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Abstract

The dynamic dividend growth model (Campbell&Shiller, 1988) linking the log

dividend yield to future expected dividend growth and stock market returns has

been extensively used in the literature for forecasting stock returns. The empirical

evidence on the performance of the model is mixed as its strength varies with

the sample choice. This model is derived on the assumption of stationary dpt,

dividend-yield. The empirical validity of such hypothesis has been challenged in

recent literature (Lettau&Van Nieuwerburgh, 2007) with strong evidence on a time

varying mean, due to breaks, in this financial ratio. In this paper, we show that

the slowly evolving mean toward which the dividend price ratio is reverting is

determined by demographic factors. We also show that a forecasting model based

on demographics and a demand factor as captured by excess consumption in the

sense of Lettau and Ludvigson(2004) overperforms virtually all alternative models

proposed in the empirical literature in the framework of the dynamic dividend

growth model. Finally, we exploit the predictability of demographic factors to

project the equity risk premium up to 2050.
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1 Introduction

Stock market predictability has been an active research area in the past decades. After a

long tradition of the efficient market hypothesis (Fama, 1970) that implies that returns are

not predictable, the recent empirical literature has moved toward a view of predictability

of returns (see, for example, Cochrane, 2007). There is, however, an ongoing debate

on the robustness of the predictability evidence and its exploitability from a portfolio

allocation perspective (Goyal&Welch, 2007).

Most of the available evidence on predictability can be framed within the dynamic

dividend growth model proposed by Campbell&Shiller (1988).

The model of Campbell& Shiller (1988) uses a loglinear approximation to the defi-

nition of returns on the stock market. Under the assumption of stationarity of the log

of price-dividend ratio pdt, this variable is expressed as a linear function of the future

discounted dividend growth, ∆dt+j and of future returns, hst+j :

pdt = pd+
∞X
j=1

ρj−1Et[(∆dt+j − d̄)− (hst+j − h̄)] (1)

where pd, the mean of the price-dividend ratio, d̄, the mean of dividend growth rate, h̄,

the mean of log return and ρ are constants. Once the future variables are expressed in

terms of observables (1) can be used to derive an equilibrium price p∗t as a function of

present dividends and future expected dividends and returns; then a forecasting model for

logarithmic return is naturally derived by estimating an Error Correction Model (ECM)

for stock prices:

∆pet+1 = β0 − β1(pt − p∗t ) + ut. (2)

(2) ensures long-run convergence of stock prices to equilibrium prices allowing for the pos-

sibility of short-run disequilibria. This basic relation allows to classify different forecasting

regression of stock market returns in terms of different approaches to proxy the future ex-

pected variables included in the linearized relations. The classical Gordon growth model

(1962) is obtained by augmenting (1) with the hypotheses of constant dividend growth,

Et∆dt+j = g, and constant expected returns, Eth
s
t+j = r. The so-called FED model (Lan-

der et al., 1997) proposing a long-run relation between the price-earning ratio and the

long-term bond yield can be understood by substituting out the no-arbitrage restrictions

in (1) Eth
s
t+j = Et(rt+j + φst+j) and then by assuming constant dividend growth, some

relation between the risk premium on long-term bonds and the risk premium on stocks,

and a stationary (log) earning price ratio. The extension of the FED model proposed by

Asness (2003) removes the assumption of proportionality between the stock market risk

premium and the bond market risk premium and augments the standard FED model by

adding the ratio between the historical volatility of stock and bonds. Lettau and Lud-
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vigson (2001, LL henceforth) analyze a linearized version of the consumer intertemporal

budget constraint to show that excess consumption with respect to its long-run equi-

librium value, a linear combination of labour income and financial wealth, may predict

future return on total wealth. If future returns on total wealth are correlated with future

stock market return, then excess consumption should forecast future stock market re-

turns. They introduce the well-known cointegrating vector, cay, including consumption,

assets and income and show empirical evidence strongly supporting their conjecture. In

their proposed framework cay proxies p∗t by predicting future discounted returns without

concentrating on dividend growth. Julliard (2004) refines the LL contribution by observ-

ing that the total return on wealth reflect both returns on financial capital and returns

on human capital, therefore the predictive power of excess consumption for stock mar-

ket returns could be strengthened by controlling for returns on human capital. Labour

income growth is proposed as a proxy to control for returns of human capital added to

the model on top of cay. Ribeiro (2004) also highlights the importance of labour income

in predicting future dividends and posits vector error correction model (VECM) for div-

idend growth and future returns with two cointegrating vectors defined as (dt − yt) and

(dt−pt). Finally, Lamont (1998) argues that the log dividend payout ratio (dt−et) is the
most appropriate proxy for future stock market returns and includes it in his specifica-

tion. The second stage equations (2) based on all these models delivered some degree of

predictability, in terms of significance of β1. However, the degree of predictability varies

with the chosen sample and so does the relative performance of different models (see Ang

and Bekaert (2007)).

Such mixed evidence of predictability has been recently related to the potential weak-

ness of the fundamental hypothesis of the dynamic dividend growth that log dividend

price ratio is a stationary process (Lettau&Van Nieuwerburgh, 2007, LVN henceforth).

LVN show evidence on the breaks in pd and assert that correcting for the breaks improves

predictive power of the dividend yield for stock market returns. Interestingly, LVN also

give some hints on possible causes for the breaks arising from economic fundamentals due

to technology innovations, changes in expected return, etc. but do not explore further

the possible effects of fundamentals. Breaks are modelled via a purely statistical methods

without any explicit relation with economic fundamentals.

In this paper, we pursue two distinct aims.

First, we show that the predictions of the theoretical model by Geanakoplos

et al.(2004) that demographic factors, along with a correction for productivity trends,

explain fluctuations in the dividend yield is supported by annual US data. We then

exploit stability analysis for long-run economic relationships to construct an equilibrium

dividend-price ratio.

Second, we use our measure of disequilibrium measured as the difference between

the actual dividend yield and the equilibrium dividend yield for forecasting market re-
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turns at different horizons (up to 10 years) and evaluate the forecasting performance

of the model based on the corrected dividend-price ratio against different alternative

specifications.

The paper is structured as follows. In the next section we provide evidence on non-

stationarity of dividend yield. In section III, we introduce the cointegration framework

and estimation of cointegration relations. Next we devote a section on forecasting short

horizon, followed by a section on forecasting longer horizons up to 10 years. In section VI,

we introduce a vector error correction (VECM) specification and provide out of sample

forecasts for next few decades. The last section concludes.

2 Non-Stationarity of Dividend/Price Ratio

In this section, we consider a long sample of annual data (1909-2006), to analyze cointe-

gration between dividends and stock prices and stationarity of the (log) dividend-yield.

We report in Figure 1 the time-series of (dt − pt).

Insert Figure 1 here

The crucial assumption for the validity of the linearized dividend growth model is that

this variable is stationary, i.e. that there exists a cointegrating vector with coefficient

restricted to (1,−1) between dt and pt. The visual inspection of the time series suggest

some intuitive support for the recent evidence on non-stationarity (Ribeiro, 2004; LVN,

2007). Differently from LVN (2007) we do not use recursive Chow test to identify break

points but we analyse the possibility of breaks and non-stationarity by concentrating on

the evidence of cointegration with a (-1,1) vector between dt and pt.We follow Warne et

al. (2003) to study the non-zero eigenvalues of the matrix describing the long-properties

of a bivariate VAR for dt and pt used in the Johansen (1991) approach to cointegration

analysis.

We consider the following statistical model:

yt =
nX
i=1

Aiyt−i + ut (3)

yt =

"
dt

pt

#
. (4)

This model can be re-written as follows

∆yt = Π1∆yt−1 +Π1∆yt−2 + ...+Πyt−n + ut (5)

=
n−1X
i=1

Πi∆yt−i +Πyt−n + ut,
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where:

Πi = −
Ã
I −

iX
j=1

Aj

!
,

Π = −
Ã
I −

nX
i=1

Ai

!
.

Clearly the long-run properties of the system are described by the properties of the

matrix Π. There are three cases of interest:

1. rank (Π) = 0. The system is non-stationary, with no cointegration between the

variables considered. This is the only case in which non-stationarity is correctly

removed simply by taking the first differences of the variables;

2. rank (Π) = 2, full. The system is stationary;

3. rank (Π) = 1. The system is non-stationary but there is a cointegrating rela-

tionships among the considered variables. In this case Π = αβ0, where α is an

(2× 1) matrix of weights and β is an (2× 1) matrix of parameters determining the
cointegrating relationships.

Therefore, the rank of Π is crucial in determining the number of cointegrating vectors.

The Johansen procedure is based on the fact that the rank of a matrix equals the number

of its characteristic roots that differ from zero. The Johansen test for cointegration is

based on the estimates of the two characteristic roots of Π matrix. Having obtained

estimates for the parameters in the Π matrix, we associate with them estimates for the

2 characteristic roots and we order them as follows λ1 > λ2. If the variables are not

cointegrated, then the rank of Π is zero and all the characteristic roots equal zero. In this

case each of the expression ln (1− λi) equals zero, too. If, instead, the rank of Π is one,

and 0 < λ1 < 1, then ln (1− λ1) is negative and ln (1− λ2) = 0. The Johansen test for

cointegration in our bivariate VAR is based on the two following statistics that Johansen

derives based on the number of characteristic roots that are different from zero:

λtrace (k) = −T
2X

i=k+1

ln
³
1− bλi´ ,

λmax (k, k + 1) = −T ln
³
1− bλk+1´ ,

where T is the number of observations used to estimate the VAR. The first statistic tests

the null of at most k cointegrating vectors against a generic alternative. The test should

be run in sequence starting from the null of at most zero cointegrating vectors up to the
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case of at most 2 cointegrating vectors. The second statistic tests the null of at most k

cointegrating vectors against the alternative of at most k+1 cointegrating vectors. Both

statistics are small under the null hypothesis. Critical values are tabulated by Johansen

(1991) and they depend on the number of non-stationary components under the null and

on the specification of the deterministic component of the VAR.

The main recursive test based on the non zero-eigenvalues is the fluctuation test

suggested in Hansen and Johansen (1999). The test starts from estimation of our VAR

model over the full sample. After that, we re-estimate the model (the full sample estimates

of all coefficients on deterministic variables and lagged first differences are used in order to

reduce volatility) and computes recursive eigenvalues and β recursively extending the end

point of the recursive sample, t1, until the full sample is covered, i.e. t1 = T1, T1+1, .....T

where the base period is fixed at about 35 percent of the sample, i.e. T1 = 0.35 ∗ T, as
suggested in Warne et al. (2003).

Figure 2 shows the time path of the recursively calculated log transformed largest

non-zero eigenvalue λi from the VAR(2) model together with the 95% confidence bands.

We took log transformed eigenvalues to obtain a symmetrical representation of the dis-

tribution of λi.

ξi = log(λi/(1− λi))

The eigenvalue shows a remarkable amount of variability over the examination period

with indication of three break points around 1950, 1980, 2000 and a clear possibility

that null of at most zero cointegrating vectors cannot rejected for some relevant part of

our sample. Interestingly, this evidence is consistent with that obtained using a different

methodology by LVN (2007).

Insert Figure 2 here

Table 1 reports the results of the Johansen procedure applied to whole sample, and

to two subsamples 1909-1954, 1955-2006.

Insert Table 1 here

The null of no-cointegration cannot be rejected over both whole sample and subsam-

ples. Note that validity of the linearized model requires a stronger assumption than

cointegration to be satisfied, i.e. the existence of cointegration with restricted cointegrat-

ing coefficients.

3 Demographic Trends & the Dividend/Price Ratio

The evidence of instability of the cointegrating relation between log of stock prices and

dividends and therefore of the lack of stationarity of the log dividend-price ratio (Ribeiro,
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2004) undermines on the validity of one of the crucial assumptions used in the loglinear

approximation at the core of the dynamic dividend-growth model (Campbell and Shiller,

1988, Campbell, 1991). Geanakoplos, Magill and Quinzii.(2004) (GMQ) offer a potential

solution to this problem by considering an overlapping generation model in which the

demographic structure mimics the pattern of live births in the U.S. that have featured

alternating twenty-year periods of boom and boost. GMQ study the equilibrium of a

cyclical stochastic overlapping generations exchange economy to show that the dividend

price ratio should be proportional to the ratio of middle aged to young adults. To study

the effect of demographic composition on capital market prices GMQ assume that the

model has been detrended so that the systematic source of dividend growths generated by

population growth, capital accumulation and technical progress are filtered out. In GMQ

the middle aged to young ratio, labelled as MY, and defined as the ratio of the number of

agents aged 40-49 to the number of agents aged 20-29, serves as a sufficient statistic for

the whole population pyramid. We find the GMQmodel particularly appealing because it

provides foundation for using demographic factors to explain fluctuations in the dividend

price ratio. We use Total Factor Productivity (TFP) to filter out the effect of long-run

trends. We take a TFP series directly from the website of Bureau of Labor Statistics

(BLS) for the period 1948-2006. We then extended back the data to the period 1909-

1949 by using the original series provided in the classic paper by Solow (1957)1. We

report MY and TFP in Figure 3.

Insert Figure 3a here

Insert Figure 3b here

It is interesting to note that MY has a twin peaked behaviour with peaks roughly

corresponding to the dates identified by LNV as break points for the mean of the divi-

dend/price ratio. The whole sample correlation between MY and (pt − dt) is as high as

0.73. This is a rather striking fact especially because the direct relation between these

two variables does not take on account the potential relevance of filtering out trends

explicitly cited by GMQ. We then posit the following potential cointegrating vector as

directly determined by the theoretical model:

(dt − pt) = γ0 + γ1MYt + γ2TFPt

Before reporting the results of estimation is important to note that the approach

followed by GMQ is part of a strand of literature aimed at explaining stock market

fluctuations with demographic factors . Bakshi&Chen (1994) develop two hypotheses;

life-cycle investment hypothesis which asserts that an investor in early stage of her life

allocates more wealth on housing and switches to financial assets at a later stage, and

1We normalized the series from BLS to bring it to the same scale with the Solow data.
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life cycle risk aversion hypothesis which posits that an investor’s risk aversion increases

with age. The authors also test the empirical implications using fraction of people in

different age ranges and average age (change in average age) in U.S. estimating an Euler

equation. Using post 1945 period, they provide evidence supporting both hypotheses.

Starting from this literature, Erb et al. (1996) study the population demographics in

international context using population and average age growth and conjecture that it

provides information about the risk exposure of a particular economy. On the other

hand, Poterba (2001) using age groups finds no robust relationship between demographic

structure and asset returns, but hints at the strong link between dividend-price ratio

and demography variables. Goyal (2004) criticizes the use of demographic variables in

levels shows evidence that changes in demographic structure in fact provide support

for the traditional lifecycle models. Most of the cited papers concentrate on the slow-

moving nature of the demographic variables and their ability to predict long term asset

returns (Erb et al., 1996; DellaVigna&Pollet, 2006) and risk premia (Ang&Maddaloni,

2005). Overall the empirical evidence from this literature is mixed. We believe that

using the GMQ model to provide foundation for a long-run cointegrating relationship

between (dt − pt) and demographic factors and then by using the derived disequilibrium

to predict stock market returns within a Vector Error Correction model is a promising

new avenue of empirical research to establish the importance of the interaction between

the demographic structure and stock market fluctuations.

Table 2a presents summary statistics for (log) annual excess stock market returns with

respect to the risk-free rate (equity premium), log dividend-price ratio, TFP, and MY for

the whole sample 1909-2006. In Table 2b we also provide summary statistics for CRSP

dataset spanning from 1926 to 2006. The last two tables split the whole data set into

two subsamples, namely 1909-1954 and 1955-2006, and reports the summary statistics.

We consider a sample split in 1954 in the light of the evidence provided by LVN (2007),

and of the evidence we reported in the previous section with Eigenvalue analysis, i.e. a

first break in dt − pt series around the 50’s.

In all the tables, the first panel shows the correlation matrix among the relevant

variables. The panel below reports the univariate summary statistics of the variables,

namely the arithmetic mean, median, mode, standard deviation, minimum, maximum

and autocorrelation.

Insert here Table 2a Insert here Table 2b

Insert here Table 2c Insert here Table 2d

At a first glance, our first observation is that the technology and demographic vari-

ables have low correlation with equity premium, but relatively higher correlations with

log dividend price ratio, these feature is robust to the sample choice. The correlation

between TFP and (dt − pt) and between MY and (dt − pt) is negative, as the intuition
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and economic modelling suggest, and stable across different subsamples. Importantly,

both technology and demography variables are quite persistent like (dt − pt) . In fact, DF

residual based tests for the presence of a unit root in (dt − pt) , TFPt, MYt (not reported

but available upon request) do not reject the null hypothesis of a unit root in these series.

Table 3 reports the results of the cointegrating analysis based on the Johansen (1991)

procedure. In particular, we report the test based on the Trace statistic, critical values

are chosen by allowing a linear trend in the data. The lag length in the VAR specification

is chosen on the basis of standard optimal lag-length criteria.

Insert here Table 3

The trace statistics strongly rejects the null of no cointegrating relations, and does

not reject the null of at most one cointegrating vector. We opt for a specification

with a single cointegrating between pt, dt, TFPt, MYtvector2, which is restricted to be³
−1 1 β3 β4

´
.

The null hypothesis that the coefficient on pt is restricted to minus one, and that the

coefficient on dt is restricted to one cannot be rejected by the test for the validity of these

restrictions on the cointegrating space. The long-run coefficients describing the impact on

the price-dividend ratio of TFPt andMYt are both positive and significant. To facilitate

comparison of our cointegration based approach with the evidence based on the statis-

tical analysis of breaks in the mean of (dt − pt) provided by LVN (2007), we report in

Figure 4a three time series: (dt − pt) ,fdpt the dividend-price ratio corrected for exogenous
breaks in LVN (2007)3,

¡
dpTDt

¢
, i.e. (dt − pt) adjusted for technology and demograph-

ics as in our cointegrating relation ((dt − pt) + 0.29 · TFPt + 1.554 ·MYt + 1.318) . The

graphical evidence tells us that the cointegration based correction produces very simi-

lar results for the break-based correction in LVN (2007). We also report in Figure 5b

(pt − dt) ,MYt,and MYt corrected for the effect of technology using the appropriate co-

efficient in the cointegrating vectors. The Figure gives a visual impression of the strong

low frequency comovement between the price-dividend ratio and its determinants in the

GMQ model.

2We have also experimented with two cointegrating relationship. In this case the first cointegrating
relations is not different from our chosen specification and the second cointegrating vector could be
restricted to a simple linear relationship among the two demographic indicators that is useful only to
predict these two variables. Our results should not then be affected of our choice of concentrating
to unique cointegrating vector as we never use our CVAR to predict demographic trends that we will
consider exogenous and take from the Bureau of Census projections.

3Following LVN (2007) we adopt the following definition:

fdpt = dpt − dp1 for t = 1, ..., τ1
dpt − dp2 for t = τ1 + 1, ..., τ2
dpt − dp3 for t = τ2 + 1, ..., T

where dp1 is the sample mean for 1909-1954, i.e. τ1 = 1954, dp2 is the sample mean for 1955-1994, i.e.
τ2 = 1994, and dp3 is the sample mean for 1995-2006.
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Insert Figure 4a-4b

Turning to the analysis of the disequilibrium correction (that we report in table 4), the

α coefficients reveal that stock market returns react to disequilibrium while the restriction

that α on total factor productivity and dividend growth in our CVAR is zero cannot be

rejected.

Insert here Table 4a

We perform stability analysis using the recursively calculated eigenvalues and the

Nyblom(1989) Stability test.

Insert here Figure 5a-5b

Our recursive analysis of the non-zero eigenvalues reveals much more stability com-

pared to baseline case discussed in the first section of this paper, yet there is still some

time variation in λi. There can be two sources of such time variation: time varying ad-

justement coefficients, α, or time-varying cointegrating parameters, β. To shed more

light on this issue we adopt the test of constancy of the parameters in the cointegrating

space proposed by Nyblom (1989). The null hypothesis that the cointegration vectors

are constant is tested against the alternative that they are not

Hβ : βt1 = β0 for t1 = T1.....T

where we use β0 = βT (Hansen&Johansen, 1999; Warne et al., 2003). In interpreting the

results it is important to note that is well known that this test has little power to detect

structural change taking place at the end of the sample period (Juselius, 2006). Since we

compute the Nyblom statistic for the constancy of β where its asymptotic distribution is

unknown theoretically, we approximate by bootstrapping the small sample distribution

(we compute 1999 bootstrap samples) using the package SVAR made available by Warne

(2007). We estimate the sup-statistics to be 0.4849 (with mean-statistics = 0.2036) for a

VECmodel of order 1 and allowing for only one cointegration relation with the restrictions

specified above. From Figure 5b we can see that the sup-statistics lies in the acceptance

region of the bootstrapped distribution, hence the null hypothesis of constancy of β

cannot be rejected4.

3.1 Robustness

To assess the robustness of our cointegrating relationship in identifying the low frequency

relation between stock market and demogragraphics, we evaluate the effect of augmenting

4We also calculated the mean-statistics, the same conclusion holds.
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our baseline relation with alternative demographic factor. Research in demography has

recently concentrated on the economic impact of the "demographic dividend" (Bloom et

al., 2003; Mason&Lee, 2005). The demographic dividend depends on a peculiar period in

the demographic transition phase of modern population in which the lack of synchronicity

between the decline in fertility and the decline in mortality typical of advanced economies

has an impact on the age structure of population. In particular a high support ratio is

generated: i.e. a high ratio between the share of the population in working age and

the share of population economically dependent. Empirical evidence has shown that the

explicit consideration of the fluctuations in the support ratio delivers significant results

in explaining economic perfomance (see Bloom et al., 2003). The concept of Support

Ratio (SR) has been precisely defined by Mason and Lee (2005) as the ratio between the

number of effective number of producers, Lt, over the effective number of consumers, Nt

(Mason&Lee, 2005). In practice we adopt the following empirical proxy:

SR = a2064/(a019 + a65ov)

where a2064 : Share of population between age 20-64, a019 : Share of population between

age 0-19, a65ov : Share of population age 65+5.

Table 4b shows that the restrictions that the coefficient on SR is zero in the cointe-

grating vector cannot be rejected.

Insert HereTable 4b

4 Predictability of Stock Market Returns

The long-run analysis of the previous section has shown that there exist a stable cointe-

grating vector between the dividend-price ratio, total factor productivity and the ratio

of the number of agents aged 40-49 to the number of agents aged 20-29. Moreover, the

estimated adjustment coefficients α in the CVAR indicates that only that stock market

returns adjust in presence of disequilibrium.

In this section we provide more evidence on this issue by concentrating on excess

returns to provide within sample and out-of-sample evidence on predictability.

4.1 Within Sample Evidence

Our within sample evidence is constructed by comparing raw and adjusted dividend-price

ratios for the sample 1909-2006, 1909-1954 and 1955-2006. We consider a sample split in

5We have checked robustness of our results by shifting the upper limit of the producers to the age of
75. This is consistent with the evidence on the cross-sectional age-wealth profile from Survey of Consumer
Finances, provided in Table 1 of Poterba(2001), which shows that the population share between 64-74
still holds considerable amount of common stocks. Results are available upon request.
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1954 in the light of the evidence in provided by LVN (2007). In practice, we consider the

following set of regressions where excess returns at different horizons (one to ten years),

rm,t+H−rf,t+H , are projected on a constant and the relevant measure of the dividend-price
ratio

rm,t+H − rf,t+H = β0c+ β1zt + εt+H

zt = dpt,fdpt, dpTDt
Insert here Table5a-5c

First we note that over the entire sample (1909-2006) dpTDt
6 is always significant and

the pattern of adjusted R2 suggests that the correction for non-stationarity improves

upon in-sample predictability at all horizons. At 1-year horizon, adjusted R2 increases

to 18.9% from 3.12%, it reaches its peak 33.6% at 4-years horizon and remains above

20% until 10 years. From Table 5b, we note that before the first structural break, the

log dividend price ratio has forecasting power for excess returns (t-stats in the table are

always significant at 95%, except for 2 years). When we restrict our data sample to 1955-

2006, we observe that dpt loses almost all its forecasting power at very short horizons

from 1 to 4 years. Instead, once we correct dpt using the information in technology and

demography, we maintain similar forecasting power exhibited in the entire sample, even

at short horizons.

On the basis of these results, we proceed to compare the performance dpTDt as a

predictor with that of the other financial ratios used in the framework of the dynamic

dividend growth model over the sample 1955-20017.

We do so by first considering alternative univariate models based on the different

ratios:

rm,t+H − rf,t+H = β0c+ β1zt + εt+H

zt = dpTDt , RRELt, det, termt, defaultt,cayt, cdyt, pet

where dpTDt : (dpt) adjusted for technology and demographics, RRELt : detrended

short term interest rate (Campbell, 1991; Hodrick, 1992), det: log dividend earningratio

(Lamont, 1998), termt : long term bond yield (10Y) over 3M treasury bill, defaultt:

the difference between the BAA and the AAA corporate bond rates cayt and cdyt coin-

6We follow Stock and Watson (1993) dynamic least squares (DLS) with 1 lead/lag length to estimate
the cointegrating parameters.

7The longest sample we have data for each variable.
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tegration variables introduced by LL (2001, 2005), pet ,log price earning ratio (Lamont,

1998).

Insert here Table 6a1

Insert here Table 6a2

Table 6 suggests that in a univariate model specification one should in all horizons

include cayt and dpTDt and both variables have substantial predictive power with in-sample

R̄2 slightly favoring cayt8. Based on the evidence of Table 6, one can also consider other

potential candidates for forecasting excess return such as RRELt in very short horizons,

termt up to 6-years horizon and pet for longer than 8-years horizon.

Finally, we also consider a forecasting model exploiting simultaneously all the available

information.

rm,t+H − rf,t+H = β0c+ β1xt + εt+H

xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RRELt

termt

defaultt

dpTDt
det

pet

cayt

cdyt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
To deal with the problem of potential multicollinearity between regressors in the

multivariate model we adopt Bayesian Model Averaging. The Bayesian approach allows

us to account also for model uncertainty in our linear regression framework. In our

analysis we follow Raftery et. al (1997)9, instead of conditioning on a single selected

model, we base our inference on averaging over a set of possible models10. Averaging

over all possible models provides provide better predictive power than considering a single

model, hence the model uncertainty problem is alleviated. Basing inferences on a single

"best" model as if the single selected model were the true one underestimates uncertainty

8To have a conservative forecast exercise we reestimate the coefficients of dpt, TFPt, and MYt with
data up to the obervation points, whereas for cayt we use the full sample coefficents (i.e. cayp(cay post)
in Goyal&Welch (2007) terminology).

9We run the bma_g function provided in Le Sage toolbox: http://www.spatial-econometrics.com/
10A complete Bayesian solution would be averaging over all possible combinations of predictors, but

we reduce the set of possible models to a subset of models following Raftery et.al (1997).
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about excess returns. The standard Bayesian solution to this problem is

Pr(rm,t+H − rf,t+H | Data) =
KX
i=1

Pr(rm,t+H − rf,t+H | MK,Data) Pr(MK | Data)

whereM = {M1,M2....,MK} denotes the set of all models considered. This is an average of
the posterior distributions under each model weighted by corresponding posterior model

probability which we call Bayesian model averaging (BMA). Below we report results

Insert here Table 7a1

Insert here Table 7a2

Insert here Table 7b1

Insert here Table 7b2

In the tables we provide the BMA posterior estimates of the coefficients of the re-

gressors (with t-statistics in parentheses) in a multivariate regression for for 1,3,5,7,10

years horizon along with the regression R2 statistics. In a separate table we provide the

summary of model selection analysis. We report the two models with highest probability

and highest number of visits among all the models considered for Bayesian analysis. We

also report cumulative probability of each variables, i.e. the probability that a variable

appears across all the models considered. We have used flat priors11 and 50000 draws for

the analysis. The sample considered for the analysis spans from 1952-200112, the longest

sample we have data for each variable. We notice that consistent with the previous sec-

tion on univariate analysis, both cayt and dpTDt are the most selected variables (based on

cumulative probability of entering a model visited in BMA analysis) for predicting excess

returns up to 7 years, whereas in 10 years, pet replaces dpTDt in forecasting excess returns.

4.2 Out-of-Sample Evidence

In this section we follow Goyal and Welch (2007), and we assume that the real-world

investor, who does not have access to ex-post information, would have to estimate the

prediction equation only with data available strictly before the prediction point, and

then make an out-of-sample prediction. Indeed we are not really conducting a true out

of sample test since our out-of-sample regressions rely on the very same data points that

were used in the in-sample tests to identify the proposed predictors. Therefore we call

11The hyperparameters ν, λ and φ are set 4, 0.25 and 3, respectively. See Raftery et al.(1997) for
selection of prior distributions.
12We also report (Table 7b.1 and Table 7b.2) as robustness check results for the sample that spans the

period 1955-2006, where we do not include cdyt.We estimate our cointegrated vector dpTDt using only
the data points included in the sample.
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this a pseudo out-of-sample forecast exercise.

We run rolling forecasting regressions for one and five years using as an initialization

sample 1952-1981, keep the rolling window of 30 data points and make the first forecast

in 1982, so the forecasting period includes the anomalous period of late 90’s where the

sharp increase in stock market index weakens the forecasting power of financial ratios.

We select predictors on the basis of our within sample evidence, therefore we focus only

on cayt and dpTDt . In particular, we consider both univariate and bivariate models and

compare the forecasting performance with historical mean benchmark. In the first two

columns of Table 8a we report the adjusted R̄2 and the t-statistics using the full sample

1952-2006. Then we also report mean absolute error (MAE) and root mean square

error (RMSE) calculated based on the residuals in the forecasting period, namely 1982-

2006. The first column of out-of- sample panel report the out-of-sample R2 statistics

(Campbell&Thomson, 2008) which is computed as

R2OS = 1−
PT

t=t0
(rt − r̂t)

2PT
t=t0
(rt − r̄t)2

where r̂t is the forecast at t− 1 and r̄t is the historical average estimated until t− 1. In
our exercise, t0 = 1982 and T = 2006. If R2OS is positive, it means that the predictive

regression has lower mean square error than the prevailing historical mean. In the last

column, we report the Diebold-Mariano (DM) t-test for checking equal-forecast accuracy

from two nested models for forecasting h-step ahead excess returns.

DM =

r
(T + 1− 2 ∗ h+ h ∗ (h− 1))

T
∗
∙

d̄bse(d̄)
¸

where we define e21t as the squared forecasting error of prevailing mean, and e22t as the

squared forecasting error of the predictive variables, dt = e21t − e22t, i.e. the difference

between the two forecast errors, d̄ = 1
T

PT
t=t0

dt and bse(d̄) = 1
T

Ph−1
τ=−(h−1)

PT
t=|τ |+1(dt −

d̄) ∗ (dt−|τ | − d̄). A positive DM t-test statistics indicates that the predictive regression

model performs better than the historical mean.

Insert here Table 8a

Insert here Table 8b

First we notice that the 1-year ahead out-of-sample performance detoriorates for the

variables considered compared to the in-sample performance. Nonetheless, in the out-of-

sample the relative deterioration with respect to prevailing mean becomes evident in case

of dpt while all the other candidates maintain a lower MAE and RMSE than the one of
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prevailing historical mean. When we move to 5-year ahead out-of-sample forecast also

the exogenously corrected dpt performs worse than the historical mean where univariate

models with cayt and dpTDt and the bivariate model continue to outperform the historical

mean. The minimum MAE and RMSE is obtained when the bivariate model is used.

In the figures below we plot the cumulative squared prediction errors of prevailing

mean minus the cumulative squared prediction error of dpt and dpTDt where a positive

line means that the predictive regression improves upon historical mean (the zero line is

drawn in the figure to graphically detect performance).

Insert here Figure 6a

Insert here Figure 6b

In figure 6a, we use all the available data from 1909 until 1954 for initial estimation

and then we recursively calculate the cumulative squared prediction errors until sample

end, namely 2006. Consistent with the breaking point analysis, we notice that around the

breaking points of 1954 and early 1980’s and late 90’s the the financial ratio dpt predict

worse than prevailing mean (note the decrease in the cumulative squared prediction error

line around the points) , while the corrected dpt , i.e. dpTDt performs as well as the

historical mean around the 50’s and then improves upon the benchmark, in particular

during last stock market bubble. Figure 6b repeats the same exercise using a larger initial

estimation period, namely 1909-1967, we notice that we we exclude the very recent data

points, dpt still performs well compared to the historical benchmark, consistent with the

literature which favors this financial ratio as a major predictive regressor, but once we

also include the data points around the millenium, this financial ratio loses its forecasting

power (as evident in the figure), whilst dpTDt even improves its performance upon the

historical benchmark, thanks to the correction mechanism driven by fundamentels which

are immune to temporary bubbles.

5 Equity Premium for the period 2007-2050

One of the interesting aspects of the demographics variable is that long-forecasts for these

variables are readily available. In fact, the Bureau of Census provides on its website

projected data up to 2050. Having now shown that the CVAR models introduced in

section 1 provides forecasts for stock market returns that are least comparable to those

produced by the best available models based on financial ratios, we go back to it and

use it to produce forecast for stock market equity premia over the period 2007-2050.

In order to produce forecasts, we take directly the projections from Bureau of Census

for our exogenous variable MYt and we project our endogenous variables by solving a
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model through stochastic simulations13, i.e. the model solution generates a distribution of

outcomes for the endogenous variables in every period. Through the projected variables,

both exogenous and endogenous, we construct the predictive regressors needed for equity

premium forecast.

In particular we focus on three models where we augment our VEC specification with

an autoregressive process for nominal risk free rate14.

The first VEC model is already introduced in section 3 and we repeat it here for

reader’s convenience

⎛⎜⎝ ∆pt

∆dt

∆TFPt

⎞⎟⎠ = Π0+Π1

⎛⎜⎜⎜⎜⎝
∆pt−1

∆dt−1

∆TFPt−1

∆MYt−1

⎞⎟⎟⎟⎟⎠+
⎛⎜⎝ α11

α21

α31

⎞⎟⎠³ −1 1 β3 β4

´
⎛⎜⎜⎜⎜⎝

pt−1

dt−1

TFPt−1

MYt−1

⎞⎟⎟⎟⎟⎠+
⎛⎜⎝ v1t

v2t

v3t

⎞⎟⎠
where MYt is taken as exogenous and it assumed to take the value generated by the

Bureau of census predictions over the relevant period. Moreover, we assume constant

total factor productivity growth, and hence set α31 = 0. Using the simulation output

from our model, we construct the equity premium for 2007-2050, i.e.

equity premiumt = log

Ã
P̃t + D̃t

P̃t−1

!
− r̃f,t (6)

where P̃t, D̃t, r̃f are simulated series from the model.

In the second VECmodel, we use the cointegrated system suggested in Lettau&Ludvigson

(2001)15, namely⎛⎜⎝ ∆ct

∆at

∆yt

⎞⎟⎠ = Π̄0 + Π̄1

⎛⎜⎝ ∆ct−1

∆at−1

∆yt−1

⎞⎟⎠+
⎛⎜⎝ ᾱ11

ᾱ21

ᾱ31

⎞⎟⎠³ 1 β̄2 β̄3

´⎛⎜⎝ ct−1

at−1

yt−1

⎞⎟⎠+
⎛⎜⎝ v̄1t

v̄2t

v̄3t

⎞⎟⎠
where we augment the model with an autoregressive process for the nominal risk-free

rate and a predictive regression for equity premium, i.e. equity premiumt = f(cayt−1).

In particular, we assume that the functional relation is linear, i.e.

equity premiumt = γ0 + γ1 ∗gcayt−1 + εt

13In fact the coefficients in our equations are estimated, rather than fixed at known values. One way
to reflect this uncertainty about our coefficients in the results from our model is by using stochastic
simulation.
14We opt for an autoregressive model AR(1) given our sample evidence.
15For the estimation of the model, we restricted the insignificant coeffients to zero (consistent with the

evidence in LL, 2005), to keep the parameter space small given our short annual sample.
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Notice the difference in forecasting the equity premia in both models. In the former,

we simulate the dividend, price and risk free rate processes from the model and the equity

premium accounts (in a highly non linear way) for the uncertainty in all of these random

variables while in the latter we simulate the equity premium process in a univariate

regression where γ =
h
γ0 γ1

i
is estimated in the sample 1952-2006 and the regressor,

cointegrating vector gcayt, is reconstructed with the simulated series from the second

model for 2007-2050.

Finally, we combine the two VEC models, where pt, dt, TFPt, ct, at, yt enter as en-

dogenous variables, MYt as exogenous variable in the model. We augment the model

again with an autoregressive process for the nominal risk-free rate and we reconstruct

the equity premium according to equation (6). Given the high number of parameters to

be estimated in the model, we set the following restrictions:

- the cointegrating vector cayt only affects ∆at

- we assume constant income growth ∆yt and constant ∆TFPt

- as in model 2, we let only ∆at−1 and ∆yt−1 affect ∆ct
16

- we model ex-dividend return ∆pt = δ0 + δ1 ∗∆pt−1 + δ2 ∗ dpTDt−1 + δ3 ∗ cayt−1 + εt

To calculate statistics in order to describe the distributions of our endogenous vari-

ables, namely pt, dt and TFPt in the first model, ct, at and yt in the second model and

pt, dt, TFPt, ct, at and yt in the last model, we used a Monte Carlo approach17, where

the model is solved many times with random numbers drawn from a normal distribution

with variance covariance resembling the estimation period in sample variance and substi-

tuted for the unknown errors at each repetition and then calculating statistics, namely

the mean and standard deviation, over all the different outcomes. This method provides

only approximate results. However, as the number of repetitions is increased, we would

expect the results to approach their true values. We set the number of repetitions to be

performed during the stochastic simulation to 10000 and the forecast sample is from 2007

to 2050. Since our main aim is to forecast future returns, we focus on the long-run price

dynamics among other endogenous variables.

Below we report the figures of the mean equity premia (with one standard deviation

band) generated from the three models along with the actual historical equity premium

and in-sample fit of the models.

Insert here figure 7a

Insert here figure 7b

Insert here figure 7c
16We also tried different specifications but results do not change.
17We also solved the model bootstrapping the unknown error from estimated in sample residuals, but

the results do not change.
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Finally we compare the equity premia projections of three models

Insert here figure 8

Our simulation confirms the evidence in favour of the often quoted claim that the

end of the baby boomers generation will cause a reduction in the equity premium. The

model based on demographics and technology shows a reduction in the equity premium

between 2010 and 2020 which is promptly reverted in the following years. This results

are robust to the inclusion of excess consumption in the model, while the model without

demographics and technology predicts a much flatter profile for the equity premium.

6 Conclusions

The intuition that demographics information should be incorporated in long-run stock

return has long been assessed in finance literature. Yet, there is still controversy on

the channels through which demography effects might enter stock markets and on the

significance of this effect, since many other factors might be (in fact are) affecting the

stock markets fluctuations. If we believe that prices are anchored by some fundamentals,

even though they might deviate from these long run relations occasionally, then these

economic fundamentals tend to bring prices back to their long run trend. In this paper,

we follow the idea that demography, along with technology, is one of those anchors that

bring prices to their long run trend. In particular, we show that demography along with

technology performs well in the explanation of the breaks in the dividend price ratio

and that demographics and technology capture a slowly evolving mean toward which

the dividend price ratio is reverting. Correcting for non-stationarity of dividend price

ratio further increases its in-sample predictive power as well as pseudo out-of sample

forecasting performance for stock market returns at different horizons. We show that a

forecasting model based on technology, demographics and demand factor as captured by

excess consumption in the sense of Lettau and Ludvigson (2004) overperforms virtually all

alternative model proposed in the empirical literature in the framework of the dynamic

dividend growth model. On the basis of these results we exploit the predictability of

demographic factors to project the equity risk premium up to 2050. Some decline of the

equity risk premium for the next 10 years is generated by the explicit consideration of

demographic variables in our model.
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APPENDIX A: TABLES

Table 1. Johansen Cointegration Test using log dividend and log price series. We report

both L-Max and Trace test statistics with 95% critical values. The null hypothesis is

that there are r cointegration relations.

Table 2a. Summary Statistics (whole sample, 1909-2006, using S&P500 data from

Robert Shiller’s website)
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Table 2b. Summary Statistics (whole sample using CRSP data, 1926-2006 )

Table 2c. Summary Statistics (first subsample 1909-1954, using S&P500 data from

Robert Shiller’s website)
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Table 2d. Summary Statistics (first subsample 1955-2006, using S&P500 data from

Robert Shiller’s website)

Table 3. Johansen Cointegration Test. We use the general model including nominal log

dividends, log prices, TFP, MY.
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Table 4a. The table reports estimated coefficients from cointegrated first order vector

autoregression, where the coeffiencts on log price and log dividend are restricted to be

-1,1, respectively. χ2 along with probability is the LR test statistics for binding

restrictions. The sample is annual and spans the period 1909-2006. t-statistics are

reported in parentheses.
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Table 4b. The table reports estimated coefficients from cointegrated first order vector

autoregression, where the coeffiencts on log price, log dividend and supportratio are

restricted to be -1,1 and 0, respectively. χ2 along with probability is the LR test

statistics for binding restrictions. The sample is annual and spans the period 1909-2006.

t-statistics are reported in parentheses.
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Table 5a. This table reports the results of h-period regressions of returns on the

S&P500 index in excess of a 3-month Treasury bill rate. For each regression, the table

reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in

parentheses) and adjusted R2 statistics in square brackets. The sample is annual and

spans the period 1909-2006.
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Table 5b. This table reports the results of h-period regressions of returns on the

S&P500 index in excess of a 3-month Treasury bill rate. For each regression, the table

reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in

parentheses) and adjusted R2 statistics in square brackets. The sample is annual and

spans the period 1909-1954.
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Table 5c. This table reports the results of h-period regressions of returns on the

S&P500 index in excess of a 3-month Treasury bill rate. For each regression, the table

reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in

parentheses) and adjusted R2 statistics in square brackets. The sample is annual and

spans the period 1955-2006.
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Table 6a. This table reports the results of h-period regressions of returns on the

S&P500 index in excess of a 3-month Treasury bill rate. For each regression, the table

reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in

parentheses) and adjusted R2 statistics in square brackets. The sample is annual and

spans the period 1955-2001.
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Table 6b. This table reports the results of h-period regressions of returns on the

S&P500 index in excess of a 3-month Treasury bill rate. For each regression, the table

reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in

parentheses) and adjusted R2 statistics in square brackets. The sample is annual and

spans the period 1955-2001.
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Table 7a1. Bayesian Posterior Estimates. We report the BMA posterior estimates of the

coefficients of the regressors (with t-statistics in parentheses) in a multivariate

regression for for 1,3,5,7,10 years horizon along with the regression R2 statistics.
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Table 7a2. Model selection analysis. We report the two models with highest probability

and highest number of visits among all the models considered for Bayesian analysis. 1’s

in the cells denote that the variable is included in the model, whereas 0’s indicate that

those variables no not enter the model. We report cumulative probability of each

variables, i.e. the probability that a variable appears across all the models considered

and two models with highest probability. We have used flat priors and 50000 draws for

the analysis. The sample considered for the analysis spans from 1952-2001.
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Table 7b1. We report the BMA posterior estimates of the coefficients of the regressors

(with t-statistics in parentheses) in a multivariate regression for for 1,3,5,7,10 years

horizon along with the regression R2 statistics. The sample period is 1955-2006.
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Table 7b2. Model selection analysis. We report the two models with highest probability

and highest number of visits among all the models considered for Bayesian analysis. 1’s

in the cells denote that the variable is included in the model, whereas 0’s indicate that

those variables no not enter the model. We report cumulative probability of each

variables, i.e. the probability that a variable appears across all the models considered

and two models with highest probability. We have used flat priors and 50000 draws for

the analysis. The sample considered for the analysis spans from 1955-2006.
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Table 8a. This table presents statistics on 1-year ahead forecast errors (in-sample and

out-of-sample) for stock returns. The sample starts in 1952 and we construct first forecast in

1982. All numbers are in percent. RMSE is the root mean square error, MAE is the mean

absolute error. DM is the Diebold and Mariano (1995) t-statistic for difference in MSE of the

unconditional forecast and the conditional forecast. The out-of-sample R2 compares the

forecast error of the historical mean with the forecast from predictive regressions.

Table 8b. This table presents statistics on 3-year ahead forecast errors (in-sample and

out-of-sample) for stock returns. The sample starts in 1952 and we construct first forecast in

1982. All numbers are in percent. RMSE is the root mean square error, MAE is the mean

absolute error. DM is the Diebold and Mariano (1995) t-statistic for difference in MSE of the

unconditional forecast and the conditional forecast. The out-of-sample R2 compares the

forecast error of the historical mean with the forecast from predictive regressions.
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Table 8c. This table presents statistics on 5-year ahead forecast errors (in-sample and

out-of-sample) for stock returns. The sample starts in 1952 and we construct first forecast in

1982. All numbers are in percent. RMSE is the root mean square error, MAE is the mean

absolute error. DM is the Diebold and Mariano (1995) t-statistic for difference in MSE of the

unconditional forecast and the conditional forecast. The out-of-sample R2 compares the

forecast error of the historical mean with the forecast from predictive regressions.
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APPENDIX B: FIGURES

Figure 1. The time series of log dividend price ratio (dt − pt). Annual data from 1909 to

2006.

Figure 2. Recursive Eigenvalue Test using log nominal prices and log nominal dividends.
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Figure 3a. Middle/young (MY) ratio from 1909 to 2006 and Bureau of Census

projections from 2007-2050.

Figure 3b. Total Factor Productivity (TFP) normalized to 1 at the beginning of our

sample and projections out-of-sample (with one standard deviation band) obtained from

stochastic simulation of VECM model for the period 2007-2050.
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Figure 4a. log dividend price ratio, log dividend price ratio adjusted for exogenous

breaks (LVN, 2007) and log dividend price ratio adjusted for demography.

Figure 4b. Log of the price dividend ratio, MY , and MY adjusted for TFP using

coefficient in our cointegrating vector. All variables demeaned
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Figure 5a. Recursive Eigenvalue test using the general model. We include nominal log

dividends, log prices, TFP, MY and SR.

Figure 5b. Nyblom Bootstrap Test for a our model. The sup-statistics is 0.4849 (with

mean-statistics = 0.2036) for a VEC model of order 1 allowing for only one

cointegration relation
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Figure 6a. Out-of sample performance for annual predictive regression. Difference

between cumulative squared forecast errors based on a linear regression incuding just a

constant and a linear regression including the predictive variable (dpTD or dp). The

units are in percent. First forecast in 1955.

Figure 6b. Out-of sample performance for annual predictive regression. Difference

between cumulative squared forecast errors based on a linear regression incuding just a

constant and a linear regression including the predictive variable (dpTD or dp). The

units are in percent. First forecast in 1968.
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Figure 7a. Stochastic Simulation of Equity Premium using the specification with

pt, dt, TFPt as endogenous variables and MYt as exogenous variable.

Figure 7b. Stochastic Simulation of Equity Premium using the specification with

ct, at, yt as endogenous variables and without any exogenous variables.
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Figure 7c. Stochastic Simulation of Equity Premium using the specification with

pt, dt, TFPt, ct, at and yt as endogenous variables and MYt as exogenous variable.

Figure 8. Model Comparison. We graph from 1952 to 2006 the fitted values from three

alternave model we consider in this section and from 2007 to 2050 we also graph model

forecasts.
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APPENDIX C:
In Appendix C, we describe our data construction and provide the links to the data

sources. We report results with annual data, but we also cross-check the results using

quarterly data. We opt for annual frequency for several reasons; first, the demography

variables move slowly and do not change much in quarterly frequency (in that case we

interpolate the series), second we are mainly concerned with long term prediction (up

to 10 years!) and thus we correct for overlapping data. This way, we also remove the

seasonality effects of the data, mainly the dividends. But these advantages come with

the tradeoff of few data points, which might be particular concern for estimation. Below,

we describe the main series we have constructed;

First, the dependent variable, the excess return over the risk free rate:

Stock Prices: S&P 500 index yearly prices from 1909 to 2006 are fromRobert Shiller’s
website, but we took the last month’s observation for each year. Alternatively, we also use

CRSP annual end-of-year data for value-weighted market (NYSE+AMEX+NASDAQ)

index (cum dividend) from 1926 to 2006.

Stock Returns: For S&P 500 index, to construct the continously compounded return
rt, we take the ex-dividend price Pt add dividend Dt

18 over Pt−1 and take the natural

logarithm of the ratio. On the other hand, for CRSP value-weighted market return, we

directly download the cum-dividend market return (retd) add 1 and take the natural

logarithm to construct the continously compounded market return.

Risk-free Rate: We download secondary market 3-Month Treasury Bill rate from
St.Louis (FRED) from 1934-2006. The risk-free rate for the period 1920 to 1933 is from

New York City from NBER’s Macrohistory data base. Since there was no risk-free short-

term debt prior to the 1920’s, we estimate it following Goyal&Welch (2007). We obtain

commercial paper rates for New York City from NBER’s Macrohistory data base. These

are available for the period 1871 to 1970. We estimate a regression for the period 1920

to 1971, which yielded

T − billRate = −0.004 + 0.886× CommercialPaperRate.

Therefore, we instrument the risk-free rate for the period 1909 to 1919 with the predicted

regression equation.

Hence we build our dependent variable which is the equity premium (rm.t− rf,t), i.e.,

the rate of return on the stock market minus the prevailing short-term interest rate in

the year t− 1 to t.
Second, we construct the independent variables commonly used in the long horizon

stock market prediction literature; namely

18In Robert Shiller’s database, Prices are beginning of period, i.e. January prices, whereas dividends
are distributed at the end of the period. In the last section, we simulated our models with december
prices.
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Log Dividend-Price Ratio (dpt): is the difference between the log of dividends and
the log of prices. For S&P 500 index, i.e. data taken from Robert Shiller’s website,

we take the natural logarithm of Dt over Pt, in the case of CRSP data we construct

dividends Dt by substracting vwretxt from vwretd t and multiplying it by vwindx t−1.Then

dpt is constructed by taking the natural logarithm of Dt over Pt(vwindx t). This variable is

one of the best candidates for long horizon stock market prediction and is extensively used

in the litarature (Rozeff (1984), Shiller (1984), Campbell (1987), Campbell and Shiller

(1988), Campbell and Shiller (1989), Fama and French (1988a), Hodrick (1992), Barberis

(2000), Campbell and Viceira (2002), Campbell and Yogo (2003), Lewellen (2004). See

Cochrane (1997) for a survey on dividend price ratio prediction literature).

Log Dividend-Earnings (payout) ratio: Both annual dividend and earning series
are taken from Robert Shiller’s website. The variable is constructed by taking the natural

logarithm of Dt over Et (Lamont,1998).

Log Earnings Price ratio: Both annual price and earning series are taken from
Robert Shiller’s website. The variable is constructed by taking the natural logarithm of

Et over Pt (Lamont,1998).

RREL: This variable, the stochastically detrended riskless rate, is constructed using
monthly 3-Month Treasury Bill yield data from NBER Macrohistory Data Base (from

1920 to 1933) and 3-Month Treasury Bill: Secondary Market Rate from FRED St. Loius

(1934-2006); i.e. we define RREL for month t, RRELt is rt minus the average of rt from

months t − 12 to t − 1. Yearly RRELt is the last observation at the end of the year

(Campbell,1991; Hodrick,1992). The data is available from 1921-2006.

TERM: is the difference between the long-term govenment bond yield (10year) from
Robert Shiller’s Website and 3-Month T-Bill yield from NBER Macrohistory Data Base

(from 1920 to 1933) and 3-Month Treasury Bill: Secondary Market Rate from FRED St.

Loius (1934-2006) and available from 1920 to 2006.

DEFAULT: is the difference between the BAA and the AAA corporate bond rates.
Both series are collected from St.Louis (FRED) and available from 1919 to 2008.

Consumption, wealth, income ratio (cay): is suggested in Lettau and Ludvigson
(2001). Data for its construction is available from Sydney Ludvigson’s website at annual

frequency from 1948 2001. Lettau-Ludvigson estimate is described in equation (4) in their

paper, where two lags are used in annual estimation (k = 2). This variable is named as

cayp(post) by Goyal&Welch (2007), which they claim contains look-ahead bias, we also

consider their variable caya(ante) that eliminates the bias, but report the results using

cayp, since this gives us a more conservative benchmark. We also use their updated

quarterly cay (1952-2006, last quarter as annual obervation) for BMA analysis.

Consumption, dividend, income ratio (cdy): is suggested in LL (2005). Data
for its construction is available from Sydney Ludvigson’s website at annual frequency

from 1948 2001. Lettau-Ludvigson estimate is described in equation (4) in their paper,

48



where two lags are used in annual estimation (k = 2).

In addition to the independent variables commonly used in the literature, we also use

demography and technology variables in a cointegration framework to explain the long

run movement of prices driven by fundamentals.

Demography Variables
The U.S annual population estimates series are collected from U.S Census Bureau and

the sample covers estimates from 1900-2050.

Technology Variable
Among other candidates such as Industrial production19 , number of patents or a

variable extracted from a large dataset using principal component, we first focus on a

single technology variable, total factor productivity (TFP), which is typically the only

source of randomness in standard Real Business Cycle models (RBC, Kydland & Prescott,

1982).

Total Factor Productivity (TFP): This series is available on the website of Bureau
of Labor Statistics(BLS) from 1948-2006. In order to have a longer time series, we merged

this series with the TFP data from 1909 to 1949 provided in the original paper by Solow

(1957). We normalized the series from BLS to bring it to the same scale with Solow data.

DATA SOURCES
Robert Shiller’s Website
http://www.econ.yale.edu/~shiller/

NBER Macrohistory Data Base
http://www.nber.org/databases/macrohistory/contents/chapter13.html.

Sydney Ludvigson’s Website
http://www.econ.nyu.edu/user/ludvigsons/

Martin Lettau’s Website
http://faculty.haas.berkeley.edu/lettau/

WRDS
http://wrds.wharton.upenn.edu/

US Census Bureau
http://www.census.gov/popest/archives/1990s/ST-99-08.txt

Andrew Mason’s Website
http://www2.hawaii.edu/~amason/

Bureau of Labor Statistics Webpage
http://www.bls.gov/data/

FRED
http://research.stlouisfed.org/fred2/

19We have also run tests with log IP (data collected from St. Louis FRED from 1919-2007) and the
results did not change significantly.
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