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Abstract 

 
We conduct a detailed simulation study of the forecasting performance of 
diffusion index-based methods in short samples with structural change.  We 
consider several data generation processes, to mimic different types of 
structural change, and compare the relative forecasting performance of factor 
models and more traditional time series methods.  We find that changes in the 
loading structure of the factors into the variables of interest are extremely 
important in determining the performance of factor models.  We complement 
the analysis with an empirical evaluation of forecasts for the key 
macroeconomic variables of the Euro area and Slovenia, for which relatively 
short samples are officially available and structural changes are likely.  The 
results are coherent with the findings of the simulation exercise, and confirm 
the relatively good performance of factor-based forecasts also in short samples 
with structural change. 
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1. Introduction 

Diffusion indexes extracted from dynamic factor models have been applied successfully in a 

number of papers to forecast macroeconomic variables.  These include, among others, Stock 

and Watson (1999, 2002a, 2002b) for the US, Marcellino, Stock and Watson (2003) for the 

eleven countries originally in the Euro area, Artis, Banerjee and Marcellino (2005) for the 

UK, Schumacher (2006) for Germany, Bruneau, de Bandt, Flageollet and Michaux (2006) for 

France, and den Reijer (2006) for The Netherlands.  The primary justification for the use of 

factor models in large datasets (where the number of variables N may exceed the sample size 

T) is their usefulness as a particularly efficient means of extracting information from many 

time series.  This methodology also permits the incorporation of data at different vintages, 

frequencies, and time spans, thereby providing a clearly specified and statistically rigorous 

but economical framework for the use of large datasets in econometric analyses.  

An interesting application of the dynamic factor model in a short sample context has 

been for forecasting the key macroeconomic indicators, e.g., GDP growth, inflation and 

interest rates, of the ten new members of the European Union,.  Due to the period of 

transition, only short spans of time series are available for each of these countries, and 

parameter changes are likely  However, despite these constraints, a large number of 

macroeconomic series of potential use in forecasting (for a given time span) are available for 

each country, and diffusion index-based forecasts can therefore be constructed.  Banerjee, 

Marcellino and Masten (2006), using quarterly observations for the sample 1994:1-2002:2, 

show how diffusion index forecasts for these countries are often better than forecasts obtained 

from simple time series models, which is the alternative set of forecasting tools in this short-T 

context because of their parsimonious specification. 1   

The Euro area represents another interesting example of a short-T large-N forecasting 

context.  This currency area has been in existence for only a short period of time, so that 

policymakers need to rely on limited spans of data and viable forecasting tools to conduct 

forward-looking policy. Furthermore, use of data from the pre-euro period has to account for 

the fact that the inauguration of the Euro area in 1999 and the introduction of the single 

currency in 2001 marked major shifts in policy for all the constituent countries. As shown by 

                                                 
1 The time spans in the papers cited in the first paragraph are generally considerably longer. For example, the 
dataset in Stock and Watson (2002b) consists of  monthly observations for the period  1959:1 to 1998:12, while 
Marcellino et al. (2003) use monthly and quarterly observations for the period 1982-1997.  The monthly dataset 
in Artis  et al. runs from 1972:1 to 1998:12. 
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Banerjee, Marcellino and Masten (2005), reliable leading indicators are difficult to find in 

such circumstances. However, diffusion index based forecasts still perform reasonably well.2 

In this paper we examine in closer detail the reasons underlying the good performance 

of factor forecasts in the short sample context.  We start by discussing briefly the key aspects 

of the competing modelling and forecasting approaches in Section 2.  Section 3 presents the 

results of an extensive Monte Carlo analysis of the performance of factor-based forecasts in 

short samples, possibly subject to parameter changes.  Section 4 illustrates the issues 

empirically, by comparing alternative forecasting methods for the key macroeconomic 

variables of the Euro area and Slovenia. The latter is a newly acceded country to the European 

Union, the first among the new member states to adopt the euro (in 2007).  Transitional 

changes in this country include not only the switch from a planned to a free-market economy 

but also the changes involved in adopting the euro. Therefore, in light of the discussion above, 

forecasting the developments in Slovenian macroeconomic variables represents a stern test of 

the efficacy of the various methods considered.  Section 5 summarizes and concludes the 

paper. 

 

2. Methodology 

This section, which is based on Banerjee et al. (2005, 2006), reviews the competing 

forecasting approaches we consider both in the Monte Carlo analysis in Section 3 below and, 

more particularly, in the empirical analysis discussed in Section 4.  We also state the criteria 

used to evaluate the relative merits of the alternative forecasts, see e.g. Marcellino et al. 

(2003) or Artis et al. (2005) for additional details. 

All forecasting models are specified and estimated as a linear projection of an h-step-

ahead variable, h
t hy + , onto t-dated predictors, which at a minimum include lagged transformed 

values (denoted yt) of xt, the series of interest.  More precisely, the forecasting models all have 

the form,  

( ) ( ) 'h h
t h t t t hy L y L Zμ α β ε+ += + + +  (1) 

where ( )Lα  is a scalar lag polynomial, ( )Lβ  is a vector lag polynomial, μ is a constant, and 

Zt is a vector of predictor variables.  Marcellino, Stock and Watson (2006) present a 

                                                 
2 Two other examples of the usefulness of factor models with fewer than 50 time-series observations are 
Matheson (2005) for the case of New Zealand and Breitung and Eickmeier (2005) who provide an example of 
the use of dynamic factor models in macroeconomic analysis for the case of the Euro area using fewer than 45 
quarterly observations of macroeconomic data. 



 4

comparison of this h-step projection method with the more standard approach of specifying a 

model for yt and then solving it forward to obtain a forecast for yt+h.  However, due to the 

short sample available, both in the Monte Carlo evaluation of Section 3 and in the empirical 

analysis of Section 4, we focus on one-step ahead forecasts, so that h = 1 in (1). In the 

empirical analysis monthly data is used for the case of the Euro area, while the frequency is 

quarterly for Slovenia,  

The construction of h
t hy + depends on whether the series is modelled as I(0), I(1) or I(2), 

where series integrated of order d, denoted I(d), are those for which the d-th difference ( dΔ ) is 

stationary.  Indicating by x the series of interest (usually in logarithms), in the I(0) case, 

ht
h

ht xy ++ =  and t ty x= .  In the I(1) case, ∑ Δ= +
++ s

ht
t

h
ht xy 1  so that tht

h
ht xxy −= ++ , while 

1−−= ttt xxy .  In words, the forecasts are for the growth in the series x between time period t 

and t+h.  Finally, in the I(2) case, ts
ht

t
h

ht xhxy Δ−Δ= ∑ +
++ 1  or ttht

h
ht xhxxy Δ−−= ++ , i.e., the 

difference of x between time periods t and t+h and h times its growth between periods t-1 and 

t, and tt xy 2Δ= .  This is a convenient formulation because, given that tx  and its lags are 

known when forecasting, the unknown component of h
hty +  conditional on the available 

information is equal to htx +  independently of the choice of the order of integration.  This 

makes the mean square forecast error (MSE) from models for second-differenced variables 

directly comparable with, for example, that from models for first differences only.  The MSE 

is computed as the average of the sum of squares of all the comparisons between the actual 

value of the variable and its forecast (under any of the methods given in Section 2.1 below). 

 

2.1 Forecasting models 

The various forecasting models we compare differ in their choice of Zt in equation (1).  Let us 

list the forecasting models and briefly discuss their main characteristics. 

Autoregressive forecast (ar_bic).  Our benchmark forecast is a univariate 

autoregressive (AR) forecast based on (1) excluding Zt. In common with the literature, we 

choose the lag length using an information criterion, the BIC, starting with a maximum of 6 

lags. While this model is very simple, the resulting forecasts are typically rather accurate, see 

e.g. Marcellino (2006). 

Autoregressive forecast with second differencing (ar_bic_i2).  Clements and Hendry 

(1999) showed that second differencing the variable of interest improves the forecasting 

performance of autoregressive models in the presence of structural breaks.  This is an 
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interesting option to be considered in the case of most of the new EU member states, which 

have undergone several economic and institutional changes even after the fairly rapid 

transition to a market economy.  This model corresponds to (1), excluding Zt and treating the 

variable of interest as I(2). 

Autoregressive forecast with intercept correction (ar_bic_ic).  An alternative remedy 

in the presence of structural breaks over the forecasting period is to put the forecast back on 

track by adding past forecast errors to the forecast, e.g. Clements and Hendry (1999) and Artis 

and Marcellino (2001).  They showed the usefulness of the simple addition of the h-step 

ahead forecast error. Hence, the forecast is given by h
t

h
hty ε++ˆ , where h

hty +ˆ  is the ar_bic 

forecast and h
tε  is the forecast error made when forecasting yt in period t-h.  Since both 

second differencing and intercept correction increase the MSE when not needed, by adding a 

moving average component to the forecast error, they are not costless and should only be used 

if needed. However, the empirical applications we consider are such that macroeconomic 

series are very likely to have breaks due to policy changes, implying that second differencing 

and intercept correction are options well worth considering.3 

VAR forecasts (varf). Vector autoregressive (VAR) forecasts are constructed using 

equation (1) with chosen regressors Zt.  In particular, in the empirical analysis in Section 4, Zt 

includes lags of GDP growth, inflation, and a short-term interest rate.  Intercept corrected 

versions of the forecasts are also computed (varf_ic). 

Factor-based forecasts.  These forecasts are based on setting Zt in (1) to be the 

estimated factors from a dynamic factor model, the so-called diffusion indexes, along the 

lines of Stock and Watson (2002b), to which we refer for addition details.  While other 

methods are available for factor extraction, see e.g. Forni, Lippi, Hallin and Reichlin (2000, 

2005) and Kapetanios and Marcellino (2006), or for forecasting in the presence of many 

predictors, see e.g. the review in Stock and Watson (2006), Stock and Watson’s (2002b) 

approach performed well in a variety of empirical forecasting applications. 

Under some technical assumptions (restrictions on moments and stationarity 

conditions), the column space spanned by the dynamic factors ft can be estimated consistently 

by the principal components of the T×T covariance matrix of the X's. The factors can be 

considered as an exhaustive summary of the information contained in a large dataset. 

                                                 
3 In the case of the Euro area, one main candidate for  a break to consider is the introduction of the Euro in 1999. 
Slovenia, on the other hand, entered the ERM II system in 2004. 
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It is also worth mentioning that the principal-component-based factor estimate remains 

consistent even in the presence of limited time variation in the parameters of the underlying 

factor model. Such a property can be very convenient for analyzing the economies of the new 

European member states, which are under constant evolution, or more generally time series 

possibly subject to changes of regime. However, the effects of time variation in short samples 

also deserve careful analysis, which is undertaken in Section 3. 

In the empirical applications, we primarily consider three different factor-based 

forecasts. First, in addition to the current and lagged yt up to 4 factors and 3 lags of each of 

these factors are included in the model (fdiarlag_bic).4 Second, up to 12 factors are included, 

but not their lags (fdiar_bic). Third, up to 12 factors appear as regressors in (1), but no current 

or lagged yt is included (fdi_bic). For each of these three classes of factor-based forecasts the 

model selection is based on BIC.  The factors can be extracted from the unbalanced panel of 

available time series (prefix fac), or from the balanced panel (prefix fbp) and we consider 

them both. The former contains more variables than the latter, and therefore more 

information. The drawback is that missing observations have to be estimated in a first stage, 

which could introduce noise in the factor estimation (see Angelini, Henry and Marcellino, 

2006).  

In order to evaluate the forecasting role of each factor, for the unbalanced panel, we 

also consider forecasts using a fixed number of factors, from 1 to 6 (fdiar_01 to fdiar_06 and 

fdi_01 to fdi_06). 

Intercept-corrected versions of all the diffusion index based forecasts are also 

considered.  

Finally, we construct a pooled factor forecast by taking a simple average of all the 

factor-based forecasts. Pooling is done separately over factor models without intercept 

correction (denoted f_pooled) and with intercept corrections (denoted f_ic_pooled). The 

pooled factor forecasts have particular informative value. In fact, since we consider many 

different versions of factor models, it should not be surprising to find at least one model that 

forecasts better than simple linear models. The average performance of factor models in this 

respect tells us whether factor models are in general a better forecasting device or if their 

relative good performance is limited only to some special sub-models.  

 

                                                 
4 The notation “fdi”(forecast model_diffusion_index) derives from the work of Stock and Watson (1998), 
Marcellino et al. (2003) and Artis et al. (2005) inter alia and generally denotes a forecast model based on 
diffusion indexes (estimated factors). 
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2.2 Forecast Comparison 

The forecast comparison is conducted in a simulated out-of-sample framework where all 

statistical calculations are done using a fully recursive methodology.  In the empirical 

examples, the models are first estimated on an initial data span, for example from 1994:1 to 

2000:2, and 1-step-ahead forecasts are then computed.  The estimation sample is then 

augmented by one quarter and the corresponding 1-step-ahead forecast is computed. Every 

quarter, (i.e. for every augmentation of the sample) all model estimation, standardization of 

the data, calculation of the estimated factors, etc., is repeated until the end of the data span.   

The forecasting performance of the various methods described is examined by 

comparing their simulated out-of-sample MSE relative to the benchmark autoregressive (AR) 

forecast (ar_bic). West (1996) standard errors are computed around the relative MSE in the 

empirical analysis of Section 4.5 

 

3. Monte Carlo Experiments 

As noted previously, almost all existing examples of applications of factor forecast methods 

have relied on datasets where the time dimension is very (or at least fairly) long.  By contrast, 

we are interested here in cases where T is small, since in many interesting macroeconomic 

panels (such as those for the transition countries or the Euro area after its creation) T rarely 

exceeds 30 observations.   

 Though in theory the time dimension is not a problem, as long as the longitudinal 

dimension of the dataset to be used for factor extraction is large enough, in practice the 

feasibility and relevance of factor forecasts can be questioned for such a short sample.  

Therefore, in this section we compare the performance of AR and factor forecasts by means 

of simulation experiments, using datasets with a short time span. 

 Using artificially generated data, our attempt is to understand the sensitivity of the 

performance of factor- and non-factor methods to sample size T and longitudinal dimension 

N. We also explore the sensitivity of such methods to various other features likely to 

characterize the data – such as the degree of stationarity of the factors, the amount of 

autocorrelation and the presence of structural change.   The latter set of experiments has a 

great deal of relevance for practical applications, but the impact of these features of the 

processes generating the data on the performance of factor forecasts has not been, to the best 

of our knowledge, studied in any detail in the literature. 

                                                 
5West (1996) standard errors are first computed for the MSE of the benchmark model and of the competing 
model. The standard errors of the ratio of the MSEs are then computed using the delta method. 
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 In the first subsection, we describe the design of the experiments. In the second 

subsection, we discuss the results. In the third subsection, we provide an explanation for the 

good performance of AR forecasts in some cases. In the final subsection, we summarize the 

main findings. 

 

3.1. Design of experiments 

The Monte Carlo design is taken from Stock and Watson (1998) and adapted for the purposes 

of this paper.  The data are generated by a dynamic factor model that allows for 

autoregressive factors, auto and cross-correlation in idiosyncratic errors and time-varying 

parameters.  A balanced panel of data is generated as follows: 

 

  ittitit efx += 'λ  (2) 

  ititit Tc ζλλ )/(1 += −  (3) 

  rttttt IAufAf α=+= − ,1  (4) 

  ( ) ( ) ( ) ααααηαα =−+−++= − 0011 ,)1(11 dTIdTd Bttt  (5) 

  ( )
⎩
⎨
⎧

>∀
≤∀

=
B

B
B Tt

Tt
TI

,1
,0

                 
⎩
⎨
⎧

=
α

α
varyingtime,1

breaking,0
d  (5a) 

  ( ) ( )2
1, 1,1 1it it i t i taL e b v bv bv+ −− = + + +  (6) 

  1't t ty fι ε−= +  (7) 

 

where i = 1,…,N and t = 1,…,T.  In equation (2), the common factors are indicated with ft, 

their associated loadings with λit, and the number of factors, r, varies from 1 to 5.  The 

variables ite  in (2), which represents the idiosyncratic component for itx , vit in (6), ηt in 

(5) and tε  in (7) are i.i.d. N(0,1), while itζ  in (3) and ut in (4) are i.i.d. N(0,Ir). The error terms 

in ut are independent of eit, vit, ηt, tε  and itζ . Each variable xit is standardized prior to 

estimation. The scalar variable to be forecast is indicated by yt, and its expected value 

coincides with the sum of the factors in the previous period, namely, ι  in (7) is an r×1 vector 

of 1’s.  

 The parameter α t in (4) measures the persistence of the factor series, for which we 

consider three cases in order to analyze the impact of structural change. The first is the case of 

stable and fixed α  (d = 0 and TB = 0). The second is that of continuously time-varying 
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persistence, parameterized by setting d to 1. The starting values for tα , given by 0α , 

successively take on the values { }7.0,5.0,3.0=α . These are also the three values considered 

for α  when it is fixed. A persistence parameter of 0.7 is taken as the maximum, which might 

seem at first sight too small to replicate persistence of factors sometimes found in the data. 

However, this restriction prevents, for all our choices of T, the time-varying persistence from 

persistently drifting above unity which happens when considering higher initial values for 

alpha. Note also that time-varying persistence of the type considered here can generate factors 

with very high persistence. The third is the case of a discrete break in persistence of factors. 

We let d = 0 and TB = T/2, i.e. the break occurs in the middle of the sample. 1α  takes on two 

values: 0.4 when 0α  is set to 0.3, and -0.4 when 0α  is set to 0.7. In other words, we model 

two types of discrete breaks in the persistence of factors: in the first persistence increases 

from 0.3 to 0.7, while in the second it decreases from 0.7 to 0.3. In all three cases the factors 

are standardized with their (estimated) standard deviation to achieve unitary variance, and 

their loadings are kept fixed (c = 0 in equation (3)).  

 Next, in order to evaluate the role of a change in the variance of the factors, we double 

the variance of factors, while keeping their persistence unchanged. This implies that a higher 

weight in generating the overall variability of the variables in the panel is attributed to the 

variability of factors relative to the variability of the idiosyncratic component in equation (2).  

 Structural change in the panel can also be due to time-varying factor loadings.  For these 

experiments, equation (3) becomes relevant.  The time-varying parameter (TVP) c is thus set 

to either 0 (no TVP) or 5 (TVP) depending on whether or not time variation is modelled or 

not. 6 

 We do not evaluate the consequences of changes of the factor parameters in the 

forecasting equation (7), even though this is an important practical source of forecast failure, 

since this case has been extensively studied in the literature, see e.g. Clements and Hendry 

(1999). 

 Finally, for the setting with correlated idiosyncratic errors, parameters a and b are set to 

0.5 and 1 respectively. In terms of cross-sectional correlation this implies ( ) 3/1,1, =± titi eeE , 

( ) 6/1,2, =± titi eeE  and zero otherwise. 

                                                 
6 Note that the variance of factor loadings depends on c/T. This implies asymptotically constant factor loadings, 
which is needed for consistent factor estimation. In our Monte Carlo simulations this implies that with increasing 
T  factor loadings change less than when T is small. The same holds also in the case where we consider similar 
time variation in the persistence of factors. 
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 Four different configurations for (T, N) are considered, namely (T = 30, N = 50), 

(T = 50, N = 50), (T = 50, N = 100) and (T = 150, N = 50), as being representative of 

relevant panel sizes in the empirical examples studied.  

 The first configuration, T = 30, N = 50, is the benchmark and is relevant for forecasting 

with quarterly data in many transition economies (including the new EU members) and the 

Euro area following the introduction of the euro. 

 The second, T = 50, N = 50, considers a slightly longer time series, which should give 

us an impression of how forecasting circumstances may change with the passage of time, i.e. 

as more time-series observations become available (but the parameters of the model remain 

constant). While this increment of 20 observations may be small in absolute value, it still 

represents a large relative increase in the length of the panel.  

 The third configuration, T = 50, N = 100, considers the scenario of a time series with 

the T dimension corresponding to those above but the larger N allows for the evaluation of the 

relative merits of considering more variables in factor extraction. Such a scenario is highly 

relevant both for new EU members as they adopt EU standards in their data collection 

practices and also for the Euro area where more and more aggregate series become gradually 

available. While a larger longitudinal dimension improves the precision of the factor estimates 

when the additional variables are driven by the same factors, it can create serious problems 

when the added variables are driven by different factors, in particular if the latter have low 

correlation with the target variable in the forecasting exercise. For this reason Boivin and Ng 

(2006) have suggested pre-selecting the variables to be used for factor estimation, based on 

their correlation with the target variable. While this is not an issue in our Monte Carlo 

experiment, it will become relevant in the ensuing empirical applications. 

 The last configuration, T = 150, N = 50, particularly suits the empirical application 

detailed below of forecasting Euro area variables using monthly data also from the period 

before the monetary union was actually formed (i.e. from 1991 onwards).  It also allows us to 

consider the effects of a major increase in the temporal dimension, from 30 to 150, keeping 

the number of variables fixed. 

 The factors are estimated by principal components as described previously. We focus on 

the comparison of factor forecasts with forecasts made by using AR models.  

 Three types of simple AR forecasts are produced: with fixed lags of 1 and 3 and with lag 

length chosen by BIC. We have included the parsimonious fixed lag length AR specification 

in the comparison since information criteria have an asymptotic justification and may not 
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work well in short samples, while parsimony can be a plus in this context since it reduces 

estimation uncertainty. 

 The factor models used in the comparison are four in number. First, we generate 

forecasts using the known coefficients and factors from the data generation process (fdi_dgp).  

Second, we consider using the true factors but estimated coefficients to generate forecasts (fdi 

known factors). Third, we use the estimated factors and the estimated coefficients (fdi fully 

estimated), assuming that the true number of factors is known. Finally, we generate forecasts 

from a regression of y on own lags and on current and lagged values of estimated factors 

(fdiarlag_bic). The maximum lag length is 3 and up to r factors are included. Model selection 

is by BIC. 7 

 The mean square error (MSE) of each model is computed relative to the AR(1) model. 

The numbers can of course easily be re-standardized in order to use the ar_bic model as the 

benchmark.   

 Table 1 summarizes the values of the key parameters of the data-generating process in 

equations (2) – (7) used in the different Monte Carlo experiments. All experiments are 

repeated for the number of factors, r, varying from 1 to 5. The number of Monte Carlo 

replications is 20000. 

 

Table 1: Parameterization of the models in the Monte Carlo 

DGP setting a b c d TB α0 α1 
Basic DGP 0 0 0 0 0 0.3, 0.5, 0.7 0 
Time-varying alpha 0 0 0 1 0 0.3, 0.5, 0.7 0 

0.3/0.7 0 0 0 0 T/2 0.3 0.4 Discrete break 
in alpha 0.7/0.3 0 0 0 0 T/2 0.7 -0.4 
Time-varying lambda 0 0 5 0 0 0.3, 0.5, 0.7 0 
Correlated errors 0.5 1 0 0 0 0.3, 0.5, 0.7 0 
Double variance As with Basic DGP, but double variance of factors 

 

 

3.2 Results 

Figures 1 to 5 summarize the results of the Monte Carlo simulations, and the titles of the 

figures reflect the classification of the experiments in Table 1. The key distinctions, among 

                                                 
7 As we note below, intercept correction and double-differencing are generally not useful forecasting methods 
for our empirical examples, except for the case of Slovenian core inflation which may be due to a clear break in 
the inflation target that occurred after 2002, reflecting disinflation to meet the Maastricht criteria. Pooling of 
forecasts also does not appear to be an effective device for our datasets.  These methods are thus excluded from 
the comparisons in our simulation experiments.   
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the DGPs considered, are made according to the number of factors (from 1 to 5) and their 

persistence. All the results are for h = 1 (one-step ahead forecasts).8   

 Figure 1 presents the results for different values of N and T and the basic DGP, where 

d=a=b=c=TB=0 and { }7.0,5.0,3.0=α . As expected, the best forecasts are given by the 

empirically implausible model fdi_dgp where every feature of the data generation process is 

known. Comparing the forecasts generated by fdi known factors and fdi fully estimated with 

fdi_dgp, we find that the effects of estimation uncertainty can be quite marked, especially 

when T = 30, the number of factors increases towards 4 or 5 and the factor loadings need to 

be estimated.  Notice, in particular, that while a larger number of factors improves the 

performance of  fdi_dgp, it markedly worsens that of  fdi fully estimated. 9 

 A finding of note is the bad performance of BIC-based factor forecasts, in particular 

when the number of factors is large, while BIC-based AR forecasts are typically better than 

AR(3) forecasts but comparable to the AR(1) ones. These results occur since BIC penalizes 

extensive parameterizations and in such short samples it ends up selecting models with too 

few factors or with just one lag of the dependent variable. 

 An increase of the temporal dimension to 50 already improves the performance of the 

BIC-based factor forecasts, and more generally of the factor forecasts with estimated 

parameters. While the factors are already fairly accurately estimated with 30 temporal 

observations, the precision of the estimators of the parameters of the forecasting equation 

increases substantially.  

 Further increases in the sample size (either increasing the N dimension from 50 to 100 

or the T dimension from 50 to 150) additionally improve the relative performance of factor 

models, which is expected because the DGP has a factor structure.  With a larger value for N 

or T, the persistence parameter α  no longer has an important effect on the performance of 

factor models. It is also worth adding that the forecasting performance of AR models relative 

to the benchmark appears largely unaffected by increases in T and N, although since factor 

models show improved performance with increases in size of the panel, AR models lose 

efficiency relative to factor models as the size of the panel increases. 

 Figures 2 and 3 repeat the comparison exercise by allowing for structural change.  In 

particular, Figure 2 deals with the cases where either d = 1 (continuously time-varying α ) or 

                                                 
8 We have also computed results for a longer forecasting horizon, h = 4, and for several other configurations of T 
and N.   These are available from us upon request. 
9 This occurs especially when the persistence of factors approaches unity. In particular, with a persistence 
parameter of 0.9, it can happen that the relative MSE of the factor model exceeds one when the number of 
factors considered in the DGP is large. These results are available upon request. 
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there are discrete breaks in the persistence parameter half way through the sample.  The 

starting values 0α for the former case are given by 0.3, 0.5 and 0.7 respectively. Figure 3 

reports the results in the presence of changes in the factor loadings denoted by λ.  

 Figure 2 again shows the dramatic underperformance of factor models when T = 30 and 

the DGP is generated with high number of factors and BIC selection is used in estimation, 

although their performance again improves once T increases to 50 or more.  The comparisons 

across the methods of generating forecasts are not much affected by allowing for structural 

change in α , a finding which is coherent with our previous observation that the persistence 

parameter does not significantly affect the relative performance of factor vs. non-factor 

methods.   

 As reported in Figure 3, the consequences of continuously time-varying factor loadings 

are rather severe when T = 30, the most empirically relevant size of T, from the point of view 

of the empirical examples in our paper,. Factor forecasts based on the BIC criterion can 

perform worse than the AR(1) benchmark when r = 4, 5.  This deterioration is more serious 

when compared to those arising from previous cases where the loadings do not change. 

However, increasing  T to 50 helps greatly.  

 The results for a higher variance of the factors are reported in Figure 4. The 

consequences are more substantial: with more of the variance in the dataset explained by the 

factors, factor methods are strongly dominant even with T = 30, although there are some 

deteriorations evident as the number of factors increases.  The relative dominance of factors 

increases with larger values of T and/or N.  Of course, a reduction in the variance of the 

factors has the opposite effect, with BIC-based forecasts often outperformed by the AR 

alternatives. This can be empirically relevant when forecasting variables with a substantial 

idiosyncratic component. When the variance of the factors changes in the middle of the 

sample, intermediate results are obtained with respect to those in Figures 1 and 4. 

 Finally, Figure 5 reports the results for correlated errors, over time and variables, which 

largely match the results reported for the basic DGP in Figure 1. 

 

3.3 Explaining the good performance of AR forecasts 

To provide some intuition for the good performance of the AR forecasts in some of the cases 

described above, in particular when the number of factors is large and the temporal dimension 

is small, let us assume that the-factor model generating the variable of interest is 

  11 ++ += ttt fy εγ  (8) 
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where tε are i.i.d ),0( 2
εσ , and each factor follows an AR(1) model with the same persistence 

parameter (as in the Monte Carlo DGP): 

  ititit uff += −1α  (9) 

where each itu is i.i.d ),0( 2
iuσ  and the errors ε and u are assumed to be independent for all t  

and s .  If α  and γ  are known and tf  is observable, then the one-step ahead forecast error 

(conditional on the past history of ty  observable at time t) is easily seen to be given by 2
εσ .   

  The model in (8)-(9) implies that ty  can be written as an ARMA (1,1) process 

  tttt zzyy θα ++= ++ 11  

where ),( 11 ttt ugz ++ = ε .  The forecast error variance is now given by )( 2
1

2
+= tz zEσ  and it may 

be shown that 22
εσσ >z , so that the ARMA forecast is less efficient than the factor forecast 

when the parameters and the factors are known. 

  Yet, in practice both the parameters of the model and the factor are unknown and must 

be estimated – the latter by extraction from a large dataset and the former by a regression of 

1+ty  on the estimated factor.  Bai and Ng (2006) show that, even in more general models, 

estimation of the parameters adds )( 1−TO uncertainty to the forecast while estimation of the 

factor adds )( 1−NO uncertainty.  In other words, the factor-based forecast error variance for 

the case where both the factor and the parameters of the model have to be estimated is given 

by )()( 112 −− ++ NOTOεσ .  An additional term should be added to this quantity when the 

specification of the forecasting model is not known and has to be selected, e.g., by BIC. The 

factor-based error variance can now be larger than its counterpart for the estimated ARMA 

forecast, even if the ARMA model is approximated by a finite order AR.  These effects are 

important at smaller sample sizes but are muted by an increase in either T or N, so that the 

performance of factor models improves with such an increase, as borne out by the results. 

 

3.4 Summary 

In summary, the following points regarding the effects for forecasting of instability of the 

parameters of the factor model may be noted:  

(a) continuous changes in factor persistence do not seem to matter, even in short samples; 

(b) discrete changes do matter but the impact on relative performance of factor methods 

leads either to improvement or deterioration, depending upon the value of the 
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(starting) persistence parameter, the direction of the change and the magnitude of the T 

and N dimensions; 

(c) time varying factor loadings are important except when T and N are large – i.e. for the 

size of our panels, estimated below, time variation of the loadings are likely to be very 

important; 

(d) taking all the results of the simulation exercise into account, the ranking of the impact 

of the different kinds of stability is (c) to (b) to (a);  

(e) factor models outperform AR models in the majority of cases, even in short samples 

subject to changes. 

Two additional findings that may be highly relevant for empirical analyses are: 

(f) the number of factors in the underlying data generating process is quite important 

when the sample is short and model selection is BIC-based, since the relative forecast 

performance deteriorates when the number of factors is large;  

(g) the variance of the idiosyncratic component of the target variable is important; and the 

forecasting performance of factor models is reduced when the former is large.  

 

 

4. Two empirical examples 

In this section we present the results of two empirical exercises to provide practical content to 

our simulation findings, and to use our results so far to judge the outcome of forecasting with 

factor models in small T panels.   

In the first subsection, we describe the datasets for the Euro area and for Slovenia.  In 

the second subsection we present the results of the forecast comparison exercise for the Euro 

area, and in the third subsection for Slovenia. In the final subsection, we summarize the main 

findings. 

 

4.1. The data 

The dataset for the Euro area contains 58 monthly series, spanning over the period 1991:2 – 

2005:10 (N=58, T=177) and is collected from OECD Main Economic Indicators and Eurostat. 

The dataset for Slovenia contains 95 quarterly series for the period 1994:1 – 2005:4 (N=95, 

T=48). For Slovenia the sources are the National Statistical Office and the Bank of Slovenia.  

The datasets broadly contain output variables (GDP components, industrial production 

and sales); labour market variables (employment, unemployment, wages); prices (consumer, 

producer); monetary aggregates; interest rates (different maturities, lending and deposit rates); 
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stock prices; exchange rates (effective and bilateral); imports, exports and net trade; survey 

data; and other miscellaneous series. A complete list of the variables is reported in the data 

appendix. 

Following Marcellino et al. (2003), the data are pre-processed in three stages before 

being modelled with a factor representation. First, we pass all the series through a seasonal 

adjustment procedure as very few series are originally reported as seasonally adjusted. 

Seasonal adjustment is performed with the original X-11 ARIMA procedure. Second, the 

series are transformed to account for stochastic or deterministic trends, and logarithms are 

taken of all nonnegative series that are not already in rates or percentage units. We apply the 

same transformations to all variables of the same type. The main choice is whether prices and 

nominal variables are I(1) or I(2). The I(1) case is our baseline model and all the results 

reported below apply to this choice. Banerjee et al. (2005) have also recomputed all the 

results treating prices, wages, monetary aggregates and nominal exchange rates as I(2) 

variables, showing that there are no substantial changes in the ranking of the forecasts.  

Variables describing real economic activity are treated as I(1), whereas survey data are treated 

as I(0).10  All series were further standardized to have sample mean zero and unit sample 

variance. 

Finally, the transformed seasonally adjusted series are screened for large outliers 

(outliers exceeding six times the inter-quartile range).  Each outlying observation is recoded 

as missing data, and the EM algorithm is used to estimate the factor model for the resulting 

unbalanced panel. 

Among the available variables, we have chosen to report forecasting results for HICP 

inflation (energy excluded), manufacturing output growth and unemployment for the Euro 

area, and CPI inflation (all items), core inflation (energy and food prices excluded) and GDP 

growth for Slovenia. These are also the variables of central importance for policymakers. 

Note, however, that the generality of the approach would easily allow us to extend the 

analysis to other variables of interest. 

 

4.2. Forecasting Results for the Euro area 

Results without pre-selection of variables to compute factors 

We start with the results for the Euro area, wherein Table 2 provides information on the 

fraction of the variance of the panel explained by the factors.  For the Euro area for the whole 
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sample and without any pre-selection of variables, seven or eight factors are needed to explain 

50% of the variance of the sample.  

 Figure 6 shows the adjusted R2 for the three variables of interest, recursively computed 

for a sample that starts in 1991 and ends in 1997-2005. For HICP inflation, the adjusted R2 is 

approximately 40% for the first two factors, rising to 50% in some periods with four factors, 

but with no systematic gains evident from the use of more than four factors.  The 

corresponding panel in Figure 6 for manufacturing output growth shows that even the 

inclusion of many factors does not increase the adjusted R2 far above 30%, and the first two 

factors play a minor role For the unemployment rate the adjusted R2 is approximately 70% 

with the first two factors for the early samples, with insignificant roles for the other factors 

but it progressively decreases to about 40%. The latter feature provides additional evidence of 

instability. 

 In light of the empirical results reported so far and of the emphasis paid in the 

simulation exercise to the impact of structural instability in the data, it is natural to try and 

investigate further the existence of such instability in our Euro area dataset.  This is especially 

so, given that the introduction of the euro and the lead up to this introduction happens through 

the middle part of our dataset. 

 Figures 7 – 9 plot the estimated coefficients from the fac_fdiarlag_bic model for HICP 

inflation, manufacturing output growth and unemployment rate, respectively. The coefficients 

are estimated recursively, while model specification is based on the full sample. 

Concentrating on the recursive tracks of the coefficient estimates on the first two factors, we 

can observe some instability of the corresponding coefficients. Especially evident and similar 

across the three variables are the increases in the recursive coefficients of the second factor at 

the period of introduction of the euro in 1999.  

 The kind of instability detected is similar to the case corresponding to time-varying 

loadings )(λ  in the simulation experiments, even though here we have considered the y 

equation rather than the xit equations, in the notation of Section 3. That the main source of 

instability of the factor structure may be related to time-variation of factor loadings can be 

seen also from Figure 10 that presents recursive eigenvalues. The eigenvalues are normalized 

by their sum such that they effectively measure the contribution of each factor to overall 

                                                                                                                                                         
10 The unemployment rate was treated as I(0). The results are highly robust to treating it as I(1). These additional 
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variability of the panel. Instability of normalized eigenvalues can be thus interpreted as 

instability of contribution of corresponding factors to overall variation of variables and thus 

instability of factor loadings. What can be observed from upper panel of Figure 10 that reports 

the recursive eigenvalues for the Euro area is a distinct change in the second eigenvalue at the 

time of introduction of the Euro, which helps to explain the changes in the corresponding 

regression coefficient in the same period that we refer to above. Similar observations hold for 

the fourth eigenvalue. The second finding that emerges from Figure 10 is a significant degree 

of instability of virtually all recursive eigenvalues, which points to a significant degree of 

overall instability of factor loadings.  

In a similar context, changes in the persistence of the factors (α) are another possible source 

of instability. Figure 11 provides the recursive estimates of factor persistence for the first two 

factors, estimated as the coefficient in AR(1) models, which however show relatively stable 

behaviour. 

 From the simulation experiments, we know that time-varying loadings can lead to 

deteriorations in the forecasting performance of factor models. To assess whether this is the 

case in this empirical application, Table 3 reports the results of a forecast comparison 

exercise, not only for the full sample but also for two sub-samples given by 1991:2 – 1998:12 

and 1999:1 – 2005:10 respectively.  For the full sample, the forecasting period is given by 

1997:1 – 2005:10, for the first sub-sample 1997:1 – 1998:12 and for the second sub-sample 

2003:11 – 2005:10. This implies that time-series dimensions we use for producing the first 

forecast are T=59 for the full sample and the first sub-sample, and T=58 for the second sub-

sample (1999 – 2005).11 

 From Table 3, for forecasting HICP inflation no significant gains are evident from the 

use of factor models, when the factors are computed from the full dataset, and the comparison 

is made over the full sample.  While providing the best forecasts, the best factor model for 

HICP inflation is given, for example, by fac_fdiar_bic but with a relative mean squared error 

of only 0.99. For manufacturing output growth the results are somewhat better with 

fbp_fdiarlag fbp_fdiar_bic,_bic, fac_fdiar_02, fac_fdiar_03 and fac_fdiar_06 providing gains 

of 13%, while f_pooled is also beneficial and provides a gain of 11%.  These are again the 

                                                                                                                                                         
results are available from the authors upon request. 
11  Effective sample sizes are even smaller because of pre-sample values needed in all the models containing lags 
of forecast variable and factors. 
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best performing models.  For unemployment however the best performing factor model is 

21% worse than the benchmark.  Other non-factor models also do not outperform the simple 

autoregressive model. Figure 12 plots the actual series and the one-step ahead forecasts 

obtained from the best non-factor model and the best factor model for all three variables. 

 The full sample results are somewhat in contrast with the outcomes when only the 

sub-sample 1991:2-1998:12 is considered.  For HICP inflation, the best factor models are 

given by fac_fdiar_04 and fac_fdiar_05 that now outperform the benchmark by 45% and 

numerous other factor models in this class provide gains of between 40% to 35%.  The 

corresponding results for manufacturing output growth also show some improvement in the 

relative forecast performance of factor models relative to forecasting for the whole sample 

period. One of the best factor models remains fbp_fdiar_bic but now provides a 25% 

improvement over the benchmark. The pooled factor forecast is 14% better than the 

benchmark. Finally, for unemployment, the best factor model (fac_fdiar_01) now is 2% worse 

than the benchmark. The non-intercept corrected pooled forecast is 18% worse than the 

benchmark 

 Turning to the results for the second sub-sample, we note that the good performance of 

factor models for inflation for the previous sub-sample are now again absent, and the results 

are roughly on par with those for the full sample.  The best forecasting models are 

fac_fdiar_02 and fac_fdiar_05 but with gains of only 4%.  For manufacturing output growth, 

the best forecasting model is given by fac_fdiar_05 with a gain of 13% which matches the full 

sample results.  For unemployment, a set of factor models is best but with gains of only 1%. 

 Overall, these results are in line with the findings of the Monte Carlo experiments, 

since the forecasting performance of the factor models is worse over the full sample and the 

second sub-sample, which include the “breaking” periods of 1999 and 2002. Furthermore, 

again in line with the experiments, the AR benchmark is beaten by a factor model in most 

cases.  

 Finally, a small comment is due on the role of the devices to robustify the forecasts in 

the presence of structural change. From the results in Table 3, intercept corrections appear to 

work badly in all cases. Double differencing the variable of interest does not seem to produce 

any systematic gains. 
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Results with pre-selection of variables 

Instability is seen to be one reason for the performance of factor models discussed above.  

However, in light of the rather low correlation of the variables of interest with the factors, 

noted in Table 2 and Figure 6, it is also of interest to consider whether factor-based forecasts 

would benefit from pre-selection of the variables used to compute the factors.  We have 

therefore re-estimated the factors using a subset of the full dataset, which only includes those 

series selected by the Boivin and Ng (2005) criterion. They propose checking the correlation 

between the forecast variable and each of the variables in the panel. Only those variables 

whose correlation coefficient (with the forecast variable) exceeds a chosen threshold are then 

included in the subset of variables that are used for factor extraction. The forecast comparison 

based on the new set of factors is reported in Table 4, for the three variables and periods of 

interest. Details about chosen threshold values for correlation coefficients for different 

variables and resulting N dimensions are given in the notes to Tables 4 and 7. 

 The largest gains with respect to the figures reported in Table 3 are for manufacturing 

output growth, with the best factor models now producing gains of about 25 % with respect to 

the AR benchmark also when the forecast comparison is conducted over the whole sample. 

This is a reasonable finding, since the factors extracted from the full dataset had the lowest 

explanatory power for manufacturing output growth. For HICP inflation, the gains from pre-

selection are in the region of 10 percentage points over the full sample and the second sub-

sample.  The results for unemployment match those without pre-selection. 

 With respect to the effects of structural changes, the factor models still in general 

perform worse over the full sample and the second sub-sample. This is particularly evident in 

the case of inflation, the variable that was likely most and quickly affected by the introduction 

of the euro. 

 

4.3. Forecasting Results for Slovenia 

Table 5 provides information on the fraction of the variance of the panel explained by the 

factors.  For Slovenia for the whole sample and without any pre-selection of variables, four 

factors explain 50% of the variance of the sample, while seven or eight factors are needed to 

explain roughly 70% of the variance, which is better than the performance for the Euro area, 

partly reflecting the fact that the number of variables is larger in this case, 95 versus 57, and 
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the frequency is quarterly rather than monthly.  The lower panel of Figure 10 reveals that 

instability of factor loadings may be an important issue in forecasting also for Slovenia. In 

addition to short time series this increases the importance of having robust forecasting tools. 

 The MSE of the competing methods relative to the benchmark AR model, without 

Boivin-Ng pre-selection, are reported in Table 6, while Figure 13 graphs the actual values for 

each variable jointly with the best factor-based and non-factor-based forecast. Since the time 

span is insufficient to conduct any sub-sample analysis, we report only the results for the full 

sample given by 1994:1 – 2005:4.12  The results are encouraging for the use of factor models, 

especially for core inflation where gains of up to 68% (fac_ic_fdi_04 and fac_ic_fdiar_04) are 

evident.  The results are less impressive for CPI inflation, with a maximum gain of 18% 

(fbp_fdiar_bic and fbp_fdiarlag_bic). For GDP growth, while factor models do best, they 

provide gains of only up to 5%. 

 Table 7 provides the corresponding results with Boivin-Ng pre-selection.  The best 

performing factor model now provides gains of 37% for CPI inflation, up to 14% for GDP 

growth and 74% for core inflation.  Therefore, factor models with pre-selection are shown to 

be efficacious here for all the variables concerned, although the absence of any sub-sample 

analysis makes a comparison with the Euro area results difficult. However, the good 

performance in this context of double differencing and intercept corrections confirms the 

presence of instability in the sample under analysis. 

 

4.4 Summary 

In summary, the following points emerge from the forecast comparison exercise for our two 

empirical examples. 

 (a) For the Euro area, the detected instability is similar to the case corresponding to 

time-varying loadings )(λ  in the simulation experiments.  For forecasting HICP inflation no 

significant gains are evident from the use of factor models over the full sample.  For 

manufacturing output, factor models provide gains of up to 13%, relative to the benchmark, 

while for unemployment the benchmark outperforms all competing models. 

 (b) When only the sub-sample 1991:2-1998:12 is considered, to account for the 

instability noted in (a),  the best factor model for HICP inflation  outperforms the benchmark 



 22

by 45%. For manufacturing output growth, the best factor model provides a 25% 

improvement over the benchmark, while for unemployment, the benchmark remains the best 

performer. 

For the second sub-sample, 1999:1 – 2005:10, more subject to changes, the results are 

roughly on par with those for the full sample.  

(c) With variable pre-selection, according to Boivin and Ng (2006), the largest gains 

are for manufacturing growth, with the best factor models out-performing the benchmark by 

25%, both for the full sample and the sub-samples.   The performance of factor models in 

forecasting HICP inflation also improves for the full sample and the second sub-sample. 

(d) In the case of Slovenia, where instability is expected to be even more diffuse, the 

results for factor models are most impressive for core inflation, and variable pre-selection 

improves the forecasting performance of factor models for all three variables – namely core 

inflation, GDP growth  and CPI inflation. 

 

5. Conclusions 

In this paper we have evaluated the forecasting performance of diffusion index-based methods 

in short samples with structural change.  Typically, factor forecasts have been computed for 

large datasets of long time series of macroeconomic variables, but the case of short time series 

is perhaps even more interesting and relevant in practical applications. Similarly, the many and 

frequent changes in the economic environment suggest that it is important to assess the 

properties of factor forecasts in the presence of structural changes in the parameters of the 

underlying factor model. 

We have conducted a detailed simulation study, using data generation processes 

selected to mimic different types of structural change, and comparing the factor forecasts with 

more traditional time series methods.  The results indicate that the most significant effects on 

the forecasting performance of factor models come from time-variation in factor loadings, 

especially for the dimensions of panels likely to be encountered by us in practice.  However, in 

the majority of cases, factor forecasts are more accurate than standard time series forecasts, 

except when the sample size is very small and many factors are significant in the forecasting 

equation. 

                                                                                                                                                         
12 Overall , the sample contains 48 time series observations.  Because the forecasting period is 2001:3-2005:4 
(see Table 6), the first model that is used to produce the first forecast for 2001:3 uses only 26 observations 
(minus pre-sample values to account for lags in the forecasting models). 
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In order to provide empirical content to our simulation analysis, we have conducted a 

forecast evaluation exercise for the Euro area and Slovenia. In both cases large datasets of 

macroeconomic time series are available, but officially only for rather short samples, likely 

characterized by structural changes related to the introduction of the euro in the case of the 

Euro area, and to accession to the European Union for Slovenia.  A detailed recursive analysis 

showed clear evidence of instability, particularly for the Euro area forecasts and factors.  As 

expected, most changes occurred in the time period contiguous to the introduction of the euro.  

In general, the factor forecasts compared well with respect to the AR competitors, while other 

common tools to robustify the forecasts in the presence of structural changes, such as 

intercept corrections and double differences, were not so useful in our context. 

Overall, our results provide yet another warning on the deleterious effects of 

parameter changes for forecasting, but also a positive indication on the performance of factor 

forecasts with respect to standard time series methods in small panels with structural change. 
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Monte Carlo Results 

Figure 1: Basic DGP, h = 1 
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Note: The data are generated from the factor model (2) – (7), uncorrelated errors, without time-varying loadings. The depicted bar graphs for different number of factors 
(denoted f = 1,2,…5) are averages over 10, 000 Monte Carlo replications of the MSE for each model relative to an AR(1) benchmark, for h = 1 step-ahead forecasts.. 
The models under comparison are: 

fdi_dgp:  known model, known parameters, known factors 
fdi known factors: known model, unknown parameters, known factors 
fdi fully estimated: known model, unknown parameters, unknown factors 
fdiarlag_bic:  unknown model, parameters and factors; model selection by BIC   
AR_bic  AR model, BIC lag selection 

    AR(3):   AR model, 3 lags 
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Time-varying alpha 
 

Figure 2: Continuous time variation and discrete breaks in factors persistence, h = 1 
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Note:  See notes to  Figure 1. 
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Time-varying lambda 
 

Figure 3: Time variation in factor loadings, h = 1 
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Note:  See notes to Figure 1. 
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Double variance of factors 
 

Figure 4: Double variance of factors, h = 1 
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Note:  See notes to Figure 1.
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Cross and time correlation of idiosyncratic components 

 
Figure 5: Cross and time correlation of idiosyncratic components, h = 1 
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Note:  See notes to Figure 1.
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Empirical results 
 
 
 

Table 2: Fraction of variance of the panel explained by the factors for the Euro area, sample 1991 - 2005 
 

Factor Marginal Trace 
R-squared 

Cumulative 
Trace R-
squared 

1 0.14 0.14 
2 0.09 0.23 
3 0.07 0.30 
4 0.06 0.36 
5 0.05 0.41 
6 0.04 0.45 
7 0.04 0.49 
8 0.04 0.52 
9 0.03 0.56 
10 0.03 0.59 
11 0.03 0.61 
12 0.03 0.64 
N 57 
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Figure 6: Recursive adjusted R2, h = 1, Euro area 

 
 

Note: Each variable is regressed on factors lagged h-period. The regressions consecutively include 1 up to 6 factors, consecutively denoted by f1, f2,…, f6.. 
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Figure 7: Euro-area inflation: Recursive Coefficients from fac_fdiarlag_bic Model 
 

 
 

Note:  The model estimated is fdiarlag_bic over the whole sample (1991-2005), which resulted in BIC 
eliminating all endogenous lags and keeping the first two factors lagged once (plus a constant). The first 
coefficient is the constant, the panel labelled Coefficient 2 is for the coefficient estimate on the first factor and 
the panel labeled Coefficient 3 is the coefficient estimate on the second factor.   The dashed lines indicate the 
95% confidence intervals. 
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Figure 8: Euro-area  manufacturing output growth: Recursive Coefficients from fac_fdiarlag_bic Model 

 
 

Note:  The model estimated is fdiarlag_bic over the whole sample (1991-2005), which resulted in BIC 
retaining two endogenous lags and the first two factors lagged once (plus a constant). The first coefficient is 
for the constant, the panels labeled Coefficient 2 and Coefficient 3 refer to the first and the second factor 
respectively. Labels Coefficient 4 and Coefficient 5 are for the coefficients on two lags of industrial output. 
The dashed lines indicate the 95% confidence intervals. 
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Figure 9: Euro-area unemployment rate: Recursive Coefficients from fac_fdiarlag_bic Model 

 
 

Note: The model estimated is fdiarlag_bic over the whole sample (1991-2005), which resulted in BIC retaining three endogenous lags 
(plus a constant). The first two factors lagged once were nevertheless retained in the model for comparability. The first coefficient is 
for the constant, the panels labeled Coefficient 2 and Coefficient 3 refer to the first and the second factor respectively. Labels 
Coefficient 4 - 6 are for the coefficients on three lags of unemployment rate. The dashed lines indicate the 95% confidence intervals. 
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Figure 10: Recursive normalized eigenvalues 

 
 
 

Figure 11: Recursive persistence of factors, Euro area, sample 1991 – 2005 
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Note:  Dashed lines indicate confidence intervals.
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 Table 3: Effect of Euro introduction: comparison of forecast performance of factor models across sub-periods 
 

 Inflation Manufacturing output growth 

Forecast method 91 - 05 91 - 98 99 - 05 91 - 05 91 - 98 99 - 05 

ar_bic 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00) 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00)

ar_bic_i2 1.01 (0.05 ) 0.79 (0.14 ) 1.27 (0.33) 1.13 (0.09 ) 1.09 (0.16 ) 1.38 (0.35)

ar_bic_ic 2.10 (0.56 ) 1.85 (0.85 ) 2.54 (1.33) 2.28 (0.65 ) 2.58 (1.97 ) 2.61 (1.25)

varf 1.00 (0.06 ) 0.85 (0.12 ) 1.55 (0.65) 1.02 (0.07 ) 0.96 (0.09 ) 1.16 (0.17)

varfic 2.18 (0.60 ) 1.62 (0.58 ) 3.78 (3.37) 2.17 (0.58 ) 2.40 (1.72 ) 2.83 (1.96)

fac__fdiarlag_bic 0.99 (0.11 ) 0.63 (0.18 ) 1.01 (0.17) 0.89 (0.08 ) 0.83 (0.15 ) 1.00 (0.18)

fac__fdiar_bic 0.99 (0.11 ) 0.63 (0.18 ) 1.01 (0.17) 0.89 (0.08 ) 0.83 (0.15 ) 0.92 (0.17)

fbp__fdiarlag_bic 1.01 (0.12 ) 0.65 (0.17 ) 1.03 (0.18) 0.87 (0.08 ) 0.75 (0.15 ) 0.95 (0.17)

fbp__fdiar_bic 1.01 (0.12 ) 0.65 (0.17 ) 1.01 (0.17) 0.87 (0.08 ) 0.75 (0.15 ) 0.92 (0.17)

fac__fdiar_01 1.00 (0.06 ) 1.02 (0.14 ) 1.01 (0.17) 0.90 (0.08 ) 0.80 (0.16 ) 0.92 (0.17)

fac__fdiar_02 1.02 (0.10 ) 0.64 (0.18 ) 0.96 (0.18) 0.87 (0.08 ) 0.80 (0.13 ) 0.91 (0.17)

fac__fdiar_03 0.99 (0.09 ) 0.58 (0.18 ) 1.00 (0.19) 0.87 (0.08 ) 0.85 (0.11 ) 0.94 (0.18)

fac__fdiar_04 0.99 (0.12 ) 0.55 (0.17 ) 0.97 (0.18) 0.88 (0.08 ) 0.84 (0.12 ) 0.87 (0.19)

fac__fdiar_05 0.99 (0.12 ) 0.55 (0.17 ) 0.96 (0.17) 0.89 (0.07 ) 0.84 (0.11 ) 0.87 (0.18)

fac__fdiar_06 1.00 (0.12 ) 0.61 (0.18 ) 1.04 (0.17) 0.87 (0.07 ) 0.86 (0.11 ) 0.88 (0.19)

fac_ic_fdiarlag_bic 2.38 (0.86 ) 1.60 (0.62 ) 2.63 (1.32) 1.99 (0.42 ) 2.07 (1.06 ) 2.08 (0.78)

fac_ic_fdiar_bic 2.38 (0.86 ) 1.60 (0.62 ) 2.63 (1.32) 1.99 (0.42 ) 2.07 (1.06 ) 2.00 (0.70)

fbp_ic_fdiarlag_bic 2.46 (0.88 ) 1.59 (0.61 ) 2.71 (1.39) 1.93 (0.40 ) 1.88 (0.90 ) 1.93 (0.70)

fbp_ic_fdiar_bic 2.46 (0.88 ) 1.59 (0.61 ) 2.66 (1.34) 1.93 (0.40 ) 1.88 (0.90 ) 2.01 (0.71)

fac_ic_fdiar_01 2.20 (0.64 ) 2.05 (1.17 ) 2.63 (1.32) 2.02 (0.42 ) 1.99 (0.95 ) 2.00 (0.70)

fac_ic_fdiar_02 2.33 (0.80 ) 1.64 (0.66 ) 2.52 (1.25) 1.98 (0.43 ) 2.09 (1.09 ) 2.02 (0.72)

fac_ic_fdiar_03 2.27 (0.72 ) 1.40 (0.48 ) 2.71 (1.43) 1.98 (0.49 ) 2.22 (1.47 ) 2.16 (0.81)

fac_ic_fdiar_04 2.33 (0.85 ) 1.25 (0.40 ) 2.58 (1.28) 1.98 (0.48 ) 2.17 (1.39 ) 1.89 (0.66)

fac_ic_fdiar_05 2.45 (0.93 ) 1.21 (0.40 ) 2.74 (1.36) 2.04 (0.51 ) 2.18 (1.43 ) 1.90 (0.68)

fac_ic_fdiar_06 2.48 (0.93 ) 1.30 (0.47 ) 3.08 (1.96) 2.02 (0.50 ) 2.23 (1.51 ) 2.41 (1.19)

f_pooled 1.00 (0.09 ) 0.69 (0.17 ) 1.14 (0.22) 0.89 (0.07 ) 0.86 (0.10 ) 0.92 (0.13)

f_ic_pooled 1.10 (0.14 ) 0.62 (0.18 ) 1.30 (0.31) 0.98 (0.07 ) 1.01 (0.10 ) 0.96 (0.16)

RMSE for AR model 0.097  0.095  0.075  0.010  0.011  0.009  
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Table 3: continued 
 Unemployment 

Forecast method 91 - 05 91 - 98 99 - 05 

ar_bic 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00) 

ar_bic_i2 1.00 (0.08 ) 1.25 (0.19 ) 1.11 (0.17) 

ar_bic_ic 1.64 (0.37 ) 2.08 (0.56 ) 2.03 (1.27) 

varf 1.05 (0.11 ) 1.44 (0.29 ) 1.31 (0.29) 

varfic 1.82 (0.35 ) 2.50 (0.91 ) 2.44 (1.46) 

fac__fdiarlag_bic 1.26 (0.16 ) 1.11 (0.17 ) 0.99 (0.01) 

fac__fdiar_bic 1.26 (0.16 ) 1.11 (0.17 ) 0.99 (0.01) 

fbp__fdiarlag_bic 1.24 (0.15 ) 1.11 (0.17 ) 0.99 (0.01) 

fbp__fdiar_bic 1.24 (0.15 ) 1.11 (0.17 ) 0.99 (0.01) 

fac__fdiar_01 1.21 (0.16 ) 1.02 (0.12 ) 0.97 (0.04) 

fac__fdiar_02 1.33 (0.19 ) 1.61 (0.38 ) 0.99 (0.04) 

fac__fdiar_03 1.34 (0.19 ) 1.73 (0.38 ) 1.02 (0.10) 

fac__fdiar_04 1.33 (0.24 ) 1.88 (0.65 ) 1.03 (0.08) 

fac__fdiar_05 1.28 (0.22 ) 1.65 (0.44 ) 1.04 (0.08) 

fac__fdiar_06 1.31 (0.23 ) 1.73 (0.50 ) 1.10 (0.10) 

fac_ic_fdiarlag_bic 2.56 (0.95 ) 1.79 (0.55 ) 2.02 (1.26) 

fac_ic_fdiar_bic 2.56 (0.95 ) 1.79 (0.55 ) 2.02 (1.26) 

fbp_ic_fdiarlag_bic 2.51 (0.90 ) 1.79 (0.55 ) 2.02 (1.26) 

fbp_ic_fdiar_bic 2.51 (0.90 ) 1.79 (0.55 ) 2.02 (1.26) 

fac_ic_fdiar_01 2.48 (0.90 ) 1.74 (0.47 ) 2.02 (1.24) 

fac_ic_fdiar_02 2.45 (0.90 ) 1.73 (0.43 ) 2.05 (1.24) 

fac_ic_fdiar_03 2.46 (0.90 ) 1.97 (0.66 ) 1.90 (0.92) 

fac_ic_fdiar_04 2.30 (1.01 ) 2.08 (0.82 ) 2.01 (1.05) 

fac_ic_fdiar_05 2.18 (0.97 ) 1.57 (0.51 ) 1.98 (1.04) 

fac_ic_fdiar_06 2.29 (1.03 ) 1.87 (0.63 ) 2.09 (1.16) 

f_pooled 1.15 (0.13 ) 1.18 (0.16 ) 1.00 (0.05) 

f_ ic_pooled 1.39 (0.29 ) 1.58 (0.46 ) 0.99 (0.09) 
RMSE for AR model 0.065  0.060  0.056  

 
Forecasting periods for each sub-sample are: 1997:1 – 1998:12 for 1991-19 98, 2003:11 – 2005:10 for 1999 – 2005 and 1997:1 – 2005:10 for the full sample 1991 – 2005. 
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Notes: One-step-ahead forecasts. For each variable and sub-period columns report the MSE relative to the benchmark AR model, with West 
(1996) standard error in parentheses. We also report the root MSE for the AR benchmark in the last line of the table. 
 
The forecasts in the rows of tables are (see section 2.1 for details): 
ar_bic                     AR model (BIC selection), benchmark 
ar_bic_i2                  AR model (BIC selection) for second-differenced variable 
ar_bic_ic                  AR model (BIC selection) with intercept correction 
varf                       VAR model 
varfic                     VAR model with intercept correction 
fac__fdiarlag_bic         Factors from unbalanced panel (BIC selection), their lags, and AR terms 
fac__fdiar_bic            Factors from unbalanced panel (BIC selection), and AR terms  
fac__fdi_bic              Factors from unbalanced panel (BIC selection)  
fbp__fdiarlag_bic         Factors from balanced panel (BIC selection), their lags, and AR terms  
fbp__fdiar_bic            Factors from balanced panel (BIC selection), and AR terms  
fbp__fdi_bic              Factors from balanced panel (BIC selection)  
fac__fdiar_n             n factors from unbalanced panel, n = 1,…,6 and AR terms 
fac__fdi_n             n factors from unbalanced panel, n = 1,…,6 
fac_ic_fdiarlag_bic       As factor models above, but with intercept correction 
fac_ic_fdiar_bic          
fac_ic_fdi_bic            
fbp_ic_fdiarlag_bic       
fbp_ic_fdiar_bic          
fbp_ic_fdi_bic            
fac_ic_fdiar_n           
fac_ic_fdi_n             
f_pooled   Average of factor forecasts without intercept correction 
f_ic_pooled         Average of factor forecasts with intercept correction  
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Figure 12: Forecasting macroeconomic variables for the Euro area, sample 1991 – 2005 
 

 
 
Note: Each figure plots the actual series and the one-step ahead forecasts obtained from the best non-factor model and the best factor model. (See note to Table 3 for 
definitions of forecasting methods.) 
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Table 4: Effect of Euro introduction: comparison of forecast performance of factor models across sub-periods with Boivin & Ng pre-
selection of variables  

 
 Inflation Manufacturing output growth 

Forecast method 91 - 05 91 - 98 99 - 05 91 - 05 91 - 98 99 - 05 

ar_bic 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00 )

ar_bic_i2 1.01 (0.05 ) 0.79 (0.14 ) 1.27 (0.33 ) 1.13 (0.09 ) 1.09 (0.16 ) 1.38 (0.35 )

ar_bic_ic 2.10 (0.56 ) 1.85 (0.85 ) 2.54 (1.33 ) 2.28 (0.65 ) 2.58 (1.97 ) 2.61 (1.25 )

fac__fdiarlag_bic 0.89 (0.09 ) 0.64 (0.15 ) 0.86 (0.19 ) 0.76 (0.08 ) 0.70 (0.16 ) 0.85 (0.22 )

fac__fdiar_bic 0.89 (0.09 ) 0.64 (0.15 ) 0.87 (0.18 ) 0.76 (0.08 ) 0.70 (0.16 ) 0.88 (0.22 )

fbp__fdiarlag_bic 0.92 (0.08 ) 0.66 (0.14 ) 0.86 (0.19 ) 0.74 (0.08 ) 0.68 (0.16 ) 0.75 (0.20 )

fbp__fdiar_bic 0.92 (0.08 ) 0.66 (0.14 ) 0.87 (0.18 ) 0.74 (0.08 ) 0.68 (0.16 ) 0.86 (0.24 )

fac__fdiar_01 0.89 (0.09 ) 0.64 (0.15 ) 0.87 (0.18 ) 0.76 (0.08 ) 0.70 (0.16 ) 0.88 (0.23 )

fac__fdiar_02 0.89 (0.09 ) 0.64 (0.15 ) 0.95 (0.20 ) 0.78 (0.08 ) 0.74 (0.14 ) 0.86 (0.22 )

fac_ic_fdiarlag_bic 2.15 (0.64 ) 1.43 (0.51 ) 2.05 (0.89 ) 1.68 (0.29 ) 1.81 (0.75 ) 1.76 (0.64 )

fac_ic_fdiar_bic 2.15 (0.64 ) 1.43 (0.51 ) 2.16 (1.00 ) 1.68 (0.29 ) 1.81 (0.75 ) 1.88 (0.71 )

fbp_ic_fdiarlag_bic 2.18 (0.64 ) 1.47 (0.53 ) 2.05 (0.89 ) 1.63 (0.27 ) 1.80 (0.78 ) 1.54 (0.40 )

fbp_ic_fdiar_bic 2.18 (0.64 ) 1.47 (0.53 ) 2.16 (1.00 ) 1.63 (0.27 ) 1.80 (0.78 ) 1.85 (0.72 )

fac_ic_fdiar_01 2.15 (0.64 ) 1.43 (0.51 ) 2.16 (1.00 ) 1.69 (0.29 ) 1.81 (0.75 ) 1.85 (0.71 )

fac_ic_fdiar_02 2.16 (0.67 ) 1.37 (0.46 ) 2.30 (1.23 ) 1.71 (0.31 ) 1.93 (0.90 ) 1.82 (0.69 )

f_pooled 0.96 (0.08 ) 0.72 (0.15 ) 1.00 (0.17 ) 0.85 (0.06 ) 0.88 (0.09 ) 0.95 (0.14 )

f_ic_pooled 1.61 (0.33 ) 1.06 (0.30 ) 1.59 (0.51 ) 1.25 (0.14 ) 1.36 (0.32 ) 1.30 (0.32 )

RMSE for AR model 0.097  0.095  0.075  0.010  0.011  0.009  
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Table 4: continued 
 

 Unemployment 

Forecast method 91 - 05 91 - 98 99 - 05 

ar_bic 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00 ) 

ar_bic_i2 1.00 (0.08 ) 1.25 (0.19 ) 1.11 (0.17 ) 

ar_bic_ic 1.64 (0.37 ) 2.08 (0.56 ) 2.03 (1.27 ) 

fac__fdiarlag_bic 1.25 (0.18 ) 1.11 (0.17 ) 0.99 (0.01 ) 

fac__fdiar_bic 1.25 (0.18 ) 1.11 (0.17 ) 0.99 (0.01 ) 

fbp__fdiarlag_bic 1.25 (0.19 ) 1.11 (0.17 ) 0.99 (0.01 ) 

fbp__fdiar_bic 1.25 (0.19 ) 1.11 (0.17 ) 0.99 (0.01 ) 

fac__fdiar_01 1.19 (0.18 ) 0.97 (0.11 ) 0.99 (0.02 ) 

fac__fdiar_02 1.20 (0.18 ) 1.11 (0.16 ) 0.99 (0.03 ) 

fac_ic_fdiarlag_bic 2.41 (0.94 ) 1.79 (0.55 ) 2.02 (1.26 ) 

fac_ic_fdiar_bic 2.41 (0.94 ) 1.79 (0.55 ) 2.02 (1.26 ) 

fbp_ic_fdiarlag_bic 2.38 (0.92 ) 1.79 (0.55 ) 2.02 (1.26 ) 

fbp_ic_fdiar_bic 2.38 (0.92 ) 1.79 (0.55 ) 2.02 (1.26 ) 

fac_ic_fdiar_01 2.36 (0.91 ) 1.67 (0.43 ) 2.04 (1.28 ) 

fac_ic_fdiar_02 2.36 (0.92 ) 1.76 (0.52 ) 2.08 (1.34 ) 

f_pooled 1.11 (0.14 ) 1.12 (0.14 ) 1.03 (0.09 ) 

f_ic_pooled 1.80 (0.51 ) 1.33 (0.26 ) 1.53 (0.62 ) 
RMSE for AR model 0.066  0.060  0.056  

 
Note: Forecasting periods for each sub-sample are the same as in Table 3. Pre-selection is done by checking the correlation (in absolute value) between the forecast variable 
and indicators in the panel. The limit for correlation coefficient was set to 0.25 for inflation, and 0.15 for manufacturing output growth and unemployment rate. Depending on 
the recursively updated samples, this criterion left around 20 series in the panels for inflation and unemployment, and between 15 and 20 for manufacturing output growth. 
(Detailed sizes of panels available upon request.) See also notes to Table 3. 
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Table 5: Fraction of variance of the panel explained by the factors (whole sample) 
 

Factor Marginal Trace R-
squared 

Cumulative Trace 
R-squared 

1 0.19 0.19 
2 0.14 0.33 
3 0.10 0.43 
4 0.08 0.51 
5 0.06 0.56 
6 0.05 0.61 
7 0.04 0.66 
8 0.04 0.70 
9 0.03 0.72 
10 0.03 0.75 
11 0.02 0.78 
12 0.02 0.80 

N 95 
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Table 6: Slovenia, relative MSE, h = 1, quarterly data, sample: 1994:1 – 2005:4, 
forecasting: 2001:3 – 2005:4 

 
Forecast Method GDP growth CPI inflation Core inflation 

ar_bic 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00 ) 

ar_bic_i2 2.92 (4.50 ) 0.83 (0.27 ) 0.45 (0.23 ) 

ar_bic_ic 2.91 (4.50 ) 1.63 (0.59 ) 0.45 (0.22 ) 

fac__fdiarlag_bic 1.00 (0.00 ) 1.12 (0.14 ) 0.62 (0.19 ) 

fac__fdiar_bic 1.00 (0.00 ) 1.12 (0.14 ) 0.93 (0.05 ) 

fac__fdi_bic 1.00 (0.00 ) 1.06 (0.19 ) 0.93 (0.05 ) 

fbp__fdiarlag_bic 1.00 (0.00 ) 0.82 (0.19 ) 0.72 (0.14 ) 

fbp__fdiar_bic 1.00 (0.00 ) 0.82 (0.19 ) 0.79 (0.12 ) 

fac__fdiar_01 1.03 (0.02 ) 1.22 (0.19 ) 0.84 (0.08 ) 

fac__fdiar_02 1.11 (0.10 ) 1.27 (0.25 ) 0.82 (0.09 ) 

fac__fdiar_03 0.96 (0.10 ) 1.10 (0.12 ) 0.82 (0.12 ) 

fac__fdiar_04 0.95 (0.11 ) 1.14 (0.15 ) 0.81 (0.13 ) 

fac__fdiar_05 0.95 (0.20 ) 1.15 (0.20 ) 0.89 (0.11 ) 

fac__fdiar_06 0.99 (0.22 ) 0.95 (0.22 ) 0.60 (0.18 ) 

fac__fdi_01 1.03 (0.02 ) 1.22 (0.19 ) 0.84 (0.08 ) 

fac__fdi_02 1.11 (0.10 ) 1.27 (0.25 ) 0.82 (0.09 ) 

fac__fdi_03 0.96 (0.10 ) 1.10 (0.12 ) 0.82 (0.12 ) 

fac__fdi_04 0.95 (0.11 ) 1.14 (0.15 ) 0.81 (0.13 ) 

fac__fdi_05 0.95 (0.20 ) 1.20 (0.22 ) 0.89 (0.11 ) 

fac__fdi_06 0.99 (0.22 ) 0.95 (0.22 ) 0.60 (0.18 ) 

fac_ic_fdiarlag_bic 2.91 (4.50 ) 1.65 (0.68 ) 0.50 (0.24 ) 

fac_ic_fdiar_bic 2.91 (4.50 ) 1.65 (0.68 ) 0.53 (0.21 ) 

fac_ic_fdi_bic 2.91 (4.50 ) 1.05 (0.37 ) 0.53 (0.21 ) 

fbp_ic_fdiarlag_bic 2.91 (4.50 ) 1.79 (0.89 ) 0.72 (0.24 ) 

fbp_ic_fdiar_bic 2.91 (4.50 ) 1.79 (0.89 ) 0.48 (0.22 ) 

fbp_ic_fdi_bic 2.91 (4.50 ) 1.72 (0.84 ) 0.48 (0.22 ) 

fac_ic_fdiar_01 2.97 (4.68 ) 1.31 (0.40 ) 0.50 (0.21 ) 

fac_ic_fdiar_02 3.13 (5.31 ) 1.31 (0.43 ) 0.40 (0.22 ) 

fac_ic_fdiar_03 2.75 (3.70 ) 1.46 (0.49 ) 0.35 (0.23 ) 

fac_ic_fdiar_04 2.72 (3.79 ) 1.48 (0.50 ) 0.32 (0.23 ) 

fac_ic_fdiar_05 2.52 (2.97 ) 1.49 (0.50 ) 0.50 (0.23 ) 

fac_ic_fdiar_06 2.45 (2.77 ) 1.65 (0.80 ) 0.60 (0.23 ) 

fac_ic_fdi_01 2.97 (4.68 ) 1.31 (0.40 ) 0.50 (0.21 ) 

fac_ic_fdi_02 3.13 (5.31 ) 1.31 (0.43 ) 0.40 (0.22 ) 

fac_ic_fdi_03 2.75 (3.70 ) 1.46 (0.49 ) 0.35 (0.23 ) 

fac_ic_fdi_04 2.72 (3.79 ) 1.48 (0.50 ) 0.32 (0.23 ) 

fac_ic_fdi_05 2.52 (2.97 ) 1.41 (0.48 ) 0.50 (0.23 ) 

fac_ic_fdi_06 2.45 (2.77 ) 1.65 (0.80 ) 0.60 (0.23 ) 

f_pooled 1.23 (0.33 ) 0.90 (0.12 ) 0.60 (0.16 ) 

f_ic_pooled 1.16 (0.20 ) 0.86 (0.17 ) 0.59 (0.18 ) 

RMSE for AR Model 0.009 0.008 0.009 
 
 
Note:  See notes to Table 3.
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Figure 13: Forecasting macroeconomic variables for Slovenia 

 
 

Note: Each figure plots the actual series and the one-step ahead forecasts obtained from the best non-factor model and the best factor model. (See note to Table 3 for 
definitions of forecasting methods.) 
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Table 7: Boivin and Ng (2004) pre-selection of variables in the calculation of factors – Slovenia 
 

Forecast method GDP growth CPI inflation Core inflation 

 ar_bic 1.00 (0.00 ) 1.00 (0.00 ) 1.00 (0.00 ) 

 ar_bic_i2 2.92 (4.50 ) 0.83 (0.27 ) 0.45 (0.23 ) 

 ar_bic_ic 2.91 (4.50 ) 1.63 (0.59 ) 0.45 (0.22 ) 

 fac__fdiarlag_bic 0.90 (0.23 ) 0.66 (0.17 ) 0.35 (0.22 ) 

 fac__fdiar_bic 0.90 (0.23 ) 0.66 (0.17 ) 0.38 (0.21 ) 

 fac__fdi_bic 0.90 (0.23 ) 0.63 (0.18 ) 0.38 (0.21 ) 

 fbp__fdiarlag_bic 1.04 (0.07 ) 0.66 (0.17 ) 0.48 (0.20 ) 

 fbp__fdiar_bic 1.04 (0.07 ) 0.66 (0.17 ) 0.55 (0.17 ) 

 fbp__fdi_bic 1.04 (0.07 ) 0.66 (0.17 ) 0.55 (0.17 ) 

 fac__fdiar_01 1.02 (0.10 ) 0.68 (0.17 ) 0.42 (0.20 ) 

 fac__fdiar_02 0.86 (0.24 ) 0.63 (0.18 ) 0.39 (0.21 ) 

 fac__fdi_01 1.02 (0.10 ) 0.66 (0.18 ) 0.42 (0.20 ) 

 fac__fdi_02 0.86 (0.24 ) 0.63 (0.18 ) 0.39 (0.21 ) 

 fac_ic_fdiarlag_bic 2.23 (2.31 ) 1.24 (0.38 ) 0.32 (0.23 ) 

 fac_ic_fdiar_bic 2.23 (2.31 ) 1.24 (0.38 ) 0.27 (0.23 ) 

 fac_ic_fdi_bic 2.23 (2.31 ) 1.18 (0.35 ) 0.27 (0.23 ) 

 fbp_ic_fdiarlag_bic 2.86 (4.16 ) 1.33 (0.43 ) 0.60 (0.22 ) 

 fbp_ic_fdiar_bic 2.86 (4.16 ) 1.33 (0.43 ) 0.52 (0.21 ) 

 fbp_ic_fdi_bic 2.86 (4.16 ) 1.33 (0.43 ) 0.52 (0.21 ) 

 fac_ic_fdiar_01 2.87 (4.01 ) 1.27 (0.42 ) 0.42 (0.22 ) 

 fac_ic_fdiar_02 2.09 (2.03 ) 1.13 (0.32 ) 0.26 (0.23 ) 

 fac_ic_fdi_01 2.87 (4.01 ) 1.22 (0.38 ) 0.42 (0.22 ) 

 fac_ic_fdi_02 2.09 (2.03 ) 1.13 (0.32 ) 0.26 (0.23 ) 

 f_pooled 1.12 (0.13 ) 0.67 (0.16 ) 0.36 (0.21 ) 

 f_ic_pooled 2.03 (1.83 ) 1.03 (0.25 ) 0.31 (0.23 ) 

RMSE for AR model 0.009 0.008 0.009 

 
Note: For the correlation threshold (in absolute value) the following values were used: CPI inflation – 0.25, GDP 
growth – 0.20, Core inflation – 0.25. Depending on the recursively updated samples, this criterion left around 20 
–  30 series in the panels. (Detailed sizes of panels available upon request.)  See also notes to Table 3. 
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