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We consider a model in which voters over time receive more information about
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second period. We analyze the effects of different majority rules. Individual first
period voting behavior may become “less conservative” under supermajority rules,
and it is even possible that a project is implemented in the first period under a
supermajority rule that would not be implemented under simple majority rule.

We characterize the optimal majority rule, which is a supermajority rule. In
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1 Introduction

In most political economy models, individuals know their preferences over candidates
or social actions. In another branch of the literature, individuals know their funda-
mental preferences, but which action is best suited to implement them depends on an
unknown state of the world. The main objective of this type of models is to analyze
how individuals can aggregate dispersed information through strategic voting.1

In the present paper we focus on a third case that has received little attention
so far: Collective decisions under uncertainty when individuals learn about their own
preferences over time. In our model, individuals get additional information over time
about their heterogeneous preferences regarding an investment project, and have to
choose whether to implement it immediately, or delay the decision. In the latter case,
they can either implement it after receiving additional information, or pass on it com-
pletely. While investment problems under uncertainty have been analyzed extensively
for single decision makers,2 the new feature of our paper is to investigate the interplay
of individual learning and social decisions.3 Our main focus is twofold: Firstly, we ex-
amine the effect of the majority rule on individual voting behavior and social decisions
in this framework. From an ex-ante point of view, we show that a supermajority rule
dominates simple majority rule with respect to social welfare.4 Secondly, we analyze
the social value of the opportunity to postpone the decision, and show that it can be
either positive or negative; this contrasts with unilateral investment projects where the
value of waiting is always positive.

Specifically, we consider the following dynamic social investment problem. In the
first period, each voter knows whether he would be a winner or a loser in the first
period, but his second period type is random. If the project is implemented in the first
period, it is irreversible and payoff to voters accrue in both periods according to their
type realizations. Alternatively, if the project is not implemented in the first period,
the voters learn their respective second period types, and vote on whether to implement
the project for the second period. We parameterize projects according to the relative
size of the gain of winners to the loss of losers. A “good” project is one where this ratio
is large (i.e., the ex-ante expected average payoff is positive), and vice versa.

1See, e.g., Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996), Feddersen and Pe-

sendorfer (1998).
2See Dixit and Pindyck (1994) for a review of this literature.
3A short note on our terminology: In our model, voters (passively) “learn” as new information

arrives over time. We do not model this learning process as an active information acquisition process

in which, say, voters decide how much time to spend on learning.
4By a supermajority rule, we mean a voting rule that specifies that the status quo is only to be

changed if a certain proportion of the electorate (greater than the 50%, the “simple majority”) votes

in favor of change.
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A possible advantage of delaying investment in the first period is that agents learn
more about their payoffs in the next period: There is an “option value of waiting”. We
analyze how the type of majority rule influences this option value of waiting, and thus,
the voting behavior of individuals and the first period implementation decision. The
expected second period payoff for a voter, if the project is delayed in the first period,
may go in either direction as the majority rule changes: A higher majority rule may
increase the risk that a “good” project with a positive expected value (i.e., one in which
the winners gain more than losers lose) is not implemented in the second period, thus
diminishing the option value of waiting and inducing voters to implement the project
already in the first period. In contrast, a higher majority rule decreases the risk that a
“bad” project is implemented in period 2, thus increasing the option value of waiting.

A higher option value of waiting makes voters more reluctant to implement the
project already in the first period. Thus, a higher majority rule makes each voter more
willing to agree to good projects, even if he is a loser today, and less willing to agree to
bad projects, even if he is a winner today. There is also a second, direct, effect of a higher
majority rule: More voters have to agree, making first-period implementation less likely.
For bad projects, both effects go in the same direction, making implementation less
likely for higher majority rules. In contrast, for good projects, the first effect may
outweigh the second one, leading to more projects being implemented in period 1 under
a higher majority rule.

On the normative side, we focus on an ex-ante point of view, that is, taking expec-
tation over both voter type realizations and project types. We show that, relative to
a situation where all decisions have to be made in the first period, the option to wait
(weakly) increases the optimal majority rule in large electorates. Intuitively, higher
majority rules have the advantage that, for socially bad projects, voters become more
conservative and thus fewer of these projects are implemented, while for good projects,
voters become more willing to implement in the first period. Moreover, since the best
projects are already implemented in period 1, those projects that are reconsidered in
period 2 form a negative selection from the set of all projects, and a higher majority
rule is socially beneficial for these cases as well.5

We also characterize the ex-ante optimal supermajority rule explicitly under the
additional assumption that project types are uniformly distributed at the constitutional
stage. For any number of voters, the optimal supermajority rule in this case is between

5Even at the interim stage (i.e., in the first period when voters know the project type and their own

first-period type), simple majority rule may be Pareto inefficient for some bad projects. This is the case

if, under simple majority rule, there is a majority of voters who approve immediate implementation;

but even those voters would prefer to postpone implementation, if the majority rule is changed to

unanimity rule. In contrast, transition from unanimity rule to simple majority rule cannot yield an

ex-post Pareto improvement.
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7/11 ≈ 63.6% and the smallest implementable rule greater or equal to 2/3. (For
example, with 5 voters, the smallest rule greater than a 2/3 rule is 4 out of 5, or 80%.
As the number of voters increases, this upper limit of the interval of possibly optimal
majority rules converges to 2/3). Many organizations use indeed supermajority rules
close to these numbers.

It is also interesting to analyze the social ex-ante value of the option to wait. In
unilateral investment problems, this option value is always nonnegative, and often
positive: A firm’s expected discounted profit from an investment opportunity is strictly
larger than what it could get if it were forced to either invest immediately, or forgo
the investment completely. In contrast, a society may be better off if it is forced to
invest either immediately or not at all, rather than having the option of postponing
this decision. Indeed, we show that, from an ex-ante point of view (and with uniformly
distributed project costs), this is the case even if society chooses the optimal majority
rule for the case when waiting is possible.

Our results shed light on an important question in the endogenous determination
of institutions: Why do some organizations choose supermajority rules, and which
features of decision problems influence this choice? Majority rules within organizations
vary considerably, from simple majority rule to unanimity rule. Often, the choice of
the majority rule that is to govern future decision making is a contentious issue itself,
such as in the recent EU summit, which eventually adopted a supermajority rule.
Most countries use supermajority rules for a change of the constitution, and, often
implicitly, for “normal” legislation.6 This paper contributes to the literature on the
relative advantages of different majority rules (discussed in more detail in Section 6),
by providing a new rationale for supermajority rules.

Several previous papers have analyzed supermajority rules from an economic point
of view. Buchanan and Tullock (1962) argue that, under a simple majority rule, a
majority of people may implement socially bad projects because they can externalize
a part of the associated cost to the losing minority, while under unanimity rule, only
Pareto improving projects are implemented. However, Guttman (1998) shows that
unanimity rule leads to a rejection of many projects that are not Pareto improvements,
but nevertheless worthwhile from a reasonable social point of view. Assuming that
the social goal is to minimize the sum of both types of mistakes, he shows that, in a
symmetric setting, simple majority rule is optimal. Our model is constructed symmet-
rically, so that simple majority rule is optimal if voters have to make a once-and-for-all

6For example, in parliamentary systems with a strong committee organization, a legislative proposal

usually needs the support of both the respective committee and the house. In parliamentary systems

with two chambers, certain legislative proposals need the support of both chambers. Tullock (1998),

p. 216, estimates that legislative rules in the US for changing the status quo are “roughly equivalent

to requiring a 60% majority in a single house elected by proportional representation.”
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decision about the project in the first period. However, with the option to postpone a
decision to the second period, we show that a supermajority rule is optimal.7

In terms of the dynamic setup, the paper most related to ours is Glazer (1989), where
voters in period 1 choose between i) implementing an irreversible long run project that
delivers benefits both in period one and in period two, ii) implementing a short run
project, whose costs and benefits accrue in period one and iii) not investing. In cases
(ii) or (iii), the electorate decides again in period 2 whether to implement a short run
project for period 2. While each voter’s second period benefit is the same as his first
period benefit, there is exogenous uncertainty about the outcome of a possible election
in period 2. Glazer shows that voters exhibit a bias towards implementing the long
run project. Two effects drive this result. First, even if it were cheaper to implement
two short term projects, a first period decisive voter with a positive net payoff may
prefer to disempower the second period electorate by committing to a long-term project.
Second, even if the first period decisive voter has a negative net payoff from the long-
term project, he may prefer to implement it, if he is sufficiently afraid that a short-term
project would be implemented in period 2 that would be even worse for him.

Apart from the fact that we have no first period short term project, our analysis
differs from Glazer (1989) in two crucial points. First, we explicitly analyze a dynamic
voting game in which each voter is uncertain about his second period preferences. This
generates endogenous uncertainty about the second period voting outcome, and allows
us to analyze how different majority rules affect this uncertainty and hence the first
period voting behavior. The focus of our analysis is on the positive and normative
implications of different majority rules in dynamic investment problems. Second, while
Glazer’s second effect is also present in our model for socially undesirable projects,
there is not necessarily excessive commitment to early implementation in our model.
Indeed, for socially beneficial projects, voters in our model are excessively conservative.
Interestingly, in our model, supermajority rules mitigate both the tendency of voters to
excessively commit to socially undesirable projects, and their reluctance to implement
socially beneficial projects.

Our model is also related to a small literature in which voters learn about their pref-
erences over time. Strulovici (2007) analyzes a model in which a society has to choose
in continuous time between a risky and a secure project. Ex-ante, all individuals are
identical; over time, some individuals discover that they are winners and then receive
a payoff forever after. The arrival rate is unknown, and voters continuously update
their beliefs as long as the risky action is played. In contrast to our model, information

7Other rationales for supermajority rules are discussed in Section 5 and include the problem of time

inconsistency of optimal policies under simple majority rule (Gradstein (1999), Dal Bo (2006)), the

possibility of electoral cycles under simple majority rule (Caplin and Nalebuff (1988)), and a strategic

use of supermajority rules when preferences change deterministically (Messner and Polborn (2004)).
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arrives only as long as the risky action is played, and the project is reversible. Voters
decide under simple majority rule or unanimity rule when (and if at all) to stop exper-
imentation with the uncertain action. Strulovici (2007) finds that society always stops
experimentation too early compared with a utilitarian optimum, and that unanimity
rule may lead to more or less experimentation than simple majority rule.

Compte and Jehiel (2008) analyze a collective search and bargaining process in
which proposals arrive exogenously and over time. The tradeoff they study is that
unanimity rule guarantees that only efficient projects are implemented, but it takes
less time to reach an implementation decision under simple majority rule.

Another social learning paper in which new information arrives only as long as
society is experimenting is the multiperiod model of Callander (2008). Citizens know
how the status quo policy translates into outcomes, but the farther a policy is away
from the status quo policy, the less certain are its consequences. Callander shows that
an initial phase of experimentation and learning is eventually terminated if a policy
achieves an outcome that is sufficiently close to the ideal outcome of the median voter.

Fernandez and Rodrik (1991) analyze a model of voting on reform projects that
generate winners and losers. They show that a project that ex-post benefits the ma-
jority of the population need not be implemented, if the ex-ante expected benefit is
negative for a majority of the population. If, instead, a majority of the population has
positive ex-ante expected benefits, but ex-post, payoffs are negative for a majority, then
a reform may be implemented initially, but would be reversed after payoff information
becomes known. Thus, there is a bias in favor of the status quo. In contrast to Fer-
nandez and Rodrik (1991), we analyze a setting in which reforms are not reversed, so
that there is no status quo bias in our setup. Also, our focus is on comparing different
majority rules and how they influence voting behavior and implementation decisions,
while Fernandez and Rodrik (1991) only consider simple majority rule.

The paper proceeds as follows. In the next section, the model is presented. Our
main results follow in Section 3. In Section 4, we analyze several extensions of the
model. Previous literature is discussed in Section 5, and Section 6 concludes.

2 The model

2.1 Description

A group of N (odd) risk neutral individuals has to decide whether to undertake an
investment project that creates costs and benefits (described in more detail below) for
all members of society. The decision about the project has two stages. At the beginning
of period 1, the group has to choose between implementing the project right away and
postponing the decision to the beginning of period two. In the latter case, the group

5



has to make the final decision on whether or not the project should be implemented
at the beginning of period 2. In both periods, the decision is governed by a voting
rule indexed by m. Specifically, the project is implemented if and only if at least m
individuals approve. The majority requirement may range from simple majority to
unanimity, i.e. m ∈ {(N + 1)/2, . . . , N}.

If the project is implemented in or before period t, then individual i receives a gross
payoff of V i

t in period t. We refer to V i
t as i’s type in period t, and assume that V i

t

is either 0 or 1, each with a probability of 1/2. In addition, the project generates a
constant per-period flow of costs, c ∈ (0, 1), for each individual of the society, so that i’s
net payoff in period t is V i

t − c.8 Payoffs are measured relative to non-implementation,
that is, in each period that the project is not implemented, each individual receives a
net payoff of 0. For simplicity, we assume that individuals do not discount the future,
so that they value future and current payoffs equally.

At the time of the election in period 1, individuals only know their own period 1
type, but not their period 2 type. In the period 2 election (if any), individuals know
also their period 2 type. In elections, each individual votes for the option that would
provide him with the higher expected utility: In period 2, voter i votes for the project
if and only if V i

2 = 1. In period 1, voter i votes for project implementation if and only
if he weakly prefers immediate implementation to the expected payoff from postponing
(given that all voters behave in period 2 as described above). Formally, we use iterated
elimination of weakly dominated strategies, a standard refinement in voting games.9

Eventually, we are interested in the endogenous determination of the voting rule.
We envision that this choice occurs at an initial stage, before type realizations for the
project are known. Thus, all voters are identical and agree to choose the majority rule
that maximizes their ex-ante expected payoffs. Note that we can also interpret such a
constitution normatively as the one that maximizes ex-ante utilitarian welfare.

Ex-ante payoffs, and thus the optimal majority rule, also depend on the cost pa-
rameter c. Typically, however, it is not feasible to construct a constitution where the
applicable majority rule depends on the cost parameter of the project under consider-
ation, since there would be verifiability problems, and such a rule would unavoidably
lead to conflicts of interpretation. Thus, we focus on the majority rule that is optimal
in expectation, when c is drawn from some distribution with density f(c).

8Clearly, we could just specify the net payoff of each individual through one variable, but our

approach allows us to use c in order to easily distinguish projects with a high expected average payoff

(i.e., low c) from those with a low expected average payoff.
9This refinement, for example, eliminates (rather strange) Nash equilibria of the voting game in

which everybody opposes investment, even if he would benefit from implementation.
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2.2 Discussion of modeling choices

We now briefly discuss several modeling choices.
Cost parameter. While we call c the “cost” of the project, it can also be inter-

preted as a utility index without an explicit monetary cost interpretation. Different
values of c can be used to capture any situation in which some voters gain and others
lose from changing the status quo. The utility of the status quo is normalized to zero
for every voter, and c is a parameter that measures the size of the gains of those people
who are better off than in the status quo, relative to the losses of those who would
prefer the status quo.

Available choices. We also restrict society to make a decision through voting
and assume that project proposals cannot contain transfer payments between different
voters. If, instead, types are observable and transfer payments are feasible, then, by
the Coase theorem, any majority rule leads to implementation if and only if the project
creates more benefits than costs. The assumption that transfer payments are not
feasible is standard in most of the political economy literature and also appears to be
quite realistic in many applications, for example because of informational constraints
or legal provisions against vote buying. However, we do not model explicitly why this
is the case.

The decision in the first period is restricted to the first-period implementation
decision. For example, the first period electorate cannot choose to wait and commit
the second period electorate to implement in the second period, or cannot choose to
wait and forbid the second period electorate to consider implementation. They can
also not choose to change the majority rule for the second period. We also do not
allow society to choose different majority rules to apply for “first-period projects” and
“second-period projects”. Again, the reason is that it might be very difficult to describe
ex-ante whether a investment proposal falls in the first or the second category. While
there are cases in which a majority of the first period electorate would like to take such
measures, the assumption that today’s electorate cannot commit a future electorate is
both standard in the literature, and quite realistic for most democratic institutions, as
such attempts would be very controversial (at least ex-post).

Dynamic framework. The purpose of the model is to provide a simple framework
for the analysis of intertemporal implementation decisions, the issue of learning and the
effects of different majority rules. To keep the setup as simple as possible, our model
has only two time periods. It is, in principle, not too difficult to extend this model
to a setup with payoffs in infinitely many periods; however, a key assumption is that
voters learn their preference for or against the project after some finite time (so that
the relevant part of learning is concentrated in early periods).

For example, we could generalize our model as follows. Once a project is imple-
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mented, it generates an infinite stream of payoffs for each voter (depending on the
voter’s type, as in our model, and discounted using a discount factor of δ). In the
first period, voters know only their first period type. In the second period, they learn
whether they are a high or low type for the remaining periods (or, more generally, the
frequency with which they will be high types in the future). Thus, voting behavior from
the second period on will be type dependent and thus, implementation either occurs in
one of the first two periods, or not at all. As in our model, backwards induction can
then be used to determine first period voting behavior.

Note that our model corresponds to the case of δ = 1/2 in the infinite period model,
i.e., the payoff in the first period equals the present value of future payoffs (after all
learning has occurred). For higher (lower) values of δ, the payoff in the period for which
initial information is available is less (more) important than the future payoffs that are
uncertain from today’s point of view.

The principal reason for focusing on the simpler two period model is that the addi-
tional parameter (δ) complicates computations and proofs significantly without yielding
qualitatively new insights.

Extensions. Finally, we assume that voters’ second period valuations are indepen-
dent of each other and of their first period types. We relax both of these assumptions
in Section 4 and show that the qualitative results of the basic model are quite robust.

2.3 Application – Voting on hiring

There are many applications in which societies have to decide on investment projects
with uncertain returns. Here, we just present an example that illustrates some of the
main features and questions of the model. The reader who is more interested to proceed
to the theoretical results can, without problems, skip the remainder of this section.

Late in the junior job market, an economics department can choose to offer an
assistant professorship to Candidate A, who would accept such an offer. A decision to
hire A is irreversible in the next years (i.e., the line is filled, and A can be fired only
after considerable delay at tenure time). Payoffs accrue to department members, both
now and in the future, depending on how good a researcher and colleague Professor A
turns out to be. From today’s perspective, this is a random event, and also a question
in which individual tastes of existing department members may differ, so department
members may disagree even ex-post whether hiring A was a good decision.

Alternatively, the department can choose to leave the position unfilled and wait till
the following year, when there is a new draw of an available candidate, say, B. Again,
the department can decide whether to hire B or not. (In principle, the department’s
hiring problem is an infinite period problem, assuming that their dean would always
renew searches for lines that were not filled in the previous year. In the interest of
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tractability, we simplify the infinite period world to a two-period one in our model.)
Individuals’ payoffs in our model and in this application differ somewhat: In our

model, an individual’s second period payoff is the same, whether the project was imple-
mented in the first period or only in the second period. In contrast, in this application,
an individual voter’s realized second period payoff from A (if he was hired in the first
period) may very well differ from that individual’s payoff from B (in the same period).
However, all that matters for individual voters when they decide how to vote in the
first period is the expectation of their second period payoff, so the difference between
realized payoffs in the model and in the application is immaterial for our main results.

A central result of our model is that supermajority rules outperform simple majority
rule with respect to voters’ ex-ante expected utility. While we have only anecdotal
evidence, supermajority rules appear also prevalent in groups that decide on hiring
and/or promotion through voting.10 We also show that – in contrast to individual
investment problems – the ability to postpone the decision can hurt a society. Thus,
groups have an incentive to construct rigid rules in an attempt to commit against
reconsideration, if possible. For example, consider a tenure decision for a marginal
(i.e., neither awful nor great) candidate. If there is uncertainty about the quality of
the candidate’s unpublished work, it would appear wise to postpone the decision on
whether to grant tenure by an additional year or two. However, university regulations
usually preclude such a course of action and force an immediate decision. While such
a rigid rule would often lower and never increase the utility of a single decision maker,
our model shows that it may be strictly welfare increasing in a group decision problem.

3 Results

3.1 The benchmark case: No option to wait

We first analyze the benchmark case in which the electorate has to take the decision
about the project once and for all in period 1. That is, a first period rejection of the
project is final. Voter i’s expected total payoff from immediate implementation is

U iI(V
i

1 , c) = V i
1 + E(V i

2 )− 2c = V i
1 +

1
2
− 2c. (1)

Each voter approves the project if and only if its net present value is nonnegative.11

Thus, a voter with first period type V i
1 = 1 (a high type) votes in favor if and only if

10This is certainly true, as a practical matter, for promotion votes in universities. A candidate who

receives a bare majority of favorable votes in his own department usually is in severe problems at the

college or university level.
11As a tie-breaking assumption, we assume that voters who are indifferent always approve the project.

No results of our model qualitatively depend on this assumption.
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1 + E(V i
2 ) − 2c = 3/2 − 2c ≥ 0, hence if c ≤ 3/4. Similarly, a low type voter (V i

1 = 0)
casts a favorable ballot if and only if E(V i

2 )− 2c = 1/2− 2c ≥ 0, or c ≤ 1/4.
Thus, projects with adjustment cost c ≤ 1/4 are unanimously approved, and those

with c ≥ 3/4 are unanimously rejected. The realization of first period types and
the majority rule matter only for projects with intermediate adjustment costs, i.e.
c ∈ (1/4, 3/4]. For these, the ex-ante probability of implementation (i.e., before nature
draws voters’ types) decreases in m.

To determine the majority rule that maximizes the ex-ante expected payoff of voters,
denote a single voter i’s ex-ante expected payoff under majority rule m with N voters
when the adjustment cost is c by π̃i(c,m,N). Given our previous observations, it follows
that if c ≤ 1/4 then π̃i(m,N, c) = E(V i

1 ) + E(V i
2 )− 2c = 1− 2c for all m, because the

project is unanimously approved, no matter which types are realized. If c > 3/4, then
π̃i(m,N, c) = 0 for all m, because the project is unanimously rejected, no matter which
types are realized.

If, instead, c ∈ (1/4, 3/4] then the realization of types matters. It is useful to define
p(m,N) = 2−(N−1)

(
N−1
m−1

)
as the probability that there are exactly m − 1 high types

among the other N − 1 voters. We can think of p(m,N) as the probability of voter i
being pivotal, if the majority rule is m. Also, let q(m,N) =

∑N−1
j=m

(
N−1
j

)
2−(N−1) be

the probability that there are m or more high types among the other N − 1 voters.
From the point of view of an individual voter i, q(·) is the probability that the project is
implemented through the votes of the other voters, independent of voter i’s preference
on the project.

It is useful to distinguish these two different events (i.e., voter i being pivotal for
implementation, and not being pivotal), because they give rise to different conditional
expected implementation payoffs. When there are m or more high types among the
other N − 1 voters, then voter i’s expected payoff is simply the ex-ante expected im-
plementation payoff, E(V i

1 ) + E(V i
2 )− 2c. In contrast, if there are exactly m− 1 high

types among the other N − 1 voters, then the project is implemented with probability
1/2 (namely, if and only if i’s type is V i

1 = 1), in which case voter i’s implementation
payoff over both periods is 1 + E(V i

2 )− 2c = 3/2− 2c. Thus, we have

π̃(m,N, c) =


1− 2c if c ≤ 1/4

q(m,N) (1− 2c) +
p(m,N)

2

(
3
2
− 2c

)
if 1/4 < c ≤ 3/4

0 if c > 3/4

(2)

where we have dropped the index i, since this payoff is identical for all individuals. To
save on notation, we will also suppress the argument N in functions like π̃, p or q, when
no confusion can arise (i.e., when we consider a situation in which N is fixed). We now
show that π̃(m, c) is a piecewise linear function of c that jumps downward at c = 1/4
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and upward at c = 3/4.

Claim 1. For any m, π̃ is a piecewise linear function of c with limc↓1/4 π̃(m, c) <
π̃(m, 1/4) for all m ≤ N , and limc↑3/4 π̃(m, c) < π̃(m, c) for all m < N .

Proof. We have limc↓1/4 π̃(m, c) = [q(m)+p(m)]/2 < π̃(m, 1/4) = 1/2, and limc↑3/4 π̃(m, c) =
−q(m)/2, while π̃(m, 3/4) = 0. Note that for unanimity rule q(N) = 0, so that π̃(N, ·)
is discontinuous only at c = 1/4, but not at c = 3/4.

Intuitively, at c = 1/4, high types strictly benefit from implementation, while low
types are just indifferent. Hence, from an ex-ante perspective, voters strictly benefit
if the project is implemented. Implementation always occurs for c ≤ 1/4, while for
c > 1/4, implementation depends on the realization of preference types and is thus not
guaranteed. For example, under simple majority rule, the probability that a project
with any c ∈ (1/4, 3/4] is implemented is just 1/2. Hence, π̃(m, c) drops at c = 1/4.
Similarly, for c = 3/4, high types are just indifferent towards implementation, while
low types strictly suffer. Thus, voters suffer from an ex-ante perspective if the project
is implemented. Implementation never occurs for c > 3/4 (so that π̃(m, c) = 0 for
all c > 3/4), while for c ∈ (1/4, 3/4], implementation depends on the realization of
preference types. Figure 1 illustrates Claim 1 and shows the ex-ante payoff for the case
N = 15 and m = 8 (black curve) and m = 9 (the blue curve).

Figure 1: The function π̃ for N = 15, m = 8 (black) and m = 9 (blue)

We now analyze the optimal voting rule for different levels of c. First, observe that
for c ≤ 1/4 or c > 3/4 the voting outcome is unanimous, and thus payoffs do not
depend on the majority rule, so that all majority rules perform equally well.
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Second, for c ∈ (1/4, 1/2], both the expected net benefit conditional on being piv-
otal, 1 + E(V2) − 2c = 3/2 − 2c and the unconditional expected net benefit, E(V1) +
E(V2)− 2c = 1− 2c, are positive. Since the functions q(·) and p(·) are both decreasing
in m, it follows that the unique optimal majority rule is simple majority.

Third, for c ∈ (1/2, 3/4], voters expect to obtain a positive payoff only in case they
are pivotal (i.e., 3/2 − 2c > 0 > 1 − 2c). Thus, the optimal majority rule trades off
the expected loss if a voter is not pivotal, and the expected gain if he is pivotal. For
higher c, the pivot-benefits decrease while the non-pivot losses increase. To maintain
optimality of the majority rule, the relative probability weight on benefits versus losses,
p(m)/q(m), must increase, and this ratio is increasing in m, as shown in Lemma 1.12

Thus, intuitively, the optimal majority rule increases in c. In summary,

Proposition 1. Suppose that society can either implement the investment project in
period 1, or not at all.

1. If c ≤ 1/4, or c > 3/4, all majority rules yield the same expected payoff π̃(·, c).

2. If c ∈ (1/4, 1/2], then simple majority rule m = (N+1)/2 maximizes the expected
payoff π̃(·, c).

3. Let dxe denote the smallest integer greater or equal to x. For c ∈ (1/2, 3/4) π̃(·, c)
is single peaked in m, unless (2c − 1/2)N is an integer; the majority rule that
maximizes π̃(·, c) is given by m∗ =

⌈(
2c− 1

2

)
N
⌉
. In particular, for c close to

3/4, the unique optimal majority rule is unanimity rule. If (2c − 1/2)N is an
integer, then π̃(·, N, c) is ‘single-plateaued’, where the plateau is given by the two
points m∗ = (2c− 1/2)N and m∗∗ = (2c− 1/2)N + 1.

Proof. The first two statements are proved in the text above. For the third claim, note
that q(m) = q(m+ 1) + p(m+ 1), so that we have

π̃(m+ 1, c)− π̃(m, c) = [q(m+ 1)− q(m)](1− 2c) + [p(m+ 1)− p(m)]
(

3
4
− c
)

= p(m+ 1)
(
c− 1

4

)
− p(m)

(
3
4
− c
)
. (3)

Rearranging, (3) is positive if and only if

c

[
p(m+ 1)
p(m)

+ 1
]
>

3
4

+
p(m+ 1)

4p(m)
.

Using p(m + 1)/p(m) = (N −m)/m, we can conclude that (3) is positive if and only
if m/N < 2c − 1/2. Therefore, for c ∈ [1/2, 3/4], the optimal majority rule is m∗ =⌈(

2c− 1
2

)
N
⌉
, as claimed. Substituting shows that unanimity is the unique optimal

majority rule for c ∈
(

3
4 −

1
2N ,

3
4

]
.

12This result is intuitive, because p/q goes to infinity for unanimity rule.
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The optimal majority rule m∗/N ≈
(
2c− 1

2

)
has an intuitive interpretation as the

one that maximizes utilitarian welfare: If there are M̂ high types in the first period,
then the per-capita expected utility from implementation is m̂ − c + 1

2 − c (where
m̂ = M̂/N). A social planner would like to implement the project if and only if this
expected utility is positive, and setting m∗ =

⌈(
2c− 1

2

)
N
⌉

guarantees just that.
Now consider the problem of choosing an optimal majority rule when the constitu-

tion cannot condition the majority rule for a project on its adjustment cost c. From an
ex-ante perspective, c is distributed according to some (arbitrary) distribution F . Of
course, if F does not put any weight on the interval (1/4, 3/4], then all majority rules
perform equally well.

Proposition 2. Suppose that society can either implement the investment project in
period 1, or not at all. Furthermore, suppose that the constitution cannot condition the
majority rule on c, and that c is drawn from a distribution with cumulative distribution
function F that satisfies F (3/4)−F (1/4) > 0. Then Π̃(·, N) is generically single peaked
with its peak at13

m∗ = max
{
N + 1

2
,

⌈
(y − x)N

2y

⌉}
,

where x =
∫ 3/4

1/4 (1 − 2c)dF (c) and y = (F (3/4) − F (1/4))/2. In particular, if F is
symmetric around 1/2, then x = 0, so that simple majority rule is optimal.

Proof. See Appendix.

Note that the condition F (3/4) − F (1/4) > 0 restricts attention to those distri-
butions for which majority rules matter at all: Since all projects with c ≤ 1/4 are
unanimously accepted, and those with c > 3/4 are unanimously rejected, we know
that, if Prob(c ∈ (1/4, 3/4]) = 0, then all majority rules yield the same surplus.

There are two important classes of distributions for which simple majority rule
is optimal. First, as mentioned in the proposition , if F is symmetric around 1/2
(for example, if F is a uniform distribution on [0, 1]). The intuition for this result is as
follows. If a voter is not pivotal for the implementation decision, then, by the symmetry
of the distribution of c, expected gains and losses from implementation cancel out for
any majority rule. However, if the individual is pivotal, then he receives a positive
expected payoff. Thus, the best majority rule from an ex-ante perspective is the one
that maximizes the probability of being pivotal, and that rule is simple majority rule.

Second, if the expected value of c, conditional on c being between 1/4 and 3/4, is
lower or equal to 1/2, then x ≥ 0, and thus m∗ = (N + 1)/2. In this case, the expected

13The term ‘generically’ refers to the fact that Π̃ may be single-plateaued instead of single-peaked

if (y − x)N/2y is an integer. In this case, both (y − x)N/2y and (y − x)N/2y + 1 are maximizers of

Π̃(·, N).
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payoff for a voter is positive even if he is not pivotal for implementation, and therefore
simple majority rule (which maximizes the probability of implementation) is optimal.

3.2 Individual voting behavior and the option to wait

We are now ready to analyze the implications of the option to delay the decision on
the implementation of the public project. We begin with the straightforward analysis
of voting behavior in second period elections. Player i votes in favor of the project if
and only if V i

2 = 1, and the project is implemented if and only if there are at least m
players with a high second period type. Let I2(m) denote the event that the project is
implemented in the second period, given that a majority of at least m votes is required;
and let P (I2(m)) denote the probability of this event.

Consider now the first period decision. If the project is not implemented in the first
period, then player i can expect to obtain the payoff

(
E[V i

2 |I2(m)]− c
)
P (I2(m)). It is

useful to write this expected continuation utility, the expected value of waiting, as

UW (c,m) = p(m)E[max{V i
2 − c, 0}] + q(m)(E(V i

2 )− c) =

p(m)
2

(1− c) + q(m)
(

1
2
− c
)
,

(4)

using the definitions of p(·) and q(·) from the last section. Since voter i’s payoff from
implementing the project immediately is U iI(V

i
1 , c) = V i

1 + 1/2 − 2c, he will approve
immediate implementation in period 1 if and only if

V i
1 + 1/2− 2c ≥ p(m)

2
(1− c) + q(m)

(
1
2
− c
)
. (5)

Note an important difference to the benchmark case without the option to wait: An
individual voter’s first period behavior as characterized by (5) depends on the majority
rule m, because that rule determines the expected value of waiting.

If c ≤ 1/2, then both terms on the right-hand side of (5) are positive. Thus,
in this case, the option to wait induces voters to behave more conservatively than in
situations where the decision may not be delayed. Moreover, since both p(·) and q(·) are
decreasing functions of m, this tendency to behave more conservatively, is the stronger
the lower the majority rule m. Thus, the cost threshold below which a low voter type
is willing to approve a project shifts to the left as the option to delay the decision is
introduced, and this shift is the stronger, the lower the majority rule.14

If c > 1/2, then the value of waiting is neither necessarily positive, nor is it nec-
essarily decreasing in m. The reason for why the value of waiting can be negative in
social decisions — in contrast to private decisions, where the value of waiting is always

14For c ≤ 1/2, (5) implies that high types always favor implementation, so that their behavior does

not change relative to the case that waiting is not possible.

14



positive — is that society sometimes implements projects that, from a social ex-ante
point of view, are not beneficial. If the right-hand side of (5) is negative, then it is
possible that a high type voter votes for immediate implementation of an investment
project even though his expected overall payoff from this project is negative. The
reason for this (seemingly strange) behavior is that the voter’s payoff from immediate
implementation is at least better than the expected payoff he would get if he forgoes
immediate implementation and is then (perhaps) hit by implementation in the second
period, when his type may be low. In this case, a higher majority rule may increase
the value of waiting, as it increases the voters’ protection in the next period against
the implementation of a project that they oppose.

We now proceed to a more formal analysis of the value of waiting and its implications
for individual voting behavior. Lemmas 1 and 2 are used repeatedly in the proofs of
the following propositions, and are presented here in the text, because they are of
independent interest and provide an intuition for the economic effects in our model.

Lemma 1 shows that a higher majority rule increases the probability of voter i being
pivotal, relative to the probability that the project is implemented independent of voter
i’s preferences. This effect underlies a benefit of supermajority rules for projects with
high c, because a voter always gets a nonnegative payoff if he is pivotal, but receives a
negative expected payoff if the project is implemented independently of voter i’s will.

Lemma 1. The ratio
p(m)
q(m)

is increasing in m.

Proof. See Appendix.

Lemma 2 shows that the value of waiting UW (c,m), defined in equation (4), is
increasing in m if m < Nc and decreasing in m if m > cN . Thus, for any c ∈ [0, 1] the
value of waiting is single-peaked in m.

Lemma 2. If m < Nc (m > Nc), then UW (c,m) < UW (c,m + 1) (UW (c,m) >

UW (c,m+ 1)).

Proof. See Appendix.

Note that the condition m > cN is satisfied for all majority rules if c ≤ 1/2.
Intuitively, an increase in m makes second period implementation of such projects
(which are all socially valuable from an ex-ante perspective) less likely, so that the
value of waiting decreases monotonically in m.

A similar argument holds if m/N > c > 1/2. Intuitively, m/N > c means that,
under majority rule m, the project is implemented only if the gross aggregate benefit
(m) exceeds the total social cost (Nc). A further increase of the majority rule then
implies that the project is not implemented in some situations where the project’s
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average payoff is positive. Thus, from the perspective of period 1, the expected value
of waiting decreases. Conversely, the value of waiting is increasing in m if m < cN , as
the project is less often implemented when the average payoff of voters is negative.

For later reference, note that one of the implications of the single-peakedness of UW
in m is that, if for some c the value of waiting is negative for a given majority rule m,
then the same must hold true for any majority rule m′ < m (i.e. UW (m, c) < 0 implies
UW (m′, c) < 0 for all m′ < m).

The following Proposition 3 characterizes individual voting behavior in a situation
where the decision on the project may be postponed. There are two cutoffs c and c̄

such that first-period low types vote for implementation if c ≤ c and first-period high
types vote for implementation if c ≤ c̄. Thus, there are three different regimes: All
projects with c ≤ c are unanimously approved in the first period, all projects with c > c̄

are unanimously rejected, and for projects with c ∈ (c, c̄], implementation depends on
whether there are at least m first-period high types.

Proposition 3 also characterizes the range in which the thresholds lie, and how they
change with m. Intuitively, since c < 1/2, the value of waiting is positive and decreases
in m. A higher majority rule increases the willingness of low types to implement in
the first period, as second period implementation becomes less likely. Thus, c increases
in m. In contrast, c̄ > 1/2, and the value of waiting is non-monotonous in m in that
region. For low majority rules, the value of waiting is negative for projects with costs
close to c̄, and increases with m. Thus, high types become more conservative when
m increases, so that c̄ decreases. In contrast, for high majority rules, the value of
waiting is positive and decreases with a further increase in m, thus making high types
less conservative, so that c̄ increases in m for high levels of m. Thus, c̄ is a U-shaped
function of m.

Proposition 3. For any majority rule m, there exist threshold values c(m) and c̄(m),
with c(m) < c̄(m), such that low types (high types) vote for first period implementation
of a project if and only if c ≤ c(m) (c ≤ c̄(m)).

Moreover, c(m) is an increasing function of m and satisfies 1/12 ≤ c(m) < 1/4. In
contrast, c̄(·) is U-shaped, assumes its minimum at m = d3N/4e and satisfies 2/3 <

c̄(m) < 5/6. Moreover, c̄((N + 1)/2) > c̄(N).

Proof. See Appendix.

3.3 Ex ante payoffs under different majority rules

The key result of Proposition 3 is how the majority rule influences individual voting
behavior. For low cost projects, individual voters behave more conservatively under
lower majority rules. In contrast, for high cost projects, individual voters behave more

16



conservatively under higher majority rules. We will now analyze the implications for
voters’ ex-ante payoffs.

We denote a player’s ex-ante payoff, that is, his expected payoff given majority rule
m and implementation cost c, but before the player’s type is known, by π(m,N, c).
For c ≤ c(m), all voters always approve the first-period implementation of the project,
so that we have π(m, c) = π̃(m, c) = 1 − 2c (where we again drop the variable N). If
c > c̄(m), then all voters reject the project in the first period and so π(m, c) in this case
simply coincides with the value of waiting, UW (c,m) = q(m)(1/2− c) + p(m)(1− c)/2.
Finally, if c ∈ (c(m), c̄(m)], then the project is approved in period 1 if and only if there
are sufficiently many high type voters in period 1. In contrast to Section 3.1, after a first
period rejection, which occurs with probability [1−q(m)−p(m)/2], the project may still
be implemented in period 2, so that π(m, c) = π̃(m, c) + [1− q(m)− p(m)/2]UW (c,m).
Rearranging terms and dropping the arguments from the functions q and p, we thus
have

π(m, c) =


1− 2c if c ≤ c(m)

q(1− 2c) + p
2

(
3
2 − 2c

)
+
(
1− q − p

2

) [
q
(

1
2 − c

)
+ p

2(1− c)
]

if c ∈ (c(m), c̄(m)]

q
(

1
2 − c

)
+ p

2(1− c) if c > c̄(m).
(6)

It is easy to see that a result parallel to Claim 1 obtains: For any m, the ex-ante payoff
π(m, ·) is a piecewise linear function of c that exhibits a downward jump at c(m), and,
unless m = N , an upward jump at c̄(m). Figure 2 depicts the ex-ante payoff for N = 15
and the cases m = 8 (black curve) and m = 9 (blue curve).

We now turn to an analysis of the optimal majority rule for a given level of c, which
may be markedly different here from the benchmark case of Section 3.1.

There are several different effects. First, consider projects that are rejected by all
voters in the first round under any majority rule (i.e., with c > c̄((N + 1)/2)). In
contrast to Section 3.1, these projects may now still be approved in the second period.
Since those projects are projects with a negative expected net social benefit, it follows
that higher majority rules outperform lower majority rules, since they decrease the
probability that such projects will pass.

Second, the cost threshold below which high type voters are willing to implement
projects in period 1 now depends on the majority rule. In a sense, under low majority
rules, introducing the option to wait reinforces the electorate’s tendency to behave too
‘aggressively’ in implementing projects with low expected net benefits. Specifically,
take a setting where c̄(m+ 1) < c̄(m), and consider a project with a value of c that lies
in between these two thresholds. Majority rule m+ 1 guarantees that any project with
a cost parameter in (c̄(m + 1), c̄(m)] is at least not implemented in period 1. This is
clearly beneficial if the project’s expected net benefit is negative for both groups, i.e.
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Figure 2: Ex-ante payoffs π(8, 15, c) (black) and π(9, 15, c) (blue)

if c̄(m + 1) > 3/4. Using results in the proof of Proposition 3, one can show that a
sufficient condition for c̄(m+ 1) > 3/4 is that (m+ 1)/N ≤ 2N/3.

It might even be true that, after the first period types are realized, voters would
unanimously agree to change the majority rule. Consider, for example, a society with
simple majority rule, a project with c between 3/4 and c̄((N + 1)/2), and a majority of
high types. Without a change in the majority rule, the project is implemented by the
support of all high types in the first period. However, all voters (including first period
high types) would be better off if society switched to unanimity rule, thereby killing
the project in the first period. Thus, a change from simple majority rule to unanimity
rule leads to an ex-post Pareto improvement in this example.15

Another interesting effect arises in the case of projects with high expected net
benefits. Since c(m) < c(m+ 1), projects in the interval (c(m), c(m+ 1)) are approved
in the first period for sure under majority rule m+1, while they may be rejected under
majority rule m. As c(m+ 1) < 1/4, these projects are characterized by high expected
social benefits. Thus, from an ex-ante perspective, voters are better off if such projects
are more likely to pass. Again, this effect favors higher majority rules.

15The fact that high types may choose to implement a project with a negative expected return even

for themselves is an example of what Bai and Lagunoff (2007) call the Faustian tradeoff in politics,

where today’s policy is determined by a desire to influence either the identity or the set of feasible

choices of a future policy maker. By implementing immediately, today’s pivotal voters make sure that

tomorrow’s “leaders” have no power to make a decision. While implementation out of a concern that

tomorrow’s leaders could implement the project anyway is reminiscent of the act of committing suicide

out of a fear of death, it is nevertheless rational.
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We summarize these observations in the following proposition.

Proposition 4. 1. For c ≤ c((N + 1)/2), all majority rules always lead to first
period implementation, and thus, the expected ex-ante payoff is the same under
any majority rule.

2. For c ∈ (c((N+1)/2), c(N)), unanimity is an optimal majority rule. In particular,
it strictly dominates simple majority rule.

3. Unanimity rule also dominates simple majority for c > 3/4.

While Proposition 4 emphasizes the positive effects of supermajority rules, there
are also countervailing effects that increase the benefit of low majority rules. Because
all thresholds c decrease below c = 1/4, the behavior of the electorate becomes more
conservative under any majority rule. Of course, for c ∈ (c(N), 1/4) the negative
welfare consequences of this effect are less severe with a lower majority rule. Moreover,
for projects with c ∈ (1/4, 1/2) the fact that the project may still be implemented
in period two, even if it is rejected in period one, reinforces the relative advantage of
low majority rules. Clearly, to this stronger relative advantage corresponds a larger
comparative disadvantage for projects with negative expected net benefits.

3.4 Average ex-ante payoffs

The option to wait produces effects both in favor and against low majority rules, so it is
natural to ask which of these effects dominates. In what follows we assume again that c
is drawn from some distribution F and denote the average ex-ante payoff of an individ-
ual voter under majority rule m by Π(m,N). That is, Π(m,N) =

∫ 1
0 π(m,N, c)dF (c).

Our first result obtains in the case of a large electorate and shows that the optimal
majority rule with the option to wait is weakly larger than the optimal majority rule
in the benchmark case. This result holds for a very large class of distributions of c.

Proposition 5. Let s denote a proportional majority rule, i.e. s = m/N . Let S∗

denote the set of ex-ante optimal proportional majority rule when voters have the option
to wait, c is distributed according to F and N goes to infinity. That is,

S∗ = {s∗| lim
N→∞

Π(ds∗Ne, N) ≥ lim
N→∞

Π(dsNe, N) for all s ∈ [1/2, 1]}

Similarly, let

S̃∗ = {s̃∗| lim
N→∞

Π̃(ds̃∗Ne, N) ≥ lim
N→∞

Π̃(dsNe, N) for all s ∈ [1/2, 1]}

be the set of optimal proportional majority rules in the limit when there is no option to
wait. Then inf S∗ ≥ sup S̃∗ for all distributions F with 1−F (3/4)+F (1/4)−F (1/6) > 0
(i.e., whenever Prob(c ∈ (1/6, 1/4] ∪ (3/4, 1]) > 0).
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Proof. See Appendix.

What are the intuitive benefits of increasing the majority rule when society has
the option to wait? Consider a distribution that is symmetric around c = 1/2, so
that (by Proposition 2) simple majority rule is optimal in the benchmark case. Now
introduce the option to wait. For projects with c = 1/4, low types now strictly prefer
to wait, as the expected value of waiting is positive. Specifically, in period 2, all
projects are implemented with probability 1/2, and so, for given c, the value of waiting
is UW = 1

2

(
1
2 − c

)
. Thus, in period 1, low types agree to implement if and only if

1
2 − 2c ≥ 1

2

(
1
2 − c

)
, hence whenever c ≤ 1/6. Similarly, first period high types vote

for immediate implementation whenever c ≤ 5/6. Thus, if c ≤ 1/6, the project is
implemented in the first period. Projects with c ∈ (1/6, 5/6] are implemented with
probability 1/2 in the first period, and projects with c > 5/6 are not implemented in
period 1. In period 2, those projects rejected in the first period are reconsidered, and
each has a probability of 1/2 of gaining sufficient support for implementation.

Now consider the effect of a supermajority rule that requires approval of sN voters,
where s > 1/2 + ε, with ε > 0. Since the proportion of high types among all voters is
almost certainly close to 1/2, the project will not be implemented in period 2 under
any supermajority rule. Thus, the value of waiting is zero. Furthermore, a project is
implemented in period 1 if and only if low types agree, that is, if 1

2 − 2c ≥ 0. Hence,
under a supermajority rule, all projects with c ≤ 1/4 are implemented in the first
period, and no projects with c > 1/4 are ever implemented.

Relative to simple majority rule, a supermajority rule therefore has three effects:
First, it makes first-period low types more willing to implement low-c projects. Second,
first-period high types become more reluctant to implement high-c projects. Third, it
hampers implementation of projects in the second period. All three effects are socially
desirable. This is quite obvious for the first two effects. For the third one, observe
that those projects that are considered for implementation in the second period are an
adverse selection from the set of all projects, because the best projects (with the lowest
c) have already been implemented by unanimous consent in period 1. Since the initial
distribution of c was symmetric around 1/2, the average ex-ante payoff from a project
that is still available for implementation in period 2 is negative, so that a supermajority
rule is strictly better in that period.

Since Proposition 5 holds for a large class of cost distributions, it cannot characterize
the optimal majority rule with the option to wait precisely. Thus, while we show that
the optimal majority rule cannot decrease (relative to the case without waiting), it
remains unclear whether and by how much the optimal majority rule increases, and
how this depends on N . In particular, as we show in the proof of Proposition 5, any
supermajority rule yields the same ex-ante expected surplus in the limit, and thus the
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limit case cannot inform us on whether (in small or medium-sized electorates), the
optimal majority rule is close to simple majority or unanimity rule.

The following Proposition 6 is therefore an important complement to Proposition 5:
It pertains to a specific cost distribution, but shows that, in this case, the option to
wait leads to a substantial increase in the optimal majority rule for any N . Remember
that, under the assumption that c is uniformly distributed on [0, 1], simple majority
rule is optimal without the option to wait.

Proposition 6. Suppose that c is ex-ante uniformly distributed on [0, 1], so that Π(m) =∫ 1
0 π(m, c)dc.

i) Π(m+ 1)−Π(m) < 0 for all m ≥ 2N/3 and

ii) Π(m+ 1)−Π(m) > 0 for all (N + 1)/2 ≤ m < 7N/11.

Moreover, Π((N + 1)/2) < Π(N).

Proof. See Appendix.

While Proposition 6 does not determine the optimal majority rule exactly, it is clear
from (i) that the optimal majority rule is at most d2N/3e, i.e., the lowest majority rule
that is higher than a two-thirds majority. From (ii), it follows that the optimal majority
rule is a supermajority rule with m/N ≥ 7/11 ≈ 0.636. In particular, if the number of
voters N is large, then the optimal majority rule as a percentage of the electorate lies
either within or arbitrarily close to the interval [7/11, 2/3].

Interestingly, when the option to wait is introduced, simple majority not only loses
its status as the optimal majority rule, but it actually becomes the worst majority rule.
It is dominated even by unanimity (which is the worst of all supermajority rules that
have m ≥ d2N/3e). Thus, loosely speaking, choosing a “too high” supermajority rule
has a lower welfare cost than choosing a majority rule that is “too low”.

While Proposition 6 holds for the uniform cost distribution, it is intuitive that the
result is robust. For different cost distributions that are ‘close’ to a uniform distribution,
the optimal majority rule would be close to the one characterized in Proposition 6, and
thus a supermajority rule. For example, one can show that, for any density of the
distribution that satisfies 1/4 ≤ f(c) ≤ 2 for all c, a supermajority rule is ex-ante
better than a simple majority rule.16

16The (rather tedious) proof of this claim is available from the authors upon request. Also note that,

while there may be even weaker assumptions under which supermajority rules are optimal, there are

some distributions for which the result does not hold. For example, if c = 1/4 with certainty, then

simple majority rule is optimal for any N , with or without the option to wait.
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3.5 Does the option to wait increase the welfare of voters?

In settings with a single decision maker, the option to postpone the investment decision
always weakly increases the decision maker’s expected profit. This is obvious, as the
decision maker can still choose to go ahead and invest immediately, but sometimes
he may strictly prefer to wait. While our setup here is similar, the answer to the title
question is not obvious, as the option to wait influences a game between different voters,
rather than the decision problem of a single decision maker.

Indeed, for some values of c, the option to wait hurts citizens from an ex-ante per-
spective. For example, projects with c > 3/4 are never implemented without the option
to wait, as even the first period high types have a negative expected profit from their
implementation. In contrast, with the option to wait and simple majority rule, each
project that was rejected in period 1 has a 50 percent chance of being accepted in pe-
riod 2; in most of the cases when the project is implemented in period 2, the percentage
of winners is smaller than c, and so the project is socially undesirable. Moreover, with
the option to wait, c̄(m) > 3/4 for many majority rules, so that some projects that
would definitely be rejected without the option to wait are actually implemented in
period 1 with positive probability.

However, there are also project types for which the option of waiting increases
expected social welfare. For instance, if c ∈ (c(m), 1/4], then a project may be rejected
in period 1. Without the option to wait, such a rejection is final, while there is a
second period chance for (on average beneficial) implementation with the option to
wait. Thus, there exist some cost levels for which ex-ante welfare increases, and others
where welfare decreases with the option to wait. Again, it is interesting to see which
effect dominates from an ex-ante perspective.

The following Proposition 7 shows that, often, the option to wait harms voters in
expectation. The first part of the proposition considers the limit case of N →∞; under
some condition on the distribution (which is satisfied, for example, by any distribution
that is symmetric around 1/2), the option to wait cannot strictly benefit voters. The
second part again specializes to a uniform distribution of c and shows that, for a large
range of low supermajority rules, the option to wait lowers ex-ante payoffs, and only
under very high majority rules, the option to wait is guaranteed to have a positive
social value in terms of average ex-ante payoffs. In particular, for N > 5, we show that
the expected payoff without the option to wait and simple majority rule dominates the
expected payoff with the option to wait and the optimal supermajority rule in this case.

Proposition 7. 1. Let s∗ and s̃∗ be defined as in Proposition 5, and assume that
F satisfies

∫ 3/4
1/4 (1 − 2c)dF (c) ≤ 0. Then, in a large electorate, the ex-ante ex-

pected utility is weakly lower with the option to wait: limN→∞Π(ds∗Ne, N) ≤
limN→∞ Π̃(ds̃∗Ne, N).
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2. Suppose that F (c) = c. If N > 3 and m ≤ b3N/4c then Π̃(m) > Π(m). If,
instead, m ≥ 13N/16 then Π̃(m) < Π(m).

3. Suppose that F (c) = c. For N > 5, the maximal average ex-ante payoff is strictly
lower if voters have the option to wait than if they do not. That is, maxm Π̃(m) >
maxm Π(m).

Proof. See Appendix.

Parts 2 and 3 of Proposition 7 provide a generic and robust example that contrasts
starkly with the value of waiting in individual decision problems, where an individual
decision maker (facing the same distribution of c) would always strictly benefit from
the option to wait.

For an intuition, consider a setting where N is large. Under simple majority rule
without the option to wait, all projects with c ≤ 1/4 are unanimously implemented,
just as under the optimal supermajority rule. In addition, however, projects with
c ∈ (1/4, 3/4] are implemented under simple majority rule if and only if a majority of
voters has a high type, and this is, on average, better (from an ex-ante perspective)
than not implementing any of these projects.17 Again, nothing in this argument relies
on the assumption that the cost distribution is uniform, and the result that ex-ante
expected utility is lower with the option to wait is thus quite robust.

4 Extensions

Like most political economy models, our model imposes some strong structural assump-
tions. In particular, we assume that there are only two different payoff types in each
period, types are equally likely, and the second period type of a voter is independent
of his first period type. We do this in order to generate tractability and comparability
to the case without the option to wait.

In this section, we want to explore the robustness of the model when we loosen some
of our assumptions. In Section 4.1, we analyze a setting where second period valuations
of individuals are correlated with each other, so that voters are more likely to agree
with the majority of other voters ex-post. In Section 4.2, the first- and second-period
valuations of each individual are correlated, that is, first period high types are more
likely to be second period high types than first period low types.

17Clearly, this argument requires that N is large, but finite, because when we take N to infinity, then

lim Π(m, N) = lim Π̃(m, N).
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4.1 Systematic second-period risk

In our basic model, each voter’s probability of being a high type in period 2 is 1/2.
We now assume instead that, at the beginning of the second period, nature draws a
parameter µ from a uniform distribution on [0, 1]; then, each voter is assigned a high
type with probability µ (and, correspondingly, a low type with probability 1− µ).

Note that this variation of the model would not at all affect the expected utility
or first period actions of a single decision maker, as, from the perspective of the first
period, the expected probability of being a high type in period 2 remains at 1/2 in
this scenario. Consequently, both the implementation payoff and the value of waiting
remain unchanged.

However, the model variation introduces correlation between the types of different
voters in the second period: The probability of voter i being a high type in the second
period, conditional on voter j 6= i being a high type in that period, is Prob(V i

2 =

1|V j
2 = 1) = Prob(V i

2 =1∩V j
2 =1)

Prob(V j
2 =1)

=
∫ 1
0 µ

2dµ∫ 1
0 µdµ

= 2/3, while this probability is equal to 1/2 in
the basic model. Effectively, while voters still do not know in the first period whether
they will like the project in the second period, they are now more likely than in the
basic model to agree with the majority of the other voters about the desirability of the
project ex-post: Say, if µ turns out to be high, then it is likely that a particular voter
i is a high type, and also likely that the majority of other voters agrees.

For example, consider the job market example from Section 2.3. Suppose that,
whether a particular faculty member “likes” next year’s candidate (i.e., receives a pos-
itive net payoff from the candidate being hired) depends stochastically on that candi-
date’s “quality” (i.e., µ). A high quality candidate is more likely to be liked by each
existing faculty member than a low quality candidate, so there is correlation between
the opinions of different voters. However, if the department rejects this year’s candi-
date, its voters do not know the quality of the (feasible) candidates next year, so next
year’s µ is a random variable from today’s perspective.

What is the value of waiting in this setup, for a project with a given value of c?
Just as in the basic model, we can condition on whether voter i is or is not pivotal
for second period implementation. Writing p2(m,N, µ) and q2(m,N, µ) for the obvious
generalizations of the functions p(m,N) and q(m,N) from the basic model, we have

UW (c,m) = E[max{V i
2 − c, 0}]p2(m,µ) + (E(V i

2 )− c)q2(m,µ) =∫ 1

0

[(
N − 1
m− 1

)
µm−1(1− µ)N−m · µ(1− c) +

N−1∑
k=m

(
N − 1
k

)
µk(1− µ)N−1−k · (µ− c)

]
dµ.

(7)

The first term in (7) refers to the case that individual i is pivotal, which happens with
probability

(
N−1
m−1

)
µm−1(1−µ)N−m; then, with probability µ, individual i is a high type
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and votes for implementation, in which case his payoff is 1− c. The second term refers
to the case that there are at least m high types among the other voters; in this case,
voter i’s expected type is µ, so that his expected implementation payoff is (µ− c).

Just like in the basic model, intersecting UW (c,m) with UI(0, c) and with UI(1, c)
yields the values for c(m) and c̄(m), respectively. All projects with c ≤ c(m) are
unanimously approved in the first period; all projects with c > c̄(m) are unanimously
rejected in the first period; and for projects with c ∈ (c(m), c̄(m)], voting is type
dependent and the voting outcome in period 1 depends on the realization of voter
types.

Observe that the function UI(V1, c) is linear in V1, so EV1UI(V1, c) = UI(EV1, c).
Therefore, we can write the ex-ante expected utility, given majority rule m, as

Π(m) =
∫ c(m)

0
UI(0.5, c)dc+

∫ 1

c̄(m)
UW (c,m)dc+

∫ c̄(m)

c(m)

[
N∑

k=m

(
N

k

)(
1
2

)N
UI

(
k

N
, c

)
+

(
1−

N∑
k=m

(
N

k

)(
1
2

)N)
UW (c,m)

]
dc

(8)

The first of these terms corresponds to those projects that have c ≤ c(m) and are all
implemented in period 1. All projects with c > c̄(m) are rejected in period 1, and each
voter obtains the value of waiting. The third integral corresponds to projects with a
cost between c(m) and c̄(m); if there are k ≥ m high types in period 1, these projects
are implemented immediately and generate a per-capita utility of UI(k, c); otherwise,
if k < m, the project is delayed and each voter obtains the value of waiting.

Figure 3 shows the function Π(m,N) for N = 9, N = 99 and N = 199. For N = 9
in part (a), the optimal majority rule is m = 6, that is, a two-thirds majority rule, just
as in the basic model. For N = 99 in part (b) and N = 199 in (c), the optimal m is
approximately equal to 0.8N , respectively. Thus, the optimal majority rule in these
cases is considerably larger than in the basic model, where the optimal majority rule
is approximately between 7/11 and 2/3 of the electorate.

Intuitively, the reason for why the optimal majority rule increases when voters’
second period payoffs are correlated is as follows. Remember that the optimal majority
rule in the basic model is (about a 2/3) supermajority rule. If N is at least moderately
large, then it is relatively unlikely that a project would be implemented in the second
period. For this reason, low types are willing to agree to first period implementation of
projects with a low c: They don’t have much to lose in the first period, and potentially
a lot to gain in the second period if their second period type is high, but are likely to
receive this payoff only if the project is already implemented in the first period. As a
consequence, projects with c ≤ c ≈ 1/4 are implemented unanimously in period 1, and
they make up the largest part of all projects that are implemented at all.
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Figure 3: Ex-ante expected utility for different majority rules
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Consider what happens when we leave the majority rule unchanged, but second
period types are high with probability µ, where µ is itself a random variable. In this
case, it is now much more likely that sufficiently many voters agree in the second period
to implement the project. Thus, the value of waiting increases, and first period low
types become less inclined to implement a project already in the first period (so c

decreases). From an ex-ante perspective, the additional projects that are now rejected
(i.e., projects with costs between the old and the new level of c) are socially very
valuable; since their c is less than 1/4, from a per-capita perspective, they should be
implemented based on their first period payoffs for high types alone (the per-capita
surplus of these projects is positive even if all voters turn out to be low types in the
second period). Thus, the decrease of c is very inefficient. Increasing the majority rule
reduces the value of waiting, and thus, more projects are accepted (unanimously) in the
first period. This effect outweighs the cost that, with a higher majority rule, slightly
more (on average efficient) projects are rejected in the second period.

To gain more insight, consider the case of a very large society (N → ∞). Let
s = m/N denote the proportional majority rule. In the second period, the project is
implemented if and only if µ > s. Thus, defining UW (c, s) = limN→∞ UW (c, dsNe, N),
the value of waiting is

UW (c, s) = Prob(µ ≥ s) [E(µ|µ ≥ s)− c] = (1− s)
(

1 + s

2
− c
)
. (9)

It is easy to check that UW (c, s) is maximal for s = c. Intuitively, in the second period
a utilitarian social planner would accept a project if and only if the realized percentage
of winners µ is greater than c.

When are first period low types just indifferent between implementing the project
and waiting? Solving UI(0, c) = UW (c, s) yields

c =
s2

2(1 + s)
(10)

Similarly, high types are indifferent between implementing in period 1 and waiting if

c̄ =
1 + s2

2

1 + s
(11)

Under simple majority rule, projects with costs between c and c̄ are implemented
with probability 1/2 in the first period. From (10), we have c = 1/12, and from (11), we
have c̄ = 3/4 under simple majority rule. Thus, expected ex-ante utility under simple
majority rule is

lim
N→∞

Π
(
N

2
, N

)
=
∫ 1/12

0
(1− 2c)dc+

∫ 3/4

1/12

[
1
2

(1− 2c) +
1
4

(
3
4
− c
)]

dc

+
∫ 1

3/4

1
2

(
3
4
− c
)
dc =

11
64

= 0.171875.
(12)
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Consider now a supermajority percentage s ≡ m/N ≥ 0.5 + ε (for some ε > 0).
Since the percentage of high types in the first period is almost certainly within ε of 0.5,
if c > c(m,N), there are almost never enough high types to implement the project in
period 1. Thus, expected ex-ante utility under supermajority rule s is

lim
N→∞

Π(dsNe, N) =
∫ c

0
(1− 2c)dc+

∫ 1

c

(
1 + s

2
− c
)

(1− s)dc

= (1− c)
[
c+

1− s2

2
− 1− s

2
(1 + c)

]
=
s(2− s)(2 + 2s− s2)

8(1 + s)

(13)

where the last line follows from substituting (10). Differentiating (13) with respect to
s yields

3s4 − 4s3 − 10s2 + 4s+ 4
8(1 + s)2

Setting this equal to zero and solving yields that the optimal supermajority rule is
approximately s∗ = 0.7985.18 Substituting the optimal value into Π yields an expected
utility of about 0.1973, which is larger than the ex-ante utility under simple majority
rule. Therefore, a supermajority rule of approximately 80% is optimal in the limit,
which corresponds very well to the maximum in the graphs of Figure 3.

4.2 Intertemporal correlation

We now consider the case that each voter’s first and second period type are positively
correlated. Specifically, we assume that a voter’s second period type coincides with his
first period type with probability r ∈ [0.5, 1], i.e. Prob(V i

2 = 1|V i
1 = 1) = Prob(V i

2 =
0|V i

1 = 0) = r. We continue to assume that each player has an equal chance of being a
high or a low type in the first period.

Benchmark: No option to wait. As in the basic model, we start by considering
the case of a one-off election in period 1. In our new setting, the net present value of
a project with cost parameter c for voter i, is

UI(V i
1 , c, r) = V i

1 + E[V i
2 |V i

1 ]− 2c =

1 + r − 2c if V i
1 = 1

1− r − 2c if V i
1 = 0.

(14)

For example, a first period high type gets an immediate payoff of 1, and is a second
period high type with probability r. A first period low type gets zero in the first period,
and is a second period high type with probability 1− r.

If the first period decision is final, high types vote in favor of projects with c ≤
(1 + r)/2, while low types only vote in favor of projects with c ≤ (1 − r)/2. The

18The second order condition is satisfied at s∗.
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stronger is the correlation across periods (i.e., the higher is r), the more extreme are
these cost thresholds, because low types have only a very slight hope that they will
profit from the project in period 2, while high types are very confident that they will
remain high types. Essentially, the higher is r, the more the social decision problem
resembles a situation with known benefits.

The ex-ante expected payoff of a project with cost c, given r and majority rule m,
is

π̃(m, c, r) =


1− 2c if c ≤ 1−r

2

q(m)(1− 2c) + p(m)
2 (1 + r − 2c) if 1−r

2 < c ≤ 1+r
2

0 if c > 1+r
2

(15)

Just as in the basic model, the ex ante equilibrium payoff is a piecewise linear function
of c that exhibits a downward jump at (1− r)/2 and an upward jump at (1 + r)/2.

Following the same arguments as in the proof of Claim 1, we can show that the
optimal majority rule for a given c is

m∗ = dN(2c− (1− r))/2re,

which is a decreasing function of r. Thus, correlation strengthens the case for low ma-
jority requirements, and it is therefore intuitively clear that the result of Proposition 2
also holds here: If the project decision cannot be postponed and costs are drawn from
some distribution that is symmetric around 1/2, then simple majority yields the highest
average ex-ante payoffs.

The option to wait and intertemporal correlation. We now turn to the case
that society can implement the project in period 2, if it was turned down in period 1. In
order to characterize first period voting behavior, we need to find the value of waiting.
In contrast to the basic model, it matters here whether individuals can observe the
payoff types of other voters. The number of first period high types influences the
distribution of the number of second period high types, and thus the probability of
implementation in period 2. Thus, if voters can observe the first period types of other
voters, they will condition their behavior on it. If, instead, types are only privately
observed, then each voter has to take into account the first period type distribution
conditional on the event that his vote is decisive in the first period election.

In what follows, we assume that payoff types are publicly observed. We make this
assumption for two reasons. First, this assumption is probably reasonable for appli-
cations with small electorates. Second, a model with publicly observed types is more
tractable than a model with privately observed payoff types. In particular, with pub-
licly observable payoff types, iterated elimination of weakly dominated strategies still
delivers a unique strategy profile (up to tie breaking in situations where individuals
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are indifferent between their two first period actions, independently of other voters’
behavior). The same is not true for a model with privately observed types, where the
voting game may exhibit multiple (sequential) equilibria in iteratively weakly undomi-
nated strategies. A sufficiently detailed exposition of such a game would considerably
increase the length of the paper. Moreover, in qualitative terms, the interesting results
do not change substantially from the case considered here.19

We start our analysis by defining voter i’s value of waiting, which now depends not
only on the cost parameter c and the majority rule m, but also on the intertemporal
correlation parameter r, voter i’s first period type and the number of high types among
other voters, h, which determines the distribution of the number of second period high
types and hence the probability of second period implementation. Formally, we have

UW (V i
1 , c,m, h, r) = E[max{V i

2 − c, 0}|V i
1 ]p2(m,h, r) + (E[V i

2 |V i
1 ]− c)q2(m,h, r)

=

(1− c)(1− r)p2(m,h, r) + (1− r − c)q2(m,h, r) if V i
1 = 1

(1− c)rp2(m,h, r) + (r − c)q2(m,h, r) if V i
1 = 0.

(16)

The functions p2 and q2 are generalizations of the corresponding functions in the basic
model and represent the probability of being pivotal in period two, and the probability
that the project will pass in period 2 independently of voter i’s will, respectively. In
order to formally define p2 and q2, consider the transition function

t(`, k, r) =
k∑
j=0

(
`

j

)(
N − 1− `
k − j

)
(1− r)k+l−2jrN−`−1−k+2j ,

which describes the probability of moving from a first period type profile in which ` of
the N − 1 other players have high types to a second period profile in which k of them
have high types. The functions p2 and q2 can now be written as

p2(m,h, r) = t(h,m− 1, r) and q2(m,h, r) =
N−1∑
j=m

t(h, j, r).

Just as in the basic model, both (14) and (16) are linearly decreasing functions of c.
Moreover, (14) decreases faster than (16). It is also obvious that, for c sufficiently close
to 0, implementing the project immediately is strictly better than waiting, irrespective
of the values of V i

1 , h, m and r. Similarly, if c is sufficiently close to 1, then delaying
the project dominates investing immediately for all parameter values. Thus, for each
triple (h,m, r), there are cost thresholds c(h,m, r) and c̄(h,m, r) at which low and high
types switch from approval to rejection, respectively. Since

UW (0,
1− r

2
,m, h, r) =

(1− r)
2

((1 + r)p2(m,h, r) + q2(m,h, r)) > 0 = UI(0,
1− r

2
, r),

19A formal analysis of the voting game with privately observed types is available from the authors

upon request.
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it follows that c(m,h, r) < (1− r)/2 for all (m,h, r). Similarly, for high types we have

UW (1,m, r, h, r) = (1− r)rp2(m, l, r) < 1− r = UI(1, r, r),

which implies that c̄(m,h, r) > r for all (m,h, r). Results that parallel Proposition 3
for the behavior of c and c̄ can be obtained, but, in order to save some space, we refrain
from presenting them explicitly.

Turning to the definition of the ex-ante expected payoff, it is convenient to cal-
culate this in two steps: First, we integrate over a player’s payoff type, given that
h of other players are high types. Let C0

m,h,r = {c|c ≤ c(m,h, r)}, C1
m,h,r = {c|c ∈

(c(m,h, r), c̄(m,h, r)]}, and C2
m,h,r = {c|c > c̄(m,h, r)}. For any triple (c,m, r),

voter i’s expected payoff, conditional on there being h high types among the other
voters, is

πh(m,N, c, r) =


UI(1, c, r) + UI(0, c, r)

2
if c ∈ C0

m,h,r ∨ (c ∈ C1
m,h,r ∧ h ≥ m)

UI(1, c, r) + UW (0,m, c, h, r)
2

if c ∈ C1
m,h,r ∧ h = m− 1

UW (1,m, c, h, r) + UW (0,m, c, h, r)
2

if c ∈ C2
m,h,r ∨ (c ∈ C2

m,h,r ∧ h < m− 1)

Second, we now take the expectation with respect to h, which gives

π(m,N, c, r) =
1

2N−1

N−1∑
h=0

(
N − 1
h

)
πh(m,N, c, r).

As in the basic model, this function a piecewise linear function of c. Of course, π(m, c, r)
exhibits more than just two discontinuities, since both high and low type voters have
multiple thresholds (one for each h) at which behavior switches. Figure 4 shows for
the case that r = 2/3, the expected payoffs for N = 15 under the two majority rules
m = 8 and m = 9.

One of the central results of the basic model was that, with the option to wait,
simple majority is dominated by all supermajority rules. In comparison to the basic
model, intertemporal correlation strengthens the case for simple majority rule. This
is quite clear for r = 1, because the dynamic structure of our model then becomes
irrelevant: If individuals’ benefits are constant over time, then the set of voters who
approve remains constant, and hence, a project is either implemented at once or never.
This is exactly the same behavior as in the benchmark model without the option to
wait, where we know that simple majority maximizes the ex-ante average payoff.

It is intuitive that, as we increase r from 1/2 (i.e., the basic model) to r = 1
(i.e., perfect correlation), the optimal supermajority rule decreases. It is an interesting
quantitative question to consider for which levels of r the optimal supermajority rule
switches.
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Figure 4: Ex-ante payoff π as function of c: N = 15, r = 2/3, m = 8 (blue) and m = 9
(black)

Figure 5: Π as function of r for N = 15, m = 8 (blue),m = 9 (green),m = 10 (black);
and Π̃ for m = 8 (red)
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Figure 5 shows, for N = 15, the average ex-ante payoff Π(m,N, r) =
∫ 1

0 π(m, c, r)
as a function of r for different majority rules. Consider first the three lower curves that
intersect each other. The blue curve in Figure 5, the flattest of the three, represents
the payoffs under simple majority, i.e. m = 8, while the green and the black one (the
steepest one) show the payoffs under the supermajority rules m = 9 and m = 10,
respectively. A two-thirds majority rule (m = 10) is the optimal majority rule in the
basic model, and remains optimal up to approximately r = 0.64. For r between about
0.64 and 0.92, m = 9 (i.e. a 60% rule) is the optimal majority rule, and only for
higher levels of correlation, simple majority rule is optimal. Thus, while intertemporal
correlation decreases the optimal majority rule, our qualitative result concerning the
optimality of supermajority rules is very robust even at high levels of correlation.20

The highest curve (red) shows the ex-ante expected payoff without the option of
waiting. From our discussion in the basic model, we know already that, for r = 0.5
this payoff is higher than the payoff with the option to wait, even under the optimal
supermajority rule. Figure 4 shows that this result continues to hold for r > 1/2,
except at r = 1 where the difference between the payoffs with and without the option
to wait becomes zero. This is intuitive, as with perfect correlation, a project is either
implemented immediately or not at all, so payoffs are the same, whether or not second
period implementation is, in principle, possible.

5 Previous literature on supermajority rules

Our results shed light on an important question in the endogenous determination of
institutions: Why do some organizations choose supermajority rules, and which features
of decision problems influence this choice? In this section, we relate our model to
previous literature on this subject.

Majority rules within organizations vary considerably, from simple majority rule to
unanimity rule. Often, the choice of the majority rule that is to govern future decision
making is a contentious issue itself, such as in the recent EU summit, which, in the
end, adopted some form of a supermajority rule. Supermajority rules are also used in
most countries for a change of the constitution, and, often implicitly, for “normal” leg-
islation. For example, in parliamentary systems with a strong committee organization,
a legislative proposal usually needs the support of both the respective committee and
the house. In parliamentary systems with two chambers, certain legislative proposals
need the support of both chambers.21

20This result is further strengthened by the fact that N = 15 is relatively small in our example, so

that even a simple majority rule requires the approval of 8/15 = 53.3% of the population, and the

smallest possible supermajority rule is already a 60% rule.
21Tullock (1998), p.216, estimates that legislative rules in the US for changing the status quo are

33



Several previous papers have analyzed arguments for supermajority rules from an
economic point of view. Buchanan and Tullock (1962) argue for unanimity rule as
the suitable rule governing social choices. Under a simple majority rule, a majority of
people could be tempted to implement certain projects that are not socially desirable
because they can “externalize” part of the cost associated with this project to the losing
minority. Under unanimity rule, only Pareto improving projects are implemented.
However, Guttman (1998) has argued that the unanimity rule leads to a rejection of
many projects that are not Pareto improvements, but nevertheless worthwhile from a
reasonable social point of view. Assuming that the social goal is to minimize the sum
of both types of mistakes, he shows that simple majority rule is optimal. Our model is
constructed in a way that simple majority rule would also be optimal if voters have to
make a once-and-for-all decision about the project in the first period. However, with
the option to postpone a decision to the second period, we show that (in the same
symmetric setting), a supermajority rule is optimal.

Another rationale for supermajority rules is that this counteracts the problem of
time inconsistency of optimal policies (see, e.g., Gradstein (1999) or Dal Bo (2006)).
For example, a constitution that protects investment by inhibiting nationalization is
valuable only if the constitution cannot be easily changed after investment has taken
place. In our model, time inconsistency is not an issue.

As is well known, simple majority rule may lead to cycles in electoral preferences. A
higher required majority reduces the possibility of cycles. Indeed, Caplin and Nalebuff
(1988) show that a (1−(n/(n+1))n) supermajority rules out cycles, if voters have single
peaked Euclidean preferences in an n–dimensional space. In our model, the decision is
binary in each period, so cycles never arise in our model.

Aghion and Bolton (2003) analyze the optimal choice of the majority rules in a
model where a polity has to decide simultaneously about public good provision and
costly redistribution, and redistribution creates a deadweight loss. They assume that
the constitutional rules are written before voters learn the costs and benefits of the
public good. The optimal majority rule trades off the higher ex-post flexibility of
low majority rules (which lead to more efficient public good provision) against the
protection against excessive redistribution afforded by supermajority rules.

Eraslan and Merlo (2002) analyze an advantage of unanimity rule over all other
majority rules in a model of bargaining with stochastic surplus. Under any majority
rule requiring less than unanimity, the proposer and voters he selected into the minimum
winning coalition have to fear that they might not be a part of a winning coalition in
the future if no agreement is reached today. Therefore, agreement may be reached too

“roughly equivalent to requiring a 60% majority in a single house elected by proportional representa-

tion.” See also Diermeier and Myerson (1999).
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early from a social point of view (i.e., for a too small surplus).
Messner and Polborn (2004) analyze an overlapping generations model in which

voters know that their preferences over reform projects will become more conservative
over the remainder of their lives. The initial population decides on the majority rule
to be used for later decisions. The median voter in the constitutional election prefers
to implement a supermajority rule, which allows him to transfer power to his (more
conservative) “average future self”. In contrast to Messner and Polborn (2004), the
electorate remains constant over time in our model, thus removing the incentive for
the initial generation to use supermajority rules in order to transfer power from future
voters to themselves. Also, the implementation decision on any reform project in
Messner and Polborn (2004) is a simple one-time, up-or-down vote, while our focus
here is on the timing of the implementation of reforms.

The implications of different majority rules have also been analyzed in settings
where voters have congruent interests, but are only imperfectly informed about the
consequences of the different alternatives. Inspired by Condorcet’s famous Jury Theo-
rem,22 several authors have analyzed which majority rule is most efficient in aggregating
the information that is dispersed in the electorate. Nitzan and Paroush (1985) find that
the probability of a correct choice is maximized under simple majority rule. Fedder-
sen and Pesendorfer (1998) analyze information aggregation with strategic voters and
show that simple majority rule is optimal for information aggregation purposes, while
unanimity rule is dominated by all other majority rules, if there are sufficiently many
voters. Bond and Eraslan (2007) show that supermajority or unanimity rules may have
an advantage for voters even in an information aggregation setting, if the proposal is
made by an agenda setter whose interest is diametrically opposed to the voters. The
intuition is that unanimity rule forces the agenda setter to make a more favorable pro-
posal to voters, and this outweighs the disadvantage that, with positive probability,
voters make mistakes under unanimity rule. The issue of information aggregation is
not present in our model as all voters hold, at all times, the same information.

6 Discussion and conclusions

We analyze a model in which voters have to choose whether to implement a project
immediately, or wait till the second period and reconsider the decision then. Our main
focus is the interplay of individual learning and social decisions, and how this is influ-
enced by the majority rule that governs the decision making process. We characterize

22Condorcet’s Jury Theorem states that under simple majority rule, the probability with which a

society facing a binary choice problem makes the correct choice, converges to one as the number of

voters increases.
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how the majority rule influences the value of waiting and individual voting behavior.
Our main conclusions were twofold: First, we show that, when society has the option

to wait, the optimal majority rule increases relative to the case where postponing is not
possible. For example, for a uniform project type distribution, the optimal majority
rule changes from simple majority (without the option to wait) to a supermajority
rule that is larger than 7/11 ≈ 63.6 percent, and, for a large society, also not larger
than a two-thirds majority rule. Correlation between first and second period valuations
reduces the size of the optimal majority rule. Perfect correlation re-establishes simple
majority rule as the optimal rule; however, even if correlation is high, but not perfect,
the optimal majority rule remains a supermajority rule.

Our second main result was that the option of waiting, which is always positive for
individual decision problems, can be negative for our social decision problem. Indeed,
we show that this is the case when the project cost is uniformly distributed from an
ex-ante perspective, even if society adopts the optimal majority rule in the case that
they have the option to wait.

Our model provides a fundamentally new rationale for societies choosing superma-
jority rules. Our principal effect in our model relies on voters’ uncertainty over the
consequences of project implementation, and the option value of waiting until new in-
formation is available. Thus, our model is most relevant for societies that frequently
face decision problems with such characteristics.

For example, one can argue that the European Union fits this description quite
well. The most important decisions that are made in the EU framework concern the
admission of new members, transnational investment projects like the introduction of
the Euro and the harmonization of industry regulations. One can argue that many
of these projects are less “standard” (relative to the most important policy issues in
the member states) and have uncertain payoff consequences for the member states.
Interestingly, the European Council (the council of member state governments that
makes the most significant decisions) uses a supermajority rule.

Also, most countries require supermajorities for changes of their constitution. Again,
this area appears closer to the setting of this model than ordinary legislation issues: At
the time when the constitution is written, future needs are difficult to foresee and po-
tential winners and losers are unclear, and even once a proposal arises, the consequences
of changes for the distribution of gains and losses are not necessarily clear.

In contrast, most ordinary legislation in national legislatures concerns social or
economic issues where preferences are more stable and well-known. As we have seen
in Section 4.2, the higher the correlation of voter types over time (and therefore, the
smaller the opportunity of learning), the closer is the ex-ante optimal majority rule to
simple majority rule.
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One direction in which future research can expand on our model framework is
as follows. In our model, individuals only choose how to vote. In some instances,
individuals may also be able to adapt to the policy enacted and thereby influence the
distribution of their payoff in the second period. This may be important, for example,
in issues where the project is some sort of environmental regulation, say, increasing the
private cost of some polluting activity. Adaptation (say, buying a smaller car, isolating
one’s home) may make compliance less costly over time, but the enacted policy (as well
as the expectation of which regulation will be in force in the next period) will affect
the optimal extent to which individuals adapt.
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7 Appendix

Proof of Proposition 2. Observe that Π̃(m) =∫ 1/4

0
(1− 2c)dF (c) + q(m)

∫ 3/4

1/4
(1− 2c)dF (c) +

p(m)
2

∫ 3/4

1/4

(
3
2
− 2c

)
dF (c)

=
∫ 1/4

0
(1− 2c)dF (c) +

(
q(m) +

p(m)
2

)∫ 3/4

1/4
(1− 2c)dF (c) +

p(m)
2

F (3/4)− F (1/4)
2

=
∫ 1/4

0
(1− 2c)dF (c) + x[q(m) + p(m)/2] + yp(m)/2

We thus have

Π̃(m+ 1)− Π̃(m)

= x

[
q(m+ 1) +

p(m+ 1)
2

− q(m)− p(m)
2

]
+ y

p(m+ 1)− p(m)
2

= −x[p(m+ 1) + p(m)]/2 + y[p(m+ 1)− p(m)]/2.

It is straightforward to show that this increment is positive if and only if

p(m+ 1)/p(m) =
N −m
m

≥ y + x

y − x
,

or equivalently iff

m ≤ (y − x)N
2y

.

Hence the increment changes sign at most once. If x ≥ −y/N < 0 then (y− x)N/2y ≤
(N + 1)/2 and thus in this case Π̃(·) is decreasing over the whole range of admissible
majority rules. On the other hand, if x < −y/N , then Π̃(·) is increasing at low majority
rules and decreasing at high majority rules. That is, unless (y − x)N/2y happens to
be an integer, Π̃, is single peaked in m, with its peak being d(y − x)N/2ye. If instead
(y − x)N/2y is an integer, then Π̃ is ‘single-plateaued’ where the plateau is given by
the two points m∗ = (y − x)N/2y and m∗∗ = (y − x)N/2y + 1.

Lemma A1. For all N and (N + 1)/2 ≤ m ≤ N ,
q(m,N)
p(m,N)

≤ N −m
2m−N

.

Proof. Fix N and m and let s = m/N . Observe that

q(m)
p(m)

=
N∑

`=m+1

p(`)
p(m)

=
∑N−1

`=m

(
N−1
`

)(
N−1
m−1

) =
N−1∑
`=m

(m− 1)!(N −m)!
`!(N − 1− `)!

=
N−1∑
`=m

(N − `) · · · (N −m)
m · · · `

=
N−1∑
`=m

∏̀
k=m

N − k
k

. (17)

38



Since (N − k)/k ≤ (N −m)/m = (1− s)/s for all k ≥ m it follows that the right hand
side of (17) is smaller than

N−1∑
`=m

(
1− s
s

)`−m+1

=
N−m−1∑
`=0

(
1− s
s

)`+1

≤

1− s
s

∞∑
`=0

(
1− s
s

)`
=

1− s
2s− 1

=
N −m
2m−N

.

Proof of Lemma 1. Observe that p(m+1)
q(m+1) ≥

p(m)
q(m) if and only if

p(m)
p(m+ 1)

≤ q(m)
q(m+ 1)

=
q(m+ 1) + p(m+ 1)

q(m+ 1)
=
p(m+ 1)
q(m+ 1)

+ 1. (18)

Rearranging and using p(m)/p(m+ 1) = m/(N −m), this becomes

N −m
2m−N

≥ q(m+ 1)
p(m+ 1)

. (19)

By Lemma A1 we have that
q(m+ 1)
p(m+ 1)

≤ N − (m+ 1)
2(m+ 1)−N

. Thus, since N−m
2m−N > N−(m+1)

2(m+1)−N ,

(19) is always satisfied, so that p(m)
q(m) is increasing in m.

Proof of Lemma 2. Consider the difference UW (c,m+ 1)− UW (c,m) =(
1
2
− c
)

(q(m+ 1)− q(m)) +
1− c

2
(p(m+ 1)− p(m))

=
1− c

2
[p(m+ 1)− p(m)]−

(
1
2
− c
)
p(m+ 1), (20)

where the second line results from substituting the identity q(m) = p(m+1)+q(m+1).
The expression in (20) is positive if and only if

c ≥ p(m)
p(m) + p(m+ 1)

=

(
N−1
m−1

)[(
N−1
m−1

)
+
(
N−1
m

)] =

(
N−1
m−1

)(
N
m

) =
m

N
.

Lemma A2. Np(d3N/4e, N) ≤ 4 for all N .

Proof. Given that N is an odd number we have that either 3N + 1 is divisible by 4 (for
N = 5, 9, 13, . . .) or 3(N + 1)/4 is an integer (for N = 3, 7, 11, . . .). In the first case we
have that d3N/4e = (3N + 1)/4, while in the latter case we have d3N/4e = 3(N + 1)/4.
Notice also that in either case we have d3(N + 4)/4e − d3N/4e = 3.

Let f(N) = Np(d3N/4e, N). In what follows we will show that f(N + 4)− f(N) <
0. This is suffcient for proving our statement since it implies that maxN f(N) =
max{f(3), f(5)} = max{3

(
2
2

)
/22, 5

(
4
3

)
/24} = 5/4 < 4.
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Letting m = d3N/4e the increment f(N + 4)− f(N) is given by

N + 4
2N+3

(
N + 3
m+ 2

)
− N

2N−1

(
N − 1
m− 1

)
=

N

2N−1

(
N − 1
m− 1

)[
(N + 4)(N + 3)(N + 2)(N + 1)
16(N + 1−m)(m+ 2)(m+ 1)m

− 1
]
.

Observe that (N+j+2) < 4(m+j) for j = 0, 1, 2 and that N+1 ≤ 4(N+1−m). Thus
the first term in the square brackets is a product of four numbers which are smaller
than one, and thus the term in square brackets is negative.

Proof of Proposition 3. We start by showing that the two thresholds lie within the
claimed bounds. Consider first the threshold value for low payoff types, c(m). If
c = 1/4, then the payoff of an immediate implementation of the project for low type
voters is given by substituting in (1), UI(0, 1/4) = E[V2] − 2 · (1/4) = 1/2 − 1/2 = 0.
The payoff from waiting is UW (1/4,m) = (3/8)p(m) + (1/4)q(m), which is positive for
all m. Therefore, low type voters always reject the project in period one if c ≥ 1/4 ,
i.e. c(m) < 1/4.

At c = 1/12, we have UI(0, 1/12) = E[V2] − 2 · (1/12) = 1/3, and UW (1/12,m) =
(11/24)p(m) + (5/12)q(m,N) = (p(m)/2 + q(m))(5/12) + p(m)/4. Given that both
p(m)/2+q(m) and p(m) each cannot be larger than 1/2, it follows that UW (1/12,m) <
5/24 + 1/8 = 1/3. Hence, a low type voter strictly favors immediate implementation
of a project with c = 1/12. Thus, 1/12 ≤ c(m) < 1/4

As for the threshold c̄(m), notice that implementing the project right away for
c = 2/3 and c = 5/6 yields to high type voters a payoff of UI(1, 2/3) = 3/2− 2(2/3) =
1/6, and UI(1, 5/6) = 3/2− 2(5/6) = −1/6, respectively. The corresponding expected
payoffs from waiting are UW (2/3,m) = (1− 2/3)p(m)/2 + (1/2− 2/3)q(m) = (p(m) +
q(m))/6 < 1/6 and UW (5/6,m) = (1 − 5/6)p(m)/2 + (1/2 − 5/6)q(m) = p(m)/12 −
q(m)/3 > −q(m)/3 > −1/6. Thus, if c ≤ 2/3, high types always favor immediate
implementation, and if c ≥ 5/6, they always reject immediate implementation. Thus,
c̄(m) ∈ (2/3, 5/6).

Remember that the threshold c̄(m) solves the equation

3
2
− 2c =

1− c
2

p(m) +
(

1
2
− c
)
q(m).

Thus, we have

c̄(m) =
3− q(m)− p(m)
4− 2q(m)− p(m)

.

Dropping the variables from the functions p and q and denoting their values at m+ 1
by p′ and q′ respectively we have

c̄(m) ≥ c̄(m+ 1) ⇔ 4− 2q − p
3− q − p

= 1 +
1− q

3− q − p
≤ 1 +

1− q′

3− q′ − p′
=

4− 2q′ − p′

3− q′ − p′
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which may be written equivalently as

3− q − p
1− q

= 1 +
2− p
1− q

≥ 1 +
2− p′

1− q′
=

3− q′ − p′

1− q′
.

Using q′ = q − p′ and p′/p = (N −m)/m we can express this condition as follows

(2− p)(1− q + p′)− (2− p′)(1− q) = p

(
3p′

p
− 1 + q − p′

p
p+

p′

p
q

)
= p

(
3N − 4m

m
+ q

N

m
− N −m

m
p

)
≥ 0.

Hence, it follows that c̄ is decreasing at m if and only if

3N − 4m+Nq − (N −m)p ≥ 0. (21)

Now observe that, since q > p′ and p′/p = (N −m)/m, we have that

Nq − (N −m)p > Np′ − (N −m)p = Np
p′

p
− (N −m)p = (N −m)p

(
N

m
− 1
)
≥ 0.

Since 3N − 4m > 0 for all m < 3N/4, we can therefore conclude that c̄ must be
decreasing at least up to m = b3N/4c.

Next we argue that if (21) is satisfied at m < N then it must also hold at m′ = m+1.
To see this, evaluate (21) at m and at m+ 1, and observe that the difference is

3N − 4m+Nq − (N −m)p−
[
3N − 4(m+ 1) +Nq′ − (N −m− 1)p′

]
=

4 + p′ [2(N −m)− 1] > 0.

It follows that c̄ is increasing from m = d3N/4e onwards if it is so at m = d3N/4e.
Notice that at m = d3N/4e we have 4m − 3N ≥ 1 and so we only have to show that
Nq(d3N/4e)− (N − d3N/4e)p(d3N/4e) < 1.

From Lemma A1, we know that p ≥ q(2m−N)/(N −m), and thus

Nq(d3N/4e, N)− (N − d3N/4e)p(d3N/4e, N)

≤ 2(N − d3N/4e)q(d3N/4e, N) ≤ N

2
q(d3N/4e, N) ≤ N

4
p(d3N/4e, N) < 1.

where Lemma A1 is used both for the first and the third inequality, and the last
inequality follows from Lemma A2.

Finally, observe that since q((N+1)/2)+p((N+1)/2)/2 = 1/2, p((N+1)/2) ≤ 1/2
and q(N) = 0 we have

c̄((N + 1)/2) =
5− p((N + 1)/2)

6
≥ 3

4
and

c̄(N) =
3− p(N)
4− p(N)

<
3
4
.
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Proof of Proposition 5. In the limit of N → ∞, a voter’s ex-ante expected utility
for simple majority rule and without the option to wait is

lim
N→∞

Π̃(dN/2e, N) =
∫ 1/4

0
(1− 2c)dF (c) +

1
2

∫ 3/4

1/4
(1− 2c)dF (c), (22)

because all projects with c ≤ 1/4 are implemented unanimously, and those with c ∈
(1/4, 3/4] are implemented with probability 1/2.

A voter’s ex-ante expected utility for a proportional supermajority rule s, with
s > 1/2, and without the option to wait, is

lim
N→∞

Π̃(dsNe, N) =
∫ 1/4

0
(1− 2c)dF (c) (23)

because all projects with c ≤ 1/4 are implemented unanimously, and those with c > 1/4
are (almost) never implemented, because they are only supported by high types, and
the proportion of high types is almost surely less than s by the law of large numbers.

Similarly, when waiting is possible, a voter’s ex-ante expected utility for a propor-
tional supermajority rule s, with s > 1/2, is limN→∞Π(dsNe, N) = limN→∞ Π̃(dsNe, N).
The reason is that, even when society can reconsider the decision in the second period,
the proportion of high types in the second period is (almost) never sufficient for imple-
mentation.

Last, consider the ex-ante expected utility for simple majority rule and with the
option to wait. In the second period, all projects are implemented with probability
1/2, and so, for given c, the value of waiting is UW,1/2 = 1

2

(
1
2 − c

)
. Thus, in the first

period, low types agree to implement if and only if 1
2 − 2c ≥ 1

2

(
1
2 − c

)
, hence whenever

c ≤ 1/6; similarly, first period high types vote for immediate implementation whenever
c ≤ 5/6. Thus, if c ≤ 1/6, the project is implemented in the first period. Projects with
c ∈ (1/6, 5/6] are implemented with probability 1/2 in the first period, and projects
with c > 5/6 are not implemented in the first period. In the second period, all projects
that were not implemented in the first period are implemented with probability 1/2.
A voter’s ex-ante expected utility under simple majority rule with the option to wait
is thus

lim
N→∞

Π(dN/2e, N) =
∫ 1/6

0
(1− 2c)dF (c) +

1
2

∫ 5/6

1/6
(1− 2c)dF

+
1
4

∫ 5/6

1/6

(
1
2
− c
)
dF (c) +

1
2

∫ 1

5/6

(
1
2
− c
)
dF (c)

(24)

Suppose the claim in the proposition is false for some distribution F . Since expected
utility under any supermajority rule, and with or without the option to wait, is equal to∫ 1/4

0 (1−2c)dF (c), a contradiction to the claim can only arise if there exists s̃∗(F ) ∈ S̃∗,
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with s̃∗(F ) > 1/2, and s∗(F ) = 1/2 ∈ S∗(F ). In this case,

lim
N→∞

Π(dN/2e, N) ≥ lim
N→∞

Π(ds̃∗(F )Ne, N) = lim
N→∞

Π̃(ds̃∗(F )Ne, N) ≥ lim
N→∞

Π̃(dN/2e, N)

(25)
where the inequality signs follow from the optimality of s∗(F ) and s̃∗(F ), respectively,
and the equality sign follows from limN→∞ Π̃(dsNe, N) = limN→∞Π(dsNe, N) for all
s > 1/2. The last inequality in (25) implies that∫ 3/4

1/4
(1− 2c)dF (c) ≤ 0. (26)

Furthermore, note that limN→∞Π(dN/2e, N)− limN→∞ Π̃(dN/2e, N) =

−1
4

∫ 1/4

1/6
(1−2c)dF (c)+

1
4

∫ 3/4

1/4
(1−2c)dF (c)+

3
4

∫ 5/6

3/4
(1−2c)dF (c)+

1
2

∫ 1

5/6
(1−2c)dF (c)

(27)
must be greater or equal to zero by (25). However, this inequality cannot hold, as all
terms are nonpositive (the second term is nonpositive by (26)), and either the first, the
third or the fourth term are strictly negative, by the assumption on F . This provides
the desired contradiction.

Note that, while our assumption on F is not necessary for the Proposition to hold,
some assumption is required. To see this, suppose that c has a one-point distribution
with all mass on c = 1/2. In this case, without the option to wait, all majority rules yield
the same ex-ante expected surplus of 0. Also, with the option to wait, all majority rules
yield an ex-ante surplus of 0. Thus, for this example, sup S̃∗ = 1 > inf S∗ = 1/2.

Proof of Proposition 6. In the interest of a compact notation in what follows we
write m′ = m + 1, q′ = q(m′) and p′ = p(m′); the probabilities which refer to the
majority rule m instead are simply denoted by p and q, respectively.

We have to show that the difference Π(m′)−Π(m) is negative whenever m ≥ 2N/3.
It is a matter of tedious but straightforward algebraic manipulations that this difference
is equal to the ratio23

2pqp′ + 8qp− 11p− 8pp′ − q2p− p(p′)2 − 16qp′ + 21p′ − 2q(p′)2 + 4(p′)2 + 3q2p′

4(4− 2q + p′)(4− 2q − p)
.

(28)
The denominator of this expression is clearly positive. Thus the sign of the difference
in average ex-ante payoffs coincides with the sign of the numerator of this expression.
Denote this numerator by d(p, q, p′).

23The following expression is obtained by using q′ = q − p′.
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We first show that for any p and q, d is monotonically increasing in p′. We have

∂d(p, q, p′)
∂p′

= 2pq − 8p− 2pp′ − 16q + 21− 4qp′ + 8p′ + 3q2

≥ −8p− 2pp′ − 16q + 21− 4qp′ ≥ 13− 2pp′ − 4qp′ > 0,

where the second inequality sign in this expression follows from the fact that q+ p/2 ≤
1/2.

Since p′ = (N −m)p/m, we have that p′ ≤ p/2 for all m ≥ 2N/3, and thus

d(p, q, p′) ≤ max
p′≤p/2

d(p, q, p′) = d(p, q, p/2) = p

[
pq

2
− 1

2
− 3p+

q2

2
− p2

4

]
<
p

2
[
pq − 1 + q2

]
.

Given that p, q ≤ 1/2 we thus have that d(p, q, p′) < 0 whenever m ≥ 2N/3. This
proves the first part.

Since p′ = (N −m)p/m = 1−s
s p for s = m/N , we have p′ ≥ ap for m ≤ sN , where

a = (1− s)/s. Monotonicity of d in p′ therefore implies that

d(p, q, p′) ≥ min
p′≥ap

d(p, q, p′) = d(p, q, ap)

= {[a(4− p)− 8]ap+ [2pa(1− a) + (3a− 1)q − 8(2a− 1)]q + 21a− 11}p.

Now observe that the sign of ∂d(p, q, ap)/∂q coincides with the sign of 2pa(1 − a) +
(6a− 2)q − 8(2a− 1). Since

2pa(1− a) + (6a− 2)q − 8(2a− 1) < 8− a(16− 2(2q + p)) + 2q(1− a) ≤ 8− 14a

it follows that whenever a ≥ 8/14 = 4/7 then minp′≥ap d(p, q, p′) is decreasing in q.
Using the fact that q ≤ (1− p)/2 we thus have that for all 1 ≥ a ≥ 4/7

d(p, q, p′) ≥ min
q≤(1−p)/2

{
min
p′≥ap

d(p, q, p′)
}

= d(p, (1− p)/2, ap)

=
p

4
(55a− 29− 2ap− ap2 − 14p+ 12a2p− p2) =: D(p, a).

D(p, a) is clearly increasing in a. In the case of simple majority we have a = (N −
1)/(N+1), which is increasing in N . Thus under simple majority we have that a ≥ 2/3
if N ≥ 5 (for N = 3 all majority rules satisfy m ≥ 2N/3). Since D(p, 2/3) = p(23 −
30p−5p2)/12 > 0 for all p ∈ (0, 1/2) we can therefore conclude that at simple majority
the increment of Π is positive.

The preceding observations allow us to restrict our attention in the remainder of
the proof to supermajority rules m > (N + 1)/2. Since for all such rules we have
1/2 ≥ p(m−1)/2+q(m−1) and p(m) ≥ p(m−1)/2, the identity q(m−1) = p(m)+q(m)
implies 3p(m)/2 + q(m) ≤ 1/2 or equivalently q ≤ (1 − 3p)/2. Exploiting this fact we
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can thus claim that if m > (N + 1)/2 then we have for all a ∈ (4/7, 1) that

d(p, q, p′) ≥ min
q≤(1−3p)/2

{
min
p′≥ap

d(p, q, p′)
}

= d(p, (1− 3p)/2, ap)

=
p

4
(50ap+ 15p2a− 29− 42p− 9p2 + 8a2p2 + 55a+ 12a2p) =: D̂(p, a).

Since D̂(p, a) is strictly increasing in a it follows that for all a ≥ 4/7 we have

d(p, q, p′) ≥ D̂(p, 4/7) =
p(119− 466p+ 107p2)

196
.

It is straightforward to see that this expression is strictly positve for all p ∈ (0, 1/4].
Since p(m) is decreasing in m for every N and also p((N + 3)/2) decreases with N , it
follows that for 2N/3 > m > (N+1)/2 we must have p(m) ≤ p(7, 11) = 105/520 < 1/4
(notice that only for N ≥ 11 there are majority rules in the specified range). Hence, for
all p which may arise for 2N/3 > m > (N + 1)/2 we know that D̂(p, a) > 0, whenever
a ≥ 4/7. The condition a = (1−s)/s ≥ 4/7 in turn is equivalent to s = m/N ≤ 7/11 ≈
0.636. Thus we can conclude that d(p, q, p′) > 0 for all (N + 1)/2 < m < 7N/11. This
proves statement ii).

Finally, using p((N+1)/2)/2+q((N+1)/2) = 1/2 and q(N) = 0 it is straightforward
to show that

Π(N)−Π((N + 1)/2) =
16− 27p+ 10p2 + p3

48(4− p)
,

which is strictly positive for all p < 1.

Proof of Proposition 7. Suppose the first claim is false, i.e.

lim
N→∞

Π(ds∗Ne, N) > lim
N→∞

Π̃(ds̃∗Ne, N). (29)

In the proof of Proposition 5, we have shown that limN→∞Π(dsNe, N) = limN→∞ Π̃(dsNe, N)
for any s > 1/2, so that (29) cannot hold when s∗ and s̃∗ are both greater than 1/2.
Furthermore, by Proposition 5, we cannot have that s̃∗ > 1/2 and s∗ = 1/2. If s̃∗ = 1/2
and s∗ > 1/2, then

lim
N→∞

Π̃(dN/2e, N) ≥ lim
N→∞

Π̃(ds∗Ne, N) = lim
N→∞

Π(ds∗Ne, N), (30)

where the inequality follows from the optimality of s̃∗ = 1/2. Last, if s̃∗ = 1/2 and s∗ =
1/2, then equation (27) shows that limN→∞Π(dN/2e, N) < limN→∞ Π̃(dN/2e, N).
Thus, (29) cannot hold, the desired contradiction.

For the proof of the second statement, we drop the arguments from the functions p
and q (like in earlier proofs). Calculating the difference between Π(m) and Π̃(m) gives

Π(m)− Π̃(m) =
2p+ 3 + q2 − 4q

4(4− 2q − p)
− 3 + 2p

16
=

3p+ 4q2 − 10q + 4qp+ 2p2

16(4− 2q − p)
. (31)
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The denominator of this expression is clearly positive and thus the sign of the difference
is determined by the numerator. Denote this numerator by d(p, q).

We first show that d(p, q) is negative for m = (N + 1)/2. Remember that, in this
case, we have p = 1− 2q and thus

d = 3p+ 4q2 − 10q + 4qp+ 2p2 = 5− 20q + 4q2.

This expression is negative iff q((N + 1)/2, N) ≤ 5/2 −
√

5 ≈ 0.26, which is satisfied
for all N > 5.

Next consider any supermajority m such that (N + 1)/2 < m ≤ b3N/4c. For any
such majority rule we have that m ≤ N − 2. Therefore, it follows that

q(m) ≥ p(m+ 1) + p(m+ 2) = p(m+ 1)
(

1 +
N −m− 1
m+ 1

)
= p(m)

N −m
m

N

m+ 1
.

Notice that the last term in this expression is decreasing in m. Thus we may write
p ≤ (qb3N/4cd3N/4e)/((N − b3N/4c)N). Using Lemma A2, it can be shown that the
right-hand side of this last inequality is smaller than (12/5)q.24

Next observe that the fact that m is a supermajority rule implies that 1/2 ≥ p(m−
1)/2 + p(m) + q(m) ≥ 3p(m)/2 + q(m). Combining this observation with the preceding
one, we obtain p ≤ min{(1− 2q)/3, 12q/5}, or equivalently,

p ≤

{
12q/5 if q ≤ 5/46

(1− 2q)/3 if q > 5/46.

Notice that d(12q/5, q) = −(14/5−628q/25)q < 0 for all q ≤ 5/46 and d((1−2q)/3, q) =
(11 − 104q + 20q2)/9 < 0 for all 5/46 < q ≤ 1/2. Since d(p, q) ≤ d(min{(1 −
2q)/3, 12q/5}, q), this proves the first claim.

As for the second part of number 2, observe that a sufficient condition for the
numerator of (31) to be positive is 3p > 10q. From Lemma A1, we have q

p ≤
N−m
2m−N so

that for all m ≥ 13
16N , the numerator of (31) is positive.

For number 3, note that Proposition 6 implies that the optimal majority rule with
the option of waiting is lower or equal to d2N/3e, which is lower or equal to b3N/4c for
all N > 5. By the second statement of Proposition 7, for all such rules, the expected
ex-ante payoff is higher without the option to wait.

24If N = 7, 11, 15, . . ., then 12/5−(b3N/4cd3N/4e)/((N−b3N/4c)N) = (N +(N−1)/2+8)/10N > 0.
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