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Abstract

A feature of new economic geography model is their mathematical intractability. This

intractability results from the fact that the functional relationship between the indirect

utility differential and the state variable cannot be found explicitly. We illustrate three

methods that can be utilized to approximate the unknown function. These methods

are simple and give a remarkable improvement in the precision of approximation with

respect to the commonly utilized Lagrange approximation. Precision of approximation is

important in models that feature catastrophic behavior. We apply these methods to the

core-periphery model. Naturally, they can be applied to all cases of unknown functional

relationships.

Keywords: projection methods, spatial models, economic geography.
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1 Introduction

The voluminous literature on the geographical distribution of economic activity has iden-

tiÞed many potential sources of agglomeration economies (see Fujita and Thisse, 2002).

Among the recent contributions, a stream of literature which followed the seminal paper

by Krugman (1991a) has highlighted demand externalities as a source of agglomeration

forces. Although the structure of these models is simple, the functional relationships

between endogenous and exogenous variables cannot be found explicitly. There are two

principal reasons for this analytical intractability. The Þrst one is due to the non linear-

ity of the dynamic system and the second one is due to the non linearity of the market

equilibrium equations from which prices and wages obtain. This is why the exploration of

these models has progressed by means of a mix of numerical methods and mathematical

analysis. Very recently, two papers by Baldwin (2001) and Ottaviano (2001) have made

substantial advancements in the analytical and numerical exploration of these models.

Our paper complements these two. We illustrate a selection of simple and efficient meth-

ods for the approximation of unknown functional relationships. We show that a great deal

of improvement in the precision of approximation can be gained by using these methods.

Precision of approximation is always desirable but it becomes of particular importance

in models of the new economic geography. The reason is that this class of models exhibits

catastrophic behavior and multiple equilibria. That is, a small change in the value of a

parameter of the model may cause dramatic changes in the long run equilibria. Further,

for any given value of parameters, there may be more than one stable equilibrium. The

implication of this is that a small approximation error in the key functional relationship

may lead to large errors in the prediction of outcomes. Precision becomes even more

important when the models are brought into policy analysis. When analyzing policy

matters, such as tax competition for instance, the addition of policy variable makes the

models even less tractable. The use of simple and efficient approximation methods gives

more freedom of modeling because it removes the constraint of having to arrive to a

reduced form. There are also other advantages. By utilizing a reliable approximation

method it is possible to obtain accurate information on the transitional dynamics. This

is typically important in policy analysis where the speed of adjustment and the time path

of endogenous variable often constitute a criterion for the evaluation of different policies.

The application of numerical methods to economics is in itself a vast Þeld of research

(Judd, 1998). We illustrate three simple numerical methods: Chebyshev interpolation,

orthogonal collocation and Galerkin�s method. They can be utilized for the exploration

of highly non-linear models and, we believe, are particularly suitable for the exploration

of new economic geography model.

In section 2 we review the related literature. In section 3 we illustrate Chebyshev�s
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interpolation method and we compare it to Lagrange interpolation. In section 4 we

illustrate two simple projection methods: Orthogonal Collocation and Galerkin. In section

5 we apply these methods to the Core-Periphery model. Conclusions are drawn in section

6.

2 Review of the Literature

The literature on the new economic geography has grown large, useful reviews of this

literature include Fujita and Thisse (1996, 1997), Brülhart (1997), and Ottaviano and

Puga (1997) while the state of the art in the new economic geography as of the end of last

century is neatly expounded in Fujita, Krugman and Venables (1999). The review that

follows presents the literature from the point of view of the effort made to overcome the

mathematical intractability of the core-periphery model and of its variants. It therefore

leave aside other contributions that, though important in the literature, were not directly

aimed to this purpose.

In reviewing the literature and in the rest of the paper we take the core-periphery

model as the natural example. Naturally the approximation methods we illustrate in this

paper apply to all its variants.

The dynamic mechanism of the core-periphery model rests on the two-way interaction

between the international distribution of the mobile factor of production (the state vari-

able) and the indirect utility differential between countries: the indirect utility differential

at any point in time is function of the state variable which, in turn, evolves over time

in response to the indirect utility differential. The indirect utility differential depends on

real wages which are determined by market-clearing conditions in the product market.

The mathematical intractability of the model results from two sources. The Þrst source

is in that the market equilibrium equations cannot be solved explicitly for the wages as

function of the state variable. The second source is in that the dynamic system is non

linear. The second source of intractability is particularly problematic when it is assumed

that the mobile factor (workers) have forward looking expectations. Indeed, with forward

looking expectations the �ßash-diagram� technique does not give us enough informations

about the dynamics of the system. As pointed out by Baldwin (2001) the literature has

followed two approaches to deal with these problems. A Þrst approach - known as the

informal analysis approach - uses a mix of numerical and mathematical techniques. This

approach has been utilized in particular in the exploration of the static expectations ver-

sion of the core-periphery model. A second approach has devoted effort to modify the

original structure of the core-periphery model in order arrive to a linear system of differen-

tial equations. This approach has been followed in particular when dealing with forward
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looking expectations. We review these two approaches before coming to the contribution

of our paper.

The informal approach is utilized in the very Þrst paper of the new economic geog-

raphy, where Krugman (1991a) deals with the non linearity of the market equilibrium

equations by solving them numerically in correspondence of ten equidistant values of the

state variable. These numerical solutions give the wage differential between countries in

correspondence of the ten chosen values of the state variable. By connecting all these

points with straight segments he draws the phase line for the myopic expectations version

of the model. Given the non explicitable form of the market equilibrium equations, the

analytical exploration of the model is necessarily conÞned to the symmetric equilibrium

and to the core-periphery conÞgurations. This mix of numerical solutions for the wage

differential and mathematical analysis of local stability is pushed further by Puga (1999)

in a rather richer set up and it is also adopted in Fujita, Krugman and Venables (1999).

This method makes a parsimonious use of numerical analysis since it does not require

to approximate the functional relationship between the indirect utilities and the state

variable. Qualitative informations about the dynamics of the model can nevertheless be

gleaned. However, it leaves us with virtually no knowledge of the transitional dynamics

and with less then satisfactory knowledge of the dynamics when forward-looking expecta-

tions are considered. Part of the research that followed tried to overcome these problems

by modifying the structure of the core-periphery model in such a way to arrive to a linear

system of differential equations.

A Þrst linear model is proposed by Krugman (1991b). The focus of his paper is on

the multiplicity of agglomeration paths and on the role of history and expectations in

determining the long run outcomes.1 Dispersion forces are ruled out by assumption.

The agglomeration force is introduced by postulating a linear relationship between the

real wage differential and the state variable. The relationship is such that the wage

rate depends positively on population, thus the region with the largest proportion of

labour has also the highest real wage. The resulting dynamics is characterized by a

system of two linear differential equations. The system is wholly unstable and, therefore,

agglomeration emerges in the long-run if the initial equilibrium is perturbed. Further,

there is a domain around the symmetric equilibrium - called the overlap region - where for

any given value of the state variable there correspond two rational-expectation-consistent

transition path, each leading to a different long run spatial outcome. This means that

there is an indeterminacy about the long-run outcome that is not dependent on the initial

1Two papers with similar focus are Matsuyama (1991), whose agglomeration forces rely upon tech-
nological externalities, and Gaĺõ (1995) whose model features monopolistic competition and internal
increasing returns. Fukao and Bénabou (1993) show that a technical mistake in Krugman (1991b) is
inconsequential on the essence of the results.
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condition. A limitation of this model is that the relationship between wages and the

state variable, although it builds on a number of intuitively appealing rationales, is not

explicitly microfounded. The replacement of microfoundations with an ad hoc linear

relationship was the modeling sacriÞce that made possible to arrive to a tractable system

of differential equations.

Ottaviano (1999) improves on this by introducing two simpliÞcations to the core-

periphery model that lead to a linear relationship between indirect utility differentials and

the state variable without having to sacriÞce the microfoundations of the model. His Þrst

simpliÞcation is to assume that the intertemporal elasticity of substitution just offsets the

elasticity of substitution among varieties. The second simpliÞcation is in the intersectoral

mobility of labor. He retains the assumption made in the core-periphery model that

international mobility is costly but he abandons the assumption of intersectoral immobility

of labour and replace it with instantaneous mobility. This second simpliÞcation leads to

factor price equalization, which then leads to a linear relationship between the indirect

utility differential and the state variable. These two clever simpliÞcations enable him to

arrive to a system of two linear differential equation in a model that is fully microfounded

in the spirit of pecuniary externalities. His Þndings conÞrm that the qualitative results

of Krugman (1991b) apply to a model with microfoundations.

Ottaviano, Tabuchi and Thisse (2001) take a more radical departure from the monop-

olistic competitive market structure assumed in the core-periphery model. They propose

a model with linear demand functions where, like in monopolistic competition, there

is no strategic interaction between Þrms but, unlike the monopolistic competition, Þrms

respond to information coming from the market as a whole. The linearity of demand func-

tions leads to a system of linear differential equations whose dynamic properties can again

be analyzed by use of mathematical methods. This model, which is fully microfounded,

also features the overlap region and the indeterminacy of the long-run equilibrium.

The last two papers have the merit of being fully microfounded, of featuring both

agglomeration and dispersion forces, and of being analytically solvable. However, they

miss some of the richness of the core-periphery model in the fact that the break-point and

the sustain-point coincide. Thus, the coexistence of a stable symmetric equilibrium with

stable agglomeration outcomes is ruled out. In this respect the literature has made two

further advancement due to Baldwin (2001) and Ottaviano (2001). Both papers are fully

microfounded, they feature agglomeration and dispersion forces, they deal with myopic

and forward looking expectations and, moreover, the break and sustain point are distinct.

Baldwin (2001) Þrst advancement concerns the analysis of the core-periphery model

with myopic expectations. He uses the Liapunov�s direct method to analyze the global

dynamic stability of the core periphery model. The challenge in the use of this mathe-
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matical method is to Þnd a Liapunov function that satisÞes certain properties and that

is applicable to the model. Baldwin�s elegant overtaking of this difficulty allows him to

perform a global stability analysis of the myopic version of the core-periphery model.

He shows that the results of the informal methods utilized in the earlier literature are

conÞrmed by the formal analysis. The second thrust of Baldwin�s paper is the use of

numerical methods to Þnd the saddle paths of the system when forward-looking expecta-

tions are considered. In order to Þnd the saddle paths he exploits the fact that the stable

arm of a saddle-path-stable system becomes the unstable arm of the system when time

is run backward. Thus, in reverse time, starting from any point off the equilibrium, the

system will converge towards the stable arm. By utilizing numerical methods in reverse

time he is then able to characterize the transitional dynamics of the non linear system.

Naturally, before proceeding to the numerical exploration of the model, the functional

relationship between indirect utilities and the state variable is needed. Since this function

cannot be found explicitly he uses Lagrange interpolation to approximate it in two steps.

First, he solves numerically the market equilibrium equations for the real wages in corre-

spondence of 25 values of the state variable (like Krugman 1991a). Then, a polynomial

(of order 17th) is Þtted to approximate the unknown function in correspondence of the

25 numerical solutions.

Ottaviano (2001) makes a further analytical improvement. With a simple and elegant

modiÞcation to the core-periphery model he obtains an explicit expression for the indirect

utility differential. His only deviation from the core-periphery model is in assuming that

the marginal component of the cost function is undertaken in terms of the immobile factor

instead of the mobile factor. This suffices to yield an explicit, though rather complex,

expression for indirect utility differential as functions of the state variable. The resulting

model retains all the richness of the core-periphery model, especially in that a stable equi-

librium may coexist symmetric equilibrium with stable core-periphery outcomes. Besides

its intricacy, the analytical expression for the indirect utility differential allows, at least in

principle, to push the analytical exploration of the model to its utmost. However, given

the non integrability of the indirect utility differential the resulting dynamic system is

obviously non-solvable in both expectational regimes. This poses again the same prob-

lems of intractability. Ottaviano�s further contribution is to deal with this problem in

an analytical way. He notes that in the presence of multiple equilibria the linearization

of the model is unsatisfactory even for local stability analysis. Therefore, he uses the

perturbation method (introduced in economics by Matsuyama, 1991) for global stability

analysis. This is certainly an advancement. He notes, however, that this method can be

utilized only around speciÞc values of parameters (rate of time preference equal zero in

his case). The exploration of the model far from particular values of parameters requires
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once again the use of numerical methods.

Our paper contributes to this literature by introducing three simple and efficient ap-

proximation methods: Chebyshev interpolation, Orthogonal Collocation and Galerkin.

Like Baldwin (2001), we use numerical methods to compute the saddle paths and the

transitional dynamics. The main difference with his paper is in that we approximate the

indirect utility differential by use of more efficient methods than Lagrange interpolation.

These methods guarantee the highest accuracy of approximation. Further, by using these

methods, the utility differential can be approximated by a simple algebraic polynomial

to which the perturbation method utilized by Ottaviano (2001) could be applied. We ar-

gue, however, that the advantage of the approximation methods is best appreciated when

they are utilized for the complete exploration of the model. Using efficient approximation

methods makes it possible to conÞdently analyze all variants of the core-periphery model,

regardless of the non-linearity of the indirect utility differential and that of the resulting

dynamic system. Naturally, an appealing approximation method should be precise and,

possibly, simple. In the remainder of the paper we illustrate three methods that, we

believe, have both of these features.

3 An Introduction to Approximation Theory

In this section we illustrate the advantage of Chebyshev�s interpolation over Lagrange�s.

We start by laying out a few elements of Approximation Theory.

Let X ≡ [a, b], a 6= b, be a closed interval on R, and let C [X] be the set of all continuos
real functions f : X → R. In the sequel we discuss how to obtain a �good� approximation

in the sup norm2 of an arbitrary function f ∈ C [X], i.e. how to Þnd an approximating
function �f ∈ C [X] such that

°°°f − �f
°°° < ε for some ε ∈ R++. Following the current

literature, we focus on linear approximations; in particular, we consider only Þnite degree

polynomials p : X → R as approximating functions.

DeÞnition 1 (Polynomial) Let Φ ⊂ C [X]. A linear combination p (x) ≡Pn
j=1 cjφj (x)

where c ≡ [c1, ..., cn] ∈ Rn and φj (x) ∈ Φ for j = 1, 2, ...n, is called a polynomial in the
elements of Φ, or a polynomial in the φj.

DeÞnition 2 (Approximable function) Let again Φ ⊂ C [X]. A function f ∈ C [X]
is approximable by polynomials in the φj if for each ε ∈ R++ there is a p (x) such that
kf − pk < ε.

2The sup norm on C [X] is deÞned as kfk ≡ maxx∈X |f (x)|.
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A subset of C [X] often utilized is the sequence of powers {xj}∞j=0. The linear combina-
tions of the Þrst n elements in {xj}, pn (x) ≡

Pn
j=0 cjx

j, are called algebraic polynomials

of degree n. A key result in approximation theory is offered by Weierstrass� Theorem.

Theorem 3 (Weierstrass) Each f ∈ C [X] is approximable by algebraic polynomials.
Proof. See Schumaker (1981, p. 92).

Weierstrass� Theorem implies that any f ∈ C [X] can be expressed as an inÞnite sum of
powers, f (x) =

P∞
j=0 cjx

j, i.e. that continuos functions can be approximated arbitrarily

well by Þnite order algebraic polynomials.3

However, an essential question remains at this stage unanswered: for a given n, how

can we select a �good� vector of coefficients c? There are several ways to do that,

interpolation is the simplest way. Lagrange interpolation is probably the most commonly

utilized and we review it here with the purpose of comparing it with the three methods

we illustrate in this paper.

3.1 Lagrange Interpolation

Interpolation methods simply force the approximating function to cross the true function

at a certain number of points. More formally:

DeÞnition 4 (Interpolating Polynomial) Let {xj}nj=1be a set of n distinct points in
X, called interpolation nodes, and let yj = f (xj) for j = 1, 2, ..., n and for some f : X →
R. The polynomial p (x) =

Pn
j=1 cjφj (x), where φj (x) ∈ Φ ⊂ C [X], interpolates the

function f at the points xj if p (xj) = yj for j = 1, 2, ..., n.

In general, the interpolating polynomial is not necessarily unique. The following The-

orem guarantees uniqueness if the interpolating polynomial is an algebraic polynomial.

Theorem 5 (Uniqueness of interpolating polynomial) Given n+ 1 distinct points

in X and as many real numbers yj = f (xj) for some f : X → R, there exists a unique

interpolating algebraic polynomial of degree n.

Proof. It can be easily show that the elements of the sequence of powers Φ = {xj}nj=0
are linearly independent.4 Therefore, the system

Pn
j=0 cjx

j
k = yk for k = 0, 1, ..., n admits

one and only one solution (note however that not necessarily cj 6= 0 for all j.).
3The family of monomials

©
xj
ª
can be considered a basis for the space of continuos real functions

deÞned on a closed interval of R. More generally, a family of functions Φ is a basis for C [X] if any
f ∈ C [X] can be written as an inÞnite sum of elements of Φ, f (x) =

P∞
j=1 cjφj (x).

4The functions φj are linearly independent if the exactly identiÞed linear system
Pn
j=1 cjφj (xk) = 0 for

k = 1, ..., n and for any {xj}nj=0 ⊂ X admits only the trivial solution c = 0. In this case the set Φ is
called a Chebyshev system. We prefer to omit Chebyshev�s name in this deÞnition in order not to
create a terminological overlap with the more important Chebyshev theorem, Chebyshev polynomials,
and Chebyshev interpolation utilized below.
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The following Theorem sets an upper bound for the corresponding approximation error

in the sup norm.

Theorem 6 (Upper bound of approximation error) Let {xj}nj=0 be a set of n + 1
distinct points in X, and let pn (x) be the algebraic polynomial that interpolates a function

f ∈ C(n+1) [X] at these points. Then:

kf − pnk ≤
°°f (n+1)°°
(n+ 1)!

kWk (1)

where W (x) ≡Qn
j=0 (x− xj) and fn is the n-order derivative of f .

Proof. See Carothers (1998, p. 72).

The upper bound in (1) depends on kWk. Clearly, W is an algebraic polynomial of

order n+1 and leading coefficient 1. Any algebraic polynomial is completely characterized

by its zeros.5 The zeros of W are, by construction, the n + 1 interpolation nodes, and

therefore kWk is a function of the xj�s. Hence, a judicious choice of the interpolation
nodes should allow us to minimize the approximation error. Usually, following what is

known as Lagrange interpolation, the nodes are chosen to be n+ 1 equidistant points in

X. A better choice of the nodes is offered by Chebyshev interpolation.

3.2 Chebyshev Interpolation

Chebyshev Interpolation is the Þrst of the three methods we illustrate in this paper. It

consists in choosing the interpolation nodes in a way to minimize kWk. It is convenient
to start by deÞning Chebyshev polynomials.

DeÞnition 7 (Chebyshev Polynomial) The family of functions Tn : [−1,+1]→ [−1,+1]
deÞned as:

Tn (x) ≡ cos [n arccos (x)] (2)

for n ≥ 0 is a Chebyshev polynomial.6

We recall from the previous section that in order to minimize the approximation error

kWk we should Þnd the polynomial of least deviation from zero (in the sup norm) among
all algebraic polynomials of degree n + 1 and leading coefficient 1, and use its zeros as

interpolation nodes. This is where Chebyshev�s Theorem comes to our help.

5Being the set of algebraic polynomials a Chebyshev system, there is one and only one algebraic
polynomials that crosses the horizontal axes at n+ 1 distinct points.

6Note that Tn, being an algebraic polynomial of order n, is deÞned over the whole real line; however,
its particularly useful properties hold on [−1,+1] only.
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Theorem 8 (Chebyshev) The algebraic polynomial of degree n and of least deviation

from zero with leading coefficient 1 on [−1,+1] is 21−nTn (x).

Proof. See Lorentz (1986, Th. 11, p. 31).

Note that T0 (x) = 1, T1 (x) = x, and that:
7

Tn (x) = 2xTn−1 − Tn−2 (x) (3)

for n ≥ 2. Each Tn (x) is an algebraic polynomial of degree n with leading coefficient 2n−1.
The domain of Chebyshev polynomials can be extended to general intervalsX ≡ [a, b] ∈ R
via the change of variable y = 2 (x− a) / (b− a) − 1, where y ∈ [−1,+1]. Hence, the
algebraic polynomial of degree n and of least deviation from zero with leading coefficient

1 on [a, b] is:
(b− a)n
22n−1

Tn

µ
2
x− a
b− a − 1

¶
(4)

Chebyshev�s Theorem has an important implication:

Claim 9 The norm of W is minimized if the interpolation nodes xj correspond to the

n+ 1 zeros of Tn+1 [2 (x− a) / (b− a)− 1].

Given that cos [(n+ 1) t] = 0 for t = [(2j − 1)π] / [2 (n+ 1)], where j = 1, ..., n + 1,
the following:

xj = cos

·
2j − 1
2 (n+ 1)

π

¸
(5)

deÞnes the n + 1 zeros of Tn+1 (x) over [−1,+1] in decreasing order. All zeros are real,
simple, and lie in (−1,+1). Furthermore, Tn+1 (x) and Tn (x) have no common zeros.
We can now establish an upper bound for the approximation error under Chebyshev

interpolation.

Theorem 10 (Upper bound of approximation error) Let pn (x) be the algebraic poly-

nomial of degree n that interpolates a function f ∈ Ck [X], 1 ≤ k ≤ n, at the zeros of

Tn+1. Then there exists a constant ξ ∈ R++ such that:

kf − pnk ≤
·
2

π
ln (n+ 1) + 1

¸
ξ

nk
°°f (k)°° (6)

Proof. See Rivlin (1990, p. 14).

Taking (6) to the limit, we have that limn→∞ kf − pnk = 0 for any f ∈ Ck [X]:

using Chebyshev interpolation, we can approximate any f ∈ Ck [X] arbitrarily well.

Furthermore, the degree n needed to reach a �good� approximation decreases with k.

7The last relationship follows from cos (nt) = 2 cos (t) cos [(n− 1) t]− cos [(n− 2) t].
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3.3 A simple Example

In this section we give an intuitive guide to Lagrange and Chebyshev interpolation meth-

ods illustrated formally in the previous section. In parenthesis we refer to the deÞnitions,

theorems, and claims of the previous section.

In approximation problems we deal with a known function that, for reasons due to

power of calculus or to the complicated form of the function, we want to approximate

with a simpler one. Suppose we want to approximate the function f (x) = x5 in X ≡ [0, 1]
in the �best� possible way according to some metric. The metric we choose is the sup

norm. Naturally, for the approximation problem to be solvable the function f musts be

approximable (deÞnition 2). Our starting point is the Weierstrass theorem which says that

any continuous function is approximable by an algebraic polynomial. The Þrst step then is

to choose the order of the approximating algebraic polynomial which, usually, depends on

the power of calculus we have at our disposal. To make things simple, suppose we choose

an algebraic polynomial of order 3. We then approximate f (x) with p3 (x) ≡
P3

j=0 cjx
j.

We call p3 (x) the interpolating algebraic polynomial because we will require p3 (x) to

interpolate the function f (x) in correspondence of some chosen points in X called the

interpolation nodes (deÞnition 4). For instance, let x0, ..x3 be four interpolation nodes,

then we require p3 (xj) = f (xj) for j = 0, ..3, that is:

c0 (x0)
0 + c1 (x0)

1 + c2 (x0)
2 + c3 (x0)

3 = f (x0) (7)

c0 (x1)
0 + c1 (x1)

1 + c2 (x1)
2 + c3 (x1)

3 = f (x1) (8)

c0 (x2)
0 + c1 (x2)

1 + c2 (x2)
2 + c3 (x2)

3 = f (x2) (9)

c0 (x3)
0 + c1 (x3)

1 + c2 (x3)
2 + c3 (x3)

3 = f (x3) (10)

In sum, our approximation problem requires us to do two things: Þrst we have to

choose the approximation nodes, second we have to compute the vector of coefficients c.8

Choosing the interpolation nodes optimally improves grandly the accuracy of approxima-

tion.

3.3.1 Lagrange interpolation.

The method commonly utilized is the Lagrange interpolation. It requires the approximat-

ing function to interpolate the true function at a number arbitrarily chosen interpolation

nodes in X. Usually the interpolation nodes are chosen to be equidistant in X. In our

example the interpolation nodes would be: x0 = −3/5; x1 = −1/5; x2 = 1/5; x3 = 3/5.
8In general, there is an issue of uniqueness of c here, but we bypassed it by choosing an algebraic

polynomial as approximating function (Theorem 5).
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Replacing these interpolation nodes in system (7)-(10) gives us the coefficients of the in-

terpolating algebraic polynomial. The result is shown in Figure 1. The continuous line is

f (x) and the dashed line is pL3 (x) where the superscript simply denotes the fact that we

utilized Lagrange interpolation. The approximation is nice but it is possible to do bet-

ter by choosing the interpolation nodes optimally. This is what Chebyshev interpolation

does.

3.3.2 Chebyshev Interpolation.

We start by noticing that the approximation error kWk is itself an algebraic polynomial of
order n+1 and its magnitude depends on the the n+1 approximation nodes (Theorem 6).

We can therefore minimize kWk by a judicious choice of the approximation nodes. Here is
where the Chebyshev theorem comes to our help. Chebyshev theorem and its implication

(Claim 9) tell us that the approximation error is minimized if we choose the interpolation

nodes at the zeros of a Chebyshev polynomial. Its zeros can be easily found (equation

5). Computing the four interpolation nodes at the zeros of Chebyshev polynomial in

our simple example gives: x0 =
1
2

q¡
2 +

√
2
¢
; x1 =

1
2

q¡
2−√2¢; x2 = −1

2

q¡
2−√2¢;

x3 = −1
2

q¡
2 +

√
2
¢
. Replacing these values in system (7)-(10) and solving gives us the

vector of coefficients c. Let us refer to the resulting interpolating polynomial as pC3 (x)

where the superscript indicates that we have utilized Chebyshev interpolation nodes. The

dotted line in Figure 1 represents pC3 (x). Even a simple visual inspection reveals that the

approximating polynomial pC3 (x) is far more precise than p
L
3 (x). It is striking that such

a simple method gives such a remarkable improvement in the precision of approximation.

All it takes is to computed the interpolation nodes according to a simple formula.

4 Projection methods

In the previous section the function to be approximated was known. Yet, in new economic

geography models the function to be approximated is only implicitly deÞned by a system

of equations and it cannot be found explicitly.9 Typically, the problem presents itself

in the following form: g [x, f (x)] = 0. We could proceed in a similar way to what we

have done in the previous section, with the difference that the values of f (xj) would have

to be found numerically. Thus, in the Þrst step, we could solve the implicit equation

numerically to get the �f (xj). These values would replace the f (xj) in system (7)-(10).

The system would then give us the vector c.

While this procedure would still give us a better approximation than Lagrange�s

9An exeption is equation (13) in Ottaviano (2001) to which Chebishev interpolatoin could be applied.
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method, the precision can be further improved by the use of projection methods. The

advantage of projection methods is that they do two steps at once in an efficient way:

they Þnd �f (xj) and c in one single procedure instead of two separate steps. In this paper

we illustrate and apply to the core-periphery model two projection methods: orthogonal

collocation and Galerkin�s method. Before passing to the illustration and application of

the methods we need a brief introduction to projection methods.

4.1 Introduction

Let again X ≡ [a, b] be a closed subset of R, and let f ∈ C [X] be implicitly deÞned by
a functional equation of the form g [x, f (x)] = 0 where g : R → R is another element of

C [X]. This kind of functional equations do not usually admit closed form solutions.

Let us approximate the unknown function f with a polynomial in the elements of

Φ ⊂ C [X], where Φ is a basis for C [X]:

f (x) ≈ p (x, c) ≡
nX
j=1

cjφj (x) (11)

The residual function is deÞned as R (x, c) ≡ g [x, p (x, c)]. Note that, if p (x, c)

approximates f (x) arbitrarily well, then R (x, c) ≈ 0 for all x ∈ X.
We need to introduce the concept of functional orthogonality. This concept is impor-

tant for the choice of the elements of Φ and is a key element of projection methods.

DeÞnition 11 Let w : X → R be an almost everywhere positive and Riemann integrable

function on X.10 The function w is called weighting function.

DeÞnition 12 Let f, g ∈ C [X]. Given a weighting function w, we can deÞne an inner
product on C [X] as hf, gi ≡ R b

a
f (x) g (x)w (x) dx.

DeÞnition 13 Let Ψ =
©
ψj
ª
be a set of functions. The elements of Ψ are mutually

orthogonal with respect to the weighting function w if and only if
­
ψk, ψj

®
= 0 for all

k 6= j.

The following theorem shows Chebyshev polynomial are mutually orthogonal.

Theorem 14 The Chebyshev polynomials Tn are orthogonal on [−1,+1] with respect to
the weighting function w (x) ≡ (1− x2)−1

2 .

10In other words, w (x) is positive, except possibly at Þnitely many points, and has a Þnite Riemann
integral on X.
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Proof. By deÞnition:

Z +1

−1

Tk (x)Tj (x)√
1− x2 dx =

Z π

0

cos (kθ) cos (jθ) dθ =


0, k 6= j
π, k = j = 0

π/2, k = j 6= 0
(12)

The orthogonality of Chebyshev polynomials explains why they are preferable to the

simple powers {xj}∞j=0 as elements of the basis Φ. We already know that any algebraic
polynomial can be uniquely expressed as a Þnite sum of Chebyshev polynomials, that

is:
Pn

j=0 αjx
j =

Pn
j=0 cjTj (x) for adequately deÞned c ∈ Rn. Note however that the

monomials {xj} are not mutually orthogonal, and therefore, in some sense, the �informa-
tion� carried by xj overlaps partially with the �information� carried by xj−z or xj+z for

z 6= j. Each Chebyshev polynomial, instead, is orthogonal to any other member of the
family, and conveys therefore a different �piece of information.� From a purely numerical

point of view, the coefficients in
Pn

j=0 cjTj (x) are better identiÞed than the coefficients

in
Pn

j=0 αjx
j, and this improves the performance of all our solution procedures.

Orthogonality is also a key element of projection methods. The key idea of projections

methods is that, if c solves R (x, c) = 0 for some x ∈ X, it solves R (x, c)ϕ (x) = 0 too,
where ϕ (x) can be any suitable function ϕ : X → R. The optimal vector �c ∈ Rn is then
identiÞed by imposing n orthogonality conditions among R (x, c) and a set of directions©
ϕj
ªn
j=1
: ­

R (x, c) , ϕj
®
= 0, j = 1, 2, ..., n (13)

The orthogonality conditions render the identiÞcation of c more efficient. The choice

of the weighting function w and the set of directions
©
ϕj
ªn
j=1

characterize the particular

projection method used. We lay out two of the most popular ones: Orthogonal Collocation

and Galerkin.

4.2 Orthogonal Collocation

The simplest projection method is collocation. For any arbitrary weighting function,

collocation requires that hR (x, c) , δ (x− xj)i = 0 for j = 1, 2, ..., n, where δ is the Dirac
delta function, and the xj�s are n collocation nodes in X.

The previous expression has a simple intuitive interpretation. As interpolation requires

the interpolating algebraic polynomial to cross the approximated function at a given set of

points, collocation requires the approximating polynomials to exactly solve the functional
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equation g [x, f (x)] = 0 at some n distinct points in X. Hence, collocation imposes that:

R (xj, c) = 0, j = 1, 2, ..., n (14)

Note that (14) is simply a system of n nonlinear equations in n unknowns that can

be numerically solved using Newton or Quasi-Newton methods. Collocation effectively

transforms a functional equation into a more manageable system of nonlinear equations.

The solution to (14), denoted p (x,�c), will almost exactly represent f at the given points

xj, but will only approximate it over the remaining part of X. The accuracy of this

approximation increases with n, while the perfect Þt is reached asymptotically being p an

algebraic polynomial.

Note that collocation does not impose any particular requirement on the interpolating

polynomial p (x, c). However, as we already know, choosing Chebyshev polynomials as

basis for Φ and choosing the interpolation nodes to be the zeros of Tn+1 minimizes the

approximation error in the sup norm. Collocation performed at the zeros of Tn+1 is called

orthogonal collocation and this is what we use in our application to the core periphery

model.

4.3 Galerkin�s method

Galerkin method assumes that the basis Φ is a family of orthogonal polynomials with

respect to a weighting function w. This method uses the Þrst n elements of Φ as projection

directions: ­
R (x, c) , φj

®
= 0, j = 1, 2, ..., n (15)

The main difference with respect to orthogonal collocation is in that the residual

function is projected along mutually orthogonal directions, and therefore each condition

in (15) is made �as different as possible� from the others.

If Chebyshev polynomials are used as basis functions, the integral in (15) can be

numerically approximated using quadrature methods, and in particular Gauss-Chebyshev

quadrature.11

Claim 15 Given the particular properties of Tn, applying the Gauss-Chebyshev quadra-

ture formula leads us to hRn (x, c) , Tj (x)i ≈
Pm

k=1Rn (�xk, c)Tj (�xk), where the m > n+1

quadrature nodes {�xj}mj=1 are the zeros of Tm.

Note that the accuracy of the approximation increases with the number of quadrature

11For details on numerical integration methods and Gaussian quadrature formulas, see Judd (1988,
Sec. 7.2).
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nodes, m. The orthogonality conditions in (15) can therefore be substituted by:

mX
k=1

Rn (�xk, c)Tj (�xk) = 0, j = 0, 1, ..., n (16)

for a large enough m. As collocation does, Galerkin�s method transforms the functional

equation into a system of nonlinear equations that can be easily solved numerically.

4.4 A simple example

Consider the continuos function f (x) ≡ sin (x) + cos (x). We will now approximate

f over the Þnite interval X ≡ [0, 5] using three alternative methods and compare the

results. More precisely, we will approximate f using an algebraic polynomial in the Tj�s

of degree n, �fn (x, c) ≡
Pn

j=0 cjTj
¡
2x−a
b−a − 1

¢
, where a = 0 and b = 5, and will pin down

the vector c using Galerkin�s method, orthogonal collocation, and Lagrange interpolation.

1. To apply Galerkin�s method, we obtain the m zeros of Tm on [a, b], {�xk}mk=1, and
numerically solve the system for c using Broyden�s method,12:

mX
k=1

h
�fn (�xk, c)− f (�xk)

i
Tj

µ
2
�xk − a
b− a − 1

¶
= 0, j = 0, 1, ..., n (17)

2. To apply the orthogonal collocation method, we obtain the n + 1 zeros of Tn+1 on

[a, b], {�xj}nj=0, and solve the system �fn (�xj, c) = f (�xj) for j = 0, 1, ..., n.

3. Finally, to apply the standard Lagrange interpolation method, we choose n + 1

equally spaced points in [a, b], {xj}nj=0, and solve the system �fn (xj, c) = f (xj)

for j = 0, 1, ..., n.

Before illustrating the results a few words on the Broyden numerical method are in

order. The convergence properties of Broyden�s method, as of all variants of Newton�s

method, are extremely sensitive to the initial guess for c. If the guess is �good�, the

method converges very fast, but it can, and probably will, fail to converge if the guess is far

from the solution. This sensitivity on the initial condition increases with the dimension of

the problem to solve, i.e. with the degree n: Þnding good initial guesses for large problems

is extremely difficult. Therefore, we follow a continuation approach: we start with n = 1,

i.e. with a linear approximation, and then use the corresponding result as a starting

guess for the problem of order n+1. Iterating on this procedure we can safely solve very

12Broyden�s method is a variant of Newton�s method that avoids the explicit calculation of the Jacobian
at each iteration. For more details on non-linear solvers see Judd (1998, Chapter 5)
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n = 1 n = 3 n = 5 n = 15
Approximation error

Gal. 0.41 3.89e-2 1.69e-3 4.41e-13
Avg. Abs. Col. 0.36 3.94e-2 1.66e-3 4.06e-13

Int. 0.59 8.10e-2 5.57e-3 2.48e-11
Gal. 0.43 3.86e-2 1.55e-3 4.37e-13

Med. Abs. Col. 0.28 3.48e-2 1.31e-3 3.12e-13
Int. 0.23 8.60e-3 2.55e-4 1.31e-14
Gal. 0.46 4.49e-2 1.99e-3 5.09e-13

Std. Col. 0.44 5.10e-2 2.22e-3 5.32e-13
Int. 0.91 16.95e-2 1.47e-2 1.41e-10
Gal. 0.74 8.07e-2 3.79e-3 9.43e-13

Max. Abs. Col. 1.23 13.15e-2 5.86e-3 1.26e-12
Int. 2.57 71.75e-2 7.94e-2 1.20e-9

Table 1: Properties of approximation errors.

large problems: the computational effort spent on the intermediate steps is more than

compensated by the robustness and accuracy of the Þnal solution. The method outlined

here can be efficiently implemented in any matrix-oriented programming language: we

use MATLAB 6.1 and run our programs on a 800Mhz Pentium III PC under Windows

ME.

Coming to the precision of approximation we note that an approximated solution

obtained using orthogonal collocation or Lagrange interpolation almost perfectly solves

(by construction) the residual function at the nodes. Hence, to assess the quality of the

approximation we compute the approximation error in points that are not collocation or

interpolation nodes. The properties of the approximation error are compared in Table 1

for n = 1, 3, 5, and 15 and m = 30. We report the average, median, standard deviation,

and maximum value of the absolute approximation error,
¯̄̄
f (x)− �fn (x, c)

¯̄̄
, over 100

equally spaced points in [a, b].

An algebraic polynomial of order 15 Þts our function almost perfectly over the ap-

proximation interval. The Galerkin method generates the best approximations for a given

degree of the polynomial, but collocation performs remarkably well, given its simplicity

and computational efficiency. Lagrange interpolation outperforms both other methods as

far as the median absolute error is concerned, but is clearly worse under all other points

of view. For n = 15, the Galerkin method produces a maximum absolute approxima-

tion error that is of three orders of magnitude smaller than the corresponding Þgure for

the Lagrange method. Figure 2 plots the actual function, its approximations, and the

approximation errors for n = 3. Figure 2 helps us to understand these differences: the

Lagrange method performs very well near the center of the interval, but quite poorly

at the extremes. The Galerkin and collocation methods, instead, generate slightly less
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accurate approximations at the center of the interval, but are remarkably accurate at the

extremes.

5 An application to the Core-Periphery model

The structure of the model is as follows. The world is composed of two countries (1 and

2). The world population is normalized to one and is composed of µ workers and 1 − µ
farmers. Workers and Farmers are the only factors of production and the parameter µ is

constant. While workers can migrate, farmers are assumed to have country speciÞc skills

which make them internationally immobile and it is further assumed that each country is

endowed with (1− µ) /2 of them.
There are two goods being produced: A and X. Commodity A is assumed to be a

homogeneous good produced by use of farmers only and traded internationally at zero

costs. Commodity X is a differentiated commodity produced in a monopolistic compet-

itive market structure. The production of X requires workers only and it is assumed

that X is traded at an iceberg type of trade cost; i.e., for each unit sent only a fraction

τ ∈ (0, 1] arrives at its destination. Given the utility function speciÞed below, both goods
are produced in each country as long as µ < 1/2. We assume this inequality throughout

the paper so that the price of A and the wage of farmers can both be normalized to one in

both countries and serve as the numeraire. The input of workers for x units of output in

the X sector is F+ bx. ProÞt maximization requires the price to be at a constant mark up

over marginal cost. Denoting the elasticity of demand with σ it is convenient to normalize

F = 1/σ and b = σ/ (σ − 1) so that the proÞt-maximizing price for sales at home and
abroad are pii = wi and pij = wi/τ respectively, where wi is workers� wage in country i.

Free entry ensures that proÞts are zero in equilibrium. The zero proÞt condition gives the

optimal scale of the Þrm, which is constant, and - given the normalization - is equal to 1.

Individuals enjoy consumption according to the felicity function: ci = X
µA1−µ, where

X is a CES aggregate with elasticity σ of the N varieties of X produced in the world.

Given the felicity function, indirect utility in country i is wi/P
µ
i , where Pi is the true price

index for individuals in country i. The expressions for the price indexes are the following:

P1 =
£
λw1−σ1 + (1− λ)w1−σ2 τσ−1

¤ 1
1−σ (18)

P2 =
£
λw1−σ1 τσ−1 + (1− λ)w1−σ2

¤ 1
1−σ (19)
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The market equilibrium equations for commodity X are the following:µ
w1
P1

¶1−σ
Y1 +

µ
w1
τP2

¶1−σ
Y2 = w1 (20)µ

w2
τP1

¶1−σ
Y1 +

µ
w2
P2

¶1−σ
Y2 = w2 (21)

where Y1 and Y2 represent national income and are given by the following expressions:

Y1 =
1− µ
2

+ λµw1 (22)

Y2 =
1− µ
2

+ (1− λ)µw2 (23)

By Walras law the equilibrium conditions for Y can be ignored. Equations (20) and

(21) determine the wage rate in each country as function of the distribution of workers

between countries.

5.1 Static expectations

Workers migrate to the country where the indirect utility is the highest. The migration

ßow is regulated by the following difference equation:

∆λt+1 =
λt (1− λt)

γ
ω (λt) (24)

where γ ∈ R++ is a parameter representing the cost of migration, and:

ω (λt) ≡ w1t
P µ1t

− w2t
P µ2t

(25)

The initial condition λ0 ∈ [0, 1] is exogenously given.
We approximate the equilibrium wage rates w1 and w2 as functions of λ with Þnite

order algebraic polynomials. More precisely, we approximate each wi with a Þnite order

polynomial in the Tj�s:

wi (λ) ≈ �wi (λ, c) =
nX
j=0

cijTj (2λ− 1) , i = 1, 2 (26)

For the perfect symmetry of (20)-(21), it turns out that �w2 (λ, c) = �w (−λ, c) ≡ �w1 (−λ, c).
Therefore a unique set of n+ 1 coefficients is sufficient to fully characterize both wages.
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The residual function is then deÞned as:

Rn (λ, c) ≡
·
�w (λ, c)

P1 (λ)

¸1−σ
Y1 (λ) +

·
�w (λ, c)

τP2 (λ)

¸1−σ
Y2 (λ)− �w (λ, c) (27)

where:

Y1 (λ) =
1− µ
2

+ λµ �w (λ, c) (28)

Y2 (λ) =
1− µ
2

+ (1− λ)µ �w (−λ, c) (29)

P1 (λ) =
£
λ �w (λ, c)1−σ + (1− λ) �w (−λ, c)1−σ τσ−1¤ 1

1−σ (30)

P2 (λ) =
£
λ �w (λ, c)1−σ τσ−1 + (1− λ) �w (−λ, c)1−σ¤ 1

1−σ (31)

We compare now the performance of our three alternative methods under the following

benchmark parameterization:

µ = 0.4, σ = 3, τ = 0.15, γ = 1.15

To apply Galerkin�s method, we set m = 50 and numerically solve for c, using again

Broyden�s method, the system
Pm

k=1Rn
³
�λk, c

´
Tj
³
2�λk − 1

´
= 0 for j = 0, 1, ..., n, where

the �λk�s are the m zeros of Tm on [0, 1]. To apply orthogonal collocation, instead, we solve

the system Rn
³
�λj, c

´
= 0 for j = 0, 1, ..., n, where the �λj�s are the n + 1 zeros of Tn+1

on [0, 1]. Finally, to apply Lagrange interpolation we solve the system Rn (λj, c) = 0 for

j = 0, 1, ..., n, where the λj�s are n+ 1 equally spaced points in [0, 1].

We let the degree of the approximating polynomial vary from 1 to 39, and follow the

previously described continuation approach. In other words, for the last of our experi-

ments we run the solution procedure 39 times, increasing the degree of the polynomial

at each iteration. The time (in seconds) needed to perform all computations is reported

at the bottom of Table 2. As we can see, the whole procedure is extremely fast: the last

experiment is generally completed in more or less two seconds.

Table 2 summarizes the empirical distribution of the wage equation residuals, in abso-

lute terms, over 100 equally spaced points in [0, 1]. Note however that the wage equation

residuals are only indirectly linked to the true approximation error, i.e. the difference

between the approximated wage function and the true one. The Galerkin method pro-

duces a good approximation even with a polynomial of degree 9, and the accuracy reached

by the last experiment is not far from the machine�s precision. Orthogonal collocation

performs again remarkably well: the reported statistics for the collocation residuals are

generally of the same order of magnitude of the Galerkin residuals. Surprisingly enough,
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n = 1 n = 9 n = 19 n = 29 n = 39
Wage Equation Residuals

Gal. 0.11 6.30e-5 8.59e-8 3.33e-10 2.39e-13
Avg. Abs. Col. 0.12 8.72e-5 1.38e-7 4.98e-10 4.11e-13

Int. 0.14 2.83e-3 1.13e-3 1.09e-4 5.58e-5
Gal. 0.12 6.24e-5 7.63e-8 3.06e-10 1.96e-13

Med. Abs. Col. 0.13 6.87e-5 9.51e-8 3.22e-10 2.79e-13
Int. 0.04 6.52e-6 2.20e-8 2.70e-12 7.93e-14
Gal. 0.12 7.32e-5 1.02e-7 3.99e-10 3.01e-13

Std. Col. 0.11 1.35e-4 2.09e-7 7.87e-10 5.87e-13
Int. 0.25 1.18e-2 6.80e-3 7.76e-4 4.83e-4
Gal. 0.18 1.67e-4 2.33e-7 9.36e-10 5.65e-13

Max. Abs. Col. 0.39 6.26e-4 8.77e-7 3.46e-9 2.15e-12
Int. 0.96 8.98e-2 6.19e-2 7.48e-3 4.79e-3

Computational Time
Gal. 0.00 0.11 0.38 0.77 1.42

Sec. Col. 0.00 0.16 0.43 1.10 1.81
Int. 0.00 0.11 0.44 0.88 2.26

Table 2: Wage equation residuals.

however, collocation takes longer to converge to a solution, even if it is in principle a

less computationally intensive method. Lagrange interpolation, instead, performs poorly:

the order of magnitude of the average absolute residual in the last column is eight times

higher than the corresponding Þgure for the Galerkin method (this means almost 7,000

times bigger), while the order of magnitude of the maximum absolute residual is even ten

times higher (over 18,000 times bigger). The standard deviation of Lagrange is 13,000

times bigger than Galerkin. These differences are clearly remarkable. Only the median

absolute residual is in line with the results for the other two methods. This makes again

clear that the Lagrange method performs well at the center of the interval and poorly

at the extremes. But at the extremes, away from the symmetric equilibrium, is exactly

where analytical methods meet their limitations and numerical analysis is most needed.

The wage equation residuals for the last experiment performed with the Galerkin

method are plotted in Figure 3a, and show that the approximation�s accuracy is roughly

uniform over [0, 1]. Figure 3b plots the approximated wage functions.

Figure 4a plots the right-hand side of (24), and can therefore be interpreted as a phase

diagram. We note that λ = 1/2 is the unique stable steady state, while λ = 0 and λ = 1 are

both unstable steady states. Iterating on (24), we can solve for the transitional dynamics.

Figure 4b plots the adjustment path for λt, together with the corresponding growth rate,

when λ0 = 0.6. Convergence is achieved after thirty periods. The transitional dynamics

is the additional information we obtain by utilizing the approximation and projection
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methods we have illustrated.

5.2 Rational expectations

If individuals are forward looking they use the model to predict the future value of wages.

Under perfect foresight, they can compute the indirect utility in any country at any

time from the future value of wages. Therefore, the representative individual will choose

migration to optimally allocate its labour as follows:

max
{ms,λs+1}∞s=t

Ut =
∞X
s=t

βs−t
·
λt
w1t
P µ1t

+ (1− λt) w2t
P µ2t

− ϕ (mt)

¸
(32)

s.t. ∆λt+1 = mt

where:

ϕ (mt) ≡ γm2
t

2λt (1− λt) (33)

is the household�s cost of migration, and the initial condition λ0 ∈ (0, 1) is given.
The Þrst order conditions for problem (32) can be written as:

mt =
λt (1− λt)

γ
νt (34)

νt = β

"
ω (λt+1) + νt+1 +

(1− 2λt+1) γm2
t+1

2λ2t+1 (1− λt+1)2
#

(35)

λt+1 = λt +mt (36)

where ω is deÞned as in (25) and νt is the costate variable. For the Envelope Theorem,

νt corresponds to the shadow value of migration in terms of the representative individ-

ual�s utility. Under our assumptions, equations (34)-(36), together with the following

transversality condition:

lim
t→∞

βtνtλt+1 = 0 (37)

are jointly necessary and sufficient for problem (32).

Conditions (34) and (35) can be combined to obtain the usual Euler equation:

ω (λt+1) +

"
1 +

¡
1
2
− λt+1

¢
γmt+1

λt+1 (1− λt+1)

#
mt+1

λt+1 (1− λt+1) =
γmt

βλt (1− λt) (38)

5.2.1 Phase diagram analysis

To study the dynamic properties of the model from a qualitative point of view, we need

Þrst of all to characterize the ∆λt+1 = 0 and ∆mt+1 = 0 schedules. Imposing the
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conditions λt+1 = λt and mt+1 = mt on (34) and (35), we conclude that:

∆λt+1 = 0→ m = 0 (39)

∆mt+1 = 0→ γm

βλ (1− λ) = ω (λ
0) +

"
1 +

¡
1
2
− λ0¢ γm

λ0 (1− λ0)

#
m

λ0 (1− λ0) (40)

where λ0 = λ+m.

Equation (40) deÞnes implicitly a continuos function m̄ (λ) : [0, 1] → R that can be

approximated with a polynomial in the Tj�s:

m̄ (λ) ≈ m̄ (λ, c) =
nX
j=0

cjTj (2λ− 1) (41)

The residual function becomes then the following:

Rn (λ, c) ≡ ω (λ0) +
"
1 +

¡
1
2
− λ0¢ γm̄ (λ, c)
λ0 (1− λ0)

#
m̄ (λ, c)

λ0 (1− λ0) −
γm̄ (λ, c)

βλ (1− λ) (42)

where λ0 = λ+ m̄ (λ, c).

To pin down the vector c using our alternative methods we follow the procedure

outlined in the previous Section. Note that, for a given set of λ0j�s, the wage differential

ω
¡
λ0j
¢
is a linear function of w1

¡
λ0j
¢
and w2

¡
λ0j
¢
. The latter, in turn, are non-linear

functions of λ0j, and can be obtained by numerically solve for
©
w01j
ªn
j=0

the system:

"
w01j

P1
¡
λ0j
¢#1−σ Y1 ¡λ0j¢+

"
w01j

τP2
¡
λ0j
¢#1−σ Y2 ¡λ0j¢ = w01j, j = 0, 1, ..., n (43)

where:

Y1
¡
λ0j
¢
=

1− µ
2

+ λ0jµw
0
1j (44)

Y2
¡
λ0j
¢
=

1− µ
2

+
³
1− λ0j

´
µw02j (45)

P1
¡
λ0j
¢
=

h
λ0j
¡
w01j
¢1−σ

+
¡
1− λ0j

¢ ¡
w02j
¢1−σ

τσ−1
i 1
1−σ

(46)

P2
¡
λ0j
¢
=

h
λ0j
¡
w01j
¢1−σ

τσ−1 +
¡
1− λ0j

¢ ¡
w02j
¢1−σi 1

1−σ
(47)

taking into account that, for the symmetry of equations (20)-(21), w02j = w
0
1(n−j).

Table 3 summarizes the performance of our solution methods. As we can see, to ap-

proximately solve for the ∆mt+1 = 0 locus is far more computationally expensive than
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n = 1 n = 9 n = 19 n = 29 n = 39
Euler Equation Residuals

Gal. 0.11 6.07e-5 3.81e-7 3.00e-9 2.30e-11
Avg. Abs. Col. 0.42 1.66e-4 1.40e-6 1.16e-8 8.76e-11

Int. 1.17 7.81e-2 0.13 6.58e-2 0.17
Gal. 0.12 6.65e-5 4.09e-7 3.24e-9 2.19e-11

Med. Abs. Col. 0.07 1.48e-4 8.40e-7 5.56e-9 5.64e-11
Int. 0.06 3.77e-5 1.47e-7 8.89e-10 8.93e-10
Gal. 0.14 6.87e-5 4.45e-7 3.57e-9 2.79e-11

Std. Col. 1.43 2.43e-4 2.87e-6 2.54e-8 1.99e-10
Int. 3.67 0.38 0.92 0.43 1.20
Gal. 0.59 1.11e-4 1.21e-6 1.08e-8 8.50e-11

Max. Abs. Col. 8.84 1.15e-3 1.69e-5 1.46e-7 1.27e-9
Int. 21.99 2.55 6.45 3.00 8.43

Computational Time
Gal. 1.38 24.82 69.90 114.96 160.71

Sec. Col. 0.06 1.76 8.90 25.59 58.81
Int. 0.05 1.76 8.84 27.02 91.34

Table 3: Euler equation residuals: the ∆mt+1 = 0 locus.

solve for the wage rates, and the average size of the Euler equation residuals, in abso-

lute terms, is larger. A good approximation is however reached using Galerkin�s method

with a polynomial of degree 19, after slightly more than a minute of wait. Note that

the statistics generate by the orthogonal collocation method are generally of an order of

magnitude higher. In this case, however, collocation is computationally far more efficient

than Galerkin�s method. The reason is simple: in this set of experiments, Broyden�s solu-

tion method proved to be unable to guarantee convergence for the large systems implied

by Galerkin�s method, and therefore we switched to the standard Newton�s method. The

time differential has been spent in numerically computing the Jacobian for the residual

function, a computationally intensive task. A quick look at the statistics for the Lagrange

method is enough to convince us that standard interpolation is not a feasible alternative

to projection methods if a uniformly good approximation is our goal. Figure 5 plots the

phase diagram for the rational expectation model.

The velocity vectors can be easily computed too. For given values of m and λ we can

numerically solve equation (38) for m0, taking into account that λ0 = λ +m; hence, the

implied variations ∆m and ∆λ are readily available. Figure 6 plots the velocity vectors

for a subset of equally spaced points on the phase plane.
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5.2.2 Transitional dynamics

The population share λ is the only state - or backward-looking - variable in the system.

The value of migration ν is a costate - or forward-looking - variable, and therefore the

control variablem is forward-looking too. In fact, the solution to (34)-(36) is pinned down

by an initial condition for λ and a Þnal condition for m, implicit in the transversality

condition. Being the structure of problem (32) completely recursive, its solution can be

represented by a time invariant policy correspondence that satisÞes (34)-(36) together

with the transversality condition. Under some assumptions,13 the policy correspondence

becomes a unique continuous policy function, i.e. a one-to-one relationship between m

and λ that is continuous over [0, 1]. This happens, for instance, when the system is saddle-

path stable: in this case, for each initial condition λ0 there is a unique path converging to

the steady state, and this unique path is fully characterized by the unique policy function.

It turns out that, under our parameterization, a unique and continuous policy function

m (λ) actually exists. Hence, we are allowed to approximate it with a polynomial in the

Tj�s:

m (λ) ≈ �m (λ, c) =
nX
j=0

cjTj

·
2
λ− a
b− a − 1

¸
(48)

where a ∈ [0, 1], b ∈ [0, 1], and a < b. Note that [a, b] does not necessarily coincide with
[0, 1]: if the dynamic system presents more than one steady state, we may be interested

in approximating the stable (or unstable) saddle path near each steady state in turn.

The residual function becomes the following:

Rn (λ, c) ≡ ω (λ0) +
"
1 +

¡
1
2
− λ0¢ γ �m (λ0, c)
λ0 (1− λ0)

#
�m (λ0, c)
λ0 (1− λ0) −

γ �m (λ, c)

βλ (1− λ) (49)

where λ0 = λ+ �m (λ, c) and ω (λ) is deÞned as in (25).

Solving equation (49), however, satisÞes the necessary conditions only. To be consid-

ered a solution to (32), the policy function has to generate a stationary time series for

m, satisfying therefore the transversality condition. Being the solution unique, the opti-

mal policy function is the only one that jointly satisÞes the Þrst order and transversality

conditions.

We strictly follow the procedure described in the previous Section, and summarize

the relevant statistics in Table 4. Evidently, Galerkin�s method dominates its alternatives

from all points of view except the median absolute residual and the computational cost.

A good approximation is reached with a polynomial of degree 29 after slightly more than

two minutes of wait. Note that collocation is still a feasible alternative that trades some

13See Stockey and Lucas (1988) for details.
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n = 1 n = 9 n = 19 n = 29 n = 39
Euler Equation Residuals

Gal. 0.11 3.61e-3 1.54e-4 7.32e-6 5.96e-7
Avg. Abs. Col. 0.33 3.81e-3 2.18e-4 1.43e-5 7.90e-7

Int. 0.75 1.64e-2 4.44e-3 1.55e-3 1.15-3
Gal. 0.11 2.58e-3 8.93e-5 3.96e-6 3.51e-7

Med. Abs. Col. 0.06 2.98e-4 8.16e-6 3.10e-7 4.14e-8
Int. 0.05 1.11e-6 1.03e-9 1.06e-12 6.34e-13
Gal. 0.14 6.14e-3 3.09e-4 1.77e-5 1.28e-6

Std. Col. 1.10 1.57e-2 9.84e-4 6.94e-5 4.43e-6
Int. 2.31 8.32e-2 2.65e-2 1.01e-2 7.73e-3
Gal. 0.57 3.08e-2 1.81e-3 1.11e-4 7.69e-6

Max. Abs. Col. 6.82 0.10 6.87e-3 4.68e-4 3.11e-5
Int. 13.84 0.56 0.18 7.08e-2 5.47e-2

Computational Time
Gal. 1.76 28.07 84.14 152.20 250.96

Sec. Col. 0.06 1.82 8.57 24.72 58.11
Int. 0.11 1.70 8.40 25.65 61.41

Table 4: Euler equation residuals: the policy function.

accuracy at the extremes of the interval in exchange of computational efficiency. Both

projection methods clearly outperform Lagrange interpolation, which seems unable to

provide acceptable approximations near the extremes of the interval.

Figure 7 plots the Euler equation residuals for our last experiment: as we can see,

the approximation errors are larger at the boundaries, but remarkably uniform on the

remaining part of the approximation interval. Figure 8 shows the optimal policy function

m (λ), together with the∆mt+1 = 0 and∆λt+1 loci. Finally, Figure 9 plots the adjustment

paths for λt, mt, and νt under the initial condition λ0 = 0.6.

6 Conclusions

A feature of a family of models of economic geography appeared in the last decade is that,

although they are simple in the basic structure, they cannot be solved explicitly. Hence,

the need for numerical exploration of these models. In this paper we have illustrated three

simple methods that give a remarkable improvement in the precision of approximation

with respect to the commonly utilized Lagrange interpolation. We have applied this

methods to the core-periphery model and we have characterized the dynamics of both its

static and forward-looking expectations versions.

Coming to the merits of each of the methods, we have seen that Chebyshev inter-

polation is especially useful when the function to be approximated is known. In most
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cases however, the functional relationship to be approximated is unknown. In these cases

Chebyshev interpolation still improves remarkably the precision of approximation. Pro-

jection methods are yet more efficient. The advantage of projection methods is that

the numerical solution of the implicit equation and the estimation of the coefficients of

the approximating polynomial are done simultaneously. This, combined with the use of

Chebyshev polynomial as elements of the interpolating polynomial and of optimally cho-

sen interpolation nodes, reduces the approximation error to a minimum. Intuitively, this

gain in efficiency can be explained by noticing that the use of Chebyshev polynomials

makes the elements of the approximating polynomial orthogonal to each other and this

improves the precision of estimation.

The precision of approximation is always a welcome feature but it is of particular im-

portance in models that exhibit catastrophic behavior. The reason is that in such models

small errors of approximation my lead to large errors in the prediction of the outcomes.

For instance, there could be cases in which the Lagrange interpolation would give us

the result that the core-periphery outcome is stable while a more precise approximation

would reveal that such outcome is in fact unstable. Another way of seeing this is that

the precision of approximation is particularly important in the neighborhood of where the

catastrophe is likely to occur. In the case of the core-periphery model this means near the

points where the slope of the indirect utility differential changes sign (at the local max-

imum and minimum) and also near the core-periphery outcomes. We have shown that

the approximation methods, not only give a better approximation overall, but that the

improvements in precision with respect to the Lagrange approximation are particularly

signiÞcant near these points (i.e., far from the symmetric equilibrium).

An appealing feature of these methods is their simplicity. The simplest of them

(Chebyshev interpolation) only requires to compute the interpolation nodes according

to a simple formula. Even the more sophisticated projection methods only require a min-

imal programming effort and a negligible computation time. What makes the methods

really attractive, however, is their efficiency. In all cases, with a minimal effort they give

remarkable improvements in the precision of approximation. In some cases passing from

Lagrange to orthogonal collocation or Galerkin makes the approximation error thousands

of times smaller.

The methods we have illustrated become even more useful when the models are utilized

for policy analysis. Accuracy is obviously very important in these cases. But there are

also other advantages. First the approximation methods allow us to obtain (accurately)

the information that are typically important in policy analysis, such us the transition

dynamics. Second, a reliable approximation method gives more freedom of modeling

because it removes the constraint of having to arrive to a reduced form. In this way the
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introduction of policy parameters in the model can be done in a richer and freer way

without having to worry that the model be solvable.

Simple and intuitive model structures are always desirable. The trouble is, that even

simple and insightful structures may give rise to unsolvable models. The approximation

methods we have illustrated, we think, can be of great help in such situations.
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[9] Gaĺõ J. (1995) �Expectations-Driven Spatial Fluctuations� Regional Science and Ur-

ban Economics 25 (1): 1-19.

[10] Judd, K. (1998): Numerical Methods in Economics, MIT Press.

[11] Krugman, P. (1991a) �Increasing Returns and Economic Geography� Journal of

Political Economy 99, (3): 483-99.

[12] Krugman, P. (1991b) �Hystory versus Expectations� Quarterly Journal of Economics

106, (2): 651-67.

27



[13] Lorentz, G. (1986): Approximation of Functions, Chelsea, New York.

[14] Matsuyama, K. (1991) �Increasing Returns, Industrialization, and Indeterminacy of

Equilibrium� Quarterly Journal of Economics 106, (2): 617-650.

[15] Ottaviano, G.I.P. and D. Puga (1998) �Agglomeration in the Global Economy: A

Survey of the �New Economic Geography� The World Economy 21 (6): 707-31.

[16] Ottaviano, G.I.P. (1999) �Integration, Geography, and the Burden of Hystory� Re-

gional Science and Urban Economics 29 (2): 245-256.

[17] Ottaviano, G.I.P. (2001) �Monopolistic Competition, Trade, and Endogenous Spatial

Fluctuations� Regional Science and Urban Economics 31 (1): 51-77.

[18] Ottaviano, G.I.P, T. Tabuchi, and J-F. Thisse (2002) �Agglomeration and Trade

Rivisited� International Economic Review, forthcoming.

[19] Puga, D. (1999) �The Rise and Fall of Regional Inequalities� European Economic

Review 43 (2): 303-34.

[20] Rivlin, T. (1990): Chebyshev Polynomials: From Approximation Theory to Algebra

and Number Theory, Wiley, New York.

[21] Schumaker, L. (1981): Spline Functions: Basic Theory, Wiley, New York. (MA).

28



-1
-0.8
-0.6
-0.4
-0.2
0

0.2
0.4
0.6
0.8
1

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1x

Figure 1: f (x)=solid, pL3 (x)=dash, p
C
3 (x)=dot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5

-1

-0.5

0

0.5

1

1.5

Fu
nc

tio
ns

f
fg
f
c
f
i

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
pp

. E
rr

or

x

fg
f
c
fi

Figure 2: Approximation of a simple function.
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Figure 3: Wage equation residuals and approximated wages.
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