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Abstract

Observed policy rates are smooth. Why should central banks
smooth interest rates? We investigate if model uncertainty and pa-
rameters instability are a valid reason. We do so by implementing a
novel ”thick recursive modelling” approach within the framework of
small structural macroeconomic models. At each point in time we
estimate all models generated by the combinations of a base-set of k
observable regressors. Our econometric procedure delivers 2k models
for aggregate demand and supply at any point in time. We compute
optimal monetary policies for each of these speci…cations and then
take their average as our benchmark optimal monetary policy. We
then compare observed policy rates with those generated by the tra-
ditional ”thin modelling” approach to optimal monetary policy and
to our proposed ”thick modelling” approach. Our results con…rms
the di¢culty of recovering the deep parameters describing the prefer-
ences of the monetary policy makers from their observed behaviour.
However, they also show that thick recursive modelling can, at least
partially, explain the observed interest rate smoothness.

Keywords : model uncertainty, optimal monetary policy, interest rate
smoothing

JEL classi…cation: E44, E52, F41
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1 Introduction

The analysis of monetary policy in the framework of small macroeconomic

models1 recently developed in the literature, points clearly towards the im-

portance of interest rate smoothing. Forward-looking Taylor rules, according

to which policy rates are made linearly dependent on the deviation of ex-

pected in‡ation from target in‡ation and on the output gap, need to include

the lagged dependent variable in the speci…cation to match the apparent

very slow partial adjustment of the policy interest rates. Some preference

for interest rate smoothing by central banks, and therefore the explicit inclu-

sion of policy rates volatility in their loss function, is the quick-…x commonly

adopted to match this evidence with the parameterization of the economy

provided by small models of aggregate demand and supply.

However, why should central banks smooth interest rates?

The direct inclusion of interest rate smoothing in central banks’ preference

with loose theoretical foundations obviously makes the profession unease.

In a recent survey of the empirical literature Sack and Wieland(2000) have

discussed three main motives for interest rate smoothing which do not require

the direct inclusion of volatility of interest rates in the loss functions of the

monetary policy makers.

The …rst motive is forward-looking expectations. In models with for-

ward expectations, estimated policy rules with inertia are more e¤ective in

stabilizing output and in‡ation for a given level of volatility in the policy

instrument. If policy features an high degree of partial adjustment, then

forward-looking market participants will expect an initial policy move to be

followed by additional moves in the same direction. Such expectations e¤ect

1see, for example, Rudebusch-Svensson(1999), Sack(2000), Clarida, Gali and
Gertler(2000).
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increases the impact of policy on output and in‡ation. Smoothing is then

induced by the structure of the economy and there is no need to include some

cost in the preferences of central banks to generate the observed behaviour

of interest rates.

The second motive is data-uncertainty. According to this motive a mod-

erate responsiveness of interest rate to initial data releases is optimal when

the data are measured with errors. In fact, an aggressive policy response

would induce unnecessary ‡uctuations in policy rates resulting in unintended

‡uctuations in output and in‡ation.

The third motive is uncertainty about the parameters. This is a revisiting

of the classical argument o¤ered by Brainard(1967). When policy-makers are

uncertain on the key parameters which determine the transmission of mone-

tary policy in the adopted structural model of the economy, aggressive policy

moves are more likely to have unpredictable consequences on output and in-

‡ation, then gradual policy is optimal to minimize ‡uctuations of output and

in‡ation around their targets.

Rudebusch(2000) pushes the argument even further to label monetary

policy inertia as an illusion, re‡ecting the episodic unforecastable persistent

shocks that central banks face. His views are supported by the empirical

evidence from the term structure of interest rates, which does not indicate

the large amount of forecastable variation in interest rates at horizons of

more than three months that monetary policy inertia would imply.

In this paper we consider the omitted consideration of model uncertainty

and parameters instability as the potential source of the observed persis-

tence in interest rates. Model uncertainty has already been considered in a

number of papers2 applying robust control techniques to design interest rate

2See Hansen and Sargent(2000), Onatski and Stock(2000), and Tetlow and von zur
Muehlen(2001)
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policies capable of performing well in presence of model mis-speci…cation. In-

terestingly, this research …nds that model uncertainty might call for a more

aggressive policy stance when policy-makers are guarding against worst-case

scenarios.

We consider a di¤erent approach based on ”thick recursive modelling” to

simultaneously deal with the two problems.

At any point in time we mimic the decision of a monetary policy-maker

who sets policy rates on the basis of the available data.

To this end at each point in time, t, we search over a base set of ob-

servable k regressors to construct a small structural model of the economy.

In each period we estimate a set of regressions spanned by all the possible

combinations of the k regressors. We estimate our system equation by equa-

tion and we keep the number of regressors k constant for all equations. This

gives a total of 2k di¤erent models for each structural equation. We keep the

sample size constant and all models run are based on a sample of twenty-two

years of quarterly data. As we keep a …xed window of 88 observations, our

method amounts to running a number of rolling regressions, an alternative

could be to proceed to a series of recursive regressions3, in which case at any

point in time the size of the sample used for estimation is increased by one

observation.

Our econometric procedure delivers 2k models for aggregate demand and

supply at any point in time, therefore the decision of monetary policy requires

us to take a stand on model, or speci…cation, uncertainty.

A traditional approach taken in the literature is to proceed to ‘thin’ mod-

elling by specifying a selection criteria and therefore by selecting the best

model in each period. We follow Granger (2000) and label this approach

3The use Rolling regressions for forecasting allows more parameters’variability over
time than recursive regressions .
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‘thin’ modelling in that the optimal monetary policy is described over time

by a thin line.

Thin modelling needs to be based on a selection criterion which weights

goodness of …t against parsimony of the speci…cation. The literature typically

considers BIC, AKAIKE, and the adjusted R2 as selection criteria.

The advantage of this approach is that a process potentially non-linear is

modeled by applying recursively a selection procedure among linear models.

The speci…cation procedure mimics a situation in which the speci…cation

of aggregate demand and supply is chosen in each period from a pool of

potentially relevant regressors.

The main limit of thin modelling is that model, or speci…cation, uncer-

tainty is not considered. In each period the information coming from the

discarded 2k ¡ 1 is ignored for the design of optimal monetary policy. The

explicit consideration of estimation risks naturally generates ‘thick’ mod-

elling, where optimal monetary policy is described by a thick line to take

account of the multiplicity of models estimated. The thickness of the line

is a direct re‡ection of the estimation risk. Given the range of all optimal

monetary policies, we consider their average to evaluate comparatively the

behaviour of policy rates implied by thick and thin modelling.

The paper is structured in four sections. The …rst section discusses the

relevance of parameters instability and model uncertainty in small macroeco-

nomic models of the monetary transmission mechanism. The second section

illustrates the di¤erences in the calculation of optimal monetary policy when

thin modelling, recursive thin modelling and recursive thick modelling are

adopted. The third sections contains the empirical results for the US case,

to show to what extent model uncertainty and parameters instability can ex-

plain the observed degree of smoothness in monetary policy. The last section
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concludes.

2 Parameters instability and model uncertainty
in small structural models

Recent studies of optimal monetary policy in closed economies have adopted

a simple two-equation framework. An aggregate supply equation relates in-

‡ation to its lagged values and to current and/or lagged output gap, and an

aggregate demand equation relates the output gap to lags of itself and to

past real interest rates.

A typical model in this class is the one estimated by Rudebusch and

Svensson,1999, who represent the aggregate supply and demand of the econ-

omy as follows:

¼t+1 = ®1¼t +®2¼t¡1 +®3¼t¡2 + ®4¼t¡3 + ®5yt; (1)

yt+1 = ¯1yt + ¯2yt¡1+ ¯3(it ¡ ¼t): (2)

The authors estimate the equations using quarterly data over the sample

1961:1 to 1996:4. In‡ation, ¼t;is calculated as 100 ¤ (log(pt) ¡ log(pt¡4))

where pt is the GDP implicit price de‡ator, the output gap yt is obtained as

100 ¤ (log(Qt)¡ log(Q¤t)) with Qt; which is the actual GDP (in chained 1996

dollars), and Q¤t the potential GDP, and it represents the federal funds rate

(our nominal interest rate).

This small structure delivers the constraints under which the reaction

function of the central bank is derived by minimizing an intertemporal loss

function. Optimal setting of interest rates delivers in general a functional

speci…cation resembling a forward-looking Taylor rule. The parameters in

the central bank’s reaction function are convolutions of the parameters in
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the structure of the economy and on the parameters describing the prefer-

ences of the monetary policy maker. Hence, joint estimation of the simple

structure for the economy and the interest rate settings equation allows to

evaluate which structure of central bank’s preferences delivers a path for

policy rates closest to that observed in the data. As discussed in the intro-

duction, the implementation of this framework usually forces the researcher

to insert interest rate smoothing among central banks’ preferences in order

to replicate the observed persistence in the data.

We shall use this simple structural representation to illustrate the impor-

tance of parameters instability and model uncertainty for the determination

of optimal monetary policy.

2.1 Parameters Instability

We start by replicating the Rudebusch and Svensson results using quarterly

data over the period 1961:1-2000:3. Our estimated equations are as follows4 :

¼t+1 = 0:632
(0:080)

¼t +0:005
(0:093)

¼t¡1 + 0:214
(0:094)

¼t¡2+ 0:149¼t¡3 + 0:140
(0:033)

yt +
^
u1;t+1;(3)

yt+1 = 1:237
(0:075)

yt ¡ 0:309
(0:075)

yt¡1 ¡ 0:060
(0:026)

(it ¡ ¼t) +
^
u2;t+1: (4)

To evaluate potential parameters instability we re-estimate the system by

considering two sub-samples.

The …rst sub-period goes from 1961:1 to 1983:4; estimation delivers the

following results:

4All the speci…cations for the supply equation impose the restrictions that the coe¢-
cients on the lags of the dependent variable add up to unity.
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¼t+1 = 0:705
(0:106)

¼t ¡ 0:018
(0:129)

¼t¡1 + 0:186
(0:129)

¼t¡2 +0:127¼t¡3 + 0:136
(0:042)

yt +
^
u1;t+1;(5)

yt+1 = 1:212
(0:099)

yt ¡ 0:300
(0:099)

yt¡1 ¡ 0:089
(0:037)

(it ¡ ¼t) +
^
u2;t+1: (6)

Concentrating instead on the last sub-period 1984:1-2000:2, we obtain:

¼t+1 = 0:331
(0:117)

¼t +0:043
(0:119)

¼t¡1 + 0:315
(0:122)

¼t¡2+ 0:311¼t¡3 + 0:142
(0:053)

yt +
^
u1;t+1;(7)

yt+1 = 1:267
(0:117)

yt ¡ 0:300
(0:117)

yt¡1 +0:000332
(0:031)

(it ¡ ¼t) +
^
u2;t+1: (8)

We take these results as an indication of parameters’ instability of a

clear economic importance. Consider in‡ation persistence and the e¤ect of

monetary policy on the output gap, two crucial parameters for the design

of optimal monetary policy. Although the sum of the coe¢cients on the

lagged dependent variables in the supply equation is restricted to one in

all sub-samples, the weight on shorter lags decreases across periods, and

consequently, the weight on longer lags increases. Similarly the e¤ect of real

interest rates on the output gap in the aggregate demand equation features

an important shift from being signi…cantly negative in the …rst sub-period,

with a sizeable long-run e¤ect of about one, to being insigni…cant in the

second sub-period.

Recently, Pesaran and Timmermann(1995) have proposed recursive mod-

elling as an appropriate approach to deal with parameters instability and

non-linearity in the context of small models. Consider a monetary policy

maker who believes that demand and supply equations can be modelled by

projecting output and in‡ation on macroeconomic indicators but does not
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know the ”true” form of the underlying speci…cation and the ”true” param-

eter values. To keep the macro structure simple and comparable to that of

Rudebusch and Svensson, consider a situation in which there is uncertainty

only on the speci…cation of the lags with which the relevant variables enter

the supply and demand equations. The best option for the policy-maker is

to search for a suitable model speci…cation among the set of models believed

a-priori appropriate to describe supply and demand. As time elapses, in the

presence of potential parameters’ instability, such speci…cation might change

in the sense that di¤erent variables might enter the two equations for demand

and supply or the same variables might enter the speci…cation with di¤erent

coe¢cients. An open minded policy maker with no strong a-priori belief on

the speci…cation of lags in the demand and supply equations would probably

like to update the econometric model to base monetary policy on the best

possible representation of the unknown Data Generating Process. There-

fore, at each point in time, t, the policy maker searches over a base set of k

factors or regressors to obtain the best possible speci…cation for output and

in‡ation based on information available at that time. Recursive modelling

mimics such decision process by assuming that the policy maker estimates,

at each point in time, the entire set of regression models spanned by all the

possible permutations of the k regressors and chooses the best one, accord-

ing to some statistical criteria, to generate optimal monetary policy. Hence

in each period the decision is based on the best speci…cation for in‡ation

and output, out of 2k models for each variable. Given that variables and

parameters entering the best chosen speci…cation are allowed to vary over

time, recursive modelling is capable of accommodating parameters instabil-

ity and non-linearity in the e¤ect of some factors on output and in‡ation.

In practice, recursive modelling is implemented by considering the following
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speci…cation for aggregate demand and supply:

MAS
i;t : ¼t = ¯0 + ¯1¼t¡1+ ¯0iX

1
t;i + u

1
t;i (9)

MAD
i;t : yt = °0 + °1yt¡1 + °0iX

2
t;i + u

2
t;i (10)

where X 1
t;i; X

2
t;i are (kix1) vectors of regressors under model MAS

i;t ,MAD
i;t

obtained as a subset of the base set of regressors X1
t ; X

2
t :

X10
t =

£
¼t¡2 ¼t¡3 ¼t¡4 yt yt¡1 yt¡2 yt¡3 yt¡4

¤
;

X20
t =

£
yt¡2 yt¡3 yt¡4 rrt¡1 rrt¡2 rrt¡3 rrt¡4 rrt¡5

¤

ki = e0vi; where e is a (kx1) vector of ones and vi is a (kx1) selection

vector, composed of zeros and ones where a one in its j-th element means

that the j-th regressor is included in the model. All variables are de…ned as

above and rrt = it ¡¼t: The constant and the lagged dependent variable are

always included in all speci…cations. Uncertainty on the speci…cation of lags

implies that the policy maker searches over 28 = 256 speci…cations to select in

each period the relevant demand and supply equations. The selection is based

on traditional criteria such as adjusted R2, Akaike Information Criterion, or

Schwarz’s Bayesian Information Criterion.

2.2 Model Uncertainty

We follow Granger (2000) and label the approach described above as ‘thin’

recursive modelling in that optimal monetary policy is described over time

by a thin line.

As we have already seen, this approach allows to model a process poten-

tially non-linear by applying recursively a selection procedure among linear
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models and is also capable of accommodating parameters instability. More-

over, keeping track of the selected variables helps the re‡ection on the eco-

nomic signi…cance of the ‘best’ regression.

The main limit of thin modelling is that model, or speci…cation, uncer-

tainty is not considered. In each period the information coming from the

discarded
¡
2k ¡ 1

¢
¤ 2 models for aggregate demand and supply is ignored

for the determination of optimal monetary policy.

This choice seems to be particularly strong.

First, the distance among models, measured by the chosen selection cri-

terion is small. Moreover, the ranking of models according to a within sam-

ple performance criterion does not match that obtained by using an out-

of-sample forecasting performance criterion. Figure 1-2 make this point by

showing the cross-plot of the Adjusted R2 and the Theil’s U for the 256

models of aggregate demand and supply at each possible sample after initial-

ization.

Insert Figures 1-2 here

Clearly the ranking of models according to the adjusted R2 is not only

di¤erent but also little correlated with the ranking of models based on the

Theil’s U. Given that, in the face of the lags with which the policy instruments

a¤ect the output gap and in‡ation, optimal monetary policy has to be based

on forecasts for the relevant variables it is not clear at all that the best

thin model selected by the adjusted R2 is the most appropriate to design

monetary policy. The …rst two …gures show how hard is to decide among

di¤erent models of demand and supply. To evaluate the importance of this

choice we need to measure the potential relevance of model uncertainty. To

this aim we consider the distribution over time of some key parameters in
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our small structural model, across the di¤erent (256) models of aggregate

demand and supply.

Figure 3-4 report the distribution across models of the two crucial pa-

rameters determining the e¤ect of monetary policy on in‡ation in our model

economy: the e¤ect of the output gap on in‡ation and the e¤ect of real

interest rates on the output gap.

Insert Figures 3-4 here

We consider total e¤ects, given by the sum of the coe¢cients on all lags of

the relevant variable. Note that a policy-maker, who bases on thin modelling

would measure the impact of an interest rate move to real activity and to

in‡ation respectively at ¡0:113 and 0:046.

Allowing instead for the potential model uncertainty we end up with the

distributions, reported in the graphs.

A natural way to interpret model uncertainty is to refrain from the as-

sumption of the existence of a ”true” model and attach instead probabili-

ties to di¤erent possible models. This approach has been labelled ‘Bayesian

Model Averaging’, see, for example, Hoeting J.et al.(1999), and Raftery et

al.(1997).

The main di¢culty with the application of Bayesian Model Averaging to

problems like ours lies with the speci…cation of prior distributions for param-

eters in all 2*2k equations to our interest. Recently, Doppelhofer et al.(2000)

have proposed an approach labelled ‘Bayesian Averaging of Classical Esti-

mates’(BACE) which overcomes the need of specifying priors by combining

the averaging of estimates across models, a Bayesian concept, with classi-

cal OLS estimation, interpretable in the Bayesian camp as coming from the

assumption of di¤use, non-informative, priors.
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In practice BACE averages parameters across all models by weighting

them proportionally to the logarithm of the likelihood function corrected

for the degrees of freedom, using then a criterion analogous to the Schwarz

model selection criterion. The results reported in Figure 1-2 show clearly

that the ranking of models in terms of their within sample performance does

not match the ranking of models in terms of their out-of-sample forecasting

performance. In the face of the risk involved in choosing a weighting scheme

we opted for the selection method proposed by Granger(2000) of using a

‘... procedure [which] emphasizes the purpose of the task at hand rather than

just using a simple statistical pooling...’. Therefore we derive the optimal

monetary policy associated to each speci…cation for the simple aggregate

demand-supply system and we then consider the average monetary policy

obtained by giving equal weights to each of the alternative monetary policies.

3 Optimal Monetary Policy

To assess the impact of recursive thick modelling we calculate the optimal

federal funds rate paths, by applying dynamic optimization techniques, con-

sidering the following model choices:

² Thin modelling: Rudebusch, Svensson model;

² Recursive thin modelling: best adjusted R2 model;

² Recursive thin modelling: best forecasting model (lowest Theil U);

² Recursive thick modelling: average monetary policy.

The central bank minimizes an intertemporal loss function of the form:
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Et

1X

¿=0

Á¿Lt+¿ ; (11)

where Á is the discount factor and Et is the usual expectations’ operator.

The central bank, thus, minimizes the expected discounted sum of future

values of a loss function, Lt, given in each period by:

Lt = ¸¼¼
2+ ¸yy

2 + ¸R(it ¡ it¡1)2; (12)

which is quadratic in the deviations of output and in‡ation from their

targets and includes an additional term re‡ecting a penalty for an excessive

volatility of the policy instrument. The parameters ¸¼, ¸y and ¸R represent

the relative weights of in‡ation stabilization, output gap stabilization and

interest rate smoothing objective; these di¤erent weights sum to 1.

When the discount factor Á approaches unity, the intertemporal loss func-

tion approaches the unconditional mean of the period loss function, which

can be also expressed as

E [Lt] = ¸¼V ar [¼t] + ¸yV ar [yt] + ¸RV ar [it ¡ it¡1] : (13)

We shall solve the optimization problem taking di¤erent values for the

weights to evaluate which weighting scheme has the best performance in

replicating the observed data.

In practice we shall calculate the optimal monetary policy rule in the dif-

ferent described frameworks (Rudebusch-Svensson, ”thin” and ”thick” mod-

elling), under …ve alternative speci…cations for preferences:

14



² CASE 1. Pure (strict) in‡ation targeting: ¸¼ = 1, ¸y = 0, ¸r = 0.

² CASE 2. Pure in‡ation targeting with interest rate smoothing (strong):

¸¼ = 0:8, ¸y = 0, ¸r = 0:2.

² CASE 3. Flexible in‡ation targeting: ¸¼ = 0:5, ¸y = 0:5, ¸r = 0.

² CASE 4. Flexible in‡ation targeting with interest rate smoothing:

¸¼ = 0:4, ¸y = 0:4, ¸r = 0:2.

² CASE 5. Pure in‡ation targeting with interest rate smoothing (weak):

¸¼ = 0:95, ¸y = 0, ¸r = 0:05.

Before going into the details of each case, two problems, relevant when

recursive modelling is implemented, are worth mentioning. First, there

are speci…cations in which the question of optimal monetary policy is

not worth addressing because monetary policy has no e¤ect on target

variables. We then dropped all the speci…cations featuring a zero e¤ect

of interest rates on the output gap and/or a zero e¤ect of the output

gap on in‡ation. Second, thick modelling delivers 256 speci…cations for

aggregate demand and 256 speci…cations for aggregate supply. When

demand and supply are combined in a model the curse of dimensional-

ity is relevant and the total number of possible models becomes 2562 =

65536: To keep the number of models limited we ordered speci…cations

for aggregate demand and supply in terms of performance and gen-

erated models by considering aggregate demand and supply equations

with the same position in their respective ranking. We therefore con-

sidered a number of models equal to the number of speci…cations for

aggregate demand and aggregate supply.

15



3.1 Thin Modelling

Under thin modelling the optimization problem is solved subject to the dy-

namics of the economy, which is given by a constant parameter speci…cation

of the two stochastic di¤erence equations for demand and supply. We …rst

make use of a standard representation of the economy such as the one adopted

by Rudebusch, Svensson (1999) and consisting of two simple empirical rela-

tions for in‡ation and output gap:

MAS : ¼t = ¯0 + ¯1¼t¡1+ ¯0X1
t + u

1
t (14)

MAD : yt = °0 + °1yt¡1+ °0X2
t + u

2
t (15)

X10
t =

£
¼t¡2 ¼t¡3 ¼t¡4 yt¡1

¤

X20
t =

£
yt¡2 rt¡1 ¡ ¼t¡1

¤

where the parameters are estimated on the whole available sample and

kept constant over time.

As shown in the Appendix, the optimal policy rule, computed by re-

writing the model in state-space form and by solving the relevant optimal

control problem, can be written as

it = f
£
¼t¡1 yt¡1 X10

t X20
t

¤

where f is the optimal feedback vector which depends both on the param-

eters describing the preferences of the central bank and on the parameters

describing the stochastic di¤erence equations for aggregate demand and sup-

ply.

All estimated parameters are assumed to be stable over time; the only

uncertainty entering the economy consists of additive uncertainty, in the
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form of additive disturbances entering the model equations. In this case, the

certainty-equivalence principle holds: additive uncertainty has no e¤ect over

the optimal rule.

Within this framework, the policy-maker is sure about the true model

representing the economy. Neither parameter uncertainty nor model uncer-

tainty are relevant within this framework.

3.2 Recursive Thin Modelling

Recursive thin modelling implies that the policy maker investigates much

more deeply the constraints under which optimal policy is designed. At

any point in time all possible models are estimated and the best, according

to some criterion, is chosen. As a new observation becomes available the

process is iterated, thus allowing for a di¤erent speci…cation of the demand

and supply equations. We assume that a rolling window of …xed length is

chosen for estimation.

Recursive modelling is implemented by considering the following speci…-

cation for aggregate demand and supply:

MAS
i;t : ¼t = ¯0 + ¯1¼t¡1+ ¯0iX

1
t;i + u

1
t;i (16)

MAD
i;t : yt = °0 + °1yt¡1 + °0iX

2
t;i + u

2
t;i (17)

where X 1
t;i; X

2
t;i are (kix1) vectors of regressors under model MAS

i;t ,MAD
i;t

obtained as a subset of the base set of regressors X1
t ; X

2
t :

X10
t =

£
¼t¡2 ¼t¡3 ¼t¡4 yt yt¡1 yt¡2 yt¡3 yt¡4

¤
;

X20
t =

£
yt¡2 yt¡3 yt¡4 rrt¡1 rrt¡2 rrt¡3 rrt¡4 rrt¡5

¤
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ki = e0vi; where e is a (kx1) vector of ones and vi is a (kx1) selection

vector, composed of zeros and ones where a one in its j-th element means

that the j-th regressor is included in the model. The constant and the lagged

dependent variable are always included in all speci…cations, the uncertainty

on the speci…cation of lags implies that the policy maker searches over 28 =

256 speci…cations to select in each period the relevant demand and supply

equations. All estimated models are then ranked in accordance to a selection

criteria and the best model is then chosen. In the light of the evidence

proposed in the previous section on the di¤erences in ranking of models

when within sample or out-of-sample performance are considered we shall

consider ranking models using the adjusted R2 and the Theil’s U as selection

criteria. When the best model has been chosen optimal policy is then derived

by solving the usual optimal control problem.

As shown in the Appendix, the optimal monetary policy rule takes now

the following form:

it = ft
£
¼t¡1 yt¡1 X10

t;i X20
t;i

¤

Such optimal rule is time-varying along two dimensions: the size of the

coe¢cients and the set of variables to which monetary policy responds.

3.3 Recursive Thick Modelling

So far optimal monetary policy has been designed at each sample point by

estimating all possible models but by optimizing just once, taking the best

model as the relevant constraint. As we have discussed, this procedure does

not retain information from the other non-selected models.

To implement thick modeling we consider a situation in which the central

banker not only estimates all possible models but also derives all the asso-

ciated optimal monetary policies. Then the adopted monetary policy is the
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average of all the possible optimal policies.

i¤t =
1

n

nX

j=1

ijt

ijt = f jt
£
¼t¡1 yt¡1 X10

t;j X20
t;j

¤

Our e¤ort to take model uncertainty on account di¤ers from the tradi-

tional two solutions adopted in the literature to insert the uncertainty into

the policy-maker’s decision problem, i.e. adding multiplicative (parameter)

uncertainty and using robust control techniques.

The consideration of multiplicative (parameter) uncertainty, introduced

…rst by Brainard(1967), implies that the optimal policy rule is also a¤ected

by the variances of the estimated parameters, not only by their …rst moments.

The traditional result achieved by this approach is that uncertainty about the

model parameters causes attenuation of the central bank’s optimal response.5

Importantly, the impact of uncertainty on the optimal policy rule is heav-

ily a¤ected by the over-parameterization of the adopted model. In fact un-

certainty is empirically much more important in VAR speci…cations of ag-

gregate demand and supply than in parsimonious small structural models

a-la-Rudebusch-Svensson. We feel rather uneasy with these empirical re-

sults, in that any match between observed and optimal policy rates could be

achieved by augmenting the speci…cation of the relevant constraints with the

necessary number of statistically insigni…cant factors.

Robust control (see for example Onatski and Stock (2000)) assumes that

the policy-maker plays a game against a malevolent Nature and tries to

minimize the maximum possible loss (minimize the loss in the worst-case

state), whereas his opponent, Nature, tries to maximize his loss.

5For a recent revisitation of this result see Sack (2000) and Söderström (1999a, 1999b).

19



In the Onatski, Stock paper, there is a modelM , which is known to be an

approximation of the true model of the economy, with an unknown deviation

from the true model ¢, belonging to the set of perturbations D. Being K

the set of policy rules and R(K;M + ¢), the risk of policy K when the real

model is M + ¢, the robust control problem is given by:

minfKg sup¢2DR (K;M + ¢).

The robust solution to this problem is very di¤erent from the multiplica-

tive uncertainty case: now the consideration of uncertainty can induce the

policy-maker to a more aggressive policy than in the perfect certainty state,

in order to minimize the welfare loss in the worst case alternative.

Our approach concentrates on model uncertainty, in its simplest possi-

ble form, i.e. uncertainty on the speci…cation of the relevant dynamics, to

evaluate its potential for explaining interest rate smoothness.

4 Empirical Results.

Our empirical results are summarized in Table 1.

We consider …ve possible parameterizations of the loss function and four

modelling strategies: thin modelling (adopting the parameterization in Rudebusch-

Svensson), recursive thin modelling using a within sample performance se-

lection criterion (best adjusted R2), recursive thin modeling using an out-of-

sample performance selection criterion (Theil’s U), and recursive thick mod-

eling based on the choice of the average optimal policy across all di¤erent

possible models.

Therefore, we end up with 20 optimal federal funds rate series, to be

compared with the observed one. Table 1 reports the …rst two moments of

the simulated and observed series.
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The results clearly show that observed monetary policy is nowhere near to

optimal monetary policy when no weight is attached to interest rate smooth-

ing in the loss function of the policy maker.

When some weight to interest rate smoothing is allowed three optimal

policy rate series feature …rst two moments comparable to those shown by

the actual policy rates.

In fact the mean of 6:26 with a standard deviation of 1:98 featured by the

actual policy rates are most closely replicated by the optimal policy rates

obtained with (i) thin modelling and weights ¸¼ = 0:8; ¸y = 0; ¸r = 0:2;

(mean 7:82, standard deviation 2:85), (ii) thin modelling and weights ¸¼ =

0:4; ¸y = 0:4; ¸r = 0:2;(iii) thick modelling with weights ¸¼ = 0:95; ¸y =

0; ¸r = 0:05:

On the negative side these results con…rm the di¢culty of recovering the

deep parameters describing the preferences of the monetary policy makers

from their observed behaviour. This is because optimal policy depends both

on the parameters describing the preferences of the policy maker and on those

de…ning the structure of the economy. Model uncertainty and parameters’

instability imply very low precision in the estimation of the structure of the

economy and therefore the observational equivalence of optimal policy rates

generated by di¤erent preference parameters.

On the positive side thick recursive modelling is capable of rationalizing

the observed interest rate smoothness allowing for a much smaller weight

on interest rate smoothing in the central bank preferences. In other words,

model uncertainty and parameters instability are capable of explaining a

sizeable portion of the degree of interest rate smoothing observed in actual

policy rates.
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5 Conclusions

Observed policy rates are smooth. The derivation of observed rates as op-

timal by solving the intertemporal optimization of the policy makers under

the constraints given by small structural models of aggregate demand and

supply requires the attachment of some weight to interest rate smoothing in

central bank’s preferences.

This paper starts from the observation that parameters’ instability and

model uncertainty are very relevant in the speci…cation of the constraints

under which the monetary policy maker operates. We then analyze explicitly

if an optimal control methodology which takes these two aspects on accounts

can deliver the observed degree of interest rate smoothing without including

interest rate volatility in the central bank loss function.

We implemented ”thick recursive modelling” to simultaneously deal with

the two problems.

At any point in time we mimic the decision of a monetary policy-maker

who sets policy rates on the basis of the available data.

To this end at each point in time, t, we search over a base set of observ-

able k regressors to construct a small structural model of the economy. In

each period we estimate a set of regressions spanned by all the possible per-

mutations of the k regressors. We estimate our system equation by equation

and we keep the number of regressors k constant for all equations.

Our econometric procedure delivers 2k models for aggregate demand and

supply at any point in time, therefore the decision of monetary policy requires

us to take a stand on model, or speci…cation, uncertainty. We do so by

computing all optimal monetary policies, and by then taking their average

as our benchmark optimal monetary policy.

We then compare observed policy rates with those generated by the tra-

22



ditional ”thin modelling” approach to optimal monetary policy and to our

proposed ”thick modelling” approach.

Our results con…rm the di¢culty of recovering the deep parameters de-

scribing the preferences of the monetary policy makers from their observed

behaviour. However, they also show that thick recursive modelling is capa-

ble of rationalizing the observed interest rate smoothness allowing for a much

smaller weight on interest rate smoothing in the central bank preferences.
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Figure 1: Theil U vs. adjusted R2: cross-plot across every possible model of
aggregate supply at each sample period.

Figure 2 - Theil U vs. adjusted R2: cross-plot across every possible model
of aggregate demand at each sample period.
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Figure 3 - Short term output gap e¤ect over in‡ation across models and
observations.

Figure 4 - Short term real interest rate e¤ect over output across models and
observations.
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Table 1 - Optimal and actual federal funds rate paths: descriptive statistics.
Loss Function Thin Best R2 Best U Thick actual FF

Lt = ¸¼¼2+ ¸yy2 + ¸R(it ¡ it¡1)2 Mean
Std

Mean
Std

Mean
Std

Mean
Std

Mean
Std

¸¼ = 1; ¸y = 0; ¸r = 0 337:36
101:57

228:70
148:98

548:77
602:52

521:56
237:71

6:26
1:98

¸¼ = 0:8; ¸y = 0; ¸r = 0:2 7:82
2:85

3:77
1:39

2:47
3:17

2:62
1:36

6:26
1:98

¸¼ = 0:5; ¸y = 0:5; ¸r = 0 43:73
30:61

6:83
7:73

35:81
95:64

6:79
14:56

6:26
1:98

¸¼ = 0:4; ¸y = 0:4; ¸r = 0:2 6:51
2:76

2:48
2:02

1:02
2:98

1:26
1:56

6:26
1:98

¸¼ = 0:95; ¸y = 0; ¸r = 0:05 12:88
4:52

8:21
2:88

5:90
6:08

6:24
3:02

6:26
1:98

The Table reports the …rst two moments of observed interest and optimal

policy rates derived by implementing four alternative modelling strategies:

thin modelling(thin), thin modelling by implementing a within-sample per-

formance as a selection criterion(BestR2), recursive thin modelling by imple-

menting an out-of-sample performance as a selection criterion(Best U);and

thick modelling by taking the average optimal rate across all possible models.
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A Appendix: The optimal control problem
In this appendix we illustrate explicitly the derivation of the solution of
the central bank’s optimization problem under all the di¤erent modelling
strategies adopted in the paper.

A.1 Thin modelling
Assume that the central bank minimizes an intertemporal loss function of
the form:

Et

1X

¿=0

Á¿Lt+¿ ; (18)

where Á is the discount factor and Et is the usual expectations’ operator.
The central bank, thus, minimizes the expected discounted sum of future
values of a loss function, Lt, given in each period by:

Lt = ¸¼¼
2+ ¸yy

2 + ¸R(it ¡ it¡1)2; (19)

which is quadratic in the deviations of output and in‡ation from their
target values and includes an additional term re‡ecting a penalty for an ex-
cessive volatility of the policy instrument. The parameters ¸¼, ¸y and ¸R
represent the relative weights of in‡ation stabilization, output gap stabiliza-
tion and interest rate smoothing objective; they sum to 1.

When the discount factor Á approaches unity, the intertemporal loss func-
tion approaches the unconditional mean of the period loss function, which
can be also expressed as

E [Lt] = ¸¼V ar [¼t] + ¸yV ar [yt] + ¸RV ar [it ¡ it¡1] : (20)

The discussed optimization problem is then solved subject to the dynam-
ics of the economy, which is usually given by stochastic di¤erence equations.
We …rst make use of a standard representation of the economy like the one
employed by Rudebusch, Svensson (1999) and consisting of two simple em-
pirical relations for in‡ation and output gap:
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¼t+1 = ¯0 + ¯1¼t + ¯
0
X1
t+1 + u

1
t+1 (21)

yt+1 = °0 + °1yt + °
0
X2
t+1 + u

2
t+1; (22)

where ¼, y stand for the in‡ation rate and the output gap, respectively,
and X1

t+1, X2
t+1 correspond to the following regressors

X10
t+1 = [¼t¡1 ¼t¡2 ¼t¡3 yt] (23)

X20
t+1 = [yt¡1 it ¡ ¼t] ; (24)

¯
0
, °

0
are vectors of parameters which we can express as

¯
0
= [¯2 ¯3 ¯4 ¯5] (25)

°
0
= [°2 °3] : (26)

Finally, u1t+1, u
2
t+1 are iid shocks with variances ¾2u1t+1, ¾

2
u2t+1

.
In order to calculate the optimal policy rule, it is convenient to rewrite

the model in state-space form, as

Xt+1 = AXt + Bit + "t+1: (27)

Xt is the vector of state variables [¼t; ¼t¡1; ¼t¡2; ¼t¡3; yt; yt¡1], it is the
policy instrument (the federal funds rate) and "t+1 is a vector of structural
shocks. A and B are parameters matrices, with dimensions 6 £ 6 and 6£ 1
respectively, given by:

A =

2
6666664

¯1 ¯2 ¯3 ¯4 ¯5 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
°3 0 0 0 °1 °2
0 0 0 0 1 0

3
7777775
; B =

2
6666664

0
0
0
0

¡°3
0

3
7777775

(28)
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The loss function can now be rewritten as:

Lt = X
0
tQXt; (29)

where Q is the 6£ 6 weights matrix, with ¸¼, ¸y as elements (1; 1) and
(5; 5), respectively, and zeros elsewhere. The central bank solves the optimal
control problem

J(Xt) = min
it

fX0tQXt + ÁEtJ (Xt+1)g ; (30)

subject to the laws of evolution of the economy (21) and (22). After
deriving the …rst-order condition for the minimization problem, we have that
the solution for the optimal interest rate is

it = fXt; (31)

where f is the optimal feedback vector given by

f = ¡(R + ÁB0V B)¡1ÁB0V A; (32)

and the matrix V is obtained as the solution of the following Riccati
equation:

V = Q+ Á(A+ Bf )0V (A +Bf) + f 0Rf; (33)

where R incorporates the interest rate smoothing objective. We obtain
that the central bank sets the optimal policy instrument value in every period
as a function of the current and lagged values of the state variables as well
as lagged values of the instrument itself.

Given this optimal policy rule, the dynamics of the relevant variables is
de…ned as follows:

Xt+1 = MXt + "t+1; (34)

with the matrix M given by

M = A +Bf: (35)
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A.2 Recursive thin modelling
We consider now the following representation for aggregate supply and de-
mand equations:

¼t+1 = ¯0 + ¯1¼t + ¯0iX
1
t+1;i + u

1
t+1;i; (36)

yt+1 = °0 + °1yt + ° 0iX
2
t+1;i + u

2
t+1;i: (37)

where X 1
t+1 = [¼t¡1; ¼t¡2; ¼t¡3;yt+1; yt; yt¡1; yt¡2; yt¡3],

X2
t = [yt¡1; yt¡2; yt¡3; rrt; rrt¡1; rrt¡2; rrt¡3; rrt¡4] .

In each period only a subset of regressors is selected. The parameters’
vectors are given by

¯0i = [¯2; ¯3; ¯4; ¯5; ¯6; ¯7; ¯8; ¯9] (38)

° 0i = [°2; °3; °4; °5; °6; °7; °8; °9] : (39)

Re-writing the system in state-space form, we have:

¡1t+1Xt+1 = M
1
t+1Xt +W

1
t+1it + "t+1; (40)

where

Xt = [c; ¼t; ¼t¡1; ¼t¡2; ¼t¡3; ¼t¡4; yt; yt¡1; yt¡2; yt¡3; it¡1; it¡2; it¡3; it¡4] (41)

Xt is the 14 £ 1 vector of state variables including a constant, current
and lagged values of in‡ation, current and lagged values of the output gap
and lagged values of the nominal interest rate (the federal funds rate). The
central bank’s policy instrument is denoted by it, whereas "t+1 is the vector
of shocks.

Here, the matrices M and W are, not invariant over time. They are, in
fact, characterized by the subscript t, t = 1; :::; 70, which indicates the period
to which they refer. The superscript 1 stands for the ranking of the selected
model. In each period models are ranked in accordance to some selection
criterion and the best model is selected.

As the economy is recursively estimated, the parameter matrix M 1
t , with

dimension 14 £ 14, contains the coe¢cients obtained for the corresponding
period t. This matrix has the second and the seventh rows in period t,
t = 1; :::; 70, given by:
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£
¯t;10 ; ¯

t;1
1 ; ¯

t;1
2 ; ¯

t;1
3 ; ¯

t;1
4 ; 0; ¯

t;1
6 ; ¯

t;1
7 ; ¯

t;1
8 ; ¯

t;1
9 ; 0; 0; 0; 0

¤
; (42)

£
°t;10 ; 0; 0; 0; 0; 0; °

t;1
1 ; °

t;1
2 ; °

t;1
3 ; °

t;1
4 ; °

t;1
6 ; °

t;1
7 ; °

t;1
8 ; °

t;1
9

¤
(43)

with zeros and occasional ones in the other places; the ¯s represent the
parameters of the in‡ation equation, whereas the °s are those in the output
gap relation. W1

t is a 14 £ 1 parameter vector with elements:

£
0; 0; 0; 0; 0; 0; °t;15 ; 0; 0; 0; 1; 0; 0; 0

¤
: (44)

The matrix ¡1t+1 is inserted to account for the simultaneity between out-
put gap and in‡ation, it has ones on the diagonal and zeros in every place
other than position (2; 7) where we have the parameter ¡¯t;15 .

Then, we …nd A1t = (¡1t)¡1M1
t and B1t = (¡1t)¡1W 1

t obtaining the usual
representation:

Xt+1 = A
1
t+1Xt +B

1
t+1it + "t+1: (45)

We thus have that the parameters are allowed to change over time and, as
a consequence, also the derived optimal rule has varying optimal coe¢cients
over time.

We end up with an optimal monetary policy rule of the form:

it = f
1
tXt; (46)

with the superscript 1 as we are considering the best model, t = 1; :::; 70,
and the feedback vector f expressed as

f 1t = ¡(R + ÁB10t VB1t )¡1ÁB10t VA1t ; (47)

which is now a 70 £ 14 matrix since the 14 optimal coe¢cients are re-
calculated in every period.

33



A.3 Recursive thick modelling
Here we derive, as usual, the optimal policy rule, characterized by recursive
optimal coe¢cients, for each possible model.

The minimization problem is subject to the constraint given by the dy-
namics of the economy

Xt+1 = A
j
t+1Xt + B

j
t+1it + "t+1; (48)

with t indicating the observations from 1983:01 to 2000:02 and where j
is the superscript relative to the model employed. We estimate 255 models
coming from every possible combination of the di¤erent regressors; however,
we exclude from this set of models those not incorporating an e¤ect of mone-
tary policy on output gap and in‡ation. We end up with a set of 241 relevant
models; thus we are considering j = 1; :::; 241. The matrices Ajt+1 and Bjt+1
are calculated as Ajt+1 = (¡

j
t+1)

¡1Mj
t+1 and Bjt+1 = (¡

j
t+1)

¡1W j
t+1.

The matrix M j
t has the second and the seventh rows in period t, t =

1; :::; 70, and for every estimated model j, j = 1; :::; 241, given by:

£
¯t;j0 ; ¯

t;j
1 ; ¯

t;j
2 ; ¯

t;j
3 ; ¯

t;j
4 ; 0; ¯

t;j
6 ; ¯

t;j
7 ; ¯

t;j
8 ; ¯

t;j
9 ; 0; 0; 0; 0

¤
; (49)

£
°t;j0 ; 0; 0; 0; 0; 0; °

t;j
1 ; °

t;j
2 ; °

t;j
3 ; °

t;j
4 ;°

t;j
6 ; °

t;j
7 ; °

t;j
8 ; °

t;j
9

¤
(50)

with zeros and occasional ones in the other places; the ¯s represent the
parameters of the in‡ation equation, whereas the °s are those in the output
gap relation. Wj

t is a 14£ 1 parameter vector with elements:

£
0; 0; 0; 0; 0; 0; °t;j5 ; 0; 0; 0; 1; 0; 0; 0

¤
: (51)

The matrix ¡jt+1 accounts for the simultaneity between output gap and
in‡ation and has parameter ¡¯t;j5 in position (2; 7).

The optimal policy rule is:

ijt = f
j
tXt; (52)
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where fjt is now a 70£14£ 241 matrix, as it reports parameters resulting
from every speci…cation.

We implement thick modelling by calculating the average optimal mone-
tary policy:

i¤t =
1

241

241X

j=1

ijt : (53)

Thus the optimal federal funds rate selected in every period by the central
bank is the average of all the possible optimal decisions, which would have
been taken under the several possible models of the economy.

35


