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Context-Dependent Forward Induction Reasoning�

Pierpaolo Battigalliy Amanda Friedenbergz

Abstract

This paper studies the case where a game is played in a particular context. The context in-

�uences what beliefs players hold. As such, it may a¤ect forward induction reasoning: If players

rule out speci�c beliefs, they may not be able to rationalize observed behavior. The e¤ects are

not obvious. Context-laden forward induction may allow outcomes precluded by context-free

forward induction. At the formal level, forward induction and contextual reasoning are de�ned

within an epistemic structure. In particular, we represent contextual forward induction reason-

ing as �rationality and common strong belief of rationality�(RCSBR) within an arbitrary type

structure. (The concept is due to Battigalli-Siniscalchi [8, 2002].) We ask: What strategies are

consistent with RCSBR (across all type structures)? We show that the RCSBR is characterized

by a solution concept we call Extensive Form Best Response Sets (EFBRS�s). We go on to

study the EFBRS concept in games of interest.

Forward induction is a basic concept in game theory. It re�ects the idea that players rationalize

their opponents�behavior, whenever possible. In particular, players form an assessment about the

future play of the game, given the information about the past play and the presumption that their

opponents are strategic. This a¤ects the players�choices.

Here, we study the implications of forward induction reasoning when there is a context to the

game. Because there is such a context, certain beliefs may be ruled out, and this may limit the

ability of players to rationalize past behavior. As such, the context may a¤ect forward induction

reasoning.

Take the following illustrative example: It is transparent that all players think that �players all

drive on the right side of the road, irrespective of whether they are driving north or south.� Suppose,
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further, that it is transparent that players don�t like automobile accidents. Then, if Ann actually

sees Bob drive on the left side of the road, she cannot justify his past behavior. In particular, she

cannot justify his behavior by maintaining a hypothesis that Bob thinks she will drive on the left

side of the road� after all, it is transparent that Ann will drive on the right side of the road.

To formalize the notion of context-dependent forward induction reasoning, we need some epis-

temic apparatus: We need to specify what beliefs players do vs. do not consider possible, and the

epistemic structure allows just that. Within the epistemic structure, we analyze forward induction

reasoning. The formalization of forward induction rests on Battigalli-Siniscalchi�s [8, 2002] �strong

belief�idea. (See also Stalnaker [29, 1998].)

We ask: Can we characterize the strategies consistent with context-dependent forward induction

reasoning? That is, can we identify the play consistent with context-dependent forward induction

reasoning, without actually specifying the particular epistemic structure? Indeed we can. We

show that context-dependent forward induction reasoning is captured by a solution concept we call

an extensive-form best response set (EFBRS). In general, there may be many EFBRS�s for a
given game. Which EFBRS obtains depends on the given context.

While the EFBRS de�nition is new, we will see that it is equivalent to one already proposed

in the literature� namely, the Directed Rationalizability concept. This solution concept is due to

Battigalli-Siniscalchi [9, 2003], who refer to it as �-rationalizability. We will discuss the connection

below.

The paper proceeds as follows. We begin, in Section 1, with a heuristic treatment. This gives

an overview of the concepts in the paper, and explains why the EFBRS concept captures context-

dependent forward induction reasoning. It also explains the connection to Directed Rationalizability.

We then turn to the formal treatment. The game and epistemic structure are de�ned in Sections

2-3. Rationality and strong belief are de�ned in Section 4. Section 5 gives the main theorem. We

then turn to applications, in Sections 6-7. Finally, in Section 8, we conclude by discussing certain

conceptual and technical aspects of the paper.

1 Heuristic Treatment

Consider the game of Battle of the Sexes (BoS) with an Outside Option, as given in Figure 1.1. The

standard forward induction analysis results in Bob playing In-Right and Ann playing Down: Begin

with the observation that, independent of Bob�s belief, the strategy In-Left cannot be rational (for

Bob). In particular, the strategy Out dominates In-Left at the beginning of the tree.1 But, notice,

the strategy In-Right may very well be consistent with rationality, e.g., if Bob assigns probability one

to Ann playing Down, then In-Right is a sequential best response. If this is indeed the case, then

conditional upon Ann�s information set being reached, she should rationalize Bob�s past behavior,

assigning probability one to Bob playing In-Right. With this, Ann should play Down. Now, if

1Note, we often con�ate a strategy with its associated plan of action. No confusion should result.
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Bob begins the game understanding that Ann is rational and rationalizes past behavior, Bob should

begin the game assigning probability one to Down. In this case, Bob should indeed play In-Right.

This is the standard forward induction analysis� in the spirit of Kohlberg-Mertens [19, 1986].

(See, Hillas-Kohlberg [17, 2002; Section 11].) But, arguably, this is an incomplete understanding of

forward induction.

To see this, consider the case where society has formed a �lady�s choice convention.� Loosely:

Everyone in society thinks that, if the lady gets to move in a BoS-like situation, she makes choices

that can lead to her �best payo¤.� And, moreover, it is �transparent� that everyone thinks this.

Let us ask, in this case, what are the implications of forward induction reasoning? And, when there

is such a convention, might the lady, perhaps, behave in a manner consistent with the convention

(in this game)?

B
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U
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A
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2
∗

3

1

0

0

Figure 1.1

Because there is a lady�s choice convention, it is thought that, if Ann gets to move, she will play

Up, hoping to get the outcome of 3. Therefore, a rational Bob plays Out. Now, if Ann is given the

opportunity to move, she can no longer rationalize Bob�s behavior� after all, it is transparent that

Bob believes she will play Up and, given this, a rational Bob should have played Out. As such, she

must maintain the hypothesis that Bob is irrational. In this case, conditional upon her information

set being reached, she may very well think that Bob is playing the irrational strategy In-Left. If

she does, Up is indeed a best response. So, if Ann is a¤orded the opportunity to move, she may

very well make the choice that allows her �best payo¤.�

Thus, Out is consistent with forward induction reasoning, under the convention. Of course, the

argument we gave is informal. Can it be formalized? This is what we turn to next.
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1.1 The Epistemic Game

We begin by formalizing the idea that a certain event may be transparent to the players. To do so,

we append to the game an epistemic type structure. Let us review the basic elements.

There are two ingredients of an epistemic type structure: First, for each player, there are type

sets Ta and Tb. Informally, each player �knows� his own type, but faces uncertainty about the

strategy the other player will choose and the type of the other player. So, each type ta 2 Ta is
associated with a belief on Sb � Tb. Of course, we want to specify a belief at each information set.
Therefore, we map each type into a conditional probability system (CPS) on Sb � Tb, where the
conditioning events correspond to the information sets in the game-tree. That is, for each type,

there is an array of probability measures on Sb � Tb, one for each information set, and this array
satis�es the rules of conditional probability when possible. We write �a for the map from Ta to

CPS�s on Sb � Tb, and, likewise, with a and b interchanged.
How would we model the case of a lady�s choice convention (as applied to the game in Figure

1.1)? We will have type sets Ta and Tb. Ann�s beliefs will be captured by CPS�s on Sb � Tb. In

particular, each type of Ann will be mapped to a CPS on Sb � Tb. Speci�cally, for each such CPS,
there will be a type of Ann, viz. ta, so that �a (ta) is exactly that CPS. Likewise, Bob�s beliefs will

be captured by CPS�s on Sa � Ta. In particular, now, each type of Bob will be mapped to a CPS
on Sa � Ta that assigns probability one to fUpg� Ta at each information set. Speci�cally, for each
such CPS, there will be a type of Bob, viz. tb, so that �b (tb) is exactly that CPS. (Such a structure

exists. See Appendix A)

Why do these conditions capture the lady�s choice convention? Note, at each information set,

each type of Bob assigns probability one to the event �Ann plays Up,�i.e., to Ann trying to achieve

her �best payo¤.� Likewise, at each information set, each type of Ann assigns probability one to

the event �at each information set, Bob assigns probability one to Ann�s playing Up.� And so on.

In this sense, it is �transparent� that Bob believes that, if Ann gets to move, she will play Up.

Appendix A formalizes the idea that an event is �transparent.�

Note, the context of the strategic situation determines which beliefs are (or are not) part of

the type structure. Thus, the epistemic type structure is part of the description of the strategic

situation. Put di¤erently, the strategic situation is described by a game (i.e., a game form and

payo¤ functions) plus an epistemic type structure. We call this the epistemic game.

1.2 Forward Induction Reasoning

Now, to formalize the idea of forward induction reasoning: Under an epistemic analysis, we talk

about a type of Ann �rationalizing�Bob�s past behavior, when possible. We ask that a type of Ann

maintain a hypothesis that Bob is rational, provided the information she has learned is consistent

with this event. In this case, we say that the type of Ann strongly believes the event �Bob is
rational.� (The idea of strong belief is due to Battigalli-Siniscalchi [8, 2002].) Of course, we will
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ask for more� we will ask that Ann strongly believes the event �Bob is rational and Bob strongly

believes I am rational,�etc. . .

Return to Figure 1.1 and append to the game the epistemic type structure described in Section

1.1. Let us understand forward induction reasoning within this structure.

Begin with rationality. This is a property of a strategy-type pair, i.e., (sa; ta) is rational if
sa is sequentially optimal under the CPS �a (ta). In our example, there are rational strategy-type

pairs (sa; ta), where sa is Up. There are also rational strategy-type pairs (sa; ta), where sa is Down.

Turn to Bob. Here, each type tb assigns probability one to Up (at each information set). So, the

set of rational strategy-type pairs for Bob is fOutg � Tb.
So we have: If each player is rational at (sa; ta; sb; tb), then Bob plays Out. But, is such a state

consistent with forward induction reasoning? To answer this, note there are types ta that begin the

game by assigning probability one to the event fOutg � Tb. As such, these types begin the game

with a hypothesis that Bob is rational. If Ann�s information set is reached, Bob cannot be rational.

With this, any such type of Ann strongly believes that Bob is rational. So, there are strategy-type

pairs (sa; ta) that are rational and strongly believe Bob is rational. For these pairs, we can again

have sa being Up or Down. Now turn to Bob. Each type of Bob assigns probability one to Ann�s

playing Up, and there are rational strategy type pairs (Up, ta). So, we can �nd types of Bob that

assign probability one to Ann�s rationality at each information set. Certainly these types strongly

believe Ann is rational. Thus, there are strategy-type pairs (sb; tb) that are rational and strongly

believe Ann is rational. For these pairs, we have that sb is Out.

Continuing along these lines, we get that, for each m, (i) there are states consistent with �ra-

tionality and mth-order strong belief of rationality,�and (ii) at any such state, Bob plays Out and

Ann plays either Up or Down.

1.3 The Question

We have seen that context-dependent forward induction reasoning may result in an outcome pre-

cluded by the standard forward induction analysis. To see this, we �xed a particular type structure

and analyzed RCSBR within the associated epistemic game.

More generally, given the full epistemic game, we can identify the context-dependent strategies

by analyzing RCSBR. But, what if we (i.e., the analysts) are not given the full epistemic game� that

is, what if we are only given the game tree? Are there observable implications of RCSBR across

all contexts? Can we identify the strategies consistent with context-dependent forward induction

reasoning, by looking only at the game tree? Put di¤erently, what sets of strategies are consistent

with context-dependent forward induction reasoning (across all contexts)? This is the main question

we ask here.

We will characterize the strategies consistent with RCSBR (across all type structures). In

particular, a set of strategies is consistent with RCSBR (in some structure) if and only if it satis�es

certain properties de�ned on the game tree alone. This will be the basis for the extensive-best
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response set concept we mentioned in the Introduction. Using the properties of extensive-form best

response sets, we will be able to make a connection to an old solution concept, namely Directed

Rationalizability (Battigalli-Siniscalchi [9, 2003]).

1.4 Rationality and Common Strong Belief of Rationality

Let us begin with an arbitrary epistemic game. Refer to Figure 1.2. Here, R0SBRa (R0SBRb)

is the set of Ann�s (resp. Bob�s) rational strategy-type pairs. R1SBRa (R1SBRb) is the set of

Ann�s strategy-type pairs that are rational and strongly believe �Bob is rational.� More generally,

RmSBRa (resp. RmSBRb) is the set of strategy-type pairs for Ann (resp. Bob) that are consistent

with rationality and mth-order strong belief of rationality.

R 1 S B R a

R 0 S B R a

Ta

S a

R 2 S B R a

R 1 S B R b

R 0 S B R b

T b

S b

R 2 S B R b

Figure 1.2

We are interested in the set of states consistent with rationality and common strong belief
of rationality (RCSBR). Refer to Figure 1.3. This is the set RCSBRa�RCSBRb, where RCSBRa
(resp. RCSBRb) is the intersection of the sets RmSBRa (resp. RmSBRb) across all m. Can we

characterize the strategies played under RCSBR, i.e., the set Qa � Qb in Figure 1.3? For this, �x

some sa 2 Qa and note that there is some type ta so that (sa; ta) is contained in RmSBRa, for each
m. We will use this to identify two facts about sa.

For the �rst fact: Note that sa is optimal under the CPS associated with ta, namely �a (ta). It

follows that sa is optimal under the marginal of �a (ta) on Sb (a CPS on Bob�s strategies). For the

second fact, note that ta strongly believes the event R0SBRb, the event R1SBRb, the event R2SBRb,

etc. So, by a conjunction property of strong belief, ta strongly believes the event RCSBRb. It then

follows from a marginalization property of strong belief that the marginal of �a (ta) on Sb strongly

believes Qb.
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R 1 S B R a

R 0 S B R a

Ta

S a

R 2 S B R a

R 1 S B R b

R 0 S B R b

T b

S b

R 2 S B R b

Q a Q b

R C S B R a R C S B R b

Figure 1.3

So we have:

For each sa 2 Qa, there is a CPS on Sb, viz. �a (sa), so that

(i) sa is sequentially optimal under �a (sa), and

(ii) �a (sa) strongly believes Qb;

and likewise with a and b interchanged.

In sum: For a given type structure, the projection of the RCSBR set into Sa � Sb satis�es
conditions (i)-(ii). But, do these conditions characterize RCSBR? In particular, given a set Qa�Qb
satisfying conditions (i) and (ii), can we construct a type structure so that Qa�Qb is the projection
of the RCSBR set into Sa � Sb? The answer may be no.

1.5 Maximality

Consider the game in Figure 1.4, and the set Qa�Qb = fOutg� fLeft; Centerg. This set satis�es
conditions (i)-(ii) in Section 1.4. Begin with Ann and consider the CPS that assigns probability
1
2 :

1
2 to Left : Center, at each information set. The strategy Out is sequentially optimal under

this CPS. Of course, this CPS strongly believes Qb. Turning to Bob, consider a CPS that assigns

probability one to Out at the initial node and probability 1
4 :

1
4 :

1
2 to In-Up : In-Middle : In-Down

conditional upon Bob�s subgame being reached. The strategies Left and Center are sequentially

optimal under this CPS and this CPS strongly believes Qa. So, conditions (i)-(ii) are satis�ed for

Qa �Qb.
Note, however, there is no type structure so that the projection of the RCSBR set into Sa � Sb

is Qa � Qb. In fact, we can go further: There is no type structure so that Out is consistent with

RCSBR.
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To see this, suppose otherwise, i.e., that we have found a type structure so that Ann�s playing

Out is consistent with RCSBR. Then we have a type ta so that (Out, ta) is consistent with RCSBR.

Certainly, (Out, ta) is rational, and ta strongly believes the event �Bob is rational.� Since each pair

in fRightg � Tb is irrational and ta strongly believes �Bob is rational,� the type ta is associated
with a CPS that (at each node) assigns probability one to fLeft; Centerg � Tb. Now, since (Out,

ta) is rational, the associated CPS must assign probability 1
2 :

1
2 to fLeftg � Tb : fCenterg � Tb, at

each node. With this, (In-Up, ta) and (In-Middle, ta) are also rational. Indeed, since ta strongly

believes each of the RmSBRb events, both (In-Up, ta) and (In-Middle, ta) must be consistent with

RCSBR.

Next, consider an RCSBR strategy-type pair for Bob, viz. (sb; tb). Conditional upon Bob�s

information set being reached, tb must assign probability one to fIn-Up; In-Middleg� Ta. (To see
this, note that this event contains rational strategy-type pairs, while the event fIn-Downg�Ta does
not contain any rational strategy-type pairs.) So, since (sb; tb) is rational, sb = Center. As such,

the RCSBR strategy-type pairs for Bob are contained in fCenterg � Tb. But, now notice that the
CPS associated with ta does not strongly believe the RCSBR event for Bob. This is a contradiction.

Let us ask: What went wrong in this example? We began with a set Qa�Qb satisfying conditions
(i)-(ii). In particular, we had a strategy sa 2 Qa for which there was a unique CPS �a (sa), so that
sa and �a (sa) satisfy conditions (i)-(ii). But, under this CPS, we had a strategy ra 2 SanQa that
was also sequentially optimal. (Actually, there were two such sequentially optimal strategies in

SanQa.) As such, if (sa; ta) is consistent with RCSBR, then (ra; ta) must also be consistent with

RCSBR. That is, Qa may exclude some strategy of Ann consistent with RCSBR. If so we may be

able to �nd a CPS �b (sb) (on Sa) that satis�es conditions (i)-(ii) for sb, despite the fact that sb is

not optimal under any CPS (on Sa � Ta) that strongly believes the RCSBR strategy-type pairs for
Ann.
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This suggests that we need to add the following maximality criterion to conditions (i)-(ii) of

Section 1.4:

(iii) If ra 2 Sa is sequentially optimal under �a (sa), then ra 2 Qa.

We will call a set an extensive-form best response set (EFBRS) if, for each sa 2 Qa there is
some CPS �a (sa) satisfying conditions (i)-(ii)-(iii), and likewise with a and b interchanged.

1.6 Extensive-Form Best Response Sets

Now we are ready to state the main result, namely a characterization theorem.

Main Theorem

(i) Fix an extensive-form game and an epistemic type structure. The strategies consis-

tent with RCSBR form an EFBRS.

(ii) Fix an extensive-form game and an associated EFBRS, namely Qa � Qb. Then

there exists an epistemic type structure, so that the strategies consistent with RCSBR

are exactly Qa �Qb.

Return to the Battle of the Sexes with an Outside Option. For that game, there are three

EFBRS�s, namely fOutg � fUpg, fOutg � fUp;Downg, and fIn-Rightg � fDowng. Thus, each

of these solutions are consistent with forward induction reasoning. Which set obtains depends on

the context within which the game is played, i.e., depends on which events are �transparent�to the

players. See Appendix A for more on this point.

Note, the EFBRS fIn-Rightg � fDowng corresponds to the usual forward induction analysis.
One situation where this EFBRS obtains is a speci�c �context-free�case, where all beliefs are present.

Indeed, this set is also the extensive-form rationalizable (EFR) strategy set. When the type structure

contains all possible beliefs� formally, when the maps �a and �b are onto� the projection of the

RCSBR set into Sa � Sb is the extensive-form rationalizable strategy set.2 See Proposition 6 in

Battigalli-Siniscalchi [8, 2002] for a formal statement.

1.7 Directed Rationalizability

Return to the �lady�s choice convention,�and the associated type structure in Section 1.1. There,

each type of Bob was associated with some CPS that assigned probability one to fUpg � Ta. This
gives a restriction on Bob�s �rst-order beliefs, i.e., his beliefs about what Ann will choose. Let

�b represent this restriction on �rst-order beliefs. So, �b is a subset of the CPS�s on Sa and, in

our example, �b (only) contains the CPS which assigns probability one to Up. We did not have a

restriction on Ann�s �rst order beliefs. So, we will write �a for the set of all CPS�s on Sb.

2The condition that �a and �b are onto is known as completeness. It is due to Brandenburger [14, 2003].
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With � = �a��b in hand, we can take an iterative approach to analyzing the game tree� much
like a �typical rationalizability�procedure. On round one, we eliminate In-Left and In-Right for

Bob, since these strategies are not sequentially optimal under the CPS in �b. We do not eliminate

any of Ann�s strategies, since they are each sequentially optimal under some CPS (in �a). So,

on round one, we are left with the set fOutg � fUp;Downg. On round two, we note that Out is

sequentially optimal under the CPS in �b and that CPS strongly believes fUp;Downg. Thus, we
cannot eliminate any strategy of Bob on round two. Likewise, Up (resp. Down) is sequentially

optimal under a CPS that assigns probability one to Out at the initial node, and probability one to

Left (resp. Right) at Bob�s subgame. This CPS is contained in �a and strongly believes fOutg.
So, we also get fOutg � fUp;Downg on round two. Indeed, a standard induction argument gives

that fOutg � fUp;Downg is the outcome of the procedure. Of course, this was the EFBRS we

identi�ed in Section 1.2.

The procedure used above is called �-rationalizability, due to Battigalli [4, 1999] and further
analyzed by Battigalli-Siniscalchi [9, 2003].3 The procedure begins by �xing a set of �rst-order
beliefs, i.e., a set � = �a ��b, where �a is a set of CPS�s on Sb and �b is a set of CPS�s on Sa.
On round one, it eliminates any strategy of Ann (resp. Bob) that is not sequentially optimal under

some CPS in �a (resp. �b). On round two, it further eliminates any strategy of Ann (resp. Bob)

that is not sequentially optimal under a CPS in �a (resp. �b) that strongly believes the round-one

strategies of Bob (resp. Ann). And so on.

Note, there may be many �-rationalizable sets� each of which is obtained by beginning the

procedure with a di¤erent set of �rst-order beliefs � = �a��b. Collecting all the �-rationalizable
sets together, we get the solution concept of Directed Rationalizability. The idea is that each

set of �rst-order beliefs � = �a ��b is used to direct the rationalizability procedure.

1.8 An Alternate Characterization Theorem

In Section 1.7, we considered a particular context. Speci�cally, there was a set of �rst-order beliefs

and these beliefs were �transparent�to the players. We then used this set of �rst-order beliefs to

compute the associated �-rationalizable strategy set. We got the answer fOutg� fUp;Downg. It
turned out that this was one of the EFBRS�s we identi�ed in Section 1.6, and so is consistent with

RCSBR. More generally, beginning with any set of �rst-order beliefs, viz. � = �a � �b, we can
always �nd an epistemic structure so that the �-rationalizable strategy set is the set of strategies

consistent with RCSBR. In particular, we will see that the �-rationalizable strategy set forms an

EFBRS� so, the claim follows from part (ii) of the Main Theorem.

But, what about a converse? In Section 1.7 we began with an epistemic structure and noted

3Battigalli [4, 1999] and Battigalli-Sinsicalchi [9, 2003] introduced the concept to study a di¤erent problem from
the one studied here. In their problem, the set � is given to the analyst. In our problem, we construct the set �.
See Section 8a. We also point out that [9, 2003] use a di¤erent de�nition, which is equivalent to the original one due
to [4, 1999] in an important special case studied in their paper. Here we cannot con�ne ourself to that special case
and we use the de�nition of [4, 1999], which is the conceptually correct one (see Battigalli-Prestipino [5, 2010]).
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that we can compute the RCSBR strategy set by beginning with some set of �rst-order beliefs, viz.

� = �a ��b, and performing the �-rationalizability procedure. Does this hold more generally?

Beginning with some epistemic structure and the RCSBR strategy set, do we always get some

�-rationalizable set (i.e., for some set � = �a ��b)?
One might think that the answer is no. After all, the Directed Rationalizability begins with a set

of �rst-order beliefs and only uses this set to direct the rationalizability procedure. This seems like

the right approach in a case like the lady�s choice convention, where the event that is transparent

corresponds to a restriction players��rst-order beliefs. Recall, there, we had a restriction on Bob�s

�rst-order beliefs and we only had a restriction on Ann�s second-order beliefs in so far as Ann must

think that Bob thinks she will play Up, etc. In the case where there is a �transparent restriction�

on higher-order beliefs, perhaps we cannot restrict attention to Directed Rationalizability.

We will see that this intuition is wrong. Beginning with an epistemic structure and the RCSBR

strategy set, we will get some �-rationalizable set. But, importantly, the approach taken to �nd

this �-rationalizable set may be di¤erent from the approach we took in Section 1.7. This is precisely

because the type structure may involve a �transparent restriction�on higher-order beliefs. Let us

see this more precisely� to do so, we will mimic the route we took in Section 1.7.

In Section 1.7, we began with an epistemic structure and used the structure itself to form the

set �� = ��a� ��b. Speci�cally, for each type ta 2 Ta, consider the marginal of �a (ta) on Sb. These
CPS�s form the set ��a. Construct the set ��b analogously. Note, here, the strategies that survive one

round of ��-rationalizability are exactly the strategies that are consistent with R0SBRa�R0SBRb.
But, on round two, we lose the equivalence: If �a (ta) strongly believes the event �Bob is rational,�

then the marginal of �a (ta) will also strongly believe that �Bob chooses a strategy consistent with

one round of elimination of ��-rationalizability.� (Here, we use a marginalization property of strong

belief, plus the round-one equivalence.) But, the converse need not hold. So, the strategies that

survive two rounds of ��-rationalizability may strictly contain the R1SBR strategies. And, on round

three, we loose the inclusion. If the CPS �a (ta) strongly believes the R1SBR event for Bob, then the

marginal of �a (ta) will also strongly believe that �Bob chooses a strategy consistent with R1SBR.�

But, recall, the strategies consistent with R1SBR may be strictly contained in the strategies that

survive two rounds of ��-rationalizability. So there may be information sets consistent with this

latter event, but not the former. This implies that, even if �a (ta) strongly believes the R1SBR

event for Bob, it need not strongly believe that Ann�s behavior is consistent with two rounds of
��-rationalizability. As such, we loose any relationship between the RCSBR strategies and the
��-rationalizable strategy set.

But, there is another route, that instead uses the EFBRS properties to form a set � = �a ��b
of �rst-order beliefs. Fix an epistemic structure. The RCSBR strategies form an EFBRS, viz.

Qa � Qb. For each sa 2 Qa, we have some CPS �a (sa) satisfying conditions (i)-(ii)-(iii) above.
Take �a to be the set of such CPS�s, i.e., one for each sa 2 Qa, and construct �b similarly. Now we
do have an equivalence between the RCSBR strategies and the �-rationalizable strategies. More
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precisely, for each m � 1, Qa �Qb is the set of strategies that survives m-rounds of elimination of
�-rationalizability. The case of m = 1 follows from properties (i) and (iii) of an EFBRS. The case

of m = 2 uses condition (ii) of an EFBRS. And so on, by induction.

In sum:

Alternate Characterization Theorem

(i) Fix an extensive-form game and an epistemic type structure. There exists a set of

�rst-order beliefs � = �a � �b so that the set of strategies consistent with RCSBR is
exactly the �-rationalizable strategy set.

(ii) Fix an extensive-form game and a set of �rst-order beliefs � = �a��b. Then there
exists an epistemic type structure, so that the set of strategies consistent with RCSBR

is exactly the � -rationalizable strategy set.

Indeed, the solution concept of Directed Rationalizability characterizes RCSBR. The di¤erent com-

ponents of this solution correspond to di¤erent sets of �rst-order beliefs. But, note, it may not be

obvious which �-rationalizable set is associated with a particular type structure. To see this, �x a

type structure and let ��a � ��b be the set of all �rst-order beliefs associated with that particular

structure. The RCSBR strategies form some (�a � �b)-rationalizable set, but this set may be
distinct from the

�
��a � ��b

�
-rationalizable set.

To repeat: While, in general, it may not be obvious which �-rationalizable set may be associated

with a particular type structure, there is one important case where there is an obvious connection:

This is the case where, in a certain sense, the only restriction on players� beliefs amounts to a

restriction on �rst-order beliefs and its transparency, as in the �lady�s choice convention�discussed

above. Battigalli-Prestipino [5, 2010] provide a formal statement. They show that, in this case,

the RCSBR strategy set does correspond to the
�
��a � ��b

�
-rationalizable strategy set. (See Section

8a below.)

1.9 Analyzing Games: The EFBRS Properties

We have seen that the Directed Rationalizability solution concept also characterizes RCSBR. To

show this, we show it is equivalent to the EFBRS concept. In particular, we begin with the RCSBR

strategies Qa �Qb. We make use of the fact that Qa �Qb satis�es the EFBRS properties to show
that we can �nd some set of �rst-order beliefs, viz. � = �a ��b, so that the �-rationalizable set
is Qa �Qb.
While the EFBRS and Directed Rationalizability concepts are equivalent, it will often be useful

to focus on the former de�nition. The reason is that properties (i), (ii), and (iii) of an EFBRS give

some immediate implications in terms of behavior. In Sections 6-7, we will discuss the consequences

of context-dependent forward reasoning for some speci�c games. There, the EFBRS properties

will play an important role, much in the same way that the properties of a self-admissible set

12



(Brandenburger-Friedenberg-Keisler [16, 2008]) play an important role in analyzing games. Indeed,

we will see that these properties help to analyze games such as centipede, the �nitely repeated

prisoner�s dilemma, and perfect information games.

In Section 8c, we return to further discuss the EFBRS vs. Directed Rationalizability de�nitions.

2 The Game

We consider �nite extensive form games of perfect recall. We write � for such a game. The

de�nition we consider is similar to that in Osborne-Rubinstein [22, 1994; De�nition 200.1]. In

particular, it allows for simultaneous moves.4

There are two players, namely a (Ann) and b (Bob).5 Let Ca and Cb be choice or action sets
for Ann and Bob. A history for the game consists of (possibly empty) sequences of simultaneous

choices for Ann and Bob. More formally, a history is either (i) the empty sequence, written �, or
(ii) a sequence of choice pairs

�
c1; : : : ; cK

�
, where each ck = (cka; c

k
b ) 2 Ca�Cb. Note, histories have

the property that, if
�
c1; : : : ; cK

�
is a history then so is

�
c1; : : : ; cL

�
, for each L � K. Note that

each history can be viewed as a node in the tree. As such, we will interchangeably use the terms

�node�and �history.�

Write x for a history of the game and let C (x) = fc 2 Ca�Cb : (x; c) is a history for the gameg.
Write Ca (x) = projCa C (x) and Cb (x) = projCb C (x). By assumption, these sets have the property

that C (x) = Ca (x)� Cb (x). The interpretation is that Ca (x) is the set of choices available to
a at history x. If jCa (x)j � 2, say a moves at history x or a is active at x. (If jCa (x)j � 1, a
is inactive at history x.) Call x a terminal history of the game if C (x) = ;. (Terminal histories
can be viewed either as terminal nodes or paths for the game.)
Let Ha (resp. Hb) be a partition of the set of all nodes at which a (resp. b) is active plus the

initial node �. The partition Ha (resp. Hb) has the property that if x, x0 are contained in the same

partition member, viz. h in Ha (resp. Hb), then Ca (x) = Ca (x
0) (resp. Cb (x) = Cb (x

0)). The

interpretation is that Ha (resp. Hb) is the family of information sets for a (resp. b). (Note that
f�g 2 Ha\Hb, perfect recall imposes further requirements on Ha and Hb. See Osborne-Rubinstein
[22, 1994; De�nition 203.3].) Write H = Ha [Hb.
Write Z for the set of terminal histories of the game, and let z be an arbitrary element of Z.

Extensive-form payo¤ functions are given by �a : Z ! R and �b : Z ! R.
We abuse notation and write Ca (h) for the set of choices available to a at information set h 2 Ha.

With this, the set of strategies for player a is given by Sa =
Q
h2Ha

Ca (h). De�ne Sb analogously.

Each pair of strategies (sa; sb) induces a path through the tree. Let � : Sa � Sb ! Z map each

strategy pro�le into the induced path. Strategic-form payo¤ functions are given by �a = �a ��
and �b = �b � �. Given a pro�le (sa; sb), write � (sa; sb) = (�a (sa; sb) ; �b (sa; sb)) and refer to this

4This de�nition incorporates repeated games. Our analysis does not depend on the speci�c de�nition used.
5The analysis extends to n-player games, up to issues of correlation. See Section 8f.
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payo¤ vector as an outcome of the game. Two strategy pro�les, (sa; sb) and (ra; rb), are outcome
equivalent if � (sa; sb) = � (ra; rb). (Of course, if (sa; sb) and (ra; rb) induce the same path (i.e., if
� (sa; sb) = � (ra; rb)), they are outcome equivalent. But, they may be outcome equivalent even if

they do not.)

For each information set h 2 H, write Sa (h) (resp. Sb (h)) for the set of strategies for a (resp.
b) that allow h. (That is, sa 2 Sa (h) if there is some sb 2 Sb so that the path induced by (sa; sb)
passes through h.) Let Sa (resp. Sb) be the collection of all Sa (h) (resp. Sb (h)) for h 2 Hb (resp.
h 2 Ha). Thus, Sa represents the information structure of b about the strategy of a. In particular,
at each of b�s information sets, he will have a belief about a that assigns probability one to the set

of a�s strategies consistent with the information set being reached.

3 The Type Structure

This section appends to the game a type structure, within which the terms �rationality�and �strong

belief�can be de�ned. Again, this section closely follows Battigalli-Siniscalchi [8, 2002].

Throughout, let 
 be a separable metrizable space and let B (
) the Borel �-algebra on 
. We
endow the product of separable metrizable spaces with the product topology, and a subset of a

separable metrizable space with the relative topology. Write P (
) for the set of Borel probability
measures on 
, and endow P (
) with the topology of weak convergence.

De�nition 3.1 (Renyi [26, 1955]) Fix a separable metrizable space 
 and a non-empty collection
of events E � B (
). A conditional probability system (CPS) on (
; E) is a mapping � (�j�) :
B (
)� E ! [0; 1] such that, for any E 2 B (
) and F;G 2 E,

(i) � (F jF ) = 1,

(ii) � (�jF ) 2 P (
), and

(iii) E � F � G implies � (EjG) = � (EjF )� (F jG).

Call E, with ; 6= E � B (
), a collection of conditioning events for 
.

When it is clear that � (�j�) is a CPS on (
; E), we omit reference to its arguments simply writing
� instead of � (�j�).
Write C (
; E) for the set of conditional probability systems on (
; E). Note, C (
; E) can be

viewed as a subset of [P (
)]E . We endow [P (
)]E with the product topology and, then, C (
; E)
with the relative topology. When E is a countable, C (
; E) is separable metrizable. When it is

clear from the context what the set of conditioning events are, we omit reference to E , simply writing
C (
).
We will often be interested in product sets. We adopt the convention that if 
1 � 
2 = ; then

both 
1 = ; and 
2 = ;. Fix some E � B (
1), and write E 
 
2 for the set of all E � 
2 where
E 2 E . Note that E 
 
2 � B (
1 � 
2).
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Consider a CPS � (�j�) on (
1�
2; E 

2), where E � B (
1). De�ne � (�j�) : B (
1)�E ! [0; 1]

so that � (EjF ) = � (E � 
2jF � 
2) for all E 2 B (
1) and F 2 E . Then � is a conditional

probability system on (
1; E). When � (�j�) is de�ned in this way, write � (�j�) = marg
1 � (�j�). No
confusion should result.

De�nition 3.2 Fix an extensive-form game �. A �-based type structure is a collection

hSa; Sb;Sa;Sb;Ta; Tb;�a; �bi ,

where Ta (resp. Tb) is a nonempty separable metrizable space and �a : Ta ! C (Sb � Tb) (resp.
�b : Tb ! C (Sa � Ta)) is a measurable belief map associated with conditioning events Sb 
 Tb (resp.
Sa 
 Ta). Members of Ta (resp. Tb) are called types. Members of Sa � Ta � Sb � Tb are called
states.

In Section 1.1 we argued that the type structure captures the idea that certain beliefs are �trans-

parent�to the players. This is true in a precise sense: Begin with Battigalli-Siniscalchi�s [7, 1999]

canonical construction of a type structure that contains all hierarchies of conditional beliefs (satis-

fying coherency and common belief of coherency).6 Lets us look at the so-called self-evident events

within this structure. Loosely, these are events E 2 B (Sa � Ta � Sb � Tb), where E obtains and, at
each information set, each player assigns probability one to E, each player assigns probability one

to the other player assigning probability one to E, etc. (Appendix A provides a formal de�nition.)

Each type structure can be mapped into the canonical construction and, in a certain sense, each

type structure forms a self-evident event in the canonical construction, i.e., under this mapping.

(Note, this assumes a certain bimeasurability condition.) Furthermore, each self-evident event in

the canonical type structure corresponds to a �smaller� type structure. The formal treatment is

provided in Appendix A.

4 Rationality and Strong Belief

We now turn to the main epistemic de�nitions, all of which have counterparts with a and b reversed.

Begin by extending �a (�; �) to Sa�P (Sb) in the usual way, i.e., �a (sa; $a) =
P

sb2Sb �a (sa; sb)$a (sb).

(Notice, the measure $a on Sb re�ects a belief by a about b, so we write $a 2 P (Sb).)

De�nition 4.1 Fix Xa � Sa and sa 2 Xa. Say sa is optimal under $a 2 P (Sb) given Xa if
�a (sa; $a) � �a (ra; $a) for all ra 2 Xa.

De�nition 4.2 Say sa 2 Sa is sequentially optimal under �a (�j�) : B (Sb) � Sb ! [0; 1] if, for

all h with sa 2 Sa (h), sa is optimal under �a (�jSb (h)) given Sa (h). Say sa 2 Sa is sequentially
6Note, Battigalli-Siniscalchi�s [7, 1999] canonical construction is a type structure in the sense of De�nition 3.2.

Speci�cally, in the case of a game tree, the basic conditioning events are clopen and so [7, 1999] get Ta and Tb to
be Polish, as an output. Here, we don�t require Polishness. Allowing a more general de�nition of a type structure
simpli�es some of the technical arguments.
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justi�able if there exists �a (�j�) : B (Sb) � Sb ! [0; 1] so that sa is sequentially optimal under

�a (�j�).

De�nition 4.3 Say (sa; ta) is rational if sa is sequentially optimal under margSb �a (ta).

Let Ra be the set of strategy-type pairs, viz. (sa; ta), at which a is rational.

De�nition 4.4 (Battigalli-Siniscalchi [8, 2002]) Fix a CPS � (�j�) : B (
) � E ! [0; 1] and an

event E 2 B (
). Say � strongly believes E if

(i) there exists F 2 E so that E \ F 6= ;, and

(ii) for each F 2 E, E \ F 6= ; implies � (EjF ) = 1.

Fix a CPS � that strongly believes _E. Note, if 
 2 E , then � (Ej
) = 1. (In our application,
we will, in general, have 
 2 E .) Now, we point out two general properties about strong belief.

Property 4.1 (Conjunction) Fix a CPS on (
; E), viz. �, and a �nite or countable collection of
events E1; E2; : : :. If � strongly believes E1; E2; : : : then � strongly believes

T
mEm.

Property 4.2 (Marginalization) Fix a CPS � on (
1�
2; E 

2), where ; 6= E � B (
1). If �
strongly believes E 2 B (
1 � 
2) and proj
1 E is Borel, then marg
1 � strongly believes proj
1 E.

De�nition 4.5 Say ta 2 Ta strongly believes Eb 2 B (Sb � Tb) if �a (ta) strongly believes Eb.

Fix an event about Bob, viz. Eb 2 B (Sb � Tb). Write

SBa (Eb) = Sa � fta 2 Ta : ta strongly believes Ebg,

and CSBa (Eb) = Eb \ SBa (Eb). That is, SBa (Eb) is the event �Ann strongly believes Eb�and

CSBa (Eb) is the event �Ann strongly believes Eb and she is in fact correct.� Given a product set

E 2 B (Sa � Ta � Sb � Tb), viz. E = Ea � Eb, write SB (E) = SBa (Eb)� SBb(Ea) and CSB (E) =
CSBa (Eb)� CSBb (Ea).
Note, SB (�) = SBa (�) � SBb (�) can be viewed as a mutual strong belief operator. Then,

CSB (�) = CSBa (�)�CSBb (�) is an auxiliary operator, which we will refer to as the �correct strong
belief� operator. It will allow us to simplify the formulation of our epistemic assumptions. In

particular, given a product set E 2 B (Sa � Ta � Sb � Tb), write CSB0 (E) = E and, for each m � 0,
de�ne CSBm+1 (E) = CSB (CSBm (E)). So,

CSB1 (E) = E \ SB (E) ;

CSB2 (E) = CSB (E \ SB (E)) = E \ SB (E) \ SB (E \ SB (E)) ;

16



and so on. Note that

CSBm+1 (E) = E \
Tm
n=0 SB (CSB

n (E)) .

Now we can state the epistemic conditions of interest.

De�nition 4.6 Say there is rationality and common strong belief of rationality (RCSBR)
at (sa; ta; sb; tb) if (sa; ta; sb; tb) 2

T
mCSB

m (Ra �Rb).

5 Characterization Theorems

We now turn to characterizing RCSBR. For this it will be useful to introduce a best reply cor-
respondence, viz. �a : C (Sb) ! 2Sa , where �a (�a) is the set of strategies that are sequentially

optimal under �a. We begin with extensive-form best response sets.

De�nition 5.1 Call Qa�Qb � Sa�Sb an extensive-form best response set (EFBRS) if, for
each sa 2 Qa there is a CPS �a 2 C (Sb) so that:

(i) sa 2 �a (�a),

(ii) �a strongly believes Qb, and

(iii) �a (�a) � Qa.

And similarly with a and b reversed.

Theorem 5.1 Fix an extensive-form game �.

(i) For any �-based type structure, projSa�Sb
T
mCSB

m (Ra �Rb) is an EFBRS.

(ii) Fix an EFBRS Qa �Qb. There exists a �-based type structure, so that Qa �Qb =
projSa�Sb

T
mCSB

m (Ra �Rb).

To prove Theorem 5.1, it will be useful to point out a characterization of RCSBR: Let R0a = Ra
(resp. R0b = Rb). Inductively de�ne R

m
a (resp. R

m
b ), so that R

m+1
a = Rma \SBa (Rmb ) (resp. R

m+1
b =

Rmb \ SBb (Rma )). Then, a standard induction argument gives that CSBm (Ra �Rb) = Rma � Rmb ,
for each m. It follows that

T
mCSB

m (Ra �Rb) =
T
m (R

m
a �Rmb ). We make use of this below.

Proof. Begin by showing part (i) of the theorem. Fix a �-based type structure. If
T
mCSB

m (Ra �Rb) =
; then the result is immediate. So, suppose

T
mCSB

m (Ra �Rb) 6= ;.
Fix (sa; sb) 2 projSa�Sb

T
mCSB

m (Ra �Rb). Then there exists (ta; tb) such that

(sa; ta; sb; tb) 2
T
mCSB

m (Ra �Rb) =
T
m(R

m
a �Rmb ):

We will show that the CPS margSb �a (ta) satis�es conditions (i)-(iii) of an EFBRS, for the strategy

sa. A similar argument holds for sb.
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First note,

(sa; ta) 2 �a(margSb �a (ta))� ftag � Ra:

Now use the fact that ta strongly believes each Rmb to get that

�a(margSb �a (ta))� ftag �
T
mR

m
a :

So, sa 2 �a(margSb �a (ta)) � projSa
T
mR

m
a , establishing conditions (i) and (iii) of an EFBRS.

Next note that, using the Conjunction Property of strong belief (Property 4.1), �a (ta) strongly be-

lieves
T
mR

m
b . Using the Marginalization Property (Property 4.2), margSa �a (ta) strongly believes

projSb
T
mR

m
b . This establishes condition (ii) of an EFBRS.

Now turn to part (ii) of the Theorem. Fix an EFBRS Qa�Qb 6= ;. Let Ta = Qa and Tb = Qb.
Fix a type ta 2 Ta = Qa. There is a CPS �a (ta) 2 C (Sb) satisfying conditions (i)-(iii) of an
EFBRS. Now construct a CPS �a (ta) 2 C (Sb � Tb;Sb 
 Tb) as follows. If Qb \ Sb (h) 6= ;, set
�a (ta) ((tb; tb) jSb (h)� Tb) = �a (ta) (tbjSb (h)) for each tb 2 Qb = Tb. Next, �x some arbitrary

element t�b 2 Tb. If Qb \ Sb (h) = ;, set �a (ta) ((sb; t�b) jSb (h)� Tb) = �a (ta) (sbjSb (h)) for each
sb 2 Sb. (Note, t�b is the same, for each information set with Qb \ Sb (h) = ;.)
Indeed, each �a (ta) is a CPS on Sb
Tb. Note that conditions (i)-(ii) of a CPS are immediate. For

condition (iii), �x an event Eb and two information sets h; i 2 Ha with Eb � Sb (h)�Tb � Sb (i)�Tb.
First, consider the case where Qb \ Sb (h) 6= ;. In this case, Qb \ Sb (i) 6= ;. So,

�a (ta) (EbjSb (i)� Tb) = �a (ta) (ftb 2 Qb : (tb; tb) 2 Ebg jSb (i))

= �a (ta) (ftb 2 Qb : (tb; tb) 2 Ebg jSb (h))� �a (ta) (Sb (h) jSb (i))

= �a (ta) (ftb 2 Qb : (tb; tb) 2 Ebg jSb (h))� �a (ta) (Qb \ Sb (h) jSb (i))

= �a (ta) (EbjSb (h)� Tb)� �a (ta) (Sb (h)� TbjSb (i)� Tb) ;

where the �rst and fourth lines follow from the construction, the second follows from the fact

that �a (ta) is a CPS, and the third line follows from the fact that �a (ta) (QbjSb (h)) = 1 (since

Qb \ Sb (h) 6= ; and �a (ta) strongly believes Qb). This establishes condition (iii) when Qb \
Sb (h) 6= ;. So, suppose Qb \ Sb (h) = ; and recall Eb � Sb (h) � Tb. If Qb \ Sb (i) 6=
;, then �a (ta)

�
projSb EbjSb (i)

�
= 0 and �a (ta) (Sb (h) jSb (i)) = 0. (This uses the fact that

�a (ta) (QbjSb (i)) = 1, which follows from strong belief.) So, here too,

�a (ta) (EbjSb (i)� Tb) = �a (ta) (EbjSb (h)� Tb)� �a (ta) (Sb (h)� TbjSb (i)� Tb)

= 0.

Finally, suppose Qb \ Sb (i) = ;. Here,
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�a (ta) (EbjSb (i)� Tb) = �a (ta) (fsb : (sb; t�b) 2 Ebg jSb (i))

= �a (ta) (fsb : (sb; t�b) 2 Ebg jSb (h))� �a (ta) (Sb (h) jSb (i))

= �a (ta) (EbjSb (h)� Tb)� �a (ta) (Sb (h)� ft�bgjSb (i)� Tb)

= �a (ta) (EbjSb (h)� Tb)� �a (ta) (Sb (h)� TbjSb (i)� Tb) ;

as required.

We will conclude the proof by showing

Qa =
S
ta2Ta [�a

�
margSb �a (ta)

�
] (5.1)

Rma =
S
ta2Ta [�a

�
margSb �a (ta)

�
� ftag] for each m; (5.2)

and likewise with a and b interchanged. Taken together, they give the desired result.

To show Equation 5.1: Recall, for each ta 2 Ta = Qa , �a(ta) = margSb �a (ta). So, it is

immediate from the construction that Qa �
S
ta2Ta �a

�
margSb �a (ta)

�
. Conversely, �x any strategy

sa in
S
ta2Ta �a

�
margSb �a (ta)

�
. Then, there is a type ta 2 Ta = Qa so that sa is sequentially

optimal under �a (ta) (�j�). It follows from part (iii) of the de�nition of an EFBRS that sa 2 Qa.
To show Equation 5.2: The proof is by induction on m. The Equation is immediate for m = 0.

Assume the result holds for m � 0. In order to show that it holds for m+1, it su¢ ces to show that
each ta 2 Ta strongly believes Rmb . For this, �x an information set h such that Rmb \[Sb (h)� Tb] 6= ;.
Observe that

[projSb R
m
b ] \ Sb (h) = [

S
tb2Tb �b

�
margSa �b (tb)

�
] \ Sb (h)

= Qb \ Sb (h) .

(The �rst equality follows from the induction hypothesis for b. The second equality follows

from Equation 5.1.) Since Rmb \ [Sb (h)� Tb] 6= ;, it follows that Qb \ Sb (h) 6= ;, and so
�a (ta) (QbjSb (h)) = 1. (Here, we use part (ii) of the de�nition of an EFBRS.) So, by construction,
�a (ta) (R

m
b jSb (h)� Tb) = 1, as required.

Now, we turn to Directed Rationalizability. Let �a (resp. �b) be a non-empty subset of

C (Sb) (resp. C (Sa)), i.e. a set of �rst-order beliefs of Ann (resp. Bob). Call � = �a��b a set of
�rst-order beliefs. Set S�;0a = Sa and S

�;0
b = Sb. Inductively de�ne S�;ma and S�;mb as follows:

Let S�;m+1a be the set of all sa 2 S�;ma so that there is some CPS �a 2 �a with (i) sa 2 �a (�a)
and (ii) �a strongly believes S

�;1
b ; : : : ; S�;mb . And, likewise, with a and b interchanged.7

7This de�nition is as in [4, 1999]. It is a stronger requirement than the de�nition in Battigalli-Siniscalchi [9, 2003].
They put sa 2 S�;m+1a if sa 2 S�;ma and there is some CPS �a 2 �a with (i) sa 2 �a(�a) and (ii) �a strongly
believes S�;mb . Any set that satis�es the requirements here, also satis�es the requirements in [9, 2003]. But the
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De�nition 5.2 Call S�a =
T
m�0 S

�;m
a (resp. S�b =

T
m�0 S

�;m
b ) the �-rationalizable strate-

gies of Ann (resp. Bob). Call S�a � S�b the �-rationalizable strategy set.

We use the phrase Directed Rationalizability to refer to the set of all S�a � S�b . So, for a

given game �, the Directed Rationalizability concept gives

fS�a � S�b : � = �a ��b � C (Sb)� C (Sa)g:

Note, since the sets S�;ma �S�;mb form a decreasing sequence and Sa�Sb is �nite, there is some
(�nite) M so that S�a � S�b = S�;Ma � S�;Mb . Also, note that, for a given set of �rst-order beliefs,

viz. � = �a ��b, the �-rationalizable strategy set may be empty.
Beginning from the lady�s choice example, we can use the type structure to construct an as-

sociated set of �rst-order beliefs � and this set of �rst-order beliefs � can be used to perform

�-rationalizability. The output is the EFBRS we identi�ed earlier. But, the lady�s choice conven-

tion had a particular feature: it was a restriction on �rst-order beliefs and a requirement that the

restriction be �transparent� to the players. So, the only restriction on second-order beliefs (i.e.,

beliefs about strategy the other player chooses and the other player�s the �rst-order beliefs) was the

requirement that, at each information set, Ann must believe that Bob believes she will play Up.

And so on. It was this transparency of (only) �rst-order restrictions that allowed us to directly

compute the associated Directed Rationalizability set.

More generally, when we begin from a given type structure, we impose substantive assumptions

about which beliefs players do versus do not consider possible. These assumptions may correspond

to restrictions (only) on players��rst-order beliefs which are transparent to the players. But, they

need not� they may involve additional restrictions on higher-order beliefs. And, if they do, the

procedure outlined above fails.

To see the failure, begin with an epistemic type structure and use the structure itself to form the

set �� = ��a� ��b. Speci�cally, for each type ta 2 Ta, consider the marginal of �a (ta) on Sb. These
CPS�s form the set ��a. Construct the set ��b analogously. Here, the strategies that survive one

round of ��-rationalizability are exactly the strategies that are consistent with R0SBRa�R0SBRb.
But, on round two, we lose the equivalence: If �a (ta) strongly believes the event �Bob is rational,�

then the marginal of �a (ta) will also strongly believe that �Bob chooses a strategy consistent with

one round of elimination of ��-rationalizability.� (Here, we use a marginalization property of strong

belief, plus the round-one equivalence.) But, the converse need not hold. So, the strategies that

survive two rounds of ��-rationalizability may strictly contain the R1SBR strategies. And, on round

three, we loose the inclusion. If the CPS �a (ta) strongly believes the R1SBR event for Bob, then the

marginal of �a (ta) will also strongly believe that �Bob chooses a strategy consistent with R1SBR.�

converse does not hold. (See Battigalli-Prestipino [5, 2010] for an example.) Thus, using Theorem 5.1 here, it can
be shown that the de�nition of [9, 2003] is conceptually incorrect. (Battigalli-Prestipino [5, 2010] point out that the
two de�nitions are equivalent when � satis�es a �closedness under composition� condition. Since [9, 2003] focus on
the case where this condition is satis�ed, their results hold with the de�nition given here.)
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But, recall, the strategies consistent with R1SBR may be strictly contained in the strategies that

survive two rounds of ��-rationalizability. So there may be information sets consistent with this

latter event, but not the former. This implies that, even if �a (ta) strongly believes the R1SBR

event for Bob, it need not strongly believe that Ann�s behavior is consistent with two rounds of
��-rationalizability. (This is an instance of the fact that strong belief is not monotonic.) As such,

we loose any relationship between the RCSBR strategies and the ��-rationalizable strategy set. In

fact, Appendix C illustrates an example where the RCSBR strategy set and the ��-rationalizable

strategy set are disjoint.

But, there is another route, that instead uses the EFBRS properties to form a set � = �a ��b
of �rst-order beliefs. Fix an epistemic structure. The RCSBR strategies form an EFBRS, viz.

Qa � Qb. For each sa 2 Qa, we have some CPS �a (sa) satisfying the conditions of an EFBRS.
Take �a to be the set of such CPS�s, i.e., one for each sa 2 Qa, and construct �b similarly. Now we
do have an equivalence between the RCSBR strategies and the �-rationalizable strategies. More

precisely, for each m � 1, Qa �Qb is the set of strategies that survives m-rounds of elimination of
�-rationalizability. The case of m = 1 follows from properties (i) and (iii) of an EFBRS. The case

of m = 2 uses condition (ii) of an EFBRS. And so on, by induction.

Proposition 5.1 Fix an extensive-form game �.

(i) Given an EFBRS, viz. Qa �Qb, there exists a set of �rst-order beliefs, viz. � = �a ��b, so
that S�a � S�b = Qa �Qb.

(ii) Given a set of �rst-order beliefs, viz. � = �a ��b, S�a � S�b is an EFBRS.

Thus, in conjunction with Theorem 5.1, we have the following Characterization Theorem.

Corollary 5.1 Fix an extensive-form game �.

(i) For any �-based type structure, there exists a set of �rst-order beliefs, viz. � = �a ��b, so
that S�a � S�b = projSa�Sb

T
mCSB

m (Ra �Rb).

(ii) Fix a set of �rst-order beliefs, viz. �a � �b. Then there exists a �-based structure, so that

S�a � S�b = projSa�Sb
T
mCSB

m (Ra �Rb).

Now for the proof.

Proof of Proposition 5.1. Begin with part (i). Fix Qa �Qb. For each sa 2 Qa, there exists a
corresponding CPS �a (sa) 2 C (Sb) satisfying conditions (i)-(iii) of an EFBRS for Qa � Qb. Take

�a so that, for each sa 2 Qa, �a contains exactly one such CPS �a (sa). There are no other CPS�s
in �a. De�ne �b analogously. We will show that, for each m � 1, S�;ma � S�;mb = Qa �Qb. This
will establish the result.

The proof is by induction. Begin with m = 1. Certainly Qa � S�;1a . Fix sa 2 S�;1a . Then

there exists some �a 2 �a so that sa is sequentially optimal under �a. This CPS �a is associated
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with some ra 2 Qa, i.e., so that ra and �a jointly satisfy conditions (i)-(iii) of an EFBRS. Now
apply condition (iii) of an EFBRS to get that sa 2 Qa. And, likewise, for b.
Now assume S�;ma � S�;mb = Qa � Qb for m � 2. We will show it also holds for m + 1.

Fix sa 2 Qa = S�;ma . Then, using the construction of �a, there exists some �a 2 �a satisfying
conditions (i)-(ii) of an EFBRS for Qa�Qb, so that sa 2 �a (�a) and �a strongly believes Qb = S

�;m
b .

So, certainly, Qa � S�;m+1a . Conversely, �x some sa 2 S�;m+1a . Then, there exists a CPS �a 2 �a
so that sa 2 �a (�a) and �a strongly believes S

�;m
b . Again, since each element of �a satis�es

conditions (i)-(iii) of an EFBRS for some ra 2 Qa, it follows that �a (�a) � Qa, and so sa 2 Qa.
Now turn to part (ii). Fix some set of �rst-order beliefs, viz. � = �a ��b. Note, there exists

some M with S�a � S�b = S�;Ma � S�;Mb = S�;M+1
a � S�;M+1

b . Fix sa 2 S�a = S�;M+1
a . We

can �nd a CPS �a 2 �a so that sa 2 �a (�a) and �a strongly believes each S
�;m
b for m � M . In

particular, �a strongly believes S
�;M
b = S�b . Thus, sa satis�es conditions (i)-(ii) of an EFBRS for

Qa � Qb = S�a � S�b . Moreover, if ra 2 �a (�a), then ra is optimal under a CPS that strongly
believes each S�;mb , for m � M . As such, ra 2 S�;M+1

a = S�a . Therefore also condition (iii) of an

EFBRS is satis�ed. A similar argument applies to b. Therefore S�a � S�b is an EFBRS.

Let us comment on the proof. Begin with some �nite set of �rst-order beliefs, viz. � = �a��b.
Proposition 5.1(ii) says that S�a � S�b is an EFBRS. Conversely, begin with some EFBRS. The

proof of Proposition 5.1(i) says that we can �nd a �nite set of �rst-order beliefs, viz. � = �a ��b,
so that S�a � S�b is this EFBRS. With this in mind:

Remark 5.1 Fix a game tree �. The Directed Rationalizability set is

fS�a � S�b : � = �a ��b � C (Sb)� C (Sa)g = fS�a � S�b : � = �a ��b is �niteg.

Thus, using the EFBRS properties, we can see that we only need to compute the �-rationalizable

sets for �nite sets of �rst-order beliefs.

6 Analyzing Games

We now turn to the analysis of games. In Section 1.6, we used the EFBRS concept to analyze

Battle of the Sexes with an Outside Option. Now, we turn to analyze other games of interest. This

will help us, more generally, better understand what the EFBRS does vs. does not give in games of

interest. The approach will be to make use of Properties (i)-(iii) (usually only Properties (i)-(ii))

of the EFBRS de�nition, and not the equivalent Directed Rationalizability de�nition.

Let us begin with the Centipede game .
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Example 6.1 Consider the three-legged Centipede game, given in Figure 6.1 below.

A B

1
4

2
1

3
6

Out Out

In In A

4
3

Down

Across

Figure 6.1

Here, the EFBRS�s are fOutg � fOutg and fOutg � fOut; Ing.
Notice, we cannot have an EFBRS where Ann plays In at the �rst node. To see this, suppose

otherwise, i.e., there exists an EFBRS Qa � Qb and a strategy sa 2 Qa where sa plays In at the
�rst node. Note, by condition (i) of an EFBRS, we must have that Qa � fOut; In-Downg, so that
sa = In-Down. Now, �x sb 2 Qb and note that sb is sequentially optimal under a CPS that strongly
believes Qa. Then, at Bob�s information set, this CPS must assign probability one to In-Down.

Since sb is sequentially optimal under this CPS, sb = Out. So, we have that Qb = fOutg. But,

then, In-Down cannot simultaneously satisfy conditions (i)-(ii) of an EFBRS.

The argument we have presented for the three-legged Centipede is more general. In particular,

�x an EFBRS for an n-legged Centipede game. Under the EFBRS, the �rst player chooses Out.

This will be a consequence of Proposition 7.1(i) to come.

Example 6.2 Figure 6.2 gives the Prisoner�s Dilemma. Consider the 3-repeated version of the

game.

B

c

c

e

d

d

e

0

0

C

D

C D

A

d > c > 0 > e

Figure 6.2

Let Qa � Qb be a nonempty EFBRS. Then each (sa; sb) 2 Qa � Qb results in the Defect-Defect
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path.8

Let us give an intuition: First, note, each strategy sa 2 Qa (resp. sb 2 Qb) is sequentially

justi�able. (This is condition (i).) As such, sa (resp. sb) plays Defect in the last period, at each

history allowed by sa (resp. sb). Now, consider a second period information set h, where sa 2 Sa (h)
and Qb \ Sb (h) 6= ;. By conditions (i)-(ii) of an EFBRS, sa must be sequentially optimal under a

CPS �a (sa) with �a (sa) (QbjSb (h)) = 1. Note, then, conditional upon h, �a (sa) assigns probability
one to Bob defecting in the third period, irrespective of Ann�s play. As such, sa plays D at h. And,

likewise, with a and b reversed.

Now turn to the �rst period, and suppose, contra hypothesis, there is some sa 2 Qa so that sa
chooses C as �. Note, for each sa 2 Qb, (sa; sb) results in the Defect-Defect path in periods two
and three. So, Ann�s expected payo¤s from sa corresponds to her �rst period expected payo¤s from

playing sa. Now note that, the Defect-always strategy yields a strictly higher expected payo¤ in the

�rst period and an expected payo¤ of at least zero in subsequent periods. As such, this contradicts

sa being optimal under �a (sa) (�jSb).

An analogous result holds for the N -repeated Prisoner�s Dilemma, for N �nite. The proof is

given in Appendix D.

Let us pause to take stock of the answers we have seen. First, in Battle of the Sexes with the

Outside Option, we got that either (i) Bob plays Out or (ii) Bob plays In-Right and Ann plays

Down. Each of these were subgame perfect paths of play. In Centipede, we saw that we get the

backward induction path (but not necessarily the backward induction strategies). And, likewise, in

the Finitely Repeated Prisoner�s Dilemma, we said that we get the unique Nash (and so subgame

perfect) path, namely where each player Defects in all periods.

Note, then, in each of these cases, the outcomes allowed by an EFBRS coincide with the out-

comes allowed by some subgame perfect equilibrium (SPE). This raises the question: what is the

relationship between the EFBRS concept and the SPE concept? Are the two concepts equivalent?

If so, then we have a good idea what the EFBRS concept delivers (in games of interest), since we

have a good idea about what SPE delivers.

We will see that, in a particular class of games, any pure-strategy SPE corresponds to some

EFBRS. Each of the examples we mentioned is contained in this class of games. But the EFBRS

and SPE concepts do not coincide. Let us begin with the positive result and then turn to the

negative results. First, we need a de�nition.

De�nition 6.1 Say a game � has observable actions if each information set is a singleton.

To understand the de�nition, recall, in our set-up, both a and b have a choice at each history.

(Of course, it may be the case that only one of the players is active.) So, a game with observable

8 In the once or twice repeated Prisoner�s Dilemma we have a stronger result: If (sa; sb) is contained in an EFBRS,
then each of sa and sb specify Defect at each history.
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actions is one where the players begin by making simultaneous choices, learn the realization of the

choices and then perhaps make simultaneous choices, etc., until a terminal history is reached.

Given distinct terminal histories, viz. z and z0, we can write z =
�
x; c1; : : : ; cK

�
and z0 =�

x; d1; : : : ; dL
�
, where x is the last common predecessor of z and z0, i.e., c1 6= d1. (Recall, ck =�

cka; c
k
b

�
and dl =

�
dla; d

l
b

�
.) Now:

De�nition 6.2 Fix a game with observable actions and two distinct terminal nodes z =
�
x; c1; : : : ; cK

�
and z0 =

�
x; d1; : : : ; dL

�
. Say a is decisive for (z; z0) if a moves at x, c1a 6= d1a, and c

1
b = d1b .

And, likewise, with a and b interchanged.

De�nition 6.3 (Battigalli [3, 1997]) A game satis�es no relevant ties (NRT) if whenever a
(resp. b) is decisive for (z; z0), �a (z) 6= �a (z0).

A game with no ties satis�es NRT, but the converse does not hold. Reny�s [25, 1993; Figure 1]

Take-It-Or-Leave-It game is one such example.

Fix a strategy sa and write [sa] for the set of all ra that induce the same plan of action as sa,

i.e., the set of all ra so that � (ra; �) = � (sa; �). And, likewise, de�ne [sb].

Proposition 6.1 Fix a game � with observable actions and a pure-strategy SPE, viz. (sa; sb).

(i) There is an EFBRS, viz. Qa �Qb, so that [sa]� [sb] � Qa �Qb.

(ii) If � satis�es NRT, then [sa]� [sb] is an EFBRS.

Appendix D proves a result somewhat more general than Proposition 6.1. Note, each of the

examples we have seen satis�ed both observable actions and NRT. In each of these examples, any

pure-strategy subgame perfect equilibrium (sa; sb) belongs to an EFBRS, where the EFBRS only

allows the terminal node � (sa; sb). This �ts with part (ii) of the Proposition. Part (i) says that,

even if the game fails NRT, (sa; sb) will still be contained in some EFBRS� but now the EFBRS

may also allow new paths. Let�s take a simple example of this.

Example 6.3 The game in Figure 6.3. Here, (In;Across) is a pure-strategy SPE. There is an

EFBRS, viz. Qa�Qb, with fIng�fAcrossg � Qa�Qb, e.g., fIng�fAcross;Downg. (Of course,
part (i) of Proposition 6.1 says there must be some such EFBRS.) But every EFBRS, viz. Qa�Qb,
must have Qb = fAcross;Downg. (Here we use condition (iii) of an EFBRS.) So, fIng�fAcrossg
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is not an EFBRS.

A B

0
0

1
1

3
0

O ut D o w n

In A cross

Figure 6.3

Proposition 6.1 tells us that, in certain games, a pure-strategy subgame perfect equilibrium can

be viewed as an EFBRS. This is one step toward analyzing games under the EFBRS concept.

But, it is not the end of the matter. In general, the two concepts are not equivalent. For a given

game, there may be a pure-strategy subgame perfect equilibrium whose outcome is precluded by any

EFBRS. (Of course, per Proposition 6.1, this can only occur in games that do not have observable

actions.) And, conversely, a given EFBRS may allow outcomes which are precluded by any subgame

perfect equilibrium� even any subgame perfect equilibrium in behavioral strategies. (We will see

that this can happen in a game with observable actions and NRT.) The next examples demonstrate

these points.

Example 6.4 Consider the game in Figure 6.4, which fails the observable actions condition. It

is obtained from the game in Figure 1.4 by two transformations. First, the simultaneous move

subgame is transformed into one where Ann moves �rst and then Bob moves not knowing Ann�s

choice. Second, two of Ann�s decision nodes are coalesced.

Here, (Out;Right) is a pure strategy subgame perfect equilibrium. But, again applying the

argument in Section 1.5, we get that Out is not contained in any EFBRS.9

9Note that, unlike the subgame perfect concept, the EFBRS concept is invariant to coalescing decision nodes.
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Example 6.5 Consider the coordination game in Figure 6.5.

A B

1
1

2
2

3
3

Out Out

In In A

0
0

Down

Across

Figure 6.5

Here, there are three EFBRS�s, namely fOutg�fOutg, fOutg�fOut; Ing, and fIn-Acrossg�fIng.
The unique subgame perfect equilibrium is (In-Across; In), which results in the (3; 3) outcome.

Indeed, this pro�le induces an EFBRS. But, there are two EFBRS�s which involve Ann playing

Out at the initial node. This results in an outcome, viz. (2; 2), precluded by any subgame perfect

equilibrium (even in behavioral strategies).

Taken together with the Main Theorem (Theorem 5.1), Example 6.5 says that a non-backward

induction outcome, namely (2; 2), is consistent with RCSBR. To understand this better, note that

Out is the unique best response for Ann, under a CPS that assigns probability one to Out at the

initial node. So, if each type of Ann assigns probability one to fOutg � Tb, then conditional upon
Bob�s node begin reached, he must conclude that Ann is irrational. In this case, Bob may very well

�think�that Ann is playing In-Down. If a type tb of Bob does maintain such a hypothesis, Out is

a unique best response for tb.
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7 Perfect Information Games

In light of Example 6.5, even in games with observable actions (and NRT), the EFBRS and SPE

concepts do not coincide. Thus, even in these games, we cannot use the SPE concept to analyze

the consequences of context-dependent forward induction reasoning.

Now, we turn to a particular class of games with observable actions� namely, perfect information

games (i.e., games with observable actions and with at most one active player at each information

set). We�ve seen some examples of perfect-information games. Let�s focus on Examples 6.1 and

6.5. In the former case, each EFBRS yields the backward induction path (and so the backward

induction outcome). Of course, for that game, the Nash and backward induction paths coincide.

On the other hand, in Example 6.5, one EFBRS corresponds to backward induction, but others do

not. However, there we do get that the EFBRS paths correspond (exactly) to the Nash paths (and

so Nash outcomes) of the game.

The examples suggest there may be a connection between EFBRS�s and Nash outcomes, at least

for perfect-information (PI) games. (Of course, for non-PI games, an EFBRS may give non-Nash

outcomes.) Indeed, there will be a connection, for PI games satisfying a �no ties�condition.

De�nition 7.1 (Brandenburger-Friedenberg [15, 2004]) A game satis�es the single payo¤
condition (SPC) if whenever a (resp. b) is decisive for (z; z0) and �a (z) = �a (z0), then �b (z) =
�b (z

0).

Of course, a game satisfying NRT also satis�es SPC. Yet, many games of interest satisfy SPC,

but fail NRT, e.g., zero sum games. In perfect-information games, SPC is equivalent to �transference

of decision-maker indi¤erence�(Marx-Swinkels [21, 1997]).10

Now let us state the connection:

Proposition 7.1

(i) Fix a PI game � satisfying SPC. If Qa �Qb is an EFBRS then, there exists a pure-strategy
Nash equilibrium, viz. (sa; sb), so that each pro�le in Qa�Qb is outcome equivalent to (sa; sb).

(ii) Fix a PI game � satisfying NRT. If (sa; sb) is a pure-strategy Nash equilibrium in sequentially

justi�able strategies, then there is an EFBRS, viz. Qa �Qb, so that (sa; sb) 2 Qa �Qb.

The proof can be found in Appendix E. Taken together Theorem 5.1 and Proposition 7.1 give:

Corollary 7.1

(i) Fix a PI game � satisfying SPC, and an epistemic type structure. If there is RCSBR at the

state (sa; ta; sb; tb), then (sa; sb) is outcome equivalent to a pure-strategy Nash equilibrium.

10The SPC is a condition stated on the tree. Transference of decision-maker indi¤erence is stated on the matrix.
Here, it will be convenient to use a condition de�ned on the tree.
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(ii) Fix a PI game � satisfying NRT, and a pure-strategy Nash equilibrium, viz. (sa; sb), in se-

quentially justi�able strategies. Then, there exists an epistemic structure and a state thereof,

viz. (ra; ta; rb; tb), at which there is RCSBR and (ra; rb) = (sa; sb).

Why the connection between EFBRS�s and Nash equilibria? Recall, the Preliminary Observation

in Aumann-Brandenburger [1, 1995]: If each player is �rational,� i.e., plays a best response, and

places probability one on the actual strategy choices by the other player, then the strategy choices

constitute a Nash equilibrium. In a PI game satisfying SPC, RCSBR imposes a form of correct

beliefs about the actual outcomes that will obtain. Let us recast this at the level of the solution

concept: In a PI game satisfying SPC, each strategy pro�le in a given EFBRS is outcome equivalent.

(This will be Lemma E2 in Appendix E.) So, along the path of play, the associated CPS(�s) must

assign probability one to a particular outcome� the outcome associated with the EFBRS, i.e., the

�correct� outcome. (This uses condition (ii) of an EFBRS.) With this, we get a Nash outcome

(but not necessarily the Nash strategies).

This was the intuition for part (i) of Corollary 7.1. The proof follows the proof of Proposition

6.1a in Brandenburger-Friedenberg [15, 2004], though now making use of the EFBRS properties.

(The proof in [15, 2004] makes use of properties of self-admissible sets. See 8c below.) Indeed, we

only use properties (i)-(ii) of De�nition 5.1.

The converse, i.e., part (ii), is novel. (In particular, both the �no ties� condition and the

proof are quite di¤erent from the analysis in [15, 2004].) A Nash equilibrium in sequentially

justi�able strategies will, in general, satisfy conditions (i)-(ii) of an EFBRS. However, it may fail

the maximality criterion. Indeed, the proof makes use of all three properties of De�nition 5.1. See

Appendix E.

The no ties conditions are important for both directions of Proposition 7.1. We explain why, by

way of a number of examples.

Example 7.1 Return to Example 6.3, which fails SPC. There, we saw that (In;Down) is contained
in an EFBRS. But, it is not outcome equivalent to a pure-strategy Nash equilibrium.

To better understand this last example, notice: When Bob moves, he is indi¤erent between In

and Out. Now turn to a type of Ann that strongly believes Bob is rational. This type has a correct

belief about what Bob�s payo¤s will be if she plays In. But, because the game fails SPC, she may

have an incorrect belief about what her own payo¤will be if she plays In. As such, a Nash outcome

need not obtain.

The next example shows that part (ii) of Proposition 7.1 may be false, if we replace the NRT

condition with the SPC condition.
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Example 7.2 Consider the game in Figure 7.1, which satis�es SPC.
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Figure 7.1

Here, (Out;Out) is a Nash equilibrium in sequentially justi�able strategies. But, if Qa � Qb is a
(nonempty) EFBRS, then Qa�Qb = fIn-Acrossg�fIn-Downg. To see this, let Qa�Qb 6= ; be an
EFBRS and note that Qa � fOut; In-Acrossg and Qb � fOut; In-Downg. (The strategy In-Down
for Ann is dominated at her second information set, and the strategy In-Across for Bob is dominated

at his second information set.) Note, too, that In-Across is a weakly dominant strategy for Ann.

So, condition (iii) of an EFBRS implies that In-Across 2 Qa. It follows that, if �b strongly believes
Qa, then �b must assign probability one to In-Across conditional on the event �Ann plays In.� So,

In-Down is Bob�s only sequential best response to any CPS that strongly believes Qa. This implies

that Qb = fIn-Downg, and so Qa = fIn-Acrossg.

Do note: In the above example, f(Out;Out)g is disjoint from any EFBRS. While it satis�es

conditions (i)-(ii) of an EFBRS, it fails condition (iii): If (Out;Out) is played, Ann gets a payo¤ of

2. But, by going In, she can also assure herself an expected payo¤ of at least 2. As such, condition

(iii) requires that we include In-Across.

To better understand what is going on, let us recast this at the epistemic level: If (Out; ta) is

rational, so is (In-Across; ta). With this, if Bob strongly believes that Ann is rational, then, when

his �rst information set is reached, he must maintain a hypothesis that Ann is playing In-Across�

that is, he must maintain a hypothesis that Ann is playing a particular strategy that is not in

Qa = fOutg. As such, Out cannot be a best response for Bob.
The key is that the rationality of (Out; ta) has implications for Ann�s rationality at information

sets precluded by Out. Notice, this happens because Ann is indi¤erent between the terminal nodes

reached by (Out;Out) and (In-Across;Out). (If Ann�s payo¤s from (In-Across;Out) were strictly

less than 2, (Out; ta) can be rational without (In-Across; ta) being rational. Similarly, if Ann�s

payo¤s from (In-Across;Out) were strictly greater than 2, then (Out;Out) would not be a Nash

Equilibrium.) This is where the NRT condition comes in� it says that, if Ann is decisive between

two terminal nodes (as she is here), then she cannot be indi¤erent between those nodes.

Finally, notice there is a gap between parts (i)-(ii) of Proposition 7.1. In particular, part (i) says
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that starting from an EFBRS we can get a pure Nash outcome, while part (ii) says that starting

from a sequentially justi�able pure-strategy Nash equilibrium, we can get an EFBRS.
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3
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Figure 7.2

We cannot improve part (ii) to say that, starting from any pure Nash equilibrium, we get an

EFBRS. To see this, refer to Figure 7.2. There is a unique EFBRS, namely fIng � fAcrossg.
That said, the pair (Out;Down) is a Nash equilibrium� of course, it is not a Nash equilibrium in

sequentially justi�able strategies.

Can we improve part (i) to say that, starting from an EFBRS, we get a pure-strategy Nash

equilibrium in sequentially justi�able strategies? We do not know. In Appendix E, we elaborate

on the issue. However, we note that, starting from an EFBRS, we can get a mixed-strategy Nash

equilibrium that satis�es a �sequential justi�ability�condition. (We�ll make the condition precise

below.)

Consider a pure strategy pro�le (sa; sb) and a mixed strategy pro�le ($a; $b) 2 P (Sa)�P (Sb).
Call (sa; sb) and ($a; $b) outcome equivalent if � (sa; sb) = � ($a; $b). Likewise, call Qa�Qb �
Sa�Sb and ($a; $b) 2 P (Sa)�P (Sb) outcome equivalent if each (sa; sb) 2 Qa�Qb is outcome
equivalent to ($a; $b). Then:

Proposition 7.2 Fix a PI game satisfying SPC. If Qa � Qb is an EFBRS, then there exists a
mixed-strategy Nash equilibrium, viz. (�a; �b), so that:

(i) Qa �Qb is outcome equivalent to (�a; �b), and

(ii) each sa 2 Supp�a (resp. sb 2 Supp�b) is sequentially justi�able.

Proposition 7.2 gives that, if we begin with an EFBRS, we can construct an associated mixed-

strategy Nash equilibrium. The Nash equilibrium has the property that each strategy in its support

is sequentially justi�able. But, it is important to note that this does not necessarily give that the

mixed-strategy itself is sequentially justi�able.11 More to the point: Given a PI game satisfying

SPC and some mixed-strategy Nash equilibrium, viz. (�a; �b), does there exist some pure-strategy

11 In non-PI games, we can construct a mixed-strategy Nash equilibrium, viz. (�a; �b), where each strategy in the
support of �a and �b is sequentially justi�able, but �a is itself not sequentially justi�able. The question remains
whether or not the same can occur in PI games.
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Nash equilibrium, viz. (sa; sb), so that sa (resp. sb) is contained in the support of �a (resp. �b)?

If so, using Proposition 7.2, we get that starting from an EFBRS, there is a pure-strategy Nash

equilibrium in sequentially justi�able strategies. But, this too is not known.

8 Discussion Section

In this section, we discuss some conceptual aspects of the paper, as well as some extensions.

a. The Question: Here, we study context-dependent forward induction reasoning. We focus

on the case where the analyst does not know the speci�c context within which the game is played.

With this in mind, we ask: Can we characterize RCSBR (i.e., across all type structures)? Indeed we

can. We have seen that the EFBRS concept does just that. Or, alternatively, that the Directed

Rationalizability solution concept characterizes RCSBR across all type structures.

Note, carefully, that Battigalli [4, 1999] and Battigalli-Siniscalchi [9, 2003] introduced Directed

Rationalizability as an answer to a di¤erent question: They were interested in the case where the

analyst knows the particular context, and the context only imposes a �transparent restriction�on

players��rst-order beliefs.12 Speci�cally, the analyst is given a set of �rst-order beliefs, viz. �a��b,
which satis�es two conditions: (i) each type ta has margSb �a (ta) contained in �a and (ii) for each

CPS �a on Sb � Tb with margSb �a 2 �a, there is a type ta with �a (ta) = �a. And, likewise,

with a and b interchanged. (Condition (ii) ensures that the type structure does not impose more

restrictions than those implied by the �transparency�of �.) Battigalli-Siniscalchi [10, 2007] and

Battigalli-Prestipino [5, 2010] provide (distinct) formal treatments along these lines. They each get

the �a ��b-rationalizable strategy set, as an output.

b. Two Characterization Theorems: We have provided two characterizations of RCSBR�

namely, the EFBRS solution concept and the Directed Rationalizability solution concept. While

Proposition 5.1 shows that the two concepts are in a sense equivalent, we think that it is valuable

to have both de�nitions on the table.

For the Directed Rationalizability de�nition: We already mentioned that there are times where

the analyst understands that the context only imposes particular restrictions on players��rst-order

beliefs. In this case, the Directed Rationalizability procedure is useful. (See Section 8a.)

For the EFBRS de�nition: Often times, this de�nition is operationally �more convenient.� We

have seen that the EFBRS properties give us insight into behavior in games. (See Sections 6-

7.) Moreover, there is a sense in which it may be �easier�to compute the solution concept, when

beginning from the EFBRS de�nition vs. the Directed Rationalizability de�nition. In particular,

12This case is perhaps more relevant for applications of the theory of games with incomplete information, which is
the focus of Battigalli-Siniscalchi[9]: An example of �rst-order restrictions �known to the analyst� is that hierarchies
of initial beliefs about states of nature are derived from a given information structure.
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to compute the concept according to the Directed Rationalizability de�nition, we must begin with

each �nite set of �rst-order beliefs and run the Directed Rationalizability procedure relative to each

such set. (See Remark 5.1.) The set of all such �nite sets has the cardinality of the continuum.

On the other hand, to compute the concept according to the EFBRS de�nition, we begin with a

subset of strategies, viz. Qa�Qb, and verify conditions (i)-(iii) of De�nition 5.1. There are a �nite
number of such sets Qa �Qb.13

c. Properties of EFBRS�s: Refer back to Sections 6-7. To analyze games of interest, we made

use of the three properties of an EFBRS. Many of these arguments drew from Brandenburger-

Friedenberg�s [15, 2004] analysis of self-admissible sets: They began with properties of self-admissible

sets (SAS�s) and, analogously, used these properties to draw implications in terms of behavior in

games.

While there is a close connection between the EFBRS properties and the SAS properties, there

are also important points of di¤erence. Indeed, the concepts are distinct. For an SAS, viz. Qa�Qb,
each sa 2 Qa must be admissible (i.e., not weakly dominated) in both the matrices Sa � Sb and
Sa �Qb. For an EFBRS, we only require that each sa 2 Qa must be sequentially optimal under a
CPS that strongly believes Qb. If sa meets the former criterion, it meets the latter criterion, but

the converse need not hold. So, in this sense, it is harder to meet the SAS criterion vs. the EFBRS

criterion. On the other hand, SAS also has a maximality criterion, and it is easier to meet the SAS

maximality criterion vs. the EFBRS maximality criterion.
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Putting these considerations together, we can have an EFBRS that is not an SAS, and an SAS

13But, we don�t want to make too much of this point: Fix some Qa �Qb. To check whether a particular strategy
satis�es De�nition 5.1, we must �nd some CPS satisfying conditions (i)-(iii). The set of all CPS�s also has the
cardinality of the continuum. In light of this, it may not be all that simple to check the EFBRS de�nition.
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that is not an EFBRS. To see that an EFBRS need not be an SAS, refer to Figure 8.1. There,

fOutg � fLeft;Rightg is an EFBRS, but the only SAS is fIn-Downg � fRightg. (Here, we use

the admissibility criteria of SAS�s.) To see that an SAS need not be an EFBRS, refer to Figure

1.4. There, fOutg � fLeft; Centerg is an SAS, but the only EFBRS is fIn-Middleg � fCenterg.
(Here, we use the fact that it is easier to meet the maximality criteria for SAS�s vs. EFBRS�s.)

d. A Dominance Characterization of EFBRS�s: Fix a simultaneous move game and an

associated type structure. Let us consider the conditions of �rationality and common belief of

rationality.� Here, we get, as an output, a best response set (Pearce [23, 1984]) Qa � Qb. The

de�nition of a best response set can be given both in terms of justi�ability (i.e., each sa 2 Qa is
optimal under a measure that assigns probability one to Qb) and in terms of dominance (i.e., each

sa 2 Qa is undominated in the matrix Sa � Qb). Likewise, if we consider the self-admissible set

(Brandenburger-Friedenberg-Keisler [16, 2008]) concept, we can also provide a de�nition both in

terms of justi�ability and in terms of dominance.

Here, we have provided a justi�ability de�nition of an EFBRS. On the game tree, the appropriate

notion of dominance is �conditional dominance,� i.e., undominated at each information set. (See

Shimoji-Watson [27, 1998].) What about a conditional dominance characterization of an EFBRS?

We don�t know of such a characterization and leave it as an open question.

Let us comment on the essential di¢ culty in �nding such a de�nition. It comes down to

the maximality criterion. De�nition 5.1 requires that we �nd some CPS �a that� in addition to

satisfying conditions (i)-(ii)� also satis�es the requirement that, if ra is sequentially optimal under

�a, then ra 2 Qa. Of course, strategies ra that are sequentially optimal under �a are conditionally
undominated (see [27, 1998; Lemma 2]), but a conditionally undominated strategy need not be

sequentially optimal under the given CPS �a. Thus, we need a criterion to precisely say which

conditionally undominated strategies ra must be included in Qa.

There is a certain instance in which there is a clear criterion to say precisely which conditionally

undominated strategies must be included in Qa. Speci�cally, �x some sa 2 Qa and some ra that
only allows information sets allowed by sa. Here, we can build on the maximality criterion in

[16, 2008], to give a precise criterion in terms of dominance. For simultaneous move games, any

information set allowed by any strategy ra is also allowed by sa. So, again, for simultaneous move

games we can specify the appropriate maximality criterion. But, of course, for extensive-form games

more generally, this condition need not be met. As such, more generally, the dominance criterion

is not obvious� at least not to us.

We expand on these points in the Online Appendix.

e. Existence of EFBRS�s: Note, the extensive-form rationalizable strategies form an EFBRS.

(This is easily seen from Proposition 5.1, taking �a��b to be the set of all CPS�s.) As such, there
exists a non-empty EFBRS. See Battigalli [3, 1997; Corollary 1].

34



f. Two vs. Three Player Games: Here, we have focused on two player games. The main

results (Theorem 5.1 and Corollary 5.1) extend to the three player case, up to issues of correlation.

Speci�cally, if we allow for correlated assessments in De�nition 4.6, then we must also allow for

correlated assessments in De�nition 5.1. A similar statement holds for the case of independence�

though, of course, care is needed in de�ning independence for CPS�s. The central issue is that

Charlie�s belief about Bob should not change after Charlie learns information only about Ann. (It

is easy to state this property for games with observable deviators. See, e.g., Battigalli [2, 1996].

Battigalli [2, 1996], Kohlberg-Reny [20, 1997], Stalnaker [29, 1998], and Swinkels [30, 1994] each

address the de�nition, for more general games.)

Note, one additional issue that arises in the three player case: Should we require that Ann

strongly believes �Bob and Charlie are rational�? Or should we instead require that Ann strongly

believes �Bob is rational� and strongly believes �Charlie is rational�? Arguably, in the case of

independence, we should require the latter.
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How does this a¤ect our analysis of games? Amend Figure 6.3, so that it is a three-player game,

as in Figure 8.2. Consider a state at which there is RCSBR in the sense explained above, and let�s

ask which strategies can be played. Of course, using rationality, Charlie must play Across (at this

state). Note, now we require that a type of Bob strongly believe �Ann is rational�and also �Charlie

is rational.� So, conditional upon Bob�s information set being reached, this type must maintain a

hypothesis that Charlie is rational, and so that Charlie plays Across. In this case, there is a unique

best response� namely, to play In. Turning to Ann, we see that under an RCSBR analysis she will

choose In. So, we only get the backward induction outcome. (Battigalli-Siniscalchi [6, 1999] provide

a �context free�epistemic analysis of this notion of independent rationalization. See Stalnaker [29,

1998] for a related idea.)

This example also shows that, in the case of independence, Proposition 7.1(ii) does not hold.

Of course, if we instead consider the case of correlation and require that Bob strongly believe �Ann

and Charlie are rational,� then it may very well be the case that when Bob�s node is reached he
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must forgo the hypothesis that Charlie is rational. Thus, in this case, we do have an analogue of

Proposition 7.1(ii). Indeed, both parts (i)-(ii) of Proposition 7.1 hold for the case of correlation.

g. Perfect Information Games: In Section 7, we analyzed perfect information games and

saw a connection between RCSBR and Nash outcomes. We already mentioned the connection to

Brandenburger-Friedenberg�s [15, 2010] SAS analysis. But there is another important connection

to be made, namely to Ben Porath [11, 1997; Theorem 2 ].

The starting point in Ben Porath [11, 1997] is �rationality and common initial belief of ratio-

nality� (RCIBR). A type initially believes an event if it assigns probability one to the event at

the initial node. (So, the type may initially believe an event, but not strongly believe the event.)

RCIBR does not give a Nash outcome� for instance, in the Centipede Game of Figure 6.1, it would

give fOut;Downg � fOut; Ing. However, Ben Porath goes on to show that, under an additional

�grain of truth assumption,�a Nash outcome does obtain (under a no ties condition). Interestingly,

we may have a set of states consistent with RCSBR, where the grain of truth assumption does not

obtain. There is a question if Ben Porath�s conditions imply RCSBR� we do not know. Finally,

we note that Ben Porath does not address a converse (under a no ties condition).

Appendix A Self-Evident Events

Throughout the text, we informally argued that a type structure captures the idea that certain

beliefs are �transparent�to the players. In this Appendix, we formalize the statement. The idea

is that we will look at self-evident events and, in a precise sense clari�ed below, these events will

correspond to the events that are �transparent�to players.

I. Self-Evident Events. Let us start with some preliminary de�nitions. Throughout, (
;B (
))
is separable metrizable.

De�nition A1 Fix a CPS � (�j�) : 
�B (
)�E ! [0; 1] and an event E 2 B (
). Say � believes
E if, for each F 2 E, � (EjF ) = 1.

In what follows, �x a game � and a �-based type structure T = hSa; Sb;Sa;Sb;Ta; Tb;�a; �bi.

De�nition A2 Say a type ta 2 Ta believes Eb 2 B (Sb � Tb) if �a (ta) believes Eb.

Given an event Eb 2 B (Sb � Tb), write Ba (Eb) for Sa � fta 2 Ta : ta believes Ebg . When

Ea � Eb 2 B (Sa � Ta � Sb � Tb), write B (Ea � Eb) = Ba (Eb) � Bb (Ea). Let us record two

properties of belief, which will become useful as we proceed. (The proof of the �rst is straightforward,

and so omitted.)

36



Property A1 (Monotonicity) Fix events Ea � Eb and Fa � Fb in B (Sa � Ta � Sb � Tb). If

Ea � Eb � Fa � Fb, then B (Ea � Eb) � B (Fa � Fb).

Property A2 (Conjunction) Fix a sequence of events E1a�E1b , E2a�E2b ,. . . each in B (Sa � Ta � Sb � Tb).
Then

T
m B (E

m
a � Emb ) = B(

T
m (E

m
a � Emb )).

Proof. It is immediate from monotonicity that B(
T
m (E

m
a � Emb )) � B (Ema � Emb ), for each m.

As such, B(
T
m (E

m
a � Emb )) �

T
m B (E

m
a � Emb ). We now turn to the opposite inclusion, i.e.,T

m B (E
m
a � Emb ) � B(

T
m (E

m
a � Emb )). Fix a type ta that believes each Emb , i.e., for each h 2 Ha

and eachm, �a (ta) (E
m
b jSb (h)� Tb) = 1. De�ne Fmb =

Tm
n=1E

b
n and note that, for each h and each

(�nite) m, �a (ta) (F
m
b jSb (h)� Tb) = 1. Then, for each h 2 Ha, �a (ta) (

T
m F

m
b jSb (h)� Tb) = 1.

(This uses continuity of the probability measure �a (ta) (�jSb (h)� Tb).) Since, for each h 2 Ha,
�a (ta) (

T
mE

m
b jSb (h)� Tb) = �a (ta) (

T
m F

m
b jSb (h)� Tb) = 1, ta believes

T
mE

m
b .

De�nition A3 Say Ea�Eb 2 B (Sa � Ta � Sb � Tb) is a self-evident event (in T ) if Ea�Eb �
B (Ea � Eb).

We now proceed to relate self-evident events to those events that are �transparent.� In particular,

we will see that Ea � Eb is self-evident if and only if, at each state where Ea � Eb obtains, there
is common belief that Ea � Eb obtains. More generally, a self-evident event always corresponds to
the �transparency� of some (possibly di¤erent) event Fa � Fb. For example, a self-evident event

may re�ect the idea that a certain event about �players� beliefs over strategies�� i.e., a certain

event about ��rst-order beliefs�� is transparent. (In the main text, we referred to these events as

representing �transparent restrictions�of �rst-order beliefs.)

Fix Ea�Eb 2 B (Sa � Ta � Sb � Tb), and iterate the belief operator B(�): B0 (Ea � Eb) = Ea�Eb
and, for each m � 0, Bm+1 (Ea � Eb) = B (Bm (Ea � Eb)).

Lemma A1 Fix an event Ea � Eb 2 B (Sa � Ta � Sb � Tb). The following are equivalent:

(i) Ea � Eb is self-evident (in T );

(ii) Ea � Eb =
T
m B

m (Ea � Eb);

(iii) Ea � Eb =
T
m B

m (Fa � Fb), for some event Fa � Fb 2 B (Sa � Ta � Sb � Tb).

Proof. We show that (i) implies (ii). First note, for each event Ea � Eb, B0 (Ea � Eb) \T
m�1 B

m (Ea � Eb) � Ea � Eb. So, it su¢ ces to show that, if Ea � Eb is a self-evident event,
then Ea � Eb � Bm (Ea � Eb), for each m � 1. The case of m = 1 follows immediately from the

fact that Ea�Eb is a self-evident event. Assume this is true form � 1, i.e., Ea�Eb � Bm (Ea � Eb).
Then, by monotonicity, B (Ea � Eb) � B (Bm (Ea � Eb)). So, again using the fact that Ea � Eb is
a self-evident event, we have that Ea � Eb � B (Ea � Eb) � Bm+1 (Ea � Eb).
Next note that (ii) implies (iii), by taking Ea = Fa and Eb = Fb. So, it su¢ ces to show that

(iii) implies (i).
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For this, �x Ea�Eb, Fa�Fb 2 B (Sa � Ta � Sb � Tb) with Ea�Eb =
T
m�0 B

m (Fa � Fb). Note
that

Ea � Eb =
T
m�0 B

m (Fa � Fb)

= (Fa � Fb) \ (
T
m�0 B (B

m (Fa � Fb)))

= (Fa � Fb) \ B(
T
m�0 B

m (Fa � Fb))

= (Fa � Fb) \ B(Ea � Eb);

where the �rst and last lines use part (iii), the second line is by de�nition and the third line uses

conjunction. It then follows that Ea � Eb � B (Ea � Eb) as required.

II. Type Structures as Self-Evident Events. We want to capture that a certain event is

transparent to the players. We have argued that the idea is captured by the self-evident event

concept. But, in the main text, we modelled the idea that an event is transparent by writing

down some arbitrary type structure. How do the approaches relate? We will see that, in fact the

approaches coincide. In particular, the self-evident events in a given type structure correspond to

�smaller type structures.� We �rst present the formal statement, and then review.

We will want to map one type structure into a second larger structure, and argue that, by doing

so, we get a self-evident event. For this, it will be convenient to introduce some notation. Fix

separable metrizable spaces 
;�. Given a measurable map f : 
! �, write f : P (
)! P (�), for
the map where f ($) is the image measure of $ under f . Note, f is measurable. (See Kechris [18,

1995; Exercise 17.40].)

Now, consider two �-based type structures, namely T = hSa; Sb;Sa;Sb;Ta; Tb;�a; �bi and T � =
hSa; Sb;S�a ;S�b ;T �a ; T �b ;�

�
a; �

�
bi. We will relate CPS�s in structure T to CPS�s in the structure T �.

For this, it will be convenient to write ida : Sa ! Sa and idb : Sb ! Sb for the identity maps.

Lemma A2 Fix a measurable map � b : Tb ! T �b and a CPS �a 2 C (Sb � Tb;Sb). De�ne �a so

that, for each h 2 Ha, (idb�� b) (�a (�jSb (h)� Tb)) = �a (�jSb (h)� T �b ). Then �a 2 C (Sb � T �b ;S�b ).

Proof. It is immediate that �a satis�es conditions (i)-(ii) of a CPS. For condition (iii), �x

events E� � Sb (h) � T �b � Sb (i) � T �b . Since a separable metrizable space is second countable,

(idb�� b)�1 (E�) 2 B (Sb � Tb). It follows that

�a (E
�jSb (i)� T �b ) = �a((idb�� b)�1 (E�) jSb (i)� Tb)

= �a((idb�� b)�1 (E�) jSb (h)� Tb)� �a (Sb (h)� TbjSb (i)� Tb)

= �a (E
�jSb (h)� T �b )� �a (Sb (h)� T �b jSb (i)� T �b ) ;

as required.
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Given CPS�s �a and �a as in Lemma A2, say �
a is the image CPS of �a under idb��b. We

write (idb�� b) : C (Sb � Tb;Sb)! C (Sb � T �b ;S�b ) for the associated map, i.e., so that (idb�� b) (�a)
is the image CPS of �a under idb�� b. Note, for this, we make use of the fact that the map idb�� b
is measurable. (This follows from second countability.) Indeed, throughout, we will repeatedly

make use of this fact.

De�nition A4 Let �a : Ta ! T �a and � b : Tb ! T �b be measurable maps. Call (�a; � b) a type
morphism from T to T � if (idb�� b) � �a = ��a � �a and (ida��a) � �b = ��b � � b.

If (�a; � b) is a type morphism, then each of �a and � b are hierarchy morphisms, i.e., mappings

that preserve hierarchies of beliefs. See Section 3.1 in Battigalli-Siniscalchi [7, 1999].

Given separable metrizable spaces 
;�, call a function f : 
 ! � bimeasurable if it is
measurable and, for each E 2 B (
), f (E) 2 B (�).

De�nition A5 Call (�a; � b) a bimeasurable type morphism if it is a type morphism and �a and

� b are bimeasurable.

We can now talk about the relationship between the self-evident event concept and the maps

from one structure to a second larger structure.

Lemma A3

(i) Fix �-based type structures T = hSa; Sb;Sa;Sb;Ta; Tb;�a; �bi and T � = hSa; Sb;S�a ;S�b ;T �a ; T �b ;�
�
a; �

�
bi.

If (�a; � b) is a bimeasurable type morphism from T to T �, then Sa � �a (Ta)� Sb � � b (Tb) is
self-evident in T �.

(ii) Fix a �-based type structure T � = hSa; Sb;S�a ;S�b ;T �a ; T �b ;�
�
a; �

�
bi and a self-evident event Sa�

E�a�Sb�E�b 2 B (Sa � T �a � Sb � T �b ). Write �a : E�a ! T �a and � b : E
�
b ! T �b for the identity

maps. Then there is a �-based type structure, viz. T = hSa; Sb;S�a ;S�b ;E�a ; E�b ;�a; �bi, so that
(�a; � b) is a bimeasurable type morphism from T to T �.

Proof. Begin with part (i). Fix a bimeasurable type morphism, viz. (�a; � b). Since the maps

�a and � b are bimeasurable, Sa � �a (Ta)� Sb � � b (Tb) is contained in B (Sa � T �a � Sb � T �b ). We
proceed to show that Sa� �a (Ta)�Sb� � b (Tb) � B (Sa � �a (Ta)� Sb � � b (Tb)). To show this, it
su¢ ces to show that, for each �a (ta) 2 �a (Ta) and each information set h 2 Ha,

��a (�a (ta)) (Sb � � b (Tb) jSb (h)� T �b ) = 1.

(Again, bimeasurability guarantees that Sb� � b (Tb) is Borel in Sb�T �b .) But this follows from the

de�nition of a type morphism, since

��a (�a (ta)) (Sb � � b (Tb) jSb (h)� T �b ) = �a (ta) (Sb � TbjSb (h)� Tb) = 1.
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Turn to part (ii). Take Ta = E�a, Tb = E�b , and endow these sets with the relative topology.

(Recall that Sb � E�b 2 B (Sb � T �b ), so that B (Sb � E�b ) = B (Sb � Tb) � B (Sb � T �b ).) For each

ta 2 E�a , de�ne �a (ta) so that, for each Fb 2 B (Sb � Tb) and each h 2 Ha,

�a (ta) (FbjSb (h)� Tb) = ��a (ta) (FbjSb (h)� T �b ) .

Note, �a (ta) de�nes a CPS with conditioning events Sa 
 Tb. To see this, recall that, for each

ta 2 Ta = E�a and for each h 2 Ha,

�a (ta) (Sb (h)� TbjSb (h)� Tb) = ��a (ta) (Sb (h)� E�b jSb (h)� T �b ) = 1;

where the �rst equality is by de�nition and the latter equality is by the fact that ta 2 E�a and

Sa � E�a � Sb � E�b is a self-evident event. This establishes condition (i) of a CPS. Conditions

(ii)-(iii) are immediate from the construction.

We �rst show that T = hSa; Sb;Sa;Sb;Ta; Tb;�a; �bi is indeed a �-based type structure: It is
immediate that Ta and Tb are separable metrizable. So, it su¢ ces to show that �a and �b are

measurable. We show this for �a, and an analogous argument establishes the result for �b.

To show that �a is measurable, it su¢ ces to show that, for each information set h 2 Ha, ta 7!
�a (ta) (�jSb (h)� Tb) is measurable. Note that Tb = E�b 2 B (T �b ). So, there is a homeomorphism

f : P (Sb (h)� Tb)! f$ 2 P (Sb (h)� T �b ) : $ (Sb (h)� E�b ) = 1g :

(See Kechris [18, 1995; Exercise 17.28].) Now, �x an event Gb 2 B (P (Sb (h)� Tb)). Then,

f (Gb) 2 B (P (Sb (h)� T �b )). By measurability of the map �
�
a, we have that

ft�a 2 T �a : ��a (t�a) (�jSb (h)� T �b ) 2 f (Gb)g

is Borel in T �a . But now notice that f is such that

fta 2 Ta : �a (ta) (�jSb (h)� Tb) 2 Gbg = ft�a 2 T �a : ��a (t�a) (�jSb (h)� T �b ) 2 f (Gb)g \ E�a .

That is, fta 2 Ta : �a (ta) (�jSb (h)� Tb) 2 Gbg is an intersection of two measurable sets and so mea-
surable. This establishes that ta 7! �a (ta) (�jSb (h)� Tb) is measurable, as required.
Finally, consider the identity maps, viz. �a : Ta ! T �a and � b : Tb ! T �b . Certainly, they are

bimeasurable. We will show that (�a; � b) is a type morphism. Fix a type ta 2 E�a and we will show
that ��a (ta) is the image CPS of �a (ta) under idb�� b. Fix a Borel set F �b in Sb � T �b . For each

h 2 Ha,
��a (ta) (F

�
b jSb (h)� T �b ) = ��a (ta) (F �b \ (Sb � E�b ) jSb (h)� T �b ) ;
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since Sb � E�a � Sb � E�b is a self-evident event. As such,

��a (ta) (F
�
b jSb (h)� T �b ) = ��a (ta) (F

�
b \ (Sb � E�b ) jSb (h)� T �b )

= �a (ta) ((idb�� b)�1(F �b \ (Sb � E�b ))jSb (h)� Tb)

= �a (ta) ((idb�� b)�1(F �b )jSb (h)� Tb);

as required.

Lemma A3 says that if there is a bimeasurable type morphism from T to T �, then T induces

a self-evident event in T �. We now point out that we preserve RCSBR under the type morphism.
Speci�cally, suppose there is a bimeasurable type morphism, viz. (�a; � b), from T to T �. Let E�(T )
be the self-evident event in T � corresponding to T , i.e., E�(T ) = Sa� �a (Ta)�Sb� � b (Tb). Then,
there is RCSBR at the state (sa; ta; sb; tb) (in T ) if and only if there is rationality and common strong
belief of �rationality and the self-evident event E�(T )�at the state (sa; �a (ta) ; sb; � b (tb)) 2 E�(T ).

Proposition A1 Fix �-based structures T and T �, so that there is a bimeasurable type morphism,
viz. (�a; � b), from T to T �. Then, for each m,

(i) If (sa; ta; sb; tb) 2 CSBm (Ra �Rb) then (sa; �a (ta) ; sb; � b (tb)) 2 CSB�;m((R�a � R�b) \ (Sa �
�a (Ta)� Sb � � b(Tb))).

(ii) If (sa; t�a; sb; t
�
b) 2 CSB

�;m((R�a �R�b)\(Sa��a (Ta)�Sb�� b (Tb))), then (�a)
�1
(t�a) ; (� b)

�1
(t�b) 6=

; and fsag � (�a)�1 (t�a)� fsbg � (� b)
�1
(t�b) � CSB

m (Ra �Rb).

To prove Proposition A1, it will be useful to introduce some further notation. Fix two type

structures T and T �, and a type morphism, viz. (�a; � b), from T to T �. For the structure

T , write R0a = Ra and R0b = Rb. Then, for each m � 0 , set Rm+1a = Rma \ SBa (Rmb ) and
Rm+1b = Rmb \ SBb (Rma ). It is easily veri�ed that, for each m, Rma �Rmb = CSB

m (Ra �Rb). For
the structure T �, write R0a = R�a \ [Sa � �a (Ta)] and R0b = R�b \ [Sb � � b (Tb)]. Then, for each

m � 0 , set R�;m+1a = R�;ma \SB�a(R
�;m
b ) and R�;m+1b = R�;mb \SB�b (R�;ma ). It is easily veri�ed that,

for each m, R�;ma �R�;mb = CSB�;m((R�a �R�b) \ (Sa � �a (Ta)� Sb � � b (Tb))).

Lemma A4 Fix �-based structures T and T �, and a type morphism, viz. (�a; � b), from T to T �. If
(sa; ta) 2 Ra, then (sa; �a (ta)) 2 R�a. Conversely, if (sa; t�a) 2 R�a, then fsag � (�a)

�1
(ft�ag) � Ra.

Proof. Fix some ta with �a (ta) = t�a. To show this result, it su¢ ces to show that

margSb(h) �a (ta) (�jSb (h)� Tb) = margSb(h) �
�
a (t

�
a) (�jSb (h)� T �b ) ;

for each h 2 Ha. To see this, �x some information set h 2 Ha and some event Eb 2 B (Sb (h)).
Then, by de�nition of a type morphism,

��a (�a (ta)) (Eb � T �b jSb (h)� T �b ) = �a (ta) (Eb�(� b)
�1
(T �b ) jSb (h)�Tb) = �a (ta) (Eb�TbjSb (h)�Tb);
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as required.

Proof of Proposition A1. Given the characterization above, we will show that the following

holds, for each m: (i) If (sa; ta) 2 Rma , then (sa; �a (ta)) 2 R�;ma . (ii) If (sa; t�a) 2 R�;ma , then

; 6= fsag � (�a)�1 (ft�ag) � Rma . And likewise for b.
We show this by induction on m. The case of m = 0 follows from Lemma A4. Assume the

result holds for some m � 0 and we will show it also hold for m+1. Let us record two consequences
of the induction hypothesis:

Fact I R�;mb = (id�� b) (Rmb ): Fix (sb; t�b) 2 R
�;m
b . Then, (sb; t�b) 2 R0b and t�b 2 � b (Tb). Fix

some tb with � b (tb) = t�b . By the induction hypothesis, (sb; tb) 2 Rmb . So, (sb; t�b) = (sb; � b (tb)) 2
(idb�� b) (Rmb ), as required. The converse follows immediately from the induction hypothesis.

Fact II Rmb = (id�� b)�1 ((id�� b) (Rmb )): Certainly, Rmb � (id�� b)�1 ((id�� b) (Rmb )). Fix

(sb; tb) 2 (id�� b)�1 ((id�� b) (Rmb )). Then, using Fact I, (sb; � b (tb)) 2 (id�� b) (Rmb ) = R
�;m
b . By

part (ii) of the induction hypothesis, (sb; tb) 2 Rmb , as required.

We use these facts below.

First, �x (sa; ta) 2 Rm+1a . By the induction hypothesis, it su¢ ces to show that �a (ta) strongly

believes R�;mb . First we show that R�;mb 2 B (Sb � T �b ). To see this, use Fact I, i.e., R�;mb =

(idb�� b) (Rmb ). Since ta strongly believes Rmb , it follows that R
m
b 2 B (Sb � Tb). Using the fact

that idb�� b is bimeasurable, we get that R�;mb is indeed Borel.

Now, �x some information set h 2 Ha with R�;mb \ [Sb (h)� T �b ] 6= ;. Note that

��a (�a (ta)) (R
�;m
b jSb (h)� T �b ) = �a (ta) ((idb�� b)�1(R

�;m
b )jSb (h)� Tb)

= �a (ta) (f(sb; tb) : (sb; � b (tb)) 2 R
�;m
b gjSb (h)� Tb)

= �a (ta) (R
m
b jSb (h)� Tb)

where the �rst line follows from the de�nition of a type morphism, the second line is by de�nition,

and the third line follows from the induction hypothesis. By part (ii) of the induction hypothesis,

Rmb \ [Sb (h)� Tb] 6= ;. So, with the above and the fact that ta strongly believes Rmb ,

��a (�a (ta)) (R
�;m
b jSb (h)� T �b ) = �a (ta) (Rmb jSb (h)� Tb) = 1,

as required.

For the converse, �x (sa; t�a) 2 R�;m+1a and some ta 2 (�a)�1 (t�a). By the induction hypothesis,
it su¢ ces to show that ta strongly believes Rmb . Recall that t

�
a strongly believes R

�;m
b and so R�;mb 2

B (Sb � T �b ). By Facts I-II, plus the observation that idb�� b is measurable, Rmb = (id�� b)
�1
(R�;mb )

is Borel.

42



Now, �x an information set h 2 Ha with Rmb \ [Sb (h)� Tb] 6= ;. Note that

�a (ta) (R
m
b jSb (h)� Tb) = �a (ta) ((idb�� b)�1((idb�� b) (Rmb ))jSb (h)� Tb)

= ��a (�a (ta)) ((idb�� b) (Rmb ) jSb (h)� T �b )

= ��a (�a (ta)) (R
�;m
b jSb (h)� T �b );

where the �rst line follows from Fact II, the second line follows from the de�nition of a type morphism,

and the last line follows from Fact I. By part (i) of the induction hypothesis, R�;mb \[Sb (h)� T �b ] 6= ;.
So, with the above and the fact that �a (ta) strongly believes R

�;m
b ,

�a (ta) (R
m
b jSb (h)� Tb) = ��a (�a (ta)) (R

�;m
b jSb (h)� T �b ) = 1;

as required.

III. Self-Evident Events vs. Type Structures. Let us review the approach taken here. We

begin with a game �, and we will consider the canonical � -based type structure, as constructed in

Battigalli-Siniscalchi [7, 1999]. Write T � = hSa; Sb;S�a ;S�b ;T �a ; T �b ;�
�
a; �

�
bi for this structure. The

details of the construction will not be relevant. Instead, we will make use of two properties. First,

T � is complete� that is, ��a and ��b are onto. (See Footnote 2.) Second, T � is terminal� that
is, for each � -based structure T , there is a type morphism from T to T �.14

We can use Lemma A1 to generate the self-evident events in T �. To see this, return to the lady�s
choice convention. Let F �a = Sa � T �a and let F �b = Sb � ft�b 2 T �b : t�b believes fUpg � T �a g. Then,
by Lemma A1(i)-(iii), we can �nd some E�a 2 B (T �a ) and E�b 2 B (T �b ), so that Sa �E�a � Sb �E�b is
a self evident event, with Sa �E�a � Sb �E�b =

T
m B

m (F �a � F �b ). Certainly, each t�b 2 E�b believes
fUpg�T �a . Moreover, for each CPS �a 2 C (Sb � T �b ) (resp. �b 2 C (Sa � T �a )) that believes Sb�E�b
(resp. fUpg � E�a), there is a type t�a 2 T �a (resp. t�b 2 T �b ) with �

�
a (t

�
a) = �a (resp. �

�
b (t

�
b) = �b).

(Here, we use the fact that T � is complete.) Indeed, the proof of Lemma A1(iii) gives that these

types are in fact in E�a (resp. E
�
b ). So, by Lemma A3(ii), we can construct a type structure T ,

as described in Section 1.1. Let E� = Sa � E�a � Sb � E�b denote the self-evident event in T � that
corresponds to T . Using Proposition A1, RCSBR within the constructed structure T corresponds to
the event �rationality, E�, and common strong belief of �rationality and E���within the canonical

structure T �.
So, we see that we can indeed approach the question of a lady�s choice convention, as we did in

the main text. No need to work directly with self-evident events (in the canonical construction).

Is this true more generally? Indeed, the answer is yes, and rests on the fact that the structure

T � is terminal. Because of this, we can �nd a type morphism from each �-based structure T to

14The terminology stems from Böge-Eisele [13, 1979]. Battigalli-Siniscalchi [7, 1999] show their construction is
terminal, but they restrict attention to type structures with Polish type sets and continuous belief maps. The Online
Appendix extends terminality to separable metrizable type sets and measurable belief maps.
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the canonical �-based structure T �. When T satis�es certain conditions, the type morphism is

bimeasurable. So, in this case, Lemma A3 and Proposition A1 give that the two approaches are

equivalent. We will see that, in a certain sense, these conditions are �predominant.� Let us explain.

We will impose two conditions on �-based type structure T . First, the type sets Ta and Tb
are standard Borel. Second, the type structure is countably uncountable� i.e., there are at most

a countable number of hierarchies (of conditional beliefs), so that the set of types that induce that

hierarchy is uncountable. In this case, the type morphism from T to T � is bimeasurable. (Here

we use Purves�Theorem [24, 1966], Proposition 3.3.7 in Srivastava [28], and the fact that the map

from types to hierarchies is measurable. See the Online Appendix.) So, to the extent that we can

restrict attention to standard Borel countably uncountable structures, Lemma A3 and Proposition

A1 give that the two approaches are indeed equivalent.

Now: Can we indeed restrict attention to standard Borel and countably uncountable structures?

Yes. Begin with Theorem 5.1. Note that the type structure constructed in part (ii) is �nite,

so certainly satis�es these conditions. Next turn to Lemma A3. Note that the type structure

constructed in part (ii) also satis�es these conditions. The fact that Ta and Tb are standard Borel

follows from the fact that they are Borel subsets of a Polish space. The fact that the constructed

structure is countably uncountable follows from the fact that Ta and Tb are �nite.

Appendix B Proofs for Section 4

Proof of Property 4.1. Fix an event F 2 E with F \
T
mEm 6= ;. Then F \ Em 6= ; for

all m. So, for each m, � (EmjF ) = 1. (This is because � strongly believes each Em.) But then

� (
T
mEmjF ) = 1.

Proof of Property 4.2. Fix an event F 2 E with F \ proj
1 E 6= ;. Then (F � 
2) \ E 6= ;.
Since, by assumption, proj
1 E is Borel, marg
1 �

�
proj
1 EjF

�
is well de�ned. Since � strongly

believes E, � (EjF � 
2) = 1. Then (marg
1 �)
�
proj
1 EjF

�
= 1, as required.

Appendix C RCSBR and Directed Rationalizability

In the text, we argued that, for each epistemic type structure, there is a set of �rst-order beliefs

� so that the projection of the RCSBR set is the �-rationalizable strategy set. The purpose of

this appendix is to illustrate that this set of �rst-order beliefs may not correspond to the set of all

�rst-order beliefs allowed by the epistemic type structure.

Figure B1 is a game of Battle of the Sexes preceded by an observed �money burning�move by

Bob. (See Ben Porath-Dekel [12, 1992].) Here, Ann and Bob are playing a BoS game. However,
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prior to the game, Bob has the option of burning (B) or not burning (NB) $2.
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Figure B1

Suppose society has formed a modi�ed version of the lady�s choice convention. Now, there are

no restrictions on players��rst-order beliefs. (So, in particular, there are types of Bob that think

Ann does not go for her best payo¤.) But, there is a restriction on Ann�s second-order beliefs.

Speci�cally, conditional upon observing so-called �normal�behavior �i.e., a decision to not burn �

Ann thinks that Bob thinks she goes for her best payo¤ and chooses Up. There is no restriction

on Ann�s second-order belief conditional upon observing �strange�behavior �i.e., upon observing

a decision to burn. Likewise, there are no restrictions on Bob�s second-order beliefs. Etc.

We can model this modi�ed version of the lady�s choice convention by a type structure hSa; Sb;Sa;Sb;
Ta; Tb;�a; �bi based on the game in Figure B1. Now, �b is onto but �a is not. Formally: Write

[Up]a for the event �Ann plays Up, if Bob does not burn,�i.e., [Up]a = fUp-down;Up-upg�Ta, and
write [NB]b for the event �Bob does not burn,�i.e., [NB]b = fNB-Left;NB-Rightg � Tb. Let Ub
be the set of types tb 2 Tb with �b (tb) ([Up]ajSa � Ta) = 1, i.e., the set of types of Bob that assign
probability one to the event �Ann plays Up, when Bob chooses not to burn.�Then, for each type

ta 2 Ta,
�a(ta)(Sb � Ubj [NB]b) = 1,

i.e., conditional upon Bob choosing not to burn, each type of Ann assigns probability one to the

event that �Bob believes that �Ann plays Up, when Bob does not burn.��For any belief �a of Ann

with �a(Sb � Ubj [NB]b) = 1, there is a type ta so that �a (ta) = �a. (See Appendix A in [?, 2009]
on how to construct such a type structure.)

The set of �rst-order beliefs induced by this type structure is � = C (Sb) � C (Sa). The �-

rationalizable set is fDown-downg � fNB-Rightg. (This is also the set of extensive form rational-

izable strategies.) It is obtained as follows: On round one, the strategy B-left is dominated by
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NB-Left, but all other strategies (of both players) are optimal under some CPS. It follows that

S�;1a � S�;1b = Sa � fNB-Left;NB-Right;B-rightg.

But now note that the choice of up by Ann cannot be optimal under any CPS that strongly believes

fNB-Left;NB-Right;B-rightg. (If a CPS strongly believes fNB-Left;NB-Right;B-rightg, then
conditional upon Burn being played, the CPS must assign probability one to right, in which case

up is not a best response.) So,

S�;2a � S�;2b = fUp-down;Down-downg � S�;1b .

Turning to Bob, if a CPS strongly believes fUp-down;Down-downg, then B-right yields an expected
payo¤ of 2 and NB-Left yields an expected payo¤ of at most one. So,

S�;3a � S�;3b = S�;2a � fNB-Right;B-rightg.

Now, if a CPS strongly believes fNB-Right;B-rightg, Down-down is the only sequentially optimal
strategy, so

S�;4a � S�;4b = fDown-downg � S�;3b .

Finally, if a CPS strongly believes fDown-downg, NB-Right is the only sequentially optimal strat-
egy, so

S�;5a � S�;5b = fDown-downg � fNB-Rightg.

But, the projection of event RCSBR onto Sa � Sb is fUp-downg � fB-rightg. It is obtained as
follows. On round one, for each belief about the strategies of the other player, there is a type that

holds that belief. So, here too,

projSa R
1
a � projSb R

1
b = Sa � fNB-Left;NB-Right;B-rightg.

Now, consider a type ta that strongly believes R1b . Recall, conditional upon Bob choosing not to

burn, each type of Ann assigns probability one to the event that �Bob believes that �Ann plays

Up, when Bob does not burn.�� So, if ta strongly believes R1b , it must assign zero probability to

fNB-Rightg � Tb. For such a type ta, (Down-down; ta) is irrational. So,

projSa R
2
a � projSb R

2
b = fUp-downg � projSb R

1
b .

But now, if (sb; tb) is rational and tb strongly believes R2a, then sb = B-right, and so

projSa R
3
a � projSb R

3
b = fUp-downg � fB-rightg.
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Why the di¤erence between the two approaches? We began with an epistemic structure and

used the structure itself to form the set of �rst-order beliefs � = C (Sb) � C (Sa). (So, for each

�a 2 �a = C (Sb) there is type ta 2 Ta such that the marginal of �a (ta) on Sb is �a; and likewise for
b.) With this set of �rst-order beliefs, the strategies that survive one round of �-rationalizability

are exactly the strategies that are consistent with rationality. But, on the next round, we lose

the equivalence: If �a (ta) strongly believes R
1
b , then the marginal of �a (ta) must strongly believe

S�;1b = projSb R
1
b . (Here, we use the marginalization property of strong belief.) Thus projSa R

2
a �

S�;2a . But, the converse does not hold. We have Down-down 2 S�;2a , but Down-down =2 projSa R
2
a.

The reason is that, conditional upon Bob choosing NB, each �a (ta) assigns probability one to the

event �Bob assigns probability one to [Up]a.� So, if Bob does not burn, Ann can only maintain a

hypothesis that Bob is rational, if she assigns probability one to Bob�s playing NB-Left, in which

case the choice Down is not a best response. With this, S�;2a = fUp-down, Down-downg and
projSa R

2
a = fUp-downg. As a result, S�;3b = fNB-Right, B-rightg and projSb R

3
b = fB-rightg.

It follows that S�;4a = fDown-downg, despite the fact that projSa R
4
a = fUp-downg. The key to

this last step is that Up-down is optimal under a CPS that strongly believes projSb R
3
b ( S

�;3
b , but

not optimal under a CPS that strongly believes S�;3b . This can occur because strong belief fails a

monotonicity requirement.

Appendix D Proofs for Section 6

We begin by showing that, for the �nitely repeated Prisoner�s Dilemma, any EFBRS results in

the Defect-Defect path of play. To show this, we will need to make use of certain properties of

EFBRS�s. We will again make use of these properties in Appendix E. We begin with the best

response property.

De�nition D1 Say Qa �Qb � Sa � Sb satis�es the best response property if, for each sa 2 Qa
there is a CPS �a 2 C(Sb), so that sa 2 �a (�a) and �a strongly believes Qb. And similarly for b.

An EFBRS satis�es the best response property. But the converse need not hold, i.e., Qa �Qb
may satisfy the best response property, but fail to be an EFBRS because it violates the maximality

condition. (See the example in Section 1.5.)

Let us introduce some notation, to relate the whole game to its parts. Fix a game � and a subgame

�. Write H�
a for the set of information sets that are contained in �. We will abuse notation and

write Sa (�) for the set of strategies of � that allow �. We also write S�a =
Q
h2H�

a
Ca (h) for the set

of strategies of a in the subgame �. Note, each strategy s�a 2 S�a can be viewed as the projection of
a strategy sa 2 Sa (�) into S�a . Given a set Ea � Sa, write E�a for the set of strategies s�a 2 S�a so
that there is some sa 2 Ea\Sa (�) whose projection into S�a is s�a . We will write ��a and ��b for the
payo¤ functions associated with the subtree �. So, if (sa; sb) allows �, then ��

�
s�a ; s

�
b

�
= � (sa; sb).
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Lemma D1 Fix a game � and a subgame �. If Qa � Qb satis�es the best response property for
the game �, then Q�a �Q�b satis�es the best response property for the subgame �.

Proof. If Q�a � Q�b = ; (if no pro�le in Qa � Qb allows �), then it is immediate that Q�a � Q�b
satis�es the best response property. So, we will suppose Q�a �Q�b 6= ;.
Fix a strategy s�a 2 Q�a . Then there exists a strategy sa 2 Qa \ Sa (�) whose projection intoQ

h2H�
a
Ca (h) is s�a . Since sa 2 Qa, we can �nd a CPS �a 2 C (Sb) so that sa 2 �a (�a) and �a

strongly believes Qb.

Let S�b be the set of all S�b (h) for h 2 H�
a . De�ne �

�
a (�j�) : B

�
S�b
�
� S�b ! [0; 1] so that, for

each event Eb � Sb and each S�b (h) 2 S�b , ��a
�
E�b jS�b (h)

�
= �a (EbjSb (h)). It is readily veri�ed

that ��a is indeed a CPS on
�
S�b ;S�b

�
.

Since sa allows � and sa is sequentially optimal under �a, it follows that s
�
a is sequentially

optimal under ��a . Fix some S�b (h) 2 S�b . If Q�b \ S�b (h) 6= ;, then Qb \ Sb (h) 6= ;. So, in this

case, ��a
�
Q�b jS�b (h)

�
= �a (QbjSb (h)) = 1. This establishes that ��a strongly believes Q�b .

Interchanging a and b establishes the result.

We use Lemma D1 to show:

Lemma D2 Consider the N -repeated Prisoner�s Dilemma, as given in Figure 6.2. If Qa � Qb
satis�es the best response property for this game, then each strategy pro�le in Qa�Qb results in the
Defect-Defect path.

Proof. The proof very closely follows the proof of Example 3.2 in Brandenburger-Friedenberg [15,
2004]. It is by induction on N . For N = 1, the result is immediate. Assume the result holds for

some N and we will show it holds for N + 1.

Consider some Qa�Qb of the N+1 repeated Prisoner�s Dilemma that satis�es the best response
property. Suppose, there is a strategy sa 2 Qa that Cooperates in the �rst period. Fix a strategy
sb 2 Qb. If sb plays Cooperate (resp. Defect) in the �rst period, Ann gets c (resp. e) in the �rst

period. By Lemma D1 and the induction hypothesis, Ann gets a payo¤ of zero, in periods 2; : : : ; N .

So, for each sb in Qb, �a (sa; sb) = c if sb plays Cooperate in the �rst period, and �a (sa; sb) = e if

sb plays Defect in the �rst period.

Now, instead consider the strategy ra that plays Defect in every period, irrespective of the history.

Again, �x a strategy sb 2 Qb. If sb plays Cooperate in the �rst period, then �a (ra; sb) � d and, if
sb 2 Qb plays Defect in the �rst period, then �a (ra; sb) � 0.
Putting the above together: Under any CPS that strongly believes Qb, we must have that ra is

a strictly better response than sa 2 Qa, at the �rst information set. But this contradicts Qa �Qb
satisfying the best response property.

Corollary D1 Consider the N -repeated Prisoner�s Dilemma, as given in Figure 6.2. If Qa � Qb
is an EFBRS, then each strategy pro�le in Qa �Qb results in the Defect-Defect path.
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Now we turn to Proposition 6.1. We will show the result for a somewhat more general set of

games �games where, in a sense, the information structure is determined by the subgames.

De�nition D2 Fix a game �. Say a subgame � is su¢ cient for an information set h 2 H if h

is contained in � and the set of strategy pro�les that allow � is exactly Sa (h)� Sb (h).

Notice, there may be two subgames, viz. � and ��, that are su¢ cient for h.15 If so, either � is

a subgame of �� or �� is a subgame of �. When there are two subgames that are su¢ cient for h,

we will in typically be interested in the last subgame � su¢ cient for h �i.e., so that no proper
subgame of � is su¢ cient for h.

Also, notice that there may be no subgame that is su¢ cient for an information set h. Refer

to the game in Figure 7.3. There, the only subgame is the entire game. But this subgame is not

su¢ cient for the information set, viz. h, at which Bob moves. To see this, notice that the strategy

sa = Out (trivially) allows the subgame, but does not allow h.

De�nition D3 Say a game � is determined by its subgames if, for each information set h 2 H,
there is a subgame � that is su¢ cient for h.

The game in Figure 7.3 is not determined by its subgame; as we have seen, there is no subgame

that is su¢ cient for the information set at which Bob moves. Below, we will characterize De�nition

D3 in terms of primitives of the game (as opposed to a condition about strategies).

Throughout, we restrict attention to a game � determined by its subgames. Fix a pure-strategy

SPE, viz. (sa; sb), of �. Construct maps fa : H ! Sa and fb : H ! Sb that depend on this SPE.

To do so, �x some h 2 H, and let � be the last subgame su¢ cient for h. Write x for the root

of subgame � (which may be � itself). If � = �, set fa (h) = sa. If � is a proper subtree of

�, then we can write x = (c1; :::; cK). In this case, let fa(h) be the strategy that (i) chooses c1a
at f�g, (ii) chooses cka at an information set that contains (c1; :::; ck�1), i.e., an initial segment of
(c1; :::; cK), and (iii) makes the same choice as sa at all other information sets. So, if sa allows h,

then fa (h) = sa. Also, fa (h) is well-de�ned and allows h precisely because � is determined by its

subgames. (Again, refer to the game in Figure 7.3, and take h to be the information set at which

Bob moves. Consider the SPE (sa; sb) = (Out;Right). Then, fa (h) = Out, which precludes h.)

Write S (h) for the set of strategy pro�les that allow an information set h. In games determined

by their subgames, there is a natural order on sets of the form S (h), for h 2 H. Speci�cally, for

any pair of information sets h and i (in H), either S (h) � S (i), S (i) � S (h), or S (h)\S (i) = ;.16

To see this, let �h (resp. �i) be su¢ cient for h (resp. i). We have that, either �h is a subgame

of �i, �i is a subgame of �h, or they are disjoint subgames. With this, the order follows from the

de�nition of su¢ ciency. If S (h) � S (i), say h follows i. Say h and i are ordered if either h
follows i or i follows h. Say h and i are unordered otherwise, i.e., if S (h) \ S (i) = ;.

15This may happen if there is a node x where no player is active, i.e., Ca(x) and Cb(x) are singletons.
16Note, in all perfect recall games, whenever h; i 2 Ha, either S (h) � S (i), S (i) � S (h), or S (h) \ S (i) = ;.

Here, we have analogous statement, when h 2 Ha and i 2 Hb.
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Let us record a couple of facts, to be used below. The �rst is immediate.

Lemma D3 Fix a game � that is determined by its subgames. Also �x some SPE, viz. (sa; sb).
Construct (fa; fb) as above. If fa (h) allows i and either h and i are unordered or i follows h, then

fa (i) = fa (h).

The next result is immediate from the de�nition of an SPE.

Lemma D4 Fix a game � that is determined by its subgames and some SPE (sa; sb). For each

h 2 Ha,
�a (fa (h) ; fb (h)) � �a (ra; fb (h)) for all ra 2 Sa (h).

The next result holds quite generally. Again, its proof is immediate.

Lemma D5 Fix some �a 2 C (Sb). If sa 2 �a (�a), then [sa] � �a (�a).

The notion of a player being "decisive" for (z; z0) (De�nition 6.2) was stated in the main text for

games with observable actions. In order to have an appropriate generalization of Proposition 6.1 we

have to extend this de�nition to games with imperfectly observable actions.

De�nition D4 Fix two distinct terminal nodes z =
�
x; c1; : : : ; cK

�
and z0 =

�
x; d1; : : : ; dL

�
. Say

a is decisive for (z; z0) if the following holds:

(i) c1a 6= d1a,

(ii) c1b = d
1
b , and

(iii) if (x; c1; : : : ; ck) and (x; d1; : : : ; dl) are in the same information set, then ck+1b = dl+1b .

The idea is that a is decisive for (z; z0) = ((x; c1; : : : ; cK); (x; d1; : : : ; dL)) if a is the only player that

determines which of the two terminal histories occurs. So, a moves at the last common predecessor

of z and z0, viz. x, and makes distinct choices at this node, i.e., c1a 6= d1a. But, b�s choice along this
path does not determine which of z vs. z0 occurs. So, b makes the same choice whenever he cannot

observe a�s choice amongst c1a vs. d
1
a.

Remark D1 If the game has observable actions, then a is decisive for (z; z0) = (
�
x; c1; : : : ; cK

�
;
�
x; d1; : : : ; dL

�
)

if and only if c1a 6= d1a, and c1b = d1b .

Given De�nition D4, the no relevant ties (NRT) property can be stated as in the main text, and

we have the following:

Proposition D1 Fix a game � that is determined by its subgames, and a pure-strategy SPE, viz.
(sa; sb).

(i) There is an EFBRS, viz. Qa �Qb, so that [sa]� [sb] � Qa �Qb.
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(ii) If � satis�es NRT, then [sa]� [sb] is an EFBRS.

Proof. Fix a pure-strategy SPE, viz. (sa; sb). Construct maps fa : H ! Sa and fb : H ! Sb,

as above. We use these maps to construct CPS�s �a 2 C (Sb) and �b 2 C (Sa). Speci�cally, set

�a (fb (h) jSb (h)) = 1 for each h 2 Ha. And likewise for a and b interchanged.
To see that �a is indeed a CPS: It is immediate that �a satis�es conditions (i)-(ii) of De�nition

3.1. For condition (iii), �x information sets h; i 2 Ha so that Sb (i) � Sb (h). If fb (h) 2 Sb (i), then
fb (i) = fb (h). (Lemma D3.) So, for each event E � Sb (i),

�a (EjSb (h)) = �a (EjSb (i))� 1 = �a (EjSb (i))�a (Sb (i) jSb (h)) .

If fb (h) =2 Sb (i), then for each event E � Sb (i),

�a (EjSb (h)) = 0 = �a (EjSb (i))� 0 = �a (EjSb (i))�a (Sb (h) jSb (i)) ,

as required. And, likewise, for b.

Now, let Qa = �a (�a), i.e., the set of all strategies ra that are sequentially optimal under �a.

And, likewise, set Qb = �b (�b). We will show that Qa �Qb is an EFBRS.
Fix some ra 2 Qa. We will show that ra and �a jointly satisfy conditions (i)-(iii) of an EFBRS.

In fact, it is immediate that Conditions (i) and (iii) are satis�ed. So, we will show condition (ii),

i.e., that �a strongly believes Qb.

Fix an information set h 2 Ha with Qb \ Sb (h) 6= ;. We will show that fb (h) 2 Qb, so that
�a (QbjSb (h)) = 1. To show that fb (h) 2 Qb, it su¢ ces to show that, for each information set

i 2 Hb allowed by fb (h),

�b (fa (i) ; fb (h)) � �b (fa (i) ; rb) for all rb 2 Sb (i). (D1)

Note, if either i follows h or h and i are unordered, then fb (h) = fb (i). In either case, we can apply

Lemma D4 to the information set i and get the desired result. So, we focus on the case where h

follows i.

Take S (h) � S (i). Since Qb \ Sb (h) 6= ;, there is a strategy rb 2 Qb \ Sb (h). For this

strategy rb, we have that �b (fa (i) ; rb) � �b (fa (i) ; fb (h)), because rb is sequentially optimal un-

der �b, �b (fa (i) jSa (i)) = 1, and fb (h) 2 Sb (h) � Sb (i). We will show that �b (fa (i) ; rb) =

�b (fa (i) ; fb (h)), establishing Equation D1.

Suppose, contra hypothesis, that �b (fa (i) ; rb) > �b (fa (i) ; fb (h)). Consider the information set

j, so that the last common predecessor of (fa (i) ; rb) and (fa (i) ; fb (h)) is contained in j. Now, use

the fact that rb and fb (h) both allow h, to get that either j follows h or j and h are unordered. In

these cases, we have that �b (fa (j) ; fb (h)) � �b (fa (j) ; rb). (This was established in the previous
paragraph.) But now notice that, since either j follows h or j and h are unordered, we also have

that either j follows i or j and i are unordered. In either case, using the fact that fa (i) allows j,
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we have fa (i) = fa (j). (Lemma D3.) So, putting the above facts together,

�b (fa (i) ; fb (h)) = �b (fa (j) ; fb (h))

� �b (fa (j) ; rb)

= �b (fa (i) ; rb) � �b (fa (i) ; fb (h)) .

But this contradicts the assumption that �b (fa (i) ; rb) > �b (fa (i) ; fb (h)).

We have established that Qa �Qb = �a (�a)� �b (�b) is an EFBRS. By construction, (sa; sb) 2
�a (�a) � �b (�b). So, using Lemma D5, [sa] � [sb] � Qa � Qb. Now, suppose the game tree has

NRT. We will show that, if (ra; rb) 2 Qa �Qb, then (ra; rb) 2 [sa]� [sb].
Fix some strategy ra =2 [sa]. Then, there exists some rb 2 Sb with � (sa; rb) 6= � (ra; rb). Consider

the last common predecessor of � (sa; rb) and � (ra; rb), viz. x, and let h be the information set that

contains this node. Then, there exists (c1; :::; cK) and (d1; :::; dL) so that � (sa; rb) = (x; c1; :::; cK),

� (ra; rb)) = (x; d1; :::; dL). Clearly, c1a = sa(h) 6= ra(h) = d1a and c
k
b = rb(h

0) = dlb whenever

(x; c1; :::; ck�1); (x; d1; :::; dL) 2 h0 2 Hb. So, a is decisive for (� (sa; rb) ; � (ra; rb)).
Now, by the analysis above, we have that �a (sa; fb (h)) � �a (ra; fb (h)).. NRT says that, in

fact, �a (sa; fb (h)) > �a (ra; fb (h)). This implies that ra =2 Qa, as required.

Lemma D6 If � has observable actions, then � is determined by its subgames.

Proof. Fix an information set h. Since � has observable actions, h = fxg for some node/history x.
Now, consider a node y that follows x. Then, by observable actions, y is contained in the information

set fyg. It follows that there is a subgame whose initial node is x, written �. Moreover, the set of
strategies that allow � is exactly Sa (h)� Sb (h). So, � is determined by its subgames.

Proof of Proposition 6.1. Immediate from Proposition D1 and Lemma D6.

Finally, we return to characterize the condition that � is determined by its subgames, in terms

of primitives of the game tree alone (i.e., without reference to strategies). For this, we will need

some notation: Given a set of nodes, viz.
�
x1; : : : ; xK

	
, write lcp(

�
x1; : : : ; xK

	
) for the last common

predecessor of these nodes.

Lemma D7 A game � is determined by its subgames if and only if, for each information set h 2 H,
the following holds:

(i) the last common predecessor of nodes in h, viz. lcp (h), is the root of a subgame, and

(ii) the set of terminal nodes allowed by lcp (h) is exactly the set of terminal nodes allowed by h.

Proof. Fix a game � and an information set h. First observe that if conditions (i)-(ii) are satis�ed
for h, then there must be some subgame su¢ cient for h. To see this claim, take � to be the subgame

whose root is lcp (h). (Here we use condition (i).) Fix a strategy pro�le (sa; sb) that allows lcp (h).
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Note that the terminal node � (sa; sb) is also allowed by h. (Here we use condition (ii).) So, (sa; sb)

must allow h. This establishes that � is su¢ cient for h.

Now, we suppose that there is some subgame that is su¢ cient for h, viz. �. We will show that

conditions (i)-(ii) must be satis�ed. For this, we will make use of the fact that � must contain

lcp (h).

First, we show condition (i). Suppose, contra hypothesis, lcp (h) is contained in a non-singleton

information set � i.e., there is some x 6= lcp (h) so that x and lcp (h) are contained in the same

information set. Then, lcp(flcp (h) ; xg) is also contained in �. Moreover, there is some player who
is active at lcp(flcp (h) ; xg). This player has a strategy that allows �, but not h. This, contradicts
the presumption that � is su¢ cient for h.

Next is condition (ii). To see this, observe that the set of terminal nodes allowed by h is

contained in the set of terminal nodes allowed by lcp (h). Fix a terminal node, viz. z, allowed by

lcp (h). Then, z is also allowed by � (since lcp (h) is contained in the subtree �). So, there is a

strategy pro�le (sa; sb) that allows � with � (sa; sb) = z. Since � is su¢ cient for h, (sa; sb) allows

h. It follows that z is allowed by h, as required.

Appendix E Proofs for Section 7

In this appendix, we prove Proposition 7.1. We also further discuss the gap between parts (i)-(ii)

of the Proposition.

I. Proof of Proposition 7.1(i): This will follow immediately from the following Lemma.

Lemma E1 Fix a perfect-information game satisfying SPC. If Qa �Qb satis�es the best response
property, then each (sa; sb) 2 Qa �Qb is outcome equivalent to a Nash Equilibrium.

The proof of this Lemma closely follows the proof of Proposition 6.1a in Brandenburger-Friedenberg

[15, 2010]. It is by induction on the length of the tree. Speci�cally, �x a game � and a subgame

�. The induction hypothesis states that if a set satis�es the best response property on � then it

is outcome equivalent to some Nash equilibrium. We saw that, if a set Qa � Qb satis�es the best
response property on �, it also satis�es the best response property on the subgame �. (This was

Lemma D1 in Appendix D.) So, if we �x a set that satis�es the best response property on the

whole tree, then, by the induction hypothesis, it is outcome equivalent to a Nash equilibrium on

each reached subgame. The proof uses this fact to construct a pure strategy Nash equilibrium on

the whole tree, that is outcome equivalent to each pro�le in Qa �Qb.
Let us begin �lling in the dots.

De�nition E1 Call Qa � Qa � Sa � Sb a constant set if, for each (sa; sb), (ra; rb) 2 Qa � Qb,
� (sa; sb) = � (ra; rb).

53



Lemma E2 Fix a perfect-information game satisfying SPC. If Qa �Qb satis�es the best response
property, then Qa �Qb is a constant set.

Proof. The proof is by induction on the length of the tree.
First, �x a tree of length one and suppose Ann moves at the initial node. Then Bob�s strategy

set is a singleton. So, if Qa�Qb satis�es the best response property, then Ann is indi¤erent between
each (sa; sb) and (ra; sb) in Qa �Qb. By SPC, each pro�le in Qa �Qb is outcome equivalent.
Assume the result holds for any tree of length l or less. Fix a tree of of length l + 1 and a set

Qa � Qb satisfying the best response property. Suppose Ann moves at the initial node, and can

choose amongst nodes n1; : : : ; nK . Each nk can be identi�ed with an information set and each is

associated with a subgame � = k.

In particular, �x some subgame k with Qka �Qkb 6= ;. Then Qka �Qkb satis�es the best response
property for the subgame k. (This is Lemma D1.) So, by the induction hypothesis, �k

�
ska; s

k
b

�
=

�k
�
rka ; r

k
b

�
, for each

�
ska; s

k
b

�
and

�
rka ; r

k
b

�
2 Qka � Qkb . Now, note that, for each sb 2 Qb, skb 2 Qkb .

(Here, we use the fact that Ann moves at the initial node.) Thus, given two strategies sa; ra 2
Qa \ Sa (�) and sb; rb 2 Qb, we have that � (sa; sb) = � (ra; rb).
Now, �x some (sa; sb) ; (ra; rb) 2 Qa �Qb, where sa 2 Sa (k) and ra 2 Sa (j). We have already

established that � (sa; sb) = � (ra; rb), for k = j. Suppose k 6= j. Since sa 2 Qa, sa is sequentially
optimal under some �a (�j�) that strongly believes Qb. So, in particular, sa is optimal under �a (�jSb)
with �a (QbjSb) = 1. With this,

�a (sa; sb) =
P

qb2Qb
�a (sa; qb)�a (qbjSb)

�
P

qb2Qb
�a (ra; qb)�a (qbjSb)

= �a (ra; rb) .

(The �rst equality follows from the fact that, for each qb 2 Qb, �a (sa; sb) = �a (sa; qb). This is a

consequence of the last line in the preceding paragraph. Likewise, for the last equality.) By an

analogous argument, �a (ra; rb) � �a (sa; sb). So, �a (ra; rb) = �a (sa; sb). Using the single payo¤

condition, �b (ra; rb) = �b (sa; sb).

Proof of Lemma E1. The proof is by induction on the length of the tree.

First, �x a tree of length one and suppose Ann moves at the initial node. Then Bob�s strategy

set is a singleton. The result follows from the fact that each sa 2 Qa is sequentially optimal under
a CPS.

Now assume the result holds for any tree of length l or less. Suppose Ann moves at the initial

node, and can choose among nodes n1; : : : ; nK . Each nk can be identi�ed with an information set

and each is associated with a subgame � = k.

Fix some (sa; sb) 2 Qa �Qb and suppose sa 2 Sa (1). Note, Q1a �Q1b satis�es the best response
property (Lemma D1). So, by the induction hypothesis, there is a Nash equilibrium of subgame 1,

viz.
�
r1a; r

1
b

�
, so that �

�
s1a; s

1
b

�
= �

�
r1a; r

1
b

�
. Consider a strategy ra 2 Sa (1) so that the projection
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of ra onto
Q
h2H1

a
Ca (h) is r1a. We need to show that we can choose r

2
b ; : : : ; r

K
b 2 �Kk=2Skb so that,

for each qa 2 Qa and associated qka 2 Ska , �a
�
r1a; r

1
b

�
� �a

�
qka ; r

k
b

�
. The pro�le

�
ra;
�
r1b ; r

2
b ; : : : ; r

K
b

��
will then be a Nash Equilibrium of the game.

Since sa 2 Qa, there exists a CPS and an associated measure �a (�jSb) so thatX
sb2Sb

[�a (sa; sb)� �a (qa; sb)]�a (sbjSb) � 0,

for all qa 2 Sa. Fix k from 2; : : : ;K. Using Lemma E2,

�a
�
r1a; r

1
b

�
= �a

�
s1a; s

1
b

�
�
P

skb2Sbk
�a
�
qka ; s

k
b

�
(margSkb � (�jSb))

�
skb
�
,

for any qka 2 Ska . Letting (qka; qkb ) 2 argmaxSka minSkb �a (�; �), we have in particular

�a
�
r1a; r

1
b

�
�
P

skb2Sbk
�a
�
qka; s

k
b

�
(margSbk � (�jSb))

�
skb
�
:

But �a(qka; q
k
b ) � �a(qka; qkb ) for any qkb 2 Skb , by de�nition. So

�a
�
r1a; r

1
b

�
�
P

skb2Sbk
�a(q

k
a; q

k
b )(margSkb � (�jSb))

�
skb
�
= �a(q

k
a; q

k
b ):

Set (qk
a
; qk
b
) 2 argminSkb maxSka �a (�; �). By the Minimax Theorem for PI games (see, e.g., Ben

Porath [11, 1997]), �a(qka; q
k
b ) = �a(q

k
a
; qk
b
). It follows that �a(r1a; r

1
b ) � �a

�
qka; q

k
b

�
= �a(q

k
a
; qk
b
).

But �a(qka; q
k
b
) � �a(q

k
a ; q

k
b
) for any qka 2 Ska , by de�nition. So �a(r1a; r

1
b ) � �a(q

k
a ; q

k
b
), for each

qka 2 Ska . Setting each rkb = qkb gives the desired pro�le.

II. Proof of Proposition 7.1(ii): Let us give the idea of the proof. We will start with a set

Qa �Qb = f(sa; sb)g, where (sa; sb) is a pure Nash equilibrium in sequentially justi�able strategies.

This set will satisfy the best response property. (See Lemma E4 below.) In particular, the set

Qa is associated with a single CPS �a, satisfying the conditions of the best response property. We

will look at the set Pa of all strategies ra that are sequentially optimal under �a. We use the fact

that �a strongly believes Qb (so assigns probability 1 to sb at the initial information set) to get that

Ann is indi¤erent between all outcomes associated with Pa �Qb. Indeed, by NRT, these strategy

pro�les must reach the same terminal node. Likewise, we de�ne Pb and, using standard properties

of a PI game tree, we get that all strategies in Pa � Pb reach the same terminal node.
So, what have we done: We began with a set Qa�Qb and we expanded it to a set Pa�Pb, with

(i) Qa �Qb � Pa � Pb, (ii) all the pro�les in Pa � Pb reach the same terminal node, and (iii) there
is a CPS �a (resp. �b) that strongly believes Qb (resp. Qa) and such that Pa (resp. Pb) is the set

of strategies that are sequentially optimal under �a (�j�) (resp. �b (�j�)). We would have succeeded

in constructing an EFBRS if the CPS �a (resp. �b) strongly believed Pb (resp. Pa) instead of Qb
(resp. Qa). The key will be that we can similarly expand Pa � Pb so that the new set satis�es
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similar properties. Since the game is �nite, eventually, the expanded set must coincide with the

original set� that is, condition (i) must hold with equality. This gives the desired result.

Now we turn to the proof. First, we give a technical Lemma.

Lemma E3 Fix some (
; E) where 
 is �nite. Let � (�j�) be a CPS on (
; E) and let $ be a

measure on 
. Construct � (�j�) : B (
)�E ! [0; 1] as follows: If F 2 E with Supp$ \F 6= ; then
� (�jF ) = $ (�jF ). Otherwise, � (�jF ) = � (�jF ). Then � (�j�) is a CPS.

Proof. Let �, $, and � be as in the statement of the Lemma. Conditions (i)-(ii) of a CPS are

immediate. Turn to condition (iii). For this, �x E 2 B (
) and F;G 2 E with E � F � G.
First suppose that Supp$ \ F 6= ;. Then

� (EjG) =
$ (E)

$ (G)

=
$ (E)

$ (F )

$ (F )

$ (G)
= � (EjF ) � (F jG) ;

where the �rst equality makes use of the fact that E � G and the last makes use of the fact that

E � F and F � G. Next suppose that Supp$ \G = ;. Then Supp$ \ F = ;, so that

� (EjG) = � (EjG)

= � (EjF )� (F jG) = � (EjF ) � (F jG) ;

as required. Finally, suppose that Supp$ \ F = ; but Supp$ \G 6= ;. Then

0 � � (EjG) � � (F jG) = $ (F jG) = 0;

where the last equality follows from the fact that Supp$ \ F = ;. Then

� (EjG) = 0

= � (EjF )$ (F jG) = � (EjF ) � (F jG) ;

as required.

Lemma E4 Let (sa; sb) be a Nash equilibrium in sequentially justi�able strategies. Then f(sa; sb)g
satis�es the best response property.

Proof. Let (sa; sb) be a Nash equilibrium in sequentially justi�able strategies. Then there exists

a CPS �a (�j�) so that sa is sequentially optimal under �a (�j�). Construct a CPS �b (�j�) so that
�b (sbjSb (h)) = 1 if sb 2 Sb (h), and �b (�jSb (h)) = �a (�jSb (h)) otherwise. By Lemma E3, �b (�j�)
is a CPS. It is immediate from the construction that sa is sequentially optimal under �b (�j�) and
�b (�j�) strongly believes fsbg. And, similarly, with a and b reversed.
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De�nition E2 Fix a constant set Qa �Qa � Sa � Sb. Call Pa � Pa � Sa � Sb an expansion of
Qa �Qb if there exists a CPS �a 2 C(Sb) so that:

(i) Qa � Pa = �a (�a),

(ii) �a strongly believes Qb, and

(iii) if ra is optimal under �a (�jSb) then �a (ra; sb) = �a (sa; sb) for all (sa; sb) 2 Qa �Qb.

And, likewise, with a and b reversed.

Notice, we only de�ne an expansion of a set Qa �Qb, if Qa �Qb is a constant set. Also, note,
if Pa � Pb is an expansion of Qa �Qb then there are CPS�s �a and �b satisfying conditions (i)-(iii)
of De�nition E2. We will refer to these as the associated CPS�s.

Lemma E5 Fix a PI game satisfying NRT. Suppose Pa � Pb is an expansion of Qa �Qb and �x
associated CPS�s �a and �b. Let Xa be the set of strategies that are optimal under �a (�jSb). And,
likewise, de�ne Xb. Then Xa �Xb is a constant set.

Proof. Since Pa�Pb is an expansion of Qa�Qb, Qa�Qb is a constant set. (This is by de�nition.)
It follows from condition (iii) of De�nition E2 that Xa �Qb and Qa �Xb are constant sets. Then,
using NRT, each pro�le in Xa�Qb reaches the same terminal node. And likewise for Qa�Xb. In
fact, the terminal node reached by Xa �Qb and Qa �Xb must be the same one, since (Xa �Qb) \
(Qa �Xb) = (Qa �Qb). Now �x a pro�le (sa; rb) 2 (XanQa) � (XbnQb). Note there is a pro�le

(sa; sb) 2 (XanQa) � Qb and a pro�le (ra; rb) 2 Qa � (XbnQb). These pro�les reach the same

terminal node and so (sa; rb) must also reach that terminal node. This establishes that Xa �Xb is
a constant set.

Corollary E1 Fix a PI game satisfying NRT. If Pa � Pb is an expansion of some Qa �Qb, then
Pa � Pb is constant.

The next result is standard, and so the proof is omitted.

Lemma E6 Fix a measure $a 2 P (Sb) so that sa is optimal under $a given Sa. Then, for any

information set h with sa 2 Sa (h) and $a (Sb (h)) > 0, sa is optimal under $a (�jSb (h)) given
Sa (h) :

Given a measure $ 2 P (
), we write Supp$ for the support of the measure.

Lemma E7 Fix a PI game satisfying NRT. If Pa � Pb is an expansion of Qa � Qb, then there
exists some Wa �Wb that is an expansion of Pa � Pb.
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Proof. Begin with the fact that Pa�Pb is an expansion of Qa�Qb, and choose an associated CPS
�a (resp. �b) satisfying the conditions of De�nition E2. Let Xa (resp. Xb) be the set of strategies

that are optimal under �a (�jSb) (resp. �b (�jSa)). By Lemma E5, Xa �Xb is a constant set.
Construct a measure $a 2 P (Sb) as follows: Begin with a measure $a with Supp$a = Pb.

Construct $b so that, for each rb 2 Pb,

$a (rb) = (1� ")�a (rbjSb) + "$a (rb) ;

where " 2 (0; 1). Note that �a strongly believes Qb � Pb, Supp�a (�jSb) � Pb. With this and

the fact that Supp$ = Pb, we have Supp$a = Pb. Using the fact that Xa � Pb is a constant set,
�a (sa; $a) = �a (ra; $a) for all sa; ra 2 Xa. Moreover, when " is su¢ ciently small, �a (sa; $a) >

�a (ra; $a) for all sa 2 Xa and ra 2 SanXa. So we can choose $a so that sa is optimal under $a

if and only if sa 2 Xa.
Now construct a CPS �a 2 C(Sb) as follows: If Pb \ Sb (h) 6= ;, let �a (�jSb (h)) = $a (�jSb (h)).

(This is well de�ned since, in this case, $a (Sb (h)) > 0.) If Pb \ Sb (h) = ;, let �a (�jSb (h)) =
�a (�jSb (h)). Lemma E3 establishes that �a (�j�) is a CPS. Construct a measure $b 2 P (Sa) and
a CPS �b 2 C(Sa) analogously.
Take Wa = �a(�a) and Wb = �b(�b). We will show that Wa �Wb is an expansion of Pa � Pb.
Begin with condition (i). Note, by de�nition,Wa = �a(�a). So, we only need show that Pa �Wa.

Fix some sa 2 Pa. By construction, sa is optimal under $a. Let h 2 Ha with sa 2 Sa (h). If

Pb \ Sb (h) 6= ; then $a (�jSb (h)) = �a (�jSb (h)) and sa is optimal under �a (�jSb (h)) among all
strategies in Sa (h). (See Lemma E6.) If Pb \ Sb (h) = ; then �a (�jSb (h)) = �a (�jSb (h)). So,

again, sa is optimal under �a (�jSb (h)) given all strategies in Sa (h). With this, sa 2 �a(�a (�j�)), as
required.

Next, turn to condition (ii). We need to show that �a strongly believes Pb. For this notice that

if Pb \ Sb (h) 6= ; then �a (PbjSb (h)) = $a (PbjSb (h)) = 1.
Finally, we show condition (iii). Suppose ra is optimal under �a (�jSb). We will show that

�a (ra; sb) = �a (sa; sb) for all (sa; sb) 2 Pa � Pb. To see this, recall, �a (�jSb) = $a. So, if ra is

optimal under �a (�jSb) then ra 2 Xa. The claim now follows from the fact that Xa�Xb is constant
that contains Pa � Pb.
Replacing b with a establishes that Wa �Wb is an expansion of Pa � Pb.

Lemma E8 Fix a PI game satisfying NRT. Let (sa; sb) be a Nash equilibrium in sequentially

justi�able strategies. Then there exists an EFBRS, viz. Qa �Qb, that contains (sa; sb).

Proof. Fix a Nash equilibrium in sequentially optimal strategies, viz. (sa; sb). Let Q0a � Q0b =
fsag � fsbg. By Lemma E4, Q0a �Q0b satis�es the best response property. So, there is a CPS �a
(resp. �b) that strongly believes fsbg (resp. fsag) and sa (resp. sb) is sequentially optimal under �a
(resp. �b). Let Q

1
a = �a (�a) (resp. Q

1
b = �b (�a)). Note that Q

1
a �Q1b is an expansion of Q0a �Q0b

(associated with the CPS�s �a and �b). Now, repeatedly apply Lemma E7 to get sets Q0a � Q0b ,
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Q1a � Q1b , Q2a � Q2b , . . . , where each Qm+1a � Qm+1b is an expansion of Qma � Qmb . Since the game

is �nite, there is some M with Qma � Qmb = QMa � QMb for all m � M . The set QMa � QMb is an

EFBRS.

III. Closing the Gap: In the text, we mentioned that there is a gap between parts (i)-(ii) of
Proposition 7.1. We said that we do not know if part (i) can be improved to read: If Qa�Qb satis�es
the best response property, then each (sa; sb) 2 Qa � Qb is outcome equivalent to a sequentially
justi�able Nash Equilibrium. Let us better understand the problem.

Return to Lemma E1 and the proof thereof. Suppose, we strengthened the induction hypothesis,

so that we can look at a sequentially justi�able Nash equilibrium of subgame 1, viz.
�
r1a; r

1
b

�
.

Following the proof, we use this, to construct a Nash equilibrium (ra; (r
1
b ; q

2
b
; : : : ; qK

b
)), where each

qk
b
is the minimax strategy on subtree k. But, now we need to show that the constructed equilibrium

is sequentially justi�able. Here is where the problem arises� the strategy qk
b
(on subtree k) may

not be a best response to any strategy on that subtree. Thus, the proof breaks down. Of course, it

may very well be that there is another method of proof.

In the text we mentioned a related result� namely Proposition 7.1, which speaks some to the

gap. To show this result, it su¢ ces to show the following Lemma.

Lemma E9 Suppose Qa � Qb is a constant set satisfying the best response property. Then there

exists a mixed strategy Nash equilibrium, viz. (�a; �b), so that:

(i) Qa �Qb is outcome equivalent to (�a; �b), and

(ii) each sa 2 Supp�a (resp. sb 2 Supp�b) is sequentially justi�able.

Proof. Pick some (ra; rb) 2 Qa � Qb and let �a 2 C(Sb) be a CPS so that ra 2 �a (�a) and �a
strongly believes Qb. Set �b = �a (�jSb). Construct �a analogously.
First, notice that (�a; �b) is a mixed strategy Nash equilibrium: Begin by using the fact that

�b (QajSa) = 1 and �a (QbjSb) = 1. As such Supp�a � Supp�b � Qa � Qb. Since Qa � Qb is a
constant set, for each (sa; sb) 2 Supp�a�Supp�b, � (sa; sb) = � (ra; rb). So, for each sa 2 Supp�a
and each qa 2 Sa,

�a (sa; �b) = �a (ra; rb)

= �a (ra; �b) � �a (qa; �b) ;

where the inequality holds because ra 2 �a (�a) and �a (�jSb) = �b. Applying an analogous argument
to b, establishes that (�a; �b) is indeed a Nash equilibrium.

Next, notice that Qa �Qb is outcome equivalent to (�a; �b): To see this, recall that Supp�a �
Supp�b � Qa�Qb andQa�Qb is a constant set. So, it is immediate that, for each (sa; sb) 2 Qa�Qb,
� (sa; sb) = � (�a; �b).
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Lastly, notice that each sa 2 Supp�a is sequentially justi�able, and likewise for b: To see this,
recall that Supp�a�Supp�b � Qa�Qb. So, if sa 2 Supp�a, then sa 2 Qa, and so sa is sequentially
justi�able.

Proof of Proposition 7.1. Immediate from Lemmata E2-E9.
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