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Abstract

This paper extends Savage’'s subjective approach to piiapaid utility from decision
problems under exogenous uncertainty to choice in st@tgiironments. Interactive uncer-
tainty is modeled both explicitly — using hierarchies of ference relations, the analogue
of beliefs hierarchies — and implicitly — usingreference structureghe analogue of type
spaces a la Harsanyi — and it is shown that the two approackesqaivalent. Preference
structures can be seen as those sets of hierarchies aribig aertain restrictions on prefer-
ences, along with the players’ common certainty of the it&ins, are imposed. Preferences
are a priori assumed to satisfy only very mild propertiefi€kévity, transitivity, and monotone
continuity). Thus, the results provide a framework for thalgsis of behavior in games under
essentially any axiomatic structure. An explicit chareetdion is given for Savage’s axioms,
and it is shown that a hierarchy of relatively simple prefieeerelations uniquely identifies the
decision maker’s utilities and beliefs of all orders. Cortiens with the literature on beliefs
hierarchies and correlated equilibria are discussed.
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1. Introduction

The behavioral premises and implications of subjectivesetgu utility (henceforth SEU) theory
are well understood in one-agent situations. Taking asifwigronly a preference relation on the
set of acts, i.e. functions mapping tegogenously specified set of states of the word the
set of outcomes, Savage [23] identified the axioms one mysbsm on this relation in order to
unambiguously identify a utility function and a subjectivelief representing it. For interactive
contexts, where it is further assumed informally that agesfitare a common assumption of the
SEU hypothesis, a similar treatment has not been divaiis paper concerns choice in such
environments, where the hypothesis that a player is a SEUnmeet, believes each other player
is, believes each other player believes each other playangsso on, is not assumed, but rather
must be derived, as in Savage, from rules on subjectivengrate.

A game situation is described by a set of playkrs ., 7, a setS° of states of nature, a s&t
of strategies for each playérand a functiort mappingS = xj’.:(,Sf into a set of outcomeg .2
In such an environment, it is just not clear what a state oftbdd should be. Indeed, in game
theory the SEU hypothesis carries much more content thaedisidn theory. Probabilistic beliefs
for each player are assumed not only on the determinantg aittttome (i.e. on the s8) but also
on the players’ utilities and beliefs &), on the player’s beliefs on the players’ utilities and bislie
etc3 To be sure, solving a player’s problem amounts to choosiricagegly with highest expected
utility, which can be identified based on his beliefs®wnly. But, contrary to the one-agent case,
beliefs are typically restricted by consistency requireta¢o formulate which the analyst is forced
to assume beliefs about beliefs — for instance, the req@ntitihat a player believe that another
player chooses a strategy maximizing expected utility.

Thus, following Savage’s approach, hence regarding theemautilities and beliefs as repre-
sentations of preference relations, one faces a concegridainethodological problem. States of
the world must be specified without explicit reference toglsgers’ utilities and beliefs, as these
are not to be treated as primitive objects. At the same timerder to make sense out of beliefs
about beliefs, its description must include the playersf@mrences. Furthermore, both for method-
ological rigour and model versatility, it would be desimlbb achieve this without imposing too

lKadane and Larkey [14] remarked as a “curiosity of intellathistory” that Savage’s theory and game theory
had “had little to do with one another despite their commorithge” from von Neumann and Morgenstern’s [25]
work. The only exception is Epstein and Wang’s [9] papecussed later on in this section.

°Note that any uncertainty about the outcome functiman be modeled as uncertainty about the state of nature.

3This is done implicitly, following Harsanyi [12]. A set of pes for every player is introduced, and for every type
of every player a utility function and a subjective beliekothe states of nature and the other players’ strategies and
types is assumed. Mertens and Zamir [21] proved that Harsadga implies no loss of generality, in the sense that
any hierarchy of beliefs of a player can be generated by ¢hgaets of types appropriately.



many axioms a priori. One usually specifies the set of stdtdseavorld before imposing axioms;
moreover, it makes little sense to ask whether a player®epmrces satisfy a certain axiom, if all
preferences included in the description of a state of thédsartomatically satisfy that axiom.

In this paper we propose a solution to this problem based traigistforward generalization of
Harsanyi’s idea and similar to the one devised by Epstein/daualy [9]. The key notion introduced
here is that opreference structuredefined by an abstract s&t, an algebraB of subsets ofY, a
B-measurable functiom : X — S, (we assumé& andZ are finite) and a3-measurable function
¥ X — TI(X, B) foreachi = 1,...,1, whereII(X, 8B) is the set of preference relations on
the set of8-measurable maps fro to Z, endowed with a suitably specified algebra. Thus,
the implicitly defined hierarchies of beliefs in a Harsahkée model become implicitly defined
hierarchies of preferencdsere? Each point inX implicitly describes every player’s preference
over acts of the formf : S — Z, acts of the formf : S x I1/(S) — Z, acts of the form
[ SxII(S)x (S xT(S)) — Z, etc® This procedure avoids assuming utilities and beliefs
directly; more importantly, it makes the fact that a plagegsteferences satisfy certain axioms a
well defined event for every player, and it allows us to forlgsatate the hypothesis that a player’s
preferences satisfy the axioms and that thioisimon certaintysee below) among the players.

Preference relations are a priori assumed to satisfy omymédd axioms, namely, reflexivity,
transitivity, and monotone continuity. The first two arehaitit a doubt among the least contro-
versial. The third axiom, also rather intuitive and autaoaly satisfied if the family of events is
finite, is equivalent to countable additivity of the beliafthe Savage representation if this exists;
we prove it guarantees the analogous property even in tlenab®of axioms other than transitiv-
ity. The upshot of these limited restrictions is that one uaa preference structures to analyze
strategic situations under many possible axiomatic strest provided our three axioms hold —
we discuss this further in Subsection 6.1.

While our results demonstrate that Savage’s theory is el to game situatior?st is worth

“More precisely, the analogy is with a modela Aumann [3], where strategies appear explicitly in the dgsion
of a state. Indeed, our notion of preference structure &lyicorresponds to what Aumann calls “information system”

SWe useIl/(-) as an abbreviation fo:zl.’=1 I1(-). In the main body of the paper we aot work with the full set
S x I (S) x I (S x TT1(S)) x ---. Instead, we imposeoherencyat all levels of the hierarchies. This means
that we consider only those elementsIdf (S) x T17 (S x I17(S)) where the preferences appearing in the first and
second coordinate agree (in the obvious way) on the actsedbtim / : S — Z, and similarly for higher orders.
The alternative construction, where hierarchies are tmce=d and coherency is imposedposteriori is entirely
equivalent, as we explain in Subsection 6.5. Note alsoitbatrategy and preferences appeai'snown uncertainty.
This is done mainly for notational convenience, i.e. to evwving to construct different spaces of states of the world
for different players; we explain this further in Subsentt?2.

5This is in sharp contrast with the results of Mariotti [20puR)hly, the latter paper shows that a player’s preference
relation on strategies cannot satisfy Savage’s axiomsiibua game-theoretic notions of rationality regardingdtiesr
players are imposed (see Battigalli [4] for a counterargutrteethese negative results). Our approach is very difteren
from Mariotti’s, mainly because his framework does notwlioreference hierarchies, and these are what we use in



pointing out that they also highlight special features @& theory that arise in these contexts but
are typically absent from the one-person case. First, Ssagiom P6 requires that the space of
states of the world be infinite. In one-person situationsre/tiee latter is not the case, one must
appeal to objects extraneous to the model (such as an irgedigence of coin tosses) in order to
meet the requirement. Here, however, the necessary chtylioltains automatically due to the
infinite construction. Second, P6 acquires a special mganaughly, in our context the axiom
says that a player cannot be sure about the precise hiezarchpreference relations of the other
players, or even sure they belong to a given finite set. Inratleeds, nontrivial uncertainty of the
higher order beliefs is what makes beliefs themselves arigtoe uniqué.

1.1. Outline of the Analysis and Plan of the Paper

After dealing with a few inevitable preliminaries in Sectid, we introduce preference hierarchies
and preference structures in Section 3, where our first nesnlts are proved. Analogously to
Mertens and Zamir's (1985) main theorem, these results shatvour model carries no loss of
generality. The se® of all sequences comprising a state of nature and, for eaglepla strategy
and a coherent hierarchy of preference relations, togettierthe algebraA of its cylinders, has
a nice mathematical structure. In the terminology intr@tli;n Section 2, it is &imple space
namely, a zero-dimensional compact Hausdorff topologipalce, whose family of clopen sets
is precisely the algebra of events. The results show thdt @ae 2 corresponds to a unique
preference relatiomr’ (w) for each playei on the set of acts of the forni : @ — Z. Further-
more, thecanonical preference structummprising the spacg?, 4), the projection of2 on S,
and the mappingsr’, is isomorphic (in a natural sense)$ox IT/ (€2) and such that every other
well-behaved preference structure can be mapped into it saentially unique wayThus, the
canonical structure igniversalin Mertens and Zamir’s sense.

Section 4 is devoted to the study @dmmon certainty componeraéthe universal structure,
namely, sets of hierarchies obtained imposing a certainteleng with the players’ certainty of
this event, certainty of the players’ certainty, and so oollowing Savage, given a preference

order to impose axioms, players’ certainty of the axioms, &hus, preference hierarchies provide a workaround to
the issues raised by Mariotti — thanks to Dale Stahl (pricate/ersation) for suggesting this interpretation.

It is well known that P1-P5 are not sufficient for existenca &EU representation. This may be readily verified
by a straightforward adaptation of the famous counterexaryp Kraft et al [18]. With a finite set of outcomes,
unigueness of the SEU representation in general requiregdiaite set of states of the world — see Gul [11] — and,
more importantly, non-atomicity of the subjective belief.

8By well-behaved structure we mean a structure whose algélangents involves no redundancy (points where alll
players choose the same strategies and have the same pcefrand no more information than the corresponding
events inA. These requirements are formalized in Section 3.
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structure, we say a player is certain of an event at a poirttestructure if his preferences at that
point are such that he is indifferent between any two actsdbecide on that event. In order
to discuss a player’s certainty of a player’s certainty,gttomes necessary to extend the class of
events in a structure beyond the initially assumed algebnas, in Section 4 we prove that, for a
simple structure— a structure whose underlying spack, B) is simple — a preference relation
in TI(X, 8) has a unique extension to a preference relation on the exlaegt of acts obtained
expandingB to include aclosedsubset ofX, i.e. an intersection of events f. This is enough

to formally define common certainty of a closed subseYobecause iff C X is closed then the
subset ofX where a player is certain d@ is itself closed. The main result in Section 4 then states
that a well-behaved preference structure is simple if arg ibisomorphic to the component of
the universal structure obtained imposing common cegtaiha closed subset of the latter.

In Section 5 we prove several important results. First, wasthat, given any spadex, 8), a
preference relation ibl (X, 8) satisfying Savage’s axioms has a unique extension to arprefe
relation (also satisfying Savage’s axioms) on the enlasgedf acts obtained replaciig with the
o-algebraB* generated byB. This allows us to talk aboutelief i.e. certainty in the presence of
Savage’s axioms, of any setif*. Next, we show that if8* is in factcountably generated- a
pervasive assumption in the literature on type spaces, tiemn any structure based on the space
(X, 8), we can talk about interactive beliefs, because the subsétxhere a player believes some
eventE € B* is shown to be itself igB*. The latter result is one of the conclusions of Proposition
10, a key result showing the equivalence betw8awage structured.e. preference structures
where Savage’s axioms hold for every player at every pointnd-ZEU systems.e. the standard
object assumed in the game-theoretic literature, i.e. asurahle space with profiles of strategies,
utility functions, and beliefs (over the space itself) asated to each point in the space. Finally,
we prove that theanonical Savage structuré.e. the structure whose underlying space is the
componenf2s obtained imposing Savage’s axioms and common belief of tfeatures analogous
universality properties. First, we prove that this stroetis isomorphic toS x IT4(Qs) and also
to S x U! x Al(Qs) — wherells denotes Savage preference relatiansion-atomic probability
measures, antl non-constant utility functions (up to positive affine treorsnations). Second, we
prove the equivalence among (i) certain well-behaved Sasawctures, (i) the components of
the universal structure obtained imposing Savage’s axamiscommon belief of a Borel set (an
event in thes-algebra generated b¥), and (iii) the components of the canonical Savage stractur
obtained imposing common belief of a Borel set (an eventerrdiatives-algebra orf2s).

9Here by well-behaved structure we mean a little more tharootiote 8. Namely, we also need the property that
the underlying spaceX, 8) is such that the pair comprisinyj and thes-algebra generated b® is standard Borel



1.2. Relationship with Earlier Literature on Hierarchietreferences

The idea of preference hierarchies is not new. The issudéisediabove were first formally dealt
with by Epstein and Wang [9]. They are motivated by the exantes problem and prove theo-
rems analogous to ours, using preference hierarchies imigasiwvay. Compared to that paper,
our work has the disadvantage of dealing with finite gameg. dnldeed, the technical structure
of our model does not lend itself well to the case where, $mysetS is infinite (but see the dis-
cussion in Subsection 6.7 below). By contrast, the straspgges in Epstein and Wang are only
assumed compact Hausdorff. However, the results in the &pens are complementary in several
dimensions, and ours offers some important advantages.

First, as noted above and acknowledged by Epstein and Wangstives, the specification of
a state of the world should presume “as few preference axasnmssible”. In our construction
preferences are indeed rather unrestricted, whereasimptgger the restrictions are substantial.
In particular, they take the outcome space to be the unitiat@and assume monotone utilities on
the latter, by requiring that all preferences satisfy a nend§ axioms; the more restrictive ones,
completeness and monotonicity, aret automatically satisfied in the finite case. Thus, the finite
case makes the model not only simpler, but also more gemetiailsi respect.

Second, our model presumes much less in terms of “compogdtiability of the players, and
this is not just because preferences are a priori unrestr@h particular, possibly not complete).
Indeed, even within those subspaces of the universal gteugthere the full force of Savage’s
axioms is imposed, players are only assumed able to rantivelauncomplicated acts; at each
level of the hierarchies there are a finite number of actsjte fiumber of events these may depend
on, and a finite number of outcomes. Thus, in principle, ongdcelicit a player’s entire hierarchy
of beliefs by means of aequencef questions, each involving a finite number of alternatifes
By contrast, in Epstein and Wang’s paper, at each level aeplsyassumed to make preference
comparisons between acts depending on a very complex fafgyents'?

Third, and perhaps more importantly, our paper is more tgtbtowards applications, though
it does not concretely discuss any. Epstein and Wang’s peghepts an approach analogous to
Brandenburger and Dekel [7], focusing on the extensionlteeganalogous to our result estab-
lishing existence and uniqueness of the mappingy and the consequent isomorphism results
(analogous to our isomorphism results regardingndS x I/ (Q) first andQs andS x TTL(Qs)
next). However, it does not address the question of whelioev,exactly, and why in modeling a

101t js worth pointing out that, when working with conventidibaliefs hierarchies based on a $gtone must deal
with spaces of very high cardinality, even to describe sdaworthird order beliefs, and this is true eversifis finite.

1The problem of classes of events too rich for an individuaidnceive is the main motivation for Kopylov’s [17]
generalizations of Savage’s theorem. One of Kopylov'sitescrucial for our proofs, is recorded in Section 5.
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concrete strategic scenario one can without loss of gatyeaglsume a Harsanyi’s type space-like
construct — though objects similar to our preference stimest are indeed briefly discussed as an
illustration (see page 1348 of [9]). By contrast, in this @athe precise correspondence between
the abstract notion of preference structure and the caryrebpg common certainty subspaces of
the universal structure is investigated in detail. The @seris far from vacuous, since, as ex-
plained above and proved in the paper, not all preferenaetsties can be thought of as common
certainty components; only (and all) the sufficiently wedhaved ones can. Needless to say, es-
tablishing the precise sense in which abstractly and intjylidefined hierarchies correspond to
concretely and explicitly specified ones is the very motorabehind all Mertens and Zamir-like
papers. For this reason, we think that the full-fledged aislgf preference structures given here
is desirable, and we also hope it will prove useful — afterjabt like in traditional applications
one works with Harsanyi’s types rather than directly witlkrarchies, preference structures are
what one would work with in the possible concrete appliaagiof our model?

2. Preliminaries

An uncertainty spacé€or, more simply, aspacg is a pair(X, 8) where X is a set andB is an
algebra of subsets oY calledevents If the specific algebraB is irrelevant or clear from the
context, we may refer to the s&talone as a space; for instanceXifis finite, then it is understood
endowed with the algebra of all its subsets. Any sullSetf X equipped with its relative algebra,
i.e. the family of all sets of the formrY’ N E whereE € 8, is asubspacef X.

2.1. Basic Notations and Definitions

We take as given a finite s&t of outcomesa finite setS° of states of naturea finite sef{1,..., I}
of players and for each playar a finite setS’ of strategiesand letS = S° x S! x--- x ST, To
avoid trivialities, we assume that contains at least two distinct elements.

Let (X, B) be a space. Amctis a functionf : X — Z such that/~!(z) € B for every
z € Z. The constant act mapping everye X to the same € Z is denoted by. Given two acts
f, g and an evenE, we write f E g for the act that coincides witli on E and withg on X ~ E.
The set of all acts is denotdd( X, B) or, if the specific algebr&@ needs no emphasis, jus{.X).
Note that, if8 is countable, thed#'(X) is countable; indeed, sincé is finite, the set of constant

2Finally, we hope the relevance of these considerationgigssthis paper’s otherwise unfortunate length, indeed
mainly due to the extensiveness of the analysis regardifighebaved structures, common certainty components, etc.
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acts is finite, and every act whose range has at most2 distinct outcomes can be written as
zEf,wherez € Z, E € 8, and f is an act whose range has at mest 1 outcomes.

If v is a binary relation orf’(X), i.e. a subset of (X') x F(X), then for all actsf, g € F(X)
we write( f, g) € = as an abbreviation farf, g) € = # (g, /). A preference relatioon F(X) is
a reflexive and transitive binary relatianon F(X') satisfying the following property:

Monotone Continuity. Let f,g € F(X), letz € Z, and take a sequence of evesitssuch that
E, | @.1f (f,g) € =, then, for alln sufficiently large zE, f,g) € w and(f,zE,g) € 7.

The set of all preference relations ét{ X, B) is denotedl1(X, 8) and always assumed en-

dowed with the algebra generated by the sets of the form

{neH(X,!B) : (f,g)ETL’}

wheref, g € F(X, 8). The product space’_ TI(X, B) is abbreviated aB/ (X, B). If reference
to the specific algebr& is superfluous, we may writEl(X) instead of[1(X, 8) and I17 (X)
instead of[1/ (X, B). Note thatTI(X) is finite wheneverX is finite, and in this case the algebra
on I1(X) specified above is precisely the algebra of all subsel$(df).

Let (Y, €) be another space. A functign: X — Y is measurableB /€ (or justmeasurablg
if o~!(E) € B forall E € €. This induces a measurable functign I1(X) — I1(Y), namely,

> {(f.g) e FY)Xx F(Y): (fop,gog)em}.

Note thatp is injective if every f € F(X) satisfiesf = g o ¢ for someg € F(Y). This is clearly
true if X is a subspace df andg is the inclusion mapping. Moreover, we have the following

Lemma 1. Let X andY be uncertainty spaces. ¢f: X — Y is a measurable bijection angi™!
is measurable, then the induced mappingIT(X) — TI(Y) is also a measurable bijection with
measurable inverse; the latter is the mapping frbil") to T1(X) induced byy!.

Proof. Assume thaty is a bijection andy~! is a measurable function. By the latter, evefyc
F(X) can be written ag o for someg € F(Y), sog is injective. Moreover, for every € TI1(Y),

P(1(f.g) e FX)x F(X) : (fogp l,gop )en})=m,

which proves thap is onto and also proves the last statement. O

Finally, given two space& andY and a (not necessarily measurable) mapY — IT7(X),
we writeg’ for the function fromY to IT(X) that mapsy € Y into theith coordinate of(y).

8



2.2. Simple Spaces

An uncertainty spaceX, 8) is simpleif 8 is a countable base for a compact Hausdorff topology
on X. A particular case is when is finite. The product of a finite family of spaces — which,
unless otherwise noted, we assume endowed with the proldietira — is clearly a simple space
if each space in the family is simple. When dealing with siegpgaces, we will speak of open sets,
continuous functions, and so on, without explicit refeeetwtheir topological structures; in each
case, the understanding is that the relevant topology osithgle space at hand is the topology
generated by the events in that sp&te.

Lemma 2. A subset of a simple space is an event if and only if it is batkexd and open. A
subspace of a simple space is simple if and only if it is cld$ed

Proof. Anopen setin a simple space is a union of events; thus, acc(bs@ce compact) and open
set in a simple space is the union of a finite family of evengside an event. The other direction
is obvious; each event and its complement are both openghmoth closed. Clearly, a subset of
a simple space is compact Hausdorff if and only if it is clogseds relative topology. Since the
latter is the same as the topology generated by its reldtadea, the second claim follows. [

Note that if X' is a simple space, then every reflexive and transitive birglation onF(X) is
automatically a preference relation 6i1.X), i.e. monotone continuity is trivially satisfied. Indeed,
every sequence of evenks, such thatt,, | @ must satisfyE,, = @ for everyrn sufficiently large,
becauseX is compact, eaclk, is closed, and the sequence has the finite intersection fyyope

Proposition 1. If X is a simple space, theli(X) is a simple space.

We conclude this subsection recording a few more propestissnple spaces. Ik andY are
simple spaces, them: X — Y is measurable if and only if continuous (first part of Lemmair2)
this case the induceg : TI(X) — T1(Y) is also continuous. Moreover, we have the following.

Lemma 3. Let X and Y be uncertainty spaces. Assutikieis simple, and lepp : X — Y be a
measurable function. I is onto, then the induced mappipg I1(X) — I1(Y) is onto.

3Thus, the product of a finite family of simple spaces (resputsspace of a simple space) is understood endowed
with the topology generated by the product algebra (respelative algebra). No confusion can arise, as this is the
same as the product topology (resp. the relative topolodiydad by the topology on the larger space).

14A topological space whose topology has a countable baseopknl (closed and open) sets is callato-
dimensional and zero-dimensional compact Hausdorff topological epare calledoolean Thus, what we call
simple spacés a Boolean topological space stripped down to its algebctopen sets. For an excellent treatment of
Boolean spaces, see Koppelberg [16] — our proof of Lemmaa&kirt from there.



Proof. Assume thap : X — Y is onto, and letr € T1(Y). We have to find a preference relation
on F(X) that is mapped inta by the functionp. Consider the set

{(fop.gop): (frg)en} UL f): [eFX)}

This is a well defined binary relation adf(.X'), as ontoness af ensures that, i, /' € F(Y) and
fop= fop,thenf = f’. Since it containg f, /) for every f € F(X), it satisfies reflexivity;
transitivity is directly inherited fromr; monotone continuity is automatic, sindeis simple. [

3. Coherent Preference Hierarchies

The spaceS embodies théasic uncertaintyaced by the players. In the standard game-theoretic
framework,strategic uncertaintys formalized by means afoherent beliefs hierarchidsased on
this space. In our framework, following Epstein and Wang iif9s modeled by means abherent
hierarchies of preference relation#n this section we construct the space of all such hieras;hi
establish its properties, and show that one can descrilberpnee hierarchies implicitly, much like
one describes coherent beliefs hierarchies by means oéhaistypes.

DefineQy = S andQ; = Qo x IT4{(Qy). Letpy : Q1 — Qo ands; : Q; — ITL(Q,) be
the natural projections, and Ig§ : TT1(2;) — TI(£2,) be the mapping induced byy. Proceeding
recursively, defin&,,,; for n > 1 as the largest subspace®@f x I1/(£2,,) such that the following
diagram — where,, : Q,41 — 2, andé, 1 : Q.11 — I14Q,) are the natural projections, as
before — commutes for every player

51’

n+1
Qn-H H(Qn)
pnl lﬁn—l
Q, ———— (1)

As before, letp, be the mapping fronfl (2,4 ) to I1(£2,,) induced byp,.*®

Lemma 4. For all n > 0, the projectionp, : 2,4+, — @, isonto. For allw, € ,, in fact,
0, ' (wy) has at least two distinct elements. Thus, the indygedI1(€2,,+1) — T1(2,) is onto.

SCommutativity of the diagram is what we refer to as cohereidy follow Mertens and Zamir's [21] approach
to coherency, whereby the property is built-in rather iadtef being imposed posteriori(as Epstein and Wang [9]
instead do, following Brandenburger and Dekel [7]). We ddwdve followed the latter route, obtaining essentially the
same results obtained here; a more formal discussion grhithigever, must wait till Subsection 6.5.
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The space of altoherent preference hierarchiesthe set
Q= {(wo.w1,...) € Qo x Qi X+ pylwpt1) =y ¥Yn >0}

with the algebras of all sets of the fornp;, ' (4), wheren > 0, A € Q,, andg, is the natural
projection ofQ2 on €2,,. Note thatp, is onto for allz, hence is indeed a well defined algebra. The
inducedp, : T1(2) — I1(£2,) is, in fact, also onto, as the following result (by Lemma 3pli@s.

Proposition 2. (€2, ) is a simple uncertainty space.

Proof. The sequencé&,, p,) is a projective system of finite (hence compact Hausdorffpkog-
ical spaces. By construction, the setendowed with the relative product topology (which ks
as a base) is the projective limit of the system, hence a conimusdorff topological space. ]

The space2 closes our construction in the sense of leaving no furtheedainty undescribed.
This is established in the following proposition. Paratiglthe analogous results in the literature
on beliefs hierarchie¥, the proposition provides the first step towards our mainréres.

Proposition 3. There exists a unique mapping : Q — I1/(Q) such that
@n—l o wi = 8,11 © On (1)

foreveryi = 1,...,1 and everyn > 1. The mappingo is measurable and onto. The mapping
w — (0o(w), w(w)) fromQ into S x TT1/(Q) is a measurable bijection with measurable inverse.

3.1. Preference Structures

The following is a straightforward generalization of Hargés [12] notion of a type space, whereby
coherent preference hierarchies are implicitly descrijpesd as coherent beliefs hierarchies are im-
plicitly described by Harsanyi’s types.

Definition 1. A preference structuréor, more simply, astructurg is a tuple(X, 8, o, ©) where
(X, B)isaspace and : X — S and?d : X — T1/(X) are measurable functions. A structure is
simple(resp. ar-structurg if the underlying uncertainty space is simple (resp. a mesdsde space,
i.e. a space such that the algebra of events is in facakebra).

16See Proposition 2 in Brandenburger and Dekel [7] and The@:8rim Mertens and Zamir [21].
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A structure(X, 8, 0, ) generates a set of hierarchies in a natural way, as followst, Fet
vo = o and writey, for the induced mapping fromi (X, 8) to I1(2). Then, recursively for all
n >0, definey,+1 : X — Q,41 as

%0 (100, (a8 (00). .70 (97 ()

andy,4 : II(X) — T1(2,+1) as the mapping induced by, . Finally, definey : X — Q as

x = (Yo(x), y1(x),...).

Sinceo andd are measurable, and singe= p,oy,+1 foralln > 0 by construction, the functions
Yo, V1. - . . are all well defined and measurable, hence ge. i$he mapping is thegeneratorof
the structure, and its range is the set of hierarch@aweratedy the structure.

Borrowing terminology from the literature on coherent btdihierarchies, we say’, 8, o, )
is acompletestructure if the mapping fronk” into S x IT/(X) such thatx — (o(x), ¥(x)) is
ontol’ If, in addition, the inverse of this mapping exists and is sugable, then we write

X = S x I (X).

The notion of complete structure should not be confused thighnotion of complete preference
relation. Instead, our nomenclature is suggested andigashy the following.

Proposition 4. The generator of a simple and complete structure is onto.

3.2. Preference Morphisms

In order to formalize equivalence between structures we aegotion of isomorphism, whereby
isomorphic structures generate the same set of hierar@mnesstructures generating the same set
of hierarchies are isomorphic. The following definition yides the necessary starting point.

Definition 2. A morphismfrom a structure( X, 8, 0, ) to a structurg(Y, €, ¢, 0) is a pair of

"The termsompleteandbelief completdave been used, with analogous meaning, by various aufloisgtance,
Battigalli and Siniscalchi [5] and Brandenburger et al) [8)/e use the terrhelief completéater on in the paper, when
dealing with structures where Savage’s axioms hold — wedadloing so here, and just sapmpletebecause at this
point our preference hierarchies are allowed to be verytanthaving a probabilistic structure.
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measurable functions: S — S andg : X — Y such that the diagram

S ¢ S

o C
L,

X Y

0| ) b
¢

X, 8y—1I1(Y, €)

whereg : TI(X) — T1(Y) is the map induced by, commutes for every = 1,..., 1. The two
structures aresomorphidf, in addition,o andg are bijections angx™!, ¢ ') is also a morphism.

The following handy result provides an easy way to check twred morphism is, in fact, an
isomorphism. For this it suffices to verify that inversesseand are measurable.

Lemma 5. Let(«, ¢) be a morphism from a structufel, 8, o, ¥) to a structure(Y, €, ¢, 0). If o
andg are bijections andp~! is measurable, the@ ™!, ¢~ !) is also a morphism.

Proof. Let ¢ : TI(X) — TI(Y) be the mapping induced hy. Since(w, ¢) is a morphism, we

havea oo = ¢ o @ and@ o ¥ = 6 o ¢ for every playeri. Thus, ifa andg are bijections, then

oop ' =a"loc and, by Lemmal,alst’ cp~! = ()" ! 0f?. Again by Lemma 1, the mapping
from I1(Y) to I1(X) induced byy ! is precisely(¢)~!, so the proof is complete. O

An important particular case of Definition 2 is the followinfake two preference structures
(X, 8,0,9)and(Y, €, ¢, 0) such thai X, B) is a subspace aft, €) ando is the restriction ot
to X. If the identity function onS and the inclusion mapping: X — Y constitute a morphism,
then we say X, 8, o, 9) is asubstructureof (Y, €, ¢, 6). Note that, in this case,

{(f.g) e FY)x F(Y) : for=got}C0(x) Vi=1,...1I ¥xeX, 2)

by reflexivity of #?(x). In other words, playei is indifferent, according t@’(x), between any
two acts that coincide or'. Conversely, given a structut&’, €, ¢, #), a subspac&” of Y which
satisfies (2) can be made into a substructure. For this itesfio endowx” with the restriction of
¢ to X and, foreach = 1,..., I, the mapping fromX to IT(X) such that

x> {(forgoy 1 (fig) € (x)}. (3)

This mapping is, by (2), indeed well defined, and in this casesay X induces(or, with slight
abuse of terminologys) a substructure of the structw, €, ¢, 9).
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Lemma 6. Let(«, ¢) be a morphism from a structu@V, D, t, ) to a structure(Y, €, ¢, 8), and
let X = o(W). Letg : W — X be the mapping such that — ¢(w). ThenX is a substructure
of the structurdY, €, ¢, ) and, furthermore(«, ¢) is a morphism.

3.3. The Universal Preference Structure

Recall thatw : Q — IT/(Q) denotes the mapping whose existence and uniqueness drksbsta

in Proposition 3. We refer t(2, 4, 0o, ) as thecanonicalpreference structure. Its generated set
of hierarchies is, of cours& itself; its generator is the identity. More generally, iflbset?’ € Q
induces a substructure, the set of hierarchies generatdebatter is2’, and the generator is the
inclusion of 2’ into Q. In fact, the identity orS and the generatar of anystructure( X, 8, o, )
constitute a morphism from the latter into the canonicalctrre, since the generatprand the
inducedy : TI(X) — TI(R2) clearly satisfy

)’/\oﬁi:wioy Vi=1,...,1. (4)

Indeed, ifx is the identity onS and(«, ¢) is a morphism from( X, 8, o, ¥) to (2, A, 0o, @), then
it is immediate to see that = y.'® Moreover, we have the following.

Theorem 1. Q = S x TT{(Q).

Proof. This is a restatement of part (ii) of Proposition 3 in the laage of structures. 0J

Clearly, isomorphic structures generate the same higesrcBonversely, structures that gener-
ate the same set of hierarchies and satisfy both requiranretiite following definition are isomor-
phic, indeed isomorphic to a substructure of the canontcattire, as Theorem 2 below shows.

Definition 3. A structure(X, 8, g, ) is minimal(resp.non-redundantif B is (resp. if every two
distinct elements oi” are separated by) the smallest alge3fasuch that

o l(s)e B Vs €S, (5)
{xeX:(flg9ed(x)}ePB Vi=1,....,1, Vf,g € F(X, 8. (6)

The associated minimal structutis the structurg X', 8, o, ¥ ) where B is the intersection of all
algebras of subsets &f satisfying both (5) and (6) above, afid X — I1/ (X, 8) is defined by

F(x)=x)N[F(X,.B)x F(X,8)] Vi=1,....1, ¥x e X.

18|n other words, the structu€, 4, o, @) is universalin the sense of Heifetz and Samet [13].

14



Note that the intersection of all algebras satisfying (5 &) is again an algebra with these
properties, so the latter definitions are meaningful. Agalssly to the probabilistic case, non-
redundancy requires distinct elementsXofto differ in terms of states of nature, strategies, or
preferences$? Minimality says that those subsets &f which measurability of and? requires
to belong toB, are the only (basic) events the players can reason abowseTproperties are
characterized as follows.

Proposition 5. A structure(X, 8, o, ¥) is minimal if and only ifB is the smallest algebr®’ such
that the generator of the structure is measuralB& A. Moreover, whether it is minimal or not,
the structure is non-redundant if and only if its generatmjective.

As an obvious consequence of Proposition 5, every substeiof the canonical structure, and
indeed every substructure of a minimal and non-redundanttste, is both minimal and non-
redundant. Now using Lemma 6 we conclude th&'ifs the set of hierarchies generated by some
structure, therf2’ is a substructure of the canonical structure, hence itfeti€?), which here is

{(fL.e) eFQXF(Q): for=go}Cw'(w) Vi=1,....1, Yo € Q, (7)

where: denotes the inclusion froif2’ to 2. Based on our observation following (2), we then have
the following characterization: a set of hierarchi#’ss generated by some structure if and only if
it satisfies property (7), that is, if and only if it inducesubstructure of the canonical structure.

Theorem 2. A structure(X, 8, o, ) is minimal and non-redundant if and only if it is isomorphic
to the substructure af2, +, 0o, ) induced by the set of hierarchies generated by B, o, ).

Proof. Sufficiency follows from the fact that the set of hierarctgeserated by a structure induces
a substructure ofS2, A, 0o, @w). To prove necessity, suppos&, B, o, ¥) is minimal and non-
redundant, and let be its generator. The latter is injective by non-redundamzy Proposition 5,
thus the mapping : X — y(X) such thatx — y(x) is a bijection. By minimality, and again by
Proposition 5, the inverse gfis measurable. Let be the identity orS. By Lemma 5, it suffices
to show(«, ¢) is a morphism. This follows at once from Lemma 6. 0J

In view of Theorems 1 and 2, following the analogous ternogglin the literature on coher-
ent hierarchies of beliefs, the structuge, 4, oo, @) will be also called theiniversal preference
structure The next two sections are devoted to the study of certaistaudiures of it, namely,

19Since these aspects are supposed to describe all relevartainty of the model, it is not clear how to interpret
a redundant structure. Non-redundancy of a structure ecihefquivalent to injectivity of its generator, as Proposit
5 below shows.
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those arising as the result of imposing various restristiom preferences, along with the players’
common certainty — to be defined presently — of the restmstio

4. Common Certainty and Simple Structures

The set of hierarchies generated by a structure that is maplete is, in generaf a strict subset of
Q. First, the projection of this subset on the sp&;emay fail to be onto for some (hence fail to
be onto for allz sufficiently large), so that some states of nature or sti@degr certain preferences
on F(2,—1), never occur. Second, even if its projectionfopis onto for allx, the generated set of
hierarchies may still be a strict subset®fso that certain preferences 612, +) are ruled out?

In any case, since only hierarchies satisfying restrictioione form or the other (or both) appear
in the generated set of hierarchies, one would like to imétrnhe structure as a model where not
only are the restrictions true, but each player is certaimigf is certain of the fact that all players
are certain, and so on.

The latter additional restrictions, however, have not bieemally modeled yet. Thus, veri-
fying that such interpretation is formally sound requiretablishing a link between the explicit
restrictions — formulated within the universal structuia & formal notion of certainty — and the
preference structures where those restrictions are ongiigitly assumed. This is indeed our task
in this section and the next. In this section we define theonatif certainty of events in a struc-
ture, prove that for simple structures this notion extemdsddsedsubsets, and finally show that
the non-redundant simple structures are precisely (isphmoto) the sets of hierarchies obtained
imposing iterated certainty of a closed subset of the usalestructure.

Definition 4. Let (X, 8) be a space and let be a preference relation afi(X, 8). An event
E € 8 is null according tox, or justz-null, if (fEg,gEh) € n forall f,g,h € F(X,B).
If (X,8B,0,9) is a structure, then we say playiers certain of E € 8 at x € X, or thatE is
¥ (x)-certain, provided that’ ~ E is null according ta$ (x).

Note that an event that is a subset of a null event is necgsabsd null, because two acts that
coincide on the latter must also coincide on the former. Harrhore, as an obvious consequence
of transitivity, the union of a finite family of null events rwll. Monotone continuity actually
guarantees the following, much stronger result.

20we do not know whether the converse of Proposition 4 is tree\iie do not know whether every structure whose
generator is onto must be complete), though we conjectisadt.

2For example, take the set of all hierarchiese Q such that(f,g) ¢ ='(w) for some player and some
f,g € F(Q, 4). Thisis the set of hierarchies where not all players ardfindint between all acts. It is a strict subset
of 2, but its projection on eacf?,, is clearly$2,, so it satisfies property (7) and is thus generated by sometste.
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Proposition 6. Let X be a space, letr € I1(X), and take a sequence of events such that
A = U,A, is an event. Thed is 7-null if and only if each4,, is 7-null.

The latter proposition establishes the analogue of the kmeilvn knowledge continuitprop-
erty of probability measures (the intersection of a couletémily of events having probability one
also has probability one). Whereas the latter stems fromtate additivity of probability mea-
sures, the claim in the proposition above heavily depends@mtone continuity. As we formally
state below, monotone continuity is, in the presence of @ig8aaxioms, equivalent to countable
additivity of the belief in the Savage representation, sodlaim in the proposition would be no
surprise ifr were assumed to satisfy Savage’s axioms. However, the pitapodoes not assume
anything beyond reflexivity, transitivity, and monotonentiouity. Indeed, reflexivity is not used
at all in the proof. Thus, while the proposition will also peouseful in the analysis below, it also
establishes a result of some independent interest, natinalyhe key properties behind knowledge
continuity are just transitivity and monotone continuity.

4.1. Certainty and Common Certainty in Simple Structures

For simple structures, the definition of certainty given\aoan be extended to intersections of (a
fortiori countable) families of events, i.e. to closed setlss

Proposition 7. Let (X, 8) be a simple space, let be a preference relation o'(X, 8), let
Ay, A,, ... be a sequence of-null events in8, and let4 = U,A4,. Let 8" be the algebra
generated byB U {A4}. There is a unique preference relatiart on F(X, 8%) such that

rtN[F(X.8)x F(X,B)] = 7. (8)

Moreover, if the union of a sequence of event®ibelongs taB ™, then it is null according tor *
if and only if each event in the sequenceisull. In particular, 4 is null according tor ™.

Let (X, 8B, 0, 1) be a simple structure, take a sequence of evEpts B, and letE = N, E,,.
Based on the latter result, we say playes certain of E at x € X, or thatE is 9 (x)-certain
provided thatE, is ¥ (x)-certain for alln. By the second part of the proposition, this is indeed
well-defined; in other words, certainty & does not depend on the particular sequence of events
E, chosen; ifE, is ¢ (x)-certain for alln, then, for any other sequence of evehts € 8 such
thatE = N, E/,, we have thatt! is ¢ (x)-certain for alln. Thus, for every player we define

C'(E) = {x € X : playeri is certain ofE atx}.
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The fundamental and obvious property of the latter set isithgitself closed. Indeed,

CHEY=() () {xe€X:(E,f hE,g) €d'(x)}.

n=1f,g.he F(X)

Thus, we can define recursively is 1-mutually certain atc € X if E is ¢ (x)-certain for every
playeri; E is (m + 1)-mutually certain atc € X if E is m-mutually certain ak and, moreover,

MC,(E) = {x' € X : E is m-mutually certain at’}

is ¥ (x)-certain for every playef; finally, E is commonly certain at € X if E is m-mutually
certain atx for all m. Observe that, sinc®C,,(FE) is closed for everyn, so is

CC(E) = {x € X : E is commonly certain at }.

Given a simple structureX, 8, o, ), a subspace afX, 8) having the formENCC(E), where
E C X is closed, will be called alosed common certainty componéutt justclosed componeht
of the structure. We stress thatmutual certainty, common certainty, and closed companent
are defined only for simple structures and closed subseteai.t The following proposition col-
lects some important facts about mutual and common ceytaiiltese are in fact straightforward
generalizations of analogous, well known results conogrpiobabilistic belief$?

Proposition 8. Let (X, 8, 0, ) be a simple structure. For every sequence of closed suldgais
X, letting4 = N, 4,, the following hold:

(i) MC,(A) =n,MC,(A,) foreverym > 1.
(i) If Bisaclosedsubsetdf andA C B, thenMC,(A4) € MC,(B).
(iii) If A € MCy(A4),thenAd € CC(A).

A subspace ofX, 8) is a closed component @fX, B, o, ) if and only if it induces a simple
substructure of X, B, 0, ).

Combining the last claim in the proposition with the reswléained in the previous section,
we finally arrive at the main result about common certainty simple structures.

Theorem 3. A preference structure is simple and non-redundant if arlgt drit is isomorphic to
the substructure of the canonical structure induced by aediocomponent of the latter.

22See, for instance, the classic Monderer and Samet [22].
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Proof. Sufficiency is an immediate consequence of Proposition @ necessity will also fol-
low, using Theorem 2, once we show that every simple and adaoadant structure is minimal.
Thus, supposéX, 8, o, ¥) is simple and non-redundant, lgtbe its generator, and |62’ be the
generated set of hierarchies. Sincg, 8) and (2, 4) are simple spaces andis continuous,
and sinceR’ is compact and X, 8, o, ¢) is non-redundant, the mapping: X — Q' such that
x — y(x) is injective, onto, and continuous, hence a homeomorphesX (is compact and?’

is Hausdorff). Since&?’ is a compact and hence closed subspac®,dfy Lemma 2 every subset
of Q' that is both closed and open ¥ has the form2’ N 4, where4 € 4. Thus, every sub-
set of X that is both closed and open i (hence every event iiY, by Lemma 2) has the form
e 1 (' N A) = y~1(A4), whered € 4. Thus, by Proposition 3,X, 8, o, ¢) is minimal. O

Thus, the simple and non-redundant structures are (uprmigahism) those sets of hierarchies
obtained imposing common certainty of a closed subset oaftRies. Such structures are the
natural choice in a number of important cases. Section 6abetefly discusses some of them.

5. Common Belief and Standard Savage Structures

For a preference structufd’, 8, o, ©) where the axioms of Savage hold everywhere, the notion of
certainty further extends to all sets in lhelgebra generated 8. This extension result provides
the key to all results in this section. We begin recordingaga\s theory and some extensions.

5.1. Savage Preferences and Savage Structures

Definition 5. Let (X, 8) be a space. A preference relatisne I1(X, 8) is Savagef it satisfies
the following (forall f, g, h,h' € F(X,8B),allz,z',z",z" € Z,all A, B € B):

PL.If (f,g)¢n, then(g,f)en.If (f,g)er and(g,h)en,then(f, h)emn.

P

N

N (fAh, gAh) € n,then(fAR ,gAN) € 7.
P3. If Aisnotx-null,then(zAf,z’Af) € wifand onlyif (z,z") € &.
P4.If (z,z') € w and(z”,z"”) € , then(zAz',zBz') € w ifand only if (z” Az, z"Bz"") € «.

P5. There exist, z € Z such thaiz,z) € «.
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P6. If (f, g) €, then there is a finite partitiofd;, ..., Ay} € B of X suchthatzA4, f,g)en
and(f,zA,g)en foralll <n < N.

The subspace ofl(X, 8) consisting of all Savage preference relations/(X, 8) is denoted
(X, B). The product space’_, Is(X, B) is denoted1L (X, B). A Savage structurs a pref-
erence structure where P1-P6 hold at every state for evaygipl— in other words, a preference
structure( X, B, o, ) such that¥’ (x) € IIs(X, B) foreveryx € X andevernyi = 1,..., 1.

The next result, henceforth referred toSevage’s Theorens in fact an extension of Savage’s
original result. Before stating it, we need the following.

Definition 6. Let (X, 8) be a space. Aeliefon B is a countably additive functiop : 8 — [0, 1]
with w(X) = 1. A belief  is finely rangedf forall 4 € 8, alle > 0, and all0 < p < u(4)
there existsA © B € B such that-¢ < u(B) — p < €. A belief u is convex ranged for all
A e Bandalldo < p < u(A) there existsA 2 B € 8B such thaiu(B) = p. The set of all finely
ranged beliefs o8 is denoted byArz (X, B), the setx/_ Arr(X, B) by AL (X, B). The set of
all convex ranged beliefs of8 is denoted byAcr(X, B), the setx/_  Acr (X, B) by AL (X, B).
A utility functionis a mappinge : Z — [0, 1] such that max.z u(z) = 1 and mincz u(z) = 0.
The set of all utility functions is denotett, and the se/_, U is denotedU’. Given another
spaceY and a functionp : Y — AL (X, B), the function mapping € Y into the coordinate of
¢(y) corresponding to playeris denotedp’. The analogous convention is adopted for functions
mappingY into AL (X, B) or into U’.

Savage’s Theorem.Let (X, 8) be a space. A preference relatianon F(X, 8) is Savage if and
only if there existu, n) € U x Ag(X, 8) such that, for allf, g € F(X, B),

(f.g) e ifandonlyif Y u@u(f'(2) =Y u@)u(e' (). (9)

zeZ zeZ

In this caseu andu are unique.

Proof. Kopylov[17] proves that a binary relationon F (X, 8) satisfies P1-P6 if and only if there
exist a nonconstant functian: Z — R and a finitely additivg: : 8 — [0, 1] with u(X) = 1 such
that (9) holds, and also proves uniqueness. The equival@ntiee presence of P1-P6) between
countable additivity ofu and Monotone Continuity off has been proved in Villegas [24] and
Arrow [1] for the case wheré is ac-algebra. Their proofs taken verbatim are valid eves iis
assumed to be an algebra. O

The pair(u, 1) satisfying (9) is theSavage representatiaf (or representsor isinducedby)
the preference relatiom. Note that an evenk € 8 is 7-null if and only if u(E) = 0.
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Lemma 7. Let (X, 8B) be a space, leB* be thes-algebra generated b, and letu be a belief
on B. There exists a unique beligf* on 8* whose restriction taB is . Moreover,u is finely
ranged if and only ifu* is convex ranged (equivalently, if and onlyf is non-atomic).

This extension result abobeliefscarries over tgpreferencesas the following proposition es-
tablishes. The latter allows us to extend the notion of a&staat those points in a structure where
the axioms of Savage hold, to thealgebra generated by the algebra of events in the structure

Proposition 9. Let (X, B) be a space and leéB* denote ther-algebra generated b$. A prefer-
ence relationr on F(X, 8) is Savage if and only if there exists a Savage preferencéonla *
on F(X, 8*) such that

n*N[F(X,B) x F(X,8)] = n. (10)

In this case,z* is unique and furthermore, i denotes the belief o induced byr and p*
denotes the belief o™ induced byrz*, thenu is the restriction ofu* to 8. In particular, an
eventE € B is z-null if and only if it iszz*-null.

The preference relatiom™* in the latter result will be called thextensiorof .

Definition 7. Let (X, 8,0, 17) be a structure, leB* be theo-algebra generated b$, and let
E € B*. Playeri believesE atx € X if the preference relatiofi’ (x) is Savage and, furthermore,
X ~ E is null according to the extension 6f(x) to F(X, 8%).

Let (X, 8,0, 1) be a structure and leB* be theo-algebra generated kg. For eachE € B8*
we define

CL{(E) = {x € X : playeri is certain ofE atx} and MCs;(E) = N/_,Ci{(E).

Observe thaCi(X) is the set allx € X such that}’(x) is Savage — in particular, the structure
is Savage if and only iX" = MCs ;(X). Note also that, by Proposition 6 and by the last claim in
Proposition 9, the definition above indeed agrees with tHi@itlen of certainty given earlier for
closed subsets of simple structures — i.e(Xt 8B, 0, ¥) is simple andE € X is closed, then

CH{E) = C{X) N C(E).

In order to speak of mutual and common belief we must show@héE) € B* for eachE € B8*.
For sufficiently well-behaved structures, this is indeed ofithe consequences of Proposition 10
below. Meanwhile, we prove the following.
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Lemma 8. Let (X, 8B, 0, ) be a structure and le3* be thes-algebra generated byB. If B is
countable, then, for every=1, ..., I and every P= P1,...,P6,

{x € X : ¥ (x) satisfies B € B*.
In particular, C{(X) € B*.

Now, using Proposition 9 and the uniqueness in Savage’sréhedaking a (not necessarily
Savage) structureX, 8, o, ¢) and again lettingB* be theo-algebra generated b, for every
playeri one can define induced mappings

A Cs(X) - TIs(X, BY), v :Cs(X)— U, and B':Cs(X) > Acr(X, BY)

via the function’. Namely,A’ mapsx € MCs;(X) into the extension of'(x) to F(X, 8*),
whereas)’ andB’ mapx into the utility function and belief otB* induced byA!(x), respectively.
The following important result builds on this observation.

Proposition 10. Let (X, 8, o, ) be a structure, let3* be thes-algebra generated b, assume
B is either a countable algebra or a countably generatedlgebra? fix a playeri, and let

A Cs(X) - Ms(X, B, v :Cs(X)— U, and B':Cs(X) — Acr(X, B*Y)

be induced by}'. Then, forallE € 8*,allz € Z,allu € R,all p ¢ R,and all /, g € F(X, 8%),

{xeX: xeCiX) and B'(x)(E) > p} € B, (11)
{x€X: xeCiX) and V'(x)(z) > u} € B* (12)
{xeX: xeCiX) and (f,g) € M (x)} € B*. (13)

Thus,(X, B, 0,9) is a Savage structure if and only(if, 8*, o, (A")/_, ) is a Savage-structure.

An immediate corollary of this proposition is that we can defmutual and common belief.
Under the notations and assumptions of the theorem, foydver B8* we have

CUE)=(V{x € X : xeCiX) and B'(x)(E) > 1 —1/k}, (14)

k>1

2The latter means tha® = 8* and there exists a countable algetathat generate$.
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SoCL(E) € 8* by (11) and hence als¥(Cs ;(E) € 8*. Thus, we can define
MCs py1(E) = MCs y(E) N MCs;(MCs m(E))
recursively for allz > 1, and finally
CCs(E) = N1 MCs m(E).

A subspace of X, 8) of the form E N CCs(E), whereE € 8*, will be called aSavage common
belief componentor justSavage componentf the structurg X, 8, o, ©). Note that the latter is
not assumed to be simple, nor is it assumed to be Savage — ibig oth simple and Savage,
then a closed subspace is a Savage component if and onlgifitiosed component. However,
we should stress that we do require tlgabe either a countable algebra or a countably generated
o-algebra, and thak € 8* — otherwise, mutual belief, common belief, and Savage corapts

are not defined (just like mutual certainty, common cerjaiand closed components are defined
only for simple structures and closed subsets). Similarlghe first part of Proposition 8, by (14)
and by countable additivity of the beligf (x) foralli = 1,..., 7 and allx € C{(X), we have

MCS,m(ﬂ,,E,,) = ﬂ,,MCS,m(En) (15)

for everym > 1 and every sequence of everlig in 8*. Moreover,MCs (D) € MCs,,(E) for
allm > 1andallD, E € 8* such thatD € E. Finally, E C CCs(E) for all E € 8* satisfying
E € MCs(E). Similarly to the last claim in Proposition 8, here we hawve fibllowing 2*

Proposition 11. Let (X, 8, o, ) be a preference structure, I&* be thes-algebra generated by
B, and assumeB is either a countable algebra or a countably generatedigebra. LetE € 8*
and letBg be the relative algebra, i.e. the algebra of all subset&adf the formE N A where
A € 8. Then(E, Bg) is a Savage component X, 8, 0, ) if and only if (E, 8g) induces a
Savage substructure 6k, 8, o, ).

Note that, under the notations and assumptions of the pitapgssufficiency is lost if one
does not requirdl € B*. In other words, while it is true that a Savage component nmaksices

24The terminology in Proposition 11 is potentially misleaglinVhen we say a structuleX, 8, o, ) is a Savage
substructureof a structure(Y, €, ¢, 0), do we mean (i) thatX, B,0,9) is a Savage structure, i.e. that(x) e
[Is(X, B) for every playeri and everyx € X, or (i) thatf?(y) e TIs(Y, €) for every playen and everyy € X?
The issue is, however, immaterial. It can be easily showh(thand (ii) are equivalent. See also the discussion in
Subsection 6.1.
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a Savage substructufeit is nottrue that a Savage substructure whose underlying set ig f®t i
is induced by a Savage component. This is analogous to thth&tonly the simple substructures
of a simple structure are induced by its closed components.

5.2. Common Belief and the Canonical Savage Structure

The o-algebra on2 generated byA will be henceforth denoted byt*. In this subsection we
will prove a theorem analogous to Theorem 3, establishingvatence between certain well-
behaved Savage structures — which we will gaéstandard— and the Savage components of
the universal structure. We will also construct a Savagstsutture of the universal structure with
the property that the Savage components of its associayger{iposition 10) Savage-structure
are isomorphic to certain well-behaved Savag&ructures — which we will calstandard Borel
In order to better put the results in context, we would likesspend a few more comments on the
implications of Proposition 10 above.

In the traditional game-theoretic framework, one ofteruasss objects of the form

(X, B*,0,v, ﬂ) (16)

where8* is ac-algebra onX, the mappingr : X — S is assumed to be measurable, and the
mapping’ : X — U andp’ : X — Ac(X, B*) are assumed to satisfy

{[xeX :vi(x)>u}eB* and {xeX:B(x)>p}ecB* (17)

for all u, p € R. The latter requirements, equivalent to measurability’oind 8’ in the usual
sense® coincide with (11) and (12) if the structure assumed in theppsition is in fact Savage
(so thatC.(X) coincides withX for each player). Let us call an object of the form (16) with
these properties subjective expected utility interactive syst@nSEU systenfior short. If one
assumes such an object, then one can défingd — TTL(X, 8*) via v andB and conclude that
the tuple(X, B*,0,0) is a Savage -structure, because (13) is indeed an obvious consequénce o

2If (E, Bg) is a Savage component, then Proposition 10 implies fhat B8*, thus Proposition 11 implies that
(E, B8g) induces a Savage substructure &f 83, o, ¥).

26The two conditions in (17) are equivalent to measurabilitwband g with respect taB* whenU is seen as
a subset oRZ and endowed with the usual (relative) product Beredlgebra, and\r(X, 8*) is endowed with the
o-algebra generated by the sets of the f¢yme Ar(X, 8%) : u(E) > p} whereE € 8* andp € R. The lattero-
algebra has been widely used in the literature on type spaseis well known, if(X, 8*) is a standard Borel space
(see Definition 8 below), then this-algebra coincides with the (relative) Borelalgebra generated by the weak*
topology on the set of all beliefs a@*.

24



(11) and (12). But Proposition 10 says much more. First,ysghat we can go the other way
around, that is, assume a Savagstructure andbtainan associated SEU system, proving (17)
from (13). Second, and much more importantly, it says thataredo sceven if all we assume at
the beginning is a Savage structure with a countable algebexvents This much more elementary
structure will be enough to generate both the Savagéructure and its associated SEU system.
The results below will push these conclusions even furtinethe standardcase it will be enough

to start with aminimalstructure.

Definition 8. An uncertainty spacéX, 8) is standard Borelresp.prestandard if the algebraB

is (resp. is countable and generates) the Beralgebra generated by a Polish topologyonA
preference structure standard Borel(resp.prestandard if the underlying uncertainty space is
standard Borel (resp. prestandard). A structure thatheefrestandard or standard Borel will be
calledstandard

Every simple space is prestandard, because every seconthbteicompact Hausdorff topo-
logical space is Polish. In particuld€2, +4) is prestandard an@d2, A*) is standard Borel. Note
also that if (X, 8) is a standard Borel space, then there exists a countableral@é on X such
that 8’ generatesB and thereforg X, 8’) is prestandard; for example, one can taBeto be
the algebra generated by some countable base for the Pafislogy generating3. Proposition
12 below shows that the latter remark about standard Bpatescarries over to standard Borel
structuressatisfying non-redundancy. Before stating the resultyademments are in order.

In general, the minimal structure associated to a strudtteB, o, ) may involve loss of
information; its algebra of events need not genef@teln such a case not only do we lose the
convenience of working with a much more manageable objeetdgssociated minimal structure),
but the generator ofX, 8, 0, ¥) is not guaranteed to map eventsdhinto events inA or even
A*, making the interpretation of an event & problematic. While Proposition 10 establishes
the important conclusion that a Savage structure has a @@iggociated Savagestructure, it is
equally important to establish the converse of this conoludNamely, we would like to be assured
that if a Savage -structure is reduced to a simpler object — a structure witbuntable algebra
of events — then no information is lost, in the sense thatyapglProposition 10 we recover the
sameo-structure. In particular, we would like this to be true itth-structure is reduced to its
bare minimum, i.e. to the associated minimal structuresesonly with reference to this minimal
structure does Theorem 2 apply. Indeed, as the latter threprakes clear, an event that cannot
be constructed from the events in the associated minimaitsite is problematic, in the sense that
it cannot have an unambiguous interpretation in terms depeace hierarchies, i.e. in terms of
events inA. Such a problematic event, however, cannot exist in theradondant, standard case;
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this is precisely what the following result establishes.

Proposition 12. Let (X, 8, o, ¥) be a non-redundant standard structure andjlet X — Q be
its generator. Then the-algebra generated by is also generated by the algebra of all sets of
the formy —!(A4) whered € 4. Thus, in particulary (E) € A* forall E € 8.

Note that in the latter proposition we do not requifé, 8, o, ) to be Savage; nevertheless
we choose to state the result here, since it has to doowdlgebras, which we explicitly use only
for Savage preferences. The latter result, together wibppdaition 10, guarantees that working
with a non-redundant standard Borel Savage structure igsaquot to working with the associated
minimal (and necessarily also Savage, by Proposition 8r&ire. In other words, a preference
o-structure is non-redundant, standard Borel, and Savagedfonly if its associated minimal
structure is minimal, non-redundant, prestandard, anédavWe are now ready to prove the
main results in this section.

Theorem 4. A preference structure is minimal, non-redundant, predéad, and Savage if and
only if it is isomorphic to the substructure of the canonisilicture induced by a Savage compo-
nent of the latter.

Proof. By Theorem 2, a structureX, 8, o, v) is minimal, non-redundant, and Savage if and only
if it is isomorphic to the Savage substructure(&f, 4, 0o, @) induced by the set of hierarchies
generated by X, 8,0, v). By Proposition 11, this set is a Savage component if and ibrity
belongs toA*. By Proposition 12, this is equivalent (&", B, o, ) being prestandard. O

Now let Qs = CCs(2). This is the subset a2 where all players’ preferences are Savage
and this is common belief. Let#s and A% denote the relative algebra andalgebra onQs,
respectively. Namelyss is the algebra of sets of the forthN Qs, where4 € 4, and.Aj is the
o-algebra generated b¥s, which is the same as tlhealgebra of sets of the forrd N Qs, where
E € A*. Since

Qs = MCs1(£2) N CCs(MCs,1(£2)),

the spac€Qs, As) is a Savage component of the universal structure and thus@sdby Proposi-
tion 11, a Savage substructure of the universal structures. Savage substructure is

(QSv ASa QOSa ws) (18)
wheregys : Qs — S is the restriction ob, to Qs andw( : Qs — IMs(Qs, As) Maps

o {(forgon: (fg) € (®)}
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(wheret : Qs — Q is the inclusion mapping). By Proposition 10, the struc{a®) in turn induces
a Savage -structure, namely

(QS,'A; QOS?ZD-;) (19)

wherewl : Qs — Ts(Qs, A%) is the mapping induced byl — see the observation imme-
diately preceding Proposition 10. We call the preferenoactires (18) and (19) theanonical
Savage structurand thecanonical Savage-structure respectively. Our last theorems show that
these structures also feature universality properti¢stive to Savage’s axioms.

Before stating the results, one more definition is neededsay@ Savage structui&’, 8, o, )
is belief completéf the mapping fromX into S x TTIL (X, B) such thatv — (o (x), #(x)) is onto.
If, in addition, the inverse of this mapping exists and is sugable, we write

(X,8.,0,9) =5 S xTIL(X,B).

Theorem 5. (QS, cA)S, 00s, WS) =g S x Hé(QS, 04)5)

Proof. We only need to prove that the mapping frakhinto S x T1L(X, 8) such thatx ~
(o(x), ¥ (x)) is injective and onto, as measurability and measurabilititsoinverse are imme-
diate consequences of Theorem 1. Lef2s — Q denote inclusion. Being a substructure of the
universal structure, the canonical Savage structurdigati§), i.e.

{(f.g) € F(Q,A) X F(Q,A) : for=goit}Cw'(w) Vi=1,....1, Yo € Qs. (20)

If w ande’ are distinct elements @, then, by Theorem 1, eitheps(w) # 0os(w’), or w'(w) #
w'(w') for some player, or both. In the latter case, by (20), we haveg) € w'(w) N w'(w)
forall f, g € F(2, +) that coincide orf2s, hencew’(w) # wi(w’). This establishes injectivity.
To prove ontoness, pick anye S and any(zd, ..., nd) € TIL, and for each playerdefine

nt={(f.g) € F(Q A)x F(Q,4) : (foi,g01) €ni}.

This relation is Savage, and by reflexivity of it satisfies(f, g) € =’ forall f, g € F(2, 4) that
coincide onQ2s. Since the universal structure is complete, there existsQ2 such thapy(w) = s
andw(w) = (z!,..., 7). But, for allm > 1, the set? ~ MCs,,(R2) is null according to the
extension ofr’ to F(2, A*), thereforew € Qg, thus ontoness is established. O

The main results obtained so far in this section can be themmrized as follows:

(Qs. s, 00s.@s) —> S x IL(Qs, As) — S x U x Al;(Q2s, As)
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\ \ \
(Qs, AL, 00s. @E)  —> S x TTL(S2s, AL) — S x U x AL (s, A%)

This diagram commutes, and indeed every arrow denotesdibije The upper-left and bottom-
left horizontal arrows denote, in fact, measurable bi@wiwith measurable inverses; the upper-
left one is the isomorphism established Theorem 5, the bolédt one, by Proposition 10, be-
comes measurable with a measurable inverse, providedablalk (Q2s, A%) is endowed with the
o-algebra generated by the sets of the form

{n* e Ms(Qs., AF) : (f.g) e ™}, (21)

wheref, g € F(Qs, A*). This means that the canonical Savagstructure is also belief complete,
and indeed satisfies the analogous of Theorem 5. The upp#rand bottom-right horizontal
arrows in the diagram refer to the equivalence establisgeSdvage’s Theorem; by Proposition
10, the bottom-right one also denotes a measurable bijeatith measurable inverse, provided
that (i) the setlls(2s, 4A3) has theo-algebra generated by the sets (21), and (i) the Betnd
AL (Qs, A%) are endowed, respectively, with thealgebras generated by the sets of the form

{ueU : uiz)>a} and {u* e Acr(Qs, A3) : W (E)> p},

wherea, p € [0,1] and E € AZ. Finally, the bijections denoted by the left, middle, anghti
vertical arrows follow from Proposition 10, Propositions®d Lemma 7, respectively.

Theorem 6. A preference structure is minimal, non-redundant, predéad, and Savage if and
only if it is isomorphic to the substructure of the canoniSalvage structure induced by a Savage
component of the latter. A preferengestructure is non-redundant, standard Borel, and Savage if
and only if it is isomorphic to the-substructure of the canonical Savagestructure induced by

a Savage component of the latter.

Proof. The second claim is an obvious consequence of the first — sedbdervation immediately
preceding Theorem 4. By the latter theorem and by Propositin a preference structure is
minimal, non-redundant, prestandard, and Savage if andifoitd generated set of hierarchi€s
belongs taA* and induces a Savage substructure of the universal steucugain by Proposition
11, a subspac®j of the universal Savage structure is a Savage componenedéatter if and
only if it satisfiesQg € A and induces a Savage substructure of the universal Savagéeuse.
Thus, in order to prove the first claim, it suffices to show #aaryQ’ € A* inducing a Savage
substructure of the universal structure must also inducebatsicture of the Savage universal
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structure, and for this it suffices to prof® < Qs. Now by (7) we have?’ € MCs;(R2') and,
therefore 2’ € CCs(R27). SinceR2’ € 2, we also have'Cs(R2') € CCs(2). Thus,2' € Qs. O

Together with Proposition 10 and Theorem 4, the result apowades Savage-like foundations
for non-redundant, standard Borel SEU systenifiese are tuples of the form (16), where the
underlying space is a standard Borel space such that digiiitts are separated by the smallest
o-algebra satisfying (17). Such objects can be interpretegveral ways. One can think of them
(Theorem 4) as the Savage components of the universal wteyabtained imposing (Savage’s
axioms, common belief of Savage’s axioms, and) commonfogflisome eventE € A*. This is
certainly the more basic interpretation, as it takes theesjpd coherent hierarchies as primitive.
But one can also think of them (Theorem 6) as common beliepoorants of the canonical Savage
structure, or of the canonical Savagiestructure, obtained imposing common belief of some event
E € A%. Indeed, the canonical Savage structure is itself indugesl dommon belief component
of the universal structure, hence can be regarded as antaintgispace in its own right — the
space that is in fact more convenient to use, as is done iititnaal game-theory! in all cases
where the axioms of Savage are assumed to hold.

6. Discussion and Extensions
6.1. Closed Sets of Axioms and Relative Universality

Consider the universal structuf@, 4, 0o, @) and pick an arbitrary set of axioms for a preference
relation onF (2, 4). Say that this set of axioms edosedif the subset ofl1(2, A) where the ax-
ioms are satisfied is closed. If we choose a closed set of &doneach player (possibly different
sets of axioms for different players), then the results ibs®gtion 4.1 guarantee that a suitably
constructed closed component of the universal structutdéeature both the axioms and common
certainty of thent® Let (Qa, #a, 00a, @a) denote the substructure of the universal structure in-
duced by this closed component, and say a preference selatus, o, ) is consistentith the
chosen axioms if, for every playérand for allx € X, the preference relatiom (y(x)) induced

on F(Q2, A) satisfies the set of axioms chosen for playel(As usual,y denotes the generator

2"The universal beliefs space in Mertens and Zamir [21] inefyof course, atomic beliefs, whereas our universal
Savager-structure does not admit them. Except for this, and exaephe fact that our basic uncertainty spates
finite (theirs is only assumed compact Hausdorff), the usaiy properties are exactly the same.

28By definition of closed set of axioms, using Theorem 1, theo$etll » € © such that, for every player, the
preference relatiomr’ (w) satisfies the set of axioms chosen for playes a closed subset @, i.e. an intersection
of events insA.
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of the structure.) One claim that is certainly true is thea fibllowing: every simple and non-
redundant structure consistent with the chosen sets ofrexmoust be isomorphic to a substructure
of (Qa, #Aa, 0oa, @a). Thus, the latter is universedlativeto the chosen sets of axioms.

It is important to observe that, while this universality pesty resembles the one established
in the first part of Theorem 6 for the universal Savage strectf®s, s, 0os, @s) relative to
Savage’s axioms, the two properties are conceptually astthieally different. The hypotheses
(resp. conclusions) of the necessity (resp. sufficienatestent in the first part of Theorem 6 say
that (X, 8, 0, ¥) is Savagenot that it is consistent with Savage’s axioms, although thiedas
indeed one of the conclusions (resp. hypotheses) in thansémt?® Saying that for some playér
and somex € X the relationd’(x) on F(X, B) satisfies a certain set of axioms is, in generat,
the same as saying that the preference relatio(y (x)) induced onF(2, 4) also satisfies those
axioms?© although for Savage’s P1-P6 the two claims are indeed dguivaThis implies that,
depending on the specific closed sets of axioms used to aoh#te structur€2a, #Aa, 0oa, @a),
the latter’s relative universality property stated in tleious paragraph may fail to hold if “con-
sistent with the chosen sets of axioms” is replaced by “shahthe players’ preferences satisfy
the chosen sets of axioms”. The upshot of this whole disonssi that, in applications of our
model, if one assumes a structyé, B, o, ) such thaty’ (x) satisfies a certain axiom for every
x € X, then one cannot always (i.e. regardless of the chosen axidenpret this structure as a sit-
uation where playei’s preferences (on the spag#gs2, 4)) satisfy that axiom and this is common
certainty among all players.

Finally, it would be desirable to know just what sets of axsane closed. While giving even
a partial list goes beyond the scope of this paper, a pedunabvestigation already reveals a
few facts. Roughly, all finite or countable sets of axioms —eveheach axiom involves only
the quantifier “for all” applied to events, outcomes, actsdi partitions of the space into events,

29Requiring that(X, 8,0, ) be Savage means imposing thHi(x) satisfies P1-P6 for every playgrand all
x € X. Requiring thal X, B, 0, %) be consistent with Savage’s axioms means imposingat#y (x)) satisfies P1—
P6 for every player and allx € X. These are logically distinct requirements and may fail¢ehuivalent if P1-P6
are replaced by another set of axioms.

30 Note that, by (4), the relatiomr (y(x)) is the same a§(d'(x)), wherey : TI(X, B) — II(Q, 4) is the
mapping induced by. This makes it easy to show that, for exampl@mpletenesis preserved, i.e. that’(y(x)) is
complete if$ (x) is complete. Indeed, let, g € F(Q2, 4). Sincey is measurablé /4, both f oy andg o y belong
to F(X, 8). Thus, if#(x) is complete, then we have eithgf oy, goy) € #(x), 0r(goy, foy) € ¥ (x), or both,
hence (by definition of the induced mappipgwe have eithe( £, g) € 7 (¥ (x)), or (g, f) € P(¥(x)), or both. For
an example showing an axiom that is not preserved, asgumé andZ = {z,z’} and fixs € S. Let(X, 8,0, ) be
a preference structure wheke = {x} is a singleton — such a structure is automatically simple rmoaredundant,
hence also minimal — withr (x) = s and?®!(x) = 9%(x) = {(z. 7)), (z, 2), (z', 2/)}. The latter preference relations
clearly satisfyantisymmetryi.e. for each playei and for all f, g € F(X) we havef = g whenever f, g) € 9 (x)
and(g, /) € ¥ (x). However, the preference relatiop&$! (x)) andy (1+2(x)) violate antisymmetry, because, by (7),
they both contain all pairéf, g) € F(2, A4) x F(2, 4) such thatf (y(x)) = g(y(x)).

31By contrast, for Savage’s axioms this interpretation idquely legitimate (first part of Theorem 6).
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etc. — are closed. For example, all of Savage’s axioms exeépare closed (when each is
seen as a set of axioms) and therefore any set of axioms c@mgpdne or more of P1,...,P5is
closed. Indeed, when dealing with structures where thelyashevents is countable, every axiom
involving conditions of the form “for every evemt”, “for all acts f andg”, etc. can be written
as a countable intersection of events. On the other handp&§ bt have this form. Indeed, P6
corresponds to a countable intersection of countable gnftar every outcome and every pair
of acts, there exists a finite partition such that ...”). Assult, there is no substructure of the
universal structure that is universal relative to P6 only.

6.2. Own Strategies and Preferences

Itis easy to construct a closed component of the univemadtstre where (i) every player is certain
of his own strategy and preferences, and (ii) there is comeoeotainty of (i). It suffices to note
that, foralli = 1,..., I, the singletons i’ x I1(Q2, 4A) are closed, so the set

D' = {w € Q : playeri is certain at of (o)) ' (o) ()) N (w') (' (w)) }

(whereg), : Q@ — S’ is the mapping induced hy, in the obvious way) is well defined and closed.
In other words, playei’s certainty of playeri’s own strategy and preferences is a closed set of
“axioms” for playeri. Thus, the seD = NZ_ D' is also closed, henc®, = D N CC(D) is a
closed component of the universal structure. The assaocsaiestructure is in fact itself universal,
relative to the property that all players are certain ofrtogin strategies and preferences and this

is common certainty? Observe also that the st N Qo belongs to*, therefore
Qso = (QS N Qo) N CCS(QS N Qo)

induces a Savage substructure of the universal structurs. structure will have (and will be in
fact universal relative to) the property that all playersferences satisfy P1-P6, all players are
certain of their own strategies and preferences, and tleismsmon belief.

32Contrary to certain other sets of axioms (like, for instarasgisymmetry — see Footnote 30), certainty of one’s
own strategy and preferences is a property thareserved under the generator of a structure. In other witakls
a structure(X, 8,0, 1) and lety be its generator. Suppose that, at everg X, every playet is ' (x)-certain of
(6710l (x)) and ()1 (' (x)). (Hereo’ : X — S' is the mapping induced hy in the obvious way.) Then, for
everyx € X, every playei is @’ (y(x))-certain aty (x) of both(o’) ! (¢’ (¥ (x))) and(zw?) ! (' (y (x))). Note that,
more generally, one can consider a subset of playegs I, defineD asn;cy D' instead, and obtain a substructure
where all players inJ are certain of their own strategies and preferences, asdgliommon certainty among all
players; this substructure will be again universal, retato the latter property.
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6.3. Rationality

Recall that in Section 2, among the other basic ingrediemtsedr analysis, we have assumed an
outcome functiort : S — Z. This was necessary in order to view a player’s strategy asgn
although it played no role in our analysfslt is also necessary in order to discuatonality. Let
(X, 8, 0,7) be a preference structure andgdetS — Z be an outcome function. For every player
i, identify eachs’ € S’ with the act mapping into Z such thais?, s™%) — (s, s™) for every

5 e ST and every— € S~ Playeri isrational atx € X if there does not exist € S’ such that
(s',0'(x)) € ¥ (x). Itis clear that's rationality, seen as a set of “axioms”, is closed, i.e.dbe

R' = {w € Q : playeri is rational at }

is closed. ThusR = N/_, R’ is also closed, anfz = R N CC(R) is a closed component of
the universal structure. This is the set of hierarchiesuféag all players’ rationality and common
certainty of rationality.

6.4. On the Role of Reflexivity, Transitivity, and Monotoaituity

While the main results in the paper depend heavily on refigixitransitivity, and monotone con-
tinuity, the first use of these properties (reflexivity) aprsein the proof of Lemma 6. Indeed,
transitivity and monotone continuity appear for the firste¢ieven later, in the proof of Proposition
6. In particular, the analogue of Proposition 3 — and indéedanalogue of every result appear-
ing before Lemma 6 — could be proved even if we were to definfeprce relations as arbitrary
binary relations. One needs reflexivity to establish theiatifact that a subspace of a structure
induces a substructure if and only if it satisfies (2), whereansitivity and monotone continuity
are (mainly) needed to talk about certainty of closed sghset to prove Proposition 7. But we
assumed monotone continuity at the outset for another iraporeason as well, namely, because
monotone continuity (seen as a set of axioms)dsclosed in the sense of Subsection 6.1 abdve.

33gpecifying the outcome function since the beginning is mEmrtant from a conceptual and methodological point
of view; presumably, a player’s beliefs about the other ptaystrategies and beliefs (more generally, the player’s
preferences and higher-order preferences) depend nooijusiie other players’ strategy sets, but also, and more
importantly, on how strategy profiles translate into outesm

34Even though it has the “for all” form, monotone continuitg @set of axioms) is not closed if the family of events
is not finite. This is because requiring that some propertgihtior all » large”, as monotone continuity does, means
considering a countable union of countable intersectitmgact, we suspect that in the Savage case there is an even
more serious problem when not assuming monotone contirégnely, we conjecture that given a measurable (say,
standard Borel) spac¥, the set of all countably additive probability measuresioiis not a measurable subset of
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In other words, while monotone continuity is crucial to gauatee uniqueness of the extension of
a preference relation (both in the simple case, as in Proposi, and in the Savage case, as in
Proposition 9), it is a property that cannot be imposaeglosteriorj even if we were willing to
define certainty of closed subsets anyway (just saying, adidyehat certainty of an intersection
of events in a simple structure means that the complemeritseesé events are all null), that is,
without the justification provided by Proposition 7.

6.5. Coherency and Common Certainty of Coherency

The results in Section 4 suggest an alternative route todhstruction of the universal structure,
following the approach of Brandenburger and Dekel [7] toaehcy. Specifically, one can con-
struct the space of all hierarchies of preference relafimetuding those violating coherency) and
then impose coherency and common certainty of cohereney,adhtaining a preference structure
isomorphic to the universal structure.

Define recursivelW, = S andW,, = W, x I1{(W,) foralln > 0. Letd,; denote the
projection of W,,.; on TI/(W,). Let W = W, x W; x --- be endowed with the algebra of sets
of the formr, ' (4) wheren > 0, A € W, is an event, and, : W’ — W, denotes the natural
projection. By the same arguments as in the proofs of Proposi2 and 3, the spad¥ is simple,
and eacttoherent hierarchy— i.e. sequence € W such that(d’_, o r,)(w) is the preference
relation onF(W,,_;) induced by(d! o r,41)(w) — maps into a unique element B/ (W). Thus,
using Proposition 7, a player’s certainty of a closed subs&’ can be defined at every coherent
hierarchyw. But the setiW, of all coherent hierarchies i is itself a closed subset ¢¥, and
therefore so is

We = MC (W) N MCy(MCy{ (W) N -+,

whereMC; (E) is the closed subset &V defined for every closed subsgtof W as
MC{(E) = {w € W, : every player is certain of atw }

It is then easy to construct a bijectign: @ — W, that is measurablet/€, where€ is the
relative algebra oV, inherited fromWw . Moreover,x~! will be also measurable, and there will
be a functionw, : W, — T/ (W,) such thatw! o x = yowi foralli = 1,...,1I, where

the set of alffinitely additiveprobability measures o, when the latter has the-algebra generated by the sets of
the form{u : w(E) > p}. In other words, we suspect that one cannot even assume aySEudhswithout countable
additivity, because the latter would not be an event and ¢butd not be imposed (if so desired) by enclosing it in a
suitably constructed common belief subspace.
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X : TI(Q) — T(w.) is the mapping induced by. This will make (W,, €, ro, w.) into a well
defined structure, isomorphic to the universal structure.

This approach, the one that Epstein and Wang [9] in fact a&dpp$ essentially equivalent to
ours. In this paper coherency is built-in, whereas in theraditive construction it is imposex
posterioriand is what guarantees the construction closes. Indeeallee&€d a modeling strategy
similar to the latter when dealing with Savage substrustufethe universal structure. In the
construction sketched above, coherency guaranteesmesté the mappingo,, thus coherency
itself, together with the fact thai/, is closed inW, ensures that we can meaningfully speak
of common certainty of coherency. Similarly, as shown int®ec5, axioms P1-P6 ensure an
extension result (Proposition 9) analogous to Proposifiotihe extension concerning all sets in
the o-algebra generated by the events; moreover, the set ofrtiieaw € Q such thato’ (w)
satisfies P1-P6 for every playiebelongs to the-algebra generated b%. Thus Savage’s axioms
themselves guarantee we can meaningfully talk about conuadainty of them.

6.6. Complete Information and Subjective Correlated BEouum
Fix a utility functionu’ : Z — R for every playet . By (12) in Proposition 10, the set
D={weQ: »e Qs andw’(») inducesu’ foralli =1,...,1},

whereQso is as in Subsection 6.2 above, belongsttt Thus,Qsoc = D N CCs(D) is a Savage
component of the universal structure, hence it induces adggasubstructure and (by the last claim
in Proposition 10) has a unique associated Sawaggucture, where the family of events is the
o-algebraA?, of all sets of the fornf2soc N E, whereE € A*. Now letvsoc andfsoc denote
the associated mappings

Usoc : S2soc —> u’ and Bsoc : Rsoc — Aé(Qsoc, Aéoc)

as in Proposition 10. Then

(Qsoc, 'Agoo Qosoc; Usocs ,Bsoc)
is acomplete information SEU systene. a SEU system where players may be uncertain about
other players’ beliefs, but are certain of their own stragegbeliefs, and utilities, certain of the

other players’ utilities, and commonly certain of theseaaiaties. Such a SEU system is essen-
tially identical to the mathematical object assumed in thginal definition of (a posteriori) sub-
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jective correlated equilibriumin particular, Aumann [2] explicitly imposes non-atontyciwhich

in Savage’s context (P6) and ours is precisely what guagareistence and uniqueness of beliefs.
While without a doubt an interesting exercise, a full exatmm of the precise connections between
Aumann’s (and also Forges’s [10]) theory and ours goes, Wexvbeyond the scope of this paper.

6.7. States of Nature and Strategies as Simple Spaces

The results in this paper — all of them, as stated and none@éedl— remain valid if, instead of
assuming thas and Z are finite, we assume thaf andS"', ..., S’ are simple spaces arifl is
countable, provided that acts are restricted tsib#le i.e. finite-valued. Indeed, all proofs, taken
almost verbatim, still work in this case. This is becausefémaily of finite-valued, measurable
mappings from a simple space into a countable set (wherattee is endowed with the algebra of
all its subsets) is countable, and this is all one actualgdse We assumesi and Z are finite,not
because this makes the analysis simpler, but rather beitagsans inappropriate to assuisieis
simple — hence possibly uncountable — when the set of actpmg into Z, which should
includethe setS?, turns out to be countabfé.

7. Proofs

Proof of Proposition 1. Pick an injective functiow : F(X) x F(X) — N suchthav ™! (n) # @
for everyn > 1 such thatv=!(n + 1) # @. Such function clearly exists, a§ is simple and
thus F(X) and F(X) x F(X) are countable. Now lefI(X) denote the set of all subsets of
F(X)x F(X), and define a metric oA (X) by lettingd (7, 7') = 0if 7 = 7’ andd(7, ) = 1/n

if n is the smallesk € N such thav~!(k) € # ~7 orv~!(k) € ¥ ~ 7. The induced topology
clearly maked1(X) either discrete — this is iZ and X are actually finite, in which casB(X)

is finite and sdI(X) is also finite — or homeomorphic to the Cantor §&t1}N. Thus,II(X) is

35Here is a somewhat more detailed explanation. Ass#nig countable and® and eachS’ are simple; denote
the product algebra of by §. The outcome functio§ : S — Z should then satisfy~!(z) € § forall z € Z.
Since each element & is both closed and open arftlis compact, there exists a finite subg€t C Z such that
{¢7!(z) : z € Z'} is afinite partition ofS. A preference relatiom’ on the set of measurable maps S — Z (by
the same proof given fdy, each such map is automatically finite-valued) does indyeef@rence relation o, since
eachs’ € S’ can be seen — as explained in Subsection 6.3 — as such a mageveipwhis involves considerable
identification among’s strategies; it implies existence offiaite partition of S such that any two strategies in the
same element of the partition correspond to the same achasdare, by reflexivity ofr’, indifferent toi. In other
words, while not more complicated at the technical levedsthmore general assumptions do not go much farther.
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compact Hausdorff, and everytopen ball is also closed. Let

My, (X)={7TeI(X): (f.g) €T}

for every f,g € F(X) and note that, iv(f,g) = n and P, denotes the set of all mappings
p:{l,...,n} - {0,1} such thatp(n) = 1, one has

O (X) = | ({m eTX) : v'(k) e ifand onlyif p(k) =1}.

peEP, k=1

This shows thall ;. (X) is a finite union ofZ-open balls, hence both closed and open. Conversely,
everyd-open ball can be written as

({7 eT(X) : v (k) ex ifandonlyif v='(k) e 7}
k=1

for somexw e TI(X) and somes, thus everyd-open ball is an event in the algebra BH(X)
generated by the sets of the follity ., (X). We conclude thall(X) equipped with this algebra is

a simple space. It remains to prolVE X) is d-closed. This is indeed immediate, H§.X) is an
intersection of closed subsetsHf_X), namely, the intersection of all sets having either the form
T, (X) where f € F(X)— this guarantees reflexivity — or the form

T/h(X) U (ﬁ(X) < ﬁf,g(X)) U (ﬁ(X) N ﬁg,,,(X))

where f, g, h € F(X) — this guarantees transitivity. (Monotone continuity iscamnatically satis-
fied by every binary relation il (X)), sinceX is simple.) O

Proof of Lemma 4. The third statement follows from the first, using Lemma 3 amalfact that
eachQ, is finite, hence simple. The second statement clearly imptie first and, sinc& has at
least two elements, it is obviously true fer= 0. Letn > 1 and suppose (induction hypothesis)
that, for allw,—; € Q,—;, the seip,;_ll(a),,_l) has two or more distinct elements. k% € 2, and
consider, for each player the preference relations

wt ={(f. 1) [ € FQIU{(fopni1.gopn): (f.8) €8}, =" =" U{(f" )},

where /" and g’ are arbitrarily chosen, distinct acts #(2,) such thatf” # f o p,—1 # &’
forall f € F(2,—1). (Such f” andg’ exist due to the induction hypothesis.) These are distinct
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preference relations, and cleagy_(7') = p,_1 (") = 8! (w,). Thus,(w,. (z'...., 7)) and
(wn, ('Y, ..., 7'")) are distinct elements &®,.,. Thus, for allw, € ©,, the setp, ! (wy,) has at
least two distinct elements. O

Proof of Proposition 3. As a preliminary step, we prove that for evefy € F(Q2) there exist
n > 0andg € F(R2,) suchthatf = gop,. Indeed, by definition of, for everyz € Z there exist
n; > 0 and an evenE; C Q,. such thatf~'(z) = o,.'(E). SinceZ is finite,n = max.cz n.

is a well defined finite number, and the collection of sets effdrm p, ' (-- - (,o;z1 (E.))), where

z € Z,is a finite partition ofQ2,,. Thus, f = g o 0,, whereg € F(2,) maps eaclw, € Q,
into the unique: € Z whose corresponding element of the partition containsThe proof of the
preliminary step is complete. Now note that, as an immediatsequence of our definitions, for

alli =1,...,7 and alln > 1 we haves} o g, = pu—1 6, © 0us1. Furthermore, by induction
using the latter, forall = 1,...,7 andm > n > 1 we have

SQOQn = Pn—10°+""° Pm—1 08£n+1 ©Qm+1- (22)
Define the mappingy : @ — IT1/(Q) as follows: for every = 1,..., I and everyw € Q,

w' (@) = {(foongoon) : n=0, (f.g) €8 (0n+1(w))}.

We must prove the latter is a well defined set and an elemdri{€f). To verify it is well defined,
note that for everyn > n > 0, every f,g € F(R,), and everyf’, g’ € F(£,,) such that
Jfoon= f'oomandgeg, = g'oom, ONe hasf’ = pyo---opp_yo fandg’ = pyo---opm_iog,
(these follow from ontoness @f,, and fromp,, = p, o --- o pu—1 © 0m) hence, by (22), one has
(f.8) € 8, (onr1(w)) ifand only if (/7. g') € 8. ., (om+1(w)). To verify it is an element of
I1(R2), just note that reflexivity and transitivity are an immediabnsequence of the preliminary
step and of the corresponding propertieScSpL(QnH(w)) for all » > 0, whereas monotone
continuity is automatically satisfied (sin€eis simple). The preliminary step also guarantees that
for any two distinct preference relations In(2) there exist: > 0 and f, g € F(2,) such that
(f o on, g © 0s) is an element of one relation but not of the other. Thus ptydd), which o’
satisfies by definition, uniquely identifies’. Moreover, by definition oto?, for alln > 1 and alll
f,g € F(,-1) one has

{weQ: (fooni.800m1) e (@)} ={0ecQ:(fg) edionw))}

The latter proves, again by the preliminary step, thais measurable, and will clearly also prove
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the last statements, once we show that the mappirg (0¢(w), @w(w)) is a bijection. Choose
anys € S and any(r', ..., n!) € I/ (), and definev = (wo, w1, ...) € Q by lettingwy, = s
and recursively defining, 1 = (o, (0n(7"),...,0.(!))) foralln > 0. Clearly,w’(w) = 7'
foralli = 1,..., 1, thus ontoness is established. To prove injectivity, nbt& for every two
distinctw, o’ € Q there exists > 0 such thab,(v) # o0.(®’), hence eithepy(w) # oo(w’) Or
there exist some > 1 and some player such thas! (0,(w)) # 8! (o.(®")), and in the latter case
w(w) # w(w’) by the preliminary step. O

Proof of Proposition 4. Let (X, 8, 0, ¥) be a simple, complete structure, andydbe its genera-
tor. For alln > 0, following our earlier notation, let, = o, o y and lety, : TI(X) — T1($2,) be
the induced mapping. Since the structure is complete, japmds are onto. Thus, by induction,
v IS onto for every:, because if, is onto, thery, is onto by Lemma 3 (as the structure is simple),
hencep, o isontoforalli = 1,..., 1, hencey,y; is onto. This implies that is onto. Indeed, if
this were not the case, then we would reach the contradieti@ince( X, 8) is simple — that, for
somew € , the strictly decreasing sequence of nonempty eventéoo (@), ;' (01(@)). ... In

the algebraB has empty intersection. O

Proof of Proposition 5. Let y be the generator afX, B,0,9%). Let B’ = {y~1(4) : A € A }.
We must prove thaB’ is the smallest algebra of subsets)fsatisfying (5) and (6). Now (5) is
obvious, sincer = gy o y. To prove (6), lety denote the mapping frofil(X, B) to I1(£2, A)
induced byy. By (4), forall f, g € F(2, A) we have

{xeX:(foy.goped )} =y '({eecQ:(f.g) cm'(0)})

This proves (6), as by definition @B’ every act inF(X, 8’) can be written ag o y for some

f € F(Q,4). If 8" is another algebra satisfying (5) and (6), then' (0, '(4)) € B” for all

n > 0andall4 € ,. Forrn = 0 this follows at once from (5), hence by induction using (6% it
true forn > 0 as well. Thus B’ € B”. This proves the first claim. To prove the second claim, just
observe that, by the first claim in this proposition and byrdeéin of A, non-redundancy holds if
and only if for all distinctx, x” € X there exists > 0 such thaip,(y(x)) # o0.(y(x’)), and such

n exists if and only ify (x) # y(x). 0J

Proof of Lemma 6. Let: : X — Y denote inclusion, let = ¢ o, and letd : X — T17(X)
be defined by (3). The mapping is well defined because, by reflexivity af (w), we have
(fop,gog)en(w)forali =1,...,I,allw e W,and all f, g € F(Y) that coincide onX.
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Thus, X satisfies (2) and so it induces a substructure. Now we museéhat
oco¢p=aot and $oni=ﬁi0¢ (23)

foreveryi = 1,...,1, Where$ is the mapping fronT1(X) to I1(Y) induced byy. The former
equality isimmediate: indeetdo¢p = gotogp = gop = wot, Where the first equality follows from
the fact thatX induces a substructure, the second by definitioh,cdind the third from the fact
that(«, ¢) is a morphism. For the second equality in (23), since the inggp I1(X) — TI(Y)
induced by is injective, it will suffice to prove thato ¢ o 9 = 7o ¥ o ¢. Indeed,

Togot =@od because = (o ¢, hencep =To ¢;
=0og because is a morphism;
=0 olog again because = ( o ¢;
=Tod og becauseX induces a substructure.
0]
In all proofs below, the set of outcom&swill be identified with the sefl, ..., |Z|}.

Proof of Proposition 6. Necessity is obvious. For sufficiency, suppose edgls 7-null but 4 is
not. Then there exist, g, 2 € F(X) such that

(fAh, gAh) & . (24)

LletB, = A, U---Ud,foralln>1.LetK =maxze Z : g '(z) #@). Foralll <k <K
and alln > 1, let

Ce={xeX:1<j<k gx)=j} and D} =CiN(A~ By)

and writegy for the act that coincides witk on D}’ and with /47 everywhere else. Note thaf
andgAh only differ on ther-null eventB,;, so

(gAh,g%) em Vn > 1. (25)

As D" | @, by (24) and monotone continuity afwe have(g}'. gAh) € n for somen; > 1. Pro-
ceeding inductively, let < k < K and assume we have foungd > 1 such that(g;*., g4h) € n.
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SinceDy ., | @, again by monotone continuity af there existsi; 1, > nx such that

(gk"“DZ’_:ng" gAh) € m. (26)
But g, ! D" ik andg, ! only differ on ther-null eventD;* \ D', so
(g5t & D git) e m. (27)

By (26), (27), and transitivity ofr, we get(g,’i’jjl1 ,gAh)€m, contradicting (25) fok=K —1. O

Proof of Proposition 7. We prove the proposition in four steps. In the first step westroiet the
binary relationr* and show it satisfies (8). In the second step we provas in fact a preference
relation. In the third step we prove the second part of th@gsdion. In the fourth step we show
7T is the unigue preference relation #it.X, 8+) satisfying (8).

Step 1 Every element ofB™ has the form(B N 4) U (C ~ A) whereB,C € 8. The latter
is immediate, sinceB™ must clearly include the family of sets of such form, and faiwily is
easily seen to be an algebra. Thus, for edche F(X, 8*) we can pick two actg, andg¢y, in
F(X, B) such that);, coincides withf}. on X ~ 4 and¢y, coincides with/ on A.3® Now let

T ={(fr8+) € F(X, 8)x F(X, 8Y) : (Y, Vg,) €7}

To prove (8), first note that if, g € F(X, 8) coincide onX ~ A, then the event

Arg={x € X : f(x) # g(¥)}

satisfiesds, € (4; U---U A4,) for somen and is thus null according to. Indeed, suppose to the
contrary thatdr, Z (4, U---UA,) foreveryn. ThenAds,~(A,U---UA,) is a strictly decreasing
sequence of events. Sindeis simple, this sequence has nonempty intersection, atiotirag the
assumption that” andg coincide onX ~ 4, since the latter implied s, € 4. We have thus shown
thatfor all f, g € F(X, 8) that coincide onX ~ A we have( f, g) € . This has two implications.

360ne way to choos#y, andgy, is as follows. LetV = maxn € Z : f+ Y(n) # @}and, forevery <n < N,
chooseG,, G, € B such that/y ' (n) = (G, N A) U (G, ~ A). Define recursively the inverse images unger
and¢r, by

v () =G U X ~(GlU---UGY)], vl =G, ~(GlU---UG,_)),
¢r () =G U[X~(G1U---UGN)], ¢7/(n) = Gy~ (G1U---UGny).
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The first implication is that4 is null according tar*. Indeed, for allf,, g, € F(X,8™") that
coincide onX ~ A we must haveyy, ,¥,.) € = and hence als6f,, g+) € =*. The second
implication is that for allf, g € F(X, 8) we have(f,v¥r) € m > (Y. f) and(g,¥,) € 7 >
(¥4, g), hence, by transitivity ofr, (f, g) € = ifand only if (f, g) € =*. This proves (8).

Step 2 Reflexivity and transitivity ofz* directly follow from the corresponding properties
of 7. To prove monotone continuity, lete Z, let B, andC, be sequences i8 such that the
sequence, = (B,NA)U(C,~ A) has empty intersection, and chogée g, € F(X, 8*) such
that(f4, g4+) € n ™. Then(yy, . ¥, ) € 7, and since the sequenés, = C, ~ (4, U--- U 4,)
also has empty intersection, by monotone continuity efe have

CE s  Ve,) €m and (Yy ,zE, g, ) €T

for all n sufficiently large. But the two acts in each of the four pairs

(Zan+vZEnwf+)v (ZEnv/g-pZDng-i-)v (wg-pg-i-)’ (f-i—v ¢f+)

coincide onX ~ A. Thus, sinced is null according tor ™, by transitivity of = we obtain

(zDnfy.g+) €n™ and (fy,zDngy) én™

for all n sufficiently large, thus establishing monotone continoityr *.

Step 3 Here we prove that a union of events # that belongs taB* is 7 *-null if and
only if each event in the union is-null. Sincen* satisfies (8), necessity is obvious. In order
to prove sufficiency, by Proposition 6 it suffices to show tifiak € B is 7-null then E is also
at-null. Thus, letf,,g. . hy € F(X,8"). SinceE N A is = *-null (because so ist, by
Step 1) andf; andy, coincide onE ~ A4, and sinced is = *-null and/. andy, coincide
on X ~ A4, we have(fy Ehy, Ys E¥y,) € . Similarly, (Y, EVi,.g+Ehy) € nt. But
E is w-null, so (Y, EYn, . Ye. EYy.) € m, hence(Yr, EVy,, Vg, EYn,) € nt by (8), so
(f+Ehy,g Ehy) € nt by transitivity of z+. This shows that every event i8 that is null
according tar is also null according tar .

Step 4 In order to prove uniqueness, by the first part of the proa$ iclearly enough to
show the following:4 is null according to every preference relatiohon F(X, 81) that, for all
f.g € F(X, B), satisfies f,g) € n’ ifand only if (f, g) € n. Suppose by contradiction that
7' satisfies the latter butl is not z’-null. Then there existfy,g.,h. € F(X,8") such that
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(f+Ahy,g+Ahy) € 7/, hence alstf, g, h € F(X, 8) such that
(fAh,gAh) €' (28)

(For instance, let = v, f = ¢r., andg = ¢4,.) Now letd, = 4, U---U 4, for all
n > 1, defineC; = h~'(k) andD} = C, N (A \ 4,) forallk € Z and alln € N, and let
K =maxXk e Z:C, # @}. SinceD} | @ asn — oo andh is constant onDY for all #,
by (28) and monotone continuity af' there exists:; > 1 such that( /(4 ~ D{")h, gAh) € =’
Proceeding inductively for all < k£ < K, assume that we have found numbeys> --- > n; > 1
such that, letting;, = 4 ~ (D{' U---U D;*), we have(fE; h,gAh) € n'. SinceD},, | @
asn — oo and/ is constant onD? . for all n, again by monotone continuity af there exists

k+1
nk+1 > ny such that, lettingg, | | :+ E; ~ D**' we have( fE,_,h,gAh) & =’. Now perform
another induction as follows. Again becaus¢ | @ asn — oo and/ is constant orD? for all ,
by monotone continuity there exists; > 1 such that( fE%h, g(A ~ D["")h) € n’. Proceeding
inductively for all1 < k < K, assume that we have found numbergs > --- > m; > 1
such that, lettingf/ = A ~ (D{"' U---U D/™), we have( fE}h, gE]h) € n’. Again because
Di., | @asn — oo and’ is constant onDy_ , for all n, by monotone continuity there exists
miy > my such that, lettingzy | = E} ~ D"\, we have(fEjh, gE] ,h) € n'. But, since
bothEy = Uj<k<x(C; N A;k) andEy = Uj<k<kx (Cp N A;nk) are events i8, the actsf E h
andgE¢ h both belong toF (X, 8). We have reached the conclusiofiEy i, gE¢ h) € m. Since
E € AandE} C A, this contradicts our earlier conclusion thatontains all pairs of acts that

coincide onX ~ A. O

Proof of Proposition 8. For everyr, since4, is closed, there exists a sequence of evarits4’, . ..
such that4,, = Ng A4%. Now

MC,(A) = NI_, N, N CHAY) = Ny NI, Nk CH(AR) = N MCy(Ay).
Thus (i) holds forn = 1, and if it holds up to some: > 1, then

MCpyi1(A) = MCpp(A) N MCy(MCpy(A)) = MCyp(A) N MCy( Ny MCpi(Ay))
= mn[]MCm(An) nMC, (Mcm(An))] = mn]MCm—H(An)-

Clearly, (ii) is true whenever botld and B are events. To prove it in general, suppdses a
closed subset ok’ such thatd € B. Take a sequence of evergg such thatB = N, B,. Then
A = N, Ng (A7 N By). Since (i) holds for eventsMC, (A7 N B,) € MC,(B,) for all n, k,
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henceMC,(A) € MC,(B) by part (i) of this lemma. An obvious induction using (ii) st®that
A C MCy(A) implies4 € MC,,(A) for everym, hence (iii) follows. To prove sufficiency in the
last claim, supposé& is a simple substructure of, and take a sequence of evetts such that
E = N, E,. SinceFE satisfies (2) andZ C E, for everyn, we haveE C MC,(E},) for everyn,
henceE € MC;(E) by part (i). By part (iii), E € CC(E), henceE = ENCC(FE) andE is a
closed component of . To prove necessity, take a sequence of evéptand letE = N, E,,. We
will show that £ N CC(E) satisfies (2) and thus induces a (simple, by Lemma 2) sulbsteuof
X. Pick a bijection

v:I xNx F(X)x F(X)x F(X) = N.

Foralli =1,...,1,alln e N,and allf, g, h € F(X), define the event
Bili,n, f,g,h] = {x €eX: (hE,,f,hE,,g) € ﬁi(x)}
and then, recursively for ath > 1, the event
Builin, f.g.hl = {x € X : (hBu[v™'(n)] /. hBu[v""(n)]g) € ¥'(x)}.
LetD = ENCC(E). Then
D =Ny Ny (En N Bu[v™' (n)]) (29)
and, moreoverD € MC,(E,) andD C MC;(B,[v_'(n)]) for all n, m, hence using part (i) also
D € MC{(E, N Bu[v™'(n)])

for all n, m. In other words, the everdt ~ (E, N B,,[v~'(n)]) must bed’ (x)-null for every player
i and everyx € D. By (29) and the last claim in Proposition 7, we conclude thgt g € F(X)
coincide onD, then{x € X : f(x) # g(x)} must bed’(x)-null for everyi = 1, ..., I and every
x € D. This meand satisfies (2). O

Proof of Lemma 7. The first claim is a restatement of Carathéodory’s externtsiearem?’ From
the proof of the latter, we know that*(4) = inf)_ ., u(4,) for every4 € B*, where the
infimum is taken over all sequences of evedis 4,, ... in 8 such thatd € U,>4,. Itis then
clear that for everyl € 8* and every > 0 there exist88 € 8 suchthapu*(AN B) > u*(A)—e¢

37See, for example, Theorem 3.1 in Billingsley [6].
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andu*(B\ A) < e. By Lyapunov’s theoren® 11* is non-atomic if and only if it is convex ranged.
Now suppose that* is non-atomic, leC € 8, and let0 < p < u(C). Then there existd € B*
such that4 € C andu*(4) = p. Now chooseB € B such thatu*(B N 4A) > p — e and
w*(B\ A) <e. ThenB N C is an event inB, and moreover

p—e=pu (BNA)=pu*(BNC)=p*(B)=p*(BNA)+u"(B\4) < p+e,

hencep —e¢ < u(BNC) < p + €. Thus,u is dense ranged. Conversely, suppgp$ehas an
atom, that is, suppose there existse 8* such thatu*(4) = ¢ > 0 and, for everyB € B*
such thatB C A4, eitheru*(B) = 0 or u*(B) = q. Choose) < ¢ < ¢/2 andB € 8B such
thatu*(BN A) > ¢ —e andu*(B \ A) < €. Then, for everyC € 8 such thatC C B, either
w*(C) > g or u*(C) < €. Thus, there is no everlf € B such thatC € B ande — ¢/2 <
w(C)—¢q/2 < q/2—e€.Sinceu(B) > g —e > q/2, this proves that is not dense ranged. [J

Proof of Proposition 9. Assume there exists* € I15(X, 8*) satisfying (10). By Savage’s The-
orem, there exist a functiom and a convex ranged beligf on 8* such thaiu, u*) inducesr*.
Let u denote the restriction gi* to 8. Thenpu is a dense ranged belief by Lemma 7. Thus, by
(10), the pair(u, n) representsr, hencer € Ils(X, 8). Conversely, suppose € I15(X, B).

By Savage’s Theorem, there exist a utility functiorand a dense ranged beljefon 8 such that
(u, ) representst. By Lemma 7,1 has a unique extension to a convex ranged beliebn
B*. Obviously, the preference relatiatt on F(X, 8*) induced by(u, u*) satisfies (10), hence
n* € Is(X, 8*). There only remains to prove that* is unique. By the uniqueness in Sav-
age’s Theorem, every preference relatiollig( X, 8*) other thanz* has a Savage representation
(u’, 1) such that either’ is not a positive affine transformation @f or i’ # w*, or both. In any
case, by the uniqueness in Lemmau7 and the restriction oft’ to 8 do not constitute a Savage
representation of. [

Proof of Lemma 8. Fix a playeri and writeX2, (resp.Xp., . .., X%y for the setof allk € X such
that?/ (x) satisfies P1 (resp. P2,...,P6). Define

Xjp={xeX:(f9ed W} Y, =X~X],

forall f,g € F(X,8). By definition of structure, these sets belong®0 Thus, sinceB is

383See, for example, Lindenstrauss [19].
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countable and hence so# X, 8), the sets
Xpy = ﬂ (Xrg U Xep), Xpp= ﬂ (X angan Y Y gan)
f.g€F(X,8B) f.g:hh €F(X,B); AcB

belong to8*, and so does the set
Xis= ) (Yo NY2).
z,z/€Z

Now let
Xi={xeX:A4is® (x)null} = ﬂ X}Ah,gAh
f.g.heF(X,B)

for everyA € 8 and observe thaty € 8*. Then the set
Y= () XU UNe) 0 (U V)]
AeB; z,2/eZ; feF(X,B)

belongs taB* as well. The sef,, can be written as

( ] i i i i
(YZ,Z/ U XZ/,Z U YZ”,ZW U XZW,Z” U YZAZ/,ZBZ/ U XZ”AZW,Z”BZ’”)
z,z/,z/",z""eZ; A,BEB

and thus belongs t@*. Finally, writing & for the family of all partitions ofX" into N events in
B, the setXpg can be written as

ﬂ U ﬂ [Xplm (Xg,f U ( z/Anf,g n Xf/,zAng))]

2€Z; f,g€F(X,8) {Ai,..,AN}ePN 1=n<N
and thus belongs t8*, too, sinceB is countable and hence so#s, for everyN. O

Proof of Proposition 10 Let B be the family of allE € 8* satisfying
{xeX: xeCiX); B(E)>p}eB* VpeR (30)

We prove the result in three steps. In the first step, we proaethere exists a countable subal-
gebra®B’ of B8 that generate88* and satisfiesB’ C B . In the second step, we prove that is

closed under the formation of complements and countabletoae unions (hence also countable
monotone intersections). By Halmos’s monotone class #madt these two steps together imply

39See, for instance, Theorem 3.4 in Billingsley [6].
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$ = B* and hence (11). In the third step, we pravesatisfies (12). Then (13) will clearly follow
from (11), (12), and Savage’s Theorem, so the proof of thpgsiion will be indeed complete.

Step 1 By definition of preference structure,
{xeX : (L9 ed(x)}eB Vf ge FX, B). (31)
SinceA’ is induced byy’,
¥ (x) = A () N[FX,B)x F(X,8)]  Vx e CiX). (32)

If B is acountable algebra, |&" = B. Otherwise, letB’ be any countable algebra that generates
B. In any case, sincd’ € 8 C B*, we haveF (X, 8') € F(X, 8) and thus, using (31), (32),
and Lemma 8,

{xeX: xeCiX): (f.g) e (x)} eB* VfgeF(X,8B). (33)

By Proposition 9, for allk € C.(X) the restriction of8’(x) to B’ represents, together with some
utility function, the Savage preference relation BoY, 8’) defined as

M(x)N[F(X.8) x F(X. 8] (34)

Forall E € 8’ and alln > 1, write £ for the family of all partitions ofE into n events inB’.
Note that, sinceB’ is countablePg is countable. Now fixt € 8’ andp € R. By the proof of
Savage’s theorem for algebras — Theorem 3.1 in Kopylov [17],

IBi(X)(E):SUD{;Wl)(A) cn>1, PeJPE”} Vx € CL(X),
where for everyd € B’ and everyx € C.L(X) the intege&’(x)(4) is defined as follows. Using
the fact that the relation (34) satisfies P5, choosezanye Z such thatz, z) € Ai(x) ¥ (z,2).

Theng!(x)(A) is the smallestn > 2 such that(ZAz,ZA'z) € A (x) ¥ (ZA'z,ZAz) for some
P e ¢ and everyd’ € P.*° Thus,

{xeX: xeCiX); B (x)(E)> p}

40/f there is no such integer, 1&t (x)(A4) = +o0. In fact, £/ (x)(A) is also the unique (when it exists, that is, when
B (x)(A) > 0) integerm > 1 such thatl /m < B (x)(4) < 1/(m —1).
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is the same as

i : !
U U{xeX:xeCS(X), Zm>p}.

n>1pPepPf AeP

It is therefore clear that, in order to prog C B, it suffices to show that
{xeX: xeCiX); €(x)(A) <M}eB VAe B, VM > 2. (35)
Thus, fix4A € 8"andM > 2. Forallz,z’ € Z, write A, for the set
{xeX: xeCiX): (z,Z) EM(x)}
and B, .- for the set

U U N {xeX:xeCiX): (z4Z.z4'7) €V (x)}.

1=m=M pPepy' A’€P

By (33), these sets belong ®*. Moreover, by definition of’ (x)(A4),

{xeX: xeClX): éx)A) <M}= | (42N B..),

z,z2/€Z
hence (35) follows.
Step 2 ChooseE € B andp € R. Then
{xeX: xeCiX): B(x)(X~E)>p}

can be written as

J{xeXx: xeCi(X): B(x)(E) <1 —p—1/k}.

k=1

SinceE € B, each set in the union above is the complement of a set of the f@0). Thus, the
union is itself an event iB*, so X ~E € B and thereforeB is closed under the formation of
complements. Next, take a sequence of elemdptsf B such that4,, € A4, for everyn, and
let A = U, A4,. SinceB’(x) is countably additive for every € C.(X), we have

{xeX: xeCiX): B(x)(4)>p}= U {xeX: xeCiX); B (x)(4n) > p}.

n>1
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SinceA,, € B for all n, the right-hand side is a countable union of element8bf hence itself
an element of3*. Thus4 € 8 and$ is also closed under the formation of countable monotone
unions.

Step 3 Fix a playeri. Pick a bijectionv : Z x Z — {1,...,|Z|*}. Foralln = 1,...,|Z|?,
write z, andz;, for the two outcomes satisfying™! (n) = (z,, z;) and define

Ay ={xeX: xeCiX): (zn,zn) EX(x)}.

Define recursivelyB! = A} andB!;; = A, ~(Bi U---UB!)foralln =1,...,|Z|?. Note
that, sinceB8 C 8*, by (31) and (32) we have

BieB* Vn=1,....|Z]~ (36)

Then, since\’ (x) satisfies Savage’s P5 for alle C.(X), the sequence of evens is a partition
of CL(X). To establish (12), fix € Z anda € R. Clearly, we may assune< a < 1. We have

{x €eX:xeClX); v'(x)(2) >a} = U {xeX: x € B, vi(x)(z)>a}. (37)

1<n<|Z|?

We will prove that the set on the right-hand side of the ldtedongs taB*, using the fact that for
all x € CL(X), by Lemma 7, the restriction g#’(x) to the algebraB’ above (Step 1) is finely
ranged. For every = 1,...,|Z|* and everyx € B!, the inequalityv’(x)(z) > a is true if,
and only if*! there existsd € B’ such that’(x)(z) > B'(x)(4) > a. The first inequality is
equivalentta’z, z, Az,) € A'(x) by Savage’s Theorem, so the right-hand side of (37) is

U U {xeX:xeBl B)(A)>a (z.244z;) €V (x)}.

1<n<|Z|2 AeB’
Thus, (36), (11), and (33) imply that the right-hand side3)(belongs taB*. O

Proof of Proposition 11 If (E, Bg) induces a substructure then it satisfies (2)ksG@ MCs;(E)
and thereforeE = E N CCs(E). Conversely, assumeE, B8g) is a Savage component, say
D e 8*andE = DN CCs(D). ThenE € MCs (D) for all m, henceE € MCs;(E) by (15).
Thus, E induces a substructure, with the malys: £ — I1(E, 8g) defined by

x> {(for,gon: (f,9) €d (¥},

“IThe fact that the restriction ¢ (x) to B’ is finely ranged is precisely what guarantees necessity here
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where: : E — X denotes inclusion. It remains to prove that this substredgiSavage, i.e. that
ﬁg(x) satisfies P1-P6 for every playeand allx € E. Thus, fix a playef andx € X. Letn be
the unique extension af (x) to F(X, 8*) and let(u, ) be a Savage representationmof Since
u is convex ranged and(E) = 1, the restrictionug of i to E is a convex ranged belief oBg.
Since(u, 1 g) clearly represent8 (x), the proof is complete. O

Proof of Proposition 12 Let 8* be theo-algebra generated b$. The spacegX, 8*) and
(2, A*) are standard Borel, and the mappjns injective (by non-redundancy and Proposition 5)
and measurabl8* /A* (by measurabilityB /). Since the image of an event under an injective
and measurable function between standard Borel spacesigat{’ we havey (E) € A* for all

E € 8*. Thus (by injectivity ofy) a subset ofY belongs to8* if and only if it has the form

vy ' (A4) for someA € A*. The latter statement is equivalent to the statement to deedr 0J
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