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Abstract

Robust control allows policymakers to formulate policies that guard against

model misspecification. The principal tools used to solve robust control prob-

lems are state-space methods (see Hansen and Sargent, 2006, and Giordani and

Söderlind, 2004). In this paper we show that the structural-form methods de-

veloped by Dennis (2006) to solve control problems with rational expectations

can also be applied to robust control problems, with the advantage that they

bypass the task, often onerous, of having to express the reference model in state-

space form. Interestingly, because state-space forms and structural forms are

not unique the two approaches do not necessarily return the same equilibria for

robust control problems. We apply both state-space and structural solution

methods to an empirical New Keynesian business cycle model and find that the

differences between the methods are both qualitatively and quantitatively impor-

tant. In particular, with the structural-form solution methods the specification

errors generally involve changes to the conditional variances in addition to the

conditional means of the shock processes.
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1 Introduction

The precision with which economic models can be expressed mathematically belies the

fact that they cannot claim to be anything more than approximations to an unknown,

and possibly unknowable, data-generating process. This unfortunate reality means

that economic decisions are inevitably made in situations where important aspects

of the environment are cloaked, hidden behind a cloud of uncertainty. While such

uncertainty is hardly welcome, it need not render decisionmakers powerless, as its

effects can in principle be mitigated through the application of robust control methods.

Robust control provides a set of tools to assist decisionmakers confronting uncertainty

who are either unable or unwilling to specify a probability distribution over possible

specification errors. While robust control methods hold special appeal to policymakers,

such as central banks, for whom models often play an explicit role in the decisionmaking

process, they also allow private agents to express concern, or pessimism, when forming

expectations.

The theory establishing that robust control methods can be applied to economic

problems has been developed largely in a series of contributions by Hansen and Sargent,

contributions that are well summarized in Hansen and Sargent (2006). Among other

things, Hansen and Sargent show how to set up and solve discounted robust control

problems, and they develop methods to solve for robust policies in backward-looking

models and in forward-looking models with commitment. Giordani and Söderlind

(2004) extend these methods to forward-looking models with discretion and to simple

rules.

A critical component in the application of robust control is the reference model. A

reference model is a structural model, possibly arrived at through some (nonmodeled)

learning process, that is thought to be a good approximation to the underlying data-

generating process. The methods described in Hansen and Sargent (2006) and Giordani

and Söderlind (2004) require that this reference model be written in a state-space form,

following the literature on traditional (nonrobust) optimal control. As discussed in

Dennis (2006), while state-space methods allow models to be expressed in a form that

contains only first-order dynamics, they also have drawbacks. In particular, many

models cannot be expressed easily in a state-space form, especially medium- to large-

scale models for which the necessary manipulations are often prohibitive. For robust

control problems, the state-space formulation has an additional important implication

in that the policymaker and the fictitious “evil agent” are not treated symmetrically.

Specifically, the planner’s decisions can affect current period outcomes both directly

and through private sector expectations, while the evil agent’s decisions can only affect
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current period outcomes through private sector expectations. As we show in this

paper, this feature of the traditional robust control setup means that the evil agent will

introduce specification errors by changing the conditional means of the shock processes,

but not their conditional volatility.

In this paper we develop an alternative set of tools to solve robust control prob-

lems, tools based on the solution methods developed by Dennis (2006) that have the

advantage that they do not require the reference model to be written in a state-space

form. Instead they allow the reference model to be written in structural form, which

is more flexible and generally much easier to attain than is a state-space form. As we

show, the structural form also allows us to treat the policymaker and the evil agent

symmetrically, giving rise to the result that the evil agent will optimally choose to

change the conditional volatility of the shocks in addition to their conditional means.

To illustrate how the structural-form solution methods work and to show how they

differ from state-space methods, we apply both methods to the empirical New Keyne-

sian business cycle model estimated by Rudebusch (2002a). We find that the differences

between the state-space and the structural-form methods have effects on the economy

and implications for monetary policy that are both qualitatively and quantitatively

important.

The paper is structured as follows. Section 2 describes the standard state-space

method to applying robust control and documents the properties of the resulting equi-

libria. Section 3 describes how robust control problems can be formulated and solved

when the model is kept in a structural form rather than expressed in a state-space

form. This section argues that the equilibria obtained using the structural-form meth-

ods are not necessarily the same as those obtained using the state-space form and shows

that the differences have important behavioral implications. Section 4 shows why the

two methods can give different solutions, showing that for robust control problems the

state-space methods restrict the state variables in a way that is not necessarily desir-

able. In Section 5 we apply the two methods to an empirical New Keynesian model

of the U.S. economy. Section 6 concludes.

2 Robust control using state-space methods

Hansen and Sargent (2006) describe how robust control methods, which allow for model

uncertainty, can be used to design robustly optimal policies. They show that robust

control problems can be cast in a form that allows them to be solved using methods

that are standard in situations where expectations are rational. In particular, Hansen

and Sargent (2003) show that state-space methods, such as those developed by Oudiz
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and Sachs (1985), Currie and Levine (1985, 1993), and Backus and Driffill (1986), can

be applied to robust control problems to obtain Ramsey, or commitment, equilibria.

When solving robust control problems there are generally two distinct equilibria

that are of interest. The first is the “worst-case” equilibrium, which is the equilibrium

that pertains when the policymaker and private agents design policy and form expec-

tations based on the worst-case misspecification and the worst-case misspecification is

realized. The second is the “approximating” equilibrium, which is the equilibrium

that pertains when the policymaker and private agents design policy and form expec-

tations based on the worst-case misspecification, but the reference model transpires to

be specified correctly. In this section we outline how state-space methods can be used

to obtain these two equilibria, setting the scene for the structural-form analysis that

follows. We focus on commitment, leaving the solution under discretion to Appendix A

(see also Giordani and Söderlind, 2004).

2.1 Constraints and objectives

According to the state-space formulation, the economic environment is one in which the

behavior of an n× 1 vector of endogenous variables, zt, consisting of n1 predetermined

variables, z1t, and n2 (n2 = n− n1) non-predetermined variables, z2t, are governed by

the reference model

z1t+1 = A11z1t + A12z2t + B1ut + C1ε1t+1, (1)

Etz2t+1 = A21z1t + A22z2t + B2ut, (2)

where ut is a p × 1 vector of control variables, ε1t ∼ iid [0, Is] is an s × 1, s ≤ n1,

vector of white-noise innovations, and Et is the mathematical expectations operator

conditional upon information available up to and including period t. The reference

model is the model that private agents and the policymaker believe most accurately

describes the data generating process. The matrices A11, A12, A21, A22, B1, and B2

contain structural parameters and are conformable with z1t, z2t, and ut as necessary.

The matrix C1 is determined to ensure that ε1t has the identity matrix as its variance-

covariance matrix.

The policymaker’s problem is to choose a sequence for its control variables, {ut}∞0 ,

to minimize the objective function

E0

∞∑
t=0

βt [z′tWzt + 2z′tUut + u′
tRut] , (3)

where β ∈ (0, 1) is the discount factor. The weighting matrices, W, U, and R reflect
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the policymaker’s preferences; W and R are assumed to be positive semidefinite and

positive definite, respectively.

Acknowledging that their reference model may be misspecified, private agents and

the policymaker surround their reference model with a class of models of the form

z1t+1 = A11z1t + A12z2t + B1ut + C1 (vt+1 + ε1t+1) , (4)

Etz2t+1 = A21z1t + A22z2t + B2ut, (5)

where vt+1 is a vector of specification errors, to arrive at a “distorted” model. The

specification errors are intertemporally constrained to satisfy

E0

∞∑
t=0

βt+1v′
t+1vt+1 ≤ η, (6)

where η ∈ [0, η̄) represents the “budget” for misspecification.

Because private agents form expectations that are “rational” according to the dis-

torted model, the non-predetermined variables and their expected values are linked

according to z2t+1 = Etz2t+1 +ε2t+1, where ε2t is a martingale difference sequence, and

the distorted model can be written as

z1t+1 = A11z1t + A12z2t + B1ut + C1 (vt+1 + ε1t+1) , (7)

z2t+1 = A21z1t + A22z2t + B2ut + ε2t+1, (8)

or, more compactly and in obvious notation, as

zt+1 = Azt + But + Cvt+1 + C̃εt+1. (9)

To guard against the worst case misspecification, the policymaker formulates pol-

icy subject to the distorted model with the view that the misspecification will be as

damaging as possible. Private sector agents form expectations with the same view.

The fear that the misspecification will be as damaging as possible is operationalized

through the metaphor that vt+1 is chosen by an evil agent whose objectives are di-

ametrically opposed to those of the policymaker.1 Hansen and Sargent (2001) prove

that the constraint problem in which equation (3) is minimized with respect to {ut}∞0
and maximized with respect to {vt}∞1 , subject to equations (9) and (6), can be recast

1Note that vt+1 is dated at t + 1 although it is chosen at t. This convention is due to the fact that
the specification errors are disguised by the innovations occurring at t + 1.
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in terms of an equivalent multiplier problem, whereby

E0

∞∑
t=0

βt
[
z′tWzt + 2z′tUut + u′

tRut − θv′
t+1vt+1

]
(10)

is minimized with respect to {ut}∞0 and maximized with respect to {vt}∞1 , subject to

equation (9). The parameter θ ∈ [θ,∞) is a shadow price that is inversely related

to the budget for misspecification η, Specifically, as η approaches zero, θ approaches

infinity.

2.2 Robust policymaking with commitment

In the commitment solution both the policymaker and the evil agent are assumed to

commit to a policy strategy and not succumb to incentives to renege on that strategy.

Employing the definitions

ũt ≡

 ut

vt+1

 , B̃ ≡
[

B C1

]
, (11)

Ũ ≡
[

U 0
]
, R̃ ≡

 R 0

0 −θI

 , (12)

the optimization problem can be written as

min
{ut}

max
{vt+1}

E0

∞∑
t=0

βt
[
z′tWzt + 2z′tŨũt + ũ′

tR̃ũt

]
, (13)

subject to

zt+1 = Azt + B̃ũt + C̃εt+1, (14)

which, because the first-order conditions for a maximum are the same as those for

a minimum, has a form that can be solved using the methods developed by Backus

and Driffill (1986). Those methods involve formulating the optimization problem as a

dynamic program. Recognizing that the problem is linear-quadratic, the value function

has the form V (zt) = z′tVzt + d and the dynamic program can be written as

z′tVzt + d ≡ min
ut

max
vt+1

[
z′tWzt + 2z′tŨũt + ũ′

tR̃ũt + βEt

(
z′t+1Vzt+1 + d

)]
. (15)
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It is well known that the solution to this optimization problem takes the form ut

vt+1

 = −FT−1

 z1t

p2t

 , (16)

z2t =
[

V−1
22 V21 V−1

22

]  z1t

p2t

 , (17)

 z1t+1

p2t+1

 = T
(
A− B̃F

)
T−1

 z1t

p2t

 + Cε1t+1, (18)

where p2t is an n2 × 1 vector of shadow prices associated with the non-predetermined

variables, z2t. The matrix T provides a mapping between the state variables, z1t and

p2t, and zt and is given by

T =

 I 0

V21 V22

 , (19)

where V21 and V22 are submatrices of V. Finally, V and F are obtained by solving

for the fix-point of

V = W − 2ŨF + F′R̃F + β
(
A− B̃F

)′
V

(
A− B̃F

)
, (20)

F =
(
R̃ + βB̃′VB̃

)−1 (
Ũ′ + βB̃′VA

)
. (21)

When the worst case misspecification is realized, the economy behaves according to

equations (16)–(18). While the worst case equilibrium is certainly interesting, it is also

important to consider how the economy behaves when the reference model transpires

to be specified correctly. Partitioning F into [ F′
u F′

v
]′ where Fu and Fv are con-

formable with ut and vt+1, respectively, Dennis (2005) shows that the approximating

equilibrium has the form

z1t+1 = (A11 + A12H21 + B1F
u
z1) z1t +

(
A12H22 + B1F

u
p2

)
p2t + C1ε1t+1, (22)

p2t+1 = M21z1t + M22p2t, (23)

z2t = H21z1t + H22p2t, (24)

ut = Fu
z1z1t + Fu

p2p2t, (25)
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where H21 ≡ V−1
22 V21, H22 ≡ V−1

22 ,
[

Fu
z1 Fu

p2

]
≡ −FuT

−1, and

 M11 M12

M21 M22

 ≡ T
(
A− B̃F

)
T−1. (26)

Interestingly, the worst-case equilibrium and the approximating equilibrium share

certain features. For instance, the worst-case equilibrium and the approximating

equilibrium differ only with respect to the law of motion for the predetermined variables

and, as a consequence, following innovations to the system the initial-period responses

of the predetermined variables are the same for the approximating equilibrium as for

the worst-case equilibrium. But since the decision rules for z2t and ut are also the

same for the two equilibria, it follows that the initial-period responses by the non-

predetermined variables and by the policy variables are also the same. With respect

to impulse response functions, differences between the approximating equilibrium and

the worst-case equilibrium then only occur one period after innovations occur.

Furthermore, because the coefficient matrix on the innovations is C1, which scales

the standard deviations of the innovations, it follows that adding noise to the inno-

vations or changing their correlation structure is not part of the evil agent’s strategy.

Instead, the optimally designed misspecification has the effect of changing the law of

motion for the predetermined variables. More precisely, since the specification errors

enter only the stochastic component of z1t, the evil agent’s strategy is to change the

conditional means of the shock processes but not their conditional volatility. As shown

in Appendix A, these relationships between the worst-case and the approximating equi-

libria also hold under discretion.

3 Robust control using structural-form methods

While state-space solution methods have many advantages, being generally compact

and containing only first-order dynamics, they are not always convenient. In particular,

problems can arise from the fact that it is often difficult, sometimes prohibitively so, to

manipulate a model into a state-space form, making state-space methods better suited

to small models. But policymakers often employ medium- to large-scale models, and

for this reason alone it is desirable to be able to solve robust control problems without

relying on state-space methods. In this regard, Dennis (2006) has developed numerical

methods that solve for optimal commitment policies and optimal discretionary policies

in rational expectations models that allow the optimization constraints to be written

in a structural form. These structural-form solution methods are easy to apply and
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offer considerable flexibility with regard to how the model is expressed.

One contribution of this section is to show that these structural-form methods can

be readily applied to solve robust control problems. In fact, the advantages to using

structural-form methods may extend somewhat further than convenience and flexibility.

Leitemo and Söderström (2004, 2005) use a Lagrangian method—with the constraints

in a structural form—to solve analytically for robustly optimal discretionary policies in

closed- and open-economy models, respectively. They find that the evil agent’s optimal

strategy is to change the variances of the shocks, not their persistence, a strategy that

differs from what the state-space methods outlined above would suggest.

In addition to illustrating how structural-form methods can be used to solve robust

control problems numerically, we demonstrate that they need not generate the same

worst case equilibrium as the state-space methods and explain why. We note that

whereas with state-space methods the evil agent’s strategy is to change the conditional

means of the shocks, with structural-form methods the evil agent will generally choose

to change both the conditional means and the variance/covariance structure of the

shocks. As we show, these differences arise because the structural-form solution meth-

ods change slightly the nature of the game played between the agents in the model,

accommodating a more general class of specification errors in the process. Finally, we

outline how detection-error probabilities, essentially, the probability that an econome-

trician would make a model selection error, can be calculated given this more general

class of specification errors.

3.1 Constraints and objectives

The basic model representation that Dennis (2006) works with is the second-order

structural form. Therefore, let the reference model be represented as

A0yt = A1yt−1 + A2Etyt+1 + A3ut + A4εt, (27)

where yt is an n × 1 vector of endogenous variables, ut is a p × 1 vector of policy

instruments, εt is an s × 1, 0 < s ≤ n, vector of innovations, and A0, A1, A2, A3,

and A4 are matrices with dimensions conformable with yt, ut, and εt that contain

the structural parameters. The matrix A0 is assumed to be nonsingular and the

elements of A4 are determined to ensure that the shocks are distributed according

to εt ∼ iid [0, Is]. The dating on the variables is such that any variable that enters

yt−1 is known by the beginning of period t; by construction the variables in yt−1 are

predetermined. Binder and Pesaran (1995) show that this second-order structural

form encompasses an enormous class of (log-) linear macroeconomic models.
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With the reference model written in second-order structural form, private agents

and the policymaker acknowledge their concern for misspecification by surrounding

their reference model with a class of models of the form

A0yt = A1yt−1 + A2Etyt+1 + A3ut + A4 (vt + εt) , (28)

where vt is a vector containing specification errors and equation (28) represents the

“distorted” model. Just as earlier, the specification errors are intertemporally con-

strained to satisfy:

E0

∞∑
t=0

βtv′
tvt ≤ ω, (29)

where ω ∈ [0, ω) represents the evil agent’s total budget for misspecification.

The policy objective function is taken to be

E0

∞∑
t=0

βt [y′
tWyt + u′

tQut] , (30)

where W (n×n) and Q (p×p) are matrices containing policy weights and are symmetric

positive semidefinite, and symmetric positive definite, respectively. Penalty terms on

the interaction between yt and ut could be included, but are unnecessary because

such terms can be accommodated through a suitable construction of yt, reflecting the

greater flexibility offered by the structural form.

Analogous to the state-space approach, the problem of minimizing equation (30)

with respect to {ut}∞0 and maximizing with respect to {vt}∞0 subject to equations (28)

and (29) can be replaced with an equivalent multiplier problem in which

E0

∞∑
t=0

βt [y′
tWyt + u′

tQut − φv′
tvt] , (31)

is minimized with respect to {ut}∞0 and maximized with respect to {vt}∞0 , subject

to equation (28). The multiplier φ ∈
[
φ,∞

)
is inversely related to the budget for

misspecification, ω. This method of formulating the robust control problem with

the reference model and the distorted model in structural form parallels Hansen and

Sargent (2006) closely. Nevertheless, we distinguish between ω and η and between

φ and θ to acknowledge that φ and θ, while they are both shadow prices, need not

share the same interpretation and that ω and η need not take on the same value. A

generalization that we do not pursue here, but that is discussed and implemented in
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Leitemo and Söderström (2005), is to assign separate budgets to each of the evil agent’s

controls.

3.2 Robust policymaking with commitment

To solve the robust control problem with commitment when the constraints are in

second-order structural form the optimization problem is formulated using the La-

grangian

L = E0

∞∑
t=0

βt
[
y′

tWyt + ũ′
tQ̃ũt + 2λ′

t

(
A0yt −A1yt−1 −A2yt+1 − Ã3ũt − ρt

)]
, (32)

where

Q̃ ≡

 Q 0

0 −φI

 , Ã3 ≡
[

A3 A4

]
, ũt ≡

 ut

vt

 , (33)

and ρt ≡ A4εt − A2ε
y
t , with εy

t ≡ (yt+1 − Etyt+1). The first-order conditions with

respect to ũt, λt, and yt, respectively, can be written as

∂L

∂ũt

= Q̃ũt − Ã′
3λt = 0, t ≥ t0, (34)

∂L

∂λt

= A0yt −A1yt−1 −A2Etyt+1 − Ã3ũt −A4εt = 0, t ≥ t0, (35)

∂L

∂yt

= Wyt + A′
0λt − β−1A′

2λt−1 − βA′
1Etλt+1 = 0, t ≥ t0, (36)

with the initial condition that λt−1 = 0.2 Equations (34)–(36) describe a standard

system of expectational equations, in which the expectations are formed rationally from

the perspective of the distorted model and can be solved in a variety of ways. However

this system is solved, the solution can be written as λt

yt

 =

 Hλλ Hλy

Hyλ Hyy

 λt−1

yt−1

 +

 Gλε

Gyε

 εt, (37)

ũt =
[

Fλ Fy

]  λt−1

yt−1

 + Fεεt. (38)

2This initial condition is not arbitrary; it emerges from the optimal program through the fact that
all promises made prior to period 0 are ignored in period 0.
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Equations (37) and (38) describe how the economy behaves in the worst-case equilib-

rium.

Given the worst-case equilibrium, the approximating equilibrium, which is the equi-

librium that pertains when the reference model is actually correctly specified, is

λt = Hλλλt−1 + Hλyyt−1 + Gλεεt, (39)

ut = Fu
λλt−1 + Fu

yyt−1 + Fu
εεt, (40)

yt = A−1
0

[
A1 + A2 (HyλHλy + HyyHyy) + A3F

u
y

]
yt−1

+A−1
0 [A2 (HyλHλλ + HyyHyλ) + A3F

u
λ] λt−1

+A−1
0 [A4 + A2 (HyλGλε + HyyGyε) + A3F

u
ε ] εt. (41)

Recall that for the state-space solution methods there were certain relationships

between the worst-case equilibrium and the approximating equilibrium, relationships

that held for both commitment and discretion. Specifically, the evil agent’s strategy

involved changing the persistence properties of the shocks, but not the volatility of

the innovations, which meant that the initial period responses of the predetermined

variables, the non-predetermined variables, and the policy controls to innovations would

be the same for the worst-case equilibrium and the approximating equilibrium. Using

the structural-form solution methods described above, however, these relationships do

not necessarily hold.

To see this, note that the contemporaneous response of yt to εt is Gyε in the worst-

case equilibrium (see equation (37)) and A−1
0 [A4 + A2 (HyλGλε + HyyGyε) + A3F

u
ε ]

in the approximating equilibrium (see equation (41)). When these structural-form

methods are employed the evil agent’s strategy may well involve a change to the

variance-covariance matrix of the innovations as well as a change to the conditional

means of the shock processes. It follows that the initial period responses by the en-

dogenous variables, and hence also by the policy controls, to innovations may also differ

between the worst-case and the approximating equilibria.

3.3 Robust policymaking with discretion

In the discretionary environment the optimization problem remains to

min
{ut}∞0

max
{vt}∞0

E0

∞∑
t=0

βt
[
y′

tWyt + ũ′
tQ̃ũt

]
(42)
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subject to

A0yt = A1yt−1 + A2Etyt+1 + Ã3ũt + A4εt, (43)

but, of course, neither the policymaker nor the evil agent can commit. The policymaker

and the evil agent are Stackelberg leaders with respect to their future selves, but play

a Cournot game between themselves. The problem described by equations (42) and

(43) conforms to the class of problems studied and solved by Dennis (2006), where it

is shown that the solution takes the form

yt = Hyt−1 + Gεt, (44)

ũt = F1yt−1 + F2εt. (45)

The matrices H, G, F1, and F2 that govern the solution are arrived at through an

iterative procedure. The first step involves conjecturing values for H and F1 and

using these to solve for the matrix D and the fix-point P according to

D ≡ A0 −A2H, (46)

P ≡ W + βF′
1Q̃F1 + βH′PH. (47)

Next, the values for D and P that solve equations (46) and (47) are used together with

the conjectured values for H and F1 to update F1, F2, H, and G according to

F1 = −
(
Q̃ + Ã′

3D
−1PD−1Ã3

)−1

Ã′
3D

′−1PD−1A1, (48)

F2 = −
(
Q̃ + Ã′

3D
′−1PD−1Ã3

)−1

Ã′
3D

′−1PD−1A4, (49)

H = D−1
(
A1 + Ã3F1

)
, (50)

G = D−1
(
A4 + Ã3F2

)
. (51)

From equations (48) - (51), updates of D and the fix-point P are generated, which

in turn give rise to updated values for F1, F2, H, and G. This iterative procedure

continues until a fix-point in which F1, F2, H, G, and P no longer change with

successive iterations is obtained.

Equations (44) and (45) govern the economy’s behavior in the worst-case equilib-

rium. From this worst-case equilibrium, the approximating equilibrium can be easily

constructed; it is given by

yt = A−1
0 [(A1 + A2HH + A3F

u
1 )yt−1 + (A4 + A2HG + A3F

u
2 ) εt] , (52)

ut = Fu
1yt−1 + Fu

2εt, (53)

12



where equation (52) exploits the fact that A0 has full rank.

As one might expect, in the discretionary solution, just as in the commitment solu-

tion discussed above, the evil agent’s strategy will generally involve changing both the

persistence properties of the shocks and the variance-covariance matrix of the innova-

tions. To see this, observe from equations (44) and (52) that the coefficient matrices

on the innovations, G, and A4+A2HG+A3F
u
2 , respectively, are not necessarily equal.

3.4 Detection-error probabilities

Anderson, Hansen, and Sargent (2003) describe the concept of a detection-error proba-

bility and introduce it as a tool for calibrating φ, the multiplier on the misspecification

constraint, which would otherwise be a free parameter. A detection-error probability

is the probability that an econometrician observing equilibrium outcomes would make

an incorrect inference about whether the approximating equilibrium or the worst-case

equilibrium generated the data. The intuitive connection between φ and the proba-

bility of making a detection error is that when φ is small, greater differences between

the distorted model and the reference model (more severe misspecifications) can arise,

which are more easily detected.

Let A and B denote two models; with a prior that assigns equal weight to each

model, Hansen, Sargent, and Wang (2002) show that detection-error probabilities are

calculated according to

p (φ) =
prob (A|B) + prob(B|A)

2
, (54)

where prob(A|B) (prob(B|A)) represents the probability that the econometrician er-

roneously chooses model A (model B) when in fact model B (model A) generated the

data. Let model A denote the approximating model and model B denote the worst-

case model, then any sequence of specification errors that satisfies equation (29) will

be at least as difficult to distinguish from the approximating model as is a sequence

that satisfies equation (29) with equality. As such, p(φ) represents a lower bound on

the probability of making a detection error.

To calculate a detection-error probability we require a description of how the econo-

metrician goes about choosing one model over another. Hansen, Sargent, and Wang

(2002) assume that this model selection is based on the likelihood ratio principle. Let

{zB
t }T

1 denote a finite sequence of economic outcomes generated according to the worst-

case equilibrium, model B, and let LAB and LBB denote the likelihood associated with

models A and B, respectively, then the econometrician chooses model A over model B

if log(Ln
BB/Ln

AB) < 0. Generating M independent sequences {zB
t }T

1 , prob (A|B) can

13



be calculated according to

prob (A|B) ≈ 1

M

M∑
m=1

I

[
log

(
Lm

BB

Lm
AB

)
< 0

]
, (55)

where I[log (Lm
BB/Lm

AB) < 0] is the indicator function that equals one when its argument

is satisfied and equals zero otherwise; prob(B|A) is calculated analogously using draws

generated from the approximating model. The likelihood function that is generally

used to calculate prob(A|B) and prob(B|A) assumes that the innovations are normally

distributed.

While the theory of detection does not require that the evil agent not distort the

volatility of the innovations, existing methods to calculate detection-error probabilities

do (see Hansen, Sargent, and Wang, 2002, for example). Here we show how to calculate

detection-error probabilities while accounting for the distortions to both the conditional

means and the conditional volatilities of the shocks. Let

zt = HAzt−1 + GAεt, (56)

zt = HBzt−1 + GBεt (57)

govern equilibrium outcomes under the approximating equilibrium and the worst-case

equilibrium, respectively. With discretion zt ≡ yt while with commitment zt ≡
[ λ′

t y′
t

]′. When GA 6= GB, to calculate p (φ) we must first allow for the stochastic

singularity that generally characterizes equilibrium and second account appropriately

for the Jacobian of transformation that enters the likelihood function. Using the

QR decomposition we decompose GA according to GA = QARA and GB according

to GB = QBRB. By construction, QA and QB are orthogonal matrices (Q′
AQA =

Q′
BQB = Is) and RA and RB are upper triangular. Let

ε̂
i|j
t = R−1

i Q′
i

(
zj

t −Hiz
j
t−1

)
, {i, j} ∈ {A, B} (58)

represent the inferred innovations in period t when model i is fitted to data {zj
t}T

1

that are generated according to model j and let Σ̂i|j be the associated estimates of the

innovation variance-covariance matrices. Then

log

(
LAA

LBA

)
= log

∣∣R−1
A

∣∣− log
∣∣R−1

B

∣∣ +
1

2
tr

(
Σ̂B|A − Σ̂A|A

)
, (59)

log

(
LBB

LAB

)
= log

∣∣R−1
B

∣∣− log
∣∣R−1

A

∣∣ +
1

2
tr

(
Σ̂A|B − Σ̂B|B

)
, (60)

where “tr” is the trace operator.
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When GA = GB it follows that RA = RB and the Jacobian of transformations

associated with the various likelihoods cancel and play no role in the calculations, in

which case equations (59) and (60) simplify to

log

(
LAA

LBA

)
=

1

2
tr

(
Σ̂B|A − Σ̂A|A

)
, (61)

log

(
LBB

LAB

)
=

1

2
tr

(
Σ̂A|B − Σ̂B|B

)
, (62)

which are equivalent to the expressions Hansen, Sargent, and Wang (2002) and Hansen

and Sargent (2006, chapter 8) employ. Given equations (59) and (60), equation (55)

is used to estimate prob(A|B) and (similarly) prob(B|A), which are needed to con-

struct the detection-error probability, as per equation (54). The multiplier, φ, is

then determined by selecting a detection-error probability (or at least its lower bound)

and inverting equation (54). Generally this inversion is performed numerically by

constructing the mapping between φ and the detection-error probability, for a given

sample size.

4 Comparing the solution methods

Sections 2 and 3 demonstrated that the solutions obtained for the worst-case equilib-

rium and the approximating equilibrium may depend on whether state-space methods

or structural-form methods are used. Moreover, it should be clear that the differences

between the two solution methods involve specification errors that are qualitatively

different in important ways. For the structural-form solution methods, it is apparent

that pessimistic agents are guarding against specification errors both to the conditional

means of the shocks, which is the behavior Hansen and Sargent emphasize, and to the

conditional variances/covariances of the shocks.

In an important sense, it is surprising that the solutions differ, as such differences do

not arise when expectations are rational.3 But since the methods may produce different

equilibrium behavior, two important questions immediately present themselves: why

do the differences arise, and are the differences quantitatively important? We defer the

second question to Section 5, where both sets of tools are applied to a New Keynesian

business cycle model. With regard to the first question, however, we show below

that when the solutions differ they do so because the state-space formulation restricts

the various decisionmakers in ways that the structural-form formulation does not. In

3When expectations are rational, although the solutions obtained by state-space methods and
structural-form methods are often presented in different forms, they are behaviorally equivalent.
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effect, the two methods are solving closely related, but not identical problems.

To see this point, consider the following simple example. Let the reference model

that the policymaker and private agents share be

yt = αEtyt+1 + γut + gt, (63)

gt = ρgt−1 + σεεt, (64)

where the parameters satisfy α ∈ (0, 1), γ ∈ (−∞,∞), ρ ∈ (−1, 1), and {σg, σε} ∈
(0,∞), and where εt is a mean-zero white-noise process with standard deviation equal

to σε. Notice that εt is an exogenous variable, ut is a decision variable, yt, Etyt+1, and

gt are non-predetermined variables, and gt−1 is a predetermined variable.4

To write equations (63) and (64) in state-space form the standard method would

be to advance the timing on equation (64) one period and to make Etyt+1 the subject

of equation (63), giving gt+1

Etyt+1

 =

 ρ 0

− 1
α

1
α

 gt

yt

 +

 0

− γ
α

 [ut] +

 σε

0

 [εt+1] . (65)

Adding the specification errors, the distorted model would then be gt+1

Etyt+1

 =

 ρ 0

− 1
α

1
α

 gt

yt

 +

 0

− γ
α

 [ut] +

 σε

0

 [vt+1 + εt+1] . (66)

Notice that in equation (66) the shock gt is a state variable, a variable that all agents

take as given when forming decisions, even though it is not actually a predetermined

variable.

In contrast, with the structural-form method once the model misspecifications are

added to equation (64) the distorted model becomes 1 0

−1 1

 gt

yt

 =

 ρ 0

0 0

 gt−1

yt−1

 +

 0 0

0 α

 Etgt+1

Etyt+1


+

 0

γ

 [ut] +

 σε

0

 [vt + εt] . (67)

In equation (67) the state variables that agents take as given when forming decisions

4A variable is predetermined if its value next period can be forecasted perfectly using only infor-
mation that is available today, i.e., a generic variable yt is predetermined if Etyt+1 = yt+1, see Engle,
Hendry, and Richard (1983) and Blanchard and Kahn (1980).
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are gt−1 and εt. Thus, the key difference between the two representations is that in

the structural-form representation the state variables are gt−1, which is predetermined,

and εt, which is exogenous, while in the state-space representation the state variable

is gt, which is non-predetermined.5 Because the structural-form representation allows

the evil agent to react separately to gt−1 and εt, if it so desires the evil agent can

purposefully alter the realization of gt, changing both the conditional mean of the

shock and the variance of the innovation.6 Moreover, by allowing the specification

errors to affect the contemporaneous realizations of the shocks, the structural form

changes slightly the nature of the strategic interaction between the policymaker and

the evil agent.

Before leaving this Section, two final points are worth making. First, although the

structural-form representation does not restrict the state vector, and permits a wider

class of specification errors as a consequence, because all agents in the model—not

just the evil agent—have their behavior restricted it is not the case that relaxing this

restriction necessarily allows the evil agent to do more damage for a given budget.

By relaxing the restriction, other agents in the economy can better guard against the

specification errors. Second, state-space forms (and structural forms) are not unique.

As a consequence, for any given model, a state-space representation that allows the

evil agent to distort both the conditional mean and the conditional volatility of the

shocks will generally be available.7

5 Robust policy in an empirical business cycle model

To illustrate the two solution approaches, we study the model estimated by Rudebusch

(2002a), which is based on a standard New Keynesian model and contains two equations

5In the rational expectations context, although gt is not actually predetermined, because its evolu-
tion is determined outside the system, unaffected by the actions of the agents in the economy, nothing
is lost by making it a state variable and putting it in the predetermined block of the model.

6In the limit as the time between periods shortens and we approach continuous time, the distinction
between gt−1 and gt becomes inconsequential. It is in discrete-time models, then, that the state-space
methods and the structural-form methods can generate different solutions. Hansen, Sargent, and
Tallarini (1999) comment on a “small variance adjustment” that they associate with risk-sensitive
preferences. They also note that its manifestation turns on the discreteness of time.

7For the simple example used here, such a state-space representation is given by εt+1

gt

Etyt+1

 =

 0 0 0
σε ρ 0
−σε

α − ρ
α

1
α


 εt

gt−1

yt

 +

 0
0
− γ

α

 [ut] +

 1
0
0

 [
ζt+1

]
,

for which the variables in the predetermined block are gt−1 and εt and the variable in the non-
predetermined block is yt.
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that, conditional upon the short-term interest rate, it, summarize the dynamics of

inflation, πt, and the output gap, yt:

πt = µπEtπt+1 + (1− µπ) πt−1 + αyt + επ,t, (68)

yt = µyEtyt+1 +
(
1− µy

)
yt−1 − β [it − Etπt+1] + εy,t. (69)

Equation (68) is a “New Keynesian Phillips curve” derived from the optimal price-

setting behavior of firms acting under monopolistic competition, but facing price rigidi-

ties, typically modeled following Calvo (1983). The presence of lagged inflation and

the “supply shock” επ,t can be motivated by indexing those prices that are not reopti-

mized in a given period and by a time-varying elasticity of substitution across goods,

leading to time-varying markups. Equation (69) can be derived from the household

consumption Euler equation, where habits in consumption imply that current decisions

depend to some extent on past decisions. The “demand shock” εy,t can be attributed

to government spending shocks or to movements in the natural level of output.8

An empirical version of this model, suitable for quarterly data and similar to that

estimated by Rudebusch (2002a), is given by

πt = µπEt−1π̄t+3 + (1− µπ)
4∑

j=1

απjπt−j + αyyt−1 + επ,t, (70)

yt = µyEt−1yt+1 +
(
1− µy

) 2∑
j=1

βyjyt−j − βr [it−1 − Et−1π̄t+3] + εy,t, (71)

where π̄t = 1/4
∑3

j=0 πt−j is four-quarter inflation and it is the nominal federal funds

rate (the policy instrument). We generalize the model slightly to include forward-

looking behavior in the output gap equation, as in Rudebusch (2002b).9 The model’s

parameter estimates, shown in Table 1, are taken from Rudebusch (2002a) and are

obtained using OLS (and survey expectations) on quarterly U.S. data from 1968:Q3 to

1996:Q4, except for the parameter µy, which is set to the average estimate in Fuhrer

and Rudebusch (2004).

The model’s key features are that inflation and the output gap are highly persistent,

that monetary policy affects the economy only with a lag, and that expectations are

formed using period t − 1 information. Notice, also, that the weights on expected

8See Woodford (2003) for a thorough treatment of the New Keynesian model.
9Rudebusch (2002b) also includes forward-looking behavior in the real interest rate, replacing

it−1 − Et−1π̄t+3 in equation (71) with µr [Et ı̄t+3 − Et−1π̄t+4] + (1 − µr) [̄ıt−1 − π̄t−1]. We instead
choose the real interest rate specification Rudebusch (2002a) uses, because the model with expected
future interest rates cannot easily be written in state-space form. (It is, however, also straightforward
to write that model in structural form.)

18



Table 1: Parameter values

Inflation Output Monetary policy
µπ 0.29 µy 0.20 β 0.99
απ1 0.67 βy1 1.15 λ 0.50
απ2 −0.14 βy2 −0.27 ν 0.10
απ3 0.40 βr 0.09
απ4 0.07 σy 0.833
αy 0.13
σπ 1.012

future inflation and output, while consistent with much of the empirical literature, are

small relative to many theory-based specifications.

The central bank’s objective function is assumed to be

min
{it}

E0

∞∑
t=0

βt
[
π2

t + λy2
t + νi2t

]
, (72)

where we set β = 0.99, λ = 0.5, and ν = 0.1. Thus, the central bank sets monetary

policy to avoid volatility in inflation around its target (normalized to zero) and in the

output gap around zero (precluding any discretionary inflation bias). In addition, the

central bank desires to limit volatility in the nominal interest rate around target (nor-

malized to zero). The concern for misspecification, φ, is chosen so that the detection

error probability is 0.1, given a sample of 200 observations.10

We first calculate impulse responses to unit-sized11 innovations to inflation (επ,t)

and output (εy,t) under commitment and discretion using the two solution methods.

All impulse responses are shown in Figures 1–8, but for an intuitive understanding of

the differences between the two solution methods it is sufficient to consider the model’s

responses to the inflation shock under commitment, shown in Figures 1–2.

Under the nonrobust policy (RE),12 a shock to inflation is followed by a prolonged

period of high inflation, causing the central bank to tighten monetary policy and to

raise the interest rate in order to open up a negative output gap, which will reduce

inflation over time. An initial increase in inflation of around one percentage point

10This implies that θ = 54.5 and 57.5 for the state-space method with commitment and discretion,
respectively, and φ = 94.5 and 70.0 for the structural-form method.

11Note that this implies that the shocks in the inflation and output equations are equal to the
standard deviations of the innovations, as the innovation vectors are scaled by matrices containing
the standard deviations.

12The responses under the nonrobust policy are the same for the two methods.
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leads to an increase in the interest rate of 122 basis points, which in turn generates a

negative output gap with a maximum effect of minus 0.4 percentage point after four

to five quarters. Inflation returns slowly to its initial value and is below one-tenth of

the initial shock after eleven quarters.

Using the state-space solution method in Figure 1, the misspecification has no effect

in the initial period, as stressed in Section 2. Thus, the central bank does not worry

about the evil agent increasing the conditional volatility of the shocks, and the outcomes

for inflation and the output gap in the worst-case and approximating equilibria coincide

in the initial period. In subsequent periods, however, the evil agent’s actions, which

make inflation more persistent in the worst-case equilibrium, produce a more aggressive

policy response and a larger negative output gap: the interest rate is initially raised

196 basis points, and the effect on the output gap is considerably larger and more

persistent. In the approximating equilibrium the more aggressive policy implies that

the output gap is larger than under the nonrobust policy, and inflation therefore returns

to target faster. Thus, the robust policy is more aggressive than the nonrobust policy,

and the central bank fears mainly that inflation is more persistent than is reflected

in the reference model.13 Giordani and Söderlind (2004) obtain qualitatively similar

results using a slightly different model.

Using instead the structural-form solution method in Figure 2, the misspecfication

has an effect in the initial period because the evil agent increases the variance of the

inflation shock. This effect is relatively small, however: while the initial shock in

the state-space method is 101 basis points, in the structural-form method it is 106

basis points instead. By itself this difference between the two methods seems of little

importance. Nevertheless, due to the persistence of inflation (and output),14 this small

initial difference has long-lived effects. As a consequence, the central bank needs to

increase the interest rate substantially more than for the state-space solution method

(the initial increase is now 226 basis points), leading to a larger negative output gap.

Similar differences are obtained in response to output shocks and when policy is

formulated with discretion (see Figures 3–8). Although the initial period distortion

is small, the total effect is substantially larger and leads to quantitatively important

differences between the two methods. That the differences are important is also

13The optimal rules for the central bank and the evil agent are reported in Tables C.1 and C.2 in
Appendix C.

14The weights on forward-looking expectations in the model are small; the model includes multiple
lags of inflation and output, there are one-period control lags from monetary policy to output and
from output to inflation, and expectations are dated at t−1. As discussed in Dennis and Söderström
(2006), all these features increase the backward-looking nature of the model and imply that the gain
from commitment is very small in the RE equilibrium.
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Table 2: Unconditional variances and value of loss function

Var(πt) Var(yt) Var(it) Loss
(a) State-space method, commitment
RE 2.289 2.598 12.922 4.729
Worst 3.282 5.361 30.453 8.633
Approx 2.022 3.444 21.043 5.687

(b) Structural-form method, commitment
RE 2.289 2.598 12.922 4.729
Worst 3.762 7.057 40.137 10.800
Approx 2.222 4.719 30.137 7.361

(c) State-space method, discretion
RE 2.793 2.282 11.899 4.931
Worst 4.412 4.735 30.347 9.272
Approx 2.340 2.936 19.131 5.549

(d) Structural-form method, discretion
RE 2.793 2.282 11.899 4.931
Worst 4.259 5.326 35.916 10.045
Approx 2.432 3.565 26.560 6.664

apparent in Table 2, which shows the unconditional variances of inflation, output, and

the interest rate, along with the value of the loss function, equation (72). Under

commitment, inflation, output, and the interest rate in the worst-case equilibrium are

15–30 percent more volatile when using the structural-form solution method and loss

is 25 percent higher. Similar numbers apply to the approximating equilibrium. Under

discretion the differences are slightly smaller, but remain important.

6 Final remarks

Previous approaches to solving robust control problems have employed state-space

methods. These methods rely on the reference model being put into a state-space

form, which requires that predetermined variables be explicitly identified and sepa-

rated from non-predetermined variables. When the reference model is small or when

there are relatively few state variables, obtaining a state-space form can be reasonably

straightforward. However, as the reference model’s complexity increases, manipulat-

ing it into state-space form can become a torturously difficult, time-consuming, and

error-prone task. For nonrobust control problems, difficulties with obtaining a state-

21



space representation can generally be overcome by using the structural-form solution

methods developed by Dennis (2006).

In this paper we show how these structural-form solution methods can be applied

to robust control problems, thereby making it easier to analyze complex models using

robust control methods. As an additional contribution, we show that, upon departing

from rational expectations, the structural-form methods need not generate the same

equilibrium behavior as the state-space methods. In particular, whereas the state-

space methods, as they are typically applied, result in misspecifications that distort the

conditional means of the shock processes, for the structural-form methods the misspec-

ifications distort both the conditional means and the conditional variance/covariances

of the shocks. We show that different misspecifications emerge in equilibrium because

the two solution methods are solving different, but closely related, problems. In par-

ticular, differences arise because the state-space methods, by forcing shocks to serve

as states when they are not predetermined, restrict the state vector in ways that the

structural form solution methods do not. When these restrictions are either relaxed in

the state-space representation or imposed on the structural-form representation, the

two approaches return identical solutions. To accommodate the distortions to the

conditional volatility of the shocks, we generalize the existing method for calculating

detection-error probabilities.

We illustrate the structural-form solution methods by applying them to an empirical

New Keynesian business cycle model of the genre widely used to study monetary policy

under rational expectations. A key finding from this exercise is that the strategically

designed specification errors will tend to distort the Phillips curve in an effort to make

inflation more persistent, and hence harder and more costly to stabilize. The optimal

response to these distortions is for the central bank to become more activist in its

response to shocks. Finally, with the New Keynesian model serving as a laboratory,

we show that, separate to whether policy is set with commitment or discretion, the

distortions to the conditional volatility of the shocks that the structural-form methods

generate have implications for monetary policy and for economic outcomes that are

both qualitatively and quantitatively important.
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A The discretionary equilibrium using the state-

space method

In the discretionary case the optimization problem remains

min
{ut}

max
{vt+1}

E0

∞∑
t=0

βt
[
z′tWzt + 2z′tŨũt + ũ′

tR̃ũt

]
, (A1)

subject to

z1t+1 = A11z1t + A12z2t + B̃1ũt + C1ε1t+1, (A2)

Etz2t+1 = A21z1t + A22z2t + B̃2ũt, (A3)

but now neither the policymaker nor the evil agent can commit. A convenient way to

solve this dynamic optimization problem is to apply the method presented in Backus

and Driffill (1986). Conjecturing that the solution for the non-predetermined variables

in period t + 1 has the form

z2t+1 = Hz1t+1, (A4)

equations (A2)–(A4) imply that the non-predetermined variables, z2t, depend on the

predetermined variables, z1t, and the control variables, ũt, according to

z2t = Jz1t + Kũt, (A5)

where

J ≡ (HA12 −A22)
−1 (A21 −HA11) , (A6)

K ≡ (HA12 −A22)
−1

(
B̃2 −HB̃1

)
. (A7)

Using (A5) to substitute the non-predetermined variables out of the objective func-

tion, the dynamic program for the optimization problem with discretion is

z′1tPz1t + k ≡ min
ut

max
vt+1

[z′1tWz1t +2z′1tUũt + ũ′
tRũt +βEt

(
z′1t+1Pz1t+1 + k

)
], (A8)
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where

W ≡ W11 + W12J + J′W21 + J′W22J, (A9)

U ≡ W12K + J′W22K + Ũ1 + J′Ũ′
2, (A10)

R ≡ K′W22K + Ũ′
2K + K′Ũ2 + R̃, (A11)

and its solution is given by ut

vt+1

 = −Fz1t, (A12)

z2t = (J−KF) z1t, (A13)

z1t+1 =
(
A11 + A12H− B̃1F

)
z1t + C1ε1t+1, (A14)

where P and F are obtained by solving for the fix-point of

J ≡ (HA12 −A22)
−1 (A21 −HA11) , (A15)

K ≡ (HA12 −A22)
−1

(
B̃2 −HB̃1

)
, (A16)

Ã11 ≡ A11 + A12J, (A17)

Ã12 ≡ A12K + B̃1, (A18)

P = W − 2UF + F′RF + β
(
Ã11 − Ã12F

)′
P

(
Ã11 − Ã12F

)
, (A19)

F =
(
R + βÃ′

12PÃ12

)−1 (
U

′
+ βÃ′

12PÃ11

)
, (A20)

H = (J−KF) . (A21)

With the worst-case equilibrium given by equations (A12)–(A14), partitioning F

into [ F′
u F′

v
]′ where Fu and Fv are conformable with ut and vt+1, respectively, the

approximating equilibrium is derived from equations (A12)–(A14) by setting Fv = 0.

For further details see Giordani and Söderlind (2004).
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B Setting up the model

To write the Rudebusch (2002a) model in state-space form, first lead (70) and (71) one

period:

πt+1 =
µπ

4
Et [πt+1 + πt+2 + πt+3 + πt+4] (B1)

+ (1− µπ) [απ1πt + απ2πt−1 + απ3πt−2 + απ4πt−3] + αyyt + επ,t+1,

yt+1 = µyEtyt+2 +
(
1− µy

) [
βy1yt + βy2yt−1

]
−βr

[
it −

1

4
Et (πt+1 + πt+2 + πt+3 + πt+4)

]
+ εy,t+1. (B2)

Then solve for the forward-looking variables Etπt+4 and Etyt+2 and take expectations

as of period t:

µπ

4
Etπt+4 =

(
1− µπ

4

)
Etπt+1 −

µπ

4
Etπt+2 −

µπ

4
Etπt+3

− (1− µπ) [απ1πt + απ2πt−1 + απ3πt−2 + απ4πt−3]− αyyt, (B3)

µyEtyt+2 +
βr

4
Etπt+4 = Etyt+1 −

(
1− µy

) [
βy1yt + βy2yt−1

]
+βr

[
it −

1

4
Et (πt+1 + πt+2 + πt+3)

]
, (B4)

and reintroduce the disturbances via

πt+1 = Etπt+1 + επ,t+1, (B5)

yt+1 = Etyt+1 + εy,t+1. (B6)

Define an (n1 × 1) vector (n1 = 6) of predetermined state variables as

z1t = {πt, πt−1, πt−2, πt−3, yt, yt−1}′ , (B7)

an (n2 × 1) vector (n2 = 4) of non-predetermined variables as

z2t = {Etπt+1, Etπt+2, Etπt+3, Etyt+1}′ , (B8)

and an (s× 1) vector (s = 2) of innovations as

ε1t = {επt, εyt}′ . (B9)

Also define the policy instrument as ut = {it}. We can then write the model in compact
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form as

A0

 z1t+1

Etz2t+1

 = A1

 z1t

z2t

 + B1ut + C1ε1t+1. (B10)

Assuming that A0 is nonsingular, the usual state-space form can be obtained by

premultiplying (B10) by A−1
0 to get z1t+1

Etz2t+1

 = A

 z1t

z2t

 + But + C1ε1t+1, (B11)

where A = A−1
0 A1 and B = A−1

0 B1.
15

Writing the model in structural form is more straightforward, as it does not require

any rearrangement of the equations. Define the (n× 1) vector (n = 13) of endogenous

variables as

yt = {Etπt+4, Etπt+3, Etπt+2, Etπt+1, πt, πt−1, πt−2, πt−3, Etyt+2, Etyt+1, yt, yt−1, it}′ ,

(B12)

an (s× 1) vector (s = 2) of innovations as

εt = {επt, εyt}′ , (B13)

and define the policy instrument as ut = {it}. Then it is straightforward to write the

model on the required form

A0yt = A1yt−1 + A2Etyt+1 + A3ut + A4εt. (B14)

15Note that A−1
0 C1 = C1, since A0 is block diagonal with an identity matrix as its upper left block

and the lower block of C1 is zero.
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C Optimal policy rules and misspecification

Table C.1: Optimal policy rules and misspecification, state-space method

Coefficient on

πt πt−1 πt−2 πt−3 yt yt−1

(a) Policy rules, commitment

RE 1.202 0.470 0.526 0.076 2.000 −0.547

Worst 1.940 0.744 0.847 0.123 2.557 −0.685

(b) Policy rules, discretion

RE 1.330 0.518 0.582 0.084 2.129 −0.582

Worst 2.137 0.817 0.932 0.135 2.745 −0.736

(c) Misspecification, commitment

vπ 0.071 0.023 0.034 0.005 0.045 −0.010

vy 0.033 0.013 0.014 0.002 0.043 −0.012

(d) Misspecification, discretion

vπ 0.071 0.023 0.033 0.005 0.046 −0.010

vy 0.034 0.013 0.015 0.002 0.044 −0.012

Table C.2: Optimal policy rules and misspecification, structural-form method

Coefficient on

Et−1πt...t+3 πt−1 πt−2 πt−3 πt−4 Et−1yt+1 yt−1 yt−2 it−1 επt εyt

(a) Policy rules, commitment

RE 0.132 1.042 0.407 0.417 0.060 0.400 1.449 −0.432 −0.180 1.216 1.666

Worst 0.224 1.906 0.743 0.776 0.111 0.552 2.097 −0.596 −0.248 2.265 2.297

(b) Policy rules, discretion

RE 0.144 1.150 0.449 0.462 0.066 0.426 1.549 −0.460 −0.192 1.346 1.774

Worst 0.264 2.267 0.883 0.926 0.133 0.626 2.403 −0.677 −0.282 2.705 2.609

(c) Misspecification, commitment

vπ 0.004 0.036 0.012 0.017 0.002 0.005 0.024 −0.005 −0.002 0.050 0.021

vy 0.002 0.017 0.007 0.007 0.001 0.005 0.022 −0.006 −0.002 0.021 0.023

(d) Misspecification, discretion

vπ 0.006 0.055 0.019 0.025 0.004 0.008 0.037 −0.009 −0.004 0.075 0.033

vy 0.003 0.027 0.011 0.011 0.002 0.008 0.033 −0.009 −0.004 0.033 0.034
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Figure 1: Response to inflation shock, State-space method with commitment
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Figure 2: Response to inflation shock, Structural-form method with commitment
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Figure 3: Response to output shock, State-space method with commitment
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Figure 4: Response to output shock, Structural-form method with commitment
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Figure 5: Response to inflation shock, State-space method with discretion
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Figure 6: Response to inflation shock, Structural-form method with discretion
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Figure 7: Response to output shock, State-space method with discretion
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Figure 8: Response to output shock, Structural-form method with discretion
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