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Abstract

We use an interactive epistemology framework to provide a systematic analysis of some solu-

tion concepts for games with asymmetric information. We characterize solution concepts using

expressible epistemic assumptions, represented as events in the universal type space generated

by primitive uncertainty about the payoff relevant state, payoff irrelevant information, and ac-

tions. In most of the paper we adopt an interim perspective, which is appropriate to analyze

genuine incomplete information. We relate ∆-rationalizability (Battigalli and Siniscalchi, 2003) to

interim correlated rationalizability (Dekel, Fudenberg, and Morris, 2007) and to rationalizability

in the interim strategic form. We also consider the ex ante perspective, which is appropriate to

analyze asymmetric information about an initial chance move. We prove the equivalence between

interim correlated rationalizability and an ex ante notion of correlated rationalizability.

KEYWORDS: asymmetric information, type spaces, Bayesian games, rationalizability.

J.E.L. CLASSIFICATION NUMBERS: C72, D82.

1 Introduction

In the last few years, ideas related to rationalizability have been increasingly applied to the anal-

ysis of games with asymmetric information.1 Yet there seems to be no “canonical” definition of

∗Corresponding author. Address: IGIER and Ettore Bocconi Dept. of Economics, Bocconi University, Via Röntgen 1,

20136 Milano, Italy. E-mail: pierpaolo.battigalli@unibocconi.it.
1See Battigalli (2003, section 5), and Battigalli and Siniscalchi (2003, section 6) for references to applications of ra-

tionalizability to models of reputation, auctions and signaling. Bergemann and Morris (2005) apply a notion of iterated

dominance to robust implementation. Carlsson and van Damme (1993) show that global games can be solved by iterated

dominance (see also Morris and Shin (2007) for a recent evaluation of this result and its applications). Since even strict

rationalizability lacks lower hemi-continuity with respect to belief hierarchies, this work spurred a literature on the ro-

bustness of rationalizable behavior to small perturbations of beliefs — see Dekel, Fudenberg, and Morris (2006), Weinstein

and Yildiz (2007), Ely and Pęski (2008), Chen, Di Tillio, Faingold, and Xiong (2009), and for dynamic games, Penta (2009).
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rationalizability for this class of games. Some authors apply rationalizability to the strategic form

of Bayesian games, but different strategic forms (ex ante and interim) yield different results. Fur-

thermore, it has been noticed by Ely and Pęski (2006) and Dekel, Fudenberg, and Morris (2007) that

adding redundant types — types with the same payoff-relevant private information and the same

hierarchy of beliefs — may enlarge the set of rationalizable outcomes. Dekel, Fudenberg, and Morris

(2007) introduce a notion of rationalizability for Bayesian games that is weaker than rationalizabil-

ity on the interim strategic form and is invariant to the addition of redundant types. Other authors

put forward and apply notions of rationalizability that do not rely on the full specification of a

Bayesian game and hence of a type space — see Battigalli (2003), Battigalli and Siniscalchi (2003,

2007), and Bergemann and Morris (2005, 2007).

What are the assumptions underlying these solution concepts? Why do they differ? How are

they related? The existing literature provides partial and disconnected answers. In this paper we

use interactive epistemology to provide a systematic analysis of the above mentioned notions of

rationalizability for games with asymmetric information, interpreted either as games with genuine

incomplete information or games with imperfect information about an initial chance move. In

the remainder of this introduction we illustrate the issues concerning the various definitions of

rationalizability and give an overview of our results. The rest of the paper is then structured as

follows: section 2 introduces the basic framework; section 3 provides epistemic characterizations

of solution concepts via expressible assumptions about rationality and beliefs; section 4 relates

the ex ante and interim approaches to rationalizability; finally, section 5 offers some concluding

remarks, including a discussion of the most related literature; the various appendices contain the

proofs not given in the main text and some technical constructions and results.

1.1 Rationalizability for Bayesian games

To simplify the analysis we focus on two-person, simultaneous-move games, thus removing any

issues of belief revision and correlation among opponents in the eyes of a player. Here we recall the

notions of Bayesian game and belief hierarchies, discuss two issues concerning the received notions

of rationalizability for Bayesian games, and briefly explain our approach to solution concepts.

Bayesian games and belief hierarchies

In a game of incomplete information, payoffs are affected by a parameter θ ∈ Θ that is not common

knowledge, though the set Θ and how θ affects payoffs are common knowledge. With no essential

loss of generality, we assume that Θ = Θ0 ×Θ1 ×Θ2 and each player i = 1,2 knows the component

θi of θ = (θ0, θ1, θ2). The standard methodology to analyze such situations is to model the players’

beliefs about θ and about each other’s beliefs by means of a type space à la Harsanyi (1967-68), that

is, a structure T = 〈Θ, (Ti,πi,θi)i=1,2〉 that specifies, for each player i, a set of types Ti and mappings

θi : Ti → Θi and πi : Ti → ∆(Θ0 × T−i). (Throughout the paper we use boldface symbols to denote

functions that can be interpreted as random variables.) These mappings deliver, for each Harsanyi

type ti of each player i, a Θ-hierarchy of beliefs, that is, a first-order belief π1
i (ti) ∈ ∆(Θ0 ×Θ−i), a
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second-order belief π2
i (ti) ∈ ∆(Θ0 ×Θ−i ×∆(Θ0 ×Θi)), and so on (see section 2.2).

The type space and the payoff functions parametrized by θ form a Bayesian game. One can find

prior beliefs Πi ∈ ∆(Θ0 × T1 × T2) for each player i such that the beliefs of each type ti are given

by πi(ti)[·] = Πi[·|ti] ∈ ∆(Θ0 × T−i). This induces an extensive form game where an initial chance

moves selects (θ0, t1, t2), each player i assigns (subjective) probabilities to chance moves according

to the prior Πi and then learns his type ti before choosing his action. A strategy profile specifies an

action for each type of each player. If we take the strategic form of this game, we obtain the ex ante

strategic form of the original Bayesian game, which is well defined even if Π1 ≠ Π2 — the expected

payoff for i is computed using Πi, and in effect the particular choice of Πi is immaterial. (Assuming

T1 and T2 are finite, any strictly convex combination of the measures {πi(ti)}ti∈Ti works.) If instead

we treat different types ti as different players who compute expected payoffs using the interim

beliefs Πi[·|ti], we obtain the interim strategic form of the Bayesian game (Osborne and Rubinstein,

1994, pp. 24–26). A strategy profile is an equilibrium of the ex ante strategic form if and only if it is

a Nash equilibrium of the interim strategic form. Therefore both equilibrium concepts can be taken

as definitions of equilibrium for the Bayesian game.

Two issues concerning rationalizability for Bayesian games

In contrast to the complete information case, there is no textbook definition of rationalizability for

static games with incomplete information, represented as Bayesian games. While it seems natural

to transform such games into strategic form games and apply standard rationalizability, there is

more than one way to do this: one can consider the ex ante or the interim strategic form. Moreover,

unlike Bayesian Nash equilibrium, rationalizability in the ex ante strategic form is a refinement of

rationalizability in the interim strategic form.2 The following example shows why.

Example 1. Assume that Θ = {θ0} × {θ′1, θ′′1 } × {θ2}, so that Ann (player 1) knows θ while Bob

(player 2) does not, and yet only Bob’s payoff depends on θ, as shown in the payoff tables below.

l r
u 6,6 0,4
m 4,0 4,4
d 0,0 6,4

θ′1

l r
u 6,0 0,4
m 4,0 4,4
d 0,6 6,4

θ′′1

Assuming that Bob believes Pr[θ′1] = Pr[θ′′1 ] = 1/2 and that there is common (probability one)

2This holds under weak conditions on players’ (subjective) priors: either (a) priors have a common support, or (b)

each player assigns positive prior probability to each one of his types. The difference between ex ante and interim

rationalizability is related to the difference between two notions of extensive form rationalizability: the more restrictive

one assumes that a player has an initial conjecture about the opponent’s strategy, which may be revised only after

receiving some information about the opponent’s behavior; the less restrictive, adopted by Pearce (1984), drops the

initial conjecture and allows a player to have different conjectures at different information sets even if they only reflect

information about chance moves. When we consider the extensive form of a static Bayesian game, the first solution

concept yields ex ante rationalizability and the second one yields interim rationalizability. To the best of our knowledge,

Battigalli (1988, pp. 719–720, Footnote 1) is the first published work pointing out the difference.
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belief of this, we obtain a Bayesian game where each Harsanyi type is uniquely determined by the

corresponding private information. Pick any conjecture µ ∈ ∆({l, r}) about Bob’s action. Action u
by Ann is a best reply only if µ[r] ≤ 1/3, while d is a best reply only if µ[r] ≥ 2/3. Thus the two

strategies that specify u for one type of Ann and d for the other, cannot be ex ante best replies

to any conjecture µ. If Bob assigns zero probability to these strategies, the expected payoff of l is

at most 3, and hence l is not ex ante rationalizable. On the other hand, interim rationalizability

regards θ′1 and θ′′1 as different “replicas” of Ann: θ′1 may believe µ[r] ≥ 2/3 while θ′′1 may believe

µ[r] ≤ 1/3 (or vice versa). Thus, in the second iteration of the interim rationalizability procedure

Bob may assign probability close to 1 to θ′1 choosing u and θ′′1 choosing d, and hence choose l as a

best response. This implies that every action is interim rationalizable.

The well known difference between ex ante and interim rationalizability, as illustrated in this

example, has been accepted as a natural consequence of the fact that interim rationalizability allows

different types of the same player to hold different conjectures. However, we maintain that the

difference between the two notions should be disturbing.

Question 1 (ex ante vs interim). Rationalizability should capture the behavioral consequences of the

assumption that players are expected payoff maximizers and have common belief in this fact. More-

over, ex ante expected payoff maximization is equivalent to interim expected payoff maximization.3

Then, how can we explain the fact that ex ante and interim rationalizability give different results?

Another well known fact concerns the rationalizable actions of redundant types. A type space is

redundant if there are two types ti, t′i with the same private information and Θ-hierarchy:(
θi(ti),π1

i (ti),π
2
i (ti), . . .

)
=
(
θi(t′i),π

1
i (t

′
i),π

2
i (t

′
i), . . .

)
.

A change in the type space that has the only effect of adding redundancy may nevertheless expand

the equilibrium actions. This is best understood for the simple case of games with complete in-

formation, i.e. when Θ is a singleton. Even in this case we can specify type spaces with multiple

(and hence necessarily redundant) types for each player, and obtain Bayesian Nash equilibria that

are subjective correlated equilibria, but not Nash equilibria of the original complete information

game. However, adding redundant types to a complete information game does not change the set

of rationalizable actions. More generally, the set of interim rationalizable actions is invariant to

the addition of redundant types whenever interim payoff uncertainty only concerns the payoff in-

formation of the opponent, i.e. when Θ0 is a singleton (see Corollary 2 in Dekel, Fudenberg, and

Morris (2007) and our Remark 3 in section 3.4). Thus one may wonder why, when instead there is

nontrivial residual payoff uncertainty (i.e. when Θ0 has more than one element), adding redundant

types can expand the set of rationalizable actions, and types with the same private information and

Θ-hierarchy can have different interim rationalizable actions. This is illustrated by the following

example, borrowed from Dekel, Fudenberg, and Morris (2007).4

Example 2. Ann and Bob play a betting game where the outcome depends on the state of nature,

3Interim maximization implies ex ante maximization, and under the same mild assumptions as in footnote 2, also the

converse is true.
4See also Ely and Pęski (2006). Liu (2009) and Sadzik (2007) analyze related issues of invariance of solution concepts

to redundancies.
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about which they have no private information: Θ = {θ′0, θ′′0 }×{θ1}×{θ2}. Ann wins if both bet and

θ′0 occurs, while Bob wins if both bet and θ′′0 occurs. Placing a bet costs 4. The loser gives 12 to the

winner. Payoffs are summarized by the tables below.

B N
B 8,−16 −4,0
N 0,−4 0,0

θ′0

B N
B −16,8 −4,0
N 0,−4 0,0

θ′′0

Assume that it is common belief that each player attaches equal probabilities to θ′0 and θ′′0 . The

simplest Bayesian game representing this situation has only one type for each player. The ex ante

and interim strategic forms coincide and betting is dominated, hence not rationalizable:

B N
B −4,−4 −4,0
N 0,−4 0,0

Now take the type space with two types for each player generated by the following common prior:

t′2 t′′2
t′1 1/4 0

t′′1 0 1/4

θ′0

t′2 t′′2
t′1 0 1/4
t′′1 1/4 0

θ′′0

It is clear that, as before, it is common belief that θ′0 and θ′′0 are considered equally likely, therefore

we are just adding redundant types. But in the Bayesian game induced by this type space, betting is

rationalizable. Since ex ante rationalizability implies interim rationalizability, to see this it suffices

to show that there are ex ante rationalizable strategies where at least one type bets. Let XY denote

the strategy where t′i chooses X and t′′i chooses Y . The ex ante strategic form is as follows:

BB BN NB NN
BB −4,−4 −4,−2 −4,−2 −4,0
BN −2,−4 1,−5 −5,1 −2,0
NB −2,−4 −5,1 1,−5 −2,0
NN 0,−4 0,−2 0,−2 0,0

Note that BB is dominated, but the set of strategy profiles {BN,NB,NN} × {BN,NB,NN} has the

best response property (Pearce, 1984): as the highlighted payoffs indicate, each strategy in the

subset of player i is a best response to some strategy in (and hence to some belief on) the set of

player −i. Therefore BN and NB are rationalizable, which implies that betting is rationalizable. ♦

Question 2 (non-invariance). Adding redundant types can expand the rationalizable set of the strate-

gic form. Does interim rationalizability capture more than just common belief of expected payoff

maximization in a situation of incomplete information? How are the additional hidden assumptions

related to the presence of redundant types?
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Addressing the questions: expressible assumptions about rationality and beliefs

The somewhat puzzling facts illustrated above should make us suspicious about solution concepts

mechanically obtained by applying a known solution algorithm (rationalizability) to the strategic

forms of Bayesian games. The problem with these notions is that they are not completely transpar-

ent because, unlike rationalizability in games of complete information, they have not been charac-

terized using expressible assumptions about rationality and beliefs.

To see what we mean, let us first consider games with complete information, the special case

where Θ is a singleton. Tan and Werlang (1988) show that an action is rationalizable if and only if it

is consistent with rationality, i.e. expected payoff maximization, and common belief of rationality.

(Brandenburger and Dekel (1987) prove a related result.) These assumptions can be expressed in a

language that starts from primitive terms (actions), terms derived from the primitives, like beliefs

about actions, and terms derived from the primitives and other derived terms, like joint beliefs

about the actions and beliefs of others. As explained in Heifetz and Samet (1998), such assumptions

can be represented as (and indeed identified with) measurable subsets of a canonical state space,

where each state specifies the players’ actions and hierarchies of beliefs about actions — beliefs

about others’ actions, beliefs about others’ actions and beliefs, and so on. Every state satisfying a

natural coherency property is represented in this state space, hence the set of states satisfying an

assumption like “each player maximizes his expected payoff” represents exactly that assumption

and nothing more. Of course, we may want to consider other assumptions beside rationality and

common belief in rationality. For example, in games with more than two players, we can assume that

each player regards the actions of his opponents as stochastically independent random variables

and that there is common belief of this fact too. Indeed, while not necessarily compelling in every

application, this assumption is also expressible.5

We can understand rationalizability in games of incomplete information applying the same

methodology. Is it possible to characterize, say, interim rationalizability by means of expressible

assumptions about rationality and beliefs? What solution concept do we obtain if we assume (only)

rationality and common belief of rationality? Here, too, answering these questions requires that

we specify the primitive terms of our language, which now must include not only actions, but also

the payoff state θ.6 But players may have further private information that can be thought to be

correlated with θ. Economic examples abound: geological information and satellite photographs

of a tract of land on sale are thought to be correlated with the value of the recoverable resources,

expert reports on an object are thought to be correlated with the value of this object, personality

traits and propensities may be thought to be correlated with ability, etc. The applied theorist who

models a particular situation typically specifies these payoff irrelevant, but strategically relevant

aspects. Thus, in our abstract framework, we let ξi denote a realization of all the payoff-irrelevant

5Rationality, stochastic independence of beliefs about others, and common belief of both together characterize inde-

pendent rationalizability, a refinement of correlated rationalizability (which in turn is equivalent to iterated dominance).

Independent rationalizability was introduced by Bernheim (1984) and Pearce (1984). Rationalizability with correlated

beliefs became the default solution concept later on (see e.g. Osborne and Rubinstein, 1994, Ch. 4).
6The payoff state θ parametrizes the mapping from actions to payoffs, and it is informally assumed that this

parametrization is common knowledge between players.
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(though potentially strategically relevant) aspects known by player i. The pair (θi, ξi) describes i’s
private information.7 Note that the payoff-irrelevant information ξi is strategically relevant for two

(related) reasons: (a) Ann’s action may depend on ξAnn, (b) Bob may believe that ξAnn is correlated

with θ0, thus inducing a potential correlation between θ0 and aAnn. Furthermore, explicitly taking

into account the players’ (payoff-relevant and payoff-irrelevant) information allows us to express

restrictions on beliefs — information-based conditional independence, see below — that otherwise

would not be expressible. (See section 5 for further discussion.)

Thus the basic elements of the language are given by a structure E, the economic environment

specified by the modeler, that lists players i ∈ I, actions ai ∈ Ai, residual payoff uncertainty

θ0 ∈ Θ0, payoff-relevant and payoff irrelevant information xi = (θi, ξi) ∈ Θi × Ξi = Xi, and payoff

functions gi : Θ×A→ R. In this framework a first-order belief of player i concerns (θ0, x−i, a−i), a

second-order belief concerns (the same as before and) the first-order belief of −i, and so on. Thus,

following Heifetz and Samet (1998), we define an expressible assumption as a measurable subset

of the canonical space — in section 3.1 we briefly review Heifetz and Samet’s definitions and ex-

plain why this is meaningful — and we state assumptions concerning (i) first-order beliefs and the

relationship between players’ actions, information and first-order beliefs, (ii) second-order beliefs,

(iii) third-order beliefs, etc. Then we show that the behavioral consequences of these assumptions

can be derived by appropriate iterative deletion procedures, and we relate these procedures to old

and new notions of “rationalizability”. An example of assumption about first-order beliefs is that

they satisfy information-based conditional independence: the beliefs of i are such that, conditional

on x−i, there is no residual correlation between θ0 and a−i. The standard assumption about the

relationship between actions, information and first-order beliefs is that players are rational, i.e. max-

imize their expected payoff, given their information and first-order beliefs. Second-order beliefs are

then assumed to assign probability one to the previously stated assumptions, and so on.

1.2 Preview of results

Our exploration of solution concepts begins with ∆-rationalizability, an “umbrella notion” defined

on the environment E and parametrized by information-dependent restrictions ∆ on players’ beliefs

about the primitives (Battigalli, 2003 and Battigalli and Siniscalchi, 2003, 2007). Formally, for each

player i = 1,2 and each xi ∈ Xi we postulate a set ∆xi ⊆ ∆(Θ0×X−i×A−i) of possible beliefs about

the exogenous state and the opponent’s action, and we define an iterative deletion procedure that

takes such restrictions on beliefs into account. Next we consider interim correlated rationalizability

and interim independent rationalizability in the Bayesian game induced by some type space T (T-ICR

and T-IIR, Dekel, Fudenberg, and Morris, 2007). IIR is equivalent to rationalizability in the interim

strategic form and requires that the players’ beliefs satisfy a conditional independence property

(whereas ICR does not): conditional on the opponent’s type t−i, there is no residual correlation

between θ0 and a−i. Finally, we consider ex ante notions of rationalizability and relate them to

7The environment E is similar to what Battigalli and Siniscalchi (2007) call “game with payoff uncertainty” and Berge-

mann and Morris (2007) call “belief-free incomplete information game”. But, unlike these papers, we make explicit the

difference between payoff-relevant and payoff-irrelevant private information.
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corresponding interim solution concepts. A partial list of our results follows. (The first is already

known and we report it for completeness only.)

Result 1 (Lemma 1, cf. Battigalli and Siniscalchi, 2007, Propositions 1,2) ∆-rationalizability is char-

acterized by the following assumptions: (a) players are rational, (b) their first-order beliefs satisfy the

restrictions ∆, and (c) there is common belief of (a) and (b).

Say that a type space T = 〈Θ, (Ti,πi,θi)i∈I〉 has information types if, for each i, the set of types

Ti is (isomorphic to) Xi. In this case we can obtain a set ∆ of (information-dependent) restrictions

on beliefs about the primitives that exactly identifies T: for each i and xi, the set ∆xi is the set of

measures µi ∈ ∆(Θ0 ×X−i ×A−i) such that (M) margΘ0×X−i µi = πi(xi) (that is, margΘ0×X−i µi is the

belief of information-type xi in T).

Result 2 (Proposition 1) If a type space T has information types and ∆ is the set of restrictions derived

from T, then ∆-rationalizability coincides with T-ICR.

A corollary of Results 1 and 2 is that if T has information types, then T-ICR can be characterized

by expressible assumptions about rationality and interactive beliefs. Indeed, it turns out that such

a characterization is possible for every type space, and that the ICR actions of a type depend only

on its expressible features, which we call the explicit type. (Indeed, they depend only on the private

information about θ and on the Θ-hierarchy that the explicit type induces — see section 2.2.)

Result 3 (Theorem 1, cf. Dekel, Fudenberg, and Morris, 2007, Proposition 2) ICR is characterized by

rationality and common belief of rationality in the following sense: for each type space T and each

type ti in T, the set of T-ICR actions of ti is the set of actions consistent with rationality, common belief

of rationality and player i having explicit type (θi(ti),π1
i (ti),π

2
i (ti), . . .).

Fix a type space T with information types. Say that a set ∆ of restrictions on first-order beliefs

is CI-derived from T if, for each player i and each type xi, ∆xi is the set of measures µi ∈ ∆(Θ0 ×
X−i × A−i) such that (M) margΘ0×X−i µi = πi(xi) and (CI) µi[x−i] > 0 implies µi[θ0, a−i|x−i] =
µi[θ0|x−i]µi[a−i|x−i], that is, i believes that θ0 and a−i are independent conditional on x−i. The

following result shows that T-IIR is equivalent to rationalizability in the interim strategic form of

the Bayesian game induced by T (see Appendix B). Furthermore, if T has information types, then

computing the rationalizable strategies in the interim strategic form of the Bayesian game induced

by T amounts to imposing the conditional independence restriction (CI) on top of the restrictions

(M) implied by the type space.

Result 4 (Remark 2 and Proposition 3) Fix a type space T. The set of T-IIR actions of every type ti
in T is the set of actions that are rationalizable for player/type ti in the interim strategic form of the

Bayesian game induced by T. If T has information types and ∆ is the set of restrictions CI-derived

from T, then ∆-rationalizability coincides with T-IIR.

(Note the parallel between Result 2 and the second statement in Result 4: Requiring that ∆ be

derived from T delivers ICR, whereas requiring that ∆ be CI-derived from T gives IIR.) As a corollary

of Results 1 and 4 we obtain a characterization of IIR via expressible assumptions on rationality and

interactive beliefs for the special case of a type space with information types:

Result 5 (Corollary 3, cf. Dekel, Fudenberg, and Morris, 2007, Proposition 3) If a type space T has
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information types, then for every player i and every (information) type xi in T the set of T-IIR actions

of xi is the set of actions consistent with rationality, conditional independence, common belief of ra-

tionality and conditional independence, and player i having explicit type (θi(xi),π1
i (xi),π

2
i (xi), . . .).

We were not able to provide a general characterization of IIR via expressible assumptions. The

difficulty lies in the fact that Harsanyi types are self-referentially defined: a type is a belief about

the payoff state and the type of the opponent. Whereas each type ti encodes the payoff-relevant

information θi(ti) and the belief hierarchy (π1
i (ti),π

2
i (ti), . . .), which are expressible, we have seen

in Example 2 that specifying these (and only these) features of a type does not allow to determine the

set of interim rationalizable actions. Insofar as interim rationalizability depends on non-expressible

features of types, we cannot give it a characterization via expressible assumptions (see also our

discussion of Ely and Pęski (2006) in section 5). However, we do obtain a characterization as in

Result 3 as a consequence of the following:

Result 6 [Remark 3, Corollary 2] If in E there is distributed knowledge of the payoff state, i.e. if Θ0 is

a singleton, then T-ICR and T-IIR coincide for every type space T. Therefore the set of T-IIR actions of

each type ti is the set of actions consistent with rationality, common belief of rationality and player i
having explicit type (θi(ti),π1

i (ti),π
2
i (ti), . . .).

Finally we turn to the relationship between the ex ante and interim perspectives. First we note

that ex ante rationalizability makes sense only if types correspond to information that players can

learn, i.e. if we have information types. Given the economic environment E and a type space T

with information types, we derive the 3-player strategic form where an indifferent, fictitious player

(nature) chooses the profile (θ0, x1, x2) and each i = 1,2 chooses a strategy f i : Xi → Ai. Then we

define a correlated rationalizability solution procedure subject to the restriction that each player

assigns positive probability to each of his own information types and has beliefs consistent with T.

Letting F−i denote the set of mappings from X−i to A−i, and given a belief µi ∈ ∆(Θ0×X1×X2×F−i)
of player i, the conditional belief µi[·|xi] is then well defined and satisfies margΘ0×X−i µi[·|xi] =
πi(xi) for every xi. We call this solution T-ex ante correlated rationalizability, or T-ACR.

Result 7 [Theorem 2] For every type space T with information types, T-ACR is equivalent to T-ICR.8

The intuition of this result is that ex ante expected payoff maximization is equivalent to in-

terim expected payoff maximization, and since the ex ante beliefs of i about nature and −i may

be correlated, the interim belief of i about the strategy of −i may depend on the information type

xi. Of course, one can define a notion of ex ante independent rationalizability by imposing that i’s
ex ante beliefs about the fictitious player (nature) and the real opponent satisfy ex ante indepen-

dence: µi = µ0
i × µ−ii with µ0

i ∈ ∆(Θ0 × X1 × X2) and µ−ii ∈ ∆(F−i). It is easily verified that this is

rationalizability on the ex ante strategic form.

An answer to Question 1. Ex ante and interim rationalizability can be compared for Bayesian games

with information types. We show that they both rely on rationality, independence and common

certainty of rationality and independence. Ex ante rationalizability is stronger than interim rational-

izability because ex ante independence is stronger than interim independence: Ex ante independence

8The mathematical result actually holds for every type space, but it is meaningful for spaces with information types.
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means that µi = µ0
i × µ−ii , therefore µi[·|xi] = (margΘ0×X−i µ

0
i [·|xi]) × µ−ii and each information

type of i has the same conjecture, µ−ii , about the strategy of the opponent. Interim independence

instead means that, for each xi, µi[·|xi] = (margΘ0×X−i µi[·|xi])× (margF−i µi[·|xi]), which implies

conditional independence: µi[θ0, a−i|xi, x−i] = µi[θ0|xi, x−i]×µi[a−i|xi, x−i] for each a−i and x−i
such that µi[x−i|xi] > 0; thus, different information types may hold different conjectures about the

strategy of the opponent. Removing the independence restriction removes any difference between

(the appropriate versions of) ex ante and interim rationalizability.

An answer to Question 2. Adding redundant types is certainly meaningful when types correspond

to actual information (we do not exclude that it may be meaningful also in other circumstances).

Payoff-irrelevant information may be thought to be correlated with θ0. As Example 2 shows, this is

possible even if payoff-irrelevant information does not affect hierarchies of beliefs about θ. Since

actions may depend on this information, it is possible that i’s beliefs satisfy conditional indepen-

dence when considering all the information of the opponent, and yet when they are conditioned

on (θ−i and) the hierarchy of beliefs about θ of the opponent they exhibit correlation between θ0

and a−i. Therefore, considering (payoff-irrelevant) information that does not affect the hierarchy

of beliefs about the payoff state (redundant information types) decreases the bite of the conditional

independence assumption and hence expands the set of interim rationalizable actions. On the other

hand, interim correlated rationalizability is invariant to the addition of redundant types because it

allows conditional correlation and therefore adding redundant types has no effect.

2 Preliminaries

In this section we introduce the basic elements of our analysis (section 2.1) and define belief hierar-

chies, type spaces and information types (section 2.2).

2.1 The economic environment

The basic ingredients of our model are collected in an economic environment, that is, a structure

E =
〈
Θ0,

(
Θi,Ξi, Ai,gi

)
i∈I
〉

where:

• I = {1,2} is the set of players, and for each i ∈ I we let −i denote the other player.

• Ai is the finite set of feasible actions of player i, and we define A = A1 ×A2.

• Θi and Ξi are finite sets representing, respectively, the payoff-relevant and payoff-irrelevant pri-

vate information of player i; we define Xi = Θi × Ξi and X = X1 × X2 and refer to an element

xi ∈ Xi as an information type of player i.

• Θ0 is a finite set representing payoff-relevant uncertainty that persists even after pooling the

players’ private; we let Θ = Θ0 × Θ1 × Θ2 and we refer to an element θ ∈ Θ as a payoff state,
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to an element (θ0, x) ∈ Θ0 × X as an exogenous external state, and to an element (θ0, x, a) ∈
Θ0 ×X ×A as an external state.

• gi : Θ×A→ R is the payoff function of player i.

The environment E will be kept fixed throughout the paper and informally assumed to be common

knowledge between players.9 According to the incomplete information interpretation, interaction

starts at the interim stage in a given exogenous external state (θ0, x1, x2) ∈ Θ0 × X. Each player i
knows (only) xi and chooses some ai ∈ Ai. The actual payoff function gi(θ, ·) : A → R of player

i is not commonly known, unless Θ is a singleton; in the latter case there is complete information,

that is, common knowledge of the payoff state, whereas if Θ0 is a singleton we say that there is

distributed knowledge of the payoff state.10 According to the complete but asymmetric information

interpretation, interaction starts at an ex ante stage where players are symmetrically uniformed.

Then some exogenous external state (θ0, x1, x2) ∈ Θ0 × X is selected at random, each i observes

(only) xi and chooses some ai ∈ Ai.

2.2 Belief hierarchies and type spaces

For any standard Borel space Z we write ∆(Z) for the set of all probability measures on Z , endowed

with the topology of weak convergence and the corresponding Borel σ -algebra.11 The space ∆(Z)
is also standard Borel and its σ -algebra is the same as the one generated by the family of sets

of the form {µ ∈ ∆(Z) |µ[E] ≥ p}, where p ∈ [0,1] and E ⊆ Z is measurable.12 Given another

standard Borel space Z′, each measurable function g : Z → Z′ induces the measurable function

ĝ : ∆(Z) → ∆(Z′) such that ĝ(µ)[E] = µ[g−1(E)] for each measurable E ⊆ Z′. For each µ ∈ ∆(Z),
the measure ĝ(µ) is the pushforward of µ given by g.

Our analysis concerns the players’ interactive beliefs over a basic uncertainty space of the form

Y = Θ0 × Y1 × Y2 where either Yi = Θi for each i ∈ I, or Yi = Xi = Θi × Ξi for each i ∈ I, or

Yi = Xi × Ai = Θi × Ξi × Ai for each i ∈ I. Note that in the three cases considered we have

Y = Θ, Y = Θ0 × X, and Y = Θ0 × X × A, respectively. Given a set Y as above, for all i ∈ I define

H1
Y ,i = ∆(Θ0 × Y−i) and recursively

Hk+1
Y ,i =

{
(δ1
i , . . . , δ

k+1
i ) ∈ HkY ,i ×∆(Θ0 × Y−i ×HkY ,−i)

∣∣∣ margΘ0×Y−i×Hk−1
Y ,i
δk+1
i = δki

}
∀k ≥ 1.

9The analysis can be easily extended to the case of compact Polish Θ0 × X and continuous gi. Finiteness of the action

sets can be relaxed at the cost of some additional complications. We assume two players for simplicity. This allows us to

focus our attention on issues of correlation that do not arise in games with complete information. Throughout the paper

we consistently use bold symbols to denote functions that may be interpreted as random variables. An example of this

sort is the payoff function gi, since gi(·, a) can be interpreted as the random payoff induced by action profile a, which is

a function of the payoff state and hence of the state of the world.
10See Fagin, Halpern, Moses, and Vardi (1995, pp. 23–24).
11A measurable space is a standard Borel space if it is isomorphic to a separable and completely metrizable (i.e. Polish)

topological space, endowed with the Borel σ -algebra (see e.g. Kechris, 1995, Definition 12.5).
12This fact, whose proof can be found e.g. in (Kechris, 1995, Theorems 17.23 and 17.24), is what motivates and renders

meaningful our definition of expressible assumptions in section 3.1.
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By the coherency conditions on marginal distributions, each element of HkY ,i is determined by its

last coordinate, so we can identify HkY ,i, the space of Y -based k-order hierarchies of player i, with

∆(Θ0 × Y−i ×Hk−1
Y ,−i), the space of Y -based k-order beliefs of player i. Accordingly, define the space

of Y -based belief hierarchies of player i as

H∗Y ,i =
{
(δki )k≥1 ∈ X

k≥1
∆
(
Θ0 × Y−i ×Hk−1

Y ,−i
) ∣∣∣ (δ1

i , . . . , δ
k
i ) ∈ HkY ,i ∀k ≥ 1

}
.

From Mertens and Zamir (1985) we know that H∗Y ,i is compact metrizable (hence standard Borel) in

the product topology. Moreover, there exists a homeomorphism

φY ,i : H∗Y ,i → ∆
(
Θ0 × Y−i ×H∗Y ,−i

)
that is belief-preserving: margΘ0×Y−i×Hk−1

Y ,−i
φY ,i(h∗i ) = δki for all h∗i = (δ`i )`≥1 ∈ H∗Y ,i and k ≥ 1.

Appending a Y -based belief hierarchy h∗i ∈ H∗Y ,i to some primitive information yi ∈ Yi we obtain

a Y -based explicit type t∗i = (yi, h∗i ) of player i. Thus, the space of Y -based explicit types of i is

T∗Y ,i = Yi ×H∗Y ,i.

We can describe explicit Y -based types with a Y -based type space à la Harsanyi (1967-68), a structure

T =
〈
Y ,
(
Ti,πi,yi

)
i∈I
〉

where each Ti is a standard Borel space and the functions πi : Ti → ∆(Θ0×T−i) and yi : Ti → Yi are

measurable. Indeed, each type ti ∈ Ti induces a Y -based explicit type

τT
i (ti) =

(
yi(ti),π

T,1
i (ti),π

T,2
i (ti), . . .

)
in a natural way: πT,1

i (ti) is the pushforward of πi(ti) given by (θ0, t−i) , (θ0,y−i(t−i)), and

recursively for all k ≥ 2, πT,k
i (ti) is the pushforward of πi(ti) given by

(θ0, t−i),
(
θ0,y−i(t−i),π

T,1
−i (t−i), . . . ,π

T,k−1
−i (t−i)

)
.

A particular case that will play an important role in our analysis is that of a Θ-based type space with

information types, namely a Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉 such that

Ti = Xi = Θi × Ξi and θi(ti) = projΘi ti ∀i ∈ I, ∀ti ∈ Ti.

Thus, in a type space with information types, each player’s beliefs are determined by his informa-

tion, so that Harsanyi types can be interpreted as private information. Such type spaces are often

used in applications, usually assuming a common prior.

The type space T∗Y = 〈Y , (T∗Y ,i,π∗Y ,i,y∗i )i∈I〉 where y∗i : T∗Y ,i → Yi is the natural projection and

π∗Y ,i : T∗Y ,i → ∆(Θ0 × T∗Y ,−i) is the mapping (yi, h∗i ) , φY ,i(h∗i ) for each i ∈ I, is the canonical

universal Y -based type space. Indeed, for every Y -based type space T there are unique belief-

preserving mappings from (Ti)i∈I into (T∗Y ,i)i∈I , namely the mappings (τT
i )i∈I above.13 When the

13The mappings (τT
i )i∈I constitute the canonical belief morphism from T to T∗Y . We introduce belief morphisms below.
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mappings (τT
i )i∈I are injective the type space T is called non-redundant. In this case, (τT

i )i∈I are

measurable embeddings onto their images (τT
i (Ti))i∈I , which are measurable and can be viewed as

a non-redundant type space, since we have π∗i (τ
T
i (ti))[Θ0 × τT

−i(T−i)] = 1 for all i ∈ I and ti ∈ Ti.
Conversely, any (Ti)i∈I such that Ti ⊆ T∗Y ,i and π∗Y ,i(ti)[Θ0 × T−i] = 1 for all i ∈ I and ti ∈ Ti can be

viewed as a non-redundant type space.

Every Y -based type space T = 〈Y , (Ti,πi,yi)i∈I〉 induces a Θ-based type space, namely

〈
Θ,
(
Ti,πi,projΘi yi(·)

)
i∈I
〉
.

More generally, a belief morphism from a Y -based type space T = 〈Y , (Ti,πi,yi)i∈I〉 to a Θ-based

type space T′ = 〈Θ, (T ′i ,π′i,θ
′
i)i∈I〉 is a pair (mi)i∈I where for each i ∈ I the mappingmi : Ti → T ′i is

measurable and the following diagram commutes:

Ti

∆(Θ0 × T−i) ∆(Θ0 × T ′−i)

T ′i

Yi Θi

....................................................................................................................................................................................................................................................................... ............
mi

................................................................................................................................................................... ............
ÆidΘ0 ,m−i

....................................................................................................................................................................................................................................................................... ............
projΘi

........

........

........

........

........

........

...............

............
yi

............................................................
...
.........
...

πi

........

........

........

........

........

........

...............

............

θ′i

............................................................
...
.........
...
π′i

Note that if Y = Θ then this reduces to the usual definition of belief morphism between Θ-based

type spaces, as in Mertens and Zamir (1985). In any case, the existence of a belief morphism (mi)i∈I
from T to T′ implies that every Θ-hierarchy that can be computed from a type in T (if Y ≠ Θ, via the

induced Θ-based type space) is also generated by some type in T′, and if each mi is onto, then the

converse is also true.

The belief morphism from the universal (Θ0×X×A)-based type space T∗Θ0×X×A onto the universal

Θ-based type space T∗Θ, which we denote by (m∗i )i∈I , will be especially relevant for our purposes.

The mappings (m∗i )i∈I are defined as follows: letm1
i : H1

Θ0×X×A,i → H
1
Θ,i designate the pushforward

mapping given by the projection (θ0, θ−i, ξ−i, a−i), (θ0, θ−i), and recursively, letmk
i : HkΘ0×X×A,i →

HkΘ,i be the pushforward mapping given by

(θ0, θ−i, ξ−i, a−i, δ1
−i, . . . , δ

k−1
−i ), (θ0, θ−i,m1

−i(δ
1
−i), . . . ,m

k−1
−i (δ

k−1
−i )).

14

Thenm∗i : T∗Θ×X×A,i → T∗Θ,i is defined as
(
θi, ξi, ai, δ1

i , δ
2
i , . . .

)
,
(
θi,m1

i (δ
1
i ),m

2
i (δ

2
i ), . . .

)
.

3 Epistemic characterization of solution concepts

In this section we characterize solution concepts for asymmetric information games in terms of

expressible assumptions. First we define rationality and common belief and we present the logical

structure of the expressible assumptions we are going to consider (section 3.1). Then we define and

14Recall that we identify k-order belief hierarchies with k-order beliefs.
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characterize ∆-rationalizability (section 3.2), interim correlated rationalizability (ICR, section 3.3),

and interim (independent) rationalizability (IIR, section 3.4).

3.1 Expressible assumptions on rationality and beliefs

We define an expressible assumption as an event in (i.e. measurable subset of) the space of states of

the world,

Ω = Θ0 × T∗Θ0×X×A,1 × T
∗
Θ0×X×A,2.

Interpreting events in Ω as expressible assumptions is justified by the equivalence between the

topological construction and the measure-theoretic construction of σ -algebras mentioned in section

2.2. Indeed, an expressible assumption concerns terms that are either primitive (external states) or

derived using primitive terms and other derived terms.

To make the latter claim more precise, consider the notion of expressibility introduced in Heifetz

and Samet (1998): every subset of external states S ⊆ Θ0×X×A is an expression, and if e and f are

expressions, then ¬e, e∩ f and Bpi (e) are also expressions — for each i ∈ I and p ∈ [0,1] — which

we read as “not e”, “e and f ” and “player i attaches probability at least p to e,” respectively. Given

any (Θ0 × X × A)-based type space T = 〈Θ0 × X × A, (Ti,πi,xi,ai)i∈I〉, every expression e can be

viewed as a measurable subset [e] ⊆ Θ0 × T1 × T2: indeed, we can identify any subset S of external

states with the set

[S] =
{
(θ0, t1, t2) ∈ Θ0 × T1 × T2 :

(
θ0,x1(t1),a1(t1), x2(t2),a2(t2)

)
∈ S

}
,

and for any expressions d, e and f for which [d], [e] and [f ] are defined and [f ] has the form

[f ] = F×Ti for some F ⊆ Θ0×T−i, we can identify¬d, d∩e and Bpi (f )with [¬d] = (Θ0×T1×T2)\[d],
[d∩ e] = [d]∩ [e], and

[
Bpi (f )

]
=
{
(θ0, t1, t2) ∈ Θ0 × T1 × T2 : πi(ti)[F] ≥ p

}
,

respectively. An event in T is expressible if it belongs to the σ -algebra generated by the expressions,

when the latter are themselves viewed as events in T as explained above. It can be shown that

expressibility of every event in T is equivalent to non-redundancy of T.15 As we know, the latter

is in turn equivalent to T being isomorphic to a belief-closed subset of the universal (Θ0 × X × A)-
based type space T∗Θ0×X×A. It follows that T∗Θ0×X×A is the unique (up to isomorphism) type space

where all events can be seen as expressions and, conversely, every expression corresponding to

some (nonempty) event in some type space, can be seen as a (nonempty) event in T∗Θ0×X×A.

The solution concepts we consider, although all related to each other in interesting ways as we

shall soon see, belong to two different families. ∆-rationalizability is a type-space-free notion in that

it takes as given only the environment E and, possibly, some information-dependent restrictions

15Recall from Mertens and Zamir (1985) that a (Θ0 × X × A)-based type space T = 〈Θ0 × X × A, (Ti,πi,xi,ai)i∈I〉 is

non-redundant if and only if, for each player i, the smallest σ -algebra on Ti such that the mappings πi, xi, and ai are

all measurable separates every two distinct elements of Ti. This smallest σ -algebra is precisely the one generated by the

expressions.

14



on first-order beliefs. As we shall see, in some cases these restrictions can be derived from those

embodied in a type space. This is what links ∆-rationalizability with ICR and IIR, which are instead

defined for the Bayesian game 〈
Θ, (Ai, Ti,πi,θi,gi)i∈I

〉
induced by (the environment E and) some Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉. Indeed, the

solution set delivered by ∆-rationalizability has the form S1×S2 ⊆ (X1×A1)×(X2×A2), whereas the

solution set corresponding to ICR or IIR has the form S1×S2 ⊆ (T1×A1)× (T2×A2). In both cases,

we would like to relate S1 × S2 to an expressible event, so as to spell out the different (expressible)

assumptions that the various notions rely on. We now define rationality and common belief, which

play a prominent role in our results, and then we briefly sketch the general form of our expressible

epistemic characterizations.

All the epistemic characterizations we provide below involve rationality of all players, which

is the expressible assumption that each player chooses an action maximizing his expected payoff

given his payoff-relevant information and first-order beliefs, i.e. RAT = Θ0 × RAT 1 × RAT 2, where

RAT i =
{(
θi, ξi, ai, δ1

i , δ
2
i , . . .

)
∈ T∗Θ0×X×A,i

∣∣∣ ai ∈ arg max
a′i

gi
(
θi, a′i,margΘ0×Θ−i×A−i δ

1
i
)}
.16

Indeed, our characterizations involve not only rationality, but also common belief in this and possi-

bly other assumptions. We define common belief in assumptions that, like RAT , take the form of a

rectangular event E = Θ′0×E1×E2 ⊆ Ω, where Θ′0 ⊆ Θ0 and each Ei ⊆ T∗Θ×X×A,i is measurable. Given

any such E, for every i ∈ I define

Bi(E) =
{
ti ∈ T∗Θ0×X×A,i

∣∣∣ π∗Θ0×X×A,i(ti)
[
Θ′0 × E−i

]
= 1

}
and B(E) = Θ0 × B1(E)× B2(E).17

Now let B0(E) = E and recursively define Bk(E) = B(Bk−1(E)) for all k ≥ 1. Then the assumptions

of (correct) k-order mutual belief in E and (correct) common belief in E are, respectively,

MBk(E) =
k⋂
`=0
B`(E) and CB(E) =

⋂
k≥0
Bk(E).

For each player i the projections of these events on T∗Θ0×X×A,i will be denoted MBki (E) and CBi(E),
respectively. Note that MB0

i (E) = Ei, MBki (E) = Ei ∩ Bi(MBk−1(E)), and CBi(E) = ∩k≥0MBki (E).

The logical structure of our epistemic characterization of a solution set S1 × S2 is as follows:

we take an event E ⊆ Ω, typically representing some basic assumption on primitives and first-order

beliefs (such as RAT ), and for each player i we relate CBi(E) to Si using an appropriate, natural

mapping. For example, in the case S1 × S2 ⊆ (X1 × A1) × (X2 × A2) we characterize S1 × S2 by

showing that Si = projXi×Ai CBi(E) for every player i, which means that ai ∈ Si(xi) if and only if

the pair (xi, ai) is consistent with the assumption that E is the case and there is common belief in

E. As we shall see, in the case S1 × S2 ⊆ (T1 ×A1)× (T2 ×A2) the expressible characterization does

16Following the similar slight abuses of notation often found in the game theory literature, here and in what follows

gi(θi, ai, ·) denotes also its linear extension to ∆(Θ0 ×Θ−i ×A−i).
17Note that B(·) maps rectangular events into rectangular events. For our purposes it is sufficient to define the mutual

belief operator on this restricted class of events (see Battigalli and Siniscalchi, 2002).
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not have this simple form unless the assumed type space has information types, so that Ti = Xi for

all i. This is because in general the types of a Bayesian game are not part of the primitives, and are

not necessarily expressible starting from the primitives. Instead, we will then refer to the Θ-based

explicit types (which are expressible) induced by the types of the Bayesian game.

3.2 ∆-rationalizability

The specification of a Θ-based type space is necessary to obtain a standard definition of equilibrium,

but is not needed for ∆-rationalizability, a solution concept that is meant to capture strategic rea-

soning in the assumed economic environment with no reference to type spaces.18 The solution set

delivered by ∆-rationalizability has the form R∆ = R∆1 ×R∆2 ⊆ X ×A and it is parametrized by some

assumed information-dependent restrictions ∆ on first-order beliefs: formally, ∆ = (∆xi)i∈I,xi∈Xi ,
where ∆xi ⊆ ∆(Θ0×X−i×A−i) is a closed set for all i ∈ I and xi ∈ Xi. Before presenting the formal

definition and the epistemic characterization of ∆-rationalizability, it is useful to list the following

two special cases, which later on will help us establish the connection with ICR and IIR, respectively:

• Exogenous beliefs derived from a type space T = 〈Θ, (Ti,πi,θi)i∈I〉 with information types: in

this case Ti = Xi for all i ∈ I, the restrictions take the form

∆xi =
{
µi ∈ ∆(Θ0 ×X−i ×A−i)

∣∣ margΘ0×X−i µi = πi(xi)
}

for all i ∈ I and xi ∈ Xi, and we say that ∆ is derived from T.

• A belief µi ∈ ∆(Θ0 ×X−i ×A−i) satisfies information-based conditional independence if

µi[x−i] > 0⇒ µi[θ0, a−i|x−i] = µi[θ0|x−i]µi[a−i|x−i] ∀(θ0, x−i, a−i) ∈ Θ0 ×X−i ×A−i.

Let ∆i,CI ⊆ ∆(Θ0 × X−i × A−i) denote this set of first-order beliefs. We will consider the case

where exogenous beliefs are derived from a Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉 with

information types, and information-based conditional independence holds:

∆xi =
{
µi ∈ ∆i,CI

∣∣ margΘ0×X−i µi = πi(xi)
}

∀i ∈ I, xi ∈ Xi.

In this case we say that ∆ is CI-derived from T.

The solution set R∆ = R∆1 ×R∆2 ⊆ (X1 ×A1)× (X2 ×A2) is defined as follows: let R∆,0i = Xi ×Ai and,

recursively for all k ≥ 0, let

R∆,k+1
i =

(θi, ξi, ai) ∈ Xi ×Ai
∣∣∣∣∣∣∣∣
∃µi ∈ ∆(θi,ξi) :

(∆1) suppµi ⊆ Θ0 ×R∆,k−i
(∆2) ai ∈ arg maxa′i∈Ai gi

(
θi, a′i,margΘ0×Θ−i×A−i µi

)
 .

Finally, let R∆i = ∩k≥0R
∆,k
i and R∆ = R∆1 ×R∆2 . For every i ∈ I, xi ∈ Xi, and k ≥ 0 let

R∆,ki (xi) =
{
ai ∈ Ai

∣∣ (xi, ai) ∈ R∆,ki }
18See Battigalli (2003) and Battigalli and Siniscalchi (2003, 2007). Of course, there are other type-space-free solution

concepts, like ex post equilibrium.
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and R∆i (xi) = ∩k≥0R
∆,k
i (xi). Battigalli and Siniscalchi (2003) provide general conditions (satisfied

by the special cases introduced above) under which R∆i (xi) is nonempty for all i ∈ I and xi ∈ Xi.
They show that projΘi×AiR

∆
i yields the set of pairs (θi, ai) that are realizable in some Bayesian

equilibrium model consistent with the restrictions ∆.

Remark 1. In the case of no restrictions, that is, ∆xi = ∆(Θ0 × X−i × A−i) for all i ∈ I and xi ∈ Xi,
the payoff-irrelevant information ξi plays no role. In this case we can drop the superscript ∆, write

Rki (θi) = Rki (θi, ξi) for some arbitrary ξi, and redefine Rki as a subset of Θi×Ai.19 Then ai ∈ Rki (θi)
if and only if (θi, ai) survives k rounds of the following elimination procedure: for every k > 0 the

pair (θi, ai) ∈ Rk−1
i is deleted at round k, so that ai ∉ Rki (θi), if there exists αi ∈ ∆(Rk−1

i (θi)) such

that gi(θ0, θi, θ−i, αi, a−i) > gi(θ0, θi, θ−i, ai, a−i) for all (θ0, θ−i, a−i) ∈ Θ0×Rk−1
−i . This extends the

classical iterated dominance characterization of rationalizability in complete information games due

to Pearce (1984). See Battigalli (2003).

Let [∆] ⊆ Ω denote the event that all players’ first-order beliefs satisfy the restrictions, that is,

[∆] = Θ0 × [∆1]× [∆2], where
[
∆i
]
=
{(
θi, ξi, ai, δ1

i , δ
2
i , . . .

)
∈ T∗Θ0×X×A,i

∣∣∣ δ1
i ∈ ∆xi

}
∀i ∈ I.

The following result, which is a special case of Proposition 1 in Battigalli and Siniscalchi (2007) and

whose proof is therefore omitted, says that ∆-rationalizability is characterized by the expressible

assumption that there is common belief in the players’ rationality and in their first-order beliefs

satisfying the restrictions.

Lemma 1. For all i ∈ I and k ≥ 1,

R∆,ki = projXi×Ai MB
k−1
i

(
RAT ∩ [∆]

)
and R∆i = projXi×Ai CBi

(
RAT ∩ [∆]

)
.

3.3 Interim correlated rationalizability

Fix a Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉. Interim correlated rationalizability (ICR) yields a

solution set ICRT ⊆ (T1×A1)×(T2×A2) for the Bayesian game induced by T (see Dekel, Fudenberg,

and Morris, 2007) defined recursively as follows:20 ICRT,0
i = Ti ×Ai and

ICRT,k+1
i =


(ti, ai) ∈ Ti ×Ai

∣∣∣∣∣∣∣∣∣∣∣

∃νi ∈ ∆(Θ0 × T−i ×A−i) :

(ICR1) ai ∈ arg maxa′i∈Ai gi
(
θi(ti), a′i,µi(νi)

)
,

(ICR2) suppνi ⊆ Θ0 × ICRT,k
−i

(ICR3) margΘ0×T−i νi = πi(ti)


,

where µi(νi) ∈ ∆(Θ0×Θ−i×A−i) is the belief induced by νi in the obvious way, i.e. the pushforward

of νi given by the mapping (θ0, t−i, a−i) , (θ0,θ−i(t−i), a−i). Finally, ICRT
i = ∩k≥0ICR

T,k
i and

19This is the procedure used by Bergemann and Morris (2009) to define iterative implementation, which is shown to be

equivalent to robust (or type-space-independent) implementation.
20The sets Θi and Ξi are singletons (and hence do not appear at all) in Dekel, Fudenberg, and Morris (2007). However,

their definitions and results extend seamlessly to the more general framework of this paper.
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ICRT = ICRT
1× ICRT

2. Given any i ∈ I and ti ∈ Ti, we denote the sets of k-order ICR actions and ICR

actions of type ti as

ICRT,k
i (ti) =

{
ai ∈ Ai

∣∣∣ (ti, ai) ∈ ICRT,k
i

}
and ICRT

i (ti) = ∩k≥0ICR
T,k
i (ti). The qualification “correlated” in ICR is due to the possibility that,

according to the justifying belief νi, θ0 is correlated with a−i even after conditioning on t−i.

We report an alternative definition of ICR to facilitate comparison to other solution concepts.

The intuition is that type ti of player i forms a probabilistic conjecture σ−i : Θ0 × T−i → ∆(A−i) of

how the behavior of −i depends on t−i and θ0 (possibly via some implicit correlation device). Given

πi(ti), the conjecture σ−i then induces the belief µi(ti,σ−i) used to compute the expected payoff:

ICRT,k+1
i =


(ti, ai) ∈ Ti ×Ai

∣∣∣∣∣∣∣∣∣∣∣

∃ a measurable σ−i : Θ0 × T−i → ∆(A−i) such that:

(ICR1a) ai ∈ arg maxa′i∈Ai gi
(
θi(ti), a′i,µi(ti,σ−i)

)
,

(ICR2a) ∀ (θ0, t−i) ∈ Θ0 × T−i,
suppσ−i(θ0, t−i) ⊆ ICRT,k

−i (t−i)


,

where µi(ti,σ−i) ∈ ∆(Θ0 ×Θ−i ×A−i) is defined by

µi(ti,σ−i)[θ0, θ−i, a−i] =
∫
(θ−i)−1(θ−i)

σ−i(θ0, t−i)[a−i] ·πi(ti)[θ0,dt−i].

It can be shown that the two definitions are equivalent — see Dekel, Fudenberg, and Morris (2007).

The following proposition relates ICR and ∆-rationalizability in the important special case of a

type space T with information types. Note that this indirectly provides an expressible characteriza-

tion of ICR for this special case, via Lemma 1.

Proposition 1. Let T be a type space with information types and let ∆ be derived from T. Then

ICRT,k = R∆,k for every k ≥ 0 and hence ICRT = R∆.

Proof. By our definitions, ICRT,0
i = R∆,0i = Xi × Ai for all i ∈ I. Now suppose by way of induction

that, for some k ≥ 0, we have ICRT,k
i = R∆,ki for all i ∈ I. Pick any i ∈ I, xi ∈ Xi, ai ∈ Ai,

and νi ∈ ∆(Θ0 × X−i × A−i). By the inductive hypothesis, suppνi ⊆ Θ0 × R∆,k−i is equivalent to

suppνi ⊆ Θ0 × ICRT,k
−i . Moreover, νi ∈ ∆xi is equivalent to margΘ0×X−i νi = πi(xi), because ∆ is

derived from T. It follows that the conditions for ai ∈ ICRT,k+1
i (xi) are equivalent to those for

ai ∈ R∆,k+1
i (xi). Since this is true for all i ∈ I, xi ∈ Xi, and ai ∈ Ai, the induction step follows and

the proof is complete.

Combined with a result in Dekel, Fudenberg, and Morris (2007), Proposition 1 generalizes as

follows.

Corollary 1. Let T and T′ be Θ-based type spaces. Assume that T has information types and let ∆ be

derived from T. If there is a belief morphism (mi)i∈I from T′ to T, then

ICRT′,k
i (t′i) = R

∆,k
i (mi(t′i)) ∀i ∈ I, ∀k ≥ 1.

Proof. Dekel, Fudenberg, and Morris (2007, Corollary 2) prove that the set of ICR actions of a type

only depends on the Θ-based beliefs generated by it. If (mi)i∈I is a belief morphism, τT′
i = τT

i ◦mi

for all i ∈ I, hence ICRT′
i (·) = ICRT

i (mi(·)) for all i ∈ I. Combining this fact with Proposition 1

gives the result.
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3.3.1 Expressible epistemic characterization of ICR

Lemma 1, Proposition 1 and Corollary 1 entail an expressible epistemic characterization of ICR

for a class of Θ-based type spaces that encompasses many economic applications — the class of

type spaces with information types. Here we provide an expressible epistemic characterization that

holds for all Θ-based type spaces.

Following the notation introduced in section 2.2, let a∗i : T∗Θ×X×A,i → Ai denote the natural

projection. The following theorem says that, given any type space T, the set ICRT
i comprises all

and only those pairs (ti, ai) ∈ Ti ×Ai such that ai is consistent with rationality and common belief

in rationality, given that the Θ-based explicit type of i is the one induced by ti via τT
i . (Dekel,

Fudenberg, and Morris, 2007 prove a related result.)

Theorem 1. Fix a Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉. For all i ∈ I and k ≥ 1,

ICRT,k
i =

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃ t∗i ∈ MBk−1
i (RAT) s.t. m∗i (t

∗
i ) = τT

i (ti) and a∗i (t
∗
i ) = ai

}
.

Furthermore,

ICRT
i =

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃ t∗i ∈ CBi(RAT) s.t. m∗i (t
∗
i ) = τT

i (ti) and a∗i (t
∗
i ) = ai

}
,

or equivalently,

ICRT
i (ti) = projAi

(
CB(RAT)∩

{
(θ0, t∗1 , t

∗
2 ) ∈ Ω

∣∣m∗i (t∗i ) = τT
i (ti)

})
.

Proof. See Appendix A.

3.4 Interim independent rationalizability

Fix a Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉. Interim independent rationalizability (IIR) yields

a solution set IIRT ⊆ ICRT for the Bayesian game induced by T (Dekel, Fudenberg, and Morris,

2007). Given i ∈ I and ti ∈ Ti, a measurable function σ−i : T−i → ∆(A−i) induces a measure

µi(ti,σ−i) ∈ ∆(Θ0 ×Θ−i ×A−i) as follows:

µi(ti,σ−i)[θ0, θ−i, a−i] =
∫

(θ−i)−1(θ−i)

σ−i(t−i)[a−i] ·πi(ti)[θ0,dt−i]. (1)

Note that we can write µi(ti,σ−i)[θ0, a−i|t−i] = σ−i(t−i)[a−i]·πi(ti)[θ0|t−i] for any t−i in the sup-

port of margT−i πi(ti). (This is obvious when T−i is finite.) Thus, µi(ti,σ−i) satisfies the conditional

independence property that θ0 and a−i are independent conditional on t−i. The recursive definition

of interim independent rationalizability is as follows: IIRT
i,0 = Ti ×Ai,

IIRT,k+1
i =

(ti, ai) ∈ Ti ×Ai
∣∣∣∣∣∣∣∣
∃ measurable σ−i : T−i → ∆(A−i) :

(IIR1) ai ∈ arg maxa′i∈Ai gi
(
θi(ti), a′i,µi(ti,σ−i)

)
(IIR2) ∀t−i ∈ T−i, suppσ−i(t−i) ⊆ IIRT,k

−i (t−i)

 .
Finally, IIRT,k = IIRT,k

1 × IIRT,k
2 and IIRT = ∩k≥0IIRT.
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Remark 2. For each i and ti in T, ai ∈ IIRT
i (ti) if and only if ai is rationalizable for ti in the interim

strategic form of the Bayesian game induced by T (see Appendix B).

The alternative definition of ICR makes it clear that, as anticipated, IIRT ⊆ ICRT. By the argu-

ment in the proof of Corollary 1, it follows that all IIR outcomes obtaining across all Θ-based type

spaces T′ that belief-morphically map into T, are ICR outcomes of T. The following result shows

that the converse also holds. Note that this equivalence suggests the following robustness interpre-

tation: the predictions of ICR are all and only the predictions that the analyst could make using IIR,

but without committing to the assumption that the assumed type space is the “true” one. (This may

be because, for instance, he suspects he is disregarding some payoff-irrelevant variable observed by

the players.)

Proposition 2. For every Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉 there exists a Θ-based type space

T′ = 〈Θ, (T ′i ,π′i,θ
′
i)i∈I〉 and a belief morphism (mi)i∈I from T′ onto T such that

ICRT
i (ti) =

⋃
t′i∈(mi)−1(ti)

ICRT′
i (t

′
i) =

⋃
t′i∈(mi)−1(ti)

IIRT′
i (t

′
i) ∀i ∈ I, ∀ti ∈ Ti. (2)

Proof. For every i ∈ I and (ti, ai) ∈ ICRT
i , let Vi(ti, ai) designate the set of all νi ∈ ∆(Θ0 × ICRT

−i)
such that ai is a best response to νi for ti. Define T′ = 〈Θ, (T ′i ,π′i,θ

′
i)i∈I〉 as follows: for all i ∈ I,

T ′i = ICRT
i , θ

′
i(ti, ai) = θi(ti) for all (ti, ai) ∈ T ′i , and π′i : T ′i → ∆(Θ0 × T ′−i) is an arbitrary

measurable selector from the correspondence Vi.21

Letmi : T ′i → Ti be the natural projection for each i ∈ I, and let us verify that (mi)i∈I is a belief

morphism from T′ onto T. Indeed, for each i ∈ I and (ti, ai) ∈ T ′i we have θi(mi(ti, ai)) = θi(ti) =
θ′i(ti, ai), and margΘ0×T−i π

′
i(ti, ai) is the pushforward of πi(ti) given by (θ0, ti, ai), (θ0, ti). This

proves that (mi)i∈I is a belief morphism, which is onto because projTi ICR
T
i = Ti.

We will prove (2) now, thus completing the proof of the theorem. Since (mi)i∈I is a morphism,

τT′
i = τT

i ◦mi and hence ICRT′
i (·) = ICRT

i (mi(·)) (Dekel, Fudenberg, and Morris, 2007, Corollary 2).

Therefore it suffices to show that ai ∈ IIRT′
i (ti, ai) for all i ∈ I and (ti, ai) ∈ T ′i . For each i ∈ I

define Wi as the set of triplets of the form (ti, ai, ai), where (ti, ai) ∈ T ′i . By construction, for

every i ∈ I and (ti, ai) ∈ T ′i action ai is a best response to π′i(ti, ai) for type ti ∈ Ti, therefore

ai is also a best response for type (ti, ai) ∈ T ′i to the pushforward of π′i(ti, ai) given the mapping

(t−i, a−i), (t−i, a−i, a−i). Thus (Wi)i∈I has the independent best-response property as in the fixed-

point definition of IIR (see Ely and Pęski, 2006) and hence we obtain ai ∈ IIRT′
i (ti, ai) for all i ∈ I

and (ti, ai) ∈ T ′i .

Although ICR is weaker than IIR, the two notions coincide in the important special case where

(E is such that) there is distributed knowledge of the payoff state:

Remark 3. Suppose that there is distributed knowledge of the payoff state, that is, assume that Θ0 is

a singleton. Then IIRT = ICRT.

21To verify that T′ is a well defined Θ-based type space, note that T ′i is standard Borel because ICRT
i ⊆ Ti ×Ai is closed

and both Ti and Ai are standard Borel. Moreover, θ′i is clearly measurable. Finally, π′i exists and is measurable, because Vi
is a nonempty-valued, closed-graph correspondence between compact spaces. (This is by the Kuratowski-Ryll-Nardzewski

selection theorem — see e.g. Aliprantis and Border, 1999.)
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Proof. If Θ0 is a singleton we can suppress it in the notation and write conjectures of player i in the

alternative definition of ICR and in the definition of IIR in the same way, i.e. as measurable mappings

from T−i to ∆(A−i). Thus, in this case the two definitions coincide.

Remark 3 implies that an expressible characterization of IIR is possible under distributed knowl-

edge of the payoff state. Though almost trivial, the remark is important because many economic

applications feature distributed knowledge of θ. Models with private values are an obvious example,

but also many models with interdependent values satisfy this property.22

We can provide an expressible epistemic characterization of IIR in another important special

case, namely when T has information types. We do this using a preliminary result that relates IIR

to ∆-rationalizability, when ∆ is derived from T under the conditional independence assumption.

This provides an indirect epistemic characterization via Lemma 1. Note the parallel between Propo-

sition 1 and the next result: the former establishes equivalence between ∆-rationalizability and ICR

when we require ∆ to be derived from the assumed type space; the latter establishes the analogous

equivalence with IIR when, in addition, we require ∆ to be CI-derived from the type space.

Proposition 3. Let T be a type space with information types (so that Ti = Xi, i = 1,2) and let ∆ be

CI-derived from T. Then IIRT,k = R∆,k for all k ≥ 0 and, therefore, IIRT = R∆.

Proof. By our definitions, IIRT,0
i = R∆,0i = Xi × Ai for all i ∈ I. Now suppose by way of induction

that, for some k ≥ 0, we have IIRT,k
i = R∆,ki for all i ∈ I. Pick any i ∈ I, any xi ∈ Xi, any

ai ∈ Ai, and any νi ∈ ∆(Θ0 × X−i × A−i). By the inductive hypothesis, suppνi ⊆ Θ0 × R∆,k−i is

equivalent to suppνi ⊆ Θ0 × IIRT,k
−i . Moreover, νi ∈ ∆xi is equivalent to margΘ0×X−i νi = πi(xi) and

νi[θ0, a−i|x−i] = νi[θ0|x−i]νi[a−i|x−i] for each x−i with νi[x−i] > 0, as ∆ is CI-derived from T.

Suppose that ai ∈ R∆,k+1
i (xi) because ai is a best reply for type xi to a belief νi ∈ ∆xi with

suppνi ⊆ Θ0 ×R∆,k−i . Define σ−i : X−i → ∆(A−i) as follows: for all x−i ∈ X−i and a−i ∈ A−i,

σ−i(x−i)[a−i] =


νi[a−i|x−i] if νi[x−i] > 0,

1
/∣∣IIRT,k

−i (x−i)
∣∣ if νi[x−i] = 0 and a−i ∈ IIRT,k

−i (x−i),

0 if νi[x−i] = 0 and a−i ∉ IIR
T,k
−i (x−i).

Note that margΘ0×Θ−i×A−i νi = µi(xi,σ−i) and, by the inductive hypothesis, for all x−i ∈ X−i we have

suppσ−i(x−i) ⊆ IIRT,k
−i (x−i). It follows that the conditions for ai ∈ IIRT,k+1

i (xi) are satisfied. Next

suppose that ai ∈ IIRT,k+1
i (xi) and hence that ai is a best response for xi to a conjecture σ−i with

suppσ−i(x−i) ⊆ IIRT,k
−i (x−i) for all x−i ∈ X−i. Let νi ∈ ∆(Θ0 × X−i × A−i) de defined as follows:

for all θ0 ∈ Θ0, x−i ∈ X−i, and a−i ∈ A−i, νi[θ0, x−i, a−i] = πi(xi)[θ0, x−i]σ−i(x−i)[a−i]. Since

ai is a best response to µi(xi,σ−i), it is also a best response to νi. Moreover, νi ∈ ∆xi and, by the

inductive hypothesis, suppνi ⊆ Θ0× IIRT,k
−i = Θ0×R∆,k−i . Thus, ai ∈ R∆,k+1

i (xi). Since this is true for

all i ∈ I, xi ∈ Xi, and ai ∈ Ai, the induction step follows and the proof is complete.

22For example, consider “wallet games” (Klemperer, 1998), or any model where θi specifies player i’s characteristics such

as ability or riskiness, and the consequences for each player of an action profile depend on all players’ characteristics.
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3.4.1 Expressible epistemic characterization of IIR

Since types à la Harsanyi need not be expressible, the conditional independence assumption under-

lying the general definition of IIR need not be expressible, either. Thus, we are unable to provide a

general characterization of IIR via expressible assumptions. But expressible characterizations can

be given in interesting special cases.

Our first result is an immediate consequence of Theorem 1 and Remark 3. If there is distributed

knowledge of the payoff state — a property of the fixed environment E — then for any Θ-based type

space T, IIRT
i is the set of all pairs (ti, ai) ∈ Ti × Ai such that ai is consistent with rationality and

common belief in rationality, given that the Θ-based explicit type of i is the one induced by ti.

Corollary 2. Suppose that there is distributed knowledge of the payoff state, that is, assume that Θ0

is a singleton. Fix a Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉. For all i ∈ I and k ≥ 1,

IIRT,k
i =

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃t∗i ∈ MBk−1
i (RAT) s.t. m∗i (t

∗
i ) = τT(ti) and a∗i (t

∗
i ) = ai

}
.

Furthermore,

IIRT
i =

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃t∗i ∈ CBi(RAT) s.t. m∗i (t
∗
i ) = τT(ti) and a∗i (t

∗
i ) = ai

}
,

or equivalently,

IIRT
i (ti) = projAi

(
CB(RAT)∩

{
(θ0, t∗1 , t

∗
2 ) ∈ Ω

∣∣m∗i (t∗i ) = τT
i (ti)

})
.

To state the next result, consider the following expressible assumption of information-based

conditional independence,

ICI =
{(
θ0, (xi, ai, h∗i )i∈I

)
∈ Ω

∣∣∣ margΘ0×X−i×A−i φΘ0×X×A,i(h
∗
i ) ∈ ∆i,CI ∀i ∈ I

}
.

(Recall that ∆i,CI is the set of probability measures in ∆(Θ0 × X−i × A−i) such that θ0 and a−i are

independent conditional on x−i.) The result follows at once from Lemma 1 and Proposition 3. If T is

a Θ-based type space with information types, then IIRT
i is the set of all pairs (ti, ai) ∈ Ti ×Ai such

that ai is consistent with rationality, information-based conditional independence, and common

belief in these two assumptions, given that the private information and the Θ-hierarchy of i are the

ones induced by ti.

Corollary 3. Fix a Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉 with information types. For all k ≥ 1

and i ∈ I,

IIRT,k
i =

{
(ti, ai) ∈ Ti×Ai

∣∣∣ ∃t∗i ∈ MBk−1
i (RAT ∩ ICI) s.t. m∗i (t

∗
i ) = τT(ti) and a∗i (t

∗
i ) = ai

}
.

Furthermore,

IIRT
i =

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃t∗i ∈ CBi(RAT ∩ ICI) s.t. m∗i (t
∗
i ) = τT(ti) and a∗i (t

∗
i ) = ai

}
,

or equivalently,

IIRT
i (ti) = projAi

(
CB(RAT ∩ ICI)∩

{
(θ0, t∗1 , t

∗
2 ) ∈ Ω

∣∣m∗i (t∗i ) = τT
i (ti)

})
.

We conjecture that, under non-redundancy, an analogous result holds for arbitrary Θ-based type

spaces, once we require independence conditional on the Θ-based explicit type rather than ICI.
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4 Ex ante and interim rationalizability

In this section we show that the differences between rationalizability in the ex ante and interim

strategic form of a Bayesian game are due to the different independence restrictions implicit in

these solution concepts. This follows from a preliminary result about ∆-rationalizability that helps

clarifying the conceptual issue. We consider a set ∆ of information-dependent restrictions on be-

liefs, define a notion of ex ante correlated ∆-rationalizability, and show that it is in a strong sense

equivalent to the interim notion of ∆-rationalizability introduced earlier.

We take the point of view of player i in an ex ante stage at which he has not yet received his

information xi. Let Fi be the set of all functions from Xi to Ai, for every i ∈ I. Then we can define a

“structural” ex ante strategic form with two real players, 1 and 2, choosing strategies in F1 and F2,

and a fictitious player choosing an exogenous external state in Θ0 ×X.

Let θi : Xi → Θi for each player i denote the natural projection. Then the payoff function

gi : Θ0 ×X × F1 × F2 → R of player i is defined by the formula

gi
(
θ0, x1, x2,f1,f2

)
= gi

(
θ0,θ1(x1),θ2(x2),f1(x1),f2(x2)

)
Player i forms an ex ante belief µi ∈ ∆(Θ0 × X × F−i) about the choice of the fictitious player and

the strategy of −i. Again slightly abusing our notation, we write gi(fi, µi) for the corresponding ex

ante expected payoff when i chooses strategy fi.

Now fix some restrictions on interim beliefs ∆ = (∆1,∆2), where ∆i = (∆xi)xi∈Xi and ∆xi ⊆
∆(Θ0 × X−i ×A−i) for each i ∈ I and xi ∈ Xi. Clearly, ∆i implies restrictions on the ex ante beliefs

of i. Thus we say that µi ∈ ∆(Θ0 ×X × F−i) is consistent with ∆i if it assigns positive probability to

each xi and if it yields interim beliefs consistent with ∆i, that is, if for all xi ∈ Xi we have:

• µi[xi] :=
∑
θ0,x−i,f−i µi[θ0, xi, x−i,f−i] > 0;23

• (µi[θ0, x−i, a−i|xi])θ0∈Θ0,x−i∈X−i,a−i∈A−i ∈ ∆xi , where

µi[θ0, x−i, a−i|xi] :=
∑

f−i : f−i(x−i)=a−i

µi[θ0, xi, x−i,f−i]
µi[xi]

.

Note that we allow i’s ex ante beliefs to exhibit correlation between the fictitious player and the

real opponent. The set of ex Ante Correlated ∆-Rationalizable strategies is recursively defined as

follows: ACR∆,0i = Fi and

ACR∆,k+1
i =


fi ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣

∃µi ∈ ∆(Θ0 ×X × F−i) :

(A∆1) fi ∈ arg maxf ′i∈Fi gi
(
f ′i, µi

)
(A∆2) suppµi ⊆ Θ0 ×X ×ACR∆,k−i
(A∆3) µi is consistent with ∆i


;

23We impose this weak requirement to derive well-defined interim beliefs and avoid tedious issues concerning the differ-

ences between ex ante and interim expected payoff maximization. Alternatively, we could impose a perfection requirement

(see Brandenburger and Dekel, 1987). This discussion would distract the reader’s attention from the important issues.
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ACR∆i =
⋂
k≥0ACR

∆,k
i ; ACR∆ = ACR∆1 ×ACR∆2 .

Adapting the argument used by Battigalli and Siniscalchi (2007) to prove their Proposition 1, one

can show that ACR∆ is the set of strategy profiles of the ex ante structural strategic form that are

consistent with (correct) common belief of rationality and the restrictions ∆.

We now relate ACR∆ to (interim) ∆-rationalizability. Recall that interim notions of rationaliz-

ability yield solution sets made of type-action pairs. A set Si ⊆ Xi × Ai whose projection on Xi is

Xi itself, is equivalent to a nonempty-valued correspondence xi , Si(xi) ⊆ Ai, and we can look at

the selections from this correspondence. Then, given a set F′i ⊆ Fi, it makes sense to write F′i ≈ Si
whenever F′i is precisely the set of such selections:

F′i ≈ Si if and only if F′i =
{
fi ∈ Fi

∣∣∣ ∀xi ∈ Xi, fi(xi) ∈ Si(xi)}.
The following result shows that ex ante ∆-rationalizability is fully equivalent to ∆-rationalizability.

Proposition 4. For all k ≥ 0, ACR∆,k ≈ R∆,k. Furthermore, ACR∆ ≈ R∆.

Proof. We prove by induction that ACR∆,ki ≈ R∆,ki for each i = 1,2 and k ≥ 0. This is trivially true

for k = 0, so suppose by way of induction that ACR∆,ki ≈ R∆,ki for each i = 1,2. We shall prove that

ACR∆,k+1
i ≈ R∆,k+1

i for each i = 1,2.

Let fi ∈ ACR
∆,k+1
i . We must show that fi is a selection from R∆,k+1

i (·). Let µi be a belief that

justifies fi as in the definition of ex ante ∆-rationalizability. By condition (A∆3), for each xi ∈ Xi
we can derive interim beliefs νxi ∈ ∆xi by letting νxi[·] = µi[·|xi]. The inductive hypothesis and

condition (A∆2) then imply suppνxi ⊆ Θ0 ×R∆,k−i . The ex ante maximization condition is

fi ∈ arg max
f ′i∈Fi

gi
(
f ′i, µi

)
= arg max

f ′i∈Fi

∑
xi∈Xi

µi[xi]
∑

θ0,x−i,f−i

µi[θ0, xi, x−i,f−i]
µi[xi]

gi
(
θ0, xi, x−i,f ′i,f−i

)
,

where the latter expression is well defined since µi is consistent with ∆i. Thus, fi must maximize

each xi-term in the summation. The inductive hypothesis and conditions (A∆2) and (A∆3) imply

that for all ai ∈ Ai and xi ∈ Xi we have

∑
θ0,x−i,f−i

µi[θ0, xi, x−i,f−i]
µi[xi]

gi
(
θ0,θi(xi),θ−i(x−i), ai,f−i(x−i)

)
=

=
∑

θ0,x−i,a−i

∑
f−i:f−i(x−i)=a−i

µi[θ0, xi, x−i,f−i]
µi[xi]

gi
(
θ0,θi(xi),θ−i(x−i), ai, a−i

)
=

=
∑

θ0,x−i,a−i

µi[θ0, x−i, a−i|xi] gi(θ0,θi(xi),θ−i(x−i), ai, a−i) = gi
(
θi(xi), ai, νxi

)
,

so we conclude that fi(xi) ∈ arg maxai gi(θi(xi), ai, νxi) and hence that νxi satisfies all the condi-

tions in the definition of R∆,k+1
i (xi). This proves that fi is a selection from R∆,k+1

i (·).
Conversely, let fi be a selection from R∆,k+1

i (·). We must show that fi ∈ ACR
∆,k+1
i . By def-

inition of R∆,k+1
i and by the inductive assumption for each xi ∈ Xi there exists νxi ∈ ∆xi such

that suppνxi ⊆ Θ0 × R∆,k−i and fi(xi) ∈ arg maxai gi(θi(xi), ai, νxi). We construct a measure

νi on Θ0 × Xi × X−i × A−i and we derive an appropriate measure µi ∈ ∆(Θ0 × X × F−i). Let
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λi ∈ ∆(Xi) be an arbitrary full-support probability measure on Xi, and for each (θ0, xi, x−i, a−i)
let νi[θ0, xi, x−i, a−i] = λi[xi]νxi[θ0, x−i, a−i]. Then∑

θ0,xi,x−i,a−i

νi[θ0, xi, x−i, a−i] =
∑
xi
λi[xi]

∑
θ0,x−i,a−i

νxi[θ0, x−i, a−i] = 1

and, moreover, νi ∈ ∆(Θ0 × Xi × X−i × A−i). Clearly νxi[θ0, x−i, a−i] = νi[θ0, x−i, a−i|xi]. Define

marginal conditional probabilities in the usual way when possible and arbitrarily when the condi-

tioning event has zero probability. Now define µi ∈ ∆(Θ0 ×X × F−i) by

µi
[
θ0, xi, x−i,f−i

]
= νi[θ0, xi, x−i]

∏
x′−i

νi[f−i(x′−i)|θ0, xi, x′−i]. (3)

To verify that this is indeed a well defined probability distribution, assume without loss of generality

that X−i = {x1
−i, . . . , x

n
−i} and note that a strategy f−i can be equivalently represented as an n-tuple

(a1
−i, . . . , a

n
−i), so that∑

θ0,xi,x−i,f−i

µi[θ0, xi, x−i,f−i] =
∑

θ0,xi,x−i

νi[θ0, xi, x−i]
∑
f−i

∏
x′−i

νi[f−i(x′−i)|θ0, xi, x′−i]

=
∑

θ0,xi,x−i

νi[θ0, xi, x−i]
∑

a1
−i,...,a

n
−i

n∏
k=1

νi[ak−i|θ0, xi, xk−i]

=
∑

θ0,xi,x−i

νi[θ0, xi, x−i]
∑
a1
−i

νi[a1
−i|θ0, xi, x1

−i] · · ·
∑
an−i

νi[an−i|θ0, xi, xn−i] = 1.

By construction, µi is an ex ante belief consistent with ∆i. Suppose that f−i ∉ ACR
∆,k
−i . By the

inductive assumption, f−i is not a selection from R∆,k−i (·), so (x−i,f−i(x−i)) ∉ R
∆,k
−i for some x−i

and hence for each θ0 and xi we have

λi[xi]νxi[θ0, x−i,f−i(x−i)] = νi[θ0, xi, x−i]νi[f−i(x−i)|θ0, xi, x−i] = 0,

which by (3) implies µi[θ0, xi, x−i,f−i] = 0. This shows that suppµi ⊆ Θ0×X×ACR∆,k−i . Furthermore,

note that for every f ′i ∈ Fi we have

gi
(
f ′i, µi

)
=
∑
xi
λi[xi] gi

(
θi(xi),f ′i(xi), νxi

)
.

As fi(xi) ∈ arg maxai λi[xi]gi(θi(xi), ai, νxi) for all xi ∈ Xi, we have fi ∈ arg maxf ′i∈Fi gi(f
′
i, µi).

Thus µi satisfies the conditions in the definition of ACR, hence fi ∈ ACR
∆,k+1
i .

Propositions 1 and 4 yield an equivalence result for ex ante and interim correlated rationaliz-

ability in Bayesian games with information types. Before stating the result formally, let us first

review the standard notion of ex ante rationalizability. Since ex ante rationalizability makes sense

only when Harsanyi types represent information that can be learned, we restrict our attention to

Bayesian games with information types. However, we remark that an equivalence result like the one

stated below can be proved for every Bayesian game.

A strategy for the Bayesian game induced by a type space T with information types is ex ante

rationalizable if it is rationalizable in the ex ante strategic form of the game. To define the ex ante

strategic form, we must first specify ex ante beliefs on Θ0 ×X consistent with the type space T. Say

that a prior Πi ∈ ∆(Θ0 ×X) is consistent with T if for each xi we have:
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• Πi[xi] :=
∑
θ0,x−i Πi[θ0, xi, x−i] > 0;24

• Πi[θ0, x−i|xi] := Πi[θ0, xi, x−i]
/
Πi[xi] = πi(xi)[θ0, x−i] ∀θ0 ∈ Θ0, ∀x−i ∈ X−i.

Once we fix priors Π = (Π1,Π2) consistent with T, the ex ante strategic form of the Bayesian game

induced by T is given by the expected payoff functions

gΠi (f1,f2) =
∑
θ0∈Θ0

∑
x1∈X1

∑
x2∈X2

Πi[θ0, x1, x2] gi
(
θ0,θ1(x1),θ2(x2),f1(x1),f2(x2)

)
.

It can be verified that a strategy is rationalizable in the strategic game (gΠ1 ,g
Π
2 ) if and only if it is

rationalizable in every other strategic game (gΠ
′

1 ,g
Π′
2 ) where prior beliefs Π′ are also consistent with

T. It is also standard to show that ex ante rationalizability implicitly relies on an ex ante indepen-

dence assumption: a player’s beliefs about (θ0, x) and f−i are given by a product measure Πi × µi
where µi ∈ ∆(F−i). Ex ante independence implies interim independence; therefore ex ante rational-

izability implies interim independent rationalizability, which is equivalent to rationalizability in the

interim strategic form of the Bayesian game (Remark 2).

We now define a notion of ex ante correlated rationalizability that removes the ex ante indepen-

dence assumption. Fix arbitrarily a profile of priors Π consistent with T. The set ACRT of ex ante

correlated rationalizable strategy profiles is given by the following recursive definition: ACRT,0
i = Fi,

ACRT,k+1
i =


fi ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣

∃µi ∈ ∆ (Θ0 ×X × F−i):
(ACR1) fi ∈ arg maxf ′i∈Fi gi

(
f ′i, µi

)
,

(ACR2) suppµi ⊆ Θ0 ×X ×ACRT,k
−i

(ACR3) margΘ0×X µi = Πi


,

Finally, ACRT
i = ∩k>0ACR

T,k
i , ACRT = ACRT

1 ×ACRT
2. It can be shown that the definition of ACRT

is independent of the priors Π that we choose, as long as they are consistent with T.

Remark 4. If T has information types and ∆ is derived from T, then ACRT = ACR∆.

Theorem 2. Ex ante correlated rationalizability is equivalent to interim correlated rationalizability:

for every type space T with information types, ACRT ≈ ICRT.

Proof. By the remark above, ACRT = ACR∆. By Proposition 4, ACR∆ ≈ R∆. By Proposition 1,

R∆ = ICRT. Therefore ACRT ≈ ICRT.

Thus, looking deeper into the discrepancy between ex ante and interim rationalizability, we

see that it is due to the different conditional independence restrictions, not to different types be-

ing allowed or not to hold different conjectures. Indeed, once these restrictions are removed, the

discrepancy disappears: ex ante correlated rationalizability treats different types just as different

information sets of the same player, and yet it is fully equivalent to ICR.

24As before, we include this mild requirement to avoid distracting the reader.
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5 Discussion

5.1 A summary of our approach and results

In this paper we provide a unified framework to elucidate and relate to each other different no-

tions of rationalizability for two-person, static games with asymmetric information. Our guiding

principle is that a solution concept should allow an expressible characterization, that is, it should

describe the implications for players’ behavior of expressible assumptions about rationality and

interactive beliefs. Based on Heifetz and Samet’s (1998) work, we argue that these assumptions can

be identified by events (measurable subsets) in the canonical space of external states and infinite

hierarchies of beliefs about them. The external states are the primitive terms of the language used

to express assumptions about rationality and interactive beliefs, and form what we call the eco-

nomic environment. Infinite hierarchies of beliefs are obtained as derived elements. Our starting

point is the observation that rationalizability for complete information games is characterized by

rationality and common belief in rationality, therefore notions of rationalizability for games with in-

complete/asymmetric information should be obtained by appropriate modifications of these basic

expressible assumptions.

We use as a “glue solution concept” ∆-rationalizability, a procedure that iteratively deletes pri-

vate information-action pairs, defined on the economic environment without reference to Harsanyi

types, and parametrized by restrictions ∆ on first-order beliefs. More standard notions of rational-

izability, in particular IIR and ICR, are defined for Bayesian games, which obtain from the economic

environment by appending to it a type space à la Harsanyi. When Harsanyi types can be interpreted

as private information (both payoff relevant and payoff irrelevant), then we obtain ICR and IIR as

special cases of ∆-rationalizability (Propositions 1,3). Since the latter admits an expressible epis-

temic characterization (Lemma 1), we obtain as corollaries expressible characterizations of ICR and

IIR (Corollary 3) for this special case, which is very common in economic applications.

We cannot provide a general expressible characterization of IIR, as this seems to rely on a notion

of conditional independence that refers to non-expressible features of Harsanyi types: each type of

each player believes that, conditional on the type of the opponent, there is no residual correlation

between his action and the payoff state. On the other hand, ICR drops conditional independence

and only relies on expressible features of Harsanyi types (private payoff-relevant information and

Θ-hierarchy), hence it admits an expressible characterization (Theorem 1). We point out that IIR and

ICR coincide when the environment features distributed knowledge of the payoff state (no residual

uncertainty about θ), a common situation in economics (Remark 3). This yields, by Theorem 1, an

expressible characterization of IIR for this interesting special case (Corollary 2).

Besides characterizing and exploring the relationships between interim notions of rationaliz-

ability, relevant when asymmetric information is interpreted as genuine incomplete information,

we analyze ex ante notions of rationalizability, relevant when asymmetric information concerns an

actual initial chance move. We show that allowing for correlated conjectures about chance and the

opponent, ex ante and interim ∆-rationalizability are equivalent (Proposition 4). As for Bayesian

games, this implies that when Harsanyi types can be interpreted as private information, and hence

27



the ex ante interpretation of the game makes sense, a correlated version of ex ante rationalizability

is equivalent to ICR (Theorem 2).

To conclude, independence assumptions are responsible not only for the differences between in-

terim independent rationalizability (i.e. rationalizability on the interim strategic form, see Remark

2) and interim correlated rationalizability, but also for the differences between ex ante and interim

rationalizability. Removing the independence assumptions we obtain equivalent ex ante and in-

terim solution concepts that allow an expressible characterization: the (correlated) rationalizable

actions of a type ti are the actions consistent with rationality, common belief in rationality, and the

expressible features of ti.

5.2 Extensions

n players. The most natural extension of IIR to static games with more than two players assumes

that each type of each player believes that, conditional on the opponents’ types, the payoff state and

all the opponents’ actions are mutually independent, whereas the natural extension of ICR allows

for general correlation. All our equivalence and expressible characterization results have straight-

forward generalizations, except for those based on Remark 3. Indeed, for this natural extension

of IIR, our remark about the equivalence between IIR and ICR under distributed knowledge of the

payoff state does not hold, for the same reasons why independent rationalizability is a refinement

of correlated rationalizability in games with complete information.

Dynamic games. ∆-rationalizability in dynamic games with incomplete information has been stud-

ied by Battigalli (2003) and Battigalli and Siniscalchi (2003, 2007). These papers discuss also how

to model independence assumptions in dynamic games. They study two versions of the solution

concept, one that features a forward induction principle in the spirit of Pearce (1984) and Batti-

galli (1997), and a weaker one that does not. Battigalli and Siniscalchi (2007) provide expressible

characterizations of both versions, thus extending Lemma 1. Proposition 4 on ex ante and interim

∆-rationalizability can also be extended. Similarly, one can define versions of ICR and IIR for dy-

namic Bayesian games with and without forward induction. (Penta, 2009 deals with the analogue

of ICR without forward induction, defining analogues for the other notions is straightforward.) For

these solution concepts, we can provide appropriate extensions of Propositions 1, 3 and Theorem 2;

we conjecture that we can prove extensions of Theorem 1 and Corollary 3 as well.

5.3 Related literature

We already mentioned the relationship with the work of Battigalli (2003) and Battigalli and Sinis-

calchi (2003, 2007) on ∆-rationalizability. Here we just notice that none of these papers makes the

difference between payoff relevant and payoff irrelevant information explicit; actually, their nota-

tion and language suggest that only payoff relevant information is considered, although this is not

a formal assumption. Furthermore, Battigalli (2003) and Battigalli and Siniscalchi (2003) assume

distributed knowledge of the payoff state, although their results do not depend on this assumption.
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ICR has been introduced by Dekel, Fudenberg, and Morris (2007), who also provide some epis-

temic characterization results. Proposition 1 and much of our discussion rely on their important

result that the ICR actions of a type only depend on its expressible features (in their paper, its Θ-

based hierarchy of beliefs). This allows to restrict attention to ICR actions in the Θ-based universal

type space, as Dekel, Fudenberg, and Morris (2006), Weinstein and Yildiz (2007), Chen, Di Tillio,

Faingold, and Xiong (2009), and Penta (2009) do in their analysis of the continuity of rationalizable

actions with respect to beliefs hierarchies. (Penta, 2009 considers an extensive form version of ICR.)

The most important differences between the approach of Dekel, Fudenberg, and Morris (2007)

and ours is that they neglect private information (like Ely and Pęski, 2006) and do not state their

epistemic results as expressible characterizations, i.e. by means of events in the appropriate canon-

ical universal type space. These differences are related. One advantage of modeling private in-

formation (including the payoff irrelevant one) explicitly, is that this provides a sufficiently rich

language with which we can express a property of (information based) conditional independence

and a related characterization of IIR. We find the analogous characterization of Dekel, Fudenberg,

and Morris (2007) less instructive because it relies on an interpretation of the type space as an “ob-

jective” information system that cannot be expressed in a formal language. Other advantages of our

richer framework are that we can relate IIR and ICR to ∆-rationalizability, and that we can formally

state the obvious but important point that ICR and IIR are equivalent in two-person environments

with distributed knowledge of the payoff state.

Ely and Pęski (2006) analyze IIR. Like Dekel, Fudenberg, and Morris (2007), their starting point is

the observation that IIR is not invariant to the addition/deletion of redundant types, and therefore

depends on something more than the Θ-based hierarchies of beliefs of the Harsanyi types. Their

approach to IIR is essentially orthogonal to ours. We look for conditions under which IIR actions

admit an expressible characterization, whereas they change the notion of belief hierarchy in order to

obtain one that identifies IIR actions. They show that, under some regularity conditions, Harsanyi

types yield — beside the standard Θ-hierarchies — also richer ∆-hierarchies where i’s first-order

beliefs are elements of ∆(∆(Θ0 × Θ−i)).25 Then they show that ∆-hierarchies identify IIR actions.

It is not clear to us whether ∆-hierarchies are expressible in a meaningful sense. To elaborate

further, take any Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉. As Ely and Pęski (2006) point out,

letting πi(ti|·) : T−i → ∆(Θ0 × {θ−i(·)}) for each i ∈ I and ti ∈ Ti be a version of the conditional

probability given −i’s type, we obtain ∆-hierarchies: in particular, the first-order belief in the ∆-

hierarchy corresponding to type ti of player i is defined by

π∆,1i (ti)[E] = πi(ti)
[
Θ0 ×

{
t−i ∈ T−i : πi(ti|t−i) ∈ E

}]
for every measurable E ⊆ ∆(Θ0 ×Θ−i).

Now, if T has information types, so that T−i = X−i, then one can express this first-order belief as

uncertainty about the relevant probability measure in the array

(πi(ti|x−i))x−i∈X−i ∈ [∆(Θ)]X−i ,

which would make ∆-hierarchies expressible in some sense. But if T does not have information

25Ely and Pęski (2006) have no private information — in our framework, this would correspond to the case where Xi is

a singleton for each player i. We translate their definitions into our framework in the obvious way.
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types, then we are not allowed to identify T−i and X−i, and this interpretation cannot be offered.

Sadzik (2007) seems to take a similar route to Ely and Pęski (2006): he defines hierarchical

beliefs that identify Bayesian equilibrium actions. But on closer inspection, we find his approach

much more similar to ours. He enriches the environment by adding to the payoff state θ a countable

sequence of payoff-irrelevant (and continuous) signals for each player. On this expanded space of

exogenous primitive uncertainty, call it Z , he constructs a formal language and relates it to standard

Z-based hierarchies, showing that they identify Bayesian equilibrium actions. We speculatively pro-

pose the following interpretation of the difference between our approach to modeling uncertainty

and his: we assume that there is common awareness only of a finite number of signals and conse-

quently put only those signals in the commonly known environment.26 This justifies conditionally

correlated beliefs: when i conditions on the information type x−i of −i, he suspects that −i may

observe some other payoff irrelevant variable i is not aware of, which in turn may be correlated with

θ0, thus allowing correlation between θ0 and a−i conditional on x−i — this is a restatement of the

incomplete model interpretation of conditional correlation given by Dekel, Fudenberg, and Morris

(2007). On the other hand, Sadzik (2007) puts in the environment all the “conceivable” signals,

which is justified if there is common awareness of all of them.

Liu (2009) analyzes Bayesian equilibrium predictions and the role of redundant types using an

approach similar to ours. In particular, he distinguishes between redundant and non-redundant

Θ-based type spaces, arguing that redundant types should be used only to represent hidden un-

certainty entertained by players that the modeler does not explicitly take into account. Coherently

with this approach, he suggests the modeler should always use a non-redundant type space unless

he is aware there may be some additional strategically relevant information he is unaware of.27 In

our framework, the additional uncertainty is represented by the set of payoff irrelevant states Ξ
and the exogenous beliefs of players are modeled using (Θ × Ξ)-based type spaces. In addition,

Liu (2009) also shows that the same Bayesian equilibrium predictions can be obtained both with a

Θ-based redundant type space and with an appropriate (Θ × Ξ)-based non-redundant type space.

Instead of addressing Bayesian Equilibrium predictions, we use this richer uncertainty space, to

highlight the connections among different definitions of rationalizability and to investigate the role

of expressible independence restrictions.

A Proof of Theorem 1

Part I

Here we prove that for all i ∈ I and k ≥ 1,

ICRT,k
i ⊇

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃ t∗i ∈ MBk−1
i (RAT) s.t. m∗i (t

∗
i ) = τT

i (ti) and a∗i (t
∗
i ) = ai

}
,

26Of course, a player may observe payoff-irrelevant aspects of which the opponent is unaware. In this case our rational-

izability analysis should (and does) neglect these aspects.
27He also provides a necessary and sufficient condition on the space Θ (called “separativity”) to identify a Θ-based

redundant type space with a (Θ × Ξ)-based non-redundant type space through a mapping that preserves Θ-hierarchies.

Given the finiteness assumption, this condition is satisfied in our framework.
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which clearly implies

ICRT
i ⊇

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃ t∗i ∈ CBi(RAT) s.t. m∗i (t
∗
i ) = τT

i (ti) and a∗i (t
∗
i ) = ai

}
.

The proof is by induction in k. Fix i ∈ I, ti ∈ Ti and t∗i = (θi, ξi, ai, δ1
i , δ

2
i , . . .) ∈ MB0

i (RAT) =
RATi such thatm∗i (t

∗
i ) = τT

i (ti). Let σ 0
−i : Θ0×Θ−i → ∆(A−i) be any conditional distribution associ-

ated to margΘ0×Θ−i×A−i δ
1
i .

28 Define σ−i : Θ0 × T−i → ∆(A−i) so that σ−i(θ0, t−i) = σ 0
−i(θ0,θ−i(t−i))

for all (θ0, t−i) ∈ Θ0 × T−i. Then

ai ∈ arg max
a′i

∑
θ0,θ−i,ξ−i,a−i

gi(θ0, θi, θ−i, a′i, a−i)δ
1
i [θ0, θ−i, ξ−i, a−i]

= arg max
a′i

∑
θ0,θ−i

πT,1
i (ti)[θ0, θ−i]

∑
a−i
gi(θ0, θi, θ−i, a′i, a−i)σ

0
−i(θ0, θ−i)[a−i]

= arg max
a′i

∫
Θ0×T−i

∑
a−i
gi(θ0, θi, θ−i, a′i, a−i)σ−i(θ0, t−i)[a−i]πi(ti)[dθ0 × dt−i],

where the first line follows from t∗i ∈ MB0
i (RAT) and the second from τT

i (ti) = m∗i (t∗i ). This

proves that ai ∈ ICRT,1
i (ti).

Now let k ≥ 2 and assume the claim holds true for k− 1, that is, assume that (ti, ai) ∈ ICRT,k−1
i

for all i ∈ I and for all ti ∈ Ti and ai ∈ Ai such that m∗i (t
∗
i ) = τT

i (ti) and a∗i (t
∗
i ) = ai for some

t∗i ∈ MBk−2
i (RAT). Fix i ∈ I, ti ∈ Ti and t∗i = (θi, ξi, ai, δ1

i , δ
2
i , . . .) ∈ MBk−1

i (RAT) such that

m∗i (t
∗
i ) = τT

i (ti). Let σk−1
−i : Θ0 × T∗Θ,−i → ∆(A−i) be any conditional distribution associated to the

measure on Θ0 × T∗Θ,−i ×A−i which is the pushforward of π∗i (t
∗
i ) given by the mapping(

θ0, t∗−i
)
,
(
θ0,m∗−i(t

∗
−i),a

∗
−i(t

∗
−i)
)
.

Define σ−i : Θ0 × T−i → ∆(A−i) so that σ−i(θ0, t−i) = σk−1
−i

(
θ0,τT

−i(t−i)
)

for all (θ0, t−i) ∈ Θ0 × T−i.
By the induction hypothesis, suppσ−i(θ0, t−i) ⊆ ICRT,k−1

−i (t−i) for πi(ti)-almost every (θ0, t−i) ∈
Θ0 × T−i. Moreover, as before, we have

ai ∈ arg max
a′i

∫
Θ0×T∗Θ0×X×A,−i

gi
(
θ0, θi,θ∗−i(t

∗
−i), a

′
i,a

∗
−i(t

∗
−i)
)
π∗i (t

∗
i )
[
dθ0 × dt∗−i

]

= arg max
a′i

∫
Θ0×T∗Θ,−i

gi
(
θ0, θi,θ∗−i(t

∗
−i), a

′
i, σ

k−1
−i (θ0, t∗−i)

)
π∗i (t

∗
i )
[
dθ0 × dt∗−i

]

= arg max
a′i

∫
Θ0×T−i

gi
(
θ0, θi,θ−i(t−i), a′i, σ−i(θ0, t−i)

)
πi(ti)

[
dθ0 × dt−i

]
,

where, again, the first line follows from t∗i ∈ MB0
i (RAT) = RATi and the second from τT

i (ti) =
m∗i (t

∗
i ). This proves that ai ∈ ICRT,k

i (ti).

Part II

Here we prove that for all i ∈ I and k ≥ 1,

ICRT,k
i ⊆

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃ t∗i ∈ MBk−1
i (RAT) s.t. m∗i (t

∗
i ) = τT

i (ti) and a∗i (t
∗
i ) = ai

}
.

28See e.g. Dudley (1989, pp. 269-270).
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Since for every (ti, ai) ∈ Ti ×Ai the sequence

MBki (RAT)∩ (m∗i )−1(τT
i (ti)

)
∩ (a∗i )−1(ai) (k ≥ 1)

is a decreasing sequence of nonempty compact sets, we will have also proved that

ICRT
i ⊆

{
(ti, ai) ∈ Ti ×Ai

∣∣∣ ∃ t∗i ∈ CBi(RAT) s.t. m∗i (t
∗
i ) = τT

i (ti) and a∗i (t
∗
i ) = ai

}
.

Fix once and for all some i ∈ I, k ≥ 1 and (ξi, ξ−i) ∈ Ξ. For each (ti, ai) ∈ ICRT,k
i let Vi(ti, ai)

designate the set of all νi ∈ ∆(Θ0 × T−i × A−i) that rationalize ai for ti at order k. For each

(t−i, a−i) ∈ ICRT,k−1
−i let V−i(t−i, a−i) designate the set of all ν−i ∈ ∆(Θ0 × Ti ×Ai) that rationalize

a−i for t−i at order k− 1. Define a (Θ0 ×X ×A)-based type space T as follows:

T =
〈
Θ0 ×X ×A,

(
T j ,πj ,xj ,a∗j

)
j∈I
〉
,

where T j = Tj × Aj and (xj ,a∗j )(tj , aj) = (θj(tj), ξj , aj) for all j ∈ I and (tj , aj) ∈ T j , and

πj : T j → ∆(Θ0 × T−j) is an arbitrary measurable extension of an arbitrary measurable selector

from the correspondence Vj .29

It is clear that the natural projections of the spaces (T j)j∈I on the spaces (Tj)j∈I constitute a

belief morphism from T onto T. In particular, we have

m∗i (τ
T
i (ti, ai)) = τT

i (ti) and a∗i (τ
T
i (ti, ai)) = ai ∀(ti, ai) ∈ ICRT,k

i ,

m∗−i(τ
T
−i(t−i, a−i)) = τT

−i(t−i) and a∗−i(τ
T
−i(t−i, a−i)) = a−i ∀(t−i, a−i) ∈ ICRT,k−1

−i .

Thus, to conclude the proof we only need to show that τT
i (ti, ai) ∈ MBk−1

i (RAT) for every (ti, ai) ∈
ICRT,k

i . Since ai is a best reply to πi(ti, ai),

ai ∈ arg max
a′i

∑
θ0,θ−i,a−i

g(θ0,θi(ti), θ−i, a′i, a−i)πi(ti, ai)[θ0 × θ−1
−i (θ−i)× a−i]

∈ arg max
a′i

∑
θ0,θ−i,a−i

g(θ0,θi(ti), θ−i, a′i, a−i)π
T,1
i (ti, ai)[θ0, θ−i, ξ−i, a−i],

which proves τT
i (ti, ai) ∈ MB0

i (RAT) = RAT i. If k = 1 then the proof is complete, and if k ≥ 2 then

an analogous argument establishes that τT
−i(t−i, a−i) ∈ MB0

−i(RAT) for every (t−i, a−i) ∈ ICRT,1
−i .

Thus we can assume that for some 1 ≤ ` < k we have

τT
j (tj , aj) ∈ MB`−1

j (RAT) ∀j ∈ I, ∀(tj , aj) ∈ ICRT,`
j . (4)

It remains to prove that τT
i (ti, ai) ∈ MB`i (RAT) for every (ti, ai) ∈ ICRT,`+1

i and, if k > ` + 1, also

that the analogous claim holds for player −i. In effect, since (4) already guarantees that τT
i (ti, ai) ∈

MB`−1
i (RAT), it suffices to prove τT

i (ti, ai)[Θ0 ×MB`−1
−i (RAT)] = 1. Indeed, πi(ti, ai) rationalizes

ai for ti at order k, so it does so at order ` + 1 as well. Thus,

1 = πi(ti, ai)
[
Θ0 × ICRT,`

−i

]
≤ πi(ti, ai)

[
Θ0 ×

{
(ti, ai) ∈ T−i ×A−i

∣∣∣ τT
−i(t−i, a−i) ∈ MB`−1

−i (RAT)
}]

= τT
i (ti, ai)

[
Θ0 ×MB`−1

−i (RAT)
]
,

29Such selector exists because Vj is a nonempty-valued, closed-graph correspondence between compact spaces (see

footnote 21). A measurable extension to Tj ×Aj then exists because the codomain ∆(Θ0 × T−j ×A−j) is Polish.
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where the inequality follows from (4) and the second line from the fact that (τT
j )j∈I is a belief

morphism from T to the universal (Θ0×X×A)-based type space. The proof of the analogous claim

for player −i when k > ` + 1 is analogous.

B Rationalizability on the interim strategic form

Fix a finite Θ-based type space T = 〈Θ, (Ti,πi,θi)i∈I〉 and the corresponding Bayesian game. The

player set of the interim strategic form of the Bayesian game is T1 ∪ T2. Letting Bi denote the set

of all mappings from Ti to Ai for all i ∈ I, an element b = (b1,b2) ∈ B1 × B2 thus specifies an

action profile for this game — for each i ∈ I and ti ∈ Ti, the action chosen by ti is bi(ti), and the

corresponding payoff to player/type ti depends only on bi(ti) and b−i:

Uti(b) =
∑
θ0∈Θ0

∑
t−i∈T−i

πi(ti)
[
θ0, t−i

]
gi
(
θ0,θi(ti),θ−i(t−i),bi(ti),b−i(t−i)

)
.

Interim rationalizability is a process of iterated maximal elimination, for each ti, of actions that

are not best responses to conjectures of the form σ−i : T−i → ∆(A−i).30 Let Σ−i denote the set

of all such conjectures. The strategic form expected payoff of type ti from using action ai given

conjecture σ−i is (once again slightly abusing notation)

Uti(ai,σ−i) =
∑

b−i∈B−i

∏
t−i∈T−i

σ−i(t−i)[b−i(t−i)]Uti(bi,b−i),

where bi ∈ Bi is any function such that bi(ti) = ai. Rationalizability on the interim strategic form

(ISFR) is recursively defined as follows: for all i ∈ I and ti ∈ Ti, ISFRT,0
i (ti) = Ai, and for all k ≥ 0

ISFRT,k+1
i (ti) =

ai ∈ Ai
∣∣∣∣∣∣∣∣
∃σ−i ∈ Σ−i :

(ISFR1) ai ∈ arg maxa′i∈Ai Uti(a
′
i,σ−i)

(ISFR2) suppσ−i(t−i) ⊆ ISFRT,k
−i (t−i) ∀t−i ∈ T−i

 .

Proposition 5. For every i ∈ I, ti ∈ Ti, and k ≥ 0, IIRT,k
i (ti) = ISFR

T,k
i (ti).

Proof. It suffices to show that conditions (IIR1) and (ISFR1) are equivalent, as the result then follows

by an obvious induction. Thus, fix i ∈ I, ti ∈ Ti, and σ−i ∈ Σ−i. We shall prove that

gi
(
θi(ti), ai,µi(ti,σ−i)

)
= Uti(ai,σ−i),

where µi(ti,σ−i) is defined as in (1). Indeed, for every a−i ∈ A−i and t−i ∈ T−i define

Ba−it−i =
{
b−i ∈ B−i : b−i(t−i) = a−i

}
,

30This is independent rationalizability on the interim strategic form of the Bayesian game. But, by Kuhn’s (1953) equiva-

lence result, with I = {1,2}, correlated and independent rationalizability on the interim strategic form are equivalent (T−i
is like a coalition with perfect recall in the extensive form of the Bayesian game).

33



so that

σ−i(t−i)[a−i] =
∑

b−i∈B
a−i
t−i

∏
t′−i∈T−i

σ−i(t′−i)[b−i(t
′
−i)].

Then

gi
(
θi(ti), ai,µi(ti,σ−i)

)
=

=
∑
θ0∈Θ0

∑
t−i∈T−i

πi(ti)[θ0, t−i]
∑

a−i∈A−i
σ−i(t−i)[a−i]gi

(
θ0,θi(ti),θ−i(t−i), ai, a−i

)
=

∑
θ0∈Θ0

∑
t−i∈T−i

πi(ti)[θ0, t−i]
∑

a−i∈A−i

∑
b−i∈B

a−i
t−i

∏
t′−i∈T−i

σ−i(t′−i)[b−i(t
′
−i)]gi

(
θ0,θi(ti),θ−i(t−i), ai, a−i

)
=

∑
θ0∈Θ0

∑
t−i∈T−i

πi(ti)[θ0, t−i]
∑

b−i∈B−i

∏
t′−i∈T−i

σ−i(t′−i)[b−i(t
′
−i)]gi

(
θ0,θi(ti),θ−i(t−i), ai,b−i(t′−i)

)
= Uti(ai,σ−i).
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Ely, Jeffrey C. and Marcin Pęski (2006), “Hierarchies of belief and interim rationalizability.” Theoret-

ical Economics, 1, 19–65.
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