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Abstract

Dynamic Stochastic General Equilibrium (DSGE) models are now con-
sidered attractive by the profession not only from the theoretical perspec-
tive but also from an empirical standpoint. As a consequence of this
development, methods for diagnosing the fit of these models are being
proposed and implemented. In this article we illustrate how the concept
of statistical identification, that was introduced and used by Spanos(1990)
to criticize traditional evaluation methods of Cowles Commission models,
could be relevant for DSGE models. We conclude that the recently pro-
posed model evaluation method, based on the DSGE − V AR(λ), might
not satisfy the condition for statistical identification. However, our appli-
cation also shows that the adoption of a FAVAR as a statistically identified
benchmark leaves unaltered the support of the data for the DSGE model
and that a DSGE-FAVAR can be an optimal forecasting model.

Keywords : Bayesian analysis; Dynamic stochastic general equilibrium
model; Model evaluation,Statistical Identification,Vector autoregression,
Factor-Augmented Vector Autoregression.

JEL Classification : C11, C52

1 Introduction
Dynamic Stochastic General Equilibrium (DSGE) models are now considered
attractive by the profession not only from the theoretical perspective but also
from an empirical standpoint1. As a consequence of this development, methods
for diagnosing the fit of these models are being proposed and implemented.
This article illustrates how the concept of statistical identification, originally

∗We thank Marco Del Negro for having kindly provided us with the Matlab programs used
in Del Negro-Schorfheide(2004).

†Consolo: IGIER(Università Bocconi). Favero: IGIER (Universita’ Bocconi) and CEPR.
Paccagnini, IGIER (Università Bocconi).

1 See An and Schorfheide(2006) and the JBES Invited address presented at the Joint Statis-
tical Meeting 2006 "On the Fit of New Keynesian Models" by Del Negro, Schorfheide, Smets
and Wouters, published on the April 2007 issue of the JBES with comments by L.Christiano,
R.Gallant, C.Sims, J.Faust, and L.Killian.
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introduced to criticize traditional evaluation methods of Cowles Commission
models, could also be applied to the diagnostic tools recently proposed for DSGE
models.
The concept of statistical identification has been introduced by Spanos(1990).

Structural models can be viewed statistically as a reparameterization, possi-
bly (in case of over-identified models) with restrictions, of the reduced form.
Spanos distinguishes between structural identification and statistical identifica-
tion. Structural identification refers to the uniqueness of the structural para-
meters, as defined by the reparameterization and restriction mapping from the
statistical parameters in the reduced form, while statistical identification refers
to the choice of a well-defined statistical model as reduced form. Diagnostics
for model evaluation are constructed in Cowles commission tradition in a way
that is closely related to the solution of the identification problem. In fact,
in the (very common) case of over-identified models, a test of the validity of
the over-identifying restrictions can be constructed by comparing the restricted
reduced form implied by the structural model with the reduced form implied
by the just-identified model in which each endogenous variables depend on all
exogenous variables with unrestricted coefficients. The statistics are derived in
Anderson and Rubin(1949) and Basman(1960). The logic of the test attributes
a central role to the structural model. The statistical model of reference for
the evaluation of the structural model is derived by the structural model itself.
Spanos(1990) points out that the root of the failure of the Cowles Commission
approach lies in the little attention paid to the statistical model implicit in the
estimated structure. Any identified structure that is estimated without checking
that the implied statistical model is an accurate description of the data is bound
to fail if the statistical model is not valid. The Spanos critique of the Cowles
commission approach lies naturally within the LSE approach to econometric
modelling. Such approach reverses the prominence of the structural model with
respect to the reduced form representation. The LSE approach starts its specifi-
cation and identification procedure with a general dynamic reduced form model.
The congruency of such a model cannot be directly assessed against the true
DGP, which is unobservable. However, model evaluation is made possible by
applying the general principle that congruent models should feature true ran-
dom residuals; hence, any departure of the vector of residuals from a random
normal multivariate distribution should signal a mis-specification. A structural
model can be identified and estimated only after a validation procedure based
on a battery of tests on the reduced form residuals has been satisfactorily im-
plemented. A just-identified specification does not require any further testing,
as its implied reduced form does not impose any further restrictions on the
baseline statistical model. The validity of over-identified specification is instead
tested by evaluating the validity of the restrictions implicitly imposed on the
general reduced form. Interestingly, the lack of statistical identification offers
an explanation for the failure of the Cowles Commission models very different
from the "great critiques" by Lucas(1976) and Sims(1980), that concentrate on
model failure related to structural identification problems.
The structural identification problem for DSGE has recently received some
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close attention (Canova and Sala(2006)). This paper concentrates on the statis-
tical identification model of DSGE models. We illustrate how the logic of some
recently proposed model evaluation tools for DSGE models, based on the com-
parative evaluation of a DSGE-VAR model with an unrestricted VAR model,
resembles closely the logic applied within the Cowles Commission approach in
testing for the validity of over-identifying restrictions in structural models. We
then illustrate the potential importance of the lack of statistical identification by
showing that statistical identification can be achieved by using a Factor Aug-
mented VAR (FAVAR), and by comparing the properties of DSGE-VAR and
DSGE-FAVAR. We provide an empirical illustration by considering the case of
a very simple three-equations DSGE model (Del Negro and Schorfheide(2004)).

2 Statistical Identification of Cowles Commis-
sion and DSGE models

Spanos(1990) illustrates the importance of statistical identification for Cowles
Commission models by considering the case of a simple demand and supply
model on the market for commercial loans discussed in Maddala(1988). In
the Cowles Commission tradition most of the widely used estimators allow the
derivation of numerical values for the structural parameters without even seeing
the statistical models represented by the reduced form. Following this tradition
the estimated (by 2SLS) structural model is:

∙
1 γ12
1 γ22

¸ ∙
qt
rt

¸
=

∙
δ11 δ12 δ13 0 0
δ21 0 0 δ24 δ25

¸⎡⎢⎢⎢⎢⎣
1
brt
xt
dt
it

⎤⎥⎥⎥⎥⎦+
∙
udt
ust

¸

qdt = −210.43
(74.31)

− 20.2
(1.60)

rt + 40.77
(2.84)

brt + 2.34
(0.45)

xt +
ˆ

udt

qst = −87.94
(13.96)

+ 6.09
(1.89)

rt − 7.08
(2.27)

it + 0.334
(0.008)

dt +
ˆ

ust

qdt = qst = qt

ξ1 (1) = 28.106, ξ2 (1) = 4.5

where rt is the average prime rate, brt the Aaa corporate bond rate, xt is the
industrial production index, it the three-month bill rate, dt total bank deposits
and qt commercial loans. qt and rt are the endogenous variables, brt, xt, it and
dt are taken as at least weakly exogenous and no equation for these variables
is explicitly estimated. Given that there are two omitted instruments in each
equation one over-identifying restrictions is imposed both in the demand and in
the supply equation. The validity of such restrictions is tested via the Anderson-
Rubin tests(ξ1 (1) and ξ2 (1)), that leads to rejection of the restrictions at the
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5 per cent level in both cases, but does not lead to rejection of the restrictions
for the first equation ad the one per cent level. On the basis of this evidence,
some (weak) support of the data on the chosen specification could be claimed.
The testing procedure is based by estimating as a statistical model a reduced

form that projects all endogenous variables on all exogenous variables:

∙
qt
rt

¸
=

∙
π11 π12 π13 π14 π15
π21 π22 π23 π24 π25

¸⎡⎢⎢⎢⎢⎣
1
brt
xt
dt
it

⎤⎥⎥⎥⎥⎦+
∙
v1t
v2t

¸

and then by testing if the ten parameters in the unrestricted reduced form
can be validly restricted to the eight in the structural model

∙
π11 π12 π13 π14 π15
π21 π22 π23 π24 π25

¸
=

∙
1 γ12
1 γ22

¸−1 ∙
δ11 δ12 δ13 0 0
δ21 0 0 δ24 δ25

¸

Spanos notes that estimation of the statistical model (i.e. the implicit
unrestricted reduced form) yields:

qt = −128.20
(21.05)

− 3.007
(0.810)

it + 7.078
(1.236)

brt + 0.497
(0.156)

xt + 0.281
(0.011)

dt +
ˆ
u1t

rt = 1.864
(3.02)

+ 0.771
(0.116)

it + 0.763
(0.178)

brt + 0.008
(0.022)

xt − 0.005
(0.001)

dt +
ˆ
u2t

where the underlying statistical assumptions of linearity, homoscedasticity,
absence of autocorrelation and normality of residuals are all strongly rejected.
On the basis of this evidence the adopted statistical model is not considered
as appropriate. An alternative model is then considered allowing for a richer
dynamic structure (two lags) in the reduced form, such dynamic specification is
shown to provide a much better statistical model for the data than the static
reduced from.

4



∙
qt
rt

¸
=

∙
π11 π12 π13 π14 π15
π21 π22 π23 π24 π25

¸⎡⎢⎢⎢⎢⎣
1
brt
xt
dt
it

⎤⎥⎥⎥⎥⎦+

+
2X

i=1

∙
a11,i a12,i
a21,i a22,i

¸ ∙
qt−i
rt−i

¸
+

2X
i=1

∙
b11,i b12,i b13,i b14,i
b21,i b22,i b23,i b24,i

¸⎡⎢⎢⎣
brt−i
xt−i
dt−i
it−i

⎤⎥⎥⎦+
∙
v1t
v2t

¸
Of course, the adopted structural model implies many more over-identifying
restrictions than the initial one. In fact, we have

∙
π11 π12 π13 π14 π15
π21 π22 π23 π24 π25

¸
=

∙
1 γ12
1 γ22

¸−1 ∙
δ11 δ12 δ13 0 0
δ21 0 0 δ24 δ25

¸
∙
a11,i a12,i
a21,i a22,i

¸
= 0∙

b11,i b12,i b13,i b14,i
b21,i b22,i b23,i b24,i

¸
= 0

When tested, the validity of these thirteen restrictions both on the demand
and supply equations is overwhelmingly rejected. Such evidence leads to the
conclusion that the lack of statistical identification of the original model might
lead to failure of rejecting the structural model of interest when it is false.
In practice Cowles Commission models have been abandoned because of

their empirical failure and because of the great critiques related to their lack of
structural identification, much less emphasis has been posed by the mainstream
literature on the problem of statistical identification, with the notable exception
of the LSE approach to econometric dynamics (see, Hendry,1995). Cowles Com-
mission models for policy evaluation have been replaced by Dynamic Stochastic
General Equilibrium (DSGE) models.
The general linear (or linearized around equilibrium) DSGE model takes the

following form(see Sims(2002)):

Γ0Zt = Γ1Zt−1 + C +Ψ t +Πηt (1)

Where C is a vector of constants, t is an exogenously evolving random dis-
turbance, ηt is a vector of expectations errors,

¡
Et

¡
ηt+1

¢
= 0

¢
, not given ex-

ogenously but to be treated as part of the model solution. The forcing processes
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here are the elements of the vector t, this typically contains processes like Total
Factor Productivity or policy variables that are not determined by an optimiza-
tion process. Policy variables set by optimization, typically included Zt, are
naturally endogenous as optimal policy requires some response to current and
expected developments of the economy. Expectations at time t for some of the
variables of the systems at time t+1 are also included in the vector Zt,whenever
the model is forward looking. Model like (1)can be solved using standard numer-
ical techniques (see, for example, Sims, 2002), and the solution can be expressed
as:

Zt = A0 +A1Zt−1 +R t

where the matrices A0,A1,and R contain convolutions of the underlying
model structural parameters. Note that, the solution is naturally represented
as a VAR, of course it is a VAR potentially with stochastic singularity, as the
dimension of the vector of shocks is typically smaller than that of the vector
of variables included in the VAR. However, this problem is promptly solved by
adding the appropriate number of measurement errors.
Recent Model Evaluation of DSGE models exploits the fact that a solved

RBC model is a statistical model, in particular a VAR.
In general, the solved RBC model could be represented as a (structural)

VAR2:

Zt = Φ∗0 (θ) +Φ
∗
1 (θ)Zt−1 + ...+Φ∗p (θ)Zt−p + u

∗
t (2)

u∗t ∼ N (0,Σ∗u (θ))

Z = XΦ∗ (θ) + u∗

u∗
Txn

=
h
u∗1
Tx1

... u∗n
Tx1

i
(3)

Z
Txn

=
h
Z1
Tx1

... Zn
Tx1

i
(4)

X
Tx(np+1)

=

⎡⎣ X0
1

X0
T

⎤⎦ ,
X0
t

1x(np+1)

=

"
1,Z0t−1

1xn

...Z0t−p
1xn

#
(5)

Φ∗ (θ)
(np+1)xn

=

"
Φ∗0 (θ)
nx1

,Φ∗1 (θ)
nxn

, ...,Φ∗p (θ)
nxn

#0
,

where all coefficients are convolutions of the structural parameters in the
model included in the vector θ. Of course the theoretical model imposes some
restrictions on the VAR, that can be tested by evaluating them against the

2 In fact, solved DSGE model often generates a restricted MA representation for the vector
of n variables of interest, that can be approximated by a VAR of finite order p.
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unrestricted VAR. Note that following this logic the relevant statistical model is
constructed exactly as in the Cowles Commission approach: the specification of
the statistical model is totally driven by that of the structural model. In fact, the
statistical model is obtained by solving the structural model and then by relaxing
some restrictions. As a matter of fact when this procedure is followed variables
omitted from the structural model are never included in the statistical model
and statistical identification becomes a potentially relevant issue. In a series of
papers Del Negro and Schorfheide (2004, and 2006) and Del Negro, Schorfheide,
Smets and Wouters(2004) adopt this line of research to propose a Bayesian
framework for model evaluation. This method tilts coefficient estimates of an
unrestricted VAR toward the restriction implied by a DSGE model. The weight
placed on the DSGE model is controlled by an hyperparameter called λ. This
parameter takes values ranging from 0 (no-weight on the DSGE model) to ∞
(no weight on the unrestricted VAR). Therefore, the posterior distribution of λ
provides an overall assessment of the validity of the DSGE model restrictions.
The chosen benchmark to evaluate this model is the unrestricted VAR de-

rived from the solved DSGE model

Zt = Φ0 +Φ1Zt−1 + ...+ΦpZt−p + ut (6)

ut ∼ N (0,Σu)

Z = XΦ+ u

Φ
(np+1)xn

=

∙
Φ0
nx1

,Φ1
nxn

, ...,Φp
nxn

¸0
, (7)

where:

Φ = Φ∗ (θ) +Φ∆

Σu = Σ∗u (θ) +Σ
∆
u

the DSGE restrictions are imposed on the VAR by defining:

ΓXX (θ) = ED
θ [XtX

0
t]

ΓXZ (θ) = ED
θ [XtZ

0
t]

where ED
θ defines the expectation with respect to the distribution generated

by the DSGE model, that of course have to be well defined. We then have:

Φ∗ (θ) = ΓXX (θ)
−1
ΓXZ (θ)

Beliefs about the DSGE model parameters θ and model misspecification
matrices Φ∆ and Σ∆u are summarized in prior distributions, that, as shown in
Del Negro and Schorfheide(2004) can be transformed into prior for the VAR
parameters Φ and Σu.In particular we have:
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Σu |θ ∼ IW (λTΣ∗u (θ) , λT − k, n)

Φ |Σu, θ ∼ N

µ
Φ∗ (θ) ,

1

λT

£
Σ−1u ⊗ ΓXX (θ)

¤−1¶
where the parameter λ controls the degree of model misspecification with

respect to the VAR: for small values of λ the discrepancy between the VAR
and the DSGE-VAR is large and a sizeable distance is generated between un-
restricted VAR and DSGE estimators, large values of λ correspond to small
model misspecification and for λ = ∞ beliefs about DSGE mis-specification
degenerate to a point mass at zero. Bayesian estimation could be interpreted
as estimation based a sample in which data are augmented by an hypothetical
sample in which observations are generated by the DSGE model, within this
framework λ determines the length of the hypothetical sample.
Given the prior distribution, posterior are derived by the Bayes theorem:

Σu |θ, Z ∼ IW

µ
(λ+ 1)T

ˆ

Σu,b (θ) , (λ+ 1)T − k, n

¶
Φ |Σu, θ, Z ∼ N

µ
ˆ

Φb (θ) ,Σu ⊗ [λTΓXX (θ) +X
0X]
−1
¶

ˆ

Φb (θ) = (λTΓXX (θ) +X
0X)
−1
(λTΓXZ (θ) +X

0Z)
ˆ

Σu,b (θ) =
1

(λ+ 1)T

∙
(λTΓZZ (θ) + Z

0Z)− (λTΓXZ (θ) +X
0Z)

ˆ

Φb (θ)

¸
which shows that the smaller λ, the closer the estimates are to the OLS estimates
of an unrestricted VAR, the higher λ the closer the estimates are to the values
implied by the DSGE model parameters θ.
In practice, a grid search is conducted on a range of values for λ to choose

that value that maximize the marginal data density. The typical results obtained
when using DSGE-VAR(λ) to evaluate models with frictions is that " ... the
degree of misspecification in large-scale DSGE models is no longer so large as
to prevent their use in day-to-day policy analysis, yet is not small enough that
it cannot be ignored...".
DSGE-VAR model evaluation takes the Lucas and Sims critique very seri-

ously but ignores the issue of specification of the statistical model. Although the
models are different, the evaluation strategy in the DSGE-VAR approach is very
similar to the approach of evaluating models by testing over-identifying restric-
tions without assessing the statistical model implemented in Cowles foundation
models. In fact, the DSGE-VAR approach is looser than the Cowles foundation
approach: model based restrictions are not imposed and tested but are made
fuzzy by imposing a distribution on them and then the relevant question be-
comes what is the amount of uncertainty that we have to add to model based
restrictions in order to make them compatible with a model-derived unrestricted
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VAR representation of the data. In fact such representation might not repre-
sent the data. The natural question here is how well does this procedure do
in rejecting false models? Spanos(1991) has shown clearly that modification in
the structure of the statistical model could lead to dramatic changes in the out-
come of tests for over-identifying restrictions. Is the Spanos criticisms of Cowles
Commission model evaluation applicable to DSGE-VAR model evaluation?
There are a number of potential sources of mis-specification for the model

derived VAR. An obvious candidate are all those variables that are related to the
mis-specification of the theoretical model, but there are also all those variables
that are not theory related but are important to model the actual behaviour
of policy makers. Think for example of the commodity price index and the
modelling of the behaviour of monetary policy authority. It is by now common
wisdom that the inclusion of this variable in a VAR to identify monetary policy
shocks has been deemed important to model correctly the information set of the
monetary policy maker when forecasting inflation and to fix the "price- puzzle"3

in VAR based analysis of the monetary transmission mechanism. DSGE model
do not typically include the commodity price index in their specification as
a consequence the VAR derived by relaxing the theoretical restrictions in a
DSGE model is misspecified. So the evaluation of the effects of conducting
model misspecification with a "wrong" benchmark is a practically relevant one.
As a matter of fact DSGE model tend to produce a high number of very

persistent shocks (see Smets and Wouters, 2003), this would have been certainly
taken as a signal of model mis-specification by an LSE type methodology. Still
the model do not do too badly when judged in the metric of the λ test.
Another dimension potentially relevant for evaluating the statistical model

underlying DSGE-VAR is structural stability of the VAR parameters. If the
DSGE restrictions are valid, then parameters in the VAR are convolutions of
structural parameters that, by their nature, should be constant over time.
There are alternatives to the use of a VAR as a benchmark. We propose to

address the limited information problem by combining traditional VAR analysis
with recent developments in factor analysis for large data sets. We shall use a
factor-augmented VAR (FAVAR) as the relevant statistical model to conduct
model evaluation. A recent strand of the econometric literature4 has shown that
very large macroeconomic datasets can be properly modelled using dynamic
factor models, where the factors can be considered as an exhaustive summary
of the information in the data. This approach has been successfully employed

3When impulse responses analysis is conducted in simple VAR models containing macro
and monetary variables the response of prices to an innovation in interest rates gives rise to the
‘price puzzle’: prices increase significantly after an interest rate hike. The ‘price puzzle’ has
been attributed to mis-specification of the small VARs. Suppose that there exists a leading
indicator for inflation to which the Fed reacts. If such a leading indicator is omitted from
the VAR, then we have an omitted variable positively correlated with inflation and interest
rates. Such omission makes the VAR mis-specified and explains the positive relation between
prices and interest rates observed in the impulse response functions. It has been observed (see
Christiano, Eichenbaum and Evans 1996) that the inclusion of a Commodity Price Index in
the VAR solves the ‘price puzzle’.

4 Stock and Watson (2002), Forni and Reichlin (1996, 1998) and Forni et al. (1999, 2000)
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to forecast macroeconomic time series and in particular inflation. As a natural
extension of the forecasting literature, Bernanke and Boivin (2003), Bernanke,
Boivin and Eliasz(2005) proposed to exploit these factors in the estimation of
VAR. A FAVAR benchmark for the evaluation of a DSGE model will take the
following specification:µ

Zt
Ft

¶
=

∙
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

¸µ
Zt−1
Ft−1

¶
+

µ
uZt
uFt

¶
,

where Zt are the variables included in the DSGE model and Ft is a small
vector of unobserved factors extracted from a large data-set of macroeconomic
time series, that capture additional economic information relevant to model the
dynamics of Zt. The system reduces to the standard VAR used to evaluate DSGE
models if Φ12(L) = 0, therefore, within this context, the relevant λ test would
add to the usual DSGE model-related restrictions on Φ11(L) the restrictions
Φ12(L) = 0.To our knowledge, FAVAR have not been so far used to evaluate
DSGE, and this is what we shall do in this paper using dynamic factors as the
analogue of a richer dynamics for the evaluation of Cowles commission models
proposed by Spanos5.
Interestingly what has instead already happened is that FAVAR have been

interpreted as the reduced form of a DSGE model. This result has been achieved
by removing the assumption that economic variables included in a DSGE are
properly measured by a single indicator and by treating theoretical concepts of
the model as partially observed to use the information set in factors to map
them (Boivin and Giannoni,2005). This approach makes a FAVAR the reduced
form a DSGE model, although the restrictions implied by DSGE model on a
general FAVAR are very difficult to trace and model evaluation becomes even
more difficult to implement. In fact, a very tightly parameterized theory model
can have a very highly parameterized reduced form if one is prepared to accept
that the relevant theoretical concept in the model are combination of many
macroeconomic and financial variables. Identification of the relevant structural
parameters, that is very hard also in DSGE model with observed variables
(see Canova and Sala,2006), becomes even harder. Natural advantages of this
approach are increased efficiency in the estimation of the model and improved
forecasting performance. However, model evaluation becomes almost impossible
to pursue and a theoretical model can only by rejected by another theoretical
model, while the implied statistical model is made so general that virtually no
room is left to the data to reject a DSGE model.

3 Model Evaluation of a Simple DSGE Model
We consider a small New Keynesian DSGE model of the economy which features
a representative household optimizing over consumption, real money holdings
and leisure, a continuum of monopolistically competitive firms with price ad-
justment costs and a monetary policy authority which sets the interest rate.

5 In our application we consider a special case of the FAVAR in which Φ21 (L) = 0
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Furthermore, the model is driven by three exogenous processes which deter-
mine government spending, gt, the stationary component of technology, zt, and
the policy shock, R,t.
A full description of the model can be found in Woodford (2003). Here,

we mainly focus on its log-linear representation which takes each variable as
deviations from its trend. The model has a deterministic steady state with
respect to the de-trended variables: the common component is generated by a
stochastic trend in the exogenous process for technology. The model follows Del
Negro and Schorfheide (2004) (henceforth, DS) and it reads

x̃t = Etx̃t+1 −
1

τ
(R̃t −Etπ̃t+1) + (1− ρG)g̃t + ρz

1

τ
z̃t (8)

π̃t = βEtπ̃t+1 + κ (x̃t − g̃t) (9)

R̃t = ρRR̃t−1 + (1− ρR)(ψ1π̃t + ψ2x̃t) + R,t (10)

g̃t = ρgg̃t−1 + g,t (11)

z̃t = ρz z̃t−1 + z,t (12)

where x̃t is the output gap, π̃t is the inflation rate, R̃t is the short-term interest
rate and g̃t and z̃t are two AR(1) stationary processes for government and
technology, respectively.
The first equation is an intertemporal Euler equation obtained from the

households’ optimal choice of consumption and bond holdings. There is no
investment in the model and so output is proportional to consumption up to an
exogenous process that can be interpreted as time-varying government spending.
The net effects of these exogenous shifts on the Euler equation are captured in
the process g̃t. The parameter 0 < β < 1 is the households’ discount factor and
τ > 0 is the inverse of the elasticity of intertemporal substitution. The second
equation is the forward-looking Phillips curve which describes the dynamics of
inflation and κ determines the degree of the short-run trade-off between output
and inflation.
The third equation describes the behavior of the monetary authority. The

central bank follows a nominal interest rate rule by adjusting its instrument
to deviations of inflation and output from their respective target levels. The
shock R,t can be interpreted as unanticipated deviation from the policy rule
or as policy implementation error. The set of structural shocks is thus t =
( R,t, g,t, z,t)

0 which collects technology, government and monetary shocks.

3.1 Solving the DSGE Model

We solve the model by applying the solution algorithm proposed by Sims (2002).
We define the vector of variables as Z̃t =

¡
x̃t π̃t R̃t R̃∗t g̃t z̃t Etx̃t+1 Etπ̃t+1

¢
and the vector of shocks as t =

¡
R,t g,t z,t

¢
. We can therefore recast

the previous set of equations, (8) - (12), into a set of matrices (Γ0,Γ1, C,Ψ,Π)
accordingly to the definition of the vectors Z̃t and t

Γ0Z̃t = C + Γ1Z̃t−1 +Ψ t +Πηt (13)
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where ηt+1, such that Etηt+1 ≡ Et (yt+1 −Etyt+1) = 0, is the expectations
error.
As a solution to (13), we obtain the following policy function

Z̃t = T (θ) Z̃t−1 +R (θ) t (14)

and in order to provide the mapping between the observable data and those
computed as deviations from the steady state of the model we set the following
measurement equations as in DS

∆ lnxt = ln γ +∆x̃t + z̃t (15)

∆ lnPt = lnπ∗ + π̃t (16)

lnRt = 4[(lnR∗ + lnπ∗) + R̃t] (17)

which can be also cast into matrices as

Yt = Λ0 (θ) + Λ1 (θ) Z̃t + vt (18)

where Yt = (∆ lnxt,∆ lnPt, lnRt)
0, vt = 0 and Λ0 and Λ1 are defined accord-

ingly. For completeness, we write the matrices T , R, Λ0 and Λ1 as a function of
the structural parameters in the model, θ =

¡
ln γ, lnπ∗, ln r∗, κ, τ , ψ1, ψ2, ρR, ρg, ρZ , σR, σg, σZ

¢0
:

such a formulation derives from the rational expectations solution.
The evolution of the variables of interest, Yt, is therefore determined by

(14) and (18) which impose a set of restrictions across the parameters on the
moving average (MA) representation. Given that the MA representation can be
very closely approximated by a finite order VAR representation, DS propose to
evaluate the DSGE model by assessing the validity of the restrictions imposed by
such a model with respect to an unrestricted VAR representation. The choice
of the variables to be included in the VAR is however completely driven by
those entering in the DSGE model regardless of the statistical goodness of the
unrestricted VAR.
In what follows, we will sketch the main steps of the mixed estimation which

combines the data information with the prior information deriving from the
DSGE model. The measurement, (18), and the transition, (14), equation can
be used to derive a sample of artificial data which are theory driven. We can
therefore think of them as a set of dummy observations which can be added to
the observables data as in Sims and Zha (1998)6 to derive a prior distribution
for the VAR coefficients. Furthermore, such a prior would be conjugate and
that is re;event to keep tractability of the posterior analysis.
A further step would be to compute the posterior distribution for (Φ,Σe, θ).

Such a posterior can be written as

P (Φ,Σe, θ | Y ) = PΦ (Φ,Σe | θ, Y )× Pθ (θ | Y ) , (19)

where the first component can be easily calculated by using the conjugacy prop-
erty of the DSGE-based prior while the second one, P (θ | Y ), will be derived by

6We follow DS and work with population moments instead of artificial data generated from
the restricted VAR(1) to avoid stochastic variation.
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recalling MCMC methods. In particular, following DS, the Metropolis-Hastings
will be employed to approximate the posterior.

3.2 Likelihood Function

The statistical benchmark proposed by DS to evaluate the DSGE model is
an unrestricted VAR process. The variables included in the unrestricted VAR
analysis are as above, Yt = (∆ lnxt,∆ lnPt, lnRt)

0. We consider a VAR with
p lags where the dimension of Yt is (m, 1) while the dimension of the stacked
vector Xt is (k, 1) where k = mp+ 1. The vector of innovations Et, conditional
on Xt, follow a multivariate Gaussian distribution Nm (0,Σe) .

Yt = Φ0 +Φ1Yt−1 + . . .ΦpYt−p +Et, (20)

= ΦXt +Et, (21)

where Φ = [Φ0 | Φ1 | . . .Φp] is of dimension (m, k) and the likelihood function,
conditional on X0, reads

L (Y ;Φ,Σe) = (2π)−mT/2 |Σe|−T/2 exp
µ
−1
2
tr

µµ³
Φ− Φ̂

´
(X 0X)

³
Φ− Φ̂

´0
+ Ŝ

¶
Σ−1e

¶¶
,

(22)
where we can write the likelihood function by recalling sufficient statistics such
as Φ̂0 = (X 0X)−1 (X 0Y ) and Ŝ = Y 0Y − (Y 0X) (X 0X)−1 (X 0Y ).
Such a model represents an approximation to the MA representation of

the theoretical model which is reliable as long as the number of lags in the
unrestricted VAR is sufficiently large. However VAR models quickly become
overparameterized as the number of lags increases which also deteriorates their
forecasting performance.7

3.3 Prior Distribution

Following the approach by Sims (1996) about the use of dummy observations
to impose a prior distribution on the set of coefficients, DS have assumed that
such dummy observations could be derived from artificial data based on the
simulation of the theoretical model such as the DSGE model highlighted above.
We first write the likelihood function for a set of artificial data which are sup-
posed to follow the same process as (21). The functional form of the likelihood
is equivalent to (22), which is modified by the use of a Jeffreys prior: as we show
in the appendix, this would lead to a proper DSGE-based prior to be used in

7This is why, as it was set forth by Zellner, a set of restrictions could turn out to be
useful even if they are wrong. In particular, Bayesian VARs, by incorporating the shrinkage
principle, have been shown to be useful in forecasting.

13



the posterior analysis.

π1

³
Φ,Σe | Ỹ , X̃

´
∝ (2π)

−mT̃/2 |Σe|−(ṽ+m+1)/2 exp
µ
−1
2
tr
³
S̃Σ−1e

´¶
. . .

× |Σe|−k/2 exp
µ
−1
2
tr

µ³
Φ− Φ̃

´³
X̃ 0X̃

´³
Φ− Φ̃

´0
Σ−1e

¶¶
(23)

where Φ̃0 =
³
X̃ 0X̃

´−1 ³
X̃ 0Ỹ

´
and S̃ = Ỹ 0Ỹ −

³
Ỹ 0X̃

´³
X̃ 0X̃

´−1 ³
X̃ 0Ỹ

´
; here

T̃ = λT is the number of the artificial data set and ṽ = T̃ − k are the relevant
degrees of freedom in the likelihood function. Such a distribution is then the
kernel of a Normal/Inverted-Wishart pdf which is a conjugate prior and there-
fore, conditional on the artificial data and in particular on θ, we will end up
with a very tractable posterior distribution for the VAR coefficients, (Φ,Σe).
The constant of integration and the proper prior distribution are fully derived
in the appendix.

3.4 Posterior Distribution

In defining the posterior distribution we have to consider both the VAR coeffi-
cients and the DSGE model parameters. The joint posterior distribution with
respect to (Φ,Σe, θ) conditional on having observed Y can be written as in (19).
The first argument, P (Φ,Σe | θ, Y ), is what we find by combining the likelihood
function with the prior based on the artificial data which are conditional on the
set of parameters θ while the other one, P (θ | Y ), is the posterior distribution
of θ.
By combining the likelihood function (22) and the proper prior which derives

from (23) we get the kernel of the posterior

PΦ (Φ,Σe | θ, Y ) ∝ L (Y ;Φ,Σe)× π1

³
Φ,Σe | Ỹ , X̃

´
(24)

where we use the fact that artificial data are generated conditional to θ.8

Since we are in a conjugate prior case, we have a simple representation of
the posterior distribution which can thus be partitioned in the product of a
Inverted-Wishart distribution for Σe and Normal distribution for Φ | Σe :

Σe ∼ IW
¡
S̄, v̄

¢
, (25)

Φ | Σe ∼ Nm,k

¡
Φ̄,Σe ⊗ H̄−1

¢
, (26)

where the elements entering in the two distributions are a function of the mo-
ments of the data and those of the DSGE model. In particular, to better gauge

8 In the application we use population moments instead of drawing artificial data in order
to eliminate stochastic uncertainty. However, these population moments critically depends on
the θ.
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how data and model moments mix each other we can look at the posterior mean
of the VAR coefficients, Φ :

Φ̄ = H̄−1
³
λTH̃Φ̃+ TĤΦ̂

´
(27)

which, given T̃ = λT , is governed by the parameter λ. Such a parameters
can be thought of a tightness parameters which determines the weight of the
DSGE model in the posterior estimates. For instance, as λ → 0, which means
no artificial data from the DSGE, the posterior estimates will be equal to the
maximum likelihood estimates since the prior would be flat.9 Alternatively, as
λ→∞ we have the posterior driven by the DSGE model only.
We have discussed the posterior of the VAR coefficients. We now want to

explore the posterior of the DSGE model parameters, P (θ | Y ), which can be
rewritten as

Pθ (θ | Y ) ∝ PY (Y | θ)π2 (θ) . (28)

We therefore need a set of prior distributions for each structural parameter,
P (θ), and the likelihood of the data given θ. The latter density can be obtained
by integrating out (Φ,Σe) from the posterior (24). Here, we first describe the
likelihood function, P (Y | θ), and then we sketch the steps of the random walk
MH algorithm we will implement in the computation. By following DS, the
marginal data density conditional on θ reads

PY (Y | θ) =
Z

P (Φ,Σe | θ, Y ) dΦdΣe, (29)

and it has an analytical formula since we have a conjugate Normal/Inverted-
Wishart prior. The prior distribution for θ is assumed to be a product of
independent priors and it is summarized in the appendix. The shape of each
prior distribution follows DS and they are consistent with the current literature
on the estimation of DSGE model.
To simulate from the posterior distribution of θ we proceed as follows10:

1. Set a value of λ or assume a discrete grid over which to run the computa-
tion;

2. Solve the DSGE model and get the population moments used in the prior;

3. Given λ, find the posterior moments for (Φ,Σe) and the marginal data
density P (Y | θ);

4. Construct the kernel of the posterior for θ, PY (Y | θ)× P (θ) ;

5. Apply the MH acceptance method in order to generate a Markov chain
from the posterior distribution of θ;

9The Jeffrey’s prior we used for the DSGE based prior.
10Details of the derivation of the relevant posterior are described in Appendix C.
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6. By applying the Gelfand-Dey(1994) method, with the correction proposed
by Geweke(1999), compute the marginal data density of the model for each
λ;

7. Compare such marginal densities over the discrete grid of λ. Model vali-
dation requires λ that maximizes the data density.

4 DSGE Model Evaluation with a Statistically
Identified Model

The evaluation of DSGE models based on the λ parameter is based on the
choice of a VAR derived by relaxing the theoretical restrictions as a statistical
benchmark. This choice closely resemble the approach taken by the Cowles
Commission to evaluate structural econometric models: the chosen benchmark,
being driven the specification of the structural model adopted, could very well
lack of statistical identification.
To evaluate the potential relevance of this problem we propose to base the

evaluation of the DSGE model on a model-independent benchmark.
We consider the case in which additional economic information, not fully

captured byYt, is relevant to modelling the dynamics of inflation output growth
and the monetary policy rate. These additional information can be summarized
in a (small) (kx1) vector of unobserved factors Ft.
We then adopt a Factor Augmented VAR as our benchmark model:µ

Yt

Ft

¶
=

∙
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

¸µ
Yt−1
Ft−1

¶
+

µ
uZt
uFt

¶
,

The system reduces to the standard VAR used to evaluate DSGE models if
Φ12(L) = 0, therefore, within this context, the relevant λ test would add to the
usual DSGE model-related restrictions on Φ11(L) the restrictions Φ12(L) = 0.
The implementation of the Bayesian framework described for the evaluation

of the DSGE model is altered only as far the likelihood function is concerned,
where the more general FAVAR specification substitutes the VAR model (??) .
Factors can be constructed following a very recent strand of the econometric

literature which has shown that very large macroeconomic datasets can be prop-
erly modelled using dynamic factor models, where the factors can be considered
as an exhaustive summary of the information in the data.
We extract factors from "informational" time series included in (Nx1) vector

Xt,that consists of a balanced panel of 131 monthly macroeconomic time-series
(updates of the series used in Stock and Watson(2002)). The number of in-
formational time series N is large (larger than time period T ) and must be
greater than the number of factors and observed variables in the FAVAR sys-
tem (k +M ¿ N).
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We estimate our FAVAR by implementing a two-step estimation (Bernanke,
Boivin and Eliasz (2005)).
We assume that the informational time series Xt are related to the unob-

servable factors Ft by the following observation equation:

Xt = Λ
fFt + et (30)

where Ft is a r×1 vector of common factors, Λf is a (Nxk) matrix of factor
loadings, Λy is (NxM) and the (Nx1) vector of error terms et are mean zero
and are normal and uncorrelated or with a small cross-correlation, in fact, the
estimator we employ allows for some cross-correlation in et that must vanish
as N goes to infinity. Note that this representation nests also models where Xt

depends on lagged values of the factors, see Stock-Watson(2002) for details.
In the first step factors are obtained from the observation equation by im-

posing the orthogonality restriction F 0F/T = I.This implies that bF =
√
T bG,

where the bG are the eigenvectors corresponding to the K largest eigenvalues of
XX

0
, sorted in descending order. Stock and Watson (2002) showed that the

factors can be consistently estimated by the first r principal components of X,
even in the presence of moderate changes in the loading matrix Λ. For this
result to hold it is important that the estimated number of factors, k, is larger
or equal than the true number, r.
In the second step, we estimate the FAVAR equation replacing Ft by cFt.We

shall then compare the VAR and the FAVAR and complete the analysis by
considering a DSGE-VAR and a DSGE-FAVAR.
The standard VAR adopted as a benchmark to assess DSGE models is a

nested model into FAVAR structure. The FAVAR structure is a richer specifica-
tion than parsimoniously summarizes a much larger information set than that
considered in the VAR.
We shall use the FAVAR for evaluating the statistical identification of the

VAR by taking several steps.
First, we shall assess directly the significance of coefficient on factors and

compare the goodness of fit of the FAVAR with respect to that of the VAR. We
shall also evaluate how different is impulse response analysis based on the VAR
and on the FAVAR to see how different is the description of the economy offered
by the two alternative models.
Second, the two alternative models will be analyzed by assessing via appro-

priate tests, as suggested by Spanos(1990), the properties of homoskedasticity,
serial correlation and normality of the residuals.
Third, the out-of-sample forecasting performance of the alternative models

will be assessed by evaluating the RMSE of the FAVAR, the VAR, and the
DSGE to assess the relevance of the information progressively discarded by the
different models in forecasting the macroeconomic variables of interest.
Finally, the DSGE-FAVAR will be used as a benchmark for the implemen-

tation of the lambda test proposed by Del Negro-Schorfheide(2004) to assess
how the optimal lambda is influenced by the choice of the FAVAR rather than
the VAR as a statistical model to be combined with the DSGE.
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5 Empirical Results

5.1 The Data

We analyse the DSGE-VAR model proposed by Del Negro and Schorfheide
(2004) based on U.S. quarterly data from 1955:III to 2001:III.The data for real
output growth come from the Bureau of Economic Analysis (Gross Domestic
Product-SAAR, Billions Chained 1996$). The data for inflation come from
the Bureau of Labor Statistics (CPI-U: All Items, seasonally adjusted, 1982-
1984=100). GDP and CPI are taken in first difference of logarithmic transfor-
mation. The interest rate series are constructed as in Clarida, Galì and Gertler
(2000), for each quarter the interest rate is computed as the average federal
funds rate (source: Haver Analytics) during the first month of the quarter, in-
cluding business days only. The lag length in the VAR is four quarters. In order
to construct the FAVAR we proceed to extract factors from a balanced panel
of 131 monthly macroeconomic and financial time series (Stock and Watson
(1999)) The dataset involves several measures of industrial production, interest
rates,various price indices, employment as well as other important macroeco-
nomic and also financial variables. This panel data is in monthly format, we
transform it into a quarterly dataset using end-of-period observations. All se-
ries have been transformed to induce stationarity. The series are taken into
level, logarithms, first or second difference (in level or logarithms) according to
series characteristics (see the Appendix for a description of all series and details
of the transformations). Following Bernanke, Boivin and Eliasz (2005) we par-
tition the data in two categories of information variables: slow and fast. The
partitioning is crucial to identify shocks necessary to construct impulse response
functions in our FAVAR. Slow-moving variables (for example, wages or spend-
ing) do not respond contemporaneously to unanticipated changes in monetary
policy; while fast-moving variables (for example, asset prices and interest rates)
do respond contemporaneously to monetary shocks (see again the Appendix for
further details ).
We proceed to extract two factors from slow variables and one factor from

fast variables and we call them respectively "slow factors" and "fast factor". 11

On the basis of the factors we specify a Factor Augmented VAR by con-
sidering four-lags of the factors to keep the same lag-order chosen by DS for
the VAR, we also consider a more parsimonious parameterization in which only
one-lag of the factors is included.

5.2 The DSGE-VAR

We consider a benchmark DSGE-VAR model that replicates the results reported
in Del Negro and Schorfheide (2004). We estimate a DSGE-VAR over the sample
1981-2001, considering the DSGE model described in section 2 and a four-order

11We extract factors by using principal components. We limit the number of factor to
three to strike a balance between the variance of the original series explained by the principal
components and the difference in the parameterization of the VAR and the FAVAR.
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VAR for the vector Yt = (∆ lnxt,∆ lnPt, lnRt)
0 . We report in Table 1 reports

Prior and Posterior for DSGE model parameters that are calibrated to generate
posterior means and intervals as in Table 2 in Del Negro and Schorfheide (2004).

TABLE 1: Prior and Posterior of DSGE Model Parameters 1981-2001
Prior Posterior Posterior Posterior Posterior

(λ = 0.2) (λ∗ = 0.6) (λ = 1) (λ = 10)
LOW UPP LOW UPP LOW UPP LOW UPP LOW UPP

ln γ 0.101 0.922 0.314 0.923 0.378 0.926 0.388 0.914 0.440 0.859
lnπ∗ 0.219 1.863 0.511 1.112 0.503 1.080 0.474 1.087 0.288 1.548
ln r∗ 0.132 0.880 0.144 0.746 0.186 0.757 0.234 0.789 0.500 0.866
κ 0.063 0.513 0.144 0.701 0.198 0.804 0.236 0.820 0.062 0.405
τ 1.197 2.788 1.167 2.674 1.170 2.475 1.114 2.604 2.005 3.601
ψ1 1.121 1.910 1.010 1.643 1.005 1.522 1.000 1.539 0.999 1.366
ψ2 0.001 0.260 0.111 0.524 0.165 0.699 0.174 0.663 0.240 0.617
ρR 0.157 0.812 0.402 0.791 0.488 0.756 0.530 0.751 0.723 0.837
Notes: LOW and UPP are the lower and the upper bounds of the 90% confidence

intervals based on the output of the Metropolis-Hastings Algorithm.

We then conduct DSGE model evaluation by determining bλ using the grid
Λ = {0.20, 0.60, 1, 1.4, 1.8, 10, Inf} . The minimum value of λ satisfying the
lower bound restriction λ ≥ k+m

T with k = 13, m = 3 and T = 80 is λmin = .20.
Figure 1 reports the results of the grid search that deliver 0.60 as the optimal
λ in case we use Metropolis-Hastings Algorithm 100 000 replications12 .

Insert Figure 1 here

Note that the weight attached to the DSGE is λ
1+λ so λ∗ = .60 implies

a weight of 0.375 on the DSGE model and therefore the size of the artificial
sample generated by the DSGE should be of sixty per cent of the size of the
sample of genuine observations. On the basis of very similar evidence Del
Negro, Schorfheide, Smets and Wouters (2006) conclude that "...the degree of
misspecification in DSGE models is no longer so large to prevent their use in
day-to-day policy analysis, yet it is not so small that it cannot be ignored....".

6 The Statistical Identification of the DSGE-
VAR

We begin our assessment of the statistical identification of the VAR used to
construct the DSGE-VAR model by illustrating the statistical evidence on the
augmentation of the VAR with factors.
12 Slightly different results are obtained when using 25000 replications, as the mapping

between lambda and the marginal data density is not as smooth as with 100000 replications.
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In practice, we consider the extension of the baseline VAR model:

Yt =
4X

i=1

AiYt−i + u
Y
t

Yt = (∆ lnxt,∆ lnPt, lnRt)

to the following FAVAR model

µ
Yt

Ft

¶
=

∙
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

¸µ
Yt−1
Ft−1

¶
+

µ
uYt
uFt

¶
Yt = (∆ lnxt,∆ lnPt, lnRt)

Ft =
³
F s
1t, F

s
2t, F

f
3t

´
where F s

1t, F
s
2t are the two slow factors and F

f
3t is the fast factor. Φ11(L),Φ12(L),Φ22(L)

are polynomial of order four in the lag factor for our benchmark parameteriza-
tion. We experiment also with having Φ12(L),Φ22(L) as polynomial of order
one.
Table 2 compares the VAR and FAVAR specifications for the vector Yt =

(∆ lnxt,∆ lnPt, lnRt) ,considering two alternative FAVARs’ including respec-
tively one lag(FAVAR(1)) and four lags(FAVAR(4)) of the factors .

TABLE 2: VAR and FAVAR specifications: 1981-2001
Equation ∆ lnxt ∆ lnPt lnRt

Adj R2 0.39 0.30 0.93
VAR S.E. 0.54 0.32 0.69

Adj R2 0.39 0.43 0.98
FAVAR(4) S.E. 0.54 0.29 0.46

χ2 (12) 13.05
0.36

27.88
0.006

99.77
0.000

Adj R2 0.47 0.44 0.97
FAVAR(1) S.E. 0.50 0.28 0.47

χ2 (3) 14.02
0.002

20.08
0.0002

83.94
0.000

The results reported in Table 2 clearly illustrate that factors are jointly
significant in the specification for all three variables included in the baseline
VAR, the only exception being the specification for the output growth equation
when four lags of three factors are considered.
Table 3.1-3.3 report the evidence on the residual analysis from the VAR, the

FAVAR(1) and the FAVAR(4). Table 3.1 reports the outcome of the Jarque-
Bera(1980) tests of the null hypothesis of normality of residuals from each equa-
tion and for the joint three—equation model.
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TABLE 3.1: Normality of Residuals
Equation ∆ lnxt ∆ lnPt lnRt Joint

Jarque-Bera χ2(2) χ2(2) χ2(2) χ2(6)
VAR 5.72

0.08
5.03
0.06

0.40
0.82

11.17
0.08

FAVAR(4) 10.51
0.005

2.52
0.28

8.76
0.01

21.79
0.001

FAVAR(1) 6.48
0.04

1.13
0.56

3.81
0.14

11.44
0.08

The null of normality is not rejected for the VAR and FAVAR(1) while it
is rejected in the case of the FAVAR(4), the main cause of this rejection is the
non-normality of residuals in the output growth equation. However, departure
from the null hypothesis of normality of the size described by Table 3 has been
shown to be very little relevant for the Bayesian analysis of the optimal λ,(see
Christiano(2007)).
Table 3.2 reports the outcome of Breusch-Godfrey13 Lagrange Multiplier

test for autocorrelation of residuals at all lags from one to four.

TABLE 3.2: Serial Correlation of Residuals
LM χ2(9) LAG 1 LAG 2 LAG 3 LAG 4

VAR 31.43
0.0002

29.37
0.0006

8.58
0.48

7.28
0.60

FAVAR(4) 11.97
0.21

8.44
0.49

13.06
0.16

12.77
0.17

FAVAR(1) 11.67
0.23

15.14
0.09

10.17
0.34

6.43
0.69

Here the results points toward strong evidence of residual autocorrelation
in the VAR specification while the null hypothesis of absence of residual cor-
relation at any lags cannot be rejected in the FAVAR(1) and the FAVAR(4)
specifications.

TABLE 3.3: Homoscedasticity of Residuals
White test VAR FAVAR(4) FAVAR(1)

χ2(144) χ2(288) χ2(180)
172
0.05

290
0.44

208
0.08

Table 3.3 reports the outcome of the White(1980) heteroscedasticity tests on
the residuals of the trivariate system. Once again while the null of homoscedas-
ticity cannot be rejected in the FAVAR(4) and the FAVAR(1) specification, it
is rejected at the five per cent level in the VAR specification.
We proceed to a further comparative analysis of the VAR and the FAVAR

models by considering impulse response function to a monetary policy shock.
Monetary policy shocks are identified in the VAR by assuming that the macro-
economic variables, inflation and output growth, take at least one period before

13See Godfrey(1988).
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responding to monetary policy while monetary policy is allowed to react simul-
taneously to macroeconomic variables. In the FAVAR identification is achieved
by extending the VAR assumptions for macroeconomic variables and interest
rates to slow factor and by assuming that the fast factor responds contempora-
neously to all other variables in the system and that monetary policy does not
contemporaneously react to the fast factor.
We plot in Figure 2 we plot responses for an horizon of 20 periods of quar-

terly inflation, quarterly output growth and the Federal Fund Rates to a mone-
tary shock as derived in the VAR and in the FAVAR(4) estimated over the usual
sample impulse in case of VAR and FAVAR for the usual sample 1981-2001. We
also report one-standard deviation confidence intervals for the VAR estimation.

Insert Figure 2 here

The impulse responses show virtually no difference between the VAR and
the FAVAR in the case of output growth, while in there are some differences in
the case of inflation and the Federal Fund. In the case of inflation the FAVAR
does not deliver the initial "price puzzle" that is observed with VAR based
impulse responses and the negative dynamic response of inflation to a restrictive
monetary policy at the one-year horizon is much more pronounced in the FAVAR
case. In the case of the Federal Fund rate a much less persistent profile is
observed in the FAVAR specification.
We complete our traditional evaluation of alternative models by considering

the out-of-sample forecasting performance of the VAR, the FAVAR and the
DSGE models. Given estimation of all models over the sample 1981:1-1997:4,
we consider the out-of-sample performance for the period 1998:1-2001:4. In
particular, we concentrate on the Root Mean Squared Error of the forecasting
errors from the different model, computed as follows:

RMSEy =

vuut 1

16

16X
h=1

¡
yt+h − ŷt+h|t

¢2
(31)

y = ∆ lnxt,∆ lnPt, lnRt,

t = 1997 : 4

where ŷt+h|t is the mean forecast computed as the average across draws and.
t = 1997 : 4.
We report the results of our analysis in Table 4.
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TABLE 4: The Forecasting Performance of alternative models
MODEL ∆ lnxt ∆ lnPt lnRt

RMSE RMSE RMSE
VAR(4) 0.63 0.29 0.88
FAVAR(4,4) 0.56

(0.89)
0.24
(0.82)

0.92
(1.05)

FAVAR(4,1) 0.57
(0.92)

0.24
(0.82)

0.83
(0.94)

DSGE 0.63
(1.01)

0.24
(0.83)

0.80
(0.91)

DSGE-VAR(λ∗ = 0.6) 0.61
(0.97)

0.25
(0.86)

0.80
(0.91)

RMSE relative to the VAR(4) within brackets
FAVAR(4,i) includes i lags of the factors

Our results clearly favour the FAVAR against the VAR, moreover the im-
provements in the forecasting performance achieved by the DSGE and the
DSGE-VAR(λ∗ = 0.6) against the VAR are not obtained when the FAVARs
are considered as benchmarks.

7 A FAVARAnalysis of the Simple DSGEModel
In the light of the evidence reported in the previous section it seems inter-
esting to apply the mixed estimation technique to evaluate the properties of
the DSGE-FAVAR instead of the DSGE-VAR. The FAVAR has the interesting
properties of being an empirical model that is based on information independent
from the theoretical model and it does then constitute a model whose statisti-
cal identification is independent of the validity of unrestricted VAR underlying
the solution of the adopted theoretical model. In fact, we have shown for our
particular application that a FAVAR which augments the VAR(p) specification
for the variables in the theoretical model with a set of factors extracted from a
large information set improves considerably on the VAR in terms of statistical
adequacy.
In this case the benchmark specification for the unrestricted dynamics of the

variables included in the theoretical model becomes the following:

Yt = B0Xt +B1Ft +Et (32)

whereYt = (∆ lnxt,∆ lnPt, lnRt) , Xt = [1,Yt−1, ...Yt−p] , Ft =
£
f 0t, f

0
t−1, . . . f

0
t−q
¤0

groups q lags of the three factors ft = [f1,t, f2,t, f3,t]
0 extracted and interpreted

as in Bernanke, Boivin and Eliasz (2005), Et is the three-variate vector of inno-
vations. System (32) can be re-written in a more compact form as follows:

Yt = BWt +Et (33)

where B = [B0, B1] is of dimension m× (1 +mp+ rq) and Wt = [X
0
t, F

0
t ]
0.

At this stage the derivation of the likelihood function resembles very closely
the simpler case discussed in section 3. However, there are some differences in
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terms of the prior and the posterior distribution between the DSGE-VAR and
the DSGE-FAVAR.

7.1 Prior distribution

The full prior on the coefficients in (33) is derived by recalling the moments from
the DSGE model as we did in Section 3 and by working out a prior for the factors
coefficients which is centered at zero with a variance-covariance matrix set by
the second moments matrix of the factors. Given that factors do not enter in
the DSGE model, we can draw dummy observations from the theoretical model

for the endogenous variables,
³
Ỹt, X̃t

´
,14 without considering the effect from

F̃t. At the same time we can derive dummy observations to set the prior on the
coefficients of the factors, F̃t, by using a training sample on the full FAVAR.

The set of dummy observations
³
Ỹt, X̃t, F̃t

´
can be used to derive the full prior

distribution over the coefficients which reads

∙
B0
B1

¸
| Σe ∼ N

⎛⎜⎝∙B̃0
0

¸
,Σe ⊗

⎡⎢⎣
³
X̃tX̃

0
t

´−1
0

0
³
F̃tF̃

0
t

´−1
⎤⎥⎦
⎞⎟⎠ (34)

where B̃0 =
³
X̃tX̃

0
t

´−1
X̃tỸ

0
t . The cross term restriction,

³
X̃tF̃

0
t

´
, is also set

to zero because, in constructing our prior, we are considering the case in which
factors don’t have any influence on the set of endogenous variables in our DSGE
model. We spell out all these details in Appendix C. As far as the prior distri-
bution for the structural parameters is concerned, we maintain the same inde-
pendence assumption as we did in Section 3; we also consider the same shape
and parameterization.

7.2 Posterior distribution

Given our description of the prior distribution and the likelihood function we can
proceed with the illustration of the computation of the posterior distribution.
A new feature of the analysis at this stage has to do with the contribution of the
factors in shaping inference. The DSGE model itself does not directly depend
on factors, but its estimates account for the larger information set as it appears
from the following decomposition

P (Φ,Σe, θ | Y, F ) = PΦ (Φ,Σe | θ, Y, F )× Pθ (θ | Y,F ) , (35)

where the posterior for θ, Pθ (θ | Y, F ), makes clear the dependence on the fac-
tors.
14As in the DSGE-VAR, their population counterparts are used

24



Posterior calculations are similar to those discussed in the case of the DSGE-
VAR, however in this case the parameter λ captures the relative weight of the
information coming from the FAVAR and from the theoretical model.
The parameter λ is chosen from an interval which is unbounded from above.

In our empirical exercise we will be using a discrete grid over which we will
compute the marginal data density, P (Y | λ). The minimum value, λmin =
m+k
T , is model dependent and it is related to the existence of a well-defined
Inverse-Wishart distribution. For completeness, it is worth to mention that
λ = 0 refers to the FAVAR model with no prior and it is not possible to compute
the marginal likelihood in this particular case. Therefore, we can show the
marginal data density for any value of λ larger than λmin.Importantly λmin
depends on the degrees of freedom in the FAVAR and therefore, given estimation
on the same number of available observation, λmin for a DSGE-FAVAR will
always be larger that λmin for a DSGE-VAR.
Figure 3 shows the marginal likelihood for different λ, when a FAVAR(4,1)

is considered as the baseline statistical model. The optimal value turn out to
be λ∗ = 0.60, as in the case of the DSGE-VAR. Of course, the distance between
the optimal λ and λmin is smaller in the DSGE-FAVAR than in the DSGE-VAR
but still the lambda test indicates that the size of the artificial sample generated
by the DSGE should be of sixty per cent of the size of the sample of genuine
observations generated from the FAVAR model. In the case of a FAVAR(4,4),
λ∗ = 1.4 and the size of the artificial sample generated by the DSGE should now
be greater than the size of the sample of genuine observations generated from the
FAVAR model. Also in this case λmin is higher than in our benchmark case as a
consequence of the more generous parameterization of the DSGE-FAVAR(4,4).
To provide further evidence of the performance of the DSGE evaluated on

the basis of the FAVAR, Table 5 considers the Forecasting performance of the
VAR, the FAVAR and the optimal combination between DSGE and FAVAR.

TABLE 5: The Forecasting Performance of FAVAR and DSGE-FAVAR
MODEL ∆ lnxt ∆ lnPt lnRt

RMSE RMSE RMSE
VAR(4) 0.63 0.29 0.88
FAVAR(4,4) 0.56

(0.89)
0.24
(0.82)

0.92
(1.05)

FAVAR(4,1) 0.57
(0.92)

0.24
(0.82)

0.83
(0.94)

DSGE-FAVAR(4,4)(λ∗ = 1.4) 0.55
(0.88)

0.23
(0.79)

0.75
(0.85)

DSGE-FAVAR(4,1)(λ∗ = 0.6) 0.58
(0.93)

0.24
(0.80)

0.76
(0.87)

RMSE relative to the VAR(4) within brackets

The evidence reported shows that best forecasting performance is achieved
by the optimal combination of the DSGE and the FAVAR. Our results suggest
that using a more general statistical model than that derived simply by relaxing
restrictions from the solved theoretical model is important along two dimen-
sions. First, it allows a further evaluation of the DSGE model against a larger
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information set. Second, in the case some support for the DSGE model is found
in the data when evaluated against the larger information set (the optimal λ in
the DSGE-FAVAR is different from zero), the optimal combination between the
DSGE model and the statistical model based on a larger information set (the
FAVAR) delivers a forecasting model (the DSGE-FAVAR) that dominates all
alternatives.

8 Conclusions
In this paper we have analyzed the statistical identification of DSGE models by
assessing if an unrestricted VAR constructed by relaxing cross-equation restric-
tions on the autoregressive approximation to the solution of a DSGE model is
an appropriate statistical model. We have considered, as an alternative to the
VAR, a FAVAR that uses a few factors to incorporate in the statistical model
all the macroeconomic and financial information left out of the DSGE model.
Our application shows that, FAVAR models dominate VAR specification

generated by adopting unrestricted version of the solution of DSGE models.
Such dominance is clearly established by analysis of residuals and evaluation
of forecasting performance. When we proceed to evaluate DSGE using FAVAR
rather than VAR as statistical benchmark we find that some support for the
DSGE model is still found in the data (the optimal λ in the DSGE-FAVAR is
different from zero). Moreover, the optimal combination between the DSGE
model and the statistical model based on a larger information set (the FAVAR)
delivers a forecasting model (the DSGE-FAVAR) that dominates all alternatives.
The fact that the forecasting performance of the DSGE-FAVAR is the best

among all alternatives, is somewhat reassuring against the worry that an ar-
tificially high value for the parameter λ might be chosen by maximizing the
marginal likelihood. In fact, such criterion puts a considerable weight in favour
of parsimony of specification, therefore more richly parameterized models might
be unduly penalized by the lambda-test when they are evaluated against very
parsimoniously parameterized theoretical models.
Our comparative analysis of the DSGE-VAR and the DSGE-FAVAR reiter-

ates the point made by Christiano(2007) on the importance of complementing
the value of the optimal λ with a cutoff function giving some weight to the
difference between the number of free parameters in the unrestricted chosen
statistical benchmark and in the DSGE model.
We conclude that the criticism of the Cowles Commission approach to model

evaluation originally proposed by Spanos(1990) and centered on their lack of
statistical identification might well apply to DSGE models and the recently
proposed model evaluation method, based on the DSGE−V AR(λ), is unlikely
to detect the importance of such problem.
However, our application also shows that the adoption of a FAVAR as bench-

mark leaves unaltered the support of the data for the DSGE model and that a
DSGE-FAVAR is the optimal forecasting model.
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Figure 1: The optimal λ in the DSGE-VAR
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Figure 3: the optimal λ in a DSGE-FAVAR
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9 Appendix A : The Sims Representation of our
simple model

Del Negro and Schorfheide (2004) consider the following model:

x̃t = Etx̃t+1 −
1

τ
(R̃t −Etπ̃t+1) + (1− ρG)g̃t + ρz

1

τ
z̃t (36)

π̃t = βEtπ̃t+1 + κ (x̃t − g̃t) (37)

R̃t = ρRR̃t−1 + (1− ρR)(ψ1π̃t + ψ2x̃t) + R,t (38)

g̃t = ρgg̃t−1 + g,t (39)

z̃t = ρz z̃t−1 + z,t (40)

The first step towards solution is to cast the model in the form of :

Γ0
∼
Zt = Γ1

∼
Zt−1 + C +Ψ t +Πηt (41)

The results is achieved as follows:
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∼
Zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exteπtfRtfR∗tegtezt
Etgxt+1
Et gπt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t =

⎡⎣ R
t
G
t
Z
t

⎤⎦ ηt =

∙
ηxt = xt −Et−1(xt)
ηπt = πt −Et−1(πt)

¸

Γ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
τ 0 −(1− ρg) −

ρz
τ −1 − 1

τ
−κ 1 0 0 κ 0 0 −β
0 0 1 −(1− ρR) 0 0 0 0
−ψ2 −ψ1 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 ρR 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 ρG 0 0 0
0 0 0 0 0 ρZ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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10 Appendix B : The data used to extract fac-
tors

We describe data used to extract factors in the format adopted by Stock and
Watson(2002):series number, long description, short description, transformation
code and slow code (0. The transformation code are: 1 - no transformation; 2
- first difference; 3 - second difference; 4 - logarithm; 5 - first difference of
logarithm and 6 - second difference of logarithm.

Date Long Description Short Desc Transf codSlowCode
a0m052 Personal income (AR, bil. chain 2000 $) PI 5 1
A0M051 Personal income less transfer payments (AR, bil. chain 2000 $) PI less transfers 5 1
A0M224_Real Consumption (AC) A0m224/gmdc Consumption 5 1
A0M057 Manufacturing and trade sales (mil. Chain 1996 $) M&T sales 5 1
A0M059 Sales of retail stores (mil. Chain 2000 $) Retail sales 5 1
IPS10   INDUSTRIAL PRODUCTION INDEX -  TOTAL INDEX IP: total 5 1
IPS11   INDUSTRIAL PRODUCTION INDEX -  PRODUCTS, TOTAL IP: products 5 1
IPS299  INDUSTRIAL PRODUCTION  INDEX -  FINAL PRODUCTS IP: final prod 5 1
IPS12   INDUSTRIAL PRODUCTION INDEX -  CONSUMER GOODS IP: cons gds 5 1
IPS13   INDUSTRIAL PRODUCTION INDEX -  DURABLE CONSUMER GOODS IP: cons dble 5 1
IPS18   INDUSTRIAL PRODUCTION INDEX -  NONDURABLE CONSUMER GOODSiIP:cons nondbl 5 1
IPS25   INDUSTRIAL PRODUCTION INDEX -  BUSINESS EQUIPMENT IP:bus eqpt 5 1
IPS32   INDUSTRIAL PRODUCTION INDEX -  MATERIALS IP: matls 5 1
IPS34   INDUSTRIAL PRODUCTION INDEX -  DURABLE GOODS MATERIALS IP: dble mats 5 1
IPS38   INDUSTRIAL PRODUCTION INDEX -  NONDURABLE GOODS MATERIALSIP:nondble mats 5 1
IPS43   INDUSTRIAL PRODUCTION INDEX -  MANUFACTURING (SIC) IP: mfg 5 1
IPS307  INDUSTRIAL PRODUCTION  INDEX -  RESIDENTIAL UTILITIES IP: res util 5 1
IPS306  INDUSTRIAL PRODUCTION  INDEX -  FUELS IP: fuels 5 1
PMP     NAPM PRODUCTION INDEX (PERCENT) NAPM prodn 1 1
A0m082 Capacity Utilization (Mfg) Cap util 2 1
LHEL    INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SAHelp wanted ind 2 1
LHELX   EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF Help wanted/em 2 1
LHEM    CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) Emp CPS total 5 1
LHNAG   CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS Emp CPS nona 5 1
LHUR    UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA) U: all 2 1
LHU680  UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)U: mean duratio 2 1
LHU5    UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOU < 5 wks 5 1
LHU14   UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SU 5-14 wks 5 1
LHU15   UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) U 15+ wks 5 1
LHU26   UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,U 15-26 wks 5 1
LHU27   UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) U 27+ wks 5 1
A0M005 Average weekly initial claims, unemploy. insurance (thous.) UI claims 5 1
CES002  EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE Emp: total 5 1
CES003  EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING Emp: gds prod 5 1
CES006  EMPLOYEES ON NONFARM PAYROLLS - MINING Emp: mining 5 1
CES011  EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION Emp: const 5 1
CES015  EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING Emp: mfg 5 1
CES017  EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS Emp: dble gds 5 1
CES033  EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS Emp: nondbles 5 1
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CES046  EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING Emp: services 5 1
CES048  EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, A Emp: TTU 5 1
CES049  EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE Emp: wholesale 5 1
CES053  EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE Emp: retail 5 1
CES088  EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES Emp: FIRE 5 1
CES140  EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT Emp: Govt 5 1
A0M048 Employee hours in nonag. establishments (AR, bil. hours) Emp-hrs nonag 5 1
CES151  AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WAvg hrs 1 1
CES155  AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WOvertime: mfg 2 1
aom001 Average weekly hours, mfg. (hours) Avg hrs: mfg 1 1
PMEMP  NAPM EMPLOYMENT INDEX (PERCENT) NAPM empl 1 1
HSFR    HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-) HStarts: Total 4 0
HSNE    HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. HStarts: NE 4 0
HSMW   HOUSING STARTS:MIDWEST(THOUS.U.)S.A. HStarts: MW 4 0
HSSOU  HOUSING STARTS:SOUTH (THOUS.U.)S.A. HStarts: South 4 0
HSWST  HOUSING STARTS:WEST (THOUS.U.)S.A. HStarts: West 4 0
HSBR    HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SABP: total 4 0
HSBNE   HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)S.A BP: NE 4 0
HSBMW HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A. BP: MW 4 0
HSBSOUHOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)S.A. BP: South 4 0
HSBWSTHOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A. BP: West 4 0
PMI     PURCHASING MANAGERS' INDEX (SA) PMI 1 0
PMNO    NAPM NEW ORDERS INDEX (PERCENT) NAPM new ordr 1 0
PMDEL   NAPM VENDOR DELIVERIES INDEX (PERCENT) NAPM vendor d 1 0
PMNV    NAPM INVENTORIES INDEX (PERCENT) NAPM Invent 1 0
A0M008 Mfrs' new orders, consumer goods and materials (bil. chain 1982 $) Orders: cons gds 5 0
A0M007 Mfrs' new orders, durable goods industries (bil. chain 2000 $) Orders: dble gds 5 0
A0M027 Mfrs' new orders, nondefense capital goods (mil. chain 1982 $) Orders: cap gds 5 0
A1M092 Mfrs' unfilled orders, durable goods indus. (bil. chain 2000 $) Unf orders: dble 5 0
A0M070 Manufacturing and trade inventories (bil. chain 2000 $) M&T invent 5 0
A0M077 Ratio, mfg. and trade inventories to sales (based on chain 2000 $) M&T invent/sales 2 0
FM1     MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA) M1 6 0
FM2     MONEY STOCK:M2(M1+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BM2 6 0
FM3     MONEY STOCK: M3(M2+LG TIME DEP,TERM RP'S&INST ONLY MMMFS)(BIL$,SA) M3 6 0
FM2DQ   MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI) M2 (real) 5 0
FMFBA   MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) MB 6 0
FMRRA   DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) Reserves tot 6 0
FMRNBA  DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) Reserves nonbor 6 0
FCLNQ   COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) C&I loans 6 0
FCLBMC  WKLY RP LG COM'L BANKS:NET CHANGE COM'L & INDUS LOANS(BIL$,SAAR) C&I loans 1 0
CCINRV  CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) Cons credit 6 0
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A0M095 Ratio, consumer installment credit to personal income (pct.) Inst cred/PI 2 0
FSPCOM  S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) S&P 500 5 0
FSPIN   S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) S&P: indust 5 0
FSDXP   S&P'S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) S&P div yield 2 0
FSPXE   S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) S&P PE ratio 5 0
FYFF    INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) FedFunds 2 0
CP90 Cmmercial Paper Rate (AC) Commpaper 2 0
FYGM3   INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 3 mo T-bill 2 0
FYGM6   INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 6 mo T-bill 2 0
FYGT1   INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 1 yr T-bond 2 0
FYGT5   INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 5 yr T-bond 2 0
FYGT10  INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 10 yr T-bond 2 0
FYAAAC  BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM) Aaabond 2 0
FYBAAC  BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM) Baa bond 2 0
scp90 cp90-fyff CP-FF spread 1 0
sfygm3 fygm3-fyff 3 mo-FF spread 1 0
sFYGM6   fygm6-fyff 6 mo-FF spread 1 0
sFYGT1   fygt1-fyff 1 yr-FF spread 1 0
sFYGT5   fygt5-fyff 5 yr-FFspread 1 0
sFYGT10  fygt10-fyff 10yr-FF spread 1 0
sFYAAAC fyaaac-fyff Aaa-FF spread 1 0
sFYBAAC fybaac-fyff Baa-FF spread 1 0
EXRUS   UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) Ex rate: avg 5 0
EXRSW   FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) Ex rate: Switz 5 0
EXRJAN  FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) Ex rate: Japan 5 0
EXRUK   FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) Ex rate: UK 5 0
EXRCAN  FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) EX rate: Canada 5 0
PWFSA   PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) PPI: fin gds 6 0
PWFCSA  PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) PPI: cons gds 6 0
PWIMSA  PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) PPI: int mat’ls 6 0
PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) PPI: crude mat’ls 6 0
PSCCOM SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) Commod: spot pric 6 0
PSM99Q  INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A) Sens mat’ls price 6 0
PMCP    NAPM COMMODITY PRICES INDEX (PERCENT) NAPM com price 1 0
PUNEW   CPI-U: ALL ITEMS (82-84=100,SA) CPI-U: all 6 1
PU83    CPI-U: APPAREL & UPKEEP (82-84=100,SA) CPI-U: apparel 6 1
PU84    CPI-U: TRANSPORTATION (82-84=100,SA) CPI-U: transp 6 1
PU85    CPI-U: MEDICAL CARE (82-84=100,SA) CPI-U: medical 6 1
PUC     CPI-U: COMMODITIES (82-84=100,SA) CPI-U: comm. 6 1
PUCD    CPI-U: DURABLES (82-84=100,SA) CPI-U: dbles 6 1
PUS     CPI-U: SERVICES (82-84=100,SA) CPI-U: services 6 1
PUXF    CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) CPI-U: ex food 6 1
PUXHS   CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) CPI-U: ex shelter 6 1
PUXM    CPI-U: ALL ITEMS LESS MEDICAL CARE (82-84=100,SA) CPI-U: ex med 6 1
GMDC    PCE,IMPL PR DEFL:PCE (1987=100) PCE defl 6 1
GMDCD   PCE,IMPL PR DEFL:PCE; DURABLES (1987=100) PCE defl: dlbes 6 1
GMDCN   PCE,IMPL PR DEFL:PCE; NONDURABLES (1996=100) PCE defl: nondble 6 1
GMDCS   PCE,IMPL PR DEFL:PCE; SERVICES (1987=100) PCE defl: services 6 1
CES275  AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERSAHE: goods 6 1
CES277  AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERSAHE: const 6 1
CES278  AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERSAHE: mfg 6 1
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11 Appendix C: How to generate draws from
the posterior distribution of (Φ,Σu, θ)

Here we provide the full derivation of the results reported in Section 3 on the
DS approach to obtain draws from the posterior distribution of (Φ,Σu, θ). The
analysis will be conditional to a value for λ which establishes the relevance of
the information between the VAR and DSGE in order to estimate the structural
parameter θ. We can think of λ as generating a particular model which can
support, with a certain degree, the observed data: the marginal data density
represents such a measure of goodness and it would help us to discriminate
among different models (i.e. different λ).
This appendix describes i) how to compute moments from DSGE models,

ii) how to compute a proper prior distribution given such a set of moments
conditions, iii) how to derive the marginal data density in case of conjugate
prior, iv)

11.1 The Bayesian Approach

We follow the Bayesian approach to draw all the relevant inference for the prob-
lem at hand. We consider as a good approximation for the vector of observables,
Yt = (∆ ln yt,∆ ln pt, Rt)

0, an unrestricted Gaussian VAR(p) model for the data.
Together with the likelihood function for the VAR(p) we have to specify

a prior distribution for the VAR coefficients. According to Theil and Gold-
berg(1961) and following the application by Sims (1996), we can recover a prior
distribution by using a set of dummy observations. Such a procedure could be
seen as a set of restrictions on the VAR(p) coefficients as well. A novelty of the

DS approach is to use the DSGE model to derive artificial data,
³
Ỹ , X̃

´
, which

can be used to set up the prior.
The VAR model for the data is

Yt = ΦXt +Et, (42)

where Xt =
£
ι, Y 0

t−1, . . . , Y
0
t−p
¤0
is a vector of dimension k×1, k = mp+1, which

concatenates the constant and p lags of Yt, and Φ = [Φ0 | Φ1 | . . .Φp] .
The DSGE model can be described by the following state-space representa-

tion

Ỹt = Λ0 (θ) + Λ1 (θ) Z̃t + Vt, (43)

Z̃t = T (θ) Z̃t−1 +R (θ)Ut, (44)

which groups the policy function from the RE equilibrium and the mapping
between observables, Ỹt, and simulated data, Z̃t. The vector Ỹt can be computed
by simulation methods with respect to (43) and (44) or analytically since the
DSGE model is stationary.
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Given the pair of simulated data
³
Ỹt, X̃t

´
15 we can write a similar specifi-

cation as in (42)
Ỹt = ΦX̃t +Et, (45)

that indirectly imposes restrictions on Φ driven from the theoretical model; to
derive the DSGE-based prior we will construct the likelihood function of the
process in (45).

11.2 Compute DSGE Moments

Given the state-space representation in (43) and (44), the unconditional variance
for Ỹt and Z̃t are

Σz,z = TΣz,zT
0 +RΣu,uR

0 (46)

Σy,y = Λ0Λ
0
0 + Λ1Σz,zΛ

0
1 +Σv,v + Λ1RΣu,v +Σ

0
u,vR

0Λ01 (47)

while the unconditional autocorrelation of order k for Ỹt reads

Σz,z (k) = T kΣz,z (k − 1) (48)

Σy,y (k) = Λ0Λ
0
0 + Λ1Σz,z (k)Λ

0
1 + Λ1

¡
T k
¢
RΣu,v. (49)

These high-order second moments matrices will be necessary to construct Σx,x
which is a function of the lags of Ỹt. Here we have omitted the dependence over
θ.

11.3 Getting a Proper Prior Distribution out of the DSGE
model: π1

The likelihood function for the artificial data in (??) reads

L
³
Ỹ ;Φ,Σe

´
= (2π)

−mT/2 |Σe|−T/2 exp
µ
−1
2
tr
³³³
Φ− Φ̃

´³
X̃ 0X̃

´³
Φ− Φ̃

´
+ S̃

´
Σ−1e

´¶
,

(50)
where the sufficient statistics are,

Φ̃ =
³
X̃ 0X̃

´−1
X̃ 0Ỹ (51)

S̃ = Ỹ 0Ỹ − Ỹ 0X̃
³
X̃ 0X̃

´−1
X̃ 0Ỹ (52)

which can be also specified in terms of population moments

Φ̃ = Σ−1x,xΣx,y (53)

S̃ = Σy,y − Σ0x,yΣ−1x,xΣx,y (54)

15 X̃t collects lags of Ỹt.
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where, for instance, Σx,y = E
³
X̃tỸt

´
.

We thus use a flat prior to construct a proper distribution based on the
DSGE model: the Jeffreys prior for the multivariate case reads

π0 = |Σe|−
m+1
2 . (55)

By combining (50) and (55) we get the kernel of the distribution

π1 ∝ L
³
Ỹ | Φ,Σe

´
× π0, (56)

and by integrating with respect to (Φ,Σe) we derive the constant of integration

PỸ

³
Ỹ | θ

´
= (2π)

−mṽ/2 ×
¯̄̄
S̃
¯̄̄− ṽ2 × ¯̄̄H̃ ¯̄̄−m2 × h2mṽ/2 × πm(m−1)/4 × Γm (ṽ)

i
,

(57)
which is needed to have the DSGE-based prior distribution

π1

³
Φ,Σe | Ỹ , θ

´
=

L
³
Ỹ | Φ,Σe, θ

´
× π0

PỸ

³
Ỹ | θ

´ (58)

=
(2π)−mT∗/2

(2π)
−mṽ/2

×

¯̄̄
S̃
¯̄̄ṽ/2

×
¯̄̄
H̃
¯̄̄m/2

× |Σe|−(T
∗+m+1)/2

2mṽ/2 × πm(m−1)/4 × Γm (ṽ)
×

exp

∙
−1
2
tr
³
S̃Σ−1e

´¸
× exp

∙
−1
2
tr

µ³
Φ− Φ̃

´0
(Σx,x)

³
Φ− Φ̃

´
Σ−1e

¶¸
,

given Σx,x non-singular and ṽ ≡ T̃ − k > k +m.

Hence, π1
³
Φ,Σe | Ỹ , θ

´
is distribution from the Normal N

³
Φ̃,Σe ⊗H−1

´
,

Inverse-Wishart IW
³
S̃, ṽ

´
family.

11.4 The Marginal Data Density given: P (Y | θ)
With a proper prior at hand, π1, we can now combine data and model-based
information to fully specify the posterior conditional on the structural parameter
θ. By combining the likelihood and the conjugate prior, we get the posterior
kernel

PΦ (Φ,Σe | Y, θ) ∝ L (Y | Φ,Σe)× π1

³
Φ,Σe | Ỹ , θ

´
, (59)
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which can be integrated to obtain the marginal data density16

PY (Y | θ) = (2π)−Tm/2 ×

¯̄̄
S̃
¯̄̄ṽ/2

¯̄
S̄
¯̄v̄/2

¯̄̄
H̃
¯̄̄m/2

¯̄
H̄
¯̄m/2

× Γm (v̄)
Γm (ṽ)

× 2m(v̂+k)/2 (60)

The proper posterior reads

PΦ (Φ,Σe | Y, θ) = (2π)
−mk/2 × |Σe|−k/2 × exp

∙
−1
2
tr
³¡
Φ− Φ̄

¢0
H̄
¡
Φ− Φ̄

¢
Σ−1e

´¸
. . .

×
¯̄
S̄
¯̄v̄/2 ¯̄

H̄
¯̄m/2 × |Σe|−(v̂+T

∗+m+1)/2

2mv̄/2 × πm(m−1)/4Γm (v̄)
× exp

∙
−1
2
tr
¡
S̄Σ−1e

¢¸
(61)

or equivalently

p (Φ | Σe;Y,X) = N
¡
Φ̄,Σe ⊗ H̄−1

¢
(62)

p (Σe | Y,X) = IW
¡
S̄, v̄

¢
(63)

where the posterior estimates are as follows

• H̄ = X 0X + T̃Σx,x

• Φ̄ = H̄−1
³
X 0Y + T̃Σx,y

´
• Q = Φ̂0ĤΦ̂+ Φ̃0H̃Φ̃− Φ̄0H̄Φ̄

• S̄ = Ŝ + S̃ +Q

• Σ̄e =
S̄

v̄

11.5 Metropolis-Hasting Algorithm

We have obtained the posterior distribution of the VAR coefficients given the
structural parameters

P (Φ,Σ, θ | Y ) = PΦ (Φ,Σ | Y, θ)× Pθ (θ | Y ) (64)

. We also need to derive the posterior distribution with respect to θ. We use
the fact that

Pθ (θ | Y ) ∝ Kθ (θ | Y ) = PY (Y | θ)× π2 (θ) (65)

16where

H̃ = X̃0X̃

v̄ = T + T̃ − k
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where PY (Y | θ) has been computed above and π2 (θ) is a set of independent
prior distributions over each element of the vector of parameters θ; Kθ (θ | Y )
is the kernel of the posterior. By combining the likelihood and the prior we
don’t have a closed form solution. We thus need to simulate draws out of the
posterior distribution which is unknown. We follow Schorfheide (2000) and DS
and we implement a Gaussian random walk Metropolis-Hasting algorithm to
generate from Pθ (θ | Y ). We set as a scale factor the inverse of the Hessian
matrix, ΣH (θ) , with respect to Kθ (θ | Y ) evaluated at the mode, θ∗. For each
candidate draw, θ̃,

θ̃ = θs−1 + (ΣH (θ
∗))
−1/2

N (0, I) , (66)

we construct an acceptance probability threshold

α
³
θ̃, θs−1

´
= min

⎛⎝1, Kθ

³
θ̃ | Y

´
Kθ (θs−1 | Y )

⎞⎠ . (67)

If α
³
θ̃, θs−1

´
is higher than a certain probability (varying for each draw) we

accept the draw as coming from the posterior distribution Pθ (θ | Y ) and update
the Markov chain θs = θ̃, otherwise we discard θ̃ and draw another candidate
from (66).
In doing so and by controlling for convergence of the chain, we are able to

draw from the posterior distribution of θ. Given the full set of draws, we can
thus make inference on any function of the parameters.

11.6 Gelfand-Dey Method for P (Y )

We compute the marginal data density which consists of integrating out pa-
rameters from the posterior distribution to evaluate the set of models: they
basically differ from each other from the weight implied by the parameter λ.
However, in this case the functional form of the posterior, Pθ (θ | Y ), is not
known and therefore we have to rely on simulation methods. To compute P (Y )
we use the Gelfand and Dey (1994) method with the correction suggested by
Geweke (1999) to avoid problems in the tails of P (Y ) which, given the way it
is computed, could be not finite.
Once we have a measure of the marginal data density for each model which,

in our setup, depends on the choice of λ, we can then compare different models.
The idea of comparing different models based on λ clarifies the contribution of
the information from the DSGE model in shaping inference. If the maximal of
P (Y ) is attained for values of λ close to zero, the DSGE model is not strongly
supported by the data.
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