However, some of our qualitative results also hold for ex ante rationalizability. In partic-
ular, we can show that the analog of Corollary 4.5 continues to hold.

Say that bid b is ex-ante rationalizable for type vi if there is an ex-ante rationalizable
bidding function bi such that bi(vi) = b. Then, in the symmetric IPV model, for every type
v, every bid b ∈ (0, φbeq

(v)] is ex-ante rationalizable, where beq is the symmetric equilibrium
bidding function and φbeq

(v) = v − π∗(v,beq) > beq(v) for all v ∈ (0, 1).
Here is a sketch of the argument. In order to simplify the analysis, we assume that

the bidders have arbitrary subjective beliefs about the tie-breaking rule. In particular, a
player may “optimistically” believe that whenever he is one the high bidders he gets the
object with probability one.16 Consider the conjecture that every competitor j is using the
following bidding function:

g(vj, v) =

{
beq(vj), if vj < v,

φbeq

(v), if vj ≥ v.

It can be checked that, for each type v, b = g(v, v) is a best reply given the “optimistic”
beliefs about tie breaking.17 Therefore, for every “threshold” v, g(·, v) is an ex-ante ratio-

15As mentioned in the introduction, interim rationalizability allows bidders to hold different beliefs about
their opponents’ behavior depending on their own signal; ex-ante rationalizability, on the other hand, pre-
cludes this (assuming independent types). Hence, not every selection from the set of interim rationalizable
bids for each type is an ex-ante rationalizable bid function—even if one restricts one’s attention to increasing
selections. Furthermore, we cannot rule out the possibility that this results in additional restrictions on the
bids a given bidder type may place, if that bidder employs only ex-ante rationalizable bid functions.

16The argument can be adapted to the usual beliefs about tie-breaking.
17Clearly, no bid b ∈ (beq(v), φbeq

(v)) ∪ (φbeq

(v),+∞) can be a best reply for any type.
If v < v, then bid b = g(v, v) = beq(v) is maximal in the set [0,beq(v)] and we must compare it with

bid φbeq

(v), which “optimistically” wins with probability one. Since φbeq

is non-decreasing (Proposition 2.4
(4)), (v − φbeq

(v)) ≤ (v − φbeq

(v)) = π∗(v;beq) = (v − beq(v))P (beq(v);beq). Thus g(v, v) is a best reply
for v.

If v ≥ v, then (v−φbeq

(v)) ≥ (v−φbeq

(v)) = π∗(v;beq) ≥ π(b, v;beq) = π(b, v;g(·, v)) for all b < beq(v) ≤
beq(v).
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nalizable bidding function. Now, fix any type vi and bid b ∈ (0, φbeq

(v)]. Then the ex-ante
rationalizable bidding function bi such that bi(vi) = b is g(·; (φbeq

)−1(b)).
Also observe that in an IPV setting an ex-ante best reply must be a nondecreasing func-

tion. Thus, ex-ante rationalizability implies the restriction that the support of beliefs is
included in the the set of nondecreasing functions. But our analysis of interim rationaliz-
ability shows that this restriction has no bite, because all the rationalizing conjectures used
in our proofs are nondecreasing.

5.4. Discrete Bids

In most experimental settings, bids are discrete because there is a (possibly only implicit)
minimum increment δ (e.g., a cent), so that the set of bids is {0, δ, 2δ, ..., kδ, (k + 1)δ), ...}.
Our analysis of rationalizable bids provides an acceptable approximation if the number of
players is not very large and δ is small. This appears to be the case in most experiments, as
well as in many real-life situations.

Dekel and Wolinsky [7] analyze the opposite case (a large population of players and a
non-negligible minimum increment) in an IPV setting. They identify a non-decreasing lower
bound to the set of rationalizable bids and show that, for any fixed minimum increment δ,
as the number of bidders n gets large, this lower bound approches the equilibrium bidding
function. Thus, rationalizability and equilibrium roughly coincide in large IPV auctions with
a non-negligible minimum increment on bids.

6. Appendix

In the interest of conciseness, we omit an explicit proof of (parts (2)-(3) of) Theorem 2.2.
We provide complete proofs for the interdependent-values model. To see how this relates to
the IPV case, recall that the IPV auction game is a special case of the auction game with
interdependent values. The only reason why Theorem 2.2 does not follow from Theorem 3.4 is
that we exploit the private values assumption to strengthen parts (1) and (3) of the theorem.
In particular, (1) and (3) hold for a larger set of beliefs, which includes non-monotonic ones.
On the other hand, part (2) of Theorem 3.4 is implied by part (2) of Theorem 3.4. Thus,
we only need to show how to adapt the proofs of part (1) and (3) to the IPV-large beliefs
space case.

We conclude with some extensions of the basic setting.

6.1. Interdependent-Values Model

We begin by introducing additional notation used in the proofs.
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6.1.1. Notation

Sets of bidders and signals. Let N = {1, ..., n} denote the set of players. For any subset of
players J ⊂ N , let SJ =

∏
j∈J Sj, and for simplicity define SN\{i} = S−i. A generic element

of SJ is denoted sJ . For any partition {K,L} of the set of players J and any sK ∈ SK ,
sL ∈ SL, (sK , sL) is the element of SJ obtained from sK and sL.

For any nonempty subset J ⊂ N of players, denote by FJ the marginal of c.d.f. F on SJ ,
and by F−J its marginal on SN\J ; finally, given a subset K of players such that K ∩ J = ∅,
denote by FK|J the conditional c.d.f on SK given the signals of players j ∈ J .

Random variables and events. We continue to denote m-dimensional random vectors,
defined as (Borel measurable) functions with domain SJ and range Rm, with boldface letters.
In particular, for any set of players J and random variables bj, j ∈ J , we let bJ denote the
joint function (random vector) defined by bJ(sJ) = {bj(sj)}j∈J . Similarly, we write sj to
denote the random signal observed by Player j (formally, sj is the identity function on the
probability space ([0, 1], Fj)). As in the IPV case, degenerate random variables and tuples
of identical degenerate random variables are represented by the corresponding real numbers.
Also, for any set of players J and tuple of random variables bJ , we denote by bmax

J the
scalar-valued random variable defined by the map sJ 7→ maxj∈J bj(sj).

Inequalities between random variables continue to be interpreted as almost sure inequal-
ities. For example, bj < Bj if and only bj(sj) ≥ Bj(sj) for a set of signals sj of (Lebesgue)
measure zero. Inequalities between tuples of random variables continue to be interpreted as
coordinate-wise inequalities: b−i < B−i if and only if bj < Bj for all j 6= i.

Events related to the signals of players in set J are represented by means of square
brackets with an index J specifying that we refer to a subset of SJ . For example, let K ⊂ J ;
then [bK < b]J ⊂ SJ is the set of vectors of signals sJ such that bj(sj) < b for all j ∈ K.
When J = N\{i} we suppress the index, as S−i is the basic space of uncertainty from the
point of view of Bidder i. Thus, for example, [∀j ∈ K,bj < bj] ⊂ S−i.

Taking the possibility of ties into account, the expected payoff of bidding b given signal
si and belief µ ∈ ∆(B−i) is

πi(b, si; µ) =

∫

B−i

E[vi − b|si,b−i < b] Pr[b−i < b|si]µ(db−i)+

(6.1)

+
∑

∅6=J⊂N\{i}

1

1 + |J |
∫

B−i

E [vi − b|si, T (J, b;b−i)] Pr[T (J, b,b−i)|si]µ(db−i),

where T (J, b;b−i) = [b−J∪{i} < b] ∩ [∀j ∈ J,bj = b].
It is convenient to define a modfied version of the expected payoff function for a bidder

with nondecreasong conjectures, which may assign positive probability to ties. For any tuple
{Bj}j 6=i of nondecreasing real-valued functions on [0, 1], define
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π̄i(b, si;B−i) =
(
E[vi|si,B−i < b]− b

)
Pr[B−i < b|si] + (6.2)

+ max
{

0,
(
E[vi|si,B

max
−i = b]− b

)
Pr[Bmax

−i = b|si]
}

.

To avoid repeating tedious qualifications, for every random variable h and event F , if Pr[F ] =
0, we assume that E[h|F ] is such that E[h|F ] Pr[F ] = 0.

Observe that, in the symmetric IPV model, for any valuation v ∈ [0, 1] and bid b ∈ [0, v],
π̄i(b, v;B−i) = (v− b) Pr[B−i ≤ b]. We emphasize that this is not the case for b > v (cf. the
paragraph following the proof of Lemma 6.3).

6.1.2. Preliminary Results

Lemma 6.1. For every tuple B−i of nondecreasing bid functions and every signal si ∈ [0, 1],
the function π̄i(·, si;B−i) : R+ → R is upper semicontinuous. Therefore, supb≥0 π̄i(b, si;B−i)
is attained. Finally, if B−i ∈M−i, then π̄i(·, si;B−i) = πi(·, si;B−i), and both functions are
continuous.

Proof. Fix b ≥ 0 and consider a sequence bk → b such that limk→∞ π̄i(b
k, si;B−i)

exists; denote the latter by L. We must show that L ≤ π1(b, si;B−i). Observe that, since∑
k≥1 Pr[Bmax

−i = bk|si] ≤ 1, it must be the case that Pr[Bmax
−i = bk|si] → 0.

Assume first that bk ↑ b. Note that the indicator functions of the events [B−i < bk]
converge pointwise to the indicator function of [B−i < b]. Therefore, since vi is bounded and
so is the convergent sequence {bk}, by Dominated Convergence (cf. Aliprantis and Border
[1], p. 323) and the observation that the probability of ties vanishes as k →∞ we conclude
that L = (E[vi|si,B−i < b] − b) Pr[B−i < b|si], so L ≤ π̄i(b, si;B−i). Observe that the
inequality can only be strict if Pr[Bmax

−i = b|si] > 0.
Assume next that bk ↓ b. Now the indicator functions of the events [B−i < bk] converge

pointwise to the indicator function of [B−i ≤ b], so L = (E[vi|si,B−i ≤ b] − b) Pr[B−i ≤
b|si] ≤ π̄i(b, si;B−i). Again, the inequality can only be strict if Pr[Bmax

−i = b|si] > 0.
To complete the proof, consider an arbitrary convergent sequence bk → b and an arbi-

trary subsequence {bkn} such that limn→∞ π̄i(b
kn , si;B−i) ≡ L exists. If the subsequence

is itself monotonic, then L ≤ π̄i(b, si;B−i) by the above arguments. Otherwise, it must
contain a monotonic sub-subsequence {bknm} such that bknm → b and π̄i(b, si;B−i) ≥
limm→∞ π̄i(b

knm , si;B−i) = L.
Finally, to prove the last claim note that if B−i ∈ M−i, then Pr[Bmax

−i = b|si] = 0 for all
b.

IPV Model: The claims and their proofs hold verbatim.

We state another preliminary lemma, which states that the conjecture B−i is “more
pessimistic” than any belief µ ∈ ∆+(M−i;B−i).
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Lemma 6.2. For every tuple B−i > 0 of nondecreasing bid functions, signal si ∈ [0, 1], and
bid b ≥ 0:
(1) if π̄i(b, si;B−i) > 0 and Pr[Bmax

−i = b] = 0, then πi(b, si; µ) ≥ π̄i(b, si;B−i) for any
µ ∈ ∆+(M−i;B−i);
(2) if π̄i(b, si;B−i) ≥ 0, b > 0 and Pr[Bmax

−i = b] > 0, then E[vi − b|si,B
max
−i = b] ≥ 0.

Therefore:
(3) infµ∈∆+(M−i;B−i) π∗i (si; µ) ≥ maxb≥0 π̄i(b, si;B−i).

To clarify the argument, we first prove Claim (1) for the case of a single competitor
−i = j and continuous, increasing conjectures Bj,bj; in this case, π̄i(·, si,bj) = πi(·, si,bj),
and similarly for Bj. Note that

π(b, si;bj) = E[vi − b|si,B < b] Pr[B < b|si] +

+ E[vi − b|si,bj < b ≤ B] · Pr[bj < b ≤ B|si].

Since Pr[B = b|si] = 0, the first term in the r.h.s. equals π(b, si;B). If Pr[bj < b ≤
B|si] = 0 we are done. If Pr[bj < b ≤ B|si] > 0, we must show that E[vi − b|si,bj <
b ≤ B] ≥ 0. Since π(b, si;B−i) > 0, b > B−1(0). Therefore [B < b]j = [0,B−1(b)) and
[bj < b ≤ B]j = [B−1(b),b−1

j (b)) (let b−1
j (b) = 1 if b > bj(1)). Hence, by Remark 4,

E[vi − b|si,bj < b ≤ B] ≥ E[vi − b|si,B < b] > 0, where the latter inequality follows from
π(b, si;B−i) = E[vi − b|si,B < b] Pr[B < b|si] > 0. This establishes the claim in the simple
case.

Proof. (1) It is enough to prove the claim for a belief µ concentrated on a single profile
b−i ∈M−i such that b−i < B−i. Note that

πi(b, si;b−i) = E[vi − b|si,B−i < b] Pr[B−i < b|si] +

+
∑

∅6=J⊂N\{i}
E[vi − b|si,BN\(J∪i) < b,bJ < b ≤ BJ ] ·

·Pr[BN\(J∪i) < b,bJ < b ≤ BJ |si].

Since Pr[Bmax
−i = b|si] = 0, the first term in the r.h.s. equals π̄i(b, si;B−i). If Pr[BN\(J∪i) <

b,bJ < b ≤ BJ |si] = 0 for all nonempty J ⊂ N \ {i}, the proof of the claim is complete.
Otherwise, for any nonempty J ⊂ N \{i} such that Pr[BN\(J∪i) < b,bJ < b ≤ BJ |si] > 0, we
must show that E[vi−b|si, BN\(J∪i) < b,bJ < b ≤ BJ ] ≥ 0. Fix one such J and note that, for
every j 6= i, the greatest lower bound of the set [Bj < b]j is 0 (recall that π̄i(b, si;B−i) > 0),
and its least upper bound is sup{sj : Bj(sj) < b}; also, the g.l.b of [bj < b ≤ Bj]j is
inf{sj : Bj(sj) ≥ b} ≥ 0 and its l.u.b. is sup{sj : bj(sj) < b} ≥ sup{sj : Bj(sj) < b}. 18

18The above, detailed argument will be omitted henceforth.
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Hence, by Remark 4, E[vi− b|si,BN\(J∪i) < b,bJ < b ≤ BJ ] ≥ E[vi− b|si,B−i < b]; since
π̄i(b, si;B−i) > 0 and Pr[Bmax

−i = b|si] = 0 by assumption, we must have Pr[B−i < b|si] > 0
and E[vi − b|si,B−i < b] > 0, which establishes the claim.

(2) If E[vi − b|si,B−i < b] < 0 the claim follows immediately because π̄i(b, si;B−i) ≥ 0.
If instead E[vi − b|si,B−i < b] ≥ 0, note that

E[vi − b|si,B
max
−i = b] =

∑

∅6=J⊂N\{i}
E[vi − b|si,BN\(J∪i) < b,BJ = b] ·

·Pr[BN\(J∪i) < b,BJ = b|si,B
max
−i = b].

As above, Remark 4 implies that, for any nonempty J ⊂ N \ {i} such that Pr[BN\(J∪i) <
b,BJ = b|si,B

max
−i = b] > 0, E[vi − b|si,BN\(J∪i) < b,BJ = b] ≥ E[vi − b|si,B−i < b] ≥ 0,

which proves the claim.19

(3) Choose b∗ ∈ arg maxb≥0 π̄i(b, si;B−i). The required inequality holds trivially if
π̄i(b

∗, si;B−i) = 0, so assume π̄i(b
∗, si;B−i) > 0. In particular, B−i > 0 implies that

Pr[Bmax
−i = 0] = 0, so we can assume that b∗ > 0. Choose µ ∈ ∆+(M−i;B−i). Assume

that Pr[Bmax
−i = b∗|si] = 0; then, by Claim (1), π∗i (si; µ) ≥ πi(b

∗, si; µ) ≥ π̄i(b
∗, si;B−i),

and we are done. If instead Pr[Bmax
−i = b∗|si] > 0, consider a sequence bk ↓ b∗ such

that Pr[Bmax
−i = bk|si] = 0 for all k: this is possible because there can be at most count-

ably many positive-probability ties. Since, for any b−i ∈ M−i, πi(·, si;b−i) is continuous,
πi(b

∗, si;b−i) = limk→∞ πi(b
k, si;b−i) ≥ limk→∞ π̄i(b

k, si;B−i) = π̄i(b
∗, si;B−i), where the

inequality follows from Claim (1), and the second equality follows from Claim (2). Integrat-
ing with respect to µ, this implies that π∗i (si; µ) ≥ πi(b

∗, si; µ) ≥ π̄i(b
∗, si;B−i).

IPV Model: (1) holds with ∆+(B−i;B−i) in lieu of ∆+(M−i;B−i); moreover, the proof
is simplified by observing that π̄i(b, v;B−i) > 0 implies b ∈ (0, v). (2) merely states that
b ≤ v, which is an immediate consequence of π̄i(b, v;B−i) ≥ 0 and Pr[B−i = b] > 0. Finally,
(3) holds with ∆+(B−i;B−i) in lieu of ∆+(M−i;B−i): the proof requires no modification.

We next develop the machinery required to approximate B−i with beliefs belonging to
∆+(M−i;B−i). Define an increasing and continuous map σ : [0, 1]× (0, 1] → [0, 1] by

∀(x, α) ∈ [0, 1]× (0, 1], σ(x, α) =

{
1−α

α
x x ∈ [0, α](

1− α
1−α

)
+ α

1−α
x x ∈ (α, 1]

. (6.3)

That is, for every α ∈ (0, 1], the graph of σ(·, α) is the piecewise linear function joining the
origin with the point (α, 1−α), and the latter with the point (1, 1). Each function σ(·, α) is
continuous and differentiable everywhere except at x = α. Its inverse τ : [0, 1]×(0, 1] → [0, 1]
is given by

∀(y, α) ∈ [0, 1]× (0, 1], τ(y, α) =

{
α

1−α
y y ∈ [0, 1− α](

1− 1−α
α

)
+ 1−α

α
y y ∈ (1− α, 1]

, (6.4)

19The claim may be false for b = 0, if Pr[Bmax
−i = 0|si] > 0.
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i.e. the piecewise linear function joining the origin with the point (1− α, α), and the latter
with the point (1, 1). Each function τ is continuous and differentiable everywhere except at
y = 1− α.

Note that, as α ↓ 0, σ(·, α) converges pointwise on (0, 1] to the constant function 1; for
notational convenience, we let σ(x, 0) = 1 for all x ∈ [0, 1]. Similarly, τ converges pointwise
to the constant function 0 ≡ τ(y, 0).

Now, for any j ∈ N , non-negative real number α ≥ 0, and bid function bj ∈ Bj, define

the function b
(α)
j ∈ Bj by

∀sj ∈ [0, 1], b
(α)
j (sj) = σ(sj, α)bj(sj). (6.5)

In conjunction with Lemma 6.2, the following Lemma implies that supb≥0 π̄i(b, si;B−i) is
the least upper bound Bidder i may obtain by best-responding to beliefs in ∆+(M−i;B−i).

Lemma 6.3. Fix arbitrarily a tuple B−i > 0 of nondecreasing bid functions and a signal
si ∈ [0, 1].

(1) For all α > 0, B
(α)
−i ∈ ∆+(M−i;B−i).

Moreover, for every sequence αk ↓ 0:
(2) B

(αk)
j → Bj a.s. pointwise;

(3) for every b ≥ 0 and every sequence bk → b, limk→∞ πi(b
k, si;B

(αk)
−i ) ≤ π̄i(b, si;B−i);

(4) π∗i (si;B
(αk)
−i ) → maxb≥0 π̄i(b, si;B−i).

Proof. (1) Fix j 6= i. Note that, for any α > 0, B
(α)
j < Bj (with equality for sj = 1).

Moreover, s′j > sj implies σ(sj, α)Bj(sj) < σ(s′j, α)Bj(sj) ≤ σ(s′j, α)Bj(s
′
j), so B

(α)
j ∈ Mj.

Finally, for any b > 0 there exists sj > 0 such that σ(sj, α)Bj(1) < b, and thus B
(α)
j (sj) < b.

Therefore, Pr[B
(α)
−i < b|si] > 0, and the first assertion of the Lemma is proved.

Now fix b ≥ 0 and consider sequences αk ↓ 0 and bk → b.
(2) Pointwise convergence on (0, 1] follows from the properties of the function σ.
(3) We begin by computing the a.s. pointwise limit of the sequence of indicator functions

corresponding to the events [B
(αk)
−i ≤ b].

Choose any sj > 0. If Bj(sj) < b, then for k large B
(αk)
j (si) < bk; similarly, if Bj(sj) > b,

then for k large B
(αk)
j (si) > bk. Also note that, if Bj(0) > b, then, for every ε > 0, there

exists K such that k ≥ K implies B
(αk)
j (ε) > bk, so

⋂
k≥1[B

(αk)
j ≤ bk]j = {0}.

Finally, suppose Bj(sj) = b. Since B
(αk)
j is increasing for every k, it follows that, for

every k, the set Lj(k) = {sj ∈ [0, 1] : Bj(sj) = b, B
(αk)
j (sj) > bk} satisfies

sj ∈ Lj(k), Bj(s
′
j) = b, s′j > sj ⇒ s′j ∈ Lj(k).
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Now define `j(k) = min(1, inf Lj(k)) (where inf ∅ = ∞). Thus, if Bj(sj) = b, then sj > `j(k)

implies B
(αk)
j (sj) > bk (otherwise sj would be a greater lower bound to Lj(k) than `j(k)),

and sj < `j(k) implies B
(αk)
j (sj) ≤ bk (either because Lj(k) = ∅, or because otherwise there

would be some other s′j ∈ (sj, `j(k)) such that Bj(s
′
j) = b and B

(αk)
j (s′j) > bk).

Next, w.l.o.g. assume that `j(k) → `j for all j 6= i. Then the indicator functions of the

events [B
(αk)
−i ≤ bk] converge a.s. pointwise to the indicator function of the event

[B−i < b] ∪
(
[Bmax

−i = b] ∩ [s−i ≤ `−i]
)
≡ [B−i < b] ∪ T−i(b).

By the Dominated Convergence theorem, this yields

πi(b
k, si;B

(αk)
−i ) →

∫

[B−i<b]

(vi − b)F−i|i(ds−i|si) +

∫

T−i(b)

(vi − b)F−i|i(ds−i|si).

If Pr[T−i(b)|si] = 0, then limk→∞ πi(b
k, si;B

(αk)
−i ) ≤ π̄i(b, si;B−i) follows immediately. Other-

wise, by Remark 4, E[vi − b|si, T−i(b)] ≤ E[vi − b|si,B
max
−i = b] ≤ max(0, E[vi − b|si,B

max
−i =

b]), and Claim (3) follows.

(4) Consider a sequence αk ↓ 0 and, for every k, choose bk ∈ arg maxb≥0 πi(b, si;B
(αk)
−i );

note that the maximum is achieved because πi(·, si;B
(αk)
−i ) is continuous. Assume w.l.o.g.

that the sequence of maximizers converges, and let b∗ = limk→∞ bk. Claim (3) implies

that limk→∞ π∗i (si;B
(αk)
−i ) = limk→∞ πi(b

k, si;B
(αk)
−i ) ≤ π̄i(b

∗, si;B−i) ≤ maxb≥0 π̄i(b, si;B−i).
Since the reverse inequality follows from Lemma 6.2, (3), the proof is complete.

IPV Model: the proof of (1), (2) and (4) holds verbatim. Moreover, (3) holds in general,

but for b ∈ [0, v] the argument is simplified by noting that Pr[B
(αk)
−i ≤ bk] → Pr[B−i <

b] + Pr[T−i(b)] ≤ Pr[B−i ≤ b].

6.1.3. Theorem 3.4

We are finally able to prove the main result of Section 3, Theorem 3.4. The key step is the
proof of Claim (2). We sketch the main argument here (see also the discussion following
Theorem 2.2).

For any bid b∗ < φ
B−i

i (si), the justifying belief g
(α)
−i has the qualitative features illustrated

in Figure 2.1. Specifically, for every opponent j 6= i, g
(α)
j is increasing and lies below Bj;

moreover, it approximates the upper bound Bj up to the point s̄j where the latter crosses
the bid b∗, and approximates b∗ thereafter.

To verify the optimality of b∗ given g
(α)
−i , we proceed in two steps. First, we argue that

Bidder i’s payoff function πi(b, si;g
(α)
−i ) is pointwise dominated by the “two-bidder, private-

values” objective function (E[vi|si] − b) Pr[g
(α)
−i ≤ b|si]. Moreover, the two functions share
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the same value E[vi|si]− b∗ for b = b∗. We then prove that b = b∗ maximizes this auxiliary
objective function among all bids b chosen by at least one opponent j with type sj ≥ s̄j—that

is, a type for which g
(α)
j (sj) approximates b∗.

The second and concluding step entails verifying that, for all remaining bids b, Bidder
i’s payoff given g

(α)
−i is close to her payoff given B−i, her “pessimistic” conjecture. By the

definition of φ
B−i

i (si), this implies that no such bids can be profitable deviations from b∗.

Proof of Theorem 3.4. Note first that Lemmata 6.2 and 6.3 imply that part (3) of
the Theorem is true.

To see that (1) holds, observe that, by Remark 3, for any b−i ∈ M−i, E[vi|si,b−i <
b∗] ≤ E[vi|si]. Hence, if b∗ > E[vi|si]− infµ∈∆+(M−i;B−i) π∗i (si; µ) and b∗ ≤ E[vi|si], then, for
any µ∗ ∈ ∆+(M−i;B−i),

πi(b
∗, si; µ

∗) =

∫

M−i

(E[vi|si,b−i < b∗]− b∗) Pr[b−i < b∗|si]µ
∗(db−i) ≤

≤ E[vi|si]− b∗ <

< inf
µ∈∆+(M−i;B−i)

π∗i (si; µ) ≤
≤ π∗i (si; µ

∗),

so b∗ cannot be a best reply to b−i. On the other hand, if b∗ > E[vi|si], then πi(b
∗, si; µ

∗) < 0
(recall that b∗ > 0 and positive bids win with positive probability), so again b∗ cannot be a
best reply to µ∗.

We now prove (2).

Claim. b∗ < min(E[vi|si], maxj 6=i limsj↑1 Bj(sj)).
To see this, note that E[vi|si] − b∗ > infµ∈∆+(M−i;B−i) π∗i (si; µ) = supb≥0 π̄i(b, si;B−i)

implies that b∗ < E[ vi|si]. Moreover, suppose that b∗ ≥ maxj 6=i limsj↑1 Bj(sj). If Pr[Bmax
−i =

b∗|si] = 0, then π̄i(b
∗, si;B−i) = E[vi|si] − b∗ > supb≥0 π̄i(b, si;B−i), a contradiction. If

instead Pr[Bmax
−i = b∗|si] > 0 (so b∗ = maxj 6=i limsj↑1 Bj(sj)), note that, by Remark 4,

E[vi − b∗|si,B
max
−i = b∗] ≥ E[vi − b∗|si,B−i ≤ b∗] = E[vi|si]− b∗ > 0; hence, we again obtain

π̄i(b
∗, si;B−i) = E[vi|si]− b∗, which yields the same contradiction.

We now construct the conjecture to which b∗ is a unique best response. First, for every
j 6= i, define a bounded, nondecreasing and measurable function gj : [0, 1] → R+ by

∀sj ∈ [0, 1], gj(sj) = min (Bj(sj), b
∗) . (6.6)

Correspondingly, for every j 6= i, define the quantities

s̄j = min(1, inf{sj ∈ [0, 1] : Bj(sj) > b∗})
s̄min
−i = minj 6=i s̄j

b̄
(α)
j = σ(s̄j, α)b∗

(6.7)
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For every α > 0 and b ≥ 0, by Remark 4 and the observation that g
(α)
−i ∈M−i, πi(b, si;g

(α)
−i ) ≤

(E[vi−b|si]) Pr[g
(α)
−i ≤ b|si], with equality for b = b∗. Also note that s̄min

−i < 1, for otherwise we
would have Bj(sj) ≤ b∗ for all j 6= i and sj ∈ [0, 1), and therefore b∗ ≥ maxj 6=i limsj↑1 Bj(sj).

Here and in the remainder of this proof, let j be such that s̄j = s̄min
−i ; then, letting

v̄i = E[vi|si] for notational convenience,

Pr[g
(α)
−i ≤ b|si] ≤ Pr[g

(α)
j ≤ b|si] =

= Pr[sj : sj < s̄j and B
(α)
j (sj) < b or sj > s̄j and σ(sj, α)b∗ ≤ b|si] ≤

≤ Pr[sj : sj < s̄j or sj > s̄j and σ(sj, α)b∗ ≤ b|si],

with equality for b = b∗. Moreover, for b ∈ [b̄
(α)
j , b∗], sj < s̄j implies σ(sj, α)b∗ < σ(s̄j, α)b∗ =

b̄
(α)
j ≤ b, so we also have

Pr[g
(α)
−i ≤ b|si] ≤ Pr[σ(sj, α)b∗ ≤ b|si] = Fj|i(τ(

b

b∗
, α)|si)

(recall that τ(·, α) is the inverse of σ(·, α)), and therefore πi(b, si;g
(α)
−i ) ≤ (v̄i−b)Fj|i(τ( b

b∗ , α)|si),
with equality for b = b∗. Hence, if b∗ is the unique maximizer of the r.h.s. in the region
[b̄

(α)
j , b∗] of bids, then b∗ is also the unique maximizer of Player i’s payoff in the same region.

We now show that this is indeed the case.
It is expedient to represent bids as convex combinations of b̄

(α)
j = σ(s̄j, α)b∗ and b∗. For

every λ ∈ [0, 1], define
b(λ, α) = [(1− λ)σ(s̄j, α) + λ]b∗; (6.8)

note that ∂
∂λ

b(λ, α) = [1− σ(s̄j, α)]b∗. Also, for every λ ∈ [0, 1], define the quantity

sj(λ, α) = τ

(
b(λ, α)

b∗
, α

)
= τ((1− λ)σ(s̄j, α) + λ, α), (6.9)

which yields the type of Player j who bids b(λ, α), according to the bid function g
(α)
j , if Bj

is right-continuous at s̄j.

Claim. The function H : [0, 1]× (0, 1] → R+ defined by

H(λ, α) = (v̄i − b(λ))Fj|i(sj(λ, α)|si) (6.10)

has a unique maximum at λ = 1 for sufficiently small α.

Case 1: s̄j > 0. Consider α ∈ (0, s̄j). Then σ(s̄j, α) = (1 − α
1−α

) + α
1−α

s̄j, so (1 −
λ)σ(s̄j, α)+λ = 1− (1−λ) α

1−α
(1− s̄j) > 1−α, where the inequality follows from the choice

of α. Therefore, sj(λ, α) = 1 − (1 − λ)(1 − s̄j) ≡ sj(λ), which is independent of α. Also,
∂
∂λ

sj(λ) = (1− s̄j) for λ ∈ (0, 1).
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We conclude that

∂

∂λ
H(λ, α) = −[1− σ(s̄j, α)]b∗Fj|i(sj(λ)|si) + (v̄i − b(λ, α))fj|i(sj(λ)|si)(1− s̄j).

Now let fmin
j|i (si) = minx∈[0,1] fj|i(x|si) > 0: then, since s̄j = s̄min

−i < 1, ∂
∂λ

H(λ, α) ≥ −[1 −
σ(s̄j, α)]b∗ + (v̄i − b∗)fmin

j|i (si)(1− s̄j) ≡ h(α). Since s̄j > 0, limα→0 σ(s̄j, α) = 1; this implies

that, for α sufficiently small, h(α) > 0, and therefore ∂
∂λ

H(λ, α) > 0. This implies that
arg maxλ∈[0,1] H(λ, α) = {1}.

Case 2: s̄j = 0. Then σ(s̄j, α) = 0, b(λ, α) = λb∗, and sj(λ, α) = τ(λ, α). We have two
sub-cases.

First, for 0 < λ ≤ 1 − α, τ(λ, α) = α
1−α

λ. Define fmax
j|i (si) = maxx∈[0,1] fj|i(x|si) < ∞;

then, since λ
1−α

≤ 1,

H(λ, α) = (v̄i − λb∗)Fj|i(
α

1− α
λ|si) ≤ v̄if

max
j|i (si)α.

For α sufficiently small, the r.h.s. is smaller than H(1, α) = v̄i − b∗ > 0. Hence, for all
λ ∈ (0, 1− α], H(1, α) > H(λ, α).

For λ ∈ (1− α, 1), τ(λ, α) = (1− 1−α
α

) + 1−α
α

λ, so

∂

∂λ
H(λ, α) = −b∗Fj|i(τ(λ, α)|si) + (v̄i − λb∗)fj|i(τ(λ, α)|si)

1− α

α
.

Thus, with fmin
j|i (si) as above, ∂

∂λ
H(λ, α) ≥ −b∗ + (v̄i − b∗)fmin

j|i (si)
1−α

α
, which is positive for

α sufficiently small. Thus, H(1, α) > H(λ, α) for α small and λ ∈ (1− α, 1).
Since H(0, α) = 0, we can again conclude that arg maxλ∈[0,1] H(λ, α) = {1}, and the

proof of the claim is complete.

The claim implies that b∗ is the unique maximizer of πi(b, si;g
(α)
−i ) in the region [b̄

(α)
j , b∗].

Clearly, every b > b∗ is dominated by b∗ given g
(α)
−i .

If s̄min
j = 0, then b̄

(α)
j = 0, so we are done. Otherwise, notice that b̄

(α)
j = σ(s̄j, α)b∗ =

mink 6=i σ(s̄k, α)b∗ = mink 6=i b̄
(α)
k ; this implies that [g

(α)
−i ≤ b] = [B

(α)
−i ≤ b] for all b < b̄

(α)
j .

To see this, suppose g
(α)
−i (s−i) ≤ b, and fix k 6= i. If gk(sk) = Bk(sk), then B

(α)
k (sk) ≤ b

follows immediately. Suppose instead that gk(sk) = b∗. Note that, since we are assuming

that b < b̄
(α)
j ≤ b̄

(α)
k , σ(sk, α)gk(sk) = σ(sk, α)b∗ ≤ b < b̄

(α)
k = σ(s̄k, α)b∗. Then we get

σ(sk, α) < σ(s̄k, α) , and since σ(·, α) is increasing, sk < s̄k; but then Bk(sk) ≤ b∗, so

gk(sk) = Bk(sk), and both must be equal to b∗; moreover, B
(α)
k (sk) ≤ b. Conversely, if

B
(α)
−i (s−i) ≤ b, then a fortiori g

(α)
−i (s−i) ≤ b, because, for all k 6= i, g

(α)
k (sk) = σ(sk, α)gk(sk) ≤

σ(sk, α)Bk(sk) = B
(α)
k (sk).

32



Since B
(α)
−i ∈ M−i, this implies that, for b ∈ [0, b̄

(α)
j ), πi(b, si;g

(α)
−i ) = πi(b, si;B

(α)
−i ).

For any such b, Lemma 6.3, Claim (3) implies that limα↓0 πi(b, si;B
(α)
−i ) ≤ π̄i(b, si;B−i) ≤

supb′≥0 π̄i(b
′, si;B−i). By assumption, the latter quantity is smaller than E[vi|si] − b∗ =

πi(b
∗, si;g

(α)
−i ); therefore, for sufficiently small α, and for all b ∈ [0, b̄

(α)
j ), πi(b, si;g

(α)
−i ) <

πi(b
∗, si;g

(α)
−i ) .

IPV Model: (1) holds for all beliefs in ∆+(B−i;B−i), as shown in Section 2. Moreover,
part (3) of the Theorem follows from the IPV versions of Lemmata 6.2 and 6.3. In (2), the
assertion that b∗ < maxj 6=i limsj↑1 Bj(sj) follows immediately from b∗ < v. Moreover, in the

symmetric IPV setting, πi(b, v;g
(α)
−i ) = (v − b)P (b;g

(α)
−i ) ≤ (v − b) Pr[g

(α)
−i ≤ b], where the

inequality follows from b ≤ b∗ < v; again, we have equality for b = b∗. The remainder of the
proof (beginning with the choice of j such that s̄j = s̄min

j ) goes through verbatim, invoking
the IPV version of Lemma 6.3, Claim (3).

6.1.4. Proof of Proposition 3.6

Note first that, for any b∗ ∈ arg maxb≥0 π̄i(b, si;B−i), π̄i(b
∗, si;B−i) = E[vi − b∗|si,B−i ≤

b∗] Pr[B−i ≤ b∗|si].

(1) Recall that, by Lemma 6.3 (1), B
(α)
−i ∈ ∆+(M−i,B−i); hence, by Lemma 6.1,

the payoff function πi is continuous in its first argument, so there exists a best reply
b ∈ arg maxb′≥0 πi(b

′, si;B
(α)
−i ); moreover, b > 0. Hence, φ

B−i

i (si) > 0 for all si ∈ [0, 1].
The other inequality follows immediately from the first Claim in the proof of Theorem 3.4,
part (2).

(2) Note that, since f is continuous, by Dominated Convergence, E[vi|si] and π̄i(b, si;B−i)
are continuous in si; also, the latter function is upper semi-continuous in b by Lemma 6.1.
By a version of the Maximum Theorem, the function si 7→ maxb≥0 π̄i(b, si;B−i) is thus

continuous, and this implies that φ
B−i

i is continuous.
(3) Observation. By Assumption 3.2 and Remark 4, for all si, s

′
i ∈ [0, 1] such that

si > s′i, E[vi|si] > E[ vi|s′i]. Similarly, for every b ≥ 0, if Pr[B−i ≤ b|si] > 0 (resp.
Pr[Bmax

−i > b|si] > 0), then E[vi|si,B−i ≤ b] (resp. E[vi|si,B
max
−i > b]) is increasing in si.

Choose si > 0 and b ∈ arg maxy≥0 π̄i(y, si;B−i).

Claim. Assume that Pr[B−i ≤ b|si] < 1, so b < maxj 6=i limsj↑1 Bj(sj). Then, for all

s′i < si, φ
B−i

i (s′i) < φ
B−i

i (si).

To prove the claim, note first that, if π̄i(b, si;B−i) = 0, then φ
B−i

i (si) = E[vi|si] >

E[vi|s′i] ≥ φ
B−i

i (s′i), where the strict inequality follows from the initial Observation, and the
weak inequality from Part (1).
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Thus, assume π̄i(b, si;B−i) > 0, so in particular Pr[B−i ≤ b|si] ∈ (0, 1) because B−i > 0.
Then E[vi|si] = E[vi|si,B−i ≤ b] Pr[B−i ≤ b|si] + E[vi|si,B

max
−i > b] Pr[Bmax

−i > b|si] and

φ
B−i

i (si) = E[vi|si,B
max
−i > b] Pr[Bmax

−i > b|si] + b Pr[B−i ≤ b|si].

Since π̄i(b, si;B−i) > 0, b < E[vi|si,B−i ≤ b] ≤ E[vi|si,B
max
−i > b], where the second inequal-

ity follows from Remark 4 by an argument analogous to the one used in the proof of Lemma
6.2, (2). Also note that the indicator function of the event [Bmax

−i > b] is nondecreasing,
because Bmax

−i is nondecreasing; therefore, for s′i < si, Pr[Bmax
−i > b|si] ≥ Pr[Bmax

−i > b|s′i].
Note that, since f is bounded away from zero, Pr[Bmax

−i > b|s′i] > 0; therefore,

φ
B−i

i (si) ≥ E[vi|si,B
max
−i > b] Pr[Bmax

−i > b|s′i] + b Pr[B−i ≤ b|s′i] >

> E[vi|s′i,Bmax
−i > b] Pr[Bmax

−i > b|s′i] + b Pr[B−i ≤ b|s′i] =

= E[vi|s′i]− E[vi − b|s′i,B−i ≤ b] Pr[B−i ≤ b|s′i] ≥
≥ E[vi|s′i]−max

x≥0
π̄i(x, s′i;B−i) = φ

B−i

i (s′i),

where the strict inequality follows from the initial Observation, and the proof of the claim
is complete.

Consider now signals si, s
′
i such that s′i < si and φ

B−i

i (s′i) = maxj 6=i limsj↑1 Bj(sj). Then
it must be the case that arg maxx≥0 π̄i(x, si;B−i) = {maxj 6=i limsj↑1 Bj(sj)}: otherwise, by
the preceding Claim, s′i < si, b ∈ arg maxy≥0 π̄i(y, si;B−i) and b < maxj 6=i limsj↑1 Bj(sj)
would imply

φ
B−i

i (s′i) < φ
B−i

i (si) =

= E[vi|si]− π∗i (si,B−i) ≤
≤ E[vi|si]− π̄i(max

j 6=i
lim
sj↑1

Bj(sj), si;B−i) ≤

≤ E[vi|si]−
(
E[vi|si,B−i ≤ max

j 6=i
lim
sj↑1

Bj(sj)]−max
j 6=i

lim
sj↑1

Bj(sj)
)

=

= max
j 6=i

lim
sj↑1

Bj(sj),

a contradiction. Thus, we must have φ
B−i

i (si) = φ
B−i

i (s′i) = maxj 6=i limsj↑1 Bj(sj). Let

s
B−i

i = min

(
1, inf{si ∈ [0, 1] : max

j 6=i
lim
sj↑1

Bj(sj) ∈ arg max
x≥0

π̄i(x, si;B−i)}
)

.

Then φ
B−i

i is increasing on [0, s
B−i

i ) and constant on [s
B−i

i , 1].
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6.2. Extensions

6.2.1. Risk-Aversion

We show how to extend our characterization of interim rationalizable bids to the following
more general assumptions: Bidders’ preferences over lotteries are characterized by v, their
monetary valuation for the object and a vector θ of parameters which determine their risk
aversion in terms of monetary gains/losses, so that a rational bidder of type (v, θ) with belief
µ maximizes the expected utility u(v− b; θ)P (b; µ). Let θ ∈ Θ where Θ is a partially ordered
set with a maximal element θ and let u satisfy the following monotonicity condition:

θ′ > θ′′ ⇒ ∀x,A(x, θ′) > A(x, θ′′),

where

A(x, θ) = −
∂2u(x,θ)

(∂x)2

∂u(x,θ)
∂x

,

A(x, θ) > 0 for all x, and ∂u(x,θ)
∂x

> 0 for all x and θ. Furthermore we make the normalization
assumption that u(x) > 0 for all x > 0.

Bidders beliefs satisfy the assumption that valuations are i.i.d with absolutely continuous
marginal c.d.f. G and that the probability of winning with a positive bid is positive. Although
bids now depend on both v and θ, we still consider upper bounds B on the bid of a player as
a function of the valuation v. ∆+(B−i,B−i) is defined as in the symmetric IPV-model with
risk-neutrality. Thus, for all b and all µ ∈ ∆+(B−i,B−i), P (b; µ) ≥ P (b;B−i).

Let π∗(v, θ; µ) = sup0≤b≤v u(v − b; θ)P (b; µ). First observe that for any θ ∈ Θ and any
increasing upper bound B such that B(0) = 0 the following holds

inf
µ∈∆+(B−i,B−i)

π∗(v, θ; µ) = π∗(v, θ;B−i)

Proof. We show that π∗(v, θ; µ) < π∗(v, θ;B−i) implies µ /∈ ∆+(B−i,B−i). This, in turn,
implies that infµ∈∆+(B−i,B−i) π∗(v, θ; µ) ≥ π∗(v, θ;B−i). The rest of the proof is analogous to
the case of risk-neutrality.

Suppose that π∗(v, θ; µ) < π∗(v, θ;B−i). Since u(v− b)P (b;B−i) is continuous in the bid
b, π∗(v, θ; µ) = max0≤b≤v u(v− b; θ)P (b;B−i). Let b∗ be a maximizer of u(v− b; θ)P (b;B−i).
Then b∗ < v and

u(v − b∗; θ)P (b; µ) ≤ π∗(v, θ; µ) < u(v − b∗; θ)P (b∗;B−i).

Since b∗ < v implies u(v − b∗, θ) > 0, we obtain P (b; µ) < P (b;B−i), which in turn implies
µ /∈ ∆+(B−i,B−i).

Now we can use the same methods as in the case of risk neutrality to show that for all
(v, θ) ∈ [0, 1]×Θ and b ≥ 0,
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if π∗(v, θ;B−i) > u(v − b), then b is not a best reply for (v, θ) to any belief µ ∈
∆+(B−i,B−i);

if π∗(v, θ;B−i) < u(v − b), then b is a strict best reply for (v, θ) to some belief µ ∈
∆+(B−i,B−i).

We can deduce that the upper bound on the bid of type (v, θ) is

ϕB(v, θ) = u−1 (π∗(v, θ;B−i))

and any bid in (0, ϕB(v, θ)) is rationalizable for (v, θ).
In order to find an upper bound independent of θ, we argue that ϕB(v, θ) is nondecreasing

in θ. The intuition is that the more risk-averse is the bidder (the higher θ), the less attractive
is bid b∗ ∈ arg max0≤b≤v u(v − b; θ)P (b;B−i) compared with a bid b that yields utility u(v −
b; θ) with certainty. Thus, as θ increases, the inequality π∗(v, θ;B−i) < u(v− b; θ) is satisfied
for a wider set of bids.

We conclude that for any given increasing upper bound B, with B(0) = 0,the new derived
upper bound on the bids of players with valuation vis φB(v) = ϕB(v, θ). Since beliefs about
the opponents parameter θ are arbitrary, each bidder may believe that all the opponents are
characterized by the highest risk-aversion and the new set of beliefs is ∆+(B−i, φ

B
−i).

6.2.2. Lower Bounds

We focus on the symmetric IPV case for simplicity. The objective of this section is thus to
extend Proposition 2.2 to allow for an exogenously specified, non-decreasing common lower
bound L on bids.

First of all, since we wish to maintain the assumptions that positive bids win with positive
probability, and that players never bid above the non-decreasing common upper bound B,
we necessarily require that L−i = {L, . . . ,L} ∈ ∆+(B−i;B−i).

The problem is then to characterize the set of best replies for any valuation v to beliefs
µ ∈ ∆+(B−i;B−i,L−i), where

∆+(B−i;B−i,L−i) = {b−i ∈ B−i : ∀j 6= i, ∀vj,Lj(vj) < bj(vj) < Bj(vj)} .

We have the following result.

For every bid b and valuation v :
If π∗(v,B−i) > (v − b)P (b;L−i) then b cannot be a best reply for v to any belief µ ∈

∆+(B−i;B−i,L−i).
If π∗(v,B−i) < (v− b)P (b;L−i) then there is a belief µ ∈ ∆+(B−i;B−i,L−i) such that b

is a best reply to µ for valuation v.

In the presence of a lower bound, it is still the case that B−i is the “most pessimistic”
conjecture a player may hold. On the other hand, L−i is her “most optimistic” conjecture:
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it maximizes the probability of winning with any bid. Thus, the interpretation of the above
inequalities is as in Proposition 2.2. In particular, a bid cannot be a best reply if it yields
a lower expected payoff against the most optimistic conjecture than the bidder’s maxmin
payoff.

If the equation in b
π∗(v,B−i) = (v − b)P (b;L−i)

admits only two solutions non-negative solutions, L∗(v) and B∗(v), then the latter quantities
represent the derived bounds: given the assumed restriction on beliefs, the interior of set of
justifiable bids is the interval (L∗(v),B∗(v)). Otherwise, the above result still characterizes
the set of justifiable bids, but the latter is not an interval.

Note that if v − π∗(v,B−i) = ϕB−i(v) > L(1) then we obtain the same derived upper
bound as in the standard case where the lower bound is 0. Hence, the introduction of a
lower bound only affects the upper bound for low types. 20

Observe also that if the above condition applies to type v = 1, then the derived lower
bound for that type at least will be at most equal to the exogenous lower bound. For
example, this will be the case if L < beq and B(1) = B(1;∞). If L is increasing, the derived
lower bound for type v = 1 will actually lie below L(1), and the same will be true for an
interval of types to the left of v = 1. Thus, as claimed in the text, some types may wish
to bid below the common lower bound, even if they believe that their opponents don’t (and
that this is mutual belief).

Sketch of the proof. Suppose that π∗(v,B−i) > (v − b)P (b;L−i) and consider a belief
µ ∈ ∆+(B−i;B−i,L−i). If b ≥ v then b is dominated and there is nothing to prove. Suppose
that b < v. Then

π(b, v; µ) ≤ (v − b)P (b;L−i) < π∗(v,B−i) ≤ π∗(v; µ)

where the first and last inequalities follow from the fact that L−i is the most optimistic
conjecture and B−i is the most pessimistic conjecture. Thus b is not a best reply to µ.

Now suppose that π∗(v,B−i) < (v − b)P (b;L−i). We show that b is a best reply to a
conjecture gε whose graph is ε-close to the graph of

g(v) =

{
B(v), if v < B−1(b), or v ≥ L−1(b),
b, if B−1(b) ≤ v < L−1(b).

The conjecture gε is a strictly increasing version of g such that P (b;gε) = P (b;g) and
L(v) < gε(v) < B(v) for all v. Since P (b;g) = P (b;g) = P (b;L−i), bid b yields (v −
b)P (b;L−i). By construction, there is a local maximum at b. The best Player i can do

20Note that π∗(v;B−i) ≥ 0; the above inequality implies that π∗(v;B−i) < (v − b)P (b;L−i) for b in a
right-hand neighborhood of L(1). Therefore the r.h.s. is positive for all b ∈ (L(1), ϕB−i(v)).
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against gε when he does not choose b is to use bids that make his expected payoff close to
π(·, v;B). The maximum payoff of such bids is approximately π∗(v;B−i) < (v− b)P (b;L−i).
Thus b is a best reply.

Example. Consider the symmetric IPV model with the uniform distribution and two
bidders. Let L(v) = L(v; 0) = αv, α < 1

2
(we do not want to exclude the Nash conjecture).

Then P (b;L) = min{b/α, 1}.
We now attempt to mimic the construction in Theorem 4.2.
Starting from the (high) upper bound B(v; 0) = 1 and the (exogenous) lower bound

L(v; 0) = L(v), we get π∗(v;B(·; 0)) = 0; the inequality π∗(v;B(·; 0)) < (v − b)P (b;L(·; 0))
then yields the new upper bound B(v; 1) = v. The implied lower bound is L(v; 1) = 0 ≤ L(v):
note that it lies entirely below the exogenous lower bound. This exhausts the implications
of Step 1 of the iterative procedure.

Now consider Step 2. By the preceding analysis, L(v; 1) is the lower bound on ac-
tual bids if (a) each player is rational and (b) her beliefs belong to ∆+(B−i;B(·, 0) ,L).
If a player’s beliefs are in ∆+(B−i;B(·, 0),L), and moreover she is certain of (a) and (b),
then her beliefs must be in ∆+(B−i;B(·, 1), max{L,L(·; 1)}); if L ≤ L(·; 1) the latter set is
∆+(B−i;B(·, 1) ,L). In other words, the Step-1 lower bound can be disregarded at Step 0.

Now the best reply to B(v; 1) = v is b∗(v) = v
2

and π∗(;B(·; 1)) = v2

4
. Solving the

inequality
v2

4
< (v − b) min{b/α, 1}

we get
v(1−√1− α)

2
< b < min

{
v(1 +

√
1− α)

2
, v − v2

4

}
.

Observe that the new lower bound on bids is still lower than the conjectured lower bound:
(1−√1−α)

2
v < αv for α < 3

4
, and we are assuming α < 1

2
).

The new upper bound is B(v; 2) = min
{

v(1+
√

1−α)
2

, v − v2

4

}
. This upper bound is different

from the one on best replies to beliefs in ∆+(B−i;B(·, 1)) only for low types (e.g., for α = 1
4

the threshold is v = 2−√3 ≈ 0.27). Moreover, the difference between the two derived upper

bounds is numerically small (for α = 1
4
, it is maximal at v = 2−√3

2
≈ 0.13, where it equals

approximately 0.0045, i.e. about 3.4% of the valuation.)

6.2.3. A Note on Non-Decreasing Conjectures

Our results for the general interdependent values model rest on the assumption that bidders’
beliefs are concentrated on the set of increasing bid functions. In particular, the proof of
Part 1 of Lemma 6.2 exploits the fact that ties occur with probability zero, given a belief
µ ∈ ∆+(M−i;B−i) (note, however, that the upper bound B−i itself may be non-decreasing).
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One can allow for non-decreasing conjectures, and hence for the possibility of positive-
probability ties. However, one must verify or ensure that the following regularity condition
holds: for every non-decreasing conjecture b−i, no bid b such that Pr[bmax

−i = b|si] > 0 is a
best reply for Bidder i.

The condition is always met in private-values auctions: if the bid b ties with positive
probability and Bidder i’s valuation is v, then Bidder i will prefer to bid below b if v < b,
and bid slightly above b if v > b. It is also met in general auctions with interdependent
values, provided there are only two bidders; the argument is similar.

However, in settings with more than two bidders, the situation is complicated by the fact
that the bid b may induce a tie with different subsets of opponents with positive probability.
Thus, the expected surplus of Bidder i conditional upon a tie is a sum of products of three
terms: the surplus conditional upon a tie with a specific subset of opponents, the probability
of a tie with those opponents, and the probability of ultimately receiving the object given a
tie with those opponents (cf. Equation 6.1).

Invoking affiliation and monotonicity of the valuation functions, we have been able to
show that best replies never induce positive-probability ties in general interdependent-values
setting with three bidders. However, we have been unable to rule out the possibility that
this condition might fail if there are more than three bidders, although we are unaware of
examples in which it does fail.

The problem may be circumvented by adopting a different tie-breaking rule; for instance,
assume that each high bidder receives the object with probability 1

|N | , so the seller may end
up keeping the object with positive probability. Alternatively, one may impose restrictions
on bidders’ beliefs; for instance, assume that players expect to tie with at most two other
opponents. Further details are available from the authors upon request.
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