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Abstract

Recent financial research has provided evidence on the predictabil-
ity of asset returns. In this paper we consider the results contained in
Pesaran-Timmerman(1995), which provided evidence on predictability
over the sample 1959-1992. We show that the extension of the sample
to the nineties weakens considerably the statistical and economic sig-
nificance of the predictability of stock returns based on earlier data..
We propose an extension of their framework, based on the explicit
consideration of model uncertainty under rich parameterizations for
the predictive models. We propose a novel methodology to deal with
model uncertainty based on ”thick” modeling, i.e. on considering a
multiplicity of predictive models rather than a single predictive model.
We show that portfolio allocations based on a thick modelling strategy
sistematically overperforms thin modelling.

JEL Classification Numbers: G11, C53

1 Introduction

Recent financial research has provided ample evidence on the predictability of
asset returns (see, for example, Keim and Stambaugh,(1986), Campbell and
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Shiller(1988a, 1988b) Pesaran and Timmermann(1996), Lander at al.(1997)
and, for a survey, Cochrane(2000)), Pesaran and Timmermann(1996,2000)
have shown that, net of transactions costs, it could have been exploited by
investors in the volatile markets of the 1970s.

Pesaran and Timmermann(1996) consider a time-varying parameteriza-
tion for the forecasting model to find that the predictive power of various
economic factors over stock returns changes through time and tends to vary
with the volatility of returns. They apply a 'recursive modelling’ approach,
according to which at each point in time all the possible forecasting models
are estimated and returns are predicted by relying on the best model, cho-
sen on the basis of some given statistical criterion. The dynamic portfolio
allocation, based on the signal generated by a time-varying model for asset
returns, is shown to over-perform the buy-and-hold strategy over the period
1959-1992. The results obtained for the US are successfully replicated in a
recent, paper concentrating on the UK evidence, Pesaran and Timmermann
(2000).

In this paper we propose a novel methodology which extend the proposal
contained in the original paper to deal explicitly with model uncertainty. In
the first section of the paper we discuss our proposal to deal with model
uncertainty under rich parameterization for the predictive models. We then
re-assess the original evidence on the statistical and economic significance of
the predictability of stock returns by extending the data-set to the nineties
and by evaluating comparatively thin and thick modelling.

2 Recursive modelling: thin or thick ?

Pesaran and Timmermann (1996) consider the problem of an investor al-
locating his portfolio between a safe asset denominated in dollar and US
stocks. The decision on portfolio allocation is then completely determined
by the forecast of excess returns on US stock. Their allocation strategy is
such that portfolio is always totally allocated into one asset, which is the
safe asset if predicted excess returns are negative, and shares if the predicted
excess returns are positive. The authors forecast excess US stock returns
by concentrating on an established benchmark set of regressors over which
they conduct the search for a ”satisfactory” predictive model. They focus on
modelling the decision in real-time. To this end they implement the recursive
modelling approach, according to which at each point in time, ¢, a search over



a base set of observable k regressors is conducted to make one-period ahead
forecast. In each period they estimate a set of regression spanned by all the
possible permutations of the k regressors. This gives a total of 2% different
models for excess return. Models are estimated recursively, so that as the
data-set is expanded by one observation in each period. Therefore a total of
2% %396 models are estimated at each possible period from 1959:12 to 1992:11
to generate a portfolio allocation.

They estimate all the possible specifications of the following forecasting
equation:

(Te41 — Te41) = BiXei + 141, (1)

where z;,1 are the monthly returns on US stocks and r;; are the monthly
returns on the US dollar denominated safe asset (1-month T-bill), X,; is
the set of regressors, observable at time ¢, included in the i-th specification
(i = 1,...2%) for the excess return. The relevant regressors are chosen from a
benchmark set containing, the dividend yield Y S P, the earning-price ratio
PE;, the 1-month T-bill rate I1; and its lag I1, ; , the 12-month T-bill
rate 112, and its lag [12, ;, the year-on-year lagged rate of inflation m; 1,
the year-on-year lagged change in industrial output AIP,_;, and the year-
on-year lagged growth rate in the narrow money stock AM;_;. A constant
is always included and all variables based on macroeconomic indicators are
measured by 12-month moving averages to decrease the impact of historical
data revisions on the results.

At each sample point the investor computes OLS estimates of the un-
known parameters for all possible models, chooses a forecast for excess returns
given the predictions of 512 models and maps the forecast into a portfolio
allocation by choosing shares if forecast is positive and the safe asset if the
forecast is negative.

Pesaran and Timmermann select in each period only one forecast, i.e.
that genrated by the best model selected on the basis of a specified selection
criteria which weigths goodness of fit against parsimony of the specifica-
tion(such as adjusted R?, BIC, Akaike, Schwarz). We follow Granger (2000)
and label this approach ‘thin’ modelling in that the forecast for excess re-
turns and consequently the performance of the asset allocation are described
over time by a thin line.

The advantage of this approach is that a process, potentially non-linear,
is modeled by applying recursively a selection procedure among linear mod-
els. The specification procedure mimics a situation in which variables for



predicting returns are chosen in each period from a pool of potentially rele-
vant regressors. This choice fits well the behaviour often observed in financial
markets of attributing different emphasis to the same variables in different
periods.

Obviously, keeping track of the selected variables helps the reflection on
the economic significance of the ‘best’ regression.

The main limit of thin modelling is that model, or specification, uncer-
tainty is not considered. In each period the information coming from the
discarded 2F — 1 models is ignored for the forecasting and portfolio allocation
exercise. This choice seems to be particularly strong in the light of the results
obtained by Bayesian line of research, which stresses the importance of the
estimation risk for portfolio allocation (see for example, Barberis,2000, Kan-
del and Stanbaugh,1996). A natural way to interpret model uncertainty is
to refrain from the assumption of the existence of a ”true” model and attach
instead probabilities to different possible models. This approach has been la-
belled ‘Bayesian Model Averaging’, see, for example, Hoeting J.et al.(1999),
Raftery et al.(1997), and Avramov (2001). Bayesian methodology reveals the
existence of in sample and out of sample predictability of stock returns, even
when commonly adopted model selection criteria fail to demonstrate out of
sample predictability.

The main difficulty with the application of Bayesian Model Averaging to
problems like ours lies with the specification of prior distributions for param-
eters in all 2% models of our interest. Recently, Doppelhofer et al. (2000)
have proposed an approach labelled ‘Bayesian Averaging of Classical Esti-
mates’(BACE) which overcomes the need of specifying priors by combining
the averaging of estimates across models, a Bayesian concept, with classi-
cal OLS estimation, interpretable in the Bayesian camp as coming from the
assumption of diffuse, non-informative, priors.

In practice BACE averages parameters across all models by weigthing
them proportionally to the logarithm of the likelihood function corrected for
the degrees of freedom, using then a criterion similar to the Schwarz model
selection criterion. It is important to note that the consideration of model
uncertainty in our context generates potential for averaging at two different
levels: averaging across the different predicted excess returns and averaging
across the different portfolio choices driven by the excess returns.

The explicit consideration of estimation risks naturally generates ‘thick’
modelling, where both the prediction of models and the performance of the
portfolio allocations over time are described by a thick line to take account
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of the multiplicity of models estimated. The thickness of the line is a direct
reflection of the estimation risk.

Pesaran and Timmermann show that thin modelling allows to over-perform
the buy and hold strategy. Re-evaluating their results from a thick modelling
perspective raises immediately one question: ”why choose just a model to
forecast excess returns?”

3 A first look at the empirical evidence

We start be replicating® the exercise in Pesaran and Timmermann using
the same dataset, keeping track of all the forecasts produced by taking into
account the 2*-1 combinations of regressors. We do so by looking at the
within sample econometric performance, at the forecasting performance and
at the performance of the portfolio allocation. The main feature of the series
used in our exercises are described in Table 1.

Figure 1 allows to analyze the within sample econometric performance by
reporting the adjusted R? for 2% models estimated recursively. The difference
in the selection criterion across different models is small. In fact, turning to
predictive performance we find that it is possible to improve on the perfor-
mance of the best model in terms of R? by using the information contained
in the 2¥ — 1 models dominated (is many cases marginally) in terms of R2.
The result is most easily shown by using the metric of the sign test proposed
by Pesaran-Timmermann(1996). The sign test is based on the proportion of
times that the sign of a given variable y; is correctly predicted in the sam-
ple by the sign of the predictor x; . Under the null hypothesis that z; has
no power in predicting y; the proportion of times that the sign is correctly
predicted has a binomial distribution with known parameters, therefore a
test of the null of predictive failure is constructed by comparing the observed
proportion of sign correctly predicted with the proportion of sign correctly
predicted under the null. Details on the derivation of the statistics and re-
sults are reported in Table 2. We report the tests obtained by basing the
prediction on the signal of the best model (thin modelling) and on the signal
of averages of a multiplicity of models, ranked on the basis of their R%. The

In fact, we replicate the allocation results in the case of no transaction costs. Trans-
action costs do not affect the portfolio choice in the original exercise, therefore they do
not affect the mapping from forecasting to portfolio allocation, which is the main concern
of our paper.



idea of averaging is in line with the observation in Clements and Hendry
(2001) who demonstrate that when forecasting time series that are subject
to deterministic shifts, the average of a group of forecasts from differently
misspecified models can outperform them all. Results are shown in terms
of increasing thickness, by reporting first sign test when averages of the top
1 per cent of the models are considered, to increase progressively the thick-
ness of the modelling approach until we average across all 2¥ models. The
statistics show that the best performance in terms of the sign test is achieved
when the average prediction of the best sixty per cent of the models in terms
of R? is chosen as a predictor for excess returns. Curiously, averaging across
all models deliver the same performance with thin modelling.

Lastly, we turn to the performance of the portfolio allocation based on the
predictive regression. Figure 2 illustrates the cumulative wealth generated
by the portfolio allocation based on the signal of all 2¥ models, ranked in
terms of their adjusted R%. The value of the end-of-period wealth is not a
decreasing function of the adjusted R2. In fact, the highest value for the
end-of-period wealth is achieved when portfolio is allocated according to the
signals of the model ranked about eigthieth in terms of its R? and allocating
portfolio in terms of the signal of one of the worst models in terms of R?
generates an higher final wealth than that delivered by the allocation based
on thin modelling.

The extension of the sample to the period 1993-2001 delivers a very dif-
ferent scenario: the adjusted R? of all models decreases substantially, the
PT sign tests for predictive performance are not significant anymore, and
the consequently the portfolio allocation performance generate lower wealth
than the buy-and-hold strategy.

To our reading these results show that thick modelling has potential, but
that refinements in the specification and the modelling selection strategy are
called upon by the empirical evidence from the more recent data.

4 Our proposal for thick modelling

In the light of the evidence reported in the previous section we propose ex-
tensions of the original methodology both at the stage of model specification
and of portfolio allocation.

We shall use thick modelling exclusively at the stage of portfolio alloca-
tion. The empirical evidence reported in the previous section shows clearly



that the ranking of models in terms of their within sample performance does
not match at all the ranking of models in terms of their ex-post forecasting
power. This empirical evidence points clearly against BACE using within
sample criteria to weight models. Consistently with this evidence, we opted
for the selection method proposed by Granger (2000) of using a ‘... procedure
[which] emphasizes the purpose of the task at hand rather than just using a
simple statistical pooling...” Our task at hand is asset allocation.

4.1 Model specification

At the stage of model specification we consider two issues: the importance
of balanced regressions and the optimal choice of the window of observations
for estimation purposes.

A regression is balanced when the order of integration of the regressors
matches that of the dependent variables. Excess returns are stationary,
but not all variables candidate to explain that are stationary. To achieve
a balanced regression in this case, cointegration among the included non-
stationary variables is needed. As shown by Sims, Stock and Watson( 1990)
the appropriate stationary linear combinations of non-stationary variables
will be naturally selected by the dynamic regression, when all non stationary
variables potentially included in a cointegrating relations are included in the
model. Therefore, when model selection criteria are applied, one must make
sure that such criteria do not lead to exclude any component of the coin-
tegrating vector from the regression. Following Pesaran and Timmermann
(2001) we divide variables in focal, labelled A, and secondary focal, labelled
B;. Focal variables are always included in all models, while the variables
in By are subject to the selection process . We take these variables as those
defining the long-run equilibria for the stock market Following the lead of tra-
ditional analysis? (Graham and Dodd Security Analysis, 4th edition, 1962,

2

... Theoretical analysis suggests that both the dividend yield and the earn-
ings yield on common stocks should be strongly affected by changes in the
long-term interest rates. It is assumed that many investors are constantly
making a choice between stock and bond purchases; as the yield on bonds
advances, they would be expected to demand a correspondingly higher return
on stocks, and conversely as bond yields decline...”

The above statement suggests that either the dividend yield or the earnings yield on
common stocks could be used



p.510) and recent studies (Lander et al. (1997)) we have chosen to construct
an equilibrium for the stock market by concentrating on a linear relation
between the long term interest rates, R;, and the logarithm of the earning
price ratio, ep. Also recent empirical analysis (see Zhou, 1996) finds that
stock market movements are closely related to shifts in the slope of the term
structure. Such results might be explained by a correlation between the risk
premia on long-term bonds and the risk premium on stocks. Therefore, we
consider the term spread as a potentially important cointegrating relation.
On the basis of this consideration we include in the set of focal variables
the yield to maturity on 10-year government bonds (a variable which was
not included in the original set of regressors by PT), the log of the earning
price ratio and the interest rate on 12-month Treasury Bills, to ensure that
the selected model is balanced and includes the two relevant cointegrating
vectors. We do not impose any restrictions on the coefficients of the focal
variables.

The second important issue at the stage of model selection is the choice
of the window of observations for estimation.

In the absence of breaks in the DGP the usual method for estimation and
forecasting is to use an expanding window. In this case, by augmenting an al-
ready selected sample period with new observations, more efficient estimates
of the same fixed coefficients are obtained by using more information as it
becomes available. However, if the parameters of the regression model are
not believed to be constant over time, a rolling window of observations with
a fixed size is frequently used. When a rolling window is used, the natural
issue is the choice of its size. This problem has been already observed by Pe-
saran and Timmermann (1999) who provide an extensive analysis of model
instability, structural breaks, and the choice of window observations. In line
with their analysis we deal with the problem of window selection by starting
from an expanding window, every time a new observation is available we run
a backward CUSUM and CUSUM squared test to detect instability in the
intercept and/or in the variance. We then keep expanding the window only
when the null of no structural break is not rejected. Consider a sample of T’
observations and the following model:

i i ' k
Yyr =0 Tirturi=1,..,2

where yor = (Yo, Yo, Yeyo, - yr) and a4 = (@}, )11, Tya, -y @) Where T —
t + 1 is the optimal window and 7" the last available observation, remember



that we are interested in forecasting yry; given $T+17[A32. The problem of
the optimal choice of ¢ given model 7, can be solved by running a CUSUM
test with the order of the observations reversed in time starting from the
m-th observation and going back to the first observation available. Once a
structural break (either in the mean or in the variance) has been detected, we
have found the optimal ¢. Clearly the optimal ¢ can be the first observation
in the sample (in this case we have an expanding window) or any number
between 1 and m (flexible rolling window). This procedure allows us to
optimally select the observation window? for each of the 2* different models
estimated at time ¢.

4.2 Asset Allocation

We consider three different alternative ways of implementing thick mod-
elling when allocating portfolios. Given the 2* forecasts for excess returns
in each period define o® and (1 — aS) to be respectively the weight of

stocks and safe asset(short term bills), let {91}1221 the full set of excess
returns forecasts obtained in the previous step, and let n = w'2*, where
w =[.01,.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,1] is the set of weights, in terms of the
percentage of the model ordered according to their adjusted R?, chosen to
build up the appropriate trimmed means of the available forecasts. Then we
use the following allocation criteria:

1. Distribution- Thick-Modelling: We look at the empirical distribution of
the forecasts to apply the following criterion:

Criterion Weigths
> wi>0)
S > 05 | of, = Lag =0

> (5i>0) s _ B _
LS00 <05 | af = 0,02 =1

where n,, (y; > 0) is the number of models giving a positive prediction
for excess returns within j-th class of the trimming grid ( For example
Ny, (y; > 0) is the number of models in the best 10 per cent of the
ranking in term of their adjusted R? predicting a positive excess return

3We impose that the shortest observation window automatically selected cannot be
smaller than 2 or 3 times the dimension of the parameters’ vector. So also the minimum
observation window is a function of regressors included in each of 2* different models.



2. Meta-Thick-Modelling: We use the same criterion as above, to derive
a less aggressive portfolio allocation, in which corner solution are the
exceptions rather than the rule:

Weigths
of = {[===0] > 05} 02 = (1-a8)

Wi Nw; Wi

3. Kernel-Thick-Modelling: we compute the weigthed average of predic-
tions 7 (with weights based on the relative adjusted-R?, through a
kernel function that penalizes deviations from the best model in terms
of R* and the bandwidth determined by the number of observations)
and then we apply this rule:

Criterion | Weigths
7>0 s =1,a8 =0
<0 ozi:O,ozizl

4.3 Empirical Results

Our empirical results are reported in Table 3-4 and Figures 3-10.

Tables 3-4 illustrates the forecasting performance of models specified ac-
cording different criteria and grouped according different trimming. Trim-
ming are reported by rows and model estimation criteria are reported by
columns. We have then five columns labeled respectively Rec, Roll, Bal,
Flex and Bal-Flex. Rec replicates the original model estimation recursive
and reports the results based on recursive estimation (expanding window of
observations) with no focal variables . Roll reports the results based rolling
estimation(with fixed window of 60 observations) with no focal variables.
Bal reports the results based on recursive estimation(expanding window of
observations), focal variables are : log of the price-earning ratio, yield-to ma-
turity on long term bonds, yield on 12-month Treasury Bills. Flex reports
the results based on rolling estimation(with optimally chosen window), no
focal variables. Bal-flex reports the results based on rolling estimation(with
optimally chosen window), focal variables are the log of the price-earning
ratio, the yield-to maturity on long term bonds, and the yield on 12-month
Treasury Bills. Table 3 reports the results for the sample 1954-1992 while
Table 4 reports the results for the sample 1993-2001. The dominance of thick
modelling over thin modelling is confirmed for the first sample across all the
different columns of Table 3. The comparison of Table 3 with Table 4 confirms
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that the decrease in predictive power when the sample is extended. Interest-
ingly, the Bal-Flex specification criterion, which was the worst performer in
the 1954-1992 sample, dominates all in terms of percentage of correct signs
in the nineties. This evidence suggest that combining the selection of focal
variables and the selection of the optimal size for the estimation window
provides the most robust performance in terms of sign test.

Figure 3-4 allow the evaluation of the performance of different portfolio
allocation criteria, by comparing the end-of-period cumulative wealth associ-
ated to each of them with the cumulative wealth associated to a buy-and-hold
strategy, always allocating the entire portfolio to shares*. We report the per-
formance of different trimming criterion for all the model specification criteria
for the sample 1960-1992 in Figure 3 and for the sample 1993-2001 in Figure
4. In each Figure the flat line is the end of period wealth of the buy and hold
strategy associated to a beginning of period wealth of 100.

In the first part of the sample all econometric based allocation do bet-
ter than the buy and hold strategy. Thick modelling does improve on thin
modelling. In particular some form of distribution thick modelling domi-
nates thin modelling independently of the model specification criteria. The
dominance of thick modelling becomes stronger when Balanced and Flexible-
Balanced specification criteria are chosen. Although more complicated selec-
tion criteria tend to give a weaker over-performance than the simple recursive
specification.

In the second part of the sample over-performing the buy and hold strat-
egy becomes much more difficult, however the dominance of thick modelling
on thin modelling becomes stronger. More articulates model selection crite-
ria now deliver better results than the simple recursive criterion. The best
performance is achieved when the distribution-thick criterion is applied to
the best 20 per cent of models in terms of their adjuster R?.

5 Conclusions

In this paper, we have reassessed the results on the statistical and economic
significance of the predictability of stock returns provided by Pesaran and
Timmermann(1995) for the US data to propose a novel approach for portfolio
allocation based on econometric modelling. We find that the results based

4Evaluation has been also conducted in terms of period returns and Sharpe-ratios,
results are available upon request.
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on the thin modelling approach originally obtained for the sample 1960-1992
are considerably weakened when the sample is extend to 2001.

We then show that the incorporation of model uncertainty substantially
improves the performance of econometric based portfolio allocation

The portfolio allocation based on a strategy giving weights to a number of
models rather than to just one model leads to systematic over-performance
of portfolio allocations among 2 assets. However, even thick modelling does
not guarantee a constant over-performance with respect to a typical market
benchmark for our asset allocation problem. To this end we have observed
that combining thick modelling with a model specification strategy that
imposes balanced regressions and chooses optimally the estimation window
reduces the volatility of the asset allocation performance and delivers a more
consistent over performance with respect to the simple buy-and-hold strategy.
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A Data Appendix

The extended dataset has been obtained merging PT95 original dataset
(1954.1-1992.12) with new series retrived from DATASTREAM and FRED
for the sample 1993.1-2001.9.

Code Description
pretUS  TOTMKUS(RI)  US-DS MARKET - TOT RETURN IND
dy?* TOTMKUS(DY) US -DS market- Dividend yield
pel's TOTMKUS(PE) US-DS MARKET - PER
r1Vs ECUSDIM US EURO-$ 1 MONTH (LDN:FT) - MIDDLE RATE
ppi¥S  USOCPRODF  US PPI - MANUFACTURED GOODS NADJ
r12VS  ECUSDLY US EURO-$ 1 YEAR (LDN:FT) - MIDDLE RATE
ip¥s USINPRODG ~ US INDUSTRIAL PRODUCTION
MOYS  USMO...B US MONETARY BASE CURA

RlOYtUS BMUS10Y(RY) US YIELD-TO-MATURITY ON 10-YEAR GOV.BONDS
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Table 1: Data description:excess returns

1954:1-1992:12  1993:1:1-2001:9

Mean 0.005906 0.006766
Median 0.006802 0.010988
Max 0.162767 0.087631
Min -0.220550 -0.152226
Std. Dev. 0.042428 0.043985
Skewness -0.289853 -0.731198
Kurtosis 4.968427 3.806151
Jarque-Bera 82.10989 12.19959
Probability 0.000000 0.002243
Observations 468 105

Percentage of periods of inclusion of each regressor
in the best model (selection criterion R2)
1954:1-1992:12  1954:1-2001:8

ysp(-l)  69.7 72.2
ep(-1) 20.5 30.1
i1(-1) 99.2 99.4
i1(-2) 23.0 18.1
i12(-1) 447 56.2
i12(-2) 42,9 54.8
infl(-2)  55.8 65.0
d12ip(-2) 879 90.4
d12m(-2) 89.6 80.4
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Table 2: Forecasting performance

% of correct signs of predicted excess returns based on
thin and thick modelling and associated P'T statistics
Sample 1954.1-1992.12
Best Best 1% | Best 5% | Best 10% | Best 20% | Best 30% | Best 40%
0.596 0.591 0.591 0.596 0.5934 0.6061 0.6136
3.3939 3.1693 3.2016 3.4097 3.3470 3.9218 4.2904
Best 50% | Best 60% | Best 70% | Best 80% | Best 90% | Best 100%
0.6162 0.6136 0.6162 0.6111 0.6010 0.5960
4.4198 4.3271 4.4198 4.2158 3.8271 3.6037
Sample 1993.1-2001.10
Best Best 1% | Best 5% | Best 10% | Best 20% | Best 30% | Best 40%
0.457 0.447 0.438 0.457 0.438 0.419 0.419
—0.2201 —0.486 —0.5298 —0.2201 —0.7497 —1.2792 —1.2722
Best 50% | Best 60% | Best 70% | Best 80% | Best 90% | Best 100%
0.419 0.409 0.428 0.438 0.476 0.476
—1.3787 —1.6375 —1.3361 —1.1868 —0.9425 —1.1871
Each cell reports the percentage of correctly signed predictions and the asso-

ciated PT- statistic. The PT-statistic is the Pesaran-Timmerman non-parametric

test of predictive performance. Let x; = E(y;, 2;_1) be the predictor of y; found

with respect to the information set, ;1 , with n observations (y1, 1), (y2,Z2), - - - , (Yn, Tn)

available. The test proposed by Pesaran and Timmerman (1992) is based on the
proportion of times that the direction of changes in y; is correctly predicted by ;.
The test statistic is computed as

P— P*
Sn — ~ N(0,1 2
i) vy <N v
where:
I
P = ZZﬁZZi
P= PPt (-P)(1-P)
V(P*) = %P*(l—P*)
B (2Py—1)2P$(1—Pm)+(2Pm—1)2Py(1_Py)+
Vi(p) = n( +%Pny(1—Py)(1—Pw) )

Z; is an indicator variable which takes value of one when the sign of ¥, is correctly
predicted by x4, and zero otherwise, P, is the proportion of times y, takes a positive
value, P, is the proportion of times x; takes a positive value.
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Table 3: Sample 1954.1-1992.12
Trimmed means | % of correct signs (PT-statistic)
Rec Roll | Bal | Flex | Bal-flex
Best 0.596 | 0.543 | 0.571 | 0.553 | 0.540
33939 | 1494 | 2444 | 2151 | 1609
Best 1% 0.591 | 0.545 | 0.573 | 0.558 | 0.530
31693 | 1.607 | 2.615 | 2330 | 1257
Best 5% 0.591 | 0.553 | 0.563 | 0.568 | 0.566
32016 | 1.859 | 2.165 | 2.621 | 2.604
Best 10% 0.596 | 0.558 | 0.568 | 0.563 | 0.571
34007 | 2.084 | 2.351 | 2.331 | 2.8%5
Best 20% 0.5934 | 0.550 | 0.563 | 0.586 | 0.551
83170 | 1767 | 2.205 | 3.257 | 2.015
Best 30% 0.6061 | 0.556 | 0.573 | 0.576 | 0.556
3.9218 | 2.014 | 2.780 | 2.850 | 2.217
Best 40% 0.6136 | 0.568 | 0.571 | 0.591 | 0.551
42004 | 2555 | 2.600 | 3.460 | 2.015
Best 50% 0.6162 | 0.575 | 0.568 | 0.583 | 0.548
44108 | 2800 | 2,509 | 3087 | 1902
Best 60% 0.6136 | 0.573 | 0.563 | 0.576 | 0.540
43271 | 2716 | 2.418° | 2.871 | 1.609
Best 70% 0.6162 | 0.601 | 0.568 | 0.586 | 0.540
44108 | 3751 | 2.509 | 3257 | 1.633
Best 80% 0.6111 | 0.588 | 0.551 | 0.591 | 0.535
42158 | 3193 | 1.968 | 3.481 | 1360
Best 90% 0.6010 | 0.596 | 0.548 | 0.596 | 0.551
3.8271 | 3.493 | 1.049 | 3.623 | 1.000
Best 100% 0.5960 | 0.588 | 0.553 | 0.601 | 0.556
3.6037 | 2.015 | 2.199 | 3.770 | 2.103

Each cell reports the percentage of correctly signed predictions and the
associated P'T- statistic.

Rec: recursive estimation (expanding window of observations), no focal
variables.

Rol: rolling estimation(with fixed window of 60 observations), no focal vari-
ables.

Bal: recursive estimation(expanding window of observations), focal vari-
ables: constant, log of the price-earning ratio, yield-to maturity on
long term bonds, yield on 12-month Treasury Bills.

Flex: rolling estimation(with optimally chosen window), no focal variables.

Bal-flez: rolling estimation(with optimally chosen window), focal variables:
constant, log of the price-earning ratio, yield-to maturity on long term
bonds, yield on 12-month Treasury Bills.
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Table 4: Sample 1993.1-2001.10
Trimmed means | % of correct signs (PT-statistic)
Rec Roll | Bal | Flex | Bal-flex
Best 0.457 | 0.514 | 0.485 | 0.467 | 0.476
02201 | 0334 | 0470 | 0.545 | 1.139
Best 1% 0.447 | 0.552 | 0.485 | 0.429 | 0.505
—0.4860 | 1.264 | 0470 | —0.107 | 1.440
Best 5% 0.438 | 0.533 | 0.495 | 0.438 | 0.467
—0.5298 | 0.742 | 0.872 | 0.062 | 0.545
Best 10% 0.457 | 0.552 | 0.504 | 0.419 | 0.467
—0.2201 | 1.038 | 1.021 | —0.516 | 0.414
Best 20% 0.438 | 0.485 | 0.457 | 0.457 | 0.457
—0.7497 | —0.334 | 0132 | —0.220 | —0.105
Best 30% 0.419 | 0.504 | 0.485 | 0.467 | 0.457
~1.2722 | ~0.038 | 0470 | —0.182 | —0.557
Best 40% 0.419 | 0.504 | 0.485 | 0.448 | 0.448
~1.27%2 | ~0.038 | 0350 | —0.927 | ~1.151
Best 50% 0.419 | 0.457 | 0.495 | 0.467 | 0.505
~1.3787 | ~0.890 | 0.499 | —0.856 | —0.500
Best 60% 0.409 | 0.485 | 0.476 | 0.476 | 0.524
~1.6375 | —0.447 | —0.031 | —0.942 | —0.442
Best 70% 0.428 | 0.466 | 0.447 | 0.476 | 0.524
—1.3361 | —0.971 | —1.038 | —1.315 | —0.569
Best 80% 0.438 | 0.485 | 0.447 | 0.448 | 0.552
—1.1868 | —1.040 | —1.038 | —2.162 | —0.098
Best 90% 0.476 | 0.485 | 0.466 | 0.495 | 0.562
—0.0425 | —1.587 | —0.742 | —1.505 | 0.065
Best 100% 0.476 | 0.495 | 0.476 | 0.495 | 0.590
—1.1871 | —1.760 | —0.709 | —1.716 | 0.687

Each cell reports the percentage of correctly signed predictions and the
associated P'T- statistic.

Rec: recursive estimation (expanding window of observations), no focal
variables.

Rol: rolling estimation(with fixed window of 60 observations), no focal vari-
ables.

Bal: recursive estimation(expanding window of observations), focal vari-
ables: constant, log of the price-earning ratio, yield-to maturity on
long term bonds, yield on 12-month Treasury Bills.

Flex: rolling estimation(with optimally chosen window), no focal variables.

Bal-flez: rolling estimation(with optimally chosen window), focal variables:
constant, log of the price-earning ratio, yield-to maturity on long term
bonds, yield on 12-month Treasury Bills.
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Figure 1: Recursive adjusted R2: first sample 1954.1-1959.12, last sample
1954.1-2001.8.
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Figure 2: Cumulative wealth obtained from 511 different portfolios.
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Figure 3: The performance of different portfolio allocations over the sam-
ple 1960-1992
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Figure 3c: Flexible Rolling Figure 3d: Flexible-Balanced Rolling
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Figure 4: The performance of different portfolio allocations over the sam-
ple 1993-2001
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Figure 4c: Flexible rolling Figure 4d: Flexible-Balanced Rolling
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