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1 Introduction

Recent work in the econometric literature considers the problem of summarising efficiently a

large set of variables and using this summary for a variety of purposes including forecasting.

Work in this field has been carried out in a series of recent papers by Stock and Watson

(2001, 2002) (SW) and Forni, Lippi, Hallin and Reichlin (1999,2000) (FHLR). Factor anal-

ysis has been the main tool used in summarising the large datasets.

The static version of the factor model was analyzed, among others, by Chamberlain

and Rothschild (1983), Connor and Korajczyk (1986, 1993). Geweke (1977) and Sargent

and Sims (1977) studied a dynamic factor model for a limited number of series. Further

developments were due to Stock and Watson (1989, 1991), Quah and Sargent (1993) and

Camba-Mendez et al (2001), but all these methods are not suited when the number of vari-

ables is very large due to the computational cost, even when a sophisticated EM algorithm

is used for optimization, as in Quah and Sargent (1993).

For this reason, SW have suggested a non-parametric principal component based esti-

mation approach in the time domain, and shown that principal components can estimate

consistently the factor space asymptotically. FHLR have developed an alternative non-

parametric procedure in the frequency domain, based on dynamic principal components (see

Chapter 9 of Brillinger (1981)), that incorporates an explicitly dynamic element in the con-

struction of the factors.

In this paper we suggest a third approach for factor estimation that retains the attractive

framework of a parametric state space model but is computationally feasible for very large

datasets because it does not use maximum likelihood but linear algebra methods, based on

subspace algorithms used extensively in engineering, to estimate the state. To the best of

our knowledge, this is the first time that these algorithms are used for factor estimation.

We analyze the asymptotic properties of the new estimators, first for a fixed number of

series, N , and then allowing N to diverge. We show that as long as N grows less than T 1/3,

where T is the number of observations, the subspace algorithm yields consistent estimators

for the space spanned by the factors. We have also developed an information criterion that

leads to consistent selection of the number of factors to be included in the model, along the

lines of Bai and Ng (2002) for the static principal component approach. Finally, we have

compared the finite sample performance of our estimator and of those by SW and FHLR by
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means of simulation experiments, finding that our proposal performs quite well.

The paper is organised as follows. Section 2 presents the state space model approach

and derives the properties of the estimators for the fixed N case. Section 3 deals with

the diverging N case, with correlation of the idiosyncratic components, and with a modified

algorithm to analyze datasets with N > T . Section 4 discusses the Monte Carlo experiments.

Finally, Section 5 summarizes and concludes.

2 The state space factor estimator

In this section we present and discuss the basic state space representation for the factor

model, discuss the subspace estimators, and derive their asymptotic properties when T di-

verges and N is fixed. In the following section we extend the framework to deal with the

N going to infinity case, with the analysis of datasets with a larger cross-section than time-

series dimension, and with cross-sectionally or serially correlated idiosyncratic errors.

2.1 The basic state space model

Following Deistler and Hannan (1988), we consider the following state space model.

xNt = Cft + t, t = 1, . . . , T (1)

ft = Aft−1 +B∗vt−1,

where xNt is an N-dimensional vector of stationary zero-mean variables observed at time

t, ft is a k-dimensional vector of unobserved states (factors) at time t, and t and vt are

multivariate, mutually uncorrelated, standard orthogonal white noise sequences of dimension,

respectively, N and k. B∗ is assumed to be nonsingular.1 The aim of the analysis is to obtain

estimates of the states ft, for t = 1, . . . , T . We make the following assumption

Assumption 1 (a) |λmax(A)| < 1 and |λmin(A)| > 0 where |λmax(.)| and |λmin(.)| denote,
respectively, the maximum and minimum eigenvalue of a matrix in absolute value.

(b) The elements of C are bounded

The first part of assumption 1-(a), combined with assumption 1-(b) ensures that xNt is

stationary. The second part of assumption 1-(a) implies that each factor is correlated over

1In general, in the dynamic factor model the idiosyncratic errors are allowed to be correlated over time and
across variables, see e.g. Stock and Watson (2002a, 2002b) for precise conditions. We consider this extension
in Section 3.2 from a theoretical point of view and in Section 4 in a set of Monte Carlo experiments.
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time, which is important to distinguish it from the idiosyncratic white noise error terms.

Notice also that the factors are driven by lagged errors. Without this assumption, it would

not be possible to obtain consistent estimators for the factors when N is finite, as we will

discuss in more detail below.

This model is quite general. Its aim is to use the states as a summary of the information

available from the past on the future evolution of the system. To illustrate its generality we

give an example where a factor model with factor lags in the measurement equation can be

recast in the above form indicating the ability of the model to model dynamic relationships

between xNt and ft. Define the original model to be

xNt = C1ft + C2ft−1 + t, t = 1, . . . , T (2)

ft = Aft−1 +B∗vt−1,

This model can be written as

xNt = (C1, C2)f̃t + t, t = 1, . . . , T (3)

f̃t =

µ
ft
ft−1

¶
=

µ
A 0
I 0

¶µ
ft−1
ft−2

¶
+

µ
B∗ 0
0 0

¶µ
vt−1
0

¶
,

which is a special case of the specification in (1), even though by not taking into account the

particular structure of the A matrix and the reduced rank of the error process we are losing

in terms of efficiency.

A large literature exists on the identification issues related with the state space rep-

resentation given in (1). An extensive discussion may be found in Deistler and Hannan

(1988). In particular, they show in Chapter 1 that (1) is equivalent to the prediction error

representation of the state space model given by

xNt = Cft +Dut, t = 1, . . . , T (4)

ft = Aft−1 +But−1.

where D is nonsingular and ut is an orthogonal white noise process.

While (1) and (4) are equivalent, the latter is more convenient for the derivation of our

estimation algorithm. Note that as at this stage the number of series, N , is large but fixed

we need to impose no conditions on the structure of C. Conditions on this matrix will be

discussed later when we consider the case of N tending to infinity and possibly correlated

idiosyncratic errors.
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2.2 Subspace Estimators

As we have mentioned in the introduction, maximum likelihood techniques, possibly using

the Kalman filter, may be used to estimate the parameters of the model under some iden-

tification scheme. Yet, for large datasets this is very computationally intensive. Quah and

Sargent (1993) developed an EM algorithm that allows to consider up to 50-60 variables, but

it is still so time-consuming that it is not feasible to evaluate its performance in a simulation

experiment.

To address this issue, we propose to exploit subspace algorithms, which avoid expensive

iterative techniques by relying on matrix algebraic methods, and can be used to provide

estimates for the factors as well as the parameters of the state space representation. To the

best of our knowledge, our paper is the first application of subspace algorithms for factor

estimation.

There are many subspace algorithms, and vary in many respects, but a unifying charac-

teristic is their view of the state as the interface between the past and the future in the sense

that the best linear prediction of the future of the observed series is a linear function of the

state. A review of existing subspace algorithms is given by Bauer (1998) in an econometric

context. Another review with an engineering perspective may be found in Van Overschee

and De Moor (1996).

The starting point of most subspace algorithms is the following representation of the sys-

tem which follows from the state space representation in (4) and the assumed nonsingularity

of D.

Xf
t = OKXp

t + EEf
t (5)

where Xf
t = (x0Nt, x

0
Nt+1, x

0
Nt+2, . . .)

0, Xp
t = (x0Nt−1, x

0
Nt−2, . . .)

0, Ef
t = (u0t, u

0
t+1, . . .)

0, O =

[C 0, A0C 0, (A2)0C 0, . . .]0, K = [B̄, (A− B̄C)B̄, (A− B̄C)2B̄, . . .], B̄ = BD−1 and

E =

⎛⎜⎜⎜⎜⎝
D 0 . . . 0

CB D
. . .

...

CAB
. . . . . . 0

... CB D

⎞⎟⎟⎟⎟⎠ .

The derivation of this representation is simple once we note that (i) Xf
t = Oft + EEf

t and

(ii) ft = KXp
t . The best linear predictor of the future of the series at time t is given by

OKXp
t . The state is given in this context by KXp

t at time t. The task is therefore to provide
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an estimate for K.2

The above representation involves infinite dimensional vectors. In practice, truncation is

used to end up with finite sample approximations given byXf
s,t = (x

0
Nt, x

0
Nt+1, x

0
Nt+2, . . . , x

0
Nt+s−1)

0

and Xp
p,t = (x0Nt−1, x

0
Nt−2, . . . , x

0
Nt−p)

0. Then an estimate of F = OK may be obtained by

regressing Xf
s,t on X

p
p,t. Following that, the most popular subspace algorithms use a singular

value decomposition (SVD) of an appropriately weighted version of the least squares esti-

mate of F , denoted by F̂ . In particular the algorithm we will use, due to Larimore (1983),

applies an SVD to Γ̂f F̂ Γ̂p, where Γ̂f and Γ̂p are the sample covariances of Xf
s,t and Xp

p,t

respectively. These weights are used to determine the importance of certain directions in F̂ .
Then, the estimate of K is given by

K̂ = Ŝ
1/2
k V̂ 0

kΓ̂
p−1/2

where Û ŜV̂ 0 represents the SVD of Γ̂f
−1/2F̂ Γ̂p1/2, V̂k denotes the matrix containing the first

k columns of V̂ and Ŝk denotes the heading k × k submatrix of Ŝ. Ŝ contains the singular

values of Γ̂f
−1/2F̂ Γ̂p1/2 in decreasing order. Then, the factor estimates are given by K̂Xp

t .

We refer to this method as SSS.

For what follows it is important to note that the choice of the weighting matrices Γ̂f

and Γ̂p is important but not crucial for the asymptotic properties of the estimation method.

This is because the choice does not affect neither the consistency nor the rate of convergence

of the factor estimator. For these properties, the weighting matrices are only required to

be nonsingular. Therefore, for the sake of simplicity, in the theoretical analysis and in the

Monte Carlo study,

Assumption 2 We set Γ̂f = IsN and Γ̂p = IpN

A second point to note is that consistent estimation of the factor space requires the ”lag”

truncation parameter p to increase at a rate greater than ln(T )α, for some α > 1 that de-

pends on the maximum eigenvalue of A, but at a rate lower than T 1/3. A simplified condition

for p is to set it to T 1/r for any r > 3.

For consistency, the ”lead” truncation parameter s is also required to be set so as to

satisfy sN ≥ k. As N is usually going to be very large for the applications we have in

2This ”interface property” of the state was already emphasized in the ’60s by Kalman and Akaike in
related contexts.
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mind, this restriction is not binding and we can use s = 1. This is relevant in particular

in a forecasting context because with s = 1 only contemporaneous and lagged values of the

variables are used for factor estimation.

Once estimates of the factors have been obtained, if estimates of the parameters of the

model (including the factor loadings) are subsequently required, least squares methods may

be used with the estimated factors instead of the true ones. The resulting estimates have

been proved to be
√
T -consistent and asymptotically normal in Bauer (1998) in a related

context. We note that the identification scheme underlying the above estimators of the pa-

rameters is implicit, and depends on the normalisation used in the computation of the SVD.

It is worth pointing out that the estimated parameters can be used with the Kalman

filter on the state space model to obtain both filtered and smoothed estimates of the factors.

Since the SSS method produces factor estimates at time t conditional on data available at

time t− 1, it may be possible that smoothed estimates from the Kalman filter are superior

to those obtained by the SSS method. However, the parameter estimates are conditional on

the factor estimates obtained in the first step by the SSS method. Limited experimentation

using the Monte Carlo setup reported in Kapetanios and Marcellino (2004) suggests that

the loss in performance of the smoothed Kalman filter factor estimate because of the use of

estimated factors from the SSS method, is roughly similar to the benefit of using all the data.

Moreover, in general, factors estimated using the SSS method outperform filtered Kalman

filter factor estimates.

Finally, we must note that the SSS method is also applicable in the case of unbalanced

panels. In analogy to the work of SW, use of the EM algorithm, described there, can be

made to provide estimates both of the factors and of the missing elements in the dataset.

2.3 Asymptotic properties

Let us denote the true number of factors by k0 and investigate in more detail OLS estimation

of the multivariate regression model

Xf
s,t = FXp

p,t + EEf
s,t (6)

where Ef
t = (u

0
t, u

0
t+1, . . . , u

0
t+s)

0. Estimation of the above is equivalent to estimation of each

equation separately. We make the following assumptions

Assumption 3 ut is an i.i.d. (0,Σu) sequence with finite fourth moments.
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Assumption 4 p = O ((ln(T ))α), 1 < α <∞.

Denote Xp = (Xp
p,1, ..., X

p
p,T )

0. Then we have the following theorem:

Theorem 1 (Consistency and Rate of Convergence). If we define f̂t = K̂Xp
p,t, then,

under assumptions 1-4, vec(f̂) − vec(Hkf0) = op(p
2T−a) for all a < 1/2, where Hk is a

square matrix of full rank.

Proof. By (4) and (5) we can see that KXp
p,t spans the space of the true factors and

is therefore an estimator for Hkf . So we need to concentrate on the properties of K̂ as an
estimator of K. We want to show that

vec(K̂0)− vec(K0) = op(pT
−a), for all a < 1/2 (7)

We now define formally the function g(.) such that

vec(K̂0) = g
³
vec(F̂)

´
Therefore, g(.) defines the singular value decomposition operator. By theorems 5.6 and 5.8

of Chatelin (1983) g(.) is continuous, differentiable and therefore admits a first order Taylor

expansion. Therefore,

vec(K̂0)− vec(K0) = ∂g0

∂F
³
vec(F̂)− vec(F)

´ ∂g0

∂F + op(T
−1/2) (8)

As a result if

vec(F̂)− vec(F) = op(T
−a), for all a < 1/2 (9)

then (7) follows. Note that we have op(pT
−a) and not op(T

−a) in (7) since the dimension

of ∂g0

∂F is of order p. We need to show (9). We first note that by assumption 1, the absolute

value of the maximum eigenvalue of F = OK , denoted |λmax(F)| , is less than one implying
exponentially declining coefficients with respect to p. This implies that

∞X
i=1

i1/2||F(i)|| <∞ (10)

where F(i) denotes the matrix coefficient of xNt−i in the regression of X
f
s,t on X

p
p,t. Then, by

Theorem 2.1 and (4.3) of Hannan and Kavalieris (1986) it follows that vec(F̂) − vec(F) =
Op

³
(T/ ln(T ))1/2

´
which immediately implies (9). The final step involves obtaining the rate

of convergence for (vec(f̂)− vec(Hkf)). The factor estimates are linear combinations of the

elements of K̂. Since both T and p grow, by assumption 4 vec(f̂)− vec(Hkf) = op(p
2T−a)

for all a < 1/2 since the factor estimates are made up of a linear combination of the elements

of K̂ whose number is of order p.
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Remark 1 Assumption 4 is more restrictive than strictly necessary. Theorem 2.1 of Hannan

and Kavalieris (1986) requires that p→∞ as T →∞ and p = o
¡
(T/ lnT )1/2

¢
. However, we

use 4 as our aim is to provide a good rate of convergence of the factor estimate to the space

spanned by the true factors. Note that under assumption 4 vec(f̂)−vec(Hkf) = op(T
−a) for

all a < 1/2 since (lnT )α = o(T a) for all a > 0. In practical terms this is not binding since

by setting α appropriately a large range of values for p is possible in small samples.

Remark 2 The derivation of the rate of convergence hinges crucially on two steps: Firstly

the fact that vec(K̂0) is asymptotically just a linear combination of vec(F̂) via (8) and sec-
ondly that vec(f̂) is a linear combination of vec(K̂0). We expect that the derived rate of
convergence is conservative in terms of p since the above two steps introduce the term p2

which could be made smaller via, e.g., further analysis of ∂g0

∂F . However, given assumption 4,

the gain from such an analysis will be minimal in terms of T .

Remark 3 It is important to mention that consistency is possible because in the model (1)

the factors depend on lagged errors. Without this assumption, i.e., if ft depends on vt rather

than on vt−1, the SSS estimator would be consistent for Aft−1 but not for the space spanned

by ft.

Remark 4 At this point it is worth considering briefly the novelty of the results presented in

Theorem 1. The main novelty lies in the application of the results of Hannan and Kavalieris

(1986) which relate to infinite order AR processes to the context of factor analysis. In par-

ticular, the main insight lies in noting that the factor estimates can be analysed by analysing

the behaviour of the OLS estimates of the coefficients of (6) and using the existing theory

summarised in Hannan and Kavalieris (1986) to provide such an analysis.

3 The case N →∞

In this section we firstly investigate the conditions for consistency of the SSS method when

N diverges. Second, we discuss correlation of the idiosyncratic errors. Finally, we derive an

information criterion for the selection of the number of factors.

3.1 Consistency of the SSS estimator

To prove consistency of the SSS estimator, we need to introduce a further assumption in

addition to those given in the previous Section. In particular, we require

Assumption 5 N = o
¡
T 1/6

¢
9



Then we have

Theorem 2 (Consistency and Rate of Convergence when N →∞). As N and T

diverge, and under assumptions 1-5 , vec(f̂) − vec(Hkf) = op(N
3p2T−a) for all a < 1/2,

where Hk is a square matrix of full rank.

Proof. Denote the i-th row of F̂ and F by F̂i =
³
F̂i,1, ..., F̂i,Np

´0
and Fi = (Fi,1, ...,Fi,Np)

0

respectively. For simplicity assume that s = 1. The proof of this Theorem follows along the

lines considered in Theorem 1 once we prove that for each of the N equations in (6),

F̂i −Fi = op(T
−a) for all a < 1/2 (11)

. In particular note that now as each of the N equations in (6) contains Np regressors the

order of ∂g0

∂F is N
2p and that f̂ is a linear combination of the elements of K̂ whose number

is of order Np. These considerations lead to the op(N
3p2T−a) result in the statement of

the theorem. To prove (11) we mirror the analysis of Theorems 4 and 5 of An et al (1982).

For simplicity we consider Yule-Walker estimation of F̂i which is asymptotically equivalent

to OLS estimation. Let γfpi denote the covariance of xi,Nt and Xp
p,t and γ̂fpi its sample

counterpart. Then, by (25) of An et al (1982)

Γp
³
F̂i −Fi

´
= −

³
Γ̂p − Γp

´³
F̂i − Fi

´
−
³
γ̂fpi − γfpi

´
−
³
Γ̂p − Γp

´
Fi

Since each xi,Nt is a linear combination of the factors and an i.i.d. process it satisfies the

assumptions of Theorem 5 of An et al (1982). Then we have by that Theorem

°°°³Γ̂p − Γp
´³
F̂i −Fi

´°°°2 = op(1)

NpX
j=1

³
F̂i,j −Fi,j

´2
°°°γ̂fpi − γfpi

°°°2 = op
³
(lnT/T )1/2

´
and °°°³Γ̂p − Γp

´
Fi

°°°2 = op
³
(lnT/T )1/2

´
Hence,

(1 + op(1)
°°°F̂i −Fi

°°°2 = op
³
(lnT/T )1/2

´
which implies (11) and completes the proof of the theorem.

Thus, divergence of N requires to be accompanied by a faster divergence of T for the

SSS factor estimators to remain consistent.
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3.2 Correlation in the idiosyncratic errors

In this subsection we discuss the case of cross-sectional and/or serial correlation of the

idiosyncratic errors. This extension can be rather simply handled within the state space

method. Basically, the idiosyncratic errors can be treated as additional pseudo-factors that

enter only a few of the variables via restrictions on the matrix of loadings C. These pseudo-

factors can be serially correlated processes or not depending on the matrix A in equation (1).

The problem becomes one of distinguishing common factors and pseudo-factors, i.e.,

cross-sectionally correlated idiosyncratic errors. This is virtually impossible for finite N ,

while when N diverges a common factor is one which enters an infinite number of series,

i.e, the column of the, now infinite dimensional, matrix C associated with a common factor

will have an infinity of non-zero entries, and likewise a pseudo-factor will only have a finite

number of non-zero entries in the respective column of C. Let k1 denote the number of

common factors thus defined and k2 the number of pseudo-factors. Note that k2 may tend

to infinity but not faster than N . Then, following Forni et al. (2000), we make the following

assumption.

Assumption 6 The matrix OK in (5) has k1 singular values tending to infinity as N tends

to infinity and k2 non-zero finite singular values.

For example, the condition in the assumption is satisfied if k1 common factors enter a

non zero fraction, bN , 0 < b < 1, of the series xNt, in the state space model given by (1),

while k2(N) pseudo-factors enter a vanishing proportion of the series xNt, i.e. each such

factors enter c(N)N of the series xNt where limN→∞c(N)N = 0 and k2(N) is at most equal

to N .. In particular, the assumed setup from now on becomes one where the pseudo factors

enter only a finite number of xi,Nt. For simplicity, we further assume the following

Assumption 7 For each i, xi,Nt = c0ift + t where t = ck20i f2,k2t + εt, c
k2
i = (ck2i,1, ..., c

k2
i,k2
)0,

f2,k2t = (f2,k21,t , ..., f 2,k2k2,t
)0. f2,k2t is the set of pseudo factors. For each i, Ai(L)f

2,k2
i,t = ζi,t where

Ai(L) is a lag polynomial of, at most, order s. ζi,t and εt are i.i.d. processes with finite

eighth moments. At most a finite number of the elements of ck2i are different from zero for

all i.

Theorem 3 (Consistency and Rate of Convergence when N → ∞ with serially

correlated idiosyncratic errors) As N and T diverge, and under assumptions 1-5 and 7,

vec(f̂)− vec(Hkf) = op(N
3p2T−a) for all a < 1/2, where Hk is a square matrix of full rank.
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Proof. Assumption 6 is implied by assumption 7. The theorem follows if we prove that for

each of the N equations in (6), (11) holds under the assumptions of the theorem. This result

will follow immediately if we show that the assumptions of theorem 5 of An et al (1982) are

satisfied. But this follows immediately if we note that each xi,Nt is a linear combination of

a finite number of AR processes of finite order.and is therefore a finite AR process.

Remark 5 The results of the theorem can easily be extended to accommodate stationary

infinite AR process of the sort considered in An et al (1982). However, we choose not to do

this as the state space representation then becomes one where the number of pseudo factors

is of order larger than N and requires that s tends to infinity. However, we note that the

subspace estimation as specified in this paper is still valid for such processes. Therefore, the

finite order AR assumption for the idiosyncratic errors is not binding.

3.3 Choice of the number of factors

The choice of the number of factors to be included in the model is a relevant issue, see e.g.

Bai and Ng (2002). We will show that it is possible to obtain a consistent estimator of the

number of factors even when N diverges or the idiosyncratic errors are correlated using an

information criterion of the form

IC(k1) = V (k1, f̂
k1) + k1g(N,T ) (12)

where

V (k1, f̂
k1) = (NT )−1

TX
t=1

tr[(xNt − Ĉf̂k1t )(xNt − Ĉf̂k1t )
0], (13)

f̂k1 = (f̂k11 , ..., f̂k1T )
0, f̂k1t are the factor estimates for the k1 first common factors (according

to the singular values), Ĉ is the OLS estimate of C based on f̂k1t and g(N,T ) is a penalty

term.

Before examining the properties of this criterion, note that, since the factors are orthog-

onal, any set of up to k01 factor estimators are consistent for the respective set of true factors

up to a nonsingular transformation determined by the normalisation used in the SVD car-

ried out during the estimation and the identification of the state space model, see SW for a

similar point . Thus, denoting the T × k1 matrix of the k1 first true factors by f
k1, we have

that ¡
T 1/2/N3p2

¢
||f̂k1t −Hk01fk1t || = Op(1)

for some nonsingular matrix Hk1 . This follows from Theorem 2. Then, strengthening as-

sumptions 3 and 5 with
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Assumption 8 ut is an i.i.d. (0,Σu) sequence with finite eighth moments.

and

Assumption 9 N = o
¡
T 1/7

¢
the following theorem holds

Theorem 4 Let the factors be estimated by the SSS method and denote the true number of

common factors k01. Let k̂1 = argmin1≤k≤kmaxIC(k1). Then, under assumptions 1,2,4,7-9,

limT→∞ Pr(k̂1 = k01) = 1 if i) g(N, T )→ 0 and ii) Ng(N, T )→∞ as N, T →∞.

Proof. The proof builds upon a set of results by Bai and Ng (2002). Therefore, to start

with, we examine whether our parametric setting in terms of the representation 1 satisfies

their assumptions. Assumption A of Bai and Ng (2002) is satisfied if |λmax(A)| < 1, where
|λmax(A)| denotes the maximum eigenvalue of A in absolute value and the fourth moments of
ut exist. These conditions are satisfied by our assumptions 1 and 3. Their Assumption B on

factor loadings is straightforwardly satisfied by assuming boundedness of the elements of the

C matrix. Their assumption C is satisfied by assuming that the eighth moments of ut exist

combined with our cross correlation structure in Assumption 6. Finally, their Assumption D

is trivially satisfied because we assume that factors and idiosyncratic errors are uncorrelated.

We must now prove that limN(T ),T→∞Pr(IC(k1) < IC(k01)) = 0 for all k1 6= k01, k1 <

kmax. Denoting the T × k2 matrix of the first k2 true idiosyncratic pseudo factors by f2,k2 ,

we examine

V (k1, (f
k1 , f2,k2))− V (k1, (f

k1))

for any finite k2. We know that, for all elements of xNt in which f2,k2 does not enter, it is

1/T
TX
t=1

(xi,Nt − Ĉ 0
i,1,2(f

k01
t , f

2,k02
t )0)2 − 1/T

TX
t=1

(xi,Nt − Ĉ 0
i,1f

k1
t )

2 = Op(T
−1)

For a finite number of elements of xNt

1/T
TX
t=1

(xi,Nt − Ĉ 0
i,1,2(f

k01
t , f

2,k02
t )0)2 − 1/T

TX
t=1

(xi,Nt − Ĉ 0
i,1f

k1
t )

2 = Op(1)

Therefore, overall

V (k1, (f
k1 , f2,k2))− V (k1, (f

k1)) = Op(N
−1) (14)

First consider k1 < k01. Then

IC(k1)− IC(k01) = V (k1, f̂
k1)− V (k01, f̂

k01)− (k01 − k1)g(N,T )

13



and the required condition for the result is

Pr[V (k1, f̂
k1)− V (k01, f̂

k01) < (k01 − k1)g(N, T )] = 0

as N(T ), T →∞. Now

V (k1, f̂
k1)− V (k01, f̂

k01) = [V (k1, f̂
k1)− V (k1, f

k1Hk1)] + [V (k1, f
k1Hk1)− V (k01, f

k01Hk01)]+

[V (k01, f
k01Hk01)− V (k01, f̂

k01)]

By the rate of convergence of the factor estimators and Lemma 2 of Bai and Ng (2002) we

have

V (k1, f̂
k1)− V (k1, f

k1Hk1) = Op((T/Np)−1)

and

V (k01, f̂
k01)− V (k01, f

k01Hk01) = Op((T/Np)−1)

Note that Lemma 2 of Bai and Ng (2002) stands independently from the factor estimation

method discussed in that paper and only uses the rate of convergence of the factor esti-

mators derived in their Theorem 1. Then V (k1, f
k1Hk1)− V (k01, f

k01Hk01) can be written as

V (k1, f
k1Hk1)−V (k01, fk

0
1) which has positive limit by Lemma 3 of Bai and Ng (2002). Thus,

as long as g(N, T )→ 0, Pr(IC(k1) < IC(k01)) = 0 for all k1 < k01.

Then, to prove Pr(IC(k1) < IC(k01)) = 0 for all k1 > k01 we have to prove that

Pr[V (k01, f̂
k01)− V (k1, f̂

k1) < (k1 − k01)g(N,T )]→ 0

By (14) we know that asymptotically the analysis of the state space model will be equivalent

to the case of a model where there are no idiosyncratic pseudo factors up to an order of

probability of N−1. Then

|V (k01, f̂k
0
1)− V (k1, f̂

k1)| ≤ 2maxk01<k1≤kmax|V (k1, f̂k1)− V (k1, f
k01)|.

By following the analysis of Lemma 4 of Bai and Ng (2002) we know that

maxk01<k1≤kmax|V (k1, f̂k1)− V (k1, f
k01)| = Op((T

1/2/N3p2)−1)

Combining this expression with (14), gives the required result since, under assumption 9

then (T 1/2/N3p2)−1 < N−1. Note again that Lemma 4 of Bai and Ng (2002) stands inde-

pendently from the factor estimation method discussed in that paper and only uses the rate

of convergence of the factor estimators derived in their Theorem 1.
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4 A comparison of the estimation methods

In this section we summarize the results of an extensive set of simulation experiments to

investigate the small sample properties of our factor estimation method and compare it with

existing alternative approaches, i.e. static principal components (PCA, SW) as in Stock and

Watson (2002a, 2002b) and dynamic principal components (DPCA, FHLR) as in Forni et

al. (2000). The first subsection describes the simulation set-up; the second one the results.

4.1 Monte Carlo experiments, set-up

The basic data generating process (DGP) we use is:

xNt = Cft + t, t = 1, . . . , T (15)

A(L)ft = B(L)ut

where A(L) = I −A1(L)− . . .−Ap(L), B(L) = I +B1(L) + . . .+Bq(L).

An important comment is in order for this model. We have developed our theory for

predetermined factors, i.e. factors that are determined at time t − 1. This is reflected by
(1) where the error term of the factor equation is dated at time t − 1. As mentioned, this
assumption is not considered restrictive in the state space model literature, see e.g. Deistler

and Hannan (1988). Yet, the specification we use for the simulations allows for factors that

are determined at time t. This brings us in line with the nonparametric context of SW

and FHLR. However, as the simulations will show, this choice still leaves the new estimation

method performing comparably and, in a majority of cases, better than either PCA or DPCA.

The rationale underlying this results is that the SSS estimator, when contemporaneous errors

drive the factors, is consistent for the expected value of the factors conditional on information

up to period t− 1. Of course, the performance of the SSS estimator further improves when
ut−1 is used in (15) rather than ut.

For the SSS method, the ”lag” truncation parameter is set at p = ln(T )α. We have found

that a range of α between 1.05 and 1.5 provides a satisfactory performance, and we have

used the value α = 1.25 in the reported results.

The ”lead” truncation parameter s is set equal to the assumed number of factors for SSS,

which typically coincides with the true number of factors, i.e. s = k. For robustness, and

since it is relevant for forecasting, we will present selected result for the case s = 1 as well.3

For the DPCA method we use 3 leads and 3 lags.

3We have also experimented with other values of s but s = 1 or s = k appear to be the preferable choices.
To select the value of s we can either include this parameter as a variable in the information criterion search
or, perhaps more straightforwardly, we can choose the value that maximises the proportion of the variance
of each series explained by the factors, averaged over all series.
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With the exceptions noted below, the C matrix is generated using standard normal vari-

ates as elements and the error terms are generated as uncorrelated standard normal pseudo-

random variables. We have considered several combinations of N, T and report results for

the following N,T pairs: (50, 50), (50, 100), (100, 50), (100, 100), (50, 500), (100, 500) and

(200, 50).

To provide a comprehensive evaluation of the relative performance of the three factor

estimation methods, we consider several types of experiments. They differ for the number

of factors (one or several), the choice of s (s = k or s = 1), the factor loadings (static or

dynamic), the choice of the number of factors (true number or misspecified), the properties

of the idiosyncratic errors (uncorrelated or serially correlated), and the way the C matrix is

generated (standard normal or uniform with non-zero mean). Each experiment is replicated

500 times. Depending on these characteristics, the experiments can be divided into five

groups.

In the first group, we assume that we have a single VARMA factor with 8 specifications

that differ for the extent of serial correlation and the AR and MA order:

(1) a1 = 0.2, b1 = 0.4;

(2) a1 = 0.7, b1 = 0.2;

(3) a1 = 0.3, a2 = 0.1, b1 = 0.15, b2 = 0.15;

(4) a1 = 0.5, a2 = 0.3, b1 = 0.2, b2 = 0.2;

(5) a1 = 0.2, b1 = −0.4;
(6) a1 = 0.7, b1 = −0.2;
(7) a1 = 0.3, a2 = 0.1, b1 = −0.15, b2 = −0.15;
(8) a1 = 0.5, a2 = 0.3, b1 = −0.2, b2 = −0.2.
Experiment 9 is as experiment 1 but both the ARMA factor and its lag enter the mea-

surement equation, i.e., the C matrix is C(L) = C0 + C1L where L is the lag operator.

We fix a priori the number of factors to p + q, which is the true number in the state space

representation. It is larger than the true number in the FHLR setup, and it should provide

a reasonable approximation for SW too. As a robustness check, we consider the case where

the factor is generated as in Experiment 1 but only one factor is assumed to exist rather

than p+ q. We refer to this experiment as Experiment 10. In the case of experiments 9 and

10, qualitatively similar results are obtained when the mentioned modifications are applied

to the parameter specifications 2-8 (results available upon request).

In the second group of experiments, we investigate the case of serially correlated idiosyn-

cratic errors. The DGP for that is specified as in experiments 1-10 but with each idiosyncratic

error being an AR(1) process with coefficient 0.2 rather than an i.i.d. process. These exper-
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iments are labelled 11-20. The results are rather robust to higher values of serial correlation

but 0.2 is a reasonable value in practice since usually the common component captures most

of the persistence of the series. We have also investigated the case of cross-correlated er-

rors by assuming that the contemporaneous covariance matrix of the idiosyncratic errors is

tridiagonal with diagonal elements equal to 1 and off-diagonal elements equal to 0.2. These

experiments produced the same ranking of methods as in the case of serial correlation and

virtually no deterioration of performance with respect to the idiosyncratic errors case (results

available upon request).

In the third group of experiments, we use a 3 dimensional VAR(1) as the data generation

process for the factors as opposed to an ARMA process. We report results for the case where

the A matrix is diagonal with elements equal to 0.5. This is labelled experiment 21.

In the fourth group of experiments, we consider the DGPs in experiments 1-21 but gen-

erate the C matrix using standard uniform variates, thereby allowing for the factor loadings

to have a non zero mean. To save space, we only report results for (N, T ) = (50, 50) for this

case.

Finally, we consider again experiments 1-21 but using s = 1 instead of s = k. We present

results for the (N, T ) pairs (50, 50) and (100, 100).

We concentrate on the relationship between the true and estimated common components

(Cft and bC bft), measured by their correlation, and on the properties of the estimated id-
iosyncratic components (bt), using an LM(4) test to evaluate whether they are white noise
as in the DGP, and presenting the rejection probabilities of the test. These are the most

common evaluation criteria used in the literature. Throughout, we report the average values

of the different evaluation criteria (averaging over all variables for each replication and then

over all replications), and the standard errors of the averages over replications.

4.2 Monte Carlo experiments, results

The results are summarized in Tables 1 to 7 for different combinations of N and T , while

Table 8 presents the outcome for the uniform factor loadings C and (N,T ) = (50, 50).

Finally, Tables 9-11 present results for the case s = 1.

Starting with the (N, T ) = (50, 50) case in Table 1, and the single ARMA factor experi-

ments (1-8), the SSS method clearly outperforms the other two. The gains with respect to

PCA are rather limited, in the range 5-10%, but systematic across experiments. The gains

are larger with respect to DPCA, about 20%, and again systematic across experiments. For

all the three methods the correlation is higher the higher the persistence of the factor. There

is little evidence that the idiosyncratic component is serially correlated on the basis of the
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LM(4) test for any of the methods, but the DPCA yields systematically larger rejection

probabilities.

The presence of serially correlated idiosyncratic errors (experiments 11-18) does not affect

significantly the results. The values for each method, the ranking of the methods and the

relative gains are virtually the same as in the basic case. Non correlation of the errors is

rejected more often, but still in a very low number of cases. This is related to the low

power of the LM test in small (T ) samples, for larger values of T the rejection rate increases

substantially, see Tables 2 and 3.

Allowing for a lagged effect of the factor on the variables, instead, leads to a serious

deterioration of the SSS performance, with a drop of about 25% in the correlation values,

compare experiments 1 and 9, and 11 and 19. The performance of DPCA, which is partic-

ularly suited for this generating process from a theoretical point of view, does improve, but

it is still beaten by PCA even though the difference shrinks. The choice of a lower value

for s improves substantially the performance of SSS in this case, making it comparable with

PCA, compare the relevant lines of Table 9 for s = 1. This finding, combined with the fact

that DPCA is still beaten by PCA, suggests that the use of leads of the variables for factor

estimation is complicated when the factors can have a dynamic impact on the variables.

When a lower number of factors than true is assumed for SSS, one instead of two in exper-

iments 10 and 20, the performance does not deteriorate. Actually, comparing experiments 1

and 10, and 11 and 20, there is a slight increase in correlation. A similar improvement can

be observed for PCA and DPCA, and it is likely due to the fact that a single factor can do

most of the work of capturing the true common component, while estimation uncertainty is

reduced.

The presence of three autoregressive factors, experiment 21, reduces the gap PCA-DPCA.

The correlation values are higher than in the single factor case, reflecting in general the higher

persistence of the factors. Yet, the performance of SSS deteriorates substantially. The latter

improves and becomes comparable to PCA with s = 1, see table 11.

The next three issues we consider are the effects of larger temporal dimension, cross-

sectional dimension, and uniform rather than standard normal loading matrix.

Tables 2 and 3 report results for N = 50 and, respectively, T = 100 and T = 500. The

correlation between the true and estimated common component increases monotonically

for all the three methods, but neither the ranking of methods nor the performance across

experiments are affected. The performance of the LM tests in detecting serial correlation in

the error process gets also closer and closer to the theoretical one.

When N increase to 100 while T remains equal to 50 (Table 4), the figures for SSS are
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basically unchanged in all experiments, while the performance of PCA and DPCA improves

systematically. Yet, the gains are not sufficient to match the SSS approach, which still yields

the highest correlation in all cases, except with a dynamic effect of the factors of the variables

(experiments 9 and 19), and with three autoregressive factors (experiment 21). This pattern

continues if we further increase N to 200 (Table 7).

When both N and T increase, N = 100, T = 100 in Table 5 while N = 100, T = 500 in

Table 6, the performance of all methods improves with respect to Table 1, proportionally

more so for PCA and DPCA that benefit more for the larger value of N , as mentioned before.

But also in these cases SSS is in general the best in terms of correlation.

The final issue we consider is the choice of s. This is examined through Tables 9-11 where

we set s = 1. For this case PCA and SSS perform very similarly. The advantage SSS had for

the ARMA experiments shrinks substantially, SSS is still better but only marginally so. On

the other hand, the large disadvantage SSS had for VAR experiments and experiments with

factor lags disappears, as mentioned above, with SSS and PCA performing equally well.

In summary, the DPCA method shows consistently lower correlation between true and

estimated common components than SSS and PCA. It shows, in general, more evidence

of serial correlation, although not to any significant extent. Additionally, from results we

are not presenting here the DPCA method has the lowest variance for the idiosyncratic

component or, in other words, has the highest explanatory power of the series in terms of

the common components. These results seem to indicate that i) part of the idiosyncratic

component seems to leak into the estimated common component in the DPCA case, thus

reducing the correlation between true and estimated common components and the variance

of the idiosyncratic component and ii) some (smaller in terms of variance) part of the com-

mon component leaks into the estimated idiosyncratic component thus increasing the serial

correlation of the idiosyncratic component. The conclusion from these results is that if one

cares about isolating common components as summaries of underlying common features of

the data, then a high R2 may not always be the appropriate guide. When instead the factors

have a dynamic effect on the variables, the performance of DPCA improves, but it is still

beaten by PCA. This experiment and the one with three autoregressive factors are the only

cases where PCA beats SSS, but the difference can be annihilated by means of a proper

choice of the s parameter. In all other experiments SSS leads to gains in terms of higher

correlation in the range 5-10%.

19



5 Conclusion

In this paper we have developed a parametric estimation method for dynamic factor models

of large dimension based on a subspace algorithm applied to the state space representation of

the model. We have proved consistency of the estimators, also in the case N →∞ and with

correlated idiosyncratic errors. We have also proposed information criteria for a consistent

selection of the number of factors. Finally, we have shown that the method performs well

compared with existing nonparametric estimators.
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Table 1: Results for case: N=50, T=50

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.821(0.052) 0.860(0.054) 0.727(0.053) 0.067(0.033) 0.066(0.035) 0.097(0.042)
Exp 2 0.859(0.049) 0.890(0.050) 0.780(0.056) 0.072(0.040) 0.075(0.039) 0.103(0.045)
Exp 3 0.740(0.054) 0.805(0.054) 0.634(0.056) 0.073(0.036) 0.081(0.040) 0.137(0.052)
Exp 4 0.803(0.058) 0.855(0.054) 0.713(0.068) 0.076(0.040) 0.086(0.038) 0.143(0.054)
Exp 5 0.806(0.053) 0.848(0.055) 0.703(0.052) 0.067(0.034) 0.066(0.034) 0.094(0.042)
Exp 6 0.823(0.053) 0.861(0.053) 0.731(0.055) 0.068(0.035) 0.070(0.038) 0.103(0.042)
Exp 7 0.717(0.053) 0.787(0.054) 0.604(0.052) 0.064(0.034) 0.076(0.038) 0.135(0.049)
Exp 8 0.724(0.057) 0.791(0.058) 0.616(0.057) 0.067(0.035) 0.080(0.038) 0.137(0.053)
Exp 9 0.898(0.028) 0.693(0.061) 0.823(0.036) 0.071(0.036) 0.039(0.030) 0.123(0.049)
Exp 10 0.904(0.061) 0.904(0.060) 0.848(0.050) 0.068(0.037) 0.068(0.036) 0.079(0.039)
Exp 11 0.813(0.055) 0.855(0.055) 0.721(0.052) 0.102(0.043) 0.116(0.045) 0.132(0.050)
Exp 12 0.848(0.051) 0.881(0.052) 0.772(0.056) 0.100(0.042) 0.112(0.045) 0.132(0.050)
Exp 13 0.722(0.058) 0.789(0.058) 0.620(0.059) 0.084(0.037) 0.123(0.045) 0.155(0.053)
Exp 14 0.791(0.060) 0.846(0.055) 0.704(0.068) 0.089(0.040) 0.123(0.049) 0.162(0.056)
Exp 15 0.798(0.055) 0.845(0.057) 0.697(0.053) 0.113(0.045) 0.130(0.049) 0.150(0.051)
Exp 16 0.813(0.055) 0.854(0.056) 0.724(0.055) 0.105(0.043) 0.118(0.046) 0.143(0.050)
Exp 17 0.703(0.055) 0.776(0.058) 0.596(0.053) 0.082(0.039) 0.125(0.047) 0.157(0.056)
Exp 18 0.715(0.057) 0.785(0.059) 0.610(0.057) 0.082(0.039) 0.127(0.048) 0.165(0.058)
Exp 19 0.889(0.031) 0.685(0.063) 0.814(0.037) 0.086(0.039) 0.052(0.032) 0.138(0.049)
Exp 20 0.892(0.064) 0.893(0.063) 0.840(0.053) 0.119(0.047) 0.120(0.047) 0.128(0.050)
Exp 21 0.974(0.009) 0.692(0.051) 0.947(0.014) 0.078(0.038) 0.111(0.068) 0.125(0.046)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 2: Results for case: N=50, T=100

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.856(0.044) 0.903(0.045) 0.781(0.044) 0.057(0.033) 0.057(0.032) 0.068(0.036)
Exp 2 0.890(0.041) 0.928(0.039) 0.830(0.045) 0.060(0.034) 0.061(0.033) 0.073(0.036)
Exp 3 0.777(0.044) 0.862(0.042) 0.689(0.045) 0.057(0.034) 0.064(0.036) 0.086(0.040)
Exp 4 0.844(0.044) 0.906(0.038) 0.776(0.052) 0.061(0.034) 0.068(0.035) 0.086(0.040)
Exp 5 0.839(0.043) 0.891(0.045) 0.754(0.043) 0.056(0.034) 0.056(0.033) 0.069(0.038)
Exp 6 0.859(0.043) 0.904(0.044) 0.785(0.044) 0.057(0.033) 0.058(0.035) 0.070(0.036)
Exp 7 0.752(0.044) 0.847(0.044) 0.658(0.045) 0.056(0.032) 0.061(0.033) 0.084(0.039)
Exp 8 0.767(0.046) 0.855(0.045) 0.677(0.049) 0.057(0.032) 0.064(0.034) 0.088(0.041)
Exp 9 0.923(0.021) 0.703(0.055) 0.869(0.026) 0.061(0.034) 0.028(0.025) 0.081(0.039)
Exp 10 0.935(0.047) 0.935(0.047) 0.894(0.040) 0.056(0.032) 0.057(0.032) 0.061(0.033)
Exp 11 0.849(0.043) 0.898(0.043) 0.776(0.043) 0.212(0.060) 0.242(0.061) 0.235(0.061)
Exp 12 0.888(0.039) 0.926(0.038) 0.830(0.041) 0.204(0.057) 0.229(0.058) 0.226(0.059)
Exp 13 0.770(0.045) 0.859(0.043) 0.686(0.048) 0.157(0.051) 0.240(0.062) 0.228(0.059)
Exp 14 0.836(0.042) 0.902(0.037) 0.771(0.050) 0.157(0.050) 0.233(0.060) 0.221(0.058)
Exp 15 0.836(0.041) 0.890(0.042) 0.753(0.041) 0.232(0.061) 0.263(0.064) 0.263(0.062)
Exp 16 0.853(0.043) 0.900(0.045) 0.782(0.044) 0.208(0.060) 0.239(0.064) 0.239(0.064)
Exp 17 0.743(0.043) 0.840(0.042) 0.652(0.044) 0.167(0.053) 0.245(0.062) 0.229(0.064)
Exp 18 0.764(0.046) 0.853(0.045) 0.677(0.049) 0.162(0.054) 0.246(0.062) 0.230(0.061)
Exp 19 0.916(0.022) 0.695(0.050) 0.862(0.027) 0.183(0.055) 0.097(0.042) 0.220(0.058)
Exp 20 0.931(0.049) 0.932(0.049) 0.889(0.041) 0.244(0.062) 0.245(0.061) 0.250(0.062)
Exp 21 0.984(0.005) 0.686(0.040) 0.970(0.007) 0.062(0.033) 0.205(0.100) 0.083(0.038)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 3: Results for case: N=50, T=500

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.899(0.028) 0.939(0.042) 0.855(0.031) 0.052(0.030) 0.062(0.043) 0.058(0.032)
Exp 2 0.922(0.027) 0.951(0.036) 0.889(0.030) 0.050(0.031) 0.064(0.044) 0.056(0.034)
Exp 3 0.822(0.033) 0.907(0.049) 0.773(0.036) 0.056(0.033) 0.088(0.075) 0.066(0.033)
Exp 4 0.885(0.030) 0.946(0.026) 0.851(0.034) 0.051(0.031) 0.083(0.059) 0.064(0.036)
Exp 5 0.881(0.033) 0.937(0.039) 0.830(0.035) 0.050(0.031) 0.055(0.036) 0.056(0.032)
Exp 6 0.900(0.030) 0.943(0.039) 0.857(0.033) 0.052(0.031) 0.059(0.043) 0.056(0.031)
Exp 7 0.803(0.036) 0.904(0.055) 0.749(0.039) 0.051(0.029) 0.071(0.067) 0.062(0.035)
Exp 8 0.822(0.037) 0.914(0.049) 0.773(0.039) 0.052(0.033) 0.077(0.070) 0.065(0.035)
Exp 9 0.946(0.014) 0.718(0.055) 0.924(0.017) 0.050(0.031) 0.122(0.143) 0.058(0.033)
Exp 10 0.967(0.031) 0.966(0.032) 0.948(0.026) 0.052(0.031) 0.052(0.031) 0.053(0.031)
Exp 11 0.893(0.030) 0.941(0.044) 0.851(0.033) 0.945(0.032) 0.945(0.040) 0.950(0.030)
Exp 12 0.920(0.026) 0.954(0.032) 0.889(0.028) 0.944(0.032) 0.937(0.043) 0.949(0.030)
Exp 13 0.820(0.037) 0.914(0.043) 0.772(0.040) 0.924(0.038) 0.933(0.054) 0.941(0.034)
Exp 14 0.879(0.031) 0.944(0.030) 0.846(0.034) 0.922(0.038) 0.920(0.062) 0.940(0.036)
Exp 15 0.883(0.031) 0.937(0.042) 0.834(0.034) 0.950(0.031) 0.954(0.031) 0.956(0.030)
Exp 16 0.897(0.029) 0.943(0.048) 0.856(0.031) 0.942(0.034) 0.940(0.052) 0.950(0.031)
Exp 17 0.793(0.036) 0.901(0.051) 0.740(0.038) 0.925(0.038) 0.943(0.046) 0.943(0.033)
Exp 18 0.817(0.035) 0.911(0.049) 0.769(0.038) 0.926(0.037) 0.940(0.053) 0.942(0.032)
Exp 19 0.945(0.015) 0.721(0.052) 0.922(0.018) 0.932(0.036) 0.662(0.176) 0.940(0.034)
Exp 20 0.965(0.036) 0.961(0.051) 0.945(0.030) 0.956(0.029) 0.956(0.029) 0.955(0.029)
Exp 21 0.991(0.001) 0.609(0.030) 0.988(0.002) 0.053(0.031) 0.569(0.117) 0.058(0.033)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 4: Results for case: N=100, T=50

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.841(0.038) 0.868(0.038) 0.740(0.040) 0.069(0.026) 0.069(0.026) 0.102(0.032)
Exp 2 0.871(0.036) 0.895(0.034) 0.790(0.041) 0.072(0.026) 0.073(0.027) 0.108(0.031)
Exp 3 0.758(0.044) 0.806(0.042) 0.639(0.048) 0.070(0.027) 0.079(0.027) 0.156(0.041)
Exp 4 0.818(0.052) 0.856(0.047) 0.721(0.063) 0.078(0.029) 0.088(0.027) 0.163(0.042)
Exp 5 0.821(0.038) 0.852(0.039) 0.713(0.039) 0.063(0.025) 0.068(0.025) 0.096(0.030)
Exp 6 0.836(0.041) 0.863(0.040) 0.736(0.044) 0.072(0.026) 0.073(0.026) 0.108(0.032)
Exp 7 0.734(0.040) 0.786(0.040) 0.609(0.041) 0.068(0.025) 0.077(0.029) 0.149(0.039)
Exp 8 0.749(0.042) 0.798(0.041) 0.629(0.045) 0.069(0.025) 0.081(0.028) 0.156(0.040)
Exp 9 0.912(0.022) 0.696(0.058) 0.833(0.032) 0.071(0.026) 0.036(0.021) 0.130(0.036)
Exp 10 0.904(0.043) 0.904(0.043) 0.852(0.037) 0.065(0.026) 0.065(0.026) 0.075(0.027)
Exp 11 0.829(0.039) 0.859(0.039) 0.736(0.041) 0.102(0.031) 0.115(0.034) 0.135(0.035)
Exp 12 0.855(0.042) 0.880(0.041) 0.776(0.047) 0.104(0.030) 0.112(0.033) 0.137(0.035)
Exp 13 0.746(0.044) 0.800(0.042) 0.634(0.046) 0.084(0.028) 0.119(0.034) 0.172(0.044)
Exp 14 0.805(0.049) 0.847(0.044) 0.712(0.060) 0.093(0.029) 0.124(0.034) 0.179(0.043)
Exp 15 0.817(0.039) 0.853(0.040) 0.713(0.039) 0.109(0.032) 0.128(0.034) 0.152(0.038)
Exp 16 0.825(0.043) 0.857(0.043) 0.731(0.046) 0.101(0.031) 0.118(0.032) 0.146(0.037)
Exp 17 0.721(0.043) 0.780(0.043) 0.602(0.044) 0.085(0.029) 0.122(0.034) 0.171(0.043)
Exp 18 0.735(0.045) 0.790(0.045) 0.620(0.048) 0.088(0.030) 0.124(0.032) 0.176(0.044)
Exp 19 0.904(0.024) 0.686(0.055) 0.826(0.032) 0.088(0.030) 0.050(0.023) 0.148(0.039)
Exp 20 0.902(0.046) 0.902(0.047) 0.847(0.039) 0.117(0.034) 0.117(0.034) 0.125(0.036)
Exp 21 0.979(0.006) 0.696(0.048) 0.952(0.010) 0.076(0.028) 0.109(0.063) 0.123(0.037)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 5: Results for case: N=100, T=100

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.875(0.029) 0.910(0.029) 0.798(0.030) 0.058(0.022) 0.058(0.023) 0.070(0.025)
Exp 2 0.904(0.028) 0.931(0.028) 0.843(0.032) 0.061(0.024) 0.061(0.024) 0.075(0.026)
Exp 3 0.807(0.033) 0.870(0.031) 0.711(0.036) 0.058(0.024) 0.062(0.024) 0.091(0.028)
Exp 4 0.865(0.033) 0.910(0.029) 0.793(0.041) 0.062(0.024) 0.066(0.025) 0.093(0.030)
Exp 5 0.860(0.032) 0.897(0.032) 0.773(0.033) 0.058(0.023) 0.059(0.023) 0.072(0.026)
Exp 6 0.876(0.030) 0.910(0.030) 0.798(0.032) 0.060(0.024) 0.060(0.025) 0.072(0.027)
Exp 7 0.783(0.032) 0.852(0.031) 0.679(0.034) 0.055(0.024) 0.060(0.025) 0.090(0.029)
Exp 8 0.796(0.035) 0.860(0.033) 0.696(0.037) 0.061(0.026) 0.063(0.025) 0.093(0.030)
Exp 9 0.938(0.015) 0.702(0.042) 0.883(0.021) 0.058(0.024) 0.024(0.016) 0.081(0.028)
Exp 10 0.938(0.034) 0.938(0.034) 0.898(0.028) 0.057(0.023) 0.057(0.022) 0.063(0.024)
Exp 11 0.867(0.030) 0.902(0.030) 0.792(0.031) 0.213(0.040) 0.238(0.042) 0.236(0.044)
Exp 12 0.896(0.031) 0.923(0.030) 0.837(0.034) 0.210(0.040) 0.233(0.043) 0.229(0.045)
Exp 13 0.797(0.034) 0.864(0.032) 0.704(0.037) 0.161(0.036) 0.236(0.045) 0.230(0.044)
Exp 14 0.857(0.034) 0.905(0.029) 0.786(0.040) 0.161(0.036) 0.230(0.044) 0.228(0.044)
Exp 15 0.858(0.030) 0.899(0.029) 0.772(0.032) 0.227(0.043) 0.260(0.044) 0.264(0.045)
Exp 16 0.870(0.032) 0.905(0.033) 0.798(0.033) 0.210(0.041) 0.241(0.042) 0.245(0.044)
Exp 17 0.773(0.033) 0.848(0.032) 0.672(0.035) 0.167(0.037) 0.245(0.042) 0.235(0.044)
Exp 18 0.790(0.034) 0.859(0.032) 0.694(0.038) 0.164(0.037) 0.242(0.044) 0.238(0.041)
Exp 19 0.934(0.015) 0.694(0.040) 0.879(0.020) 0.179(0.039) 0.091(0.030) 0.228(0.043)
Exp 20 0.933(0.036) 0.933(0.036) 0.891(0.032) 0.247(0.043) 0.247(0.043) 0.251(0.043)
Exp 21 0.988(0.003) 0.688(0.037) 0.974(0.005) 0.062(0.023) 0.215(0.104) 0.082(0.026)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 6: Results for case: N=100, T=500

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.918(0.020) 0.958(0.019) 0.874(0.021) 0.051(0.022) 0.052(0.022) 0.054(0.022)
Exp 2 0.939(0.017) 0.970(0.016) 0.908(0.020) 0.050(0.022) 0.051(0.022) 0.054(0.023)
Exp 3 0.859(0.024) 0.939(0.019) 0.806(0.026) 0.052(0.022) 0.053(0.023) 0.056(0.024)
Exp 4 0.910(0.019) 0.963(0.015) 0.876(0.022) 0.054(0.023) 0.053(0.022) 0.058(0.023)
Exp 5 0.906(0.022) 0.951(0.021) 0.857(0.023) 0.052(0.022) 0.051(0.022) 0.054(0.024)
Exp 6 0.920(0.021) 0.960(0.019) 0.878(0.024) 0.052(0.021) 0.052(0.021) 0.053(0.021)
Exp 7 0.841(0.024) 0.931(0.021) 0.782(0.026) 0.051(0.021) 0.052(0.022) 0.055(0.022)
Exp 8 0.856(0.023) 0.939(0.019) 0.802(0.026) 0.051(0.023) 0.051(0.022) 0.057(0.022)
Exp 9 0.963(0.008) 0.709(0.035) 0.941(0.010) 0.053(0.021) 0.021(0.016) 0.055(0.023)
Exp 10 0.971(0.022) 0.971(0.022) 0.952(0.019) 0.051(0.022) 0.052(0.022) 0.052(0.022)
Exp 11 0.913(0.021) 0.954(0.021) 0.871(0.022) 0.945(0.022) 0.952(0.022) 0.948(0.022)
Exp 12 0.934(0.019) 0.965(0.018) 0.903(0.021) 0.944(0.023) 0.949(0.021) 0.946(0.022)
Exp 13 0.854(0.024) 0.937(0.019) 0.803(0.026) 0.929(0.025) 0.950(0.022) 0.943(0.023)
Exp 14 0.907(0.020) 0.962(0.016) 0.872(0.023) 0.927(0.027) 0.950(0.023) 0.941(0.024)
Exp 15 0.905(0.021) 0.953(0.020) 0.856(0.023) 0.950(0.022) 0.956(0.021) 0.954(0.021)
Exp 16 0.916(0.022) 0.957(0.021) 0.875(0.023) 0.944(0.022) 0.952(0.021) 0.949(0.021)
Exp 17 0.834(0.024) 0.929(0.020) 0.777(0.026) 0.933(0.024) 0.954(0.020) 0.945(0.023)
Exp 18 0.852(0.024) 0.937(0.020) 0.799(0.027) 0.929(0.025) 0.952(0.022) 0.945(0.023)
Exp 19 0.963(0.008) 0.712(0.034) 0.940(0.011) 0.935(0.025) 0.533(0.088) 0.943(0.025)
Exp 20 0.968(0.025) 0.968(0.025) 0.947(0.021) 0.952(0.020) 0.952(0.021) 0.951(0.020)
Exp 21 0.995(0.001) 0.675(0.021) 0.992(0.002) 0.053(0.022) 0.810(0.076) 0.057(0.023)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 7: Results for case: N=200, T=50

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.849(0.030) 0.869(0.029) 0.748(0.035) 0.067(0.018) 0.069(0.018) 0.108(0.024)
Exp 2 0.881(0.029) 0.897(0.028) 0.797(0.038) 0.074(0.019) 0.075(0.020) 0.112(0.027)
Exp 3 0.775(0.035) 0.810(0.033) 0.648(0.040) 0.069(0.018) 0.078(0.020) 0.179(0.033)
Exp 4 0.830(0.041) 0.857(0.038) 0.726(0.054) 0.077(0.020) 0.088(0.022) 0.181(0.035)
Exp 5 0.833(0.031) 0.855(0.031) 0.721(0.032) 0.066(0.018) 0.066(0.018) 0.103(0.024)
Exp 6 0.849(0.031) 0.869(0.031) 0.748(0.037) 0.070(0.017) 0.071(0.018) 0.112(0.025)
Exp 7 0.753(0.031) 0.791(0.031) 0.618(0.034) 0.067(0.018) 0.077(0.019) 0.169(0.033)
Exp 8 0.765(0.036) 0.801(0.034) 0.635(0.040) 0.071(0.019) 0.080(0.020) 0.176(0.035)
Exp 9 0.921(0.017) 0.689(0.053) 0.838(0.027) 0.069(0.018) 0.035(0.014) 0.144(0.030)
Exp 10 0.912(0.030) 0.912(0.030) 0.857(0.028) 0.067(0.018) 0.067(0.018) 0.079(0.021)
Exp 11 0.840(0.031) 0.862(0.030) 0.743(0.035) 0.102(0.021) 0.114(0.024) 0.139(0.029)
Exp 12 0.866(0.032) 0.885(0.030) 0.788(0.038) 0.105(0.022) 0.110(0.024) 0.141(0.029)
Exp 13 0.764(0.034) 0.805(0.033) 0.645(0.039) 0.092(0.022) 0.119(0.024) 0.195(0.041)
Exp 14 0.814(0.045) 0.848(0.040) 0.714(0.057) 0.098(0.023) 0.125(0.026) 0.201(0.039)
Exp 15 0.831(0.031) 0.858(0.031) 0.722(0.033) 0.111(0.022) 0.130(0.024) 0.160(0.027)
Exp 16 0.839(0.031) 0.863(0.030) 0.743(0.037) 0.105(0.022) 0.118(0.023) 0.152(0.028)
Exp 17 0.742(0.032) 0.787(0.031) 0.614(0.034) 0.089(0.021) 0.123(0.023) 0.190(0.038)
Exp 18 0.752(0.037) 0.795(0.035) 0.629(0.041) 0.091(0.023) 0.124(0.027) 0.200(0.041)
Exp 19 0.913(0.019) 0.687(0.050) 0.833(0.028) 0.089(0.022) 0.049(0.017) 0.161(0.032)
Exp 20 0.902(0.033) 0.902(0.033) 0.848(0.030) 0.118(0.023) 0.118(0.022) 0.126(0.024)
Exp 21 0.981(0.005) 0.694(0.046) 0.954(0.009) 0.077(0.019) 0.111(0.057) 0.126(0.029)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 8: Results for case: N=50, T=50 and non zero mean factor
loadings C

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.881(0.039) 0.916(0.039) 0.815(0.040) 0.070(0.037) 0.071(0.038) 0.101(0.045)
Exp 2 0.904(0.036) 0.932(0.035) 0.852(0.039) 0.073(0.037) 0.074(0.038) 0.105(0.047)
Exp 3 0.817(0.045) 0.873(0.042) 0.734(0.049) 0.068(0.035) 0.081(0.040) 0.135(0.051)
Exp 4 0.865(0.046) 0.908(0.040) 0.799(0.055) 0.075(0.038) 0.090(0.041) 0.143(0.053)
Exp 5 0.867(0.042) 0.905(0.042) 0.794(0.042) 0.064(0.033) 0.068(0.035) 0.091(0.040)
Exp 6 0.881(0.042) 0.915(0.040) 0.817(0.045) 0.070(0.036) 0.070(0.037) 0.101(0.045)
Exp 7 0.798(0.046) 0.860(0.043) 0.712(0.048) 0.065(0.035) 0.074(0.037) 0.131(0.049)
Exp 8 0.807(0.047) 0.867(0.044) 0.722(0.051) 0.070(0.036) 0.082(0.038) 0.143(0.052)
Exp 9 0.921(0.023) 0.757(0.048) 0.863(0.031) 0.071(0.036) 0.034(0.026) 0.126(0.048)
Exp 10 0.938(0.048) 0.945(0.049) 0.907(0.041) 0.071(0.036) 0.071(0.036) 0.081(0.040)
Exp 11 0.878(0.042) 0.913(0.040) 0.815(0.043) 0.101(0.043) 0.114(0.044) 0.133(0.048)
Exp 12 0.900(0.041) 0.927(0.040) 0.849(0.043) 0.103(0.042) 0.111(0.043) 0.129(0.050)
Exp 13 0.808(0.046) 0.870(0.042) 0.728(0.049) 0.085(0.042) 0.122(0.048) 0.161(0.056)
Exp 14 0.860(0.048) 0.903(0.043) 0.796(0.055) 0.091(0.043) 0.125(0.049) 0.162(0.057)
Exp 15 0.863(0.041) 0.905(0.041) 0.792(0.043) 0.105(0.043) 0.129(0.046) 0.147(0.051)
Exp 16 0.875(0.045) 0.910(0.043) 0.813(0.046) 0.104(0.046) 0.121(0.046) 0.144(0.050)
Exp 17 0.790(0.044) 0.857(0.040) 0.704(0.047) 0.083(0.039) 0.126(0.046) 0.153(0.054)
Exp 18 0.797(0.046) 0.861(0.043) 0.714(0.050) 0.085(0.040) 0.127(0.047) 0.159(0.051)
Exp 19 0.919(0.025) 0.755(0.049) 0.864(0.032) 0.086(0.040) 0.048(0.032) 0.140(0.052)
Exp 20 0.932(0.048) 0.937(0.047) 0.900(0.040) 0.121(0.049) 0.121(0.047) 0.129(0.047)
Exp 21 0.983(0.006) 0.777(0.052) 0.975(0.007) 0.075(0.036) 0.154(0.096) 0.122(0.049)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components; Exp. 21: three AR factors
(non correlated), no correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().

30



Table 9: Results for case: N=50, T=50, s = 1

Exp.a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.827(0.051) 0.829(0.050) 0.733(0.049) 0.066(0.035) 0.066(0.035) 0.096(0.039)
Exp 2 0.858(0.047) 0.860(0.048) 0.779(0.052) 0.069(0.035) 0.073(0.036) 0.103(0.046)
Exp 3 0.737(0.052) 0.741(0.052) 0.631(0.054) 0.067(0.035) 0.071(0.038) 0.147(0.051)
Exp 4 0.803(0.057) 0.806(0.057) 0.713(0.067) 0.074(0.039) 0.079(0.039) 0.149(0.053)
Exp 5 0.810(0.052) 0.814(0.052) 0.708(0.050) 0.064(0.037) 0.069(0.037) 0.094(0.041)
Exp 6 0.823(0.055) 0.825(0.055) 0.728(0.056) 0.068(0.036) 0.070(0.035) 0.099(0.041)
Exp 7 0.713(0.053) 0.717(0.053) 0.602(0.050) 0.066(0.035) 0.070(0.037) 0.134(0.048)
Exp 8 0.725(0.055) 0.728(0.055) 0.617(0.056) 0.072(0.037) 0.072(0.039) 0.147(0.051)
Exp 9 0.897(0.027) 0.897(0.028) 0.822(0.037) 0.066(0.037) 0.071(0.037) 0.123(0.050)
Exp 10 0.907(0.060) 0.908(0.060) 0.853(0.049) 0.068(0.036) 0.069(0.036) 0.078(0.037)
Exp 11 0.815(0.054) 0.820(0.055) 0.724(0.053) 0.101(0.043) 0.111(0.044) 0.129(0.047)
Exp 12 0.852(0.051) 0.856(0.051) 0.777(0.055) 0.103(0.044) 0.114(0.045) 0.136(0.047)
Exp 13 0.727(0.058) 0.733(0.056) 0.625(0.059) 0.084(0.042) 0.105(0.044) 0.170(0.058)
Exp 14 0.795(0.055) 0.800(0.056) 0.709(0.064) 0.093(0.043) 0.113(0.044) 0.173(0.057)
Exp 15 0.801(0.056) 0.805(0.056) 0.701(0.053) 0.110(0.042) 0.124(0.045) 0.149(0.052)
Exp 16 0.813(0.056) 0.818(0.055) 0.726(0.055) 0.104(0.045) 0.116(0.048) 0.143(0.052)
Exp 17 0.707(0.050) 0.713(0.050) 0.598(0.048) 0.087(0.039) 0.109(0.044) 0.168(0.059)
Exp 18 0.723(0.055) 0.729(0.055) 0.617(0.056) 0.083(0.038) 0.106(0.043) 0.171(0.059)
Exp 19 0.895(0.028) 0.896(0.028) 0.821(0.034) 0.087(0.039) 0.107(0.041) 0.148(0.053)
Exp 20 0.893(0.063) 0.894(0.062) 0.839(0.052) 0.120(0.047) 0.119(0.047) 0.129(0.046)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 10: Results for case: N=100, T=100, s = 1

Exp. a Corr. with Trueb Serial Correlationc

PCA SSS DPCA PCA SSS DPCA

Exp 1 0.874(0.030) 0.877(0.030) 0.794(0.032) 0.058(0.022) 0.059(0.023) 0.073(0.026)
Exp 2 0.905(0.028) 0.906(0.028) 0.844(0.031) 0.061(0.025) 0.062(0.024) 0.075(0.026)
Exp 3 0.806(0.032) 0.810(0.032) 0.709(0.035) 0.058(0.024) 0.059(0.025) 0.092(0.028)
Exp 4 0.865(0.032) 0.868(0.032) 0.792(0.041) 0.061(0.024) 0.064(0.024) 0.095(0.029)
Exp 5 0.859(0.031) 0.861(0.030) 0.771(0.032) 0.056(0.023) 0.055(0.024) 0.067(0.025)
Exp 6 0.877(0.031) 0.880(0.031) 0.800(0.033) 0.059(0.025) 0.060(0.024) 0.074(0.026)
Exp 7 0.784(0.033) 0.789(0.033) 0.680(0.034) 0.056(0.023) 0.058(0.023) 0.089(0.028)
Exp 8 0.800(0.033) 0.804(0.033) 0.701(0.037) 0.058(0.023) 0.059(0.023) 0.094(0.029)
Exp 9 0.939(0.014) 0.940(0.013) 0.884(0.019) 0.058(0.023) 0.059(0.024) 0.085(0.029)
Exp 10 0.938(0.036) 0.938(0.035) 0.896(0.029) 0.057(0.022) 0.057(0.023) 0.062(0.025)
Exp 11 0.868(0.031) 0.872(0.032) 0.792(0.032) 0.217(0.043) 0.238(0.044) 0.244(0.044)
Exp 12 0.897(0.029) 0.901(0.029) 0.839(0.032) 0.209(0.040) 0.228(0.043) 0.231(0.044)
Exp 13 0.796(0.033) 0.802(0.033) 0.703(0.036) 0.171(0.037) 0.218(0.044) 0.238(0.044)
Exp 14 0.859(0.034) 0.864(0.033) 0.790(0.041) 0.167(0.038) 0.213(0.044) 0.232(0.043)
Exp 15 0.859(0.031) 0.863(0.031) 0.773(0.033) 0.232(0.044) 0.255(0.046) 0.261(0.044)
Exp 16 0.872(0.032) 0.876(0.032) 0.798(0.034) 0.215(0.040) 0.234(0.042) 0.245(0.046)
Exp 17 0.775(0.032) 0.783(0.032) 0.673(0.034) 0.174(0.037) 0.223(0.045) 0.243(0.044)
Exp 18 0.794(0.033) 0.801(0.032) 0.698(0.036) 0.171(0.040) 0.218(0.043) 0.247(0.046)
Exp 19 0.935(0.014) 0.937(0.013) 0.880(0.019) 0.187(0.039) 0.226(0.044) 0.235(0.041)
Exp 20 0.934(0.038) 0.934(0.037) 0.893(0.032) 0.241(0.045) 0.241(0.045) 0.245(0.045)

aPCA: Principal Component Estimation Method; DPCA: Dynamic Principal
Component Estimation Method; SSS: Subspace algorithm on state space form. Exp.
1-8 : one factor, different ARMA DGP, no correlation among idiosyncratic com-
ponents; Exp 9: as Exp. 1 but dynamic impact on variables; Exp 10: as Exp. 1
but one factor imposed in estimation rather than p+q; Exp. 11-20: as 1-10 but
temporal correlation among idiosyncratic components.

bMean Correlation between true and estimated common component, with MC
st.dev. in ().

cMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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Table 11: Results for Experiment 21 (3 AR factors (non correlated),
no correlation among idiosyncratic components) and s = 1

N/T Corr. with Truea Serial Correlationb

PCA SSS DPCA PCA SSS DPCA

N = 50, T = 50 0.9754(0.008) 0.9751(0.008) 0.9478(0.013) 0.076(0.040) 0.074(0.038) 0.125(0.048)
N = 50, T = 100 0.9844(0.004) 0.9843(0.004) 0.9703(0.007) 0.062(0.033) 0.060(0.033) 0.082(0.038)
N = 100, T = 50 0.9792(0.006) 0.9789(0.006) 0.9520(0.011) 0.076(0.028) 0.076(0.027) 0.124(0.037)
N = 100, T = 100 0.9880(0.004) 0.9879(0.004) 0.9745(0.006) 0.063(0.025) 0.063(0.025) 0.084(0.028)
N = 500, T = 50 0.9827(0.003) 0.9825(0.003) 0.9554(0.007) 0.076(0.013) 0.075(0.012) 0.126(0.021)
N = 100, T = 500 0.9914(0.002) 0.9913(0.002) 0.9777(0.003) 0.061(0.010) 0.061(0.010) 0.082(0.012)
N = 200, T = 50 0.9835(0.006) 0.9878(0.005) 0.9741(0.008) 0.074(0.039) 0.074(0.038) 0.127(0.050)

aMean Correlation between true and estimated common component, with MC
st.dev. in ().

bMean rejection rate of LM serial correlation test of idiosyncratic component,
with MC st.dev. in ().
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