
 
 
 

Institutional Members: CEPR, NBER and Università Bocconi 

 
 
 
 

WORKING PAPER SERIES 
 

 
 
 

 

Subjective Expected Utility in Games 

 
 
 

Alfredo Di Tillio  
 
 
 
 

Working Paper n. 311 
 
 

 
May 2006 

 
 
 
 
 
 
 
 
 
 
 

IGIER – Università Bocconi, Via Salasco 5, 20136 Milano –Italy 
http://www.igier.uni-bocconi.it 

 
 

The opinions expressed in the working papers are those of the authors alone, and not those of the Institute 
which takes non institutional policy position, nor of CEPR, NBER or Università Bocconi. 



Subjective Expected Utility in Games�

Alfredo Di Tillio

Department of Economics, University of Texas at Austin

IEP and IGIER, Università Bocconi

Address:IGIER, Università Bocconi, Via Salasco 5, 20136 Milano, Italy

E-mail: alfredo.ditillio�unibo

oni.it
May 23, 2006

Abstract

This paper extends Savage’s subjective approach to probability and utility from decision

problems under exogenous uncertainty to choice in strategic environments. Interactive uncer-

tainty is modeled both explicitly — using hierarchies of preference relations, the analogue

of beliefs hierarchies — and implicitly — usingpreference structures, the analogue of type

spaces à la Harsanyi — and it is shown that the two approaches are equivalent. Preference

structures can be seen as those sets of hierarchies arising when certain restrictions on prefer-

ences, along with the players’ common certainty of the restrictions, are imposed. Preferences

are a priori assumed to satisfy only very mild properties (reflexivity, transitivity, and monotone

continuity). Thus, the results provide a framework for the analysis of behavior in games under

essentially any axiomatic structure. An explicit characterization is given for Savage’s axioms,

and it is shown that a hierarchy of relatively simple preference relations uniquely identifies the

decision maker’s utilities and beliefs of all orders. Connections with the literature on beliefs

hierarchies and correlated equilibria are discussed.
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1. Introduction

The behavioral premises and implications of subjective expected utility (henceforth SEU) theory

are well understood in one-agent situations. Taking as primitive only a preference relation on the

set of acts, i.e. functions mapping theexogenously specified set of states of the worldinto the

set of outcomes, Savage [23] identified the axioms one must impose on this relation in order to

unambiguously identify a utility function and a subjectivebelief representing it. For interactive

contexts, where it is further assumed informally that agents share a common assumption of the

SEU hypothesis, a similar treatment has not been given.1 This paper concerns choice in such

environments, where the hypothesis that a player is a SEU maximizer, believes each other player

is, believes each other player believes each other player is, and so on, is not assumed, but rather

must be derived, as in Savage, from rules on subjective preference.

A game situation is described by a set of players1; : : : ; I , a setS0 of states of nature, a setS i

of strategies for each playeri , and a function� mappingS D �I
jD0Sj into a set of outcomesZ.2

In such an environment, it is just not clear what a state of theworld should be. Indeed, in game

theory the SEU hypothesis carries much more content than in decision theory. Probabilistic beliefs

for each player are assumed not only on the determinants of the outcome (i.e. on the setS) but also

on the players’ utilities and beliefs onS , on the player’s beliefs on the players’ utilities and beliefs,

etc.3 To be sure, solving a player’s problem amounts to choosing a strategy with highest expected

utility, which can be identified based on his beliefs onS only. But, contrary to the one-agent case,

beliefs are typically restricted by consistency requirements to formulate which the analyst is forced

to assume beliefs about beliefs — for instance, the requirement that a player believe that another

player chooses a strategy maximizing expected utility.

Thus, following Savage’s approach, hence regarding the players’ utilities and beliefs as repre-

sentations of preference relations, one faces a conceptualand methodological problem. States of

the world must be specified without explicit reference to theplayers’ utilities and beliefs, as these

are not to be treated as primitive objects. At the same time, in order to make sense out of beliefs

about beliefs, its description must include the players’ preferences. Furthermore, both for method-

ological rigour and model versatility, it would be desirable to achieve this without imposing too

1Kadane and Larkey [14] remarked as a “curiosity of intellectual history” that Savage’s theory and game theory
had “had little to do with one another despite their common heritage” from von Neumann and Morgenstern’s [25]
work. The only exception is Epstein and Wang’s [9] paper, discussed later on in this section.

2Note that any uncertainty about the outcome function� can be modeled as uncertainty about the state of nature.
3This is done implicitly, following Harsanyi [12]. A set of types for every player is introduced, and for every type

of every player a utility function and a subjective belief over the states of nature and the other players’ strategies and
types is assumed. Mertens and Zamir [21] proved that Harsanyi’s idea implies no loss of generality, in the sense that
any hierarchy of beliefs of a player can be generated by choosing sets of types appropriately.
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many axioms a priori. One usually specifies the set of states of the world before imposing axioms;

moreover, it makes little sense to ask whether a player’s preferences satisfy a certain axiom, if all

preferences included in the description of a state of the world automatically satisfy that axiom.

In this paper we propose a solution to this problem based on a straightforward generalization of

Harsanyi’s idea and similar to the one devised by Epstein andWang [9]. The key notion introduced

here is that ofpreference structure, defined by an abstract setX , an algebraB of subsets ofX , a

B-measurable function� W X ! S , (we assumeS andZ are finite) and aB-measurable function

# i W X ! ….X;B/ for eachi D 1; : : : ; I , where….X;B/ is the set of preference relations on

the set ofB-measurable maps fromX to Z, endowed with a suitably specified algebra. Thus,

the implicitly defined hierarchies of beliefs in a Harsanyi-like model become implicitly defined

hierarchies of preferenceshere.4 Each point inX implicitly describes every player’s preference

over acts of the formf W S ! Z, acts of the formf W S � …I .S/ ! Z, acts of the form

f W S �…I .S/�…I .S �…I .S// ! Z, etc.5 This procedure avoids assuming utilities and beliefs

directly; more importantly, it makes the fact that a player’s preferences satisfy certain axioms a

well defined event for every player, and it allows us to formally state the hypothesis that a player’s

preferences satisfy the axioms and that this iscommon certainty(see below) among the players.

Preference relations are a priori assumed to satisfy only very mild axioms, namely, reflexivity,

transitivity, and monotone continuity. The first two are without a doubt among the least contro-

versial. The third axiom, also rather intuitive and automatically satisfied if the family of events is

finite, is equivalent to countable additivity of the belief in the Savage representation if this exists;

we prove it guarantees the analogous property even in the absence of axioms other than transitiv-

ity. The upshot of these limited restrictions is that one canuse preference structures to analyze

strategic situations under many possible axiomatic structures, provided our three axioms hold —

we discuss this further in Subsection 6.1.

While our results demonstrate that Savage’s theory is applicable to game situations,6 it is worth

4More precisely, the analogy is with a modelà la Aumann [3], where strategies appear explicitly in the description
of a state. Indeed, our notion of preference structure logically corresponds to what Aumann calls “information system”.

5We use…I .�/ as an abbreviation for�I
iD1
….�/. In the main body of the paper we donot work with the full set

S � …I .S/ � …I .S � …I .S// � � � � . Instead, we imposecoherencyat all levels of the hierarchies. This means
that we consider only those elements of…I .S/ � …I .S � …I .S// where the preferences appearing in the first and
second coordinate agree (in the obvious way) on the acts of the formf W S ! Z, and similarly for higher orders.
The alternative construction, where hierarchies are unrestricted and coherency is imposeda posteriori, is entirely
equivalent, as we explain in Subsection 6.5. Note also thati ’s strategy and preferences appear ini ’s own uncertainty.
This is done mainly for notational convenience, i.e. to avoid having to construct different spaces of states of the world
for different players; we explain this further in Subsection 6.2.

6This is in sharp contrast with the results of Mariotti [20]. Roughly, the latter paper shows that a player’s preference
relation on strategies cannot satisfy Savage’s axioms if various game-theoretic notions of rationality regarding theother
players are imposed (see Battigalli [4] for a counterargument to these negative results). Our approach is very different
from Mariotti’s, mainly because his framework does not allow preference hierarchies, and these are what we use in
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pointing out that they also highlight special features of the theory that arise in these contexts but

are typically absent from the one-person case. First, Savage’s axiom P6 requires that the space of

states of the world be infinite. In one-person situations where the latter is not the case, one must

appeal to objects extraneous to the model (such as an infinitesequence of coin tosses) in order to

meet the requirement. Here, however, the necessary cardinality obtains automatically due to the

infinite construction. Second, P6 acquires a special meaning; roughly, in our context the axiom

says that a player cannot be sure about the precise hierarchies of preference relations of the other

players, or even sure they belong to a given finite set. In other words, nontrivial uncertainty of the

higher order beliefs is what makes beliefs themselves existand be unique.7

1.1. Outline of the Analysis and Plan of the Paper

After dealing with a few inevitable preliminaries in Section 2, we introduce preference hierarchies

and preference structures in Section 3, where our first main results are proved. Analogously to

Mertens and Zamir’s (1985) main theorem, these results showthat our model carries no loss of

generality. The set� of all sequences comprising a state of nature and, for each player, a strategy

and a coherent hierarchy of preference relations, togetherwith the algebraA of its cylinders, has

a nice mathematical structure. In the terminology introduced in Section 2, it is asimple space,

namely, a zero-dimensional compact Hausdorff topologicalspace, whose family of clopen sets

is precisely the algebra of events. The results show that each ! 2 � corresponds to a unique

preference relation$ i.!/ for each playeri on the set of acts of the formf W � ! Z. Further-

more, thecanonical preference structurecomprising the space.�;A/, the projection of� on S ,

and the mappings$ i, is isomorphic (in a natural sense) toS �…I .�/ and such that every other

well-behaved preference structure can be mapped into it in an essentially unique way.8 Thus, the

canonical structure isuniversalin Mertens and Zamir’s sense.

Section 4 is devoted to the study ofcommon certainty componentsof the universal structure,

namely, sets of hierarchies obtained imposing a certain event along with the players’ certainty of

this event, certainty of the players’ certainty, and so on. Following Savage, given a preference

order to impose axioms, players’ certainty of the axioms, etc. Thus, preference hierarchies provide a workaround to
the issues raised by Mariotti — thanks to Dale Stahl (privateconversation) for suggesting this interpretation.

7It is well known that P1–P5 are not sufficient for existence ofa SEU representation. This may be readily verified
by a straightforward adaptation of the famous counterexample by Kraft et al [18]. With a finite set of outcomes,
uniqueness of the SEU representation in general requires aninfinite set of states of the world — see Gul [11] — and,
more importantly, non-atomicity of the subjective belief.

8By well-behaved structure we mean a structure whose algebraof events involves no redundancy (points where all
players choose the same strategies and have the same preferences) and no more information than the corresponding
events inA. These requirements are formalized in Section 3.
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structure, we say a player is certain of an event at a point of the structure if his preferences at that

point are such that he is indifferent between any two acts that coincide on that event. In order

to discuss a player’s certainty of a player’s certainty, it becomes necessary to extend the class of

events in a structure beyond the initially assumed algebra.Thus, in Section 4 we prove that, for a

simple structure— a structure whose underlying space.X;B/ is simple — a preference relation

in ….X;B/ has a unique extension to a preference relation on the enlarged set of acts obtained

expandingB to include aclosedsubset ofX , i.e. an intersection of events inB. This is enough

to formally define common certainty of a closed subset ofX , because ifE � X is closed then the

subset ofX where a player is certain ofE is itself closed. The main result in Section 4 then states

that a well-behaved preference structure is simple if and only if isomorphic to the component of

the universal structure obtained imposing common certainty of a closed subset of the latter.

In Section 5 we prove several important results. First, we show that, given any space.X;B/, a

preference relation in….X;B/ satisfying Savage’s axioms has a unique extension to a preference

relation (also satisfying Savage’s axioms) on the enlargedset of acts obtained replacingB with the

�-algebraB
� generated byB. This allows us to talk aboutbelief, i.e. certainty in the presence of

Savage’s axioms, of any set inB�. Next, we show that ifB� is in factcountably generated— a

pervasive assumption in the literature on type spaces, then, given any structure based on the space

.X;B/, we can talk about interactive beliefs, because the subset of X where a player believes some

eventE 2 B
� is shown to be itself inB�. The latter result is one of the conclusions of Proposition

10, a key result showing the equivalence betweenSavage structures, i.e. preference structures

where Savage’s axioms hold for every player at every point — and SEU systems, i.e. the standard

object assumed in the game-theoretic literature, i.e. a measurable space with profiles of strategies,

utility functions, and beliefs (over the space itself) associated to each point in the space. Finally,

we prove that thecanonical Savage structure, i.e. the structure whose underlying space is the

component�S obtained imposing Savage’s axioms and common belief of them, features analogous

universality properties. First, we prove that this structure is isomorphic toS � …I
S.�S/ and also

to S � U
I ��I .�S/— where…S denotes Savage preference relations,� non-atomic probability

measures, andU non-constant utility functions (up to positive affine transformations). Second, we

prove the equivalence among (i) certain well-behaved Savage structures,9 (ii) the components of

the universal structure obtained imposing Savage’s axiomsand common belief of a Borel set (an

event in the�-algebra generated byA), and (iii) the components of the canonical Savage structure

obtained imposing common belief of a Borel set (an event in the relative�-algebra on�S).

9Here by well-behaved structure we mean a little more than in Footnote 8. Namely, we also need the property that
the underlying space.X;B/ is such that the pair comprisingX and the�-algebra generated byB is standard Borel.
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1.2. Relationship with Earlier Literature on Hierarchies of Preferences

The idea of preference hierarchies is not new. The issues outlined above were first formally dealt

with by Epstein and Wang [9]. They are motivated by the exact same problem and prove theo-

rems analogous to ours, using preference hierarchies in a similar way. Compared to that paper,

our work has the disadvantage of dealing with finite games only. Indeed, the technical structure

of our model does not lend itself well to the case where, say, the setS is infinite (but see the dis-

cussion in Subsection 6.7 below). By contrast, the strategyspaces in Epstein and Wang are only

assumed compact Hausdorff. However, the results in the two papers are complementary in several

dimensions, and ours offers some important advantages.

First, as noted above and acknowledged by Epstein and Wang themselves, the specification of

a state of the world should presume “as few preference axiomsas possible”. In our construction

preferences are indeed rather unrestricted, whereas in their paper the restrictions are substantial.

In particular, they take the outcome space to be the unit interval and assume monotone utilities on

the latter, by requiring that all preferences satisfy a number of axioms; the more restrictive ones,

completeness and monotonicity, arenot automatically satisfied in the finite case. Thus, the finite

case makes the model not only simpler, but also more general in this respect.

Second, our model presumes much less in terms of “computational” ability of the players, and

this is not just because preferences are a priori unrestricted (in particular, possibly not complete).

Indeed, even within those subspaces of the universal structure where the full force of Savage’s

axioms is imposed, players are only assumed able to rank relatively uncomplicated acts; at each

level of the hierarchies there are a finite number of acts, a finite number of events these may depend

on, and a finite number of outcomes. Thus, in principle, one could elicit a player’s entire hierarchy

of beliefs by means of asequenceof questions, each involving a finite number of alternatives.10

By contrast, in Epstein and Wang’s paper, at each level a player is assumed to make preference

comparisons between acts depending on a very complex familyof events.11

Third, and perhaps more importantly, our paper is more oriented towards applications, though

it does not concretely discuss any. Epstein and Wang’s paperadopts an approach analogous to

Brandenburger and Dekel [7], focusing on the extension results (analogous to our result estab-

lishing existence and uniqueness of the mappings$ i) and the consequent isomorphism results

(analogous to our isomorphism results regarding� andS �…I .�/ first and�S andS �…I
S.�S/

next). However, it does not address the question of whether,how exactly, and why in modeling a

10It is worth pointing out that, when working with conventional beliefs hierarchies based on a setS , one must deal
with spaces of very high cardinality, even to describe second or third order beliefs, and this is true even ifS is finite.

11The problem of classes of events too rich for an individual toconceive is the main motivation for Kopylov’s [17]
generalizations of Savage’s theorem. One of Kopylov’s results, crucial for our proofs, is recorded in Section 5.
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concrete strategic scenario one can without loss of generality assume a Harsanyi’s type space-like

construct — though objects similar to our preference structures are indeed briefly discussed as an

illustration (see page 1348 of [9]). By contrast, in this paper the precise correspondence between

the abstract notion of preference structure and the corresponding common certainty subspaces of

the universal structure is investigated in detail. The exercise is far from vacuous, since, as ex-

plained above and proved in the paper, not all preference structures can be thought of as common

certainty components; only (and all) the sufficiently well-behaved ones can. Needless to say, es-

tablishing the precise sense in which abstractly and implicitly defined hierarchies correspond to

concretely and explicitly specified ones is the very motivation behind all Mertens and Zamir-like

papers. For this reason, we think that the full-fledged analysis of preference structures given here

is desirable, and we also hope it will prove useful — after all, just like in traditional applications

one works with Harsanyi’s types rather than directly with hierarchies, preference structures are

what one would work with in the possible concrete applications of our model.12

2. Preliminaries

An uncertainty space(or, more simply, aspace) is a pair.X;B/ whereX is a set andB is an

algebra of subsets ofX calledevents. If the specific algebraB is irrelevant or clear from the

context, we may refer to the setX alone as a space; for instance, ifX is finite, then it is understood

endowed with the algebra of all its subsets. Any subsetX 0 of X equipped with its relative algebra,

i.e. the family of all sets of the formX 0 \ E whereE 2 B, is asubspaceof X .

2.1. Basic Notations and Definitions

We take as given a finite setZ of outcomes, a finite setS0 of states of nature, a finite setf1; : : : ; Ig

of players, and for each playeri a finite setS i of strategies, and letS D S0 � S1 � � � � � SI . To

avoid trivialities, we assume thatZ contains at least two distinct elements.

Let .X;B/ be a space. Anact is a functionf W X ! Z such thatf �1.z/ 2 B for every

z 2 Z. The constant act mapping everyx 2 X to the samez 2 Z is denoted byz. Given two acts

f;g and an eventE, we writefEg for the act that coincides withf on E and withg on X X E.

The set of all acts is denotedF.X;B/ or, if the specific algebraB needs no emphasis, justF.X /.

Note that, ifB is countable, thenF.X / is countable; indeed, sinceZ is finite, the set of constant

12Finally, we hope the relevance of these considerations justifies this paper’s otherwise unfortunate length, indeed
mainly due to the extensiveness of the analysis regarding well-behaved structures, common certainty components, etc.
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acts is finite, and every act whose range has at mostn � 2 distinct outcomes can be written as

zEf , wherez 2 Z, E 2 B, andf is an act whose range has at mostn � 1 outcomes.

If � is a binary relation onF.X /, i.e. a subset ofF.X /� F.X /, then for all actsf;g 2 F.X /

we write.f;g/ P2 � as an abbreviation for.f;g/ 2 � 63 .g; f /. A preference relationon F.X / is

a reflexive and transitive binary relation� on F.X / satisfying the following property:

Monotone Continuity. Let f;g 2 F.X /, let z 2 Z, and take a sequence of eventsEn such that

En # ¿. If .f;g/ P2 �, then, for alln sufficiently large,.zEnf;g/ P2 � and.f; zEng/ P2 �.

The set of all preference relations onF.X;B/ is denoted….X;B/ and always assumed en-

dowed with the algebra generated by the sets of the form

˚

� 2 ….X;B/ W .f;g/ 2 �
	

wheref;g 2 F.X;B/. The product space�I
iD1….X;B/ is abbreviated as…I .X;B/. If reference

to the specific algebraB is superfluous, we may write….X / instead of….X;B/ and…I .X /

instead of…I .X;B/. Note that….X / is finite wheneverX is finite, and in this case the algebra

on….X / specified above is precisely the algebra of all subsets of….X /.

Let .Y;C/ be another space. A function' W X ! Y is measurableB=C (or justmeasurable)

if '�1.E/ 2 B for all E 2 C . This induces a measurable functiony' W ….X / ! ….Y /, namely,

� 7!
˚

.f;g/ 2 F.Y / � F.Y / W .f ı ';g ı '/ 2 �
	

:

Note thaty' is injective if everyf 2 F.X / satisfiesf D g B ' for someg 2 F.Y /. This is clearly

true if X is a subspace ofY and' is the inclusion mapping. Moreover, we have the following

Lemma 1. Let X andY be uncertainty spaces. If' W X ! Y is a measurable bijection and'�1

is measurable, then the induced mappingy' W ….X / ! ….Y / is also a measurable bijection with

measurable inverse; the latter is the mapping from….Y / to….X / induced by'�1.

Proof. Assume that' is a bijection and'�1 is a measurable function. By the latter, everyf 2

F.X / can be written asgB' for someg 2 F.Y /, soy' is injective. Moreover, for every� 2 ….Y /,

y'
�˚

.f;g/ 2 F.X / � F.X / W .f B '�1;g B '�1/ 2 �
	 �

D �;

which proves thaty' is onto and also proves the last statement.

Finally, given two spacesX andY and a (not necessarily measurable) map� W Y ! …I .X /,

we write�i for the function fromY to….X / that mapsy 2 Y into thei th coordinate of�.y/.
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2.2. Simple Spaces

An uncertainty space.X;B/ is simpleif B is a countable base for a compact Hausdorff topology

on X . A particular case is whenX is finite. The product of a finite family of spaces — which,

unless otherwise noted, we assume endowed with the product algebra — is clearly a simple space

if each space in the family is simple. When dealing with simple spaces, we will speak of open sets,

continuous functions, and so on, without explicit reference to their topological structures; in each

case, the understanding is that the relevant topology on thesimple space at hand is the topology

generated by the events in that space.13

Lemma 2. A subset of a simple space is an event if and only if it is both closed and open. A

subspace of a simple space is simple if and only if it is closed.14

Proof. An open set in a simple space is a union of events; thus, a closed (hence compact) and open

set in a simple space is the union of a finite family of events, hence an event. The other direction

is obvious; each event and its complement are both open, hence both closed. Clearly, a subset of

a simple space is compact Hausdorff if and only if it is closedin its relative topology. Since the

latter is the same as the topology generated by its relative algebra, the second claim follows.

Note that ifX is a simple space, then every reflexive and transitive binaryrelation onF.X / is

automatically a preference relation onF.X /, i.e. monotone continuity is trivially satisfied. Indeed,

every sequence of eventsEn such thatEn # ¿ must satisfyEn D ¿ for everyn sufficiently large,

becauseX is compact, eachEn is closed, and the sequence has the finite intersection property.

Proposition 1. If X is a simple space, then….X / is a simple space.

We conclude this subsection recording a few more propertiesof simple spaces. IfX andY are

simple spaces, then' W X ! Y is measurable if and only if continuous (first part of Lemma 2); in

this case the inducedy' W ….X / ! ….Y / is also continuous. Moreover, we have the following.

Lemma 3. Let X and Y be uncertainty spaces. AssumeX is simple, and let' W X ! Y be a

measurable function. If' is onto, then the induced mappingy' W ….X / ! ….Y / is onto.

13Thus, the product of a finite family of simple spaces (resp. a subspace of a simple space) is understood endowed
with the topology generated by the product algebra (resp. its relative algebra). No confusion can arise, as this is the
same as the product topology (resp. the relative topology induced by the topology on the larger space).

14A topological space whose topology has a countable base of clopen (closed and open) sets is calledzero-
dimensional, and zero-dimensional compact Hausdorff topological spaces are calledBoolean. Thus, what we call
simple spaceis a Boolean topological space stripped down to its algebra of clopen sets. For an excellent treatment of
Boolean spaces, see Koppelberg [16] — our proof of Lemma 2 is taken from there.
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Proof. Assume that' W X ! Y is onto, and let� 2 ….Y /. We have to find a preference relation

onF.X / that is mapped into� by the functiony'. Consider the set

˚

.f B ';g B '/ W .f;g/ 2 �
	

[
˚

.f; f / W f 2 F.X /
	

:

This is a well defined binary relation onF.X /, as ontoness of' ensures that, iff; f 0 2 F.Y / and

f B ' D f 0 B ', thenf D f 0. Since it contains.f; f / for everyf 2 F.X /, it satisfies reflexivity;

transitivity is directly inherited from�; monotone continuity is automatic, sinceX is simple.

3. Coherent Preference Hierarchies

The spaceS embodies thebasic uncertaintyfaced by the players. In the standard game-theoretic

framework,strategic uncertaintyis formalized by means ofcoherent beliefs hierarchiesbased on

this space. In our framework, following Epstein and Wang [9], it is modeled by means ofcoherent

hierarchies of preference relations. In this section we construct the space of all such hierarchies,

establish its properties, and show that one can describe preference hierarchies implicitly, much like

one describes coherent beliefs hierarchies by means of Harsanyi’s types.

Define�0 D S and�1 D �0 � …I.�0/. Let �0 W �1 ! �0 andı1 W �1 ! …I.�0/ be

the natural projections, and lety�0 W ….�1/ ! ….�0/ be the mapping induced by�0. Proceeding

recursively, define�nC1 for n � 1 as the largest subspace of�n �…I.�n/ such that the following

diagram — where�n W �nC1 ! �n andınC1 W �nC1 ! …I.�n/ are the natural projections, as

before — commutes for every playeri :

�n ….�n�1/

�nC1 ….�n/

.............................................................................................................................................................
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y�n�1

As before, lety�n be the mapping from….�nC1/ to….�n/ induced by�n.15

Lemma 4. For all n � 0, the projection�n W �nC1 ! �n is onto. For all!n 2 �n, in fact,

��1
n .!n/ has at least two distinct elements. Thus, the inducedy�n W ….�nC1/ ! ….�n/ is onto.

15Commutativity of the diagram is what we refer to as coherency. We follow Mertens and Zamir’s [21] approach
to coherency, whereby the property is built-in rather instead of being imposeda posteriori(as Epstein and Wang [9]
instead do, following Brandenburger and Dekel [7]). We could have followed the latter route, obtaining essentially the
same results obtained here; a more formal discussion on this, however, must wait till Subsection 6.5.
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The space of allcoherent preference hierarchiesis the set

� D
˚

.!0; !1; : : :/ 2 �0 ��1 � � � � W �n.!nC1/ D !n 8n � 0
	

with the algebraA of all sets of the form%�1
n .A/, wheren � 0, A � �n, and%n is the natural

projection of� on�n. Note that%n is onto for alln, henceA is indeed a well defined algebra. The

inducedy%n W ….�/ ! ….�n/ is, in fact, also onto, as the following result (by Lemma 3) implies.

Proposition 2. .�;A/ is a simple uncertainty space.

Proof. The sequence.�n; �n/ is a projective system of finite (hence compact Hausdorff) topolog-

ical spaces. By construction, the set� endowed with the relative product topology (which hasA

as a base) is the projective limit of the system, hence a compact Hausdorff topological space.

The space� closes our construction in the sense of leaving no further uncertainty undescribed.

This is established in the following proposition. Paralleling the analogous results in the literature

on beliefs hierarchies,16 the proposition provides the first step towards our main theorems.

Proposition 3. There exists a unique mapping$ W � ! …I.�/ such that

y%n�1 B $ i D ıi
n B %n (1)

for everyi D 1; : : : ; I and everyn � 1. The mapping$ is measurable and onto. The mapping

! 7! .%0.!/;$.!// from� into S �…I.�/ is a measurable bijection with measurable inverse.

3.1. Preference Structures

The following is a straightforward generalization of Harsanyi’s [12] notion of a type space, whereby

coherent preference hierarchies are implicitly described, just as coherent beliefs hierarchies are im-

plicitly described by Harsanyi’s types.

Definition 1. A preference structure(or, more simply, astructure) is a tuple.X;B; �; #/ where

.X;B/ is a space and� W X ! S and# W X ! …I.X / are measurable functions. A structure is

simple(resp. a�-structure) if the underlying uncertainty space is simple (resp. a measurable space,

i.e. a space such that the algebra of events is in fact a�-algebra).

16See Proposition 2 in Brandenburger and Dekel [7] and Theorem2.9 in Mertens and Zamir [21].
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A structure.X;B; �; #/ generates a set of hierarchies in a natural way, as follows. First, let


0 D � and writey
0 for the induced mapping from….X;B/ to….�0/. Then, recursively for all

n � 0, define
nC1 W X ! �nC1 as

x 7!
�


n.x/;
�

y
n

�

#1.x/
�

; : : : ; y
n

�

#I .x/
��

�

andy
nC1 W ….X / ! ….�nC1/ as the mapping induced by
nC1. Finally, define
 W X ! � as

x 7!
�


0.x/; 
1.x/; : : :
�

:

Since� and# are measurable, and since
n D �nB
nC1 for all n � 0 by construction, the functions


0; 
1; : : : are all well defined and measurable, hence so is
 . The mapping
 is thegeneratorof

the structure, and its range is the set of hierarchiesgeneratedby the structure.

Borrowing terminology from the literature on coherent beliefs hierarchies, we say.X;B; �; #/

is a completestructure if the mapping fromX into S � …I .X / such thatx 7! .�.x/; #.x// is

onto.17 If, in addition, the inverse of this mapping exists and is measurable, then we write

X Š S �…I .X /:

The notion of complete structure should not be confused withthe notion of complete preference

relation. Instead, our nomenclature is suggested and justified by the following.

Proposition 4. The generator of a simple and complete structure is onto.

3.2. Preference Morphisms

In order to formalize equivalence between structures we need a notion of isomorphism, whereby

isomorphic structures generate the same set of hierarchies, and structures generating the same set

of hierarchies are isomorphic. The following definition provides the necessary starting point.

Definition 2. A morphismfrom a structure.X;B; �; #/ to a structure.Y;C ; &; �/ is a pair of

17The termscompleteandbelief completehave been used, with analogous meaning, by various authors (for instance,
Battigalli and Siniscalchi [5] and Brandenburger et al. [8]). We use the termbelief completelater on in the paper, when
dealing with structures where Savage’s axioms hold — we avoid doing so here, and just saycomplete, because at this
point our preference hierarchies are allowed to be very far from having a probabilistic structure.
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measurable functions̨ W S ! S and' W X ! Y such that the diagram

X Y

SS

….X;B/ ….Y;C/
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y'

wherey' W ….X / ! ….Y / is the map induced by', commutes for everyi D 1; : : : ; I . The two

structures areisomorphicif, in addition,˛ and' are bijections and.˛�1; '�1/ is also a morphism.

The following handy result provides an easy way to check whether a morphism is, in fact, an

isomorphism. For this it suffices to verify that inverses exist and are measurable.

Lemma 5. Let .˛; '/ be a morphism from a structure.X;B; �; #/ to a structure.Y;C ; &; �/. If ˛

and' are bijections and'�1 is measurable, then.˛�1; '�1/ is also a morphism.

Proof. Let y' W ….X / ! ….Y / be the mapping induced by'. Since.˛; '/ is a morphism, we

have˛ B � D & B ' and y' B # i D � i B ' for every playeri . Thus, if˛ and' are bijections, then

� B'�1 D ˛�1 B& and, by Lemma 1, also# i B'�1 D .y'/�1 ı� i. Again by Lemma 1, the mapping

from….Y / to….X / induced by'�1 is precisely.y'/�1, so the proof is complete.

An important particular case of Definition 2 is the following. Take two preference structures

.X;B; �; #/ and.Y;C ; &; �/ such that.X;B/ is a subspace of.Y;C/ and� is the restriction of&

to X . If the identity function onS and the inclusion mapping� W X ! Y constitute a morphism,

then we say.X;B; �; #/ is asubstructureof .Y;C ; &; �/. Note that, in this case,

˚

.f;g/ 2 F.Y / � F.Y / W f B � D g B �
	

� � i.x/ 8i D 1; : : : ; I; 8x 2 X; (2)

by reflexivity of # i.x/. In other words, playeri is indifferent, according to� i.x/, between any

two acts that coincide onX . Conversely, given a structure.Y;C ; &; �/, a subspaceX of Y which

satisfies (2) can be made into a substructure. For this it suffices to endowX with the restriction of

& to X and, for eachi D 1; : : : ; I , the mapping fromX to….X / such that

x 7!
˚

.f B �;g B �/ W .f;g/ 2 � i.x/
	

: (3)

This mapping is, by (2), indeed well defined, and in this case we sayX induces(or, with slight

abuse of terminology,is) a substructure of the structure.Y;C ; &; �/.
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Lemma 6. Let .˛; '/ be a morphism from a structure.W;D ; �; �/ to a structure.Y;C ; &; �/, and

let X D '.W /. Let� W W ! X be the mapping such thatw 7! '.w/. ThenX is a substructure

of the structure.Y;C ; &; �/ and, furthermore,.˛; �/ is a morphism.

3.3. The Universal Preference Structure

Recall that$ W � ! …I.�/ denotes the mapping whose existence and uniqueness are established

in Proposition 3. We refer to.�;A; %0;$/ as thecanonicalpreference structure. Its generated set

of hierarchies is, of course,� itself; its generator is the identity. More generally, if a subset�0 � �

induces a substructure, the set of hierarchies generated bythe latter is�0, and the generator is the

inclusion of�0 into�. In fact, the identity onS and the generator
 of anystructure.X;B; �; #/

constitute a morphism from the latter into the canonical structure, since the generator
 and the

inducedy
 W ….X / ! ….�/ clearly satisfy

y
 B # i D $ i B 
 8i D 1; : : : ; I: (4)

Indeed, if˛ is the identity onS and.˛; '/ is a morphism from.X;B; �; #/ to .�;A; %0;$/, then

it is immediate to see that' D 
 .18 Moreover, we have the following.

Theorem 1. � Š S �…I.�/.

Proof. This is a restatement of part (ii) of Proposition 3 in the language of structures.

Clearly, isomorphic structures generate the same hierarchies. Conversely, structures that gener-

ate the same set of hierarchies and satisfy both requirements in the following definition are isomor-

phic, indeed isomorphic to a substructure of the canonical structure, as Theorem 2 below shows.

Definition 3. A structure.X;B; �; #/ is minimal(resp.non-redundant) if B is (resp. if every two

distinct elements ofX are separated by) the smallest algebraB
0 such that

��1.s/ 2 B
0 8s 2 S; (5)

˚

x 2 X W .f;g/ 2 # i.x/
	

2 B
0 8i D 1; : : : ; I; 8f;g 2 F.X;B 0/: (6)

The associated minimal structureis the structure.X;B; �; # / whereB is the intersection of all

algebras of subsets ofX satisfying both (5) and (6) above, and# W X ! …I .X;B/ is defined by

# i.x/ D # i.x/ \
�

F
�

X;B
�

� F
�

X;B
��

8i D 1; : : : ; I; 8x 2 X:

18In other words, the structure.�;A; %0;$/ is universalin the sense of Heifetz and Samet [13].
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Note that the intersection of all algebras satisfying (5) and (6) is again an algebra with these

properties, so the latter definitions are meaningful. Analogously to the probabilistic case, non-

redundancy requires distinct elements ofX to differ in terms of states of nature, strategies, or

preferences.19 Minimality says that those subsets ofX , which measurability of� and# requires

to belong toB, are the only (basic) events the players can reason about. These properties are

characterized as follows.

Proposition 5. A structure.X;B; �; #/ is minimal if and only ifB is the smallest algebraB 0 such

that the generator of the structure is measurableB
0=A. Moreover, whether it is minimal or not,

the structure is non-redundant if and only if its generator is injective.

As an obvious consequence of Proposition 5, every substructure of the canonical structure, and

indeed every substructure of a minimal and non-redundant structure, is both minimal and non-

redundant. Now using Lemma 6 we conclude that if�0 is the set of hierarchies generated by some

structure, then�0 is a substructure of the canonical structure, hence it satisfies (2), which here is

˚

.f;g/2F.�/�F.�/ W f B � D g B �
	

� $ i.!/ 8i D 1; : : : ; I; 8! 2 �0; (7)

where� denotes the inclusion from�0 to�. Based on our observation following (2), we then have

the following characterization: a set of hierarchies�0 is generated by some structure if and only if

it satisfies property (7), that is, if and only if it induces a substructure of the canonical structure.

Theorem 2. A structure.X;B; �; #/ is minimal and non-redundant if and only if it is isomorphic

to the substructure of.�;A; %0;$/ induced by the set of hierarchies generated by.X;B; �; #/.

Proof. Sufficiency follows from the fact that the set of hierarchiesgenerated by a structure induces

a substructure of.�;A; %0;$/. To prove necessity, suppose.X;B; �; #/ is minimal and non-

redundant, and let
 be its generator. The latter is injective by non-redundancyand Proposition 5,

thus the mapping' W X ! 
 .X / such thatx 7! 
 .x/ is a bijection. By minimality, and again by

Proposition 5, the inverse of' is measurable. Let̨ be the identity onS . By Lemma 5, it suffices

to show.˛; '/ is a morphism. This follows at once from Lemma 6.

In view of Theorems 1 and 2, following the analogous terminology in the literature on coher-

ent hierarchies of beliefs, the structure.�;A; %0;$/ will be also called theuniversal preference

structure. The next two sections are devoted to the study of certain substructures of it, namely,

19Since these aspects are supposed to describe all relevant uncertainty of the model, it is not clear how to interpret
a redundant structure. Non-redundancy of a structure is in fact equivalent to injectivity of its generator, as Proposition
5 below shows.
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those arising as the result of imposing various restrictions on preferences, along with the players’

common certainty — to be defined presently — of the restrictions.

4. Common Certainty and Simple Structures

The set of hierarchies generated by a structure that is not complete is, in general,20 a strict subset of

�. First, the projection of this subset on the space�n may fail to be onto for somen (hence fail to

be onto for alln sufficiently large), so that some states of nature or strategies, or certain preferences

onF.�n�1/, never occur. Second, even if its projection on�n is onto for alln, the generated set of

hierarchies may still be a strict subset of�, so that certain preferences onF.�;A/ are ruled out.21

In any case, since only hierarchies satisfying restrictions of one form or the other (or both) appear

in the generated set of hierarchies, one would like to interpret the structure as a model where not

only are the restrictions true, but each player is certain ofthis, is certain of the fact that all players

are certain, and so on.

The latter additional restrictions, however, have not beenformally modeled yet. Thus, veri-

fying that such interpretation is formally sound requires establishing a link between the explicit

restrictions — formulated within the universal structure via a formal notion of certainty — and the

preference structures where those restrictions are only implicitly assumed. This is indeed our task

in this section and the next. In this section we define the notion of certainty of events in a struc-

ture, prove that for simple structures this notion extends to closedsubsets, and finally show that

the non-redundant simple structures are precisely (isomorphic to) the sets of hierarchies obtained

imposing iterated certainty of a closed subset of the universal structure.

Definition 4. Let .X;B/ be a space and let� be a preference relation onF.X;B/. An event

E 2 B is null according to�, or just�-null, if .fEg;gEh/ 2 � for all f;g; h 2 F.X;B/.

If .X;B; �; #/ is a structure, then we say playeri is certain ofE 2 B at x 2 X , or thatE is

# i.x/-certain, provided thatX X E is null according to# i.x/.

Note that an event that is a subset of a null event is necessarily also null, because two acts that

coincide on the latter must also coincide on the former. Furthermore, as an obvious consequence

of transitivity, the union of a finite family of null events isnull. Monotone continuity actually

guarantees the following, much stronger result.

20We do not know whether the converse of Proposition 4 is true (i.e. we do not know whether every structure whose
generator is onto must be complete), though we conjecture itis not.

21For example, take the set of all hierarchies! 2 � such that.f;g/ 62 $ i.!/ for some playeri and some
f;g 2 F.�;A/. This is the set of hierarchies where not all players are indifferent between all acts. It is a strict subset
of�, but its projection on each�n is clearly�n, so it satisfies property (7) and is thus generated by some structure.
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Proposition 6. Let X be a space, let� 2 ….X /, and take a sequence of eventsAn such that

A D [nAn is an event. ThenA is �-null if and only if eachAn is �-null.

The latter proposition establishes the analogue of the wellknownknowledge continuityprop-

erty of probability measures (the intersection of a countable family of events having probability one

also has probability one). Whereas the latter stems from countable additivity of probability mea-

sures, the claim in the proposition above heavily depends onmonotone continuity. As we formally

state below, monotone continuity is, in the presence of Savage’s axioms, equivalent to countable

additivity of the belief in the Savage representation, so the claim in the proposition would be no

surprise if� were assumed to satisfy Savage’s axioms. However, the proposition does not assume

anything beyond reflexivity, transitivity, and monotone continuity. Indeed, reflexivity is not used

at all in the proof. Thus, while the proposition will also prove useful in the analysis below, it also

establishes a result of some independent interest, namely,that the key properties behind knowledge

continuity are just transitivity and monotone continuity.

4.1. Certainty and Common Certainty in Simple Structures

For simple structures, the definition of certainty given above can be extended to intersections of (a

fortiori countable) families of events, i.e. to closed subsets.

Proposition 7. Let .X;B/ be a simple space, let� be a preference relation onF.X;B/, let

A1;A2; : : : be a sequence of�-null events inB, and letA D [nAn. Let B
C be the algebra

generated byB [ fAg. There is a unique preference relation�C on F.X;BC/ such that

�C \
�

F.X;B/ � F.X;B/
�

D �: (8)

Moreover, if the union of a sequence of events inB belongs toBC, then it is null according to�C

if and only if each event in the sequence is�-null. In particular,A is null according to�C.

Let .X;B; �; #/ be a simple structure, take a sequence of eventsEn 2 B, and letE D \nEn.

Based on the latter result, we say playeri is certain ofE at x 2 X , or thatE is # i.x/-certain,

provided thatEn is # i.x/-certain for alln. By the second part of the proposition, this is indeed

well-defined; in other words, certainty ofE does not depend on the particular sequence of events

En chosen; ifEn is # i.x/-certain for alln, then, for any other sequence of eventsE0
n 2 B such

thatE D \nE0
n, we have thatE0

n is # i.x/-certain for alln. Thus, for every playeri we define

C i.E/ D
˚

x 2 X W playeri is certain ofE atx
	

:

17



The fundamental and obvious property of the latter set is that it is itself closed. Indeed,

C i.E/ D
\

n�1

\

f;g;h2F.X /

˚

x 2 X W .hEnf; hEng/ 2 # i.x/
	

:

Thus, we can define recursively:E is 1-mutually certain atx 2 X if E is # i.x/-certain for every

playeri ; E is .m C 1/-mutually certain atx 2 X if E is m-mutually certain atx and, moreover,

MCm.E/ D
˚

x0 2 X W E is m-mutually certain atx0
	

is # i.x/-certain for every playeri ; finally, E is commonly certain atx 2 X if E is m-mutually

certain atx for all m. Observe that, sinceMCm.E/ is closed for everym, so is

CC.E/ D
˚

x 2 X W E is commonly certain atx
	

:

Given a simple structure.X;B; �; #/, a subspace of.X;B/ having the formE\CC.E/, where

E � X is closed, will be called aclosed common certainty component(or justclosed component)

of the structure. We stress thatm-mutual certainty, common certainty, and closed components

are defined only for simple structures and closed subsets of them. The following proposition col-

lects some important facts about mutual and common certainty. These are in fact straightforward

generalizations of analogous, well known results concerning probabilistic beliefs.22

Proposition 8. Let .X;B; �; #/ be a simple structure. For every sequence of closed subsetsAn of

X , lettingA D \nAn, the following hold:

(i) MCm.A/ D \nMCm.An/ for everym � 1.

(ii) If B is a closed subset ofX andA � B, thenMC1.A/ � MC1.B/.

(iii) If A � MC1.A/, thenA � CC.A/.

A subspace of.X;B/ is a closed component of.X;B; �; #/ if and only if it induces a simple

substructure of.X;B; �; #/.

Combining the last claim in the proposition with the resultsobtained in the previous section,

we finally arrive at the main result about common certainty and simple structures.

Theorem 3. A preference structure is simple and non-redundant if and only if it is isomorphic to

the substructure of the canonical structure induced by a closed component of the latter.

22See, for instance, the classic Monderer and Samet [22].
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Proof. Sufficiency is an immediate consequence of Proposition 8, whence necessity will also fol-

low, using Theorem 2, once we show that every simple and non-redundant structure is minimal.

Thus, suppose.X;B; �; #/ is simple and non-redundant, let
 be its generator, and let�0 be the

generated set of hierarchies. Since.X;B/ and .�;A/ are simple spaces and
 is continuous,

and since�0 is compact and.X;B; �; #/ is non-redundant, the mapping' W X ! �0 such that

x 7! 
 .x/ is injective, onto, and continuous, hence a homeomorphism (asX is compact and�0

is Hausdorff). Since�0 is a compact and hence closed subspace of�, by Lemma 2 every subset

of �0 that is both closed and open in�0 has the form�0 \ A, whereA 2 A. Thus, every sub-

set ofX that is both closed and open inX (hence every event inX , by Lemma 2) has the form

'�1.�0 \ A/ D 
�1.A/, whereA 2 A. Thus, by Proposition 5,.X;B; �; #/ is minimal.

Thus, the simple and non-redundant structures are (up to isomorphism) those sets of hierarchies

obtained imposing common certainty of a closed subset of hierarchies. Such structures are the

natural choice in a number of important cases. Section 6 below briefly discusses some of them.

5. Common Belief and Standard Savage Structures

For a preference structure.X;B; �; #/where the axioms of Savage hold everywhere, the notion of

certainty further extends to all sets in the�-algebra generated byB. This extension result provides

the key to all results in this section. We begin recording Savage’s theory and some extensions.

5.1. Savage Preferences and Savage Structures

Definition 5. Let .X;B/ be a space. A preference relation� 2 ….X;B/ is Savageif it satisfies

the following (for allf;g; h; h0 2 F.X;B/, all z; z0; z00; z000 2 Z, all A;B 2 B):

P1. If .f;g/ 62�, then.g;f /2�. If .f;g/2� and.g; h/2�, then.f; h/2�.

P2. If .fAh;gAh/ 2 �, then.fAh0;gAh0/ 2 �.

P3. If A is not�-null, then.zAf; z0Af / 2 � if and only if .z; z0/ 2 �.

P4. If .z; z0/ P2 � and.z00; z000/ P2 �, then.zAz0; zBz0/ 2 � if and only if .z00Az000; z00Bz000/ 2 �.

P5. There existz; z 2 Z such that.z; z/ P2 �.
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P6. If .f;g/ P2�, then there is a finite partitionfA1; : : : ;AN g � B of X such that.zAnf;g/2�

and.f; zAng/2� for all 1 � n � N .

The subspace of….X;B/ consisting of all Savage preference relations onF.X;B/ is denoted

…S.X;B/. The product space�I
iD1…S.X;B/ is denoted…I

S.X;B/. A Savage structureis a pref-

erence structure where P1–P6 hold at every state for every player — in other words, a preference

structure.X;B; �; #/ such that# i.x/ 2 …S.X;B/ for everyx 2 X and everyi D 1; : : : ; I .

The next result, henceforth referred to asSavage’s Theorem, is in fact an extension of Savage’s

original result. Before stating it, we need the following.

Definition 6. Let .X;B/ be a space. Abelief onB is a countably additive function� W B ! Œ0; 1�

with �.X / D 1. A belief � is finely rangedif for all A 2 B, all � > 0, and all0 � p � �.A/

there existsA � B 2 B such that�� < �.B/ � p < �. A belief � is convex rangedif for all

A 2 B and all0 � p � �.A/ there existsA � B 2 B such that�.B/ D p. The set of all finely

ranged beliefs onB is denoted by�FR.X;B/, the set�I
iD1�FR.X;B/ by�I

FR.X;B/. The set of

all convex ranged beliefs onB is denoted by�CR.X;B/, the set�I
iD1�CR.X;B/ by�I

CR.X;B/.

A utility function is a mappingu W Z ! Œ0; 1� such that maxz2Z u.z/ D 1 and minz2Z u.z/ D 0.

The set of all utility functions is denotedU, and the set�I
iD1U is denotedUI . Given another

spaceY and a function� W Y ! �I
FR.X;B/, the function mappingy 2 Y into the coordinate of

�.y/ corresponding to playeri is denoted�i . The analogous convention is adopted for functions

mappingY into�I
CR.X;B/ or intoU

I .

Savage’s Theorem.Let .X;B/ be a space. A preference relation� on F.X;B/ is Savage if and

only if there exist.u; �/ 2 U ��F.X;B/ such that, for allf;g 2 F.X;B/,

.f;g/ 2 � if and only if
X

z2Z

u.z/�
�

f �1.z/
�

�
X

z2Z

u.z/�
�

g�1.z/
�

: (9)

In this case,� andu are unique.

Proof. Kopylov [17] proves that a binary relation� onF.X;B/ satisfies P1–P6 if and only if there

exist a nonconstant functionu WZ !R and a finitely additive� W B ! Œ0; 1� with �.X / D 1 such

that (9) holds, and also proves uniqueness. The equivalence(in the presence of P1–P6) between

countable additivity of� and Monotone Continuity of� has been proved in Villegas [24] and

Arrow [1] for the case whereB is a�-algebra. Their proofs taken verbatim are valid even ifB is

assumed to be an algebra.

The pair.u; �/ satisfying (9) is theSavage representationof (or represents, or is inducedby)

the preference relation�. Note that an eventE 2 B is �-null if and only if�.E/ D 0.
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Lemma 7. Let .X;B/ be a space, letB� be the�-algebra generated byB, and let� be a belief

on B. There exists a unique belief�� on B
� whose restriction toB is �. Moreover,� is finely

ranged if and only if�� is convex ranged (equivalently, if and only if�� is non-atomic).

This extension result aboutbeliefscarries over topreferences, as the following proposition es-

tablishes. The latter allows us to extend the notion of certainty, at those points in a structure where

the axioms of Savage hold, to the�-algebra generated by the algebra of events in the structure.

Proposition 9. Let .X;B/ be a space and letB� denote the�-algebra generated byB. A prefer-

ence relation� on F.X;B/ is Savage if and only if there exists a Savage preference relation ��

onF.X;B�/ such that

�� \
�

F.X;B/ � F.X;B/
�

D �: (10)

In this case,�� is unique and furthermore, if� denotes the belief onB induced by� and��

denotes the belief onB� induced by��, then� is the restriction of�� to B. In particular, an

eventE 2 B is �-null if and only if it is��-null.

The preference relation�� in the latter result will be called theextensionof �.

Definition 7. Let .X;B; �; #/ be a structure, letB� be the�-algebra generated byB, and let

E 2 B
�. Playeri believesE at x 2 X if the preference relation# i.x/ is Savage and, furthermore,

X X E is null according to the extension of# i.x/ to F.X;B�/.

Let .X;B; �; #/ be a structure and letB
� be the�-algebra generated byB. For eachE 2 B

�

we define

C i
S.E/ D

˚

x 2 X W playeri is certain ofE at x
	

and MCS;1.E/ D \I
iD1C i

S.E/:

Observe thatC i
S.X / is the set allx 2 X such that# i.x/ is Savage — in particular, the structure

is Savage if and only ifX D MCS;1.X /. Note also that, by Proposition 6 and by the last claim in

Proposition 9, the definition above indeed agrees with the definition of certainty given earlier for

closed subsets of simple structures — i.e., if.X;B; �; #/ is simple andE � X is closed, then

C i
S.E/ D C i

S.X / \ C i.E/:

In order to speak of mutual and common belief we must show thatC i
S.E/ 2 B

� for eachE 2 B
�.

For sufficiently well-behaved structures, this is indeed one of the consequences of Proposition 10

below. Meanwhile, we prove the following.
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Lemma 8. Let .X;B; �; #/ be a structure and letB� be the�-algebra generated byB. If B is

countable, then, for everyi D 1; : : : ; I and every PD P1,. . . ,P6,

˚

x 2 X W # i.x/ satisfies P
	

2 B
�:

In particular, C i
S.X / 2 B

�.

Now, using Proposition 9 and the uniqueness in Savage’s Theorem, taking a (not necessarily

Savage) structure.X;B; �; #/ and again lettingB� be the�-algebra generated byB, for every

playeri one can define induced mappings

�i W CS.X / ! …S.X;B
�/; � i W CS.X / ! U; and ˇi W CS.X / ! �CR.X;B

�/

via the function# i . Namely,�i mapsx 2 MCS;1.X / into the extension of# i.x/ to F.X;B�/,

whereas� i andˇi mapx into the utility function and belief onB� induced by�i.x/, respectively.

The following important result builds on this observation.

Proposition 10. Let .X;B; �; #/ be a structure, letB� be the�-algebra generated byB, assume

B is either a countable algebra or a countably generated�-algebra,23 fix a playeri , and let

�i W CS.X / ! …S.X;B
�/; � i W CS.X / ! U; and ˇi W CS.X / ! �CR.X;B

�/

be induced by# i . Then, for allE 2 B
�, all z 2 Z, all u 2 R, all p 2 R, and allf;g 2 F.X;B�/,

˚

x 2 X W x 2 C i
S.X / and ˇi.x/.E/ > p

	

2 B
�; (11)

˚

x 2 X W x 2 C i
S.X / and � i.x/.z/ > u

	

2 B
�; (12)

˚

x 2 X W x 2 C i
S.X / and .f;g/ 2 �i.x/

	

2 B
�: (13)

Thus,.X;B; �; #/ is a Savage structure if and only if
�

X;B�; �; .�i/IiD1

�

is a Savage�-structure.

An immediate corollary of this proposition is that we can define mutual and common belief.

Under the notations and assumptions of the theorem, for every E 2 B
� we have

C i
S.E/ D

\

k�1

˚

x 2 X W x 2 C i
S.X / and ˇi.x/.E/ > 1 � 1=k

	

; (14)

23The latter means thatB D B
� and there exists a countable algebraB

0 that generatesB.
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soC i
S.E/ 2 B

� by (11) and hence alsoMCS;1.E/ 2 B
�. Thus, we can define

MCS;mC1.E/ D MCS;m.E/ \ MCS;1.MCS;m.E//

recursively for allm � 1, and finally

CCS.E/ D \m�1MCS;m.E/:

A subspace of.X;B/ of the formE \ CCS.E/, whereE 2 B
�, will be called aSavage common

belief component(or justSavage component) of the structure.X;B; �; #/. Note that the latter is

not assumed to be simple, nor is it assumed to be Savage — but ifit is both simple and Savage,

then a closed subspace is a Savage component if and only if it is a closed component. However,

we should stress that we do require thatB be either a countable algebra or a countably generated

�-algebra, and thatE 2 B
� — otherwise, mutual belief, common belief, and Savage components

are not defined (just like mutual certainty, common certainty, and closed components are defined

only for simple structures and closed subsets). Similarly to the first part of Proposition 8, by (14)

and by countable additivity of the belief̌i.x/ for all i D 1; : : : ; I and allx 2 C i
S.X /, we have

MCS;m.\nEn/ D \nMCS;m.En/ (15)

for everym � 1 and every sequence of eventsEn in B
�. Moreover,MCS;m.D/ � MCS;m.E/ for

all m � 1 and allD;E 2 B
� such thatD � E. Finally, E � CCS.E/ for all E 2 B

� satisfying

E � MCS;1.E/. Similarly to the last claim in Proposition 8, here we have the following.24

Proposition 11. Let .X;B; �; #/ be a preference structure, letB
� be the�-algebra generated by

B, and assumeB is either a countable algebra or a countably generated�-algebra. LetE 2 B
�

and letBE be the relative algebra, i.e. the algebra of all subsets ofE of the formE \ A where

A 2 B. Then.E;BE/ is a Savage component of.X;B; �; #/ if and only if .E;BE/ induces a

Savage substructure of.X;B; �; #/.

Note that, under the notations and assumptions of the proposition, sufficiency is lost if one

does not requireE 2 B
�. In other words, while it is true that a Savage component mustinduces

24The terminology in Proposition 11 is potentially misleading. When we say a structure.X;B; �; #/ is aSavage
substructureof a structure.Y;C ; &; �/, do we mean (i) that.X;B; �; #/ is a Savage structure, i.e. that# i.x/ 2

…S.X;B/ for every playeri and everyx 2 X , or (ii) that � i.y/ 2 …S.Y;C/ for every playeri and everyy 2 X ?
The issue is, however, immaterial. It can be easily shown that (i) and (ii) are equivalent. See also the discussion in
Subsection 6.1.
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a Savage substructure,25 it is not true that a Savage substructure whose underlying set is not in B
�

is induced by a Savage component. This is analogous to the fact that only the simple substructures

of a simple structure are induced by its closed components.

5.2. Common Belief and the Canonical Savage Structure

The �-algebra on� generated byA will be henceforth denoted byA�. In this subsection we

will prove a theorem analogous to Theorem 3, establishing equivalence between certain well-

behaved Savage structures — which we will callprestandard— and the Savage components of

the universal structure. We will also construct a Savage substructure of the universal structure with

the property that the Savage components of its associated (by Proposition 10) Savage�-structure

are isomorphic to certain well-behaved Savage�-structures — which we will callstandard Borel.

In order to better put the results in context, we would like tospend a few more comments on the

implications of Proposition 10 above.

In the traditional game-theoretic framework, one often assumes objects of the form

�

X;B�; �; �; ˇ
�

(16)

whereB
� is a�-algebra onX , the mapping� W X ! S is assumed to be measurable, and the

mappings� i W X ! U andˇi W X !�F.X;B
�/ are assumed to satisfy

˚

x 2 X W � i.x/ > u
	

2 B
� and

˚

x 2 X W ˇi.x/ > p
	

2 B
� (17)

for all u;p 2 R. The latter requirements, equivalent to measurability of� i andˇi in the usual

sense,26 coincide with (11) and (12) if the structure assumed in the proposition is in fact Savage

(so thatC i
S.X / coincides withX for each playeri ). Let us call an object of the form (16) with

these properties asubjective expected utility interactive system, or SEU systemfor short. If one

assumes such an object, then one can define� W X ! …I
S.X;B

�/ via � andˇ and conclude that

the tuple
�

X;B�; �; �/ is a Savage�-structure, because (13) is indeed an obvious consequence of

25If .E;BE/ is a Savage component, then Proposition 10 implies thatE 2 B
�, thus Proposition 11 implies that

.E;BE/ induces a Savage substructure of.X;B; �; #/.
26The two conditions in (17) are equivalent to measurability of � i andˇi with respect toB� whenU is seen as

a subset ofRZ and endowed with the usual (relative) product Borel�-algebra, and�F.X;B
�/ is endowed with the

�-algebra generated by the sets of the formf� 2 �F.X;B
�/ W �.E/ > pg whereE 2 B

� andp 2 R. The latter�-
algebra has been widely used in the literature on type spaces. As is well known, if.X;B�/ is a standard Borel space
(see Definition 8 below), then this�-algebra coincides with the (relative) Borel�-algebra generated by the weak*
topology on the set of all beliefs onB�.
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(11) and (12). But Proposition 10 says much more. First, it says that we can go the other way

around, that is, assume a Savage�-structure andobtainan associated SEU system, proving (17)

from (13). Second, and much more importantly, it says that wecan do soeven if all we assume at

the beginning is a Savage structure with a countable algebraof events. This much more elementary

structure will be enough to generate both the Savage�-structure and its associated SEU system.

The results below will push these conclusions even further.In thestandardcase it will be enough

to start with aminimalstructure.

Definition 8. An uncertainty space.X;B/ is standard Borel(resp.prestandard) if the algebraB

is (resp. is countable and generates) the Borel�-algebra generated by a Polish topology onX . A

preference structure isstandard Borel(resp.prestandard) if the underlying uncertainty space is

standard Borel (resp. prestandard). A structure that is either prestandard or standard Borel will be

calledstandard.

Every simple space is prestandard, because every second countable compact Hausdorff topo-

logical space is Polish. In particular,.�;A/ is prestandard and.�;A�/ is standard Borel. Note

also that if.X;B/ is a standard Borel space, then there exists a countable algebraB
0 on X such

that B
0 generatesB and therefore.X;B 0/ is prestandard; for example, one can takeB

0 to be

the algebra generated by some countable base for the Polish topology generatingB. Proposition

12 below shows that the latter remark about standard Borelspacescarries over to standard Borel

structuressatisfying non-redundancy. Before stating the result, a few comments are in order.

In general, the minimal structure associated to a structure.X;B; �; #/ may involve loss of

information; its algebra of events need not generateB. In such a case not only do we lose the

convenience of working with a much more manageable object (the associated minimal structure),

but the generator of.X;B; �; #/ is not guaranteed to map events inB into events inA or even

A
�, making the interpretation of an event inB problematic. While Proposition 10 establishes

the important conclusion that a Savage structure has a unique associated Savage�-structure, it is

equally important to establish the converse of this conclusion. Namely, we would like to be assured

that if a Savage�-structure is reduced to a simpler object — a structure with acountable algebra

of events — then no information is lost, in the sense that applying Proposition 10 we recover the

same�-structure. In particular, we would like this to be true if the �-structure is reduced to its

bare minimum, i.e. to the associated minimal structure, since only with reference to this minimal

structure does Theorem 2 apply. Indeed, as the latter theorem makes clear, an event that cannot

be constructed from the events in the associated minimal structure is problematic, in the sense that

it cannot have an unambiguous interpretation in terms of preference hierarchies, i.e. in terms of

events inA. Such a problematic event, however, cannot exist in the non-redundant, standard case;
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this is precisely what the following result establishes.

Proposition 12. Let .X;B; �; #/ be a non-redundant standard structure and let
 W X ! � be

its generator. Then the�-algebra generated byB is also generated by the algebra of all sets of

the form
�1.A/ whereA 2 A. Thus, in particular,
 .E/ 2 A
� for all E 2 B.

Note that in the latter proposition we do not require.X;B; �; #/ to be Savage; nevertheless

we choose to state the result here, since it has to do with�-algebras, which we explicitly use only

for Savage preferences. The latter result, together with Proposition 10, guarantees that working

with a non-redundant standard Borel Savage structure is equivalent to working with the associated

minimal (and necessarily also Savage, by Proposition 9) structure. In other words, a preference

�-structure is non-redundant, standard Borel, and Savage ifand only if its associated minimal

structure is minimal, non-redundant, prestandard, and Savage. We are now ready to prove the

main results in this section.

Theorem 4. A preference structure is minimal, non-redundant, prestandard, and Savage if and

only if it is isomorphic to the substructure of the canonicalstructure induced by a Savage compo-

nent of the latter.

Proof. By Theorem 2, a structure.X;B; �; #/ is minimal, non-redundant, and Savage if and only

if it is isomorphic to the Savage substructure of.�;A; %0;$/ induced by the set of hierarchies

generated by.X;B; �; #/. By Proposition 11, this set is a Savage component if and onlyif it

belongs toA�. By Proposition 12, this is equivalent to.X;B; �; #/ being prestandard.

Now let�S D CCS.�/. This is the subset of� where all players’ preferences are Savage

and this is common belief. LetAS and A
�
S denote the relative algebra and�-algebra on�S,

respectively. Namely,AS is the algebra of sets of the formA \�S, whereA 2 A, andA
�
S is the

�-algebra generated byAS, which is the same as the�-algebra of sets of the formE \�S, where

E 2 A
�. Since

�S D MCS;1.�/ \ CCS.MCS;1.�//;

the space.�S;AS/ is a Savage component of the universal structure and thus induces, by Proposi-

tion 11, a Savage substructure of the universal structure. This Savage substructure is

�

�S;AS; %0S;$S

�

(18)

where%0S W �S ! S is the restriction of%0 to�S and$ i
S W �S ! …S.�S;AS/ maps

! 7!
˚

.f B �;g B �/ W .f;g/ 2 $ i.!/
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(where� W �S ! � is the inclusion mapping). By Proposition 10, the structure(18) in turn induces

a Savage�-structure, namely
�

�S;A
�
S; %0S;$

�
S

�

(19)

where$�i
S W �S ! …S.�S;A

�
S/ is the mapping induced by$ i

S — see the observation imme-

diately preceding Proposition 10. We call the preference structures (18) and (19) thecanonical

Savage structureand thecanonical Savage�-structure, respectively. Our last theorems show that

these structures also feature universality properties, relative to Savage’s axioms.

Before stating the results, one more definition is needed. Wesay a Savage structure.X;B; �; #/

is belief completeif the mapping fromX into S �…I
S.X;B/ such thatx 7! .�.x/; #.x// is onto.

If, in addition, the inverse of this mapping exists and is measurable, we write

.X;B; �; #/ ŠS S �…I
S.X;B/:

Theorem 5. .�S;AS; %0S;$S/ ŠS S �…I
S.�S;AS/.

Proof. We only need to prove that the mapping fromX into S � …I
S.X;B/ such thatx 7!

.�.x/; #.x// is injective and onto, as measurability and measurability of its inverse are imme-

diate consequences of Theorem 1. Let� W �S ! � denote inclusion. Being a substructure of the

universal structure, the canonical Savage structure satisfies (7), i.e.

˚

.f;g/ 2 F.�;A/ � F.�;A/ W f B � D g B �
	

� $ i.!/ 8i D 1; : : : ; I; 8! 2 �S: (20)

If ! and!0 are distinct elements of�S, then, by Theorem 1, either%0S.!/ ¤ %0S.!
0/, or$ i.!/ ¤

$ i.!0/ for some playeri , or both. In the latter case, by (20), we have.f;g/ 2 $ i.!/ \$ i.!0/

for all f;g 2 F.�;A/ that coincide on�S, hence$ i
S.!/ ¤ $ i

S.!
0/. This establishes injectivity.

To prove ontoness, pick anys 2 S and any.�1
S ; : : : ; �

I
S / 2 …I

S, and for each playeri define

� i D
˚

.f;g/ 2 F.�;A/ � F.�;A/ W .f B �;g B �/ 2 � i
S

	

:

This relation is Savage, and by reflexivity of� i
S it satisfies.f;g/ 2 � i for all f;g 2 F.�;A/ that

coincide on�S. Since the universal structure is complete, there exists! 2 � such that%0.!/ D s

and$.!/ D .�1; : : : ; �I /. But, for all m � 1, the set� X MCS;m.�/ is null according to the

extension of� i to F.�;A�/, therefore! 2 �S, thus ontoness is established.

The main results obtained so far in this section can be then summarized as follows:

�

�S;AS; %0S;$S

�

�! S �…I
S

�

�S;AS

�

�! S � U
I ��I

FR

�

�S;AS

�
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# # #
�

�S;A
�
S; %0S;$

�
S

�

�! S �…I
S

�

�S;A
�
S

�

�! S � U
I ��I

CR

�

�S;A
�
S

�

This diagram commutes, and indeed every arrow denotes a bijection. The upper-left and bottom-

left horizontal arrows denote, in fact, measurable bijections with measurable inverses; the upper-

left one is the isomorphism established Theorem 5, the bottom-left one, by Proposition 10, be-

comes measurable with a measurable inverse, provided that each…S.�S;A
�
S/ is endowed with the

�-algebra generated by the sets of the form

˚

�� 2 …S

�

�S;A
�
S

�

W .f;g/ 2 ��
	

; (21)

wheref;g 2 F.�S;A
�/. This means that the canonical Savage�-structure is also belief complete,

and indeed satisfies the analogous of Theorem 5. The upper-right and bottom-right horizontal

arrows in the diagram refer to the equivalence established by Savage’s Theorem; by Proposition

10, the bottom-right one also denotes a measurable bijection with measurable inverse, provided

that (i) the set…S.�S;A
�
S/ has the�-algebra generated by the sets (21), and (ii) the setsU and

�I
CR.�S;A

�
S/ are endowed, respectively, with the�-algebras generated by the sets of the form

˚

u 2 U W u.z/ > a
	

and
˚

�� 2 �CR.�S;A
�
S

�

W ��.E/ > p
	

;

wherea;p 2 Œ0; 1� andE 2 A
�
S. Finally, the bijections denoted by the left, middle, and right

vertical arrows follow from Proposition 10, Proposition 9,and Lemma 7, respectively.

Theorem 6. A preference structure is minimal, non-redundant, prestandard, and Savage if and

only if it is isomorphic to the substructure of the canonicalSavage structure induced by a Savage

component of the latter. A preference�-structure is non-redundant, standard Borel, and Savage if

and only if it is isomorphic to the�-substructure of the canonical Savage�-structure induced by

a Savage component of the latter.

Proof. The second claim is an obvious consequence of the first — see the observation immediately

preceding Theorem 4. By the latter theorem and by Proposition 11, a preference structure is

minimal, non-redundant, prestandard, and Savage if and only if its generated set of hierarchies�0

belongs toA� and induces a Savage substructure of the universal structure. Again by Proposition

11, a subspace�0
S of the universal Savage structure is a Savage component of the latter if and

only if it satisfies�0
S 2 A

�
S and induces a Savage substructure of the universal Savage structure.

Thus, in order to prove the first claim, it suffices to show thatevery�0 2 A
� inducing a Savage

substructure of the universal structure must also induce a substructure of the Savage universal
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structure, and for this it suffices to prove�0 � �S. Now by (7) we have�0 � MCS;1.�
0/ and,

therefore,�0 � CCS.�
0/. Since�0 � �, we also haveCCS.�

0/ � CCS.�/. Thus,�0 � �S.

Together with Proposition 10 and Theorem 4, the result aboveprovides Savage-like foundations

for non-redundant, standard Borel SEU systems. These are tuples of the form (16), where the

underlying space is a standard Borel space such that distinct points are separated by the smallest

�-algebra satisfying (17). Such objects can be interpreted in several ways. One can think of them

(Theorem 4) as the Savage components of the universal structure, obtained imposing (Savage’s

axioms, common belief of Savage’s axioms, and) common belief of some eventE 2 A
�. This is

certainly the more basic interpretation, as it takes the space of coherent hierarchies as primitive.

But one can also think of them (Theorem 6) as common belief components of the canonical Savage

structure, or of the canonical Savage�-structure, obtained imposing common belief of some event

E 2 A
�
S. Indeed, the canonical Savage structure is itself induced by a common belief component

of the universal structure, hence can be regarded as an uncertainty space in its own right — the

space that is in fact more convenient to use, as is done in traditional game-theory,27 in all cases

where the axioms of Savage are assumed to hold.

6. Discussion and Extensions

6.1. Closed Sets of Axioms and Relative Universality

Consider the universal structure.�;A; %0;$/ and pick an arbitrary set of axioms for a preference

relation onF.�;A/. Say that this set of axioms isclosedif the subset of….�;A/ where the ax-

ioms are satisfied is closed. If we choose a closed set of axioms for each player (possibly different

sets of axioms for different players), then the results in Subsection 4.1 guarantee that a suitably

constructed closed component of the universal structure will feature both the axioms and common

certainty of them.28 Let .�A;AA; %0A;$A/ denote the substructure of the universal structure in-

duced by this closed component, and say a preference structure .X;B; �; #/ is consistentwith the

chosen axioms if, for every playeri and for allx 2 X , the preference relation$ i.
 .x// induced

on F.�;A/ satisfies the set of axioms chosen for playeri . (As usual,
 denotes the generator

27The universal beliefs space in Mertens and Zamir [21] includes, of course, atomic beliefs, whereas our universal
Savage�-structure does not admit them. Except for this, and except for the fact that our basic uncertainty spaceS is
finite (theirs is only assumed compact Hausdorff), the universality properties are exactly the same.

28By definition of closed set of axioms, using Theorem 1, the setof all ! 2 � such that, for every playeri , the
preference relation$ i.!/ satisfies the set of axioms chosen for playeri , is a closed subset of�, i.e. an intersection
of events inA.
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of the structure.) One claim that is certainly true is then the following: every simple and non-

redundant structure consistent with the chosen sets of axioms must be isomorphic to a substructure

of .�A;AA; %0A;$A/. Thus, the latter is universalrelativeto the chosen sets of axioms.

It is important to observe that, while this universality property resembles the one established

in the first part of Theorem 6 for the universal Savage structure .�S;AS; %0S;$S/ relative to

Savage’s axioms, the two properties are conceptually and technically different. The hypotheses

(resp. conclusions) of the necessity (resp. sufficiency) statement in the first part of Theorem 6 say

that .X;B; �; #/ is Savage,not that it is consistent with Savage’s axioms, although the latter is

indeed one of the conclusions (resp. hypotheses) in that statement.29 Saying that for some playeri

and somex 2 X the relation# i.x/ on F.X;B/ satisfies a certain set of axioms is, in general,not

the same as saying that the preference relation$ i.
 .x// induced onF.�;A/ also satisfies those

axioms,30 although for Savage’s P1–P6 the two claims are indeed equivalent. This implies that,

depending on the specific closed sets of axioms used to construct the structure.�A;AA; %0A;$A/,

the latter’s relative universality property stated in the previous paragraph may fail to hold if “con-

sistent with the chosen sets of axioms” is replaced by “such that the players’ preferences satisfy

the chosen sets of axioms”. The upshot of this whole discussion is that, in applications of our

model, if one assumes a structure.X;B; �; #/ such that# i.x/ satisfies a certain axiom for every

x 2 X , then one cannot always (i.e. regardless of the chosen axiom) interpret this structure as a sit-

uation where playeri ’s preferences (on the spaceF.�;A/) satisfy that axiom and this is common

certainty among all players.31

Finally, it would be desirable to know just what sets of axioms are closed. While giving even

a partial list goes beyond the scope of this paper, a perfunctory investigation already reveals a

few facts. Roughly, all finite or countable sets of axioms — where each axiom involves only

the quantifier “for all” applied to events, outcomes, acts, finite partitions of the space into events,

29Requiring that.X;B; �; #/ be Savage means imposing that# i.x/ satisfies P1–P6 for every playeri and all
x 2 X . Requiring that.X;B; �; #/ be consistent with Savage’s axioms means imposing that$ i.
 .x// satisfies P1–
P6 for every playeri and allx 2 X . These are logically distinct requirements and may fail to be equivalent if P1–P6
are replaced by another set of axioms.

30 Note that, by (4), the relation$ i.
 .x// is the same asy
 .# i.x//, where y
 W ….X;B/ ! ….�;A/ is the
mapping induced by
 . This makes it easy to show that, for example,completenessis preserved, i.e. that$ i.
 .x// is
complete if# i.x/ is complete. Indeed, letf;g 2 F.�;A/. Since
 is measurableB=A, bothf B 
 andg B 
 belong
to F.X;B/. Thus, if# i.x/ is complete, then we have either.f B
;g B
 / 2 # i.x/, or .g B
; f B
 / 2 # i.x/, or both,
hence (by definition of the induced mappingy
 ) we have either.f;g/ 2 y
 .# i.x//, or .g; f / 2 y
 .# i.x//, or both. For
an example showing an axiom that is not preserved, assumeI D 2 andZ D fz; z0g and fixs 2 S . Let .X;B; �; #/ be
a preference structure whereX D fxg is a singleton — such a structure is automatically simple andnon-redundant,
hence also minimal — with�.x/ D s and#1.x/ D #2.x/ D f.z; z0/; .z; z/; .z0; z0/g. The latter preference relations
clearly satisfyantisymmetry, i.e. for each playeri and for allf;g 2 F.X / we havef D g whenever.f;g/ 2 # i.x/

and.g; f / 2 # i.x/. However, the preference relationsy
 .#1.x// andy
 .#2.x// violate antisymmetry, because, by (7),
they both contain all pairs.f;g/ 2 F.�;A/ � F.�;A/ such thatf .
 .x// D g.
 .x//.

31By contrast, for Savage’s axioms this interpretation is perfectly legitimate (first part of Theorem 6).
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etc. — are closed. For example, all of Savage’s axioms exceptP6 are closed (when each is

seen as a set of axioms) and therefore any set of axioms comprising one or more of P1,. . . ,P5 is

closed. Indeed, when dealing with structures where the family of events is countable, every axiom

involving conditions of the form “for every eventA”, “for all acts f andg”, etc. can be written

as a countable intersection of events. On the other hand, P6 does not have this form. Indeed, P6

corresponds to a countable intersection of countable unions (“for every outcome and every pair

of acts, there exists a finite partition such that . . . ”). As a result, there is no substructure of the

universal structure that is universal relative to P6 only.

6.2. Own Strategies and Preferences

It is easy to construct a closed component of the universal structure where (i) every player is certain

of his own strategy and preferences, and (ii) there is commoncertainty of (i). It suffices to note

that, for alli D 1; : : : ; I , the singletons inS i �….�;A/ are closed, so the set

Di D
˚

! 2 � W playeri is certain at! of .%i
0/

�1.%i
0.!// \ .$ i/�1.$ i.!//

	

(where%i
0 W � ! S i is the mapping induced by%0 in the obvious way) is well defined and closed.

In other words, playeri ’s certainty of playeri ’s own strategy and preferences is a closed set of

“axioms” for playeri . Thus, the setD D \I
iD1Di is also closed, hence�O D D \ CC.D/ is a

closed component of the universal structure. The associated substructure is in fact itself universal,

relative to the property that all players are certain of their own strategies and preferences and this

is common certainty.32 Observe also that the set�S \�O belongs toA�, therefore

�SO D
�

�S \�O

�

\ CCS

�

�S \�O

�

induces a Savage substructure of the universal structure. This structure will have (and will be in

fact universal relative to) the property that all players’ preferences satisfy P1–P6, all players are

certain of their own strategies and preferences, and this iscommon belief.

32Contrary to certain other sets of axioms (like, for instance, antisymmetry — see Footnote 30), certainty of one’s
own strategy and preferences is a property thatis preserved under the generator of a structure. In other words, take
a structure.X;B; �; #/ and let
 be its generator. Suppose that, at everyx 2 X , every playeri is # i.x/-certain of
.� i/�1.� i.x// and.# i/�1.# i.x//. (Here� i W X ! S i is the mapping induced by� in the obvious way.) Then, for
everyx 2 X , every playeri is$ i.
 .x//-certain at
 .x/ of both.%i/�1.%i.
 .x/// and.$ i/�1.$ i.
 .x///. Note that,
more generally, one can consider a subset of playersJ � I , defineD as\i2J Di instead, and obtain a substructure
where all players inJ are certain of their own strategies and preferences, and this is common certainty among all
players; this substructure will be again universal, relative to the latter property.
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6.3. Rationality

Recall that in Section 2, among the other basic ingredients for our analysis, we have assumed an

outcome function� W S ! Z. This was necessary in order to view a player’s strategy as anact,

although it played no role in our analysis.33 It is also necessary in order to discussrationality. Let

.X;B; �; #/ be a preference structure and let� W S ! Z be an outcome function. For every player

i , identify eachsi 2 S i with the act mappingS into Z such that.zsi; s�i/ 7! �.si; s�i/ for every

zsi 2 S i and everys�i 2 S�i. Playeri is rational atx 2 X if there does not existsi 2 S i such that

.si; � i.x// P2 # i.x/. It is clear thati ’s rationality, seen as a set of “axioms”, is closed, i.e. theset

Ri D
˚

! 2 � W playeri is rational at!
	

is closed. Thus,R D \I
iD1Ri is also closed, and�R D R \ CC.R/ is a closed component of

the universal structure. This is the set of hierarchies featuring all players’ rationality and common

certainty of rationality.

6.4. On the Role of Reflexivity, Transitivity, and Monotone Continuity

While the main results in the paper depend heavily on reflexivity, transitivity, and monotone con-

tinuity, the first use of these properties (reflexivity) appears in the proof of Lemma 6. Indeed,

transitivity and monotone continuity appear for the first time even later, in the proof of Proposition

6. In particular, the analogue of Proposition 3 — and indeed the analogue of every result appear-

ing before Lemma 6 — could be proved even if we were to define preference relations as arbitrary

binary relations. One needs reflexivity to establish the crucial fact that a subspace of a structure

induces a substructure if and only if it satisfies (2), whereas transitivity and monotone continuity

are (mainly) needed to talk about certainty of closed subsets, i.e. to prove Proposition 7. But we

assumed monotone continuity at the outset for another important reason as well, namely, because

monotone continuity (seen as a set of axioms) isnot closed in the sense of Subsection 6.1 above.34

33Specifying the outcome function since the beginning is alsoimportant from a conceptual and methodological point
of view; presumably, a player’s beliefs about the other players’ strategies and beliefs (more generally, the player’s
preferences and higher-order preferences) depend not juston the other players’ strategy sets, but also, and more
importantly, on how strategy profiles translate into outcomes.

34Even though it has the “for all” form, monotone continuity (as a set of axioms) is not closed if the family of events
is not finite. This is because requiring that some property holds “for all n large”, as monotone continuity does, means
considering a countable union of countable intersections.In fact, we suspect that in the Savage case there is an even
more serious problem when not assuming monotone continuity. Namely, we conjecture that given a measurable (say,
standard Borel) spaceX , the set of all countably additive probability measures onX is not a measurable subset of
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In other words, while monotone continuity is crucial to guarantee uniqueness of the extension of

a preference relation (both in the simple case, as in Proposition 7, and in the Savage case, as in

Proposition 9), it is a property that cannot be imposeda posteriori, even if we were willing to

define certainty of closed subsets anyway (just saying, as wedid, that certainty of an intersection

of events in a simple structure means that the complements ofthese events are all null), that is,

without the justification provided by Proposition 7.

6.5. Coherency and Common Certainty of Coherency

The results in Section 4 suggest an alternative route to the construction of the universal structure,

following the approach of Brandenburger and Dekel [7] to coherency. Specifically, one can con-

struct the space of all hierarchies of preference relations(including those violating coherency) and

then impose coherency and common certainty of coherency, thus obtaining a preference structure

isomorphic to the universal structure.

Define recursivelyW0 D S andWnC1 D Wn � …I .Wn/ for all n � 0. Let dnC1 denote the

projection ofWnC1 on…I .Wn/. Let W D W0 � W1 � � � � be endowed with the algebra of sets

of the formr�1
n .A/ wheren � 0, A � Wn is an event, andrn W W 0 ! Wn denotes the natural

projection. By the same arguments as in the proofs of Propositions 2 and 3, the spaceW is simple,

and eachcoherent hierarchy— i.e. sequencew 2 W such that.d i
n�1 B rn/.w/ is the preference

relation onF.Wn�1/ induced by.d i
n B rnC1/.w/ — maps into a unique element of…I .W /. Thus,

using Proposition 7, a player’s certainty of a closed subsetof W can be defined at every coherent

hierarchyw. But the setWc of all coherent hierarchies inW is itself a closed subset ofW , and

therefore so is

Wc D MC1.Wc/ \ MC1.MC1.Wc// \ � � � ;

whereMC1.E/ is the closed subset ofW defined for every closed subsetE of W as

MC1.E/ D
˚

w 2 Wc W every player is certain ofE atw
	

:

It is then easy to construct a bijection� W � ! Wc that is measurableA=C , whereC is the

relative algebra onWc inherited fromW . Moreover,��1 will be also measurable, and there will

be a function$c W Wc ! …I .Wc/ such that$ i
c B � D y� B $ i for all i D 1; : : : ; I , where

the set of allfinitely additiveprobability measures onX , when the latter has the�-algebra generated by the sets of
the formf� W �.E/ > pg. In other words, we suspect that one cannot even assume a SEU system without countable
additivity, because the latter would not be an event and thuscould not be imposed (if so desired) by enclosing it in a
suitably constructed common belief subspace.
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y� W ….�/ ! ….$c/ is the mapping induced by�. This will make.Wc;C ; r0;$c/ into a well

defined structure, isomorphic to the universal structure.

This approach, the one that Epstein and Wang [9] in fact adopted, is essentially equivalent to

ours. In this paper coherency is built-in, whereas in the alternative construction it is imposeda

posterioriand is what guarantees the construction closes. Indeed, we followed a modeling strategy

similar to the latter when dealing with Savage substructures of the universal structure. In the

construction sketched above, coherency guarantees existence of the mapping$c, thus coherency

itself, together with the fact thatWc is closed inW , ensures that we can meaningfully speak

of common certainty of coherency. Similarly, as shown in Section 5, axioms P1–P6 ensure an

extension result (Proposition 9) analogous to Proposition7, the extension concerning all sets in

the�-algebra generated by the events; moreover, the set of hierarchies! 2 � such that$ i.!/

satisfies P1–P6 for every playeri belongs to the�-algebra generated byA. Thus Savage’s axioms

themselves guarantee we can meaningfully talk about commoncertainty of them.

6.6. Complete Information and Subjective Correlated Equilibrium

Fix a utility functionu
i W Z ! R for every playeri . By (12) in Proposition 10, the set

D D
˚

! 2 � W ! 2 �SO and$ i.!/ inducesui for all i D 1; : : : ; I
	

;

where�SO is as in Subsection 6.2 above, belongs toA
�. Thus,�SOC D D \ CCS.D/ is a Savage

component of the universal structure, hence it induces a Savage substructure and (by the last claim

in Proposition 10) has a unique associated Savage�-structure, where the family of events is the

�-algebraA
�
SOC of all sets of the form�SOC \ E, whereE 2 A

�. Now let�SOC andˇSOC denote

the associated mappings

�SOC W �SOC ! U
I and ˇSOC W �SOC ! �I

F

�

�SOC;A
�
SOC

�

as in Proposition 10. Then
�

�SOC;A
�
SOC; %0SOC; �SOC; ˇSOC

�

is a complete information SEU system, i.e. a SEU system where players may be uncertain about

other players’ beliefs, but are certain of their own strategies, beliefs, and utilities, certain of the

other players’ utilities, and commonly certain of these certainties. Such a SEU system is essen-

tially identical to the mathematical object assumed in the original definition of (a posteriori) sub-
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jective correlated equilibrium. In particular, Aumann [2] explicitly imposes non-atomicity, which

in Savage’s context (P6) and ours is precisely what guarantees existence and uniqueness of beliefs.

While without a doubt an interesting exercise, a full exploration of the precise connections between

Aumann’s (and also Forges’s [10]) theory and ours goes, however, beyond the scope of this paper.

6.7. States of Nature and Strategies as Simple Spaces

The results in this paper — all of them, as stated and none excluded — remain valid if, instead of

assuming thatS andZ are finite, we assume thatS0 andS1; : : : ;SI are simple spaces andZ is

countable, provided that acts are restricted to besimple, i.e. finite-valued. Indeed, all proofs, taken

almost verbatim, still work in this case. This is because thefamily of finite-valued, measurable

mappings from a simple space into a countable set (where the latter is endowed with the algebra of

all its subsets) is countable, and this is all one actually needs. We assumedS andZ are finite,not

because this makes the analysis simpler, but rather becauseit seems inappropriate to assumeS i is

simple — hence possibly uncountable — when the set of acts mapping S into Z, which should

includethe setS i , turns out to be countable.35

7. Proofs

Proof of Proposition 1. Pick an injective function� W F.X /� F.X / ! N such that��1.n/ ¤ ¿

for everyn � 1 such that��1.n C 1/ ¤ ¿. Such function clearly exists, asX is simple and

thus F.X / and F.X / � F.X / are countable. Now let….X / denote the set of all subsets of

F.X /�F.X /, and define a metric on….X / by lettingd.�; � 0/ D 0 if � D � 0 andd.�; � 0/ D 1=n

if n is the smallestk 2 N such that��1.k/ 2 � X � 0 or ��1.k/ 2 � 0 X �. The induced topology

clearly makes….X / either discrete — this is ifZ andX are actually finite, in which caseF.X /

is finite and so….X / is also finite — or homeomorphic to the Cantor setf0; 1gN . Thus,….X / is

35Here is a somewhat more detailed explanation. AssumeZ is countable andS0 and eachS i are simple; denote
the product algebra onS by S . The outcome function� W S ! Z should then satisfy��1.z/ 2 S for all z 2 Z.
Since each element ofS is both closed and open andS is compact, there exists a finite subsetZ 0 � Z such that
˚

��1.z/ W z 2 Z 0
	

is a finite partition ofS . A preference relation� i on the set of measurable mapsf W S ! Z (by
the same proof given for�, each such map is automatically finite-valued) does induce apreference relation onS i , since
eachsi 2 S i can be seen — as explained in Subsection 6.3 — as such a map. However, this involves considerable
identification amongi ’s strategies; it implies existence of afinite partition ofS i such that any two strategies in the
same element of the partition correspond to the same act and thus are, by reflexivity of� i , indifferent toi . In other
words, while not more complicated at the technical level, these more general assumptions do not go much farther.
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compact Hausdorff, and everyd-open ball is also closed. Let

…f;g.X / D
˚

� 2 ….X / W .f;g/ 2 �
	

for everyf;g 2 F.X / and note that, if�.f;g/ D n and Pn denotes the set of all mappings

p W f1; : : : ; ng ! f0; 1g such thatp.n/ D 1, one has

…f;g.X / D
[

p2Pn

n
\

kD1

˚

� 2 ….X / W ��1.k/ 2 � if and only if p.k/ D 1
	

:

This shows that…f;g.X / is a finite union ofd-open balls, hence both closed and open. Conversely,

everyd-open ball can be written as

n
\

kD1

˚

� 0 2 ….X / W ��1.k/ 2 � 0 if and only if ��1.k/ 2 �
	

for some� 2 ….X / and somen, thus everyd-open ball is an event in the algebra on….X /

generated by the sets of the form…f;g.X /. We conclude that….X / equipped with this algebra is

a simple space. It remains to prove….X / is d-closed. This is indeed immediate, as….X / is an

intersection of closed subsets of….X /, namely, the intersection of all sets having either the form

…f;f .X / wheref 2 F.X / — this guarantees reflexivity — or the form

…f;h.X / [
�

….X /X…f;g.X /
�

[
�

….X / X…g;h.X /
�

wheref;g; h 2 F.X / — this guarantees transitivity. (Monotone continuity is automatically satis-

fied by every binary relation in….X /, sinceX is simple.)

Proof of Lemma 4. The third statement follows from the first, using Lemma 3 and the fact that

each�n is finite, hence simple. The second statement clearly implies the first and, sinceZ has at

least two elements, it is obviously true forn D 0. Let n � 1 and suppose (induction hypothesis)

that, for all!n�1 2 �n�1, the set��1
n�1.!n�1/ has two or more distinct elements. Fix!n 2 �n and

consider, for each playeri , the preference relations

� i D
˚

.f; f / W f 2 F.�n/
	

[
˚

.f B�n�1;g B�n�1/ W .f;g/ 2 ıi
n.!n/

	

; � 0i D � i [
˚�

f 0;g0
�	

;

wheref 0 andg0 are arbitrarily chosen, distinct acts inF.�n/ such thatf 0 ¤ f B �n�1 ¤ g0

for all f 2 F.�n�1/. (Suchf 0 andg0 exist due to the induction hypothesis.) These are distinct
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preference relations, and clearlyy�n�1.�
i/ D y�n�1.�

0i/ D ıi
n.!n/. Thus,.!n; .�

1; : : : ; �I // and

.!n; .�
01; : : : ; � 0I // are distinct elements of�nC1. Thus, for all!n 2 �n, the set��1

n .!n/ has at

least two distinct elements.

Proof of Proposition 3. As a preliminary step, we prove that for everyf 2 F.�/ there exist

n � 0 andg 2 F.�n/ such thatf D gB%n. Indeed, by definition ofA, for everyz 2 Z there exist

nz � 0 and an eventEz � �nz
such thatf �1.z/ D % �1

nz
.Ez/. SinceZ is finite,n D maxz2Z nz

is a well defined finite number, and the collection of sets of the form��1
n .� � � .��1

nz
.Ez///, where

z 2 Z, is a finite partition of�n. Thus,f D g B %n, whereg 2 F.�n/ maps each!n 2 �n

into the uniquez 2 Z whose corresponding element of the partition contains!n. The proof of the

preliminary step is complete. Now note that, as an immediateconsequence of our definitions, for

all i D 1; : : : ; I and alln � 1 we haveıi
n B %n D y�n�1 B ıi

nC1 B %nC1. Furthermore, by induction

using the latter, for alli D 1; : : : ; I andm � n � 1 we have

ıi
n B %n D y�n�1 B � � � B y�m�1 B ıi

mC1 B %mC1: (22)

Define the mapping$ W � ! …I.�/ as follows: for everyi D 1; : : : ; I and every! 2 �,

$ i.!/ D
˚

.f ı %n;g ı %n/ W n � 0; .f;g/ 2 ıi
nC1.%nC1.!//

	

:

We must prove the latter is a well defined set and an element of….�/. To verify it is well defined,

note that for everym � n � 0, everyf;g 2 F.�n/, and everyf 0;g0 2 F.�m/ such that

f ı%n D f 0 B%m andg B%n D g0 ı%m, one hasf 0 D �n B � � �B�m�1 Bf andg0 D �n B � � �B�m�1 Bg,

(these follow from ontoness of%m and from%n D �n B � � � B �m�1 B %m) hence, by (22), one has

.f;g/ 2 ıi
nC1.%nC1.!// if and only if .f 0;g0/ 2 ıi

mC1.%mC1.!//. To verify it is an element of

….�/, just note that reflexivity and transitivity are an immediate consequence of the preliminary

step and of the corresponding properties ofıi
nC1.%nC1.!// for all n � 0, whereas monotone

continuity is automatically satisfied (since� is simple). The preliminary step also guarantees that

for any two distinct preference relations in….�/ there existn � 0 andf;g 2 F.�n/ such that

.f B %n;g B %n/ is an element of one relation but not of the other. Thus property (1), which$ i

satisfies by definition, uniquely identifies$ i. Moreover, by definition of$ i, for all n � 1 and all

f;g 2 F.�n�1/ one has

˚

! 2 � W .f B %n�1;g B %n�1/ 2 $ i.!/
	

D
˚

! 2 � W .f;g/ 2 ıi
n.%n.!//

	

:

The latter proves, again by the preliminary step, that$ is measurable, and will clearly also prove
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the last statements, once we show that the mapping! 7! .%0.!/;$.!// is a bijection. Choose

anys 2 S and any.�1; : : : ; �I / 2 …I .�/, and define! D .!0; !1; : : :/ 2 � by letting!0 D s

and recursively defining!nC1 D .!n; .y%n.�
1/; : : : ; y%n.�

I /// for all n � 0. Clearly,$ i.!/ D � i

for all i D 1; : : : ; I , thus ontoness is established. To prove injectivity, note that for every two

distinct!; !0 2 � there existsn � 0 such that%n.!/ ¤ %n.!
0/, hence either%0.!/ ¤ %0.!

0/ or

there exist somen � 1 and some playeri such thatıi
n.%n.!// ¤ ıi

n.%n.!
0//, and in the latter case

$.!/ ¤ $.!0/ by the preliminary step.

Proof of Proposition 4. Let .X;B; �; #/ be a simple, complete structure, and let
 be its genera-

tor. For alln � 0, following our earlier notation, let
n D %n ı 
 and lety
n W ….X / ! ….�n/ be

the induced mapping. Since the structure is complete, both
0 and# are onto. Thus, by induction,


n is onto for everyn, because if
n is onto, theny
n is onto by Lemma 3 (as the structure is simple),

hencey
n B# i is onto for alli D 1; : : : ; I , hence
nC1 is onto. This implies that
 is onto. Indeed, if

this were not the case, then we would reach the contradiction— since.X;B/ is simple — that, for

some! 2 �, the strictly decreasing sequence of nonempty events
�1
0 .%0.!//; 


�1
1 .%1.!//; : : : in

the algebraB has empty intersection.

Proof of Proposition 5. Let 
 be the generator of.X;B; �; #/. Let B
0 D f 
�1.A/ W A 2 A g.

We must prove thatB 0 is the smallest algebra of subsets ofX satisfying (5) and (6). Now (5) is

obvious, since� D %0 B 
 . To prove (6), lety
 denote the mapping from….X;B/ to ….�;A/

induced by
 . By (4), for allf;g 2 F.�;A/ we have

˚

x 2 X W .f B 
;g B 
 / 2 # i.x/
	

D 
�1
�˚

! 2 � W .f;g/ 2 $ i.!/
	�

:

This proves (6), as by definition ofB 0 every act inF.X;B 0/ can be written asf B 
 for some

f 2 F.�;A/. If B
00 is another algebra satisfying (5) and (6), then
�1.%�1

n .A// 2 B
00 for all

n � 0 and allA � �n. Forn D 0 this follows at once from (5), hence by induction using (6) itis

true forn > 0 as well. Thus,B 0 � B
00. This proves the first claim. To prove the second claim, just

observe that, by the first claim in this proposition and by definition of A, non-redundancy holds if

and only if for all distinctx; x0 2 X there existsn � 0 such that%n.
 .x// ¤ %n.
 .x
0//, and such

n exists if and only if
 .x/ ¤ 
 .x0/.

Proof of Lemma 6. Let � W X ! Y denote inclusion, let� D & B �, and let# W X ! …I .X /

be defined by (3). The mapping# is well defined because, by reflexivity of�i.w/, we have

.f B ';g B '/ 2 �i.w/ for all i D 1; : : : ; I , all w 2 W , and allf;g 2 F.Y / that coincide onX .
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Thus,X satisfies (2) and so it induces a substructure. Now we must prove that

� B � D ˛ B � and y� B �i D # i B � (23)

for everyi D 1; : : : ; I , wherey� is the mapping from….X / to….Y / induced by�. The former

equality is immediate: indeed,� B� D & B�B� D & B' D ˛B� , where the first equality follows from

the fact thatX induces a substructure, the second by definition of�, and the third from the fact

that.˛; '/ is a morphism. For the second equality in (23), since the mappingy� W ….X / ! ….Y /

induced by� is injective, it will suffice to prove thaty� B y� B # i D y� B # i B �. Indeed,

y� B y� B # i D y' B # i because' D � B �, hencey' D y� B y�;

D � i B ' because' is a morphism;

D � i B � B � again because' D � B �;

D y� B # i B � becauseX induces a substructure.

In all proofs below, the set of outcomesZ will be identified with the setf1; : : : ; jZjg.

Proof of Proposition 6. Necessity is obvious. For sufficiency, suppose eachAn is�-null butA is

not. Then there existf;g; h 2 F.X / such that

.fAh;gAh/ P2 �: (24)

Let Bn D A1 [ � � � [ An for all n � 1. Let K D maxfz 2 Z W g�1.z/ ¤ ¿g. For all1 � k � K

and alln � 1, let

Ck D
˚

x 2 X W 1 � j � k; g.x/ D j
	

and Dn
k D Ck \ .A X Bn/

and writegn
k

for the act that coincides withg onDn
k

and withfAh everywhere else. Note thatgn
K

andgAh only differ on the�-null eventBn, so

.gAh;gn
K / 2 � 8n � 1: (25)

As Dn
1 # ¿, by (24) and monotone continuity of� we have.gn1

1 ;gAh/ P2 � for somen1 � 1. Pro-

ceeding inductively, let1 � k < K and assume we have foundnk � 1 such that.gnk

k
;gAh/ P2 �.
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SinceDn
kC1

# ¿, again by monotone continuity of� there existsnkC1 > nk such that

�

g
nkC1

kC1
D

nkC1

kC1
g

nk

k
;gAh

�

P2 �: (26)

But g
nkC1

kC1
D

nkC1

kC1
g

nk

k
andg

nkC1

kC1
only differ on the�-null eventDnk

k
n D

nkC1

kC1
, so

�

g
nkC1

kC1
;g

nkC1

kC1
D

nkC1

kC1
g

nk

k

�

2 �: (27)

By (26), (27), and transitivity of�, we get.gnkC1

kC1
;gAh/ P2�, contradicting (25) fork DK �1.

Proof of Proposition 7. We prove the proposition in four steps. In the first step we construct the

binary relation�C and show it satisfies (8). In the second step we prove�C is in fact a preference

relation. In the third step we prove the second part of the proposition. In the fourth step we show

�C is the unique preference relation onF.X;BC/ satisfying (8).

Step 1. Every element ofBC has the form.B \ A/ [ .C X A/ whereB;C 2 B. The latter

is immediate, sinceBC must clearly include the family of sets of such form, and thisfamily is

easily seen to be an algebra. Thus, for eachfC 2 F.X;BC/ we can pick two acts fC
and�fC

in

F.X;B/ such that fC
coincides withfC onX X A and�fC

coincides withfC onA.36 Now let

�C D
˚

.fC;gC/ 2 F.X;BC/ � F.X;BC/ W . fC
;  gC

/ 2 �
	

:

To prove (8), first note that iff;g 2 F.X;B/ coincide onX X A, then the event

Af;g D
˚

x 2 X W f .x/ ¤ g.x/
	

satisfiesAf;g � .A1 [ � � � [ An/ for somen and is thus null according to�. Indeed, suppose to the

contrary thatAf;g 6� .A1 [� � �[An/ for everyn. ThenAf;g X.A1[� � �[An/ is a strictly decreasing

sequence of events. SinceX is simple, this sequence has nonempty intersection, contradicting the

assumption thatf andg coincide onX XA, since the latter impliesAf;g � A. We have thus shown

that for allf;g 2 F.X;B/ that coincide onX XA we have.f;g/ 2 �. This has two implications.

36One way to choose fC
and�fC

is as follows. LetN D maxfn 2 Z W fC
�1.n/ ¤ ¿g and, for every1 � n � N ,

chooseGn;G
0
n 2 B such thatfC

�1.n/ D .Gn \ A/ [ .G0
n X A/. Define recursively the inverse images under fC

and�fC
by

 �1
fC
.1/ D G0

1 [
�

X X .G0
1 [ � � � [ G0

N /
�

;  �1
fC
.n/ D G0

n X .G0
1 [ � � � [ G0

n�1/;

��1
fC
.1/ D G1 [

�

X X .G1 [ � � � [ GN /
�

; ��1
fC
.n/ D Gn X .G1 [ � � � [ Gn�1/:
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The first implication is thatA is null according to�C. Indeed, for allfC;gC 2 F.X;BC/ that

coincide onX X A we must have. fC
;  gC

/ 2 � and hence also.fC;gC/ 2 �C. The second

implication is that for allf;g 2 F.X;B/ we have.f;  f / 2 � 3 . f ; f / and.g;  g/ 2 � 3

. g;g/, hence, by transitivity of�, .f;g/ 2 � if and only if .f;g/ 2 �C. This proves (8).

Step 2. Reflexivity and transitivity of�C directly follow from the corresponding properties

of �. To prove monotone continuity, letz 2 Z, let Bn andCn be sequences inB such that the

sequenceDn D .Bn \A/[.Cn XA/ has empty intersection, and choosefC;gC 2 F.X;BC/ such

that.fC;gC/ P2 �C. Then. fC
;  gC

/ P2 �, and since the sequenceEn D Cn X .A1 [ � � � [ An/

also has empty intersection, by monotone continuity of� we have

.zEn fC
;  gC

/ P2 � and . fC
; zEn gC

/ P2 �

for all n sufficiently large. But the two acts in each of the four pairs

.zDnfC; zEn fC
/; .zEn gC

; zDngC/; . gC
;gC/; .fC;  fC

/

coincide onX X A. Thus, sinceA is null according to�C, by transitivity of�C we obtain

.zDnfC;gC/ P2 �C and .fC; zDngC/ P2 �C

for all n sufficiently large, thus establishing monotone continuityof �C.

Step 3. Here we prove that a union of events inB that belongs toBC is �C-null if and

only if each event in the union is�-null. Since�C satisfies (8), necessity is obvious. In order

to prove sufficiency, by Proposition 6 it suffices to show thatif E 2 B is �-null thenE is also

�C-null. Thus, letfC;gC; hC 2 F.X;BC/. SinceE \ A is �C-null (because so isA, by

Step 1) andfC and fC
coincide onE X A, and sinceA is �C-null andhC and hC

coincide

on X X A, we have.fCEhC;  fC
E hC

/ 2 �C. Similarly, . gC
E hC

;gCEhC/ 2 �C. But

E is �-null, so . fC
E hC

;  gC
E hC

/ 2 �, hence. fC
E hC

;  gC
E hC

/ 2 �C by (8), so

.fCEhC;gCEhC/ 2 �C by transitivity of �C. This shows that every event inB that is null

according to� is also null according to�C.

Step 4. In order to prove uniqueness, by the first part of the proof itis clearly enough to

show the following:A is null according to every preference relation� 0 on F.X;BC/ that, for all

f;g 2 F.X;B/, satisfies.f;g/ 2 � 0 if and only if .f;g/ 2 �. Suppose by contradiction that

� 0 satisfies the latter butA is not� 0-null. Then there existfC;gC; hC 2 F.X;BC/ such that
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.fCAhC;gCAhC/ P2 � 0, hence alsof;g; h 2 F.X;B/ such that

.fAh;gAh/ P2 � 0: (28)

(For instance, leth D  hC
, f D �fC

, andg D �gC
.) Now let A0

n D A1 [ � � � [ An for all

n � 1, defineC 0
k

D h�1.k/ andDn
k

D C 0
k

\ .A n A0
n/ for all k 2 Z and alln 2 N, and let

K D maxf k 2 Z W C 0
k

¤ ¿ g. SinceDn
1 # ¿ asn ! 1 andh is constant onDn

1 for all n,

by (28) and monotone continuity of� 0 there existsn1 � 1 such that.f .A X D
n1

1 /h;gAh/ P2 � 0.

Proceeding inductively for all1 � k < K, assume that we have found numbersnk > � � � > n1 � 1

such that, lettingE0
k

D A X .D
n1

1 [ � � � [ D
nk

k
/, we have.fE0

k
h;gAh/ P2 � 0. SinceDn

kC1
# ¿

asn ! 1 andh is constant onDn
kC1

for all n, again by monotone continuity of� 0 there exists

nkC1 > nk such that, lettingE0
kC1

D E0
k

X D
nkC1

kC1
, we have.fE0

kC1
h;gAh/ P2 � 0. Now perform

another induction as follows. Again becauseDn
1 # ¿ asn ! 1 andh is constant onDn

1 for all n,

by monotone continuity there existsm1 � 1 such that.fE0
K h;g.A X D

m1

1 /h/ P2 � 0. Proceeding

inductively for all 1 � k < K, assume that we have found numbersmk > � � � > m1 � 1

such that, lettingE00
k

D A X .D
m1

1 [ � � � [ D
mk

k
/, we have.fE0

K h;gE00
k
h/ P2 � 0. Again because

Dn
kC1

# ¿ asn ! 1 andh is constant onDn
kC1

for all n, by monotone continuity there exists

mkC1 > mk such that, lettingE00
kC1

D E00
k

X D
mkC1

kC1
, we have.fE0

K h;gE00
kC1

h/ P2 � 0. But, since

bothE0
K D [1�k�K.C

0
k

\ A0
nk
/ andE00

K D [1�k�K .C
0
k

\ A0
mk
/ are events inB, the actsfE0

K h

andgE00
K h both belong toF.X;B/. We have reached the conclusion.fE0

K h;gE00
K h/ P2 �. Since

E0
K � A andE00

K � A, this contradicts our earlier conclusion that� contains all pairs of acts that

coincide onX X A.

Proof of Proposition 8. For everyn, sinceAn is closed, there exists a sequence of eventsAn
1;A

n
2; : : :

such thatAn D \kAn
k
. Now

MC1.A/ D \I
iD1 \n \kC i.An

k/ D \n \I
iD1 \kC i.An

k/ D \nMC1.An/:

Thus (i) holds form D 1, and if it holds up to somem � 1, then

MCmC1.A/ D MCm.A/ \ MC1

�

MCm.A/
�

D MCm.A/ \ MC1

�

\n MCm.An/
�

D \n

�

MCm.An/ \ MC1

�

MCm.An/
��

D \nMCmC1.An/:

Clearly, (ii) is true whenever bothA andB are events. To prove it in general, supposeB is a

closed subset ofX such thatA � B. Take a sequence of eventsBn such thatB D \nBn. Then

A D \n \k .A
n
k

\ Bn/. Since (ii) holds for events,MC1.A
n
k

\ Bn/ � MC1.Bn/ for all n; k,
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henceMC1.A/ � MC1.B/ by part (i) of this lemma. An obvious induction using (ii) shows that

A � MC1.A/ impliesA � MCm.A/ for everym, hence (iii) follows. To prove sufficiency in the

last claim, supposeE is a simple substructure ofX , and take a sequence of eventsEn such that

E D \nEn. SinceE satisfies (2) andE � En for everyn, we haveE � MC1.En/ for everyn,

henceE � MC1.E/ by part (i). By part (iii),E � CC.E/, henceE D E \ CC.E/ andE is a

closed component ofX . To prove necessity, take a sequence of eventsEn and letE D \nEn. We

will show thatE \ CC.E/ satisfies (2) and thus induces a (simple, by Lemma 2) substructure of

X . Pick a bijection

� W I � N � F.X / � F.X / � F.X / ! N:

For all i D 1; : : : ; I , all n 2 N, and allf;g; h 2 F.X /, define the event

B1Œi; n; f;g; h� D
˚

x 2 X W
�

hEnf; hEng
�

2 # i.x/
	

and then, recursively for allm � 1, the event

BmC1Œi; n; f;g; h� D
˚

x 2 X W
�

hBmŒ�
�1.n/�f; hBmŒ�

�1.n/�g
�

2 # i.x/
	

:

Let D D E \ CC.E/. Then

D D \n \m

�

En \ BmŒ�
�1.n/�

�

(29)

and, moreover,D � MC1.En/ andD � MC1.BmŒ�
�1.n/�/ for all n;m, hence using part (i) also

D � MC1

�

En \ BmŒ�
�1.n/�

�

for all n;m. In other words, the eventX X .En \ BmŒ�
�1.n/�/must be# i.x/-null for every player

i and everyx 2 D. By (29) and the last claim in Proposition 7, we conclude thatif f;g 2 F.X /

coincide onD, thenfx 2 X W f .x/ ¤ g.x/g must be# i.x/-null for everyi D 1; : : : ; I and every

x 2 D. This meansD satisfies (2).

Proof of Lemma 7. The first claim is a restatement of Carathéodory’s extensiontheorem.37 From

the proof of the latter, we know that��.A/ D inf
P

n�1�.An/ for everyA 2 B
�, where the

infimum is taken over all sequences of eventsA1;A2; : : : in B such thatA � [n�1An. It is then

clear that for everyA 2 B
� and every� > 0 there existsB 2 B such that��.A\B/ � ��.A/��

37See, for example, Theorem 3.1 in Billingsley [6].
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and��.B n A/ � �. By Lyapunov’s theorem,38�� is non-atomic if and only if it is convex ranged.

Now suppose that�� is non-atomic, letC 2 B, and let0 � p � �.C /. Then there existsA 2 B
�

such thatA � C and��.A/ D p. Now chooseB 2 B such that��.B \ A/ � p � � and

��.B n A/ � �. ThenB \ C is an event inB, and moreover

p � � � ��.B \ A/ � ��.B \ C / � ��.B/ D ��.B \ A/C ��.B n A/ � p C �;

hencep � � � �.B \ C / � p C �. Thus,� is dense ranged. Conversely, suppose�� has an

atom, that is, suppose there existsA 2 B
� such that��.A/ D q > 0 and, for everyB 2 B

�

such thatB � A, either��.B/ D 0 or ��.B/ D q. Choose0 < � < q=2 andB 2 B such

that��.B \ A/ � q � � and��.B n A/ � �. Then, for everyC 2 B such thatC � B, either

��.C / � q or ��.C / � �. Thus, there is no eventC 2 B such thatC � B and� � q=2 <

�.C / � q=2 < q=2 � �. Since�.B/ � q � � � q=2, this proves that� is not dense ranged.

Proof of Proposition 9. Assume there exists�� 2 …S.X;B
�/ satisfying (10). By Savage’s The-

orem, there exist a functionu and a convex ranged belief�� onB
� such that.u; ��/ induces��.

Let � denote the restriction of�� to B. Then� is a dense ranged belief by Lemma 7. Thus, by

(10), the pair.u; �/ represents�, hence� 2 …S.X;B/. Conversely, suppose� 2 …S.X;B/.

By Savage’s Theorem, there exist a utility functionu and a dense ranged belief� on B such that

.u; �/ represents�. By Lemma 7,� has a unique extension to a convex ranged belief�� on

B
�. Obviously, the preference relation�� on F.X;B�/ induced by.u; ��/ satisfies (10), hence

�� 2 …S.X;B
�/. There only remains to prove that�� is unique. By the uniqueness in Sav-

age’s Theorem, every preference relation in…S.X;B
�/ other than�� has a Savage representation

.u0; �0/ such that eitheru0 is not a positive affine transformation ofu, or�0 ¤ ��, or both. In any

case, by the uniqueness in Lemma 7,u
0 and the restriction of�0 to B do not constitute a Savage

representation of�.

Proof of Lemma 8. Fix a playeri and writeX i
P1 (resp.X i

P2; : : : ;X
i
P6) for the set of allx 2 X such

that# i.x/ satisfies P1 (resp. P2,. . . ,P6). Define

X i
f;g D

˚

x 2 X W .f;g/ 2 # i.x/
	

; Y i
f;g D X X X i

f;g

for all f;g 2 F.X;B/. By definition of structure, these sets belong toB. Thus, sinceB is

38See, for example, Lindenstrauss [19].
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countable and hence so isF.X;B/, the sets

X i
P1 D

\

f;g2F.X ;B/

�

Xf;g [ Xg;f

�

; X i
P2 D

\

f;g;h;h02F.X ;B/I A2B

�

X i
fAh;gAh [ Y i

fAh0;gAh0

�

belong toB
�, and so does the set

X i
P5 D

[

z;z02Z

�

Xz;z0 \ Yz0;z

�

:

Now let

X i
A D

˚

x 2 X W A is # i.x/-null
	

D
\

f;g;h2F.X ;B/

X i
fAh;gAh

for everyA 2 B and observe thatXA 2 B
�. Then the set

X i
P3 D

\

A2BI z;z02Z I f 2F.X ;B/

�

X i
A [

h

�

Y i
z;z0 [ X i

zAf;z0Af

�

\
�

X i
z;z0 [ Y i

zAf;z0Af

�

i

�

belongs toB� as well. The setX i
P4 can be written as

\

z;z0;z00;z0002Z I A;B2B

�

Y i
z;z0 [ X i

z0;z [ Y i
z00;z000 [ X i

z000;z00 [ YzAz0;zBz0 [ Xz00Az000;z00Bz000

�

and thus belongs toB�. Finally, writing PN for the family of all partitions ofX into N events in

B, the setXP6 can be written as

\

z2Z I f;g2F.X ;B/

[

fA1;:::;AN g2PN

\

1�n�N

�

XP1 \
�

Xg;f [
�

X 0
zAnf;g \ X 0

f;zAng

���

and thus belongs toB�, too, sinceB is countable and hence so isPN for everyN .

Proof of Proposition 10. Let zB be the family of allE 2 B
� satisfying

˚

x 2 X W x 2 C i
S.X / I ˇi.E/ > p

	

2 B
� 8p 2 R: (30)

We prove the result in three steps. In the first step, we prove that there exists a countable subal-

gebraB
0 of B that generatesB� and satisfiesB 0 � zB . In the second step, we prove thatzB is

closed under the formation of complements and countable monotone unions (hence also countable

monotone intersections). By Halmos’s monotone class theorem,39 these two steps together imply

39See, for instance, Theorem 3.4 in Billingsley [6].
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zB D B
� and hence (11). In the third step, we prove� i satisfies (12). Then (13) will clearly follow

from (11), (12), and Savage’s Theorem, so the proof of the proposition will be indeed complete.

Step 1. By definition of preference structure,

˚

x 2 X W .f;g/ 2 # i.x/
	

2 B 8f;g 2 F.X;B/: (31)

Since�i is induced by# i ,

# i.x/ D �i.x/ \
�

F.X;B/ � F.X;B/
�

8x 2 C i
S.X /: (32)

If B is a countable algebra, letB
0 D B. Otherwise, letB 0 be any countable algebra that generates

B. In any case, sinceB 0 � B � B
�, we haveF.X;B 0/ � F.X;B/ and thus, using (31), (32),

and Lemma 8,

˚

x 2 X W x 2 C i
S.X / I .f;g/ 2 �i.x/

	

2 B
� 8f;g 2 F.X;B 0/: (33)

By Proposition 9, for allx 2 C i
S.X / the restriction of̌ i.x/ to B

0 represents, together with some

utility function, the Savage preference relation onF.X;B 0/ defined as

�i.x/ \
�

F.X;B 0/ � F.X;B 0/
�

: (34)

For all E 2 B
0 and alln � 1, write PE

n for the family of all partitions ofE into n events inB
0.

Note that, sinceB 0 is countable,PE
n is countable. Now fixE 2 B

0 andp 2 R. By the proof of

Savage’s theorem for algebras — Theorem 3.1 in Kopylov [17],

ˇi.x/.E/ D sup

(

X

A2P

1

�i.x/.A/
W n � 1; P 2 PE

n

)

8x 2 C i
S.X /;

where for everyA 2 B
0 and everyx 2 C i

S.X / the integer�i.x/.A/ is defined as follows. Using

the fact that the relation (34) satisfies P5, choose anyz; z 2 Z such that.z; z/ 2 �i.x/ 63 .z; z/.

Then�i.x/.A/ is the smallestm � 2 such that.zAz; zA0z/ 2 �i.x/ 63 .zA0z; zAz/ for some

P 2 PX
m and everyA0 2 P .40 Thus,

˚

x 2 X W x 2 C i
S.X / I ˇi.x/.E/ > p

	

40If there is no such integer, let�i.x/.A/ D C1. In fact,�i.x/.A/ is also the unique (when it exists, that is, when
ˇi.x/.A/ > 0) integerm � 1 such that1=m < ˇi.x/.A/ � 1=.m � 1/.
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is the same as
[

n�1

[

P2PE
n

(

x 2 X W x 2 C i
S.X / I

X

A2P

1

�i.x/.A/
> p

)

:

It is therefore clear that, in order to proveB
0 � zB , it suffices to show that

˚

x 2 X W x 2 C i
S.X / I �i.x/.A/ � M

	

2 B
� 8A 2 B

0; 8M � 2: (35)

Thus, fixA 2 B
0 andM � 2. For allz; z0 2 Z, write Az;z0 for the set

˚

x 2 X W x 2 C i
S.X / I .z; z0/ P2 �i.x/

	

andBz;z0 for the set

[

1�m�M

[

P2PX
m

\

A02P

˚

x 2 X W x 2 C i
S.X / I .zAz0; zA0z0/ P2 �i.x/

	

:

By (33), these sets belong toB�. Moreover, by definition of�i.x/.A/,

˚

x 2 X W x 2 C i
S.X / I �.x/.A/ � M

	

D
[

z;z02Z

.Az;z0 \ Bz;z0/;

hence (35) follows.

Step 2. ChooseE 2 zB andp 2 R. Then

˚

x 2X W x 2 C i
S.X / I ˇi.x/.X X E/ > p

	

can be written as

[

k�1

˚

x 2X W x 2 C i
S.X / I ˇi.x/.E/ �1 � p � 1=k

	

:

SinceE 2 zB , each set in the union above is the complement of a set of the form (30). Thus, the

union is itself an event inB�, soX XE 2 zB and thereforezB is closed under the formation of

complements. Next, take a sequence of elementsAn of zB such thatAn � AnC1 for everyn, and

let A D [nAn. Sinceˇi.x/ is countably additive for everyx 2 C i
S.X /, we have

˚

x 2 X W x 2 C i
S.X / I ˇi.x/.A/ > p

	

D
[

n�1

˚

x 2 X W x 2 C i
S.X / I ˇi.x/.An/ > p

	

:
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SinceAn 2 zB for all n, the right-hand side is a countable union of elements ofB
�, hence itself

an element ofB�. ThusA 2 zB and zB is also closed under the formation of countable monotone

unions.

Step 3. Fix a playeri . Pick a bijection� W Z � Z ! f1; : : : ; jZj2g. For alln D 1; : : : ; jZj2,

write zn andzn
0 for the two outcomes satisfying��1.n/ D .zn; zn

0 / and define

Ai
n D

˚

x 2 X W x 2 C i
S.X / I .zn; zn

0 / P2 �i.x/
	

:

Define recursivelyB1
i D A1

i andBnC1
i D AnC1

i X .B1
i [ � � � [ Bn

i / for all n D 1; : : : ; jZj2. Note

that, sinceB � B
�, by (31) and (32) we have

Bi
n 2 B

� 8n D 1; : : : ; jZj2: (36)

Then, since�i.x/ satisfies Savage’s P5 for allx 2 C i
S.X /, the sequence of eventsBi

n is a partition

of C i
S.X /. To establish (12), fixz 2 Z anda 2 R. Clearly, we may assume0 � a < 1. We have

˚

x 2 X W x 2 C i
S.X / I � i.x/.z/ > a

	

D
[

1�n�jZ j2

˚

x 2 X W x 2 Bi
n; �

i.x/.z/ > a
	

: (37)

We will prove that the set on the right-hand side of the latterbelongs toB�, using the fact that for

all x 2 C i
S.X /, by Lemma 7, the restriction of̌i.x/ to the algebraB 0 above (Step 1) is finely

ranged. For everyn D 1; : : : ; jZj2 and everyx 2 Bi
n, the inequality� i.x/.z/ > a is true if,

and only if,41 there existsA 2 B
0 such that� i.x/.z/ > ˇi.x/.A/ > a. The first inequality is

equivalent to.z; znAz0
n/ P2 �i.x/ by Savage’s Theorem, so the right-hand side of (37) is

[

1�n�jZ j2

[

A2B0

˚

x 2 X W x 2 Bi
n; ˇ

i.x/.A/ > a; .z; znAzn
0 / P2 �i.x/

	

:

Thus, (36), (11), and (33) imply that the right-hand side of (37) belongs toB�.

Proof of Proposition 11. If .E;BE/ induces a substructure then it satisfies (2), soE � MCS;1.E/

and thereforeE D E \ CCS.E/. Conversely, assume.E;BE/ is a Savage component, say

D 2 B
� andE D D \ CCS.D/. ThenE � MCS;m.D/ for all m, henceE � MCS;1.E/ by (15).

Thus,E induces a substructure, with the maps# i
E W E ! ….E;BE/ defined by

x 7!
˚

.f B �;g B �/ W .f;g/ 2 # i.x/
	

;

41The fact that the restriction of̌i.x/ to B
0 is finely ranged is precisely what guarantees necessity here.
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where� W E ! X denotes inclusion. It remains to prove that this substructure is Savage, i.e. that

# i
E.x/ satisfies P1–P6 for every playeri and allx 2 E. Thus, fix a playeri andx 2 X . Let� be

the unique extension of# i.x/ to F.X;B�/ and let.u; �/ be a Savage representation of�. Since

� is convex ranged and�.E/ D 1, the restriction�E of � to E is a convex ranged belief onBE.

Since.u; �E/ clearly represents# i
E.x/, the proof is complete.

Proof of Proposition 12. Let B
� be the�-algebra generated byB. The spaces.X;B�/ and

.�;A�/ are standard Borel, and the mapping
 is injective (by non-redundancy and Proposition 5)

and measurableB�=A� (by measurabilityB=A). Since the image of an event under an injective

and measurable function between standard Borel spaces is anevent,42 we have
 .E/ 2 A
� for all

E 2 B
�. Thus (by injectivity of
 ) a subset ofX belongs toB

� if and only if it has the form


�1
X .A/ for someA 2 A

�. The latter statement is equivalent to the statement to be proved.
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