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Abstract

Focusing on signaling games, I illustrate the relevance of the ratio-
nalizability approach for the analysis multistage games with incomplete
information. I define a class of iterative solution procedures, featuring a
notion of “forward induction”: the Receiver tries to explain the Sender’s
message in a way which is consistent with the Sender’s strategic sophisti-
cation and certain given restrictions on beliefs. The approach is applied to
some numerical examples and economic models. In a standard model with
verifiable messages a full disclosure result is obtained. In a model of job
market signaling the best separating equilibrium emerges as the unique
rationalizable outcome only when the high and low types are sufficiently
different. Otherwise, rationalizability only puts bounds on the education
choices of different types.

Keywords: incomplete information, signaling, rationalization.
Subject Classification: C72, D82.

1 Introduction

Rationalizability is a solution concept that captures the implications of rational-
ity and common belief in rationality. It has been argued that rationalizability
is relevant and important in the analysis of incomplete information games (Bat-
tigalli and Siniscalchi 2003a, Battigalli 2003, Dekel et al. 2003, Ely and Peski
2004). In the context of dynamic games, a strong version of rationalizability
also involves the forward-induction assumption that players try to rationalize
the past actions of their opponents. In this paper I apply this strong rationaliz-
ability approach to the analysis of signaling games. For the sake of completeness
in this Introduction I first provide a general discussion of incomplete information
games and then I consider signaling games.
In a typical game of incomplete information the relationship between ac-

tions and payoffs is not commonly known. Different players have different
pieces of information about this relationship. I call such pieces of information
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“payoff-relevant types”, or — more simply, payoff-types,1 and I call a complete
specification of the payoff-relevant parameters of the game state of nature. A
basic description of an incomplete information game would simply specify the
rules of interaction (feasible sequences of actions, information about previous
actions, etc.), a set of conceivable states of nature, and a set of conceivable
payoff-types for each player. However, according to Harsanyi’s (1967-68) ap-
proach, this description of the strategic situation is insufficient. In order to
apply game-theoretic (equilibrium) analysis and derive implications about be-
havior this basic structure has to be augmented with a type space, that is, a
mathematical structure which provides an implicit description of the possible
configurations of interactive believes: each player’s beliefs about his opponents’
payoff-types (first-order beliefs) and each player’s beliefs about his opponents’
beliefs (higher-order beliefs). A Harsanyi-type encodes both a player’s payoff-
types and his first-order and higher-order beliefs concerning payoff-types. A
type-space-augmented incomplete information game — also called Bayesian game
— is structurally similar to a standard game where the players have asymmet-
ric information about an initial chance move affecting their payoffs. Hence an
appropriate analog of the Nash equilibrium concept, the Bayesian-Nash equilib-
rium, can be used to analyze strategic interaction under incomplete information.
A Bayesian-Nash equilibrium specifies a choice2 for every Harsanyi-type of ev-
ery player so that the choice of each Harsanyi-type is a best response to its
beliefs given a correct conjecture about the choice that each possible type of the
opponents would make.
There is an important conceptual difference between games with incomplete

information and games with asymmetric information about an initial chance
move. In the latter there is an ex ante stage in which the players are equally
uninformed, after which the players learn their private information. Games
with asymmetric information about a chance move (such as Poker) have been
studied since the very infancy of game theory, well before Harsanyi’s seminal
contribution on incomplete information games. On the other hand, in games
with incomplete information there is no ex ante stage. It is quite simply the
case that some players happen to know some relevant facts unknown to other
players.3 For example, an economic agent typically knows more than other
agents about his own preferences and innate abilities. In what follows I argue
that this difference has been too often overlooked in applications, and I propose
an alternative method of analysis of incomplete information games that does
not rely on type spaces à la Harsanyi and Bayesian-Nash equilibrium.
Harsanyi’s analysis of games with incomplete information is in principle

quite flexible. Indeed, it has been argued that without specific assumptions

1This terminology has become rather standard in the recent literature on incomplete infor-
mation games and type spaces: see, e.g., Battigalli (2003), Battigalli and Siniscalchi (2003a)
and Bergemann and Morris (2004). Harsanyi (1967-68) used the term “attribute vector”.

2 In a dynamic game, the choice concerns a plan of action.
3One may consider the case of incomplete, and yet completely symmetric information, but

it is less interesting. Also, one may consider games featuring both asymmetric information
about an initial chance move, and incomplete information. The methodology I propose can
be easily extended to cover these case.
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about players’ interactive beliefs, the Bayesian-Nash equilibrium concept has
very weak behavioral implications. Generalizing an observation due to Bran-
denburger and Dekel (1987), Battigalli and Siniscalchi (2003a) show that any
behavior consistent with common certainty of rationality is also consistent with
some Bayesian-Nash equilibrium as long as we consider a sufficiently rich type
space.4 In other words, the equilibrium assumption that players have correct
conjectures about the choice that each Harsanyi-type would make does not have
any behavioral implication beyond common certainty of rationality, if it is not
coupled with specific assumptions about interactive beliefs. As in games of
complete information, the behavioral consequences of common certainty of ra-
tionality can be weak or strong, depending on the details of the model at hand.
But it is worth noting that in order to derive such implications it is not neces-
sary to refer to type spaces à la Harsanyi. One only has to perform a solution
procedure similar to iterated dominance: at each round of the procedure one
eliminates, for each payoff -type of each player, the choices that are not best
responses to any belief about the combinations of payoff-types and choices for
the other players that survived the previous rounds. It is also possible to adapt
the procedure to take into account that some features of the players’ first-order
beliefs may be common certainty (for example, there may be common certainty
of the fact that every opponent of player i assigns at least a 50% probability to
a particular payoff-type θ∗i ).
To sum up, in order to derive behavioral implications going beyond the

consequences of common certainty of rationality, one has to make specific as-
sumptions about the players’ interactive beliefs concerning payoff-types. But, in
my opinion, Harsanyi’s emphasis on the structural similarity between Bayesian
games and standard games with asymmetric information, has led many applied
economists to acritically use assumptions about interactive beliefs that are often
implausible and not well-understood. For example, in economic models with in-
complete information on one side, such as signaling games, it is almost always
assumed that the beliefs of the uninformed players about the payoff-type of
the informed player are commonly known. This amounts to assuming a small
type space where there is a one-to-one correspondence among payoff-types and
Harsanyi-types.5

This widespread modeling strategy raises several problems. It is clear that
small type spaces are used for tractability reasons: calculating the Bayesian-
Nash equilibria of a game-theoretic model with a large and complex type space
may be very difficult. But, except for tractability, economists often do not have
other compelling reasons for using small type spaces. Furthermore, it is not
clear, a priori, how these assumptions about interactive beliefs affect the set of

4Related results can be found in in Dekel et al. (2003) and Ely and Peski (2004).
5Bergemann and Morris (2004) call “naive” a type space where beliefs are derived from

a common prior on the set of states of nature. This property of interactive beliefs is much
stronger than the existence of a common prior on the set of states of the world. In two-person
games with incomplete information on one side, we have a naive type space if and only if the
(first-order) belief of the uninformed player is common knowledge.
On the conceptual interpretation of the common prior assumption see, for example, Morris

(1995), Gul (1998), Aumann (1998), Bonanno and Nehring (1999), and Feinberg (2000).
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equilibrium outcomes in particular cases.
Another shortcoming of the standard approach à la Harsanyi is that it

does not provide an adequate framework to formulate and evaluate assump-
tions about how the players would revise their beliefs if they observed unex-
pected moves by their opponents. A plethora of refinements of the Bayesian-
Nash equilibrium concept have been proposed, much to the confusion of applied
economists. Many of these refinements are supposed to capture the “forward-
induction” assumption that players try to rationalize the observed behavior of
their opponents in order to make inferences about their private information
and/or strategic intent. This kind of strategic considerations have been exten-
sively studied within a class of simple dynamic games of incomplete information:
signaling games, i.e. leader-follower games where (only) the leader knows the
state of nature.
In this paper I illustrate a different approach to the analysis of signaling

games. I consider a class of iterative solution procedures that take as given some
restrictions on players’ beliefs about the payoff-types and the strategies of their
opponents. Such solution procedures are akin to extensive-form rationalizability
(Pearce (1984)).
As in the complete information case, there are several possible definitions of

the rationalizability solution concept for dynamic games, corresponding to dif-
ferent assumptions about how players would update their beliefs if they observed
unexpected behavior. Here I consider a class of rationalizability procedures cap-
turing different notions of forward induction. Each procedure corresponds to a
parametrically given pair of subsets of first-order beliefs (about the opponent’s
payoff-types and strategies) of the Sender (Player 1) and Receiver (Player 2).
These procedures, on top of common belief in rationality, also capture the as-
sumption that the Receiver always tries to “rationalize” the observed choice of
the Sender, that is, he ascribes to the Sender the highest degree of “strategic so-
phistication” consistent with the Sender’s message, given common knowledge of
the explicit restrictions of first-order beliefs.6 (Of course, the case of no explicit
restriction on first-order beliefs is also consistent with our general analysis.)

6 I will be more explicit and precise in Subsection 2.4.
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Figure 1

To illustrate, consider the example depicted in Figure 1. In a signaling game
the states of nature correspond to the payoff-types of the Sender. There are two
conceivable states of nature, θ0 and θ00. The Sender can go left (L) or right (R).
Action (message) L terminates the game. The Receiver can respond to right
with up (u) or down (d). The first number at each terminal node is the Sender’s
payoff, the second number is the Receiver’s payoff. Note that the figure does
not represent an initial chance move selecting the type, nor prior probabilities
attached to θ0 and θ00. In this particular example, I do not consider any explicit
restriction on first-order beliefs. Action R is dominated when the state of nature
is θ0. But, if the state is θ00, R is a best response to the conjecture that the
Receiver would play up with probability at least 1/2. Thus, the only way to
rationalize R is to believe that the state is θ00, and the best response to R
given this belief is up. The Sender anticipates this response. Therefore the
rationalizable solution is that the Sender chooses left if the state is θ0, and right
if the state is θ00, and the Receiver plays the strategy “up if right”.7

I apply this approach to some examples and economic models. In some cases
it is possible to obtain the same qualitative results as in the more standard
equilibrium analysis based on Bayesian games with small type spaces. In other
cases weaker results obtain.
I first consider a model due to Sanford Grossman8 whereby the Sender can

make statements about his type (e.g., “quality”) and would like to convince
the Receiver that his type is as high as possible. Such statements are certifi-
able (hence truthful) but may be only partially revealing. The standard result

7This is the result we would obtain in any Bayesian game based on Figure 1 by looking at
the Bayesian-Nash equilibria satisfying the test of dominated messages.

8 See Grossman (1981) and also Grossman and Hart (1980).
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obtained in the literature is that in every (perfect Bayesian) equilibrium the
Sender fully discloses his true type. Under a very weak restriction on beliefs, I
obtain the same result with the rationalizability solution procedure.
Next I analyze a version of Spence’s job market signaling model whereby

education complements ability in enhancing productivity. As is well known,
for any prior distribution on abilities, this model has a continuum of pooling
and separating (perfect Bayesian) equilibrium outcomes, but only the most effi-
cient separating equilibrium outcome passes the Intuitive Criterion, a forward-
induction refinement. Under very weak restrictions on beliefs, I show that the
same outcome is selected by the rationalizability solution procedure, provided
that high ability workers are sufficiently different from low ability workers. If
this condition does not hold, rationalizability only yields a lower and upper
bound on education.
Notions of rationalizability incorporating explicit restrictions on beliefs are

discussed in Rabin (1994) and used in the analysis of specific economic models
by Watson (1993, 1996, 1998), Cho (1994, 2003, 2004), Battigalli and Wat-
son (1997), Perry and Reny (1999), Battigalli (2001), Battigalli and Siniscalchi
(2003b) and Dekel and Wolinsky (2003). Notions of rationalizability incorporat-
ing forward induction assumptions in the context of dynamic games of incom-
plete information are discussed and analyzed in Sobel et al. (1990), Battigalli
and Siniscalchi (2002, 2003a) and Battigalli (2003). Focusing on finite games,
Battigalli and Siniscalchi (2002) provide a complete epistemic characterization
of such solution procedures, and Battigalli and Siniscalchi (2003a) relate them
to the Bayesian equilibrium and self-confirming equilibrium concepts. Batti-
galli (2003) provides existence and characterization results for infinite dynamic
games. Hu (2004) provides epistemic characterizations and robustness results
for infinite games with simultaneous moves. Bergemann and Morris (2003, 2004)
study implementation and mechanism design with large type spaces. Dekel et
al. (2003) and Ely and Peski (2004) analyze interim (correlated) rationalizabil-
ity in Bayesian games. Restricting attention to games with simultaneous moves,
the main difference between interim rationalizability and the class of solution
procedures put forward by Battigalli and Siniscalchi (2003a) is that the former
takes as given a specific type space à la Harsanyi while the latter refer only
to payoff-types. But (not surprisingly) interim rationalizability is equivalent to
the Battigalli-Siniscalchi procedure that takes as given the restrictions on beliefs
implied by the type space.9

The remainder of the paper is organized as follows. Section 2 introduces the
general definition of rationalizability in signaling games for given restrictions
on beliefs. This solution concept is applied to a simple model of disclosure in
Section 3 and to a model of job market signaling in Section 4. Section 5 offers
some concluding remarks. The Appendix contains a more general specification
of the disclosure model and the most tedious proofs.

9More precisely, the equivalence holds whenever the restrictions on beliefs implied by the
given type space only reflect common knowledge restrictions on first-order beliefs.
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2 Rationalization in Signaling Games

2.1 Signaling Games

A signaling game is a two-stage game with incomplete information on one side
where the informed party (Player 1, or Sender) chooses a “message” m from
some set M and the uninformed party (Player 2, or Receiver) responds with an
action a from some set A. Here I assume, without substantial loss of generality,
that the set of feasible messages of the Sender does not depend on his private
information and that the set of feasible responses for the Receiver does not
depend on the message sent by the Sender. Therefore a signaling game can be
represented as a mathematical structure

Γ = hΘ,M,A, u, vi
with the following interpretation:

• Θ is the (nonempty) set of conceivable payoff-types and coincides with the
set of states of nature, an element θ ∈ Θ represents what the Sender might
know about how messages and responses are associated to payoffs;

• M is the (nonempty) set feasible messages by the Sender;

• A is the (nonempty) set of feasible responses by the Receiver;
• u : Θ×M ×A→ R is the Sender’s payoff function, v : Θ×M ×A→ R
is the Receiver’s payoff function.

The set of strategies of the Receiver is S2 = AM .10

To illustrate, in the example depicted in Figure 1 one has Θ = {θ0, θ00},
M = {L,R}, A = {u,d}. Payoff function u is given by the first number at each
terminal node, and payoff function v by the second number. In particular, to
represent that fact that the Receiver is inactive after message L and that payoffs
after this message are as in Figure 1, I let u(θ,L, a) = 1 and v(θ,L, a) = 0 for all
θ ∈ Θ and a ∈ A. Therefore, the action of the Receiver after message L can be
omitted from the graphical representation.
In the applications in Sections 3 and 4 I analyze infinite signaling games,

but to avoid technicalities in the abstract analysis, I assume in this section that
Θ, M , and A are finite sets.11

Note that I am not including in Γ any representation of the Receiver’s beliefs
about the Sender’s payoff-type. Therefore Γ is not a game is the usual technical
sense. In order to obtain a Bayesian (extensive-form) game from Γ, one has to
append to Γ a type space based on Θ (for more on this, see Subsection 2.6).

10For given sets X and Y , Y X denotes the set of functions from X to Y .
11 See Battigalli (2003) for an analysis of rationalizability in infinite dynamic games of in-

complete information.
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2.2 First-order beliefs and best responses

The first-order beliefs of the players describe their (probabilistic) conjectures
about the payoff-type and behavior of the opponent as the play unfolds. Higher-
order beliefs will not be explicitly represented in the formalism of this paper.
Therefore I will often omit the “first-order” qualification.
Since the Receiver has no private information and the Sender moves only

once, at the beginning of the game, I can simply represent the Sender’s beliefs
about the Receiver as a probability measure µ1 ∈ ∆(S2). As is well known,
the Sender’s beliefs can be equivalently represented by a vector of conditional
probability measures π ∈ [∆(A)]M (formally, π corresponds to a behavioral
strategy of the Receiver). I let π(a|m;µ1) denote the conditional probability of
action a given m derived from belief µ1:

π(a|m;µ1) := µ1 ({s2 ∈ S2 : s2(m) = a}) .
The Receiver has beliefs about the Sender’s payoff-type and behavior. Fur-

thermore, the Receiver updates his initial beliefs after receiving a message, using
Bayes rule whenever he has initially assigned a strictly positive probability to
the message actually received. Therefore the Receiver’s beliefs are represented
by some system of conditional probabilities

µ2 =
³
µ2(·|φ), ¡µ2(·|m)¢

m∈M
´
∈ ∆(Θ×M)× [∆(Θ)]M

(where φ is the “empty history” and µ2(·|φ) is the initial belief of the Receiver)
such that, for all m ∈M and all θ ∈ Θ,
(i) µ2(Θ(m)|m) = 1 (the Receiver believes what he observes)
(ii) if µ2(Θ× {m}|φ) > 0, then

µ2(θ|m) = µ2((θ,m)|φ)
µ2(Θ× {m}|φ) .

The set of conditional probability systems satisfying (i) and (ii) is denoted
∆∗(Θ,M).
The best response correspondence for the Sender is BR1 : Θ×∆(S2)³M ,

where

∀θ ∈ Θ, ∀µ1 ∈ ∆(S2), BR1(θ, µ1) := argmax
m

(X
a

u(θ,m, a)π(a|m,µ1)
)
.

The best response correspondence for the Receiver is BR2 :M×∆(Θ)³ A,
where

∀m ∈M , ∀p ∈ ∆(Θ), BR2(m, p) := argmax
a

(X
θ

v(θ,m, a)p(θ)

)
.

Thus, a (sequentially) rational Receiver with a system of conditional beliefs
µ2 ∈ ∆∗(Θ,M) follows a strategy s2 such that s2(m) ∈ BR2(m,µ2(·|m)) for all
m ∈M .
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2.3 Explicit assumptions on beliefs

Roughly speaking, I call “explicit” those assumptions about first-order beliefs
that are not derived from iterated mutual belief in rationality, and I represent
them with given restricted sets of beliefs ∆ = (∆1,∆2), ∆1 ⊆ ∆(S2), ∆2 ⊆
∆∗(Θ,M). For example, if it is assumed that (a) the Receiver initially believes
that θ0 is as least as likely as θ00, then attention is restricted to the set

∆2 =
©
µ2 ∈ ∆∗(Θ,M) : µ2({θ0} ×M |φ) ≥ µ2({θ00} ×M |φ)ª .

If the Sender believes (a) and he also believes that the Receiver is rational, then
the Sender’s belief µ1 must satisfy

µ1
¡©
s2 : ∃µ2 ∈ ∆2,∀m ∈M, s2(m) ∈ BR2(m,µ2(·|m))

ª¢
= 1.

I do not call this restriction on µ1 “explicit” because it is not assumed at the
outset, but rather derived by the standard assumption that what the modeler
assumes about the Receiver (in this case (a) and the Receiver’s rationality) is
also believed by the Sender.12

2.4 Rationalization

Fix some explicit restrictions about first-order beliefs represented by the pair of
subsets ∆ = (∆1,∆2). As explained in the Introduction, I would like to define
an iterative solution procedure that captures a form of forward-induction rea-
soning based on the “rationalization” of the messages of the Sender given the
restrictions ∆. More specifically the procedure reflects the following assump-
tions about behavior and interactive beliefs:

(A1.S) The Sender is rational and has beliefs in ∆1

(A1.R) The Receiver is rational and has beliefs in ∆2

(A2.S) The Sender believes (A1.R)
(A2.R) The Receiver believes (A1.S) whenever possible (that is, he initially

believes (A1.S) and continues to do so after each message m consistent with
(A1.S))

....

(Ak+1.S) The Sender believes (A1.R),...,(Ak.R)
(Ak+1.R) The Receiver believes (A1.S),...,(Ak.S) whenever possible

....

Assumptions (A2.R),..., (Ak.R) capture a notion of forward induction: even
if he is “surprised” by a message, the Receiver tries to rationalize the observed
message in a way which is consistent with the Sender being strategically sophis-
ticated. The higher the index k, the higher the degree of strategic sophistication
ascribed to the Sender.
12One could consider type-dependent explicit restrictions, that is, ∆1 = (∆1

θ)θ∈Θ, with
∆1
θ ⊆ ∆(S2) for all θ (cf. Battigalli and Siniscalchi (2003a)). I ignore this generalization here

because it is not relevant in the examples and applications of this paper.
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Note that assumption (Ak+1.R) does not imply assumption (Ak.R). The rea-
son is that there may be some messagem which is consistent with (A1.S),...,(Ak-
1.S), but inconsistent with (A1.S),...,(A.k-1.S),(Ak.S). In this case (Ak.R) im-
plies that, upon observing m, the Receiver believes (A1.S),...,(Ak-1.S), while
(Ak+1.R) does not have any implication about the Receiver’s beliefs after m.
For further discussion of this point see Battigalli and Siniscalchi (2002).
Battigalli and Siniscalchi (2002) formally express these assumptions (by

means of “complete extensive-form type spaces”) and show that the pairs of
payoff-types and messages of the Sender, and the strategies of the Receiver
consistent with assumptions (A1)-(Ak) are those and only those which belong,
respectively, to the subsets Σ1(k,∆) and S2(k,∆) defined by the following pro-
cedure that iteratively deletes type-message pairs for the Sender and strategies
for the Receiver:

• Let Σ1(0,∆) = Θ×M and S2(0,∆) = S2.

• For k = 1, 2, ..., let Θ(m,k − 1,∆) := {θ : (θ,m) ∈ Σ1(k − 1,∆)} (set of
types consistent with step k − 1 and message m), then

Σ1(k,∆) =

©
(θ,m) ∈ Σ1(k − 1,∆) : ∃µ1 ∈ ∆1, m ∈ BR1(θ, µ1) and µ1(S2(k − 1,∆) = 1

ª
,

S2(k,∆) = {s2 ∈ S2(k − 1,∆) : ∃µ2 ∈ ∆2, ∀m, s2(m) ∈ BR2(m,µ2(·|m)),

Θ(m,k − 1,∆) 6= ∅ ⇒ µ2(Θ(m,k − 1,∆)|m) = 1}.

The last equation corresponds to the assumption that the Receiver rational-
izes, if possible, the observed message.

Definition 1 Fix a pair of subsets of beliefs ∆ = (∆1,∆2), where ∅ 6= ∆1 ⊆
∆(S2) and ∅ 6= ∆2 ⊆ ∆∗(Θ,M). A message m is (k,∆)-rationalizable for θ if
(θ,m) ∈ Σ1(k,∆); strategy s2 is (k,∆)-rationalizable if s2 ∈ S2(k,∆). Message
m is ∆-rationalizable for θ if (θ,m) ∈ Σ1(∞,∆) :=

T
k Σ1(k,∆); strategy s2 is

∆-rationalizable if s2 ∈ S2(∞,∆) :=
T
k S2(k,∆).

13

Remark 2 By finiteness of Σ1and S2, there is some indexK such that Σ1(K,∆) =
Σ1(∞,∆) and S2(K,∆) = S2(∞,∆).
13 In Battigalli (2003) I use the phrase strong ∆-rationalizability and I compare this solution

concept to a weaker one which does not capture forward-induction reasoning. The weak
rationalizability concept is not very interesting in signaling games.
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The simplest illustration of this solution procedure is given by the forward
induction solution of the game depicted in Figure 1, which I informally dis-
cussed in the Introduction. In this example, there are no explicit restrictions
on beliefs (i.e., ∆ = (∆(S2),∆

∗(Θ,M))), therefore I omit ∆ from the nota-
tion. It can be easily checked that Σ1(1) = {(θ0,L), (θ00,L), (θ00,R)}. Since
there is a pair (θ,m) ∈ Σ1(1) such that m = R (i.e., Θ(R, 1) 6= ∅), then the
Receiver rationalizes message R, and the only possible rationalization is that the
Sender’s type must be θ00. Thus S2(∞) = S2(2) = {u} and Σ1(∞) = Σ1(3) =
{(θ0,L), (θ00,R)}.
The set of ∆-rationalizable profiles may be empty because the explicit re-

strictions on beliefs represented by ∆ may conflict with iterated mutual belief
in rationality. I here report two existence results proved elsewhere (Battigalli
2003, Battigalli and Siniscalchi 2003a).
First, it can be proved by standard methods that if∆ only restricts the initial

beliefs of the Receiver about the state of nature, then the ∆-rationalizable solu-
tion is non-empty. This also holds in infinite signaling games if some regularity
assumptions are satisfied.
The second result concerns the special case where the restrictions ∆ state

that players’ beliefs “agree” with a particular distribution on the terminal nodes
of the arborescence representing the signaling game, say ζ ∈ ∆(Θ ×M × A).
This may be the case when Sender and Receiver are repeatedly drawn at random
from large heterogenous populations and joint statistics about payoff-types and
actions are made public, so that beliefs reflect these statistics. Then, it can be
shown that the ∆-rationalizable solution is not empty if and only if distribution
ζ is a self-confirming equilibrium outcome satisfying the Intuitive Criterion of
Cho and Kreps (1987).14

2.5 A “Beer-Quiche” example

The game depicted in Figure 2 corresponds to the well-known Beer-Quiche ex-
ample used by Cho and Kreps (1987) to discuss equilibrium refinements in
signaling games. Of course, Cho and Kreps analyze a standard extensive-form
game with a common prior on the set of payoff-types. In their example the
surly type θ(σ) has prior probability 9

10 . They show that only the equilibrium
whereby each type chooses B satisfies their Intuitive Criterion.
I mentioned above how ∆-rationalizability can be used to characterize the

Intuitive Criterion. But the analysis of this subsection is not related to this
result. Here I illustrate the ∆-rationalizability procedure showing that the same
result obtained by Cho and Kreps for their Quiche-Beer example can be obtained
with very weak restrictions on beliefs. I assume that (it is common belief that)
the prior probability assigned by player 2 to θ(σ) is more than 1

2 . Furthermore,
I also assume that (it is common belief that) player 2’s posterior probability of
the surly type θ(σ) is higher after observing B (beer) than after observing Q

14Cho and Kreps defined a refinement of sequential equilibrium; but their criterion can be
applied to any self-confirming equilibrium distribution.
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(quiche). Thus the restricted set of beliefs for player 2 is

∆2 =
©
µ2 : µ2(θ(σ)|φ) > 1/2, µ2(θ(σ)|Q) < µ2(θ(σ)|B)ª

(I use obvious abbreviations for marginal probabilities). There are no restric-
tions on player 1’s beliefs.
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Figure 2

First step: It is easy to see that both Q and B are (1,∆)-rationalizable for
both types.15 But the second restriction on beliefs implies that, if the Receiver
fights after B, he also fights after Q. Thus, strategy [f if B, d if Q] (fight after
beer, don’t fight after quiche) is deleted, and

S2(1,∆) = {[f if B, f if Q], [d if B, f ifQ], [d if B, d ifQ]}.
Second step: This in turn implies that a fight after B is less likely than a

fight after Q. Formally,

µ1(S2(1,∆)) = µ1 ({[f if B, f if Q], [d if B, f if Q], [d if B, d if Q]}) = 1 ⇒
π(f |B;µ1) = µ1 ([f if B, f if Q]) ≤ µ1 ({[f if B, f if Q], [d if B, f ifQ]}) = π(f |Q;µ1)

Since the only reason for a surly type to have quiche for breakfast is to decrease
the probability of a fight, the only (∆, 2)-rationalizable choice for the surly type
θ(σ) is B. On the other hand, it makes sense for type θ(ω) (wimp) to forgo his
preferred breakfast (quiche) hoping to avoid a fight. Thus,

Σ1(2,∆) = {(θ(σ), B), (θ(ω), B), (θ(ω), Q)}.
15Note that if Σ1(1,∆) = Σ1, then S2(k + 1,∆) = S2(k,∆) for k odd, and Σ1(k + 1,∆) =

Σ1(k,∆) for k even. Therefore we may consider only one player at each step.
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Third step (forward induction): Since Q is a (2,∆)-rationalizable choice for
θ(ω), but not for θ(σ), Q is sure evidence that player 1 is a wimp (θ = θ(ω)).
Formally Θ(Q, 2,∆) = {θ(ω)} 6= ∅ implies µ2(θ(ω)|Q) = 1.
Furthermore, since the only (2,∆)-rationalizable choice for θ(σ) is B, ob-

serving B cannot decrease the probability of θ(σ).16 Therefore µ2(θ(σ)|B) ≥
µ2(θ(σ)|φ) > 1/2, where the latter inequality is an explicit restriction of beliefs.
This implies that the unique∆-rationalizable strategy for Player 2 is “fight after
quiche, don’t fight after beer.” To summarize:\

k

S2(k,∆) = S2(3,∆) = {[d if B, f if Q]}.

Fourth step. Given this, the only ∆-rationalizable choice for type θ(ω) is B:\
k

Σ1(k,∆) = Σ1(4,∆) = {(θ(ω), B), (θ(σ), B)}.

[Note thatQ is not rationalizable for either type, but the best∆-rationalization
of message Q is that the state of nature must be θ(ω) and that Player 1, not
having fully rationalizable beliefs, chooses his coeteris paribus preferred break-
fast.]

2.6 Comparison with Bayesian games

The simplest and most common way to obtain a Bayesian game from the sig-
naling game Γ = hΘ,M,A, u, vi is to add a probability measure on the states of
nature, ρ ∈ ∆(Θ). The interpretation would be that it is common belief at the
beginning of the game that the Receiver’s beliefs about the Sender’s payoff-type
are given by ρ. Therefore payoff-types are in one-to-one correspondence with
Harsanyi-types.
More generally, one may obtain a Bayesian game by appending to Γ a larger

type space à la Harsanyi based on Θ, that is, a structure hΘ, B1, B2, τ1, τ2i,
where Bi is a set of “purely epistemic parameters” for Player i, τ1 : Θ×B1 →
∆(B2) and τ2 : B2 → ∆(Θ × B1) are functions specifying the players’ beliefs
for each epistemic state. Pairs (θ, b1) ∈ Θ × B1 and parameters b2 ∈ B2 are
“Harsanyi-types”. The first-order beliefs of the Receiver, if his Harsanyi-type
is b2, are given by τ12(b2) :=margΘτ2(b2) ∈ ∆(Θ). The second-order beliefs of
Harsanyi-type (θ, b1) of the Sender about the first-order beliefs of the Receiver
are obtained from the probability measure τ1(θ, b1) ∈ ∆(B2) and the Receiver’s
first-order belief function τ12(·) : B2 → ∆(Θ). For example, the probability

16By Bayes rule,

µ2(θ(σ)|B) =
µ2(B|θ(σ))µ2(θ(σ)|φ)

µ2(B|θ(σ))µ2(θ(σ)|φ) + µ2(B|θ(ω))µ2(θ(ω)|φ)

=
µ2(θ(σ)|φ)

µ2(θ(σ)|φ) + µ2(B|θ(ω))µ2(θ(ω)|φ) ≥ µ
2(θ(σ)|φ).

13



that Harsanyi-type t1 ∈ Θ×B1 would assign to the event “the Receiver assigns
probability at least 1

2 to payoff-type θ” is τ1(t1)
¡©
b2 ∈ B2 : τ12(b2)(θ) ≥ 1

2

ª¢
.

Higher and higher order beliefs can be derived in a similar fashion.
The reason why I do not append a type space to Γ is twofold.
(i) On the one hand, I want to be able to consider assumptions about beliefs,

such as
“At the beginning of the game, the Receiver assigns probability at least 1

2 to
payoff-type θ, and there is common certainty of this fact.”
If this is the only assumption about initial (interactive) beliefs one is willing

to make, then one has to consider a type space so large and complex that it is
possible to represent it and analyze the equilibria of the corresponding Bayesian
game only through indirect methods. These indirect methods amount to a
kind of iterative deletion procedure somewhat similar to the one put forward in
subsection 2.4. This iterative deletion procedure is called weak rationalizability
in Battigalli (2003) because, unlike the rationalizability procedure defined in
this paper, it does not capture any kind of forward induction reasoning.
This is to be contrasted with the standard applications of Harsanyi’s the-

ory, which consider extremely simple type spaces corresponding to implausibly
strong assumptions on interactive beliefs, directly compute the (relatively few)
equilibria, and maybe proceed to apply some refinement to get rid of the “im-
plausible” ones.
(ii) On the other hand, one might want to take as given some assumptions

about beliefs concerning the opponents’ behavior and/or assumptions about how
players update their beliefs. Consider for example the following assumptions:
(a) “The conditional probability the Receiver would assign to payoff-type θ after
message m2 is higher than the conditional probability he would assign to θ after
message m1”, or
(b) “The Receiver would believe that the Sender is rational whenever this is
consistent with the Sender’s message”,
as well as further assumptions concerning interactive beliefs about (a) and (b).
These assumptions involve conditional beliefs about the opponent’s payoff-

type and behavior. Thus they cannot be represented using a type space of the
form hΘ, B1, B2, τ1, τ2i (i.e. a type space à la Harsanyi based on Θ), which only
describes possible beliefs about the Sender’s payoff-type, possible beliefs about
such beliefs, etc. In order to represent such assumptions one would have to work
with the more complex “dynamic” type spaces first put forward by Ben Porath
(1997) and fully analyzed in Battigalli and Siniscalchi (1999). This means going
beyond Harsanyi’s methodology because such type spaces include (1) beliefs
about behavior (which Harsanyi opposed on the ground that all such beliefs must
be endogenously derived through equilibrium analysis) and (2) the conditional
beliefs that the Receiver would hold after each message. Note that including (1)
is a necessary condition for including (2): without (1) it is impossible to relate
conditional and unconditional beliefs via Bayes rule. Dynamic type spaces of
this kind can be used to formally express the above mentioned assumptions,
but - again - in order to find the behavioral consequences of (rationality and)
these assumptions about beliefs, one must use characterization results saying
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something like “the only outcomes consistent with (a), (b), rationality (r), and
assumptions concerning interactive believes about (a), (b) and (r) are those
found with solution procedure S” (see Battigalli and Siniscalchi (2002)).
Here I rely on these characterization results, which allow me to use the

solution procedure with no direct reference to type spaces of any sort.

3 Application (i): Disclosure17

Consider a two-person signaling game where the Sender, Player 1, provides
certifiable information about the state of nature (his payoff-type). The Receiver,
Player 2, observes the Sender’s message and then takes an action affecting the
Sender’s payoff as well as his own. For concreteness, the Sender may be thought
of as a seller, the Receiver as a buyer. The state of nature θ ∈ Θ can be thought
of as the quality of the product and the Receiver’s action, a ∈ A, as the quantity
purchased or the total price paid. In this section I analyze a simplified model.
The Appendix contains a much more general analysis.
The set of states of nature is the finite set of integers Θ = {1, 2, ...,K}.

Player 1 can send messages of the form “The state of nature is at least k”. I
denote such a message with the symbol [θ ≥ k]. If the Sender does not tell the
truth, this is verified and he pays a very large fine. Thus, rationality implies
that he always tells the truth. However, rationality per se does not rule out
“understatements”, i.e. Player 1 could send message [θ ≥ k] even if the true
state is k∗ > k. Player 2 responds with an action a ∈ A = [0,+∞). The
Sender’s payoff is a strictly increasing function of a. The Receiver preferences
are given by a loss function L(θ, a) = −(θ−a)2, thus, the Receiver always wants
to choose his (conditional) estimate of state of nature [BR2(p) = Ep(θ)], and a
rational Sender who anticipates a rational response would like to induce with
his message the highest possible estimate by the Receiver.
There is no exogenous restriction on the Sender’s beliefs (i.e., ∆1 = ∆(S2)).

As for the Receiver, I consider a very weak restriction:
(Mild skepticism) When Player 2 receives message m = [θ ≥ k] he assigns

positive probability to k, the lowest state consistent with m (under the assump-
tion that m is true). That is

∆2 = {µ ∈ ∆∗(Θ,M) : ∀k, µ(k|[θ ≥ k]) > 0} .
I show that ∆-rationalizability yields full disclosure, that is, Player 1 never

makes “understatements” and, for each k, Player 2 responds to message [θ ≥ k]
with action (estimate) a = k.
To see this, first note that every message is consistent with the Sender’s

rationality, and a rational Sender always tells the truth to avoid punishments.
Therefore, by forward induction, the Receiver always believes that the observed
message is true. In particular, this means that if he observes message [θ ≥ K]
17The model of information transmission of this section builds on Grossman and Hart (1980)

and Grossman (1981). See also Okuno-Fujiwara et al. (1990), Bolton and Dewatripont (1997,
Chapter 5) and the references therein.
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his estimate of the state is a = K, but if he observes any other message [θ ≥ k]
(with k < K) — by mild skepticism — his estimate is strictly below the highest
state K. Anticipating this, the Sender chooses message [θ ≥ K] when the state
is K because this induces the highest estimate.
Now suppose that the Receiver observes message [θ ≥ K − 1]. What is the

“best rationalization” of this message? The Receiver reasons that if the state
wereK the Sender would try to induce the highest estimate by choosing message
[θ ≥ K] and therefore he would not make the “understatement” [θ ≥ K − 1],
and since a rational Sender always tells the truth, it must be the case that the
state is indeed K−1. Anticipating this, if the state is K−1 the Sender chooses
message [θ ≥ K−1] because it induces the highest possible estimate among the
truthful messages.
Assume by way of induction that ∆-rationalizability implies that for some

integer ` and each state k ≥ K − ` the Sender chooses message [θ ≥ k], and
that the Receiver’s estimate conditional on each message [θ ≥ k0] such that
k0 ≥ K − ` is a = k0. Then a similar “best rationalization” argument shows
that if the Receiver observes message [θ ≥ K − ` − 1] his estimate is precisely
a = K − `− 1. Therefore
Proposition 3 For each k ∈ Θ, the unique ∆-rationalizable message for k is
[θ ≥ k] and the unique ∆-rationalizable response to message [θ ≥ k] is a = k.
The argument above is similar to an intuitive “unraveling” argument18 used

to show why a perfect Bayesian equilibrium that passes the test of dominated
messages must satisfy full disclosure (since sending false messages is dominated,
the test of dominated messages guarantees that the Receiver would believe the
literal meaning of every message, including those off the equilibrium path).19

The compellingness of such “unraveling” arguments is due to their inductive
structure. But a rigorous proof of the equilibrium result, one way or the other,
has to proceed by contradiction.
The key step is that the equilibrium must be separating. Letm be a message

on the equilibrium path, and let Θ∗(m) be the set of types sending message m
with positive probability in equilibrium; if Θ∗(m) is not a singleton, then m
is an “understatement” for the payoff type θ∗m := maxΘ∗(m) and the equilib-
rium estimate conditional on m is below θ∗m, therefore payoff-type θ

∗
m would be

strictly better off sending message [θ ≥ θ∗m], which contradicts the equilibrium
assumption. Thus Θ∗(m) must be a singleton for each message on the equi-
librium path, that is, the equilibrium must be separating. It follows that the
equilibrium must satisfy full disclosure.
As with other applications of equilibrium analysis, the mathematical argu-

ment is simple enough, but it does not show why strategic reasoning should
make the players hold equilibrium beliefs in the first place.
Note also that more general Bayesian extensions of the given economic

model, whereby belief functions are consistent with a common prior on the
18 See, e.g., Chapter 5 of Bolton and Dewatripont (2005).
19 Instead of applying the test of dominated messages, most disclosure models directly as-

sume that the Sender is constrained to tell the truth.
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set of states of the world but Harsanyi-types and payoff-types do not coincide,
may have perfect Bayesian equilibria which satisfy mild skepticism and pass
the test of dominated messages, and yet do not satisfy full disclosure off the
equilibrium path (an example is provided in the Appendix).

4 Application (ii): Job Market Signaling

Consider a standard game-theoretic version of Spence’s model of job market
signaling with two types of workers (see e.g. Cho and Kreps (1987)).
Player 1, a worker of ability θ0 or θ00, with 0 < θ0 < θ00, chooses an education

level e ∈ [0,+∞) and has payoff function u(θ, e, w) = w−c(θ, e), where c : R2+ →
R+ is a smooth cost function that satisfies the standard assumption that the
marginal cost of education is positive, increasing in e and decreasing in ability
(∂c(θ,e)∂e > 0, ∂

2c(θ,e)
∂e2 > 0, ∂

2c(θ,e)
∂e∂θ > 0).

Player 2, a “representative firm,” observes e and chooses the wage w ∈
[0,+∞). Player 2’s payoff is v(θ, e, w) = −(eθ − w)2 and thus he “rationally”
sets the wage equal to the subjectively expected value of eθ conditional on e.
The restricted set of beliefs for Player 1,∆1, is the set of probability measures

µ1 ∈ ∆(S2) with countable support. As for player 2, I assume that ∆2 is the set
of monotonic conditional probability systems, that is, the set of µ2 such that
µ2(θ00|e), the conditional probability assigned to the high-ability type, is non-
decreasing in e. Countability of supports is merely a technical assumption that
simplifies the analysis. Monotonicity is similar to the “plausibility” property
postulated by Kreps and Wilson (1982) in their analysis of reputation and entry
deterrence.20

Player 2’s strategies can be represented by functions ϑ(e) fixing the wage per
unit of education. Function ϑ(·) is a bset response to the system of conditional
beliefs µ2 if and only if ϑ(e) = θ0[1 − µ2(θ00|e)] + θ00µ2(θ00|e). Therefore best
responses to beliefs in ∆2 are in one-to-one correspondence with the set of non-
decreasing expectation functions ϑ(e) with range [θ0, θ00]. Let

Ω(1,∆) = {ϑ(·) ∈ [θ0, θ00]R+ : e00 > e0 ⇒ ϑ(e00) ≥ ϑ(e0)}.
Ω(1,∆) is the set of Player 2’s (1,∆)-rationalizable strategies represented as
contingent choices of wage per unit of education.
Player 1’s (1,∆)-rationalizable beliefs are summarized by his expectation of

Player 2’s expectation of θ conditional on the chosen education level e. Let
this second-order expectation (which coincides with the expected wage per
unit of education) be denoted by bϑ(e). Assuming that Player 2 is a max-
imizer (expected-loss minimizer), Player 1 expects to get wage ebϑ(e), withbϑ(·) ∈ Ω(1,∆).21 At a subjectively optimal choice of education for payoff-

20 See also the analysis of rationalizable bidding in auctions with interdependent values due
to Battigalli and Siniscalchi (2003b) and Cho (2003, 2004).
21Fix belief µ ∈ ∆(S2) with countable support {s12(·), ..., sk2(·), ...} and corresponding wages

per unit of education {ϑ1(·), ...,ϑk(·), ...}. Player 1’s expected wage conditional on e is ebϑ(e) =
17



type θ, say e∗, bϑ(·) must be continuous from the right and the marginal rate of
substitution MRS(θ, e∗) = ∂c(θ,e)

∂e must satisfy the first-order condition

MRS(θ, e∗) ≥ bϑ(e∗) + e∗ · dbϑ(e∗+)
de

. (1)

where dbϑ(e∗+)
de is the right-derivative of bϑ(·) at e∗.22
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k(e). Since for each k, ϑk(·) is non decreasing with range in [θ0, θ00], bϑ(·) must
have the same properties.
22More generally, it is the right-limsup of the incremental ratio of bϑ(·) at e∗.
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ê
¡
θ00
¢

θ0e

θ00e

Figure 4

It turns out that the set of ∆-rationalizable choices depends on how close θ0

and θ00 are to each other. In particular, it depends on the relation between the
following numbers (see Figures 3 and 4):

• e∗(θ) = argmaxe≥0 u(θ, e, θe), θ = θ0, θ00 (complete information choice),

• e˜(θ) = argmaxe≥0 u(θ, e, θ̂e), θ 6= bθ (e˜(θ0) is the choice that payoff-
type θ0 would make in the “best case scenario” where Player 2 has the
unshakable certainty that the true type is θ00, similarly e˜(θ00) is the best
choice of θ00 in the “worst case scenario”),

• e(θ0) solves u(θ0, e, θ00e) = u(θ0, e∗(θ0), θ0e∗(θ0)) and ē(θ00) solves u(θ00, e, θ00e) =
u(θ00, e˜(θ00), θ0e˜(θ00)),

• ê(θ00) solves u(θ00, e,MRS(θ00, e) · e) = u(θ00, ē(θ0), θ00ē(θ0)).
If θ0 and θ00 are not too close to each other, then ē(θ0) ≤ e∗(θ00). Note that

strict monotonicity, strict convexity of the cost of education and the single-
crossing property imply

e∗(θ0) < e˜(θ0) < e(θ0) < e(θ00),

e∗(θ0) < e˜(θ00) < ê(θ00) ≤ e∗(θ00) < e(θ00).

The following result shows that, if θ0 and θ00 are not too close to each
other, ∆-rationalizability yields the same result as in the most efficient sep-
arating equilibria (i.e. those that satisfy the Intuitive Criterion), otherwise ∆-
rationalizability only yields bounds on the possible education choices for each
ability level.
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Proposition 4 If (a) ē(θ0) < e˜(θ00) or (b) e˜(θ00) ≤ ē(θ0) ≤ e∗(θ00), then the
unique ∆-rationalizable choice of payoff type θ ∈ {θ0, θ00} is the same level of
education as in the complete information model, that is, e∗(θ).
If (c) ē(θ0) > e∗(θ00), then each choice e ∈ [ê(θ00), ē(θ0)] is ∆-rationalizable for
both types and e∗(θ0) is also rationalizable for type θ0.

Proof. Any education level can be justified as a best reply to some belief.
Thus Σ1(1,∆) = Σ1. This implies that S2(k+ 1,∆) = S2(k,∆), for k odd, and
Σ1(k + 1,∆) = Σ1(k,∆) for k even.
Let Ω(k,∆) denote Player 2’s (k,∆)-rationalizable choices of wage per unit

of education. In general, (k,∆)-rationalizable beliefs for Player 1 can be sum-
marized by some function bϑ(·) ∈ Ω(k,∆) giving the expected wage per unit of
education and having the same properties of Player 2’s (k−1,∆)-rationalizable
expectation functions. Let M(θ, k,∆) denote the set of (k,∆)-rationalizable
messages for θ. Then

M(θ0, 2,∆) = [e∗(θ0), ē(θ0)], M(θ00, 2,∆) = [e˜(θ00), ē(θ00)].

To see this, first note that for any conjecture bϑ(·) ∈ Ω(1,∆) about Player 2, the
first order condition (1) for type θ0 is necessarily violated for every e∗ < e∗(θ0)
because strict convexity of the disutility of education, monotonicity of bϑ(·) andbϑ(e) ≥ θ0 imply

MRS(θ0, e∗) < MRS(θ0, e∗(θ0)) = θ0 ≤ bϑ(e∗) + e∗ · dbϑ(e∗+)
de

.

No education level e > ē(θ0) can be justified for θ0 because, since bϑ(e) ≤ θ00 for
all e, type θ0 would get a higher expected utility by choosing e∗(θ0). Every e∗ ∈
[e∗(θ0), e˜(θ0)] is a best response to the (1,∆)-rationalizable constant conjecturebϑ(e) ≡ MRS(θ0, e∗) ∈ [θ0, θ00]. Every e∗ ∈ [e˜(θ0), ē(θ0)] is a best reply to the
(1,∆)-rationalizable conjecture

bϑ(e) = ½ θ0 if e < e∗,
θ00 if e ≥ e∗. (2)

M(θ00, 2,∆) is obtained in a similar way. Using forward induction and mono-
tonicity, the (2,∆)-rationalizable beliefs of the firm are (monotonic and) such
that

µ(θ00 | e) =
½
0 if e < e˜(θ00), e ≤ ē(θ0),
1 if e ≥ e˜(θ00), e > ē(θ0).

Thus one obtains

Ω(3,∆) =

½
ϑ(·) ∈ Ω(1,∆) : ϑ(e) =

½
θ0 if e < e˜(θ00), e ≤ ē(θ0),
θ00 if e ≥ e˜(θ00), e > ē(θ0)

¾
.
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At this point the analysis must proceed on a case by case basis. Here I consider
only case (a). The other cases are analyzed in the Appendix.
Case (a): e˜(θ00) > ē(θ0). In this case e∗(θ) (θ = θ0, θ00) is the unique best

reply for type θ to every right-continuous conjecture bϑ(·) ∈ Ω(3,∆). Non-right-
continuous conjectures in Ω(3,∆) either have no best reply at all or have e∗(θ)
as the unique best reply. Thus the unique (4,∆)-rationalizable action for type θ
is e∗(θ), θ = θ0, θ00. The ∆-rationalizable strategies for Player 2 are represented
by functions in the set

Ω(∞,∆) = Ω(5,∆) =
½
ϑ(·) ∈ Ω(3,∆) : ϑ(e) =

½
θ0 if e ≤ e∗(θ0)
θ00 if e ≥ e∗(θ00)

¾
.

¥

5 Conclusions

In this paper I analyzed and applied a class rationalizability solution procedures
for incomplete information games, focusing on signaling games. These proce-
dures are parametrized by given explicit restrictions on players’ beliefs about
payoff-types and behavior, and also capture the forward induction principle that
a player tries to rationalize the past moves of his opponent. The solutions pro-
cedures are given a transparent interpretation in terms of interactive beliefs.
To illustrate the methodology I analyzed some numerical examples, a model
of disclosure and a model of job market signaling. In some cases I obtain the
same results as with standard equilibrium analysis complemented by forward
induction selection criteria. In other cases (some parameterization of the job
market signaling model) I only obtain bounds on behavior, whereas the forward
induction equilibrium is unique.
Battigalli and Siniscalchi (2003a) show that the proposed methodology is

consistent with Harsanyi’s (1967-68) analysis of incomplete information games
in its most general form (i.e. without Harsanyi’s consistency assumption). In-
deed, it can be regarded as a way to characterize specific subsets of Bayesian
equilibrium outcomes. Yet, it differs from the typical applications of Harsanyi’s
approach, which assume “small” type spaces, e.g. by postulating a one-to-one
correspondence between payoff-types and Harsanyi-types. I refer to such appli-
cations as the standard methodology.
I see the following advantages of my approach over the standard method-

ology. First, unlike Bayesian equilibrium, the iterative solutions proposed here
can be computed without specifying an epistemic type space; information par-
titions on the set of states of nature are sufficient. Second, the assumptions
about first-order beliefs (the explicit restrictions) are typically weaker and more
intuitive than in the standard theory, and the assumptions about higher or-
der beliefs are more transparent. Third, my approach can be used to test the
robustness of the results obtained by standard methods with respect to the
equilibrium assumption and the specification of the space of interactive beliefs
(the type space à la Harsanyi). Fourth, the applications show that looking
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at the step-by-step procedures which yield rationalizable outcomes may clarify
some aspects of strategic thinking that are overlooked by standard equilibrium
analysis.
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Appendix

Rationalizability in a general model of disclosure

The following model is a generalization of the model of Section 3:

• There is a finite ordered set of Sender’s types, Θ = {θ1, ..., θK}, θ1 > θ2 >
... > θK , and a continuum of Receiver’s actions A = [0,+∞).

• The set of messages is M = 2Θ\ {∅}, where m ⊆ Θ has the literal inter-
pretation “My type belongs to m.”23

• The payoff of the Sender is increasing in the action of the Receiver, and
if he sends a false message he has to pay a fine:

u(θ,m, a) =

½
f(a), if θ ∈m

f(a)− P, if θ /∈m
where f is a positive strictly increasing bounded function and P > sup f .

• The Receiver’s payoff v : Θ × A → R is independent of the message and
is such that there is a well-defined best reply function BR2 : ∆(Θ) → A
satisfying the following weak monotonicity property: ∀q0, q00 ∈ ∆(Θ),
[q0 6= q00 ∧ maxSupp(q0) ≤ minSupp(q00)] =⇒ BR2(q

0) < BR2(q00) (3)

(standard conditions such as supermodularity of function v imply the weak
monotonicity property (3)). When Supp(q) = {θ} we write BR2(q) =
BR2(θ).

Fix any simple Bayesian game obtained from this model by assuming a
strictly positive common prior on the set of states of nature Θ. It can be shown
that any sequential (or perfect Bayesian) equilibrium that passes the test of
dominated messages24 must satisfy full disclosure, that is, for all messages m,

23More generally, it is suffices to assume that M ⊆ 2Θ is rich, i.e. for each θ there is some
m ∈M such that θ = minm.
24That is, each Bayesian perfect equilibrium with a system of beliefs µ such that

Supp(µ(·|m)) ⊆m for each m ∈M .
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the Receiver’s chooses a = BR2(minm) and no type θ sends a message m with
minm < θ. This means that vague messages like “my quality is at least θ” are
implicitly understood as revealing that the quality is indeed θ.
Full disclosure is also implied by ∆-rationalizability assuming the following

weak restriction on conditional beliefs:

• The (first-order) beliefs of the Sender are unrestricted. The restricted set
of conditional systems ∆2 is characterized by a mild skepticism condi-
tion: the Receiver never rules out the lowest type consistent with a given
message, that is,

∆2 = {µ2 ∈ ∆∗(Θ,M) : ∀m ∈M, µ2(minm | m) > 0}.

Proposition 5 ∆-rationalizability implies full disclosure, that is, m is ratio-
nalizable for θ only if θ = minm, and the only rationalizable strategy of the
Receiver is s∗2(m) = BR2(minm) for all m.

Proof
Preliminary Remark 1. I first show by induction that for every k = 0, 1, 2, ...

the strategy s∗2 defined by s∗2(m) = BR2(minm) is (k,∆)-rationalizable [i.e.,
s∗2 ∈ S2(k,∆)] and each message m is (k,∆)-rationalizable for payoff-type θ =
minm [i.e., minm ∈ Θ(m,k,∆)]. By definition, s∗2 ∈ S2(0,∆) = S2. Suppose
by way of induction that s∗2 ∈ S2(k,∆) and minm ∈ Θ(m,k,∆) for each m. Let
µ∗ be the conditional probability system defined by

∀θ ∈ Θ, µ∗((θ, {θ})|φ) = 1,
∀m ∈ M , µ∗(minm|m) = 1

[i.e., the Receiver initially believes that the Sender will just reveal the state,
hence he believes what the Sender says if m = {θ}, and after non-singleton
(vague) messages, which falsify the initial belief, his revision rule is to assign
probability one to the smallest state consistent with the message]. By definition,
µ∗ satisfies mild skepticism (µ∗ ∈ ∆2). By the inductive hypothesis, minm ∈
Θ(m,k,∆) for all m, therefore

∀m ∈M , µ∗(Θ(m,k,∆)|m) = µ∗(minm|m) = 1.
By definition, s∗2(m) = BR2(minm) = BR2(µ

∗(·|m)) for all m. Therefore s∗2
satisfies all the conditions to survive step k+1: s∗2 ∈ S2(k+1,∆). Furthermore,
for every payoff-type θ, the set of best responses to s∗2 is BR1(θ, s∗2) = {m : θ =
minm}. Since s∗2 ∈ S2(k,∆) (inductive hypothesis), it follows that minm ∈
Θ(m,k + 1,∆) for all m. This proves the claim.
Preliminary Remark 2 : Rationality of the Sender (only) implies that he

always tells the truth:

Σ1(1,∆) = {(θ,m) : θ ∈m}
i.e. Θ(m, 1,∆) = m
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It follows from these preliminary remarks that, for each step k, each mes-
sage m is consistent with (k,∆) rationalizability, and a (k+1,∆)-rationalizable
strategy s2 must select, for each m, a best reply to a belief µ(·|m) such that
Supp(µ(·|m)) ⊆ Θ(m,k,∆) ⊆ m. Thus,
S2(k + 1,∆) ⊆ {s2 : BR2(minΘ(m,k,∆)) ≤ s2(m) ≤ BR2(maxΘ(m,k,∆))}

⊆ {s2 : BR2(minm) ≤ s2(m) ≤ BR2(maxm)}
Main Proof. For any message m with at least k elements, let θkm denote the

kth element of m in decreasing order: θ1m = maxm, θ2m = max(m\{maxm}),
etc. I stipulate by convention that, if m has less than k elements, then θkm =
minm. I prove that ∀k ≥ 0,

∀m ∈M,maxΘ(m, 2k + 1,∆) ≤ θk+1m . (4)

By the preliminary remarks, this implies that

S2(2k + 2,∆) ⊆
n
s2 : BR2(minm) ≤ s2(m) ≤ BR2(θk+1m )

o
;

hence s∗2 is the only ∆-rationalizable strategy of the Sender. Since u(θ,m, a) is
strictly increasing in its third argument, the complete result easily follows.
The second preliminary remark implies that Eq. (4) holds for k = 0. Suppose

by way of induction that Eq. (4) holds for a given k. It must be shown that
maxΘ(m, 2k + 3,∆) ≤ θk+2m . This is true by convention if m has less than
k+ 2 elements. Thus, suppose that m has at least k + 2 elements and consider
a type θ0 ∈ m such that θ0 > θk+2m , that is, θ0 ≥ θk+1m . I prove that m is not
(2k + 3,∆)-rationalizable for θ0.
A message is (2k + 3,∆)-rationalizable for θ0 if it is a best response for θ0

to a belief µ1 with µ1 (S2(2k + 2,∆)) = 1. I prove that the (revealing) message
m0 =

©
θ0
ª
is a strictly better response for θ0 to such a belief µ1 than message

m.
Every strategy s2 ∈ S2(2k+2,∆) is a sequential best response to some con-

ditional probability system µ2 that satisfies mild skepticism [µ2(minm0|m0) > 0
for every m0] and is such that µ2(Θ(m0, 2k + 1,∆)|m0) = 1 for every m0. (The
Preliminary Remarks shows that these two conditions are mutually consistent,
therefore such beliefs do exist.) Thus, mild skepticism, the inductive hypothesis
and the choice of θ0 yield

µ2(·|m) 6= µ2(·|{θ0}) ∧ maxSuppµ2(·|m) ≤ θk+1m ≤ θ0 = minSuppµ2(·|{θ0}).

By the weak monotonicity assumption (3), this implies BR2(µ2(·|m)) < BR2(θ0).
Therefore µ1 (S2(2k + 1,∆)) = 1 yields

maxSuppπ(·|m;µ1) < minSuppπ(·|{θ0};µ1),
which in turn implies that, for θ0, m0 = {θ0} is a strictly better response to µ1
than m. This proves that θ0 /∈ Θ(m, 2k + 2,∆), as desired. ¥
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Example of Bayesian equilibrium (with payoff-irrelevant Harsanyi
types) that does not exhibit full disclosure.

There are two Harsanyi-types for the Receiver, B2 = {b02, b002}, while Harsanyi-
types coincide with payoff-types for the Sender (with the notation of Section
2.6, B1 is a singleton). The belief functions are given by τ1(θ

k)(b02) = 1 and
τ2(b

0
2)(θ

k) = 1/K = τ2(b
00
2)(θ

k) for all k, that is, each type of the Sender is
certain that the (Harsanyi) type of the receiver is b02, and each type of the re-
ceiver has a uniform belief on Θ. [Note that these beliefs are consistent with
a common prior p ∈ ∆(Θ × B2) with strictly positive marginal on Θ, that is,
p(θk, b02) = 1/K for all k.] In equilibrium, each type θk chooses the revealing
message mk = {θk}. The posterior beliefs of type b02 satisfy µ(minm|m, b02) = 1
for all m. Since the Sender is certain that the Receiver’s (Harsanyi) type is b02,
the Sender expects him to play strategy s2(m) = BR2(minm). Hence, sending
the revealing message is indeed a best response. The posterior beliefs of type b002
are uniform on m and b002 plays the sequential best response to such system of
beliefs. Note that in this example posterior beliefs cannot be derived via Bayes
rule if m is not a singleton; therefore posterior beliefs do not violate Bayes rule.
Of course, each type b2 chooses a sequential best response to µ(·|·, b2). This a
perfect Bayesian (or sequential) equilibrium where the strategy of Harsanyi-type
b002 does not satisfy full disclosure.

Job market signaling: proof of Proposition 4 (b), (c).

Case (b): e˜(θ00) ≤ ē(θ0) ≤ e∗(θ00). In this case the set of (4,∆)-rationalizable
messages for the low type θ0 is

M(4,∆, θ0) = {e∗(θ0)} ∪ [e˜(θ00), ē(θ0)].
To see this, note that any education choice e < e˜(θ00) reveals Player 1 as type θ0

and can be optimal only if e = e∗(θ0). The latter is justified by any conjecture
like (2) with e∗ > ē(θ0) (see Section 4). Every choice e∗ ∈ [e˜(θ00), ē(θ0)] is
justified by the (3,∆)-rationalizable conjecture (2). M(4,∆, θ00) = {e∗(θ00)} as
in case (a). Thus the only (5,∆)-rationalizable strategy for Player 2 and (6,∆)-
rationalizable conjecture for both types of Player 1 are given by the function

ϑ(e) =

½
θ0 if e ≤ ē(θ0)
θ00 if e > ē(θ0) .

The best reply to ϑ(·) for type θ is e∗(θ), θ = θ0, θ00.
Case (c): ē(θ0) > e∗(θ00). In this caseM(4,∆, θ0) = {e∗(θ0)}∪ [e˜(θ00), ē(θ0)]

as in case (b), but, unlike case (b),

M(4,∆, θ00) = [ê(θ00)), ē(θ0)].

To see this, note that by choosing e > ē(θ0) Player 1 is revealed as type θ00.
Thus any choice e∗ > ē(θ0) is dominated by e ∈ (ē(θ0), e∗) for θ00. Similarly, any
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e∗ < ē(θ0) must be justified by a conjecture bϑ(·) such that u(θ00, e∗, bϑ(e∗)e∗) ≥
u(θ00, ē(θ0), θ00ē(θ0)), i.e. the point (e∗, bϑ(e∗)e∗) must lie on or above the θ00-
indifference curve through point (ē(θ0), θ00ē(θ0)) (see Figure 4). Any choice e∗ ∈
[ê(θ00), e∗(θ00)) is justified for θ00 by the (3,∆)-rationalizable conjecture

bϑ(e) =
 θ0 if e < ê(θ00)
MRS(θ00, e∗) if e ∈ [ê(θ00), e∗(θ00)]

θ00 if e > e∗(θ00)
.

Any choice e∗ ∈ [e∗(θ00), ē(θ0)] is justified for θ00 by the (3,∆)-rationalizable con-
jecture (2). Choices e∗ < ê(θ00) cannot be justified by (3,∆)-rationalizable con-
jectures: By way of contradiction, let bϑ(·) be a (3,∆)-rationalizable conjecture
justifying e∗ < ê(θ00). Since (e∗, bϑ(e∗)) must lie above the θ00-indifference curve
through (ē(θ0), θ00ē(θ0)), θ̂(e∗) ≥MRS(θ00, ê(θ00)) (see Figure 4). MRS(θ00, e) is
strictly increasing in e, thusMRS(e∗, θ00) < MRS(ê(θ00), θ00). These inequalities
jointly violate the first order condition (1).
Therefore Player 2’s ∆-rationalizable strategies and Player 1’s rationalizable

conjectures are the functions bϑ(·) ∈ Ω(3,∆) such that bϑ(e) = θ0 if e < ê(θ00),
and bϑ(e) = θ00 if e > ē(θ0), which implies the thesis. ¥
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