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Abstract

We characterize the boundaries of the set of transfers implementing a given allocation
rule without imposing any assumptions on the agent’s type space or utility function besides
quasi-linearity. In particular, we characterize the pointwise largest and the pointwise smallest
transfer that implement a given allocation rule and are equal to zero at some prespecified
type (extremal transfers). Exploiting the concept of extremal transfers allows us to obtain
an exact characterization of the set of all implementable allocation rules (the set of transfers
is non-empty) and the set of allocation rules satisfying Revenue Equivalence (the extremal
transfers coincide).

Furthermore, we show how the extremal transfers can be put to use in mechanism de-
sign problems where Revenue Equivalence does not hold. To this end we first explore the
role of extremal transfers when the agents with type dependent outside options are free to
participate in the mechanism. Finally, we consider the question of budget balanced imple-
mentation. We show that an allocation rule can be implemented in an incentive compatible,
individually rational and ex post budget balanced mechanism if and only if there exists an
individually rational extremal transfer scheme that delivers an ex ante budget surplus.
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1 Introduction

In this paper we develop a new approach to mechanism design problems in quasi-linear environ-
ments with arbitrary type sets. Our analysis builds on the concept of extremal transfers. The
extremal transfers for a given allocation rule and a prespecified type of the agent (the so called
anchor type), describe (in a pointwise sense) the upper (t̄) and the lower boundaries (t) of the
set of (interim expected) transfer schemes which i) are incentive compatible and ii) require a
zero payment for the anchor type. We show that both of these boundaries constitute incentive
compatible transfers, provided that the allocation rule to which they are associated is imple-
mentable. Consequently, they can be seen as the transfer payments that, respectively, maximize
and minimize the payments that can be extracted from the agent subject to the constraint that
the anchor type’s transfer is zero.

With the use of extremal transfers we characterize the set of implementable allocation rules
and the set of allocation rules satisfying Revenue Equivalence. In particular, we show that an
allocation rule is implementable if and only if t ≤ t for every type of the agent. Moreover,
an allocation rule satisfies Revenue Equivalence if and only if the associated extremal transfers
coincide, i.e. if and only if t ≡ t. The characterization of implementability was first obtained
in Rochet (1987), the characterization of revenue equivalence in Heydenreich, Müller, Uetz, and
Vohra (2009). What is more, a careful reading of these papers reveals that in their proofs they
make implicit use of what we characterize as extremal transfers. However, it is precisely the
characterization of extremal transfers that enables us to obtain new results. While, for example,
Heydenreich, Müller, Uetz, and Vohra (2009) focus on characterizing the conditions under which
Revenue Equivalence obtains, we show how to deal with mechanism design problems regardless
of whether the Revenue Equivalence is satisfied or not. As a technical tool in mechanism design
revenue equivalence can be used to reduce the problem of choosing the optimal mechanism to
the choice of the optimal nonmonetary allocation only. In Proposition 4 we show how this can
be done using extremal transfers even when Revenue Equivalence does not necessarily hold.

To formalize the latter idea we first explore implementation under type dependent individual
rationality constraints. We identify conditions under which the upper boundary of the set of
transfer schemes implementing a given allocation rule in an incentive compatible and individually
rational mechanism is given by some translation of an extremal transfer.

Next we show how extremal transfers can be used to characterize budget balanced imple-
mentation with individual rationality. In particular we show that an allocation rule can be
implemented in an incentive compatible, individually rational and budget balanced mechanism
if and only if it can be implemented through a translation of an extremal transfer that is in-
dividually rational and that generates an ex ante budget surplus. We apply our results to
provide a simple characterization of budget balanced implementation in a linear environment
with arbitrary compact type space. This characterization can, among other things, be applied
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to environments as in Myerson and Satterthwaite (1983) and Cramton, Gibbons, and Klemperer
(1987) with more general type sets (i.e. type sets that are not necessarily intervals, but arbitrary
compact sets).

In the final part of the paper we explore to which extent our results carry over to non quasi-
linear environments. We show that a version of our characterization result regarding the set of
implementable allocation rules goes through even when no restrictions on the payoff functions
are imposed. In particular, we show that if a mechanism is incentive compatible then the
indirect utility to which it gives rise lies between certain bounds U and Ū . Conversely, if for
some mechanism the condition U ≤ Ū holds and the indirect utility that it generates coincides
with one of these two bounds then the mechanism is incentive compatible.

Related literature

In this paper we pick up several themes of the literature on mechanism design in quasi-linear
environments. Since this literature is rather vast, a detailed discussion of all related papers is
prohibitive. In what follows we therefore only mention the papers most closely related to ours.
The organization of the discussion of the literature follows the order in which we present our
results.

Characterization of the extremal transfers: Chung and Olszewski (2007) show for a very
general setup, that the incentive compatible transfer that extracts the most money from the
agent exists. We go beyond this result by i) showing that also a (pointwise) minimal transfer
exists and by ii) providing a characterization of both of these extremal transfers.

Implementability: Among the papers that provide a characterization of the set of imple-
mentable allocation rules, the one that is most closely related to ours is Rochet (1987). He
provides a ‘no negative cycle’-condition which he shows to be necessary and sufficient for im-
plementation in dominant strategies. In comparison to Rochet’s approach our characterization
offers the advantage that it not only allows us to make a statement about whether or not an allo-
cation rule is implementable, but also delivers a description of the bounds of the set of transfers
that implement the allocation rule.

Revenue Equivalence: The literature on Revenue Equivalence can be divided into two main
strands. In a first and older strand Revenue Equivalence results are obtained in combination
with explicit formulas for the transfers. That is, formulas that express the transfers in terms of
the allocation rule which they are supposed to implement. The most notable early proponents
of such results were Vickrey (1961) and Myerson (1981). For a more recent paper in this line of
the literature see Milgrom and Segal (2002).

In more recent years there have been a number of papers (see for instance Chung and
Olszewski (2007) and Heydenreich, Müller, Uetz, and Vohra (2009)) which focus their attention
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exclusively on the characterization of the conditions under which Revenue Equivalence obtains,
without providing an explicit description of transfers. While our characterization of allocation
rules for which Revenue Equivalence is satisfied is equally general as the ones obtained in the
before mentioned papers, it has the advantages that it delivers a description of the corresponding
transfers.

Budget balance: The issue of budget balance constraints in implementation goes back at least
to D’Aspremont and Gérard-Varet (1975), D’Aspremont and Gérard-Varet (1979) and Walker
(1980). While Walker shows that implementing efficient allocation rules in dominant strategies
is typically incompatible with a (ex post) balanced budget, D’Aspremont and Gérard-Varet
(1979) prove that when only Bayesian incentive compatibility is required efficient allocations
can be implemented in a budget balanced way. Since Myerson and Satterthwaite (1983) it
has been recognized, however, that even under Bayesian incentive compatibility there might be
an unresolvable tension between budget balance and individual rationality. A more in depth
treatment of mechanism design when both budget balance and individual rationality are required
is given in Makowski and Mezzetti (1994), Krishna and Perry (1998) and Williams (1999). Our
contribution to this literature is in that our treatment is more general. In particular, in order to
derive our results we do not impose the standard conditions required for Revenue Equivalence.

In a recent paper Segal and Whinston (2010) explore whether efficient bargaining can arise
for some status quo allocations. Most of their paper focuses on showing that efficient trade is
possible when the status quo is the randomized allocation that has the same distribution as the
equilibrium allocation in the mechanism. However, their Lemma 1 provides a general result on
efficient budget balanced implementation. Our result, while being neither more nor less general
then theirs provides certain advantages. First, we allow for more general outside options. Second,
if one wanted to use their result to identify whether a certain allocation rule is implementable
with budget balance, for a fixed status quo, one has to check all the transfer rules that implement
a given allocation rule. Our result, on the other hand, provides the salient transfers, i.e. the
extremal transfers with an appropriately chosen anchor type, and a characterization thereof,
which enables us to express the necessary and sufficient condition as a single inequality written
solely in the terms of the allocation rule.

In independent work, Rahman (2010) and Carbajal and Ely (2010) provide alternative char-
acterizations of implementability. Rahman (2010) obtains his results using linear programming
and duality. Carbajal and Ely (2010), after imposing additional structure (for example Lipschitz
continuity), also derive bounds on the set of incentive compatible transfers. While the bounds
they derive allow for a more convenient integral representation, they are - unlike ours - in general
not tight. For a further discussion see Example 2. Hellwig (2010) provides a characterization
of incentive compatible and individually rational mechanisms under not necessarily quasilinear
environments on which several differentiability assumptions are imposed; see his Lemma 2.7.
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2 Framework

We start with the description of the quasi-linear, single agent framework that will be at the
center of our attention throughout most of the following sections. In terms of notation the
extension to a multiple agent set up is straightforward. We will shortly comment on how our
results for the single agent case carry over to multi agent environments at the end of Section 3.

An allocation is a pair (x, τ) ∈ X × R, where x is a (non-monetary) choice variable and τ

represents a monetary transfer (to be paid by the agent). With a slight abuse of terminology we
will often use the term ‘allocation’ to indicate the non-monetary component x of a pair (x, τ).
The agent’s preferences over X × R depend on his (preference-) type v ∈ V . We assume that
they are quasi-linear for each v ∈ V . That is, type v’s payoff at the allocation (x, τ) can be
written in the form

u(x, v)− τ,

where u : X × V → R. We will refer to u as valuation function. It is important to point out
that apart from the assumption of quasi-linearity of preferences, our framework is very general.
In particular, for the time being we do not impose any assumptions at all on the set of decisions
X, the set of preference types V or the valuation function u.1

We refrain from giving a definition of general mechanisms for this environment since due to
the Revelation Principle it is without loss of generality to consider only direct mechanisms. A
direct mechanism is a pair of functions, (q, t), where

q : V → X, 2

and
t : V → R.

The function q, to which we will refer as allocation rule or choice function, associates with each
type of the agent, v ∈ V , an allocation, q(v) ∈ X. Similarly, the transfer rule t specifies for each
type of the agent a transfer to be paid by this type.

3 Incentive Compatible Transfers

The following definition recalls some standard terminology and concepts that we frequently use
throughout the paper.

Definition 1 (Incentive compatibility, Implementability, Revenue Equivalence).
1The implementation problem is non-trivial only if both X and V contain at least two elements.
2The restriction to deterministic mechanisms is made for notational convenience only. All our results extend

to the case of non-deterministic allocation rules.
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i) A direct mechanism (q, t) is incentive compatible if

u(q(v), v)− t(v) ≥ u(q(v′), v)− t(v′)

for all type pairs v, v′ ∈ V .

ii) A choice function q is implementable if there exists a transfer scheme t such that (q, t)

is incentive compatible. Moreover, if (q, t) is incentive compatible then we say that the

transfer rule t implements the choice function q.

iii) A social choice function q satisfies Revenue Equivalence if it is implementable and for

any two incentive compatible mechanisms (q, t) and (q, t′) there exists a constant c ∈ R
such that

t(v) = t′(v) + c,

for every v ∈ V .

It is straightforward to verify that the above definition of Revenue Equivalence coincides with
the following one. A social choice function q satisfies Revenue Equivalence if it is implementable
and for every v̂ ∈ V and any two transfer schemes t and t′ that implement q we have

t(v)− t(v̂) = t′(v)− t′(v̂)

for all v ∈ V . We refer to the function t(·)− t(v̂) as the transfer differential at the type v̂.

We are now ready to introduce the central concepts for our analysis. For any pair of types
v, v̂ ∈ V let S(v; v̂) denote the set of all finite sequences in the type space V that start at
v̂ and end at v. That is, a finite sequence {vj}nj=0 belongs to S(v; v̂) if vj ∈ V for all j =
0, . . . , n, v0 = v̂ and vn = v. For any choice rule q and any v̂ ∈ V we define the two functions
t̄(·; v̂, q), t(·; v̂, q) : V → R as follows

t̄(v; v̂, q) ≡ inf
{vj}∈S(v;v̂)

n∑
j=1

[
u(q(vj), vj)− u(q(vj−1), vj)

]
, and (1)

t(v; v̂, q) ≡ sup
{vj}∈S(v;v̂)

n∑
j=1

[
u(q(vj), vj−1)− u(q(vj−1), vj−1)

]
. (2)

Finally, we write I(v; v̂, q) for the interval [t(v; v̂, q), t̄(v; v̂, q)]. If t̄(v; v̂, q) < t(v; v̂, q) then by
convention we set I(v; v̂, q) = ∅.

We postpone a detailed comment on the above defined expressions since their meaning and
interpretation will become clear from the following results. For now we limit ourself to making
the following two observations. First, notice that the functions t and t̄ are not necessarily real
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valued. We have specified the extended real numbers R as their range since the expressions on
the right hand sides of (1) and (2) may take on the values −∞ and∞, respectively. On the other
hand, it is also easily seen that for each triple (v, v̂, q), t̄(v; v̂, q) ≤ u(q(v), v) − u(q(v̂), v) < ∞
and t(v; v̂, q) ≥ u(q(v), v̂, q)− u(q(v̂), v̂) > −∞.

For later reference, it is convenient to point out that whenever t̄(·; v̂, q) and t(·; v̂, q) are real
valued, they must be equal to zero at the type v̂.

Lemma 1. Let q be an allocation rule and v̂ ∈ V . Then

t̄(v̂; v̂, q) ∈ {0,−∞} and t(v̂; v̂, q) ∈ {0,+∞}.

Proof. First, observe that for the trivial sequence {v̂, v̂} the sum on the rhs of (1) is equal to

zero, which implies that t̄(v̂; v̂, q) ≤ 0. Next, suppose that t̄(v̂; v̂, q) is strictly negative. Then

there has to be a finite sequence, {vj}nj=1, that starts and ends at v̂ (cycle) and satisfies the

condition
∑n

j=1

[
u(q(vj), vj)− u(q(vj−1), vj)

]
< 0. If we preattach this cycle or arbitrarily many

repetitions of it to any finite sequence that starts at v̂ and ends at v we again obtain a sequence

which starts at v̂ and ends at v. By adding more repetitions of the cycle to the sequence the

corresponding sum,
∑n

j=1

[
u(q(vj), vj)− u(q(vj−1), vj)

]
, can be made arbitrarily small. Hence,

t̄(v̂; v̂, q) < 0 implies t̄(v; v̂, q) = −∞ for all v. By an analogous argument it follows that

t(v̂; v̂, q) > 0 implies t(v; v̂, q) =∞ for all v.

For the remainder of our analysis we refer to v̂ as anchor type. The following lemma describes
a first important result.

Lemma 2. Let (q, t) be an incentive compatible mechanism. Then, for any given v̂ ∈ V

t(v; v̂, q) ≤ t(v)− t(v̂) ≤ t̄(v; v̂, q)

for every v ∈ V .

Proof. Fix v̂ ∈ V and let {vj}nj=0 be a sequence in S(v; v̂). Incentive compatibility implies

u(q(v′), v′′)− u(q(v′′), v′′) ≤ t(v′)− t(v′′) ≤ u(q(v′), v′)− u(q(v′′), v′) (3)

for any pair v′, v′′ ∈ V . Consider the first inequality in (3). Adding the inequalities for all pairs

of consecutive elements of the sequence, (vj−1, vj), yields

n∑
j=1

[
u(q(vj−1), vj)− u(q(vj), vj)

]
≤

n∑
j=1

[
t(vj)− t(vj−1)

]
= t(v)− t(v̂).

Taking the supremum over all sequences in S(v; v̂) we get t(v; v̂, q) ≤ t(v) − t(v̂). The second

inequality is obtained in an analogous fashion.
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Lemma 2 tells us that t(·; v̂, q) and t̄(·; v̂, q) represent respectively, a lower and an upper bound
of the transfer differentials at the anchor type v̂ (that can be obtained from transfer functions
implementing the given allocation rule q). Put differently, t(·; v̂, q) and t̄(·; v̂, q) bound the set of
all transfer schemes which implement q and require the anchor type v̂ to pay a zero transfer. Our
next result shows that these bounds are tight. That is, t and t̄ themselves constitute incentive
compatible schemes, which - by construction - vanish at the anchor type v̂.

Lemma 3. Let q be such that for some v̂ ∈ V we have I(v; v̂, q) 6= ∅ for all v ∈ V . Then both

(q, t(·; v̂, q)) and (q, t(·; v̂, q)) are incentive compatible mechanisms.

Proof. See the Appendix.

The preceding two lemmata constitute the basis for the following theorem.

Theorem 1. For any v̂ ∈ V the following statements are true.

i) An allocation rule q is implementable if and only if I(v; v̂, q) 6= ∅ for every v ∈ V .

ii) An allocation rule q satisfies Revenue Equivalence if and only if for all v ∈ V , I(v; v̂, q) is a

singleton.

iii) Let q be an implementable allocation rule and let v̂ ∈ V . If t implements q, and t(v̂) = 0,

then

t(v; v̂, q) ≤ t(v) ≤ t(v; v̂, q),

for every v ∈ V .

Proof. See the Appendix.

The main novelty of Theorem 1 is that it provides a characterization of the boundaries of
the set of incentive compatible transfers without imposing any topological structure or ordering
assumptions on the environment. With expressions (1) and (2) two explicit formulas for the
calculation of the extremal incentive compatible transfers are given. We will demonstrate how
the extremal transfers are calculated in several examples below. A detailed treatment of the
case of linear environments is given in Kos and Messner (2010a).

In addition to providing an explicit description of the boundaries of the set of incentive
compatible transfers, the theorem unifies several existing results in the literature on mechanism
design. The first statement of the theorem is formally equivalent to the characterization of
implementability in Rochet (1987). According to Rochet’s characterization an allocation rule q
is implementable if and only if there does not exist a finite sequence of valuations {vj}nj=0 ⊂ V ,
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which satisfies the conditions i) the sequence forms a cycle (i.e. v0 = vn, vj 6= vk for all j 6= k)
and ii)

∑n
j=1

[
u(q(vj), vj)− u(q(vj−1), vj)

]
< 0. We will refer to the Rochet’s conditions as

cyclical monotonicity. Thus an allocation rule is implementable if and only if it is cyclically
monotone.

The equivalence between cyclical monotonicity and our characterization is formalized in the
next lemma.

Lemma 4. Let q be an allocation rule and v̂ ∈ v. The following statements are equivalent. (a)

q is cyclically monotone. (b) For every v ∈ V , t(v; v̂, q) ≤ t(v; v̂, q).

Proof. If there exists a ‘negative sum cycle’ a la Rochet at type ṽ, then there exists a sequence

starting and ending at the anchor type v̂ with a negative sum (just insert sufficiently many

repetitions of this negative sum cycle in the middle of the cycle {v̂, ṽ, v̂}). We have already

observed earlier, that the existence of a negative sum sequence starting and ending at v̂ implies

that t̄(·; v̂, q) is equal to −∞ everywhere.

Similarly, by inverting the order of the negative sum cycle at ṽ we obtain a positive sum cycle

at ṽ which in turn means that a positive sum cycle exists everywhere, in particular at v̂. By our

earlier observations we know that this means that t(v; v̂, q) = ∞ for all v. But if t(·; v̂, q) ≡ ∞
and t̄(·; v̂, q) ≡ −∞, then I(v, v̂, q) = ∅ for all v.

Conversely, suppose that t(v; v̂, q) ≤ t̄(v; v̂, q) for all v ∈ V . Then, in particular, t(v̂; v̂, q) ≤
t̄(v̂, v̂, q). By construction we have that t(v̂; v̂, q) ≥ 0 and t̄(v̂; v̂, q) ≤ 0. Combining these obser-

vations implies that whenever q is implementable then t(v̂; v̂, q) = 0 = t̄(v̂; v̂, q). Since t̄(v̂; v̂, q) is

the lower bound of all values that can be written as a sum of the form
∑n

j=1

[
u(q(vj), vj)− u(q(vj−1), vj)

]
for some finite sequence that starts and ends at v̂, the sum for no such sequence can be negative.

But then there can be no negative-value cycle for any other type either since we could always

include (sufficiently many replica of) it into a sequence which starts and ends at v̂ in order to

get a negative sum sequence at v̂.

The characterization of Revenue Equivalence here is formally equivalent to the one given
in Heydenreich et al. (2009). While Heydenreich et al. (2009) provide a graph theoretic
characterization, we formulate our result in direct economic terms (the extremal transfers).

The most novel result of Theorem 1, is the one contained in statement iii) in which we
describe the boundaries of the set of transfer differentials for implementable allocation rules.
By the preceding lemma we also know that these boundaries themselves constitute incentive
compatible transfer rules. The two boundaries correspond to the transfers that extract the most
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money (t̄) and the least money (t), respectively, from the agent, given that the transfer of the
anchor type v̂ is zero. That is, any transfer rule which i) implements the given allocation rule
and ii) requires a zero payment from the anchor type v̂ is pointwise dominated by (dominates)
the transfer scheme t̄ (t).

Finally, we should point out that Theorem 1 does not say that condition t(·; v̂, q) ≤ t(·) −
t(v̂) ≤ t̄(·; v̂, q) is a sufficient condition for incentive compatibility of t. In fact, it is rather easy to
construct examples of transfer rules which violate incentive compatibility but still do lie within
the bounds defined by the extremal transfers.

Multiple agents

Extending the preceding analysis to a framework with multiple agents whose valuations are in-
dependently distributed does not generate any major conceptual difficulties. The only difference
between the single agent case that we have considered so far and a multi agent environment with
independently distributed types lies in the fact that in the latter the agents’ incentive constraints
are defined in terms of agents’ expected utilities (where the expectation is taken with respect to
the other agents’ types). Consequently, the bounds on transfer differentials in the multi agent
case are to be interpreted as bounds on (interim) expected transfers.

In order to see this, suppose there are I agents, indexed by i = 1, . . . , I. Let Vi be the set
of types of player i. We denote type profiles by v and write V for the set of all such profiles,
i.e. V = ×iVi. Each agent’s type is private information. The designer and the agents share the
common prior belief that types are distributed according to the probability measure F . Types
are independent in the sense that i) F is the product of its marginal probability measures on Vi

(i.e. if Fi is the marginal of F on Vi then F = ×Fi) and ii) for each i the marginal probability
measure on V−i, F−i is given by the product ×j 6=iFj .

Player i’s valuation function is allowed to depend not only on his own type, vi, but also on
the type profile of all other players, v−i. Thus we write ui(x, v) − τi for the payoff of agent i
when the type profile is v, the choice is x and agent i’s transfer is τi.

In this multi agent environment a direct mechanism is a pair of functions (Q,T ) that specify
for each profile of valuations, v, an allocation, Q(v) ∈ X, and a profile of transfers, T (v) ∈ RI ,
respectively. A mechanism (Q,T ) is said to be (Bayesian) incentive compatible if for each player
i = 1, . . . , I we have

Ev−i [ui(Q(vi, v−i), vi, v−i)− Ti(vi, v−i)] ≥ Ev−i [u(Q(v′i, v−i), vi, v−i)− Ti(v′i, v−i)], ∀ vi, v
′
i ∈ Vi,

where Ev−i is the expectation operator with respect to the probability measure F−i on V−i.

Denoting
ti(vi) = Ev−i [Ti(vi, v−i]
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and
ũi(v′i, vi;Q) = Ev−i [ui(Q(v′i, v−i), vi, v−i)]

this condition can be rewritten as

ũi(vi, vi;Q)− ti(vi) ≥ ũi(v′i, vi;Q)− ti(v′i), ∀ vi, v
′
i ∈ Vi. (4)

Notice that (4) has the same form as the incentive constraint in the single agent case. Thus,
using the functions ũi we can define for each allocation rule Q and any v̂i ∈ Vi upper and lower
bounds on the (interim) expected transfer differential ti(·)−ti(v̂i). Extending the characterization
result from Theorem 1 to the profile of these (interim) expected transfer differentials is simply
a matter of adding the appropriate quantifiers for i.

3.1 Examples

In what follows we illustrate the use of our tools by analyzing two simple environments where
revenue equivalence does not necessarily hold. The two examples will also serve as an introduc-
tion to the next section, for they bring to the forefront issues that emerge in optimal mechanism
design problems that include individual rationality constraints.

Example 1. Let the agent’s valuation function be (bi-)linear, i.e. u(x, v) = vx, X = [0, 1], and

the set of types a compact subset of R. In his seminal paper Myerson (1981) has shown that

if the support of the type distribution is an interval and q is an implementable allocation rule,

then any transfer scheme t that implements q can be written as

t(v) = t(0) + vq(v)−
∫ v

0
q(x)dx.

The objective of this example is to show that our approach leads to a simple integral represen-

tation of transfers even when the support of the type distribution is not necessarily an interval

but an arbitrary compact subset of R. Here we show how extremal transfers can be represented

in an integral form. For the characterization of all transfers the reader is referred to Kos and

Messner (2010b).

Proposition 1. Let q be an implementable allocation rule. Then for any v̂ ∈ V ,

t̄(v; v̂, q) =
∫ v

v̂
sdq̄(s; v̂) and t(v; v̂, q) =

∫ v

v̂
sdq(s; v̂),

for all v ∈ V , where

q(v; v̂) =

{
inf{q(ṽ) : ṽ ∈ V, ṽ ≥ v} if v ≥ v̂
sup{q(ṽ) : ṽ ∈ V, ṽ ≤ v} if v < v̂

and q̄(v; v̂) =

{
sup{q(ṽ) : ṽ ∈ V, ṽ ≤ v} if v ≥ v̂
inf{q(ṽ) : ṽ ∈ v, ṽ ≥ v} if v < v̂

.
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Proof. See the Appendix.

The functions q̄ and q extend the allocation rule q from V to the smallest interval that

contains V . Since q is implementable it is non-decreasing and this property is preserved by

q̄ and q. When V is convex q, q̄, and q coincide yielding the Revenue Equivalence result of

Myerson (1981). The other well studied case is the one with a finite number of types. There it

is easy to see that the extremal transfers extracting the most money are obtained by making all

the downward adjacent IC constraints for the types above the anchor type, and all the upward

adjacent IC constraints for the types below the anchor type binding. For further details see Kos

and Messner (2010b).

We would like to point out that the characterization of t̄(v; v̂, q) for v̂ = minV was previously

provided by Skreta (2006) who was studying optimal auctions under arbitrary (not necessarily

connected) valuation spaces.

Example 2. Let X = V = [0, 1] and

u(x, v) = −k(x) |x− v| ,

where k(x) = 1 for x ∈ X ∩Q and k(x) = k, for k > 1 otherwise. We focus on the efficient

allocation rule q(v) = v. Define t(v) = 0 for all v and notice that (q, t) is incentive compatible

since the agent gets utility zero from reporting truthfully and a negative utility if he deviates.

Hence, q is implementable.

In what follows we characterize the largest transfer that implements the allocation rule q

with the anchor type v̂ = 0. Let v ∈ V and ε > 0. Pick an increasing sequence {vj}nj=0

with v0 = 0 and vn = v, such that vj ∈ Q for j = 0 to n − 1 and vn − vn−1 < ε. Then∑
u(q(vj), vj)−u(q(vj−1), vj) < v+ kε. Using this inequality, the definition of t̄(v; 0, q) and the

fact that t̄(v; 0, q) = 0 one obtains

t̄(v; 0, q) ≤ v + kε.

Since epsilon can be chosen arbitrarily small t̄(v; 0, q) ≤ v. Finally, it is easy to verify that the

transfer scheme defined by t(v) = v implements q. Therefore

t̄(v; 0, q) = v.

In the same manner one shows t(v; 0, q) = −v.

Carbajal and Ely (2010) also provide a bound on incentive compatible transfers; see Example

1 and Theorem 2 in their paper. Their bound has an advantage in that it has a convenient

integral representation. However, the present example shows that their is not necessarily tight.
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Applying their analysis, see Theorem 2 in Carbajal and Ely (2010), one obtains that for any

two transfers t and t′ implementing the given allocation rule and vanishing at v = 0∣∣t(v)− t′(v)
∣∣ ≤ 2kv. (5)

Our bound, on the other hand, yields∣∣t(v)− t′(v)
∣∣ ≤ 2v, (6)

and is tight, i.e. there exist such t and t′ implementing q that achieve it. For k large their bound

is rather imprecise.

A fruitful procedure might be to combine the techniques of Carbajal and Ely (2010), when

the assumptions of their paper are satisfied, with the ones developed here. One could compute

the bounds on transfers as proposed in Carbajal and Ely (2010). If those bounds represent

incentive compatible transfers they constitute extremal transfers. If they do not, the extremal

transfers can be computed from the characterization of Theorem 1 in the present paper.

4 Extremal transfers and individual rationality

In many economic applications the designer does not have the power to force the agent to
participate in the mechanism but needs to make sure that participation is voluntary or - in
more standard terminology - individually rational. In the previous section we have seen how to
characterize the boundaries of the set of transfers which implement a given allocation rule. In
this section we address the question under what conditions the concept of extremal transfers
can also be used to describe the boundaries of the set of admissible transfers when on top of
incentive compatibility also individual rationality is required.

The answer to this question has important implications for all mechanism design problems
where the designer needs to determine the largest transfer scheme by which a certain allocation
rule can be implemented under voluntary participation. Notice that this is the case whenever
the designer maximizes his expected revenue (auctions). In the next section we will argue that
the same is true also in other applications, like optimal mechanism design problems where the
designer maximizes some weighted sum of the participating players’ payoffs, or implementation
problems where the designer faces an ex post budget constraint.

Most papers in the existing literature which deal with problems of optimal mechanism design
impose conditions which imply that Revenue Equivalence holds for all allocation rules. The
reason for doing so is that under Revenue Equivalence the choice of the allocation rule also
determines (up to a constant) the transfer scheme. Hence, under Revenue Equivalence the
designer’s problem effectively reduces to choosing an allocation rule only.

12



An important insight that can be derived from our results is that often optimal mechanism
design problems can be ‘reduced’ by the transfer dimension even when Revenue Equivalence
does not hold. If for every allocation rule the largest feasible transfer that implements it is a
(translation of an) extremal transfer, then again the problem of finding the optimal transfer is
rather trivial once we have determined the optimal allocation rule.

We start our analysis by formally defining the individual rationality constraint. We denote
the payoff that an agent of type v realizes when he opts out of the mechanism by φ(v). Of
course, an agent is willing to participate in a mechanism if and only if doing so allows him to
earn a payoff that is no smaller than the value of his outside option.

Definition 2 (Individual Rationality). The mechanism (q, t) is individually rational (hence-

forth, IR) if

u(q(v), v)− t(v) ≥ φ(v) ∀ v ∈ V. (7)

Later on we will refer again to multiple agent environments. In those settings we require
individual rationality to hold at the interim stage. That is, a mechanism (Q,T ) is individually
rational if for all i and all vi ∈ Vi we have

Ev−i [u(Q(vi, v−i), vi, v−i)− Ti(vi, v−i)] ≥ Ev−i [φi(v)].

Suppose that for a mechanism (q, t) there is a type ṽ who realizes the lowest net benefit from
participation in the mechanism, i.e.

u(q(ṽ), ṽ)− t(ṽ)− φ(ṽ) ≤ u(q(v), v)− t(v)− φ(v).

Then (q, t) is individually rational if and only if condition (7) holds for type ṽ. We will therefore
refer to ṽ as IR-critical type for the mechanism (q, t).

Definition 3 (IR-critical types). Type ṽ is an IR-critical type for the mechanism (q, t) if

u(q(ṽ), ṽ)− t(ṽ)− φ(ṽ) ≤ u(q(v), v)− t(v)− φ(v) ∀v ∈ V.

The following assumption is of central importance for the remainder of this section. Its
role will become clear from the next proposition. It is therefore convenient to postpone a more
detailed discussion of the assumption after the presentation of the proposition.

Assumption 1. q is implementable and there exists a type vq, such that vq is IR-critical for

the mechanism (q, t̄(·; vq, q)).

We are now ready to state our first important result regarding implementation problems
with individual rationality constraints.
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Proposition 2. Suppose q satisfies Assumption 1. Let vq be IR-critical for (q, t̄(·; vq, q)) and

let t̃ : V → R be defined by t̃(v) = t̄(v; vq, q) + u(q(vq), vq)− φ(vq). The following is true:

i) (q, t̃) is incentive compatible and individually rational.

ii) For all transfer schemes t such that (q, t) is incentive compatible and individually rational,

t̃(v) ≥ t(v) for all v ∈ V.

Proof. Notice that the payoff of type vq from the mechanism (q, t̄(·; vq, q) + u(q(vq), vq)− φ(vq))

is exactly φ(vq). This means that the IR constraint for this type is satisfied with equality. Since

type vq is an IR-critical type for (q, t̄(·; vq, q)) it must be so also for all translations of t̄(·; vq, q)

and thus the mechanism (q, t̃) is individually rational.

The second statement of the proposition follows readily from Theorem 1: If (q, t) is incentive

compatible and individually rational, then there must be a δ ≥ 0 such that u(q(vq), vq)− t(vq)−
δ = φ(vq). t̃ is the pointwise largest payment scheme in the set of all transfers that are incentive

compatible and that guarantee type vq a payoff that is just equal to the value of his outside

option, φ(vq). Since this set includes the transfer t(·) + δ it follows that

t̄(v; vq, q) + u(q(vq), vq)− φ(vq) ≥ t(v) + δ ≥ t(v) for all v ∈ V.

While the requirement that there exists a type vq which is IR-critical when q is implemented
through the extremal transfer defined with respect to vq, is a rather weak condition, it is not an
assumption on the fundamentals of the environment but involves endogenous/derived objects
like extremal transfers. Moreover, it is an assumption that can be difficult to verify as it requires
to find a fixed point of the correspondence fq : V ⇒ V , defined by

fq(v) = arg min
ṽ∈V

u(q(ṽ), ṽ)− t̄(ṽ; v, q)− φ(ṽ).

Identifying such a fixed point might well be a non-trivial problem. Of course, if q is an allocation
rule which satisfies Revenue Equivalence then only the level but not the shape of the extremal
transfers can depend on the anchor type. But then fq is constant (provided that it is well
defined). Thus, the fixed point problem reduces to a minimization problem.3

In general the complexity of the task of finding a fixed point of fq depends on the exact
properties of the functions u and φ. In the next assumption we formulate a condition on the

3Cramton, Gibbons, and Klemperer (1987) calculate the IR-critical types for an environment where both the

valuation functions and the outside options of the agents are linear in their types.
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agent’s ‘net valuation’ function u(x, v)− φ(v) which not only guarantees that for any allocation
rule q the correspondence fq does admit a fixed point but also allows to directly identify this
fixed point.

Assumption 2. There exists a type v̂ ∈ V such that

u(x, v̂)− φ(v̂) ≤ u(x, v)− φ(v) (8)

for all (x, v) ∈ X × V.

Notice that unlike Assumption 1, Assumption 2 neither refers to a specific allocation rule
nor does it involve any endogenous objects, but is defined only in terms of the fundamentals of
the environment. It is not difficult to see that for any implementable allocation rule q the set of
fixed points of fq contains all types that satisfy condition (8).

Lemma 5. Suppose that Assumption 2 holds. If q is implementable and v̂ ∈ V satisfies (8),

then v̂ is IR-critical for (q, t̄(·; v̂, q)).

Proof. The result is obtained by combining incentive compatibility (which implies the first in-

equality of the following expression) and Assumption 2 (second inequality):

u(q(v), v)− t̄(v; v̂, q)− φ(v) ≥ u(q(v̂), v)− t̄(v̂; v̂, q)− φ(v)

≥ u(q(v̂), v̂)− t̄(v̂; v̂, q)− φ(v̂).

Notice that Assumption 2 is satisfied by most standard models with one-dimensional type
sets like Myerson (1981) and Myerson and Satterthwaite (1983).

A framework that violates Assumption 2 is considered in Cramton et al. (1987). There
the authors consider the problem of how to allocate a good between two (or more) agents who
are privately informed about their valuations and who already own a share θi > 0 of the good.
The valuation function and the outside option are assumed to be linear. In particular, the net
valuation is ui(x, vi)− φi(vi) = vi(xi − θi) (where xi is the share of the object assigned to agent
i). This function is minimized by the lowest type, vi = vi if θi ≤ xi; whenever instead θi > xi

then the minimizing type is the highest type of agent i, vi = v̄i.

Despite the fact that Assumption 2 does not hold in this set up, for every implementable
allocation rule Q the associated fixed point problems, vi ∈ fqi(vi), do have a solution. Cramton
et al. (1987) show this in a linear framework where agents’ types are drawn from a distribu-
tion that admits a strictly positive density on the compact support [v, v̄], which is the typical
assumption under which Revenue Equivalence holds. In Kos and Messner (2010a) we show how
this result is extended to situations where type sets are disconnected (but compact).
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5 Budget balance

In many applications of mechanism design the designer not only has to satisfy the constraints
of incentive compatibility and individual rationality, but also faces resource constraints. For
instance, in a bilateral trade setting it is most natural to require that every trade has to be
financed exclusively by transfers among the involved individuals. Similarly, in a public good
environment it is reasonable to impose that the public good has to be financed exclusively
through the transfers collected from the agents.

In the mechanism design literature resource constraints of the just described type run under
the label of ex post budget balance constraints. Several papers address the question whether
certain ‘desirable’ allocation rules (typically, efficient ones) can be implemented in a way that
respects individual rationality and ex post budget balance.4 Most of the papers take as their
starting point a set of assumptions that are strong enough to imply Revenue Equivalence for all
allocation rules. In what follows we use the concept of extremal transfers in order to generalize
these results along two dimensions. First, we do not restrict our attention to environments
where Revenue Equivalence holds for all allocation rules. Second, our findings are not limited
to efficient allocation rules only.

We start our analysis with a more formal definition of the concept of budget balance.

Definition 4. A mechanism (Q,T ) is (ex post) budget balanced if

I∑
i=1

Ti(v) = 0

for every v ∈ V . It is ex ante budget balanced if

Ev

[
I∑

i=1

Ti(v)

]
= 0.

Finally, we say that it runs an ex ante budget surplus if

Ev

[
I∑

i=1

Ti(v)

]
≥ 0.

The following proposition refers to the set of all allocation rules that satisfy Assumption 1.
For this class of allocation rules an exact criterion for individually rational and ex post budget
balanced implementability is given. In particular, it shows that an allocation rule Q in this set
can be implemented with individual rationality and ex post budget balance if and only if there
is an extremal transfer (or translation thereof) which is compatible with voluntary participation
and generates an ex ante budget surplus.

4See among others Myerson (1981), Makowski and Mezzetti (1994) and Krishna and Perry (1998).
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Proposition 3. Suppose that for the allocation rule Q there is a type profile, v̂, which is IR-

critical for the mechanism (Q, t̄(·; v̂, Q)). Then there exists a transfer rule T such that (Q,T ) is

ex post budget balanced, incentive compatible and individually rational if and only if the transfer

scheme T̄ defined by

T̄i(v) = ũi(v̂i, v̂i;Q)− φi(v̂) + t̄i(vi; v̂i, Q),

for all i, runs an ex ante budget surplus.

Proof. See the Appendix

The result follows from the following two observations. First, if v̂ is IR-critical for (Q, t̄(·; v̂, Q)),
then the transfers t̄i(·) are the (pointwise) largest (interim expected) transfers which implement
Q in an individually rationally way. Consequently, there can be no other incentive compatible
and individually rational transfer scheme that generates a larger ex ante budget surplus. Second,
the set of all transfers which implement Q in an individually rational way, contains an ex post
budget balanced transfer scheme if and only if it contains a transfer scheme that generates an
ex ante budget surplus. In proving this second fact we build on arguments that are familiar in
the existing literature; see Makowski and Mezzetti (1994).

Observe that the proposition applies to any allocation rule satisfying Assumption 1. In par-
ticular, the allocation rules are not required to be efficient as it is the case in most of the existing
literature. Still though, efficient allocation rules are of particular interest. A characterization of
the conditions under which efficient allocation rules are implementable in a way which respects
ex post budget balance and individual rationality is obtained as a straightforward corollary of
Proposition 3.

Corollary 1. Let Q∗ be an ex post efficient allocation rule and suppose that there exists a v̂

which is IR-critical for (Q∗, t̄(·; v̂, Q∗)). Moreover, let T̄ be defined by T̄i(v) = ũi(v̂i, v̂i;Q∗) −
φi(v̂i)+ t̄i(vi; v̂i, Q

∗). There exists a transfer T such that (Q∗, T ) is budget balanced, individually

rational and incentive compatible if and only if (Q∗, T̄ ) runs a budget surplus.

Notice that for fixed type sets and net valuation functions, the condition formulated in
the corollary can be interpreted as a condition on the distribution of the agents’ types. This
perspective is adopted in Kos and Manea (2009) who consider bilateral trade environments.
They obtain an exact characterization of all type distributions with finite support such that
the efficient allocation rule can be implemented with individual rationality and ex post budget
balance.

To demonstrate the use of our tools we now apply them to a simple bilateral trade setting
with binary type sets. In their seminal paper Myerson and Satterthwaite (1983) have shown
that in environments where type sets are overlapping intervals the efficient allocation cannot be
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implemented by a mechanism that is individually rational and ex post budget balanced. They
also provided an example that shows that their impossibility result does not hold in settings
with finitely many types. For environments with binary type sets Matsuo (1989) characterizes
the type distributions for which efficient voluntary and budget balanced trade is feasible. Kos
and Manea (2009) generalize this characterization result to environments with arbitrary finite
type spaces. In the following example we show how the result of Matsuo (1989) follows from
Corollary 1.

Example 3: Linear environments

In this subsection we discuss how Proposition 3 can be put to work in linear environments; more
detailed treatment of the linear case can be found in Kos and Messner (2010b). The payoff of
each agent is given by

xv − t,

where x is the probability of getting the object and t the transfer to be paid. The assumption
that for each agent a critical type exists then amounts to requiring that for each i there is a
v̂i ∈ Vi such that

φi(vi)− φi(v̂i) ≤ viqi(vi)− v̂iqi(v̂i)− t̄i(vi; v̂i, qi).

Using t̄i(vi; v̂i, qi) =
∫ vi

v̂i
sdq̄i(s, v̂i) and integrating by parts this inequality can be further sim-

plified to

φi(vi)− φi(v̂i) ≤
∫ vi

v̂i

q̄i(s; v̂i)ds, ∀vi ∈ Vi. (9)

A simple sufficient condition for existence of a critical type is linearity of φi; for details see Kos
and Messner (2010b). Proposition 3 can now be expressed in the following form.

Corollary 2. Let Q be an implementable allocation rule such that for all i there exists a v̂i ∈ Vi

for which condition (9) holds. Then Q can be implemented in an incentive compatible, individ-

ually rational and ex post budget balanced mechanism if and only if∑
i

[
v̂iq̄i(v̂i; v̂i)− φi(v̂i)− Evi

[∫ vi

v̂i

sdq̄i(s, v̂i)
]]
≥ 0. (10)

We now apply the above provided tools to a simple bilateral trade setting. The seller’s
valuation for the good is either SL (with probability r) or SH ; the buyer instead values the good
either BL (with probability p) or BH . The value of the buyer’s outside option is equal to zero,
while the seller’s outside option is equal to his valuation of the good.

We assume BH > SH > BL > SL so that the efficient allocation rule, Q∗, is to always
trade the good, except for the case where a high valuation seller meets a low valuation buyer.
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It is straightforward to verify that condition (9) is satisfied for the types BL and SH and the
condition (10) can be computed to say that the efficient allocation rule is implementable if and
only if

(1− r)(1− p)BH + rBL − SH(1− p)− prSL ≥ 0.5

Segal and Whinston (2011) also derive a condition under which an allocation rule q is imple-
mentable with individual rationality and ex post budget balance that is formulated in terms of
the ex ante budget surplus of incentive compatible transfers (see their Lemma 1). In particular,
they affirm that the existence of some transfer that implements q in an individually rational
way and delivers an ex ante budget surplus is a sufficient condition for implementability with
an individual rational and ex post budget balanced mechanism. We go beyond this result in
that we also describe which transfers need to be checked and characterize this transfer, which
enables us to express the necessary and sufficient condition solely in terms of the allocation rule.

Welfare maximization

Our findings on implementation under individual rationality have important implications for
optimal mechanism design problems where the planner maximizes a weighted sum of the partic-
ipating players’ payoffs subject to the constraints of incentive compatibility, individual rational-
ity and budget balance. In the preceding section we have argued that ex post budget balance
imposes the same restrictions on implementability as ex ante budget constraints, provided that
Assumption 1 holds. In what follows we therefore only consider the case of an ex ante budget
constraint.

Assume that the mechanism designer’s objective function is given by

U(Q,T ) = Ev

{
I∑

i=1

λi[ui(Q(v), v)− Ti(v)]

}
, (11)

where λ = (λ1, . . . , λI) ≥ 0. For convenience also assume that agents are indexed according to
their welfare weights, i.e. λi ≥ λj if and only if i ≤ j. Suppose that the planner maximizes
(11) subject to incentive compatibility, individual rationality and the ex ante budget constraint∑

iEvi [ti(vi)] ≥ 0. The following proposition shows that whenever there is an optimal allocation
rule that satisfies Assumption 1, then one of the optimal transfer schemes can be described in
terms of extremal transfers, meaning that in such a case it is without loss of generality to consider
only extremal transfers to start with.

Proposition 4. Suppose that the planner maximizes (11) subject to IC, IR and the ex ante bud-

get constraint
∑

iEvi [ti(vi)] ≥ 0. Moreover, assume that (Q∗, T ∗) is a solution of the designer’s

5For further intuition see Kos and Manea (2009).
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problem. If there exists a profile of types, (v∗1, . . . , v
∗
I ), such that v∗i is IR-critical for agent i

when Q∗ is implemented through t̄(·; v∗, Q∗), then

U(Q∗, T ∗) = U(Q∗, t̄(·; v∗, Q∗) + c∗),

where c∗i = ũi(v∗i , v
∗
i )− φi(v∗i ) for all i > 1 and c∗1 = −

∑I
i=1Evi t̄i(vi; v∗i , Q

∗)−
∑I

i=2 c
∗
i .

Proof. See the Appendix.

The intuition behind this result is rather straightforward. Given an optimal allocation rule
Q∗, the planner’s priority in designing the transfers is to keep the payments of the agent with the
largest welfare weight as low as possible. Since he has to respect the resource constraint, doing
so requires him to extract as much rent from the other agents as possible and to redistribute it
to agent 1.

It is important to point out that the class of welfare maximization problems considered in
the preceding paragraphs includes as special case the standard revenue maximization problem,
where the designer maximizes the ex ante expected value of the sum of the transfers extracted
from the agents (his revenue) subject to incentive compatibility and individual rationality. In
order to see this consider the following specification of the welfare maximization problem: The
first agent’s type set, V1, is a singleton; his valuation function is constant and equal to zero, i.e.
u1(x, v) = 0 for all (x, v) ∈ X × V ; his outside option, φ1 is low enough so that any mechanism
(Q,T ) which satisfies IC, budget balance and the individual rationality constraints of all agents
i > 1 with equality, also satisfies the individual rationality constraint of the first agent; the
welfare weights are given by λ1 = 1 and λi = 0 for all i > 1.

Under this specification agent one can be interpreted as the designer who has no relevant
private information. The fact that the welfare weights of the other agents are zero guarantees
that only the first agent’s payoff is maximized. Agent 1’s payoff is given by his transfer only
since his valuation is zero. We have already observed that at the optimum the budget balance
constraint must be satisfied with equality, which means that the first agent’s transfer must be
equal to (minus) the sum of the other agents’ transfers. Given that the first agent’s valuation is
constant implies that his incentive compatibility constraint is always trivially satisfied. Thus it
can be eliminated from the problem. The same is true for the first agent’s individual rationality
constraint since his low outside option implies that it can never be binding at the optimum.

6 Beyond quasi-linearity

In Section 3 we used the notion of extremal transfers in order to characterize the set of im-
plementable allocation rules in quasi-linear environments. In this section we argue that the
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fundamental ideas behind our characterization result carry over to settings with more general
payoff functions.

In what follows we will no longer distinguish between monetary and non-monetary compo-
nents of allocations. In order to avoid any confusion it is convenient to adapt the notation that
we have introduced in Section 2. In particular, we now denote the set of all social decisions by
Y . We write u(y, v) for the payoff of type v ∈ V when the social decision y ∈ Y is implemented.
A direct mechanism, µ, is a function mapping V into Y . µ : V → Y is (Bayesian) incentive
compatible if

u(µ(v), v) ≥ u(µ(v′), v) for all v, v′ ∈ V.

In deriving the extremal transfers we started out from the observation that incentive com-
patibility imposes bounds on the variation of the transfers once the non-monetary component
is fixed. While in the more general environment that we are considering in this section it is
no longer meaningful to distinguish between monetary and non-monetary components of the
allocation, it is still true that incentive compatibility imposes constraints on the variation of the
agent’s indirect utility. We will show now how this insight can be developed in order to obtain
a characterization result for the set of implementable allocation rules which parallels our results
from Section 3.

Let µ be some incentive compatible mechanism and consider the two types v and v̂ in V .
By incentive compatibility

u(µ(v), v) ≥ u(µ(v̂), v).

Subtracting from both sides of this inequality the indirect utility of type v̂ delivers

u(µ(v), v)− u(µ(v̂), v̂) ≥ u(µ(v̂), v)− u(µ(v̂), v̂).

Thus, the expression u(µ(v̂), v)−u(µ(v̂), v̂) constitutes a lower bound on the difference between
the two types’ indirect utility. If v′ is a third type, then by the above observation it follows that

u(µ(v), v)− u(µ(v̂), v̂) = [u(µ(v), v)− u(µ(v′), v′)] + [u(µ(v′), v′)− u(µ(v̂), v̂)]

≥ [u(µ(v′), v)− u(µ(v′), v′)] + [u(µ(v̂), v′)]− u(µ(v̂), v̂)].

By iterating on this argument we obtain

u(µ(v), v)− u(µ(v̂), v̂) ≥ U(v; v̂, µ),

where

U(v; v̂, µ) = sup
{vj}∈S(v;v̂)

n∑
j=1

[u(µ(vj−1), vj)− u(µ(vj−1), vj−1)].

By an analogous argument it can be shown that incentive compatibility of µ implies that
u(µ(v), v)− u(µ(v̂), v̂) is bounded above by

Ū(v; v̂, µ) = inf
{vj}∈S(v;v̂)

n∑
j=1

[u(µ(vj), vj)− u(µ(vj), vj−1)].
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It follows that a necessary condition for the incentive compatibility of a mechanism µ is that for
some type v̂ the function U(·; v̂, µ) lies below the function Ū(·; v̂, µ), for otherwise the condition

U(v; v̂, µ) ≤ u(µ(v), v)− u(µ(v̂), v̂) ≤ Ū(v; v̂, µ)

could not be satisfied at every v ∈ V .

The converse of this statement is not true. That is, even for a mechanism µ which is not
incentive compatible there might exist an anchor type v̂ such that U(v; v̂, µ) ≤ Ū(v; v̂, µ) for all
v ∈ V . However, the following proposition shows that µ is incentive compatible if there is some
anchor type v̂ such that either

U(v; v̂, µ) = u(µ(v), v)− u(µ(v̂), v̂) for all v ∈ V

or
Ū(v; v̂, µ) = u(µ(v), v)− u(µ(v̂), v̂) for all v ∈ V

is satisfied.

Proposition 5. The following is true:

i) If the mechanism µ : V → Y is incentive compatible then for any fixed v̂ ∈ V ,

U(v; v̂, µ) ≤ Ū(v; v̂, µ)

for all v ∈ V .

ii) Let µ : V → Y be such that for some v̂ ∈ V , U(v; v̂, µ) ≤ Ū(v; v̂, µ) for all v ∈ V .

Moreover, assume that

u(µ(v), v)− u(µ(v̂), v̂) = U(v; v̂, µ) for all v ∈ V or

u(µ(v), v)− u(µ(v̂), v̂) = Ū(v; v̂, µ) for all v ∈ V .

Then, µ is incentive compatible.

Proof. See the Appendix.

Notice that the bounds on the variation of the agent’s indirect utility for a given mechanism,
µ, are not fixed but are themselves functions of µ. The convenient feature of quasi-linear envi-
ronments is that the bounds depend only on the non-monetary components of the mechanism.
Therefore U and Ū can be translated into the fixed (i.e. transfer independent) bounds on the
variation of the transfers t and t̄. It is exactly due to this independence of t and t̄ from the
transfers that in Section 3 we have been able to obtain a stronger characterization result for the
set of implementable allocation rules than the one which we have formulated in Proposition 5.
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7 Conclusion

We characterize the boundaries of the set of transfers implementing a given allocation rule. This
yields as an immediate consequence a characterization of the set of implementable allocation
rules and the set of allocation rules that satisfy Revenue Equivalence, but also enables us to deal
with mechanism design environments that do not satisfy Revenue Equivalence. In particular, we
show that in many mechanism design problems it is without loss of generality for the designer
to restrict his attention to extremal transfers. Consequently, such problems can be reduced to
the choice of an allocation rule only, irrespective of whether Revenue Equivalence holds or not.

We go on to characterize the set of allocation rules that can be implemented in an incentive
compatible, individually rational and ex post budget balanced mechanism.

An interesting open question is under what conditions do extremal transfers admit a simpler
representation, say in integral form. The first step toward that was made by Carbajal and Ely
(2010).
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8 Appendix

Proof of Lemma 3. I(v; v̂, q) 6= ∅ and −∞ < t(v; v̂, q) imply −∞ < t̄(v; v̂, q), for every v ∈ V .

We will show that t implements q. The case of t is handled analogously. We have to verify that

u(q(v), v)− t̄(v; v̂, q) ≥ u(q(v′), v)− t̄(v′; v̂, q),

for every v, v′ ∈ V . By the definition of t̄(v′; v̂, q), for every ε > 0 there exists a sequence

{vj}nj=0 ∈ S(v′; v̂) such that

n∑
j=1

[
u(q(vj), vj)− u(q(vj−1), vj)

]
− ε ≤ t̄(v′; v̂, q). (12)

Now,

t̄(v; v̂, q)− t̄(v′; v̂, q) ≤ t̄(v; v̂, q)−
n∑

j=1

[
u(q(vj), vj)− u(q(vj−1), vj)

]
+ ε

≤ u(q(v), v)− u(q(v′), v) + ε, (13)

where the first inequality follows from (12) and the second from the fact that t̄(v; v̂, q) ≤
u(q(v), v)−u(q(v′), v)+

∑n
j=1

[
u(q(vj), vj)− u(q(vj−1), vj)

]
. That is, being the infimum over all

sums, t̄(v; v̂, q) can be no larger than the sum corresponding to the sequence which is obtained

by adding v as the final element to the sequence {vj}nj=0. Since the inequality (13) holds for any

ε we are done.

Proof of Theorem 1. Statement i). The fact that implementability of q implies that the

correspondence I(·; v̂, q) is nonempty is a direct consequence of Lemma 2. The other direction

instead follows from Lemma 3.

Statement ii). (⇒) Suppose q satisfies Revenue Equivalence. Since t̄(·; v̂, q) and t(·; v̂, q) are

two transfer schemes which implement q, Revenue equivalence implies that they can differ only

by a constant. But given that the two transfers coincide at the anchor type v̂ this constant must

be zero, meaning that they coincide everywhere.

(⇐) Let q be such that |I(v; v̂, q)| = 1 for every v ∈ V . By the first statement of the theorem

q is implementable. So let t, t′ be two transfer rules which implement q. Since |I(v; v̂, q)| = 1 is

equivalent to t̄(v; v̂, q) = t(v; v̂, q) for every v ∈ V , we have

t(v; v̂, q) = t(v)− t(v̂) = t̄(v; v̂, q), and

t(v; v̂, q) = t′(v)− t′(v̂) = t̄(v; v̂, q),
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for every v ∈ V . But then

t(v)− t(v̂) = t′(v)− t′(v̂)

for every v ∈ V , which is a restatement of revenue equivalence.

Statement iii) is simply a restatement of Lemma 2.

Proof of Proposition 1. We prove that for any given v̂ ∈ V , t̄(v; v̂, q) =
∫ v
v̂ xdq̄(x; v̂) holds for

all v ∈ V . The following arguments can easily be adapted to show that on v, t(·; v̂, q) coincides

with
∫ v
v̂ xdq(x; v̂). The reader should keep in mind that

∫ v
v̂ = −

∫ v̂
v and thus negative when

v̂ > v.

We start by showing that for all v, v̂ ∈ V∫ v

v̂
xdq̄(x; v̂) ≥ t̄(v; v̂, q).

For each pair v, v̂ ∈ V , define S∗(v; v̂) as the set of all finite monotonic sequences in V which

start at v̂ and end at v. Observe that

t̄(v; v̂, q) = inf
{vj}∈S(v;v̂)

n∑
j=0

vj [q(vj)− q(vj−1)] (14)

≤ inf
{vj}∈S∗(v;v̂)

n∑
j=0

vj [q(vj)− q(vj−1)]

= inf
{vj}∈S∗(v;v̂)

n∑
j=0

vj [q̄(vj ; v̂)− q̄(vj−1; v̂)].

The first equation is definitional and the inequality is implied by the fact that S∗(v; v̂) ⊂ S(v; v̂).

Finally, the second equality follows from the fact that q and q̄(·; v̂) coincide on V .

We next show that

inf
{vj}∈S∗(v;v̂)

n∑
j=0

vj [q̄(vj ; v̂)− q̄(vj−1; v̂)] ≤
∫ v

v̂
xdq̄(x; v̂).

By its definition the Riemann-Stieltjes integral on the right hand side of this inequality is

the greatest lower bound of the set of numbers which can be generated as sums of the form

n∑
j=1

vj [q̄i(vj ; v̂)− q̄i(vj−1; v̂)]

when all sequences in the interval contained between the points v̂ and v are considered which are

monotonic and whose endpoints coincide with the endpoints of the interval. Thus the two sides
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of the inequality differ only in the set of sequences over which the respective infimum operations

are performed.

Suppose that contrary to our hypothesis

∆ ≡ inf
{vj}∈S∗(v;v̂)

n∑
j=0

vj [q̄(vj ; v̂)− q̄(vj−1; v̂)]−
∫ v

v̂
xdq̄(x; v̂) > 0. (15)

By the definition of the Riemann-Stieltjes integral there exists a monotonic sequence {vj}nj=0 in

the interval defined by the points v̂ and v, with v0, vn ∈ {v̂, v} such that

0 ≤
n∑

j=1

vj
[
q̄(vj ; v̂)− q̄i(vj−1; v̂)

]
−
∫ v

v̂
xdq̄(x; v̂) < ∆/2. (16)

Next, consider the sequence {ṽj}nj=0 defined as follows: ṽj = vj for all j such that vj ∈ V ;

otherwise set

ṽj =

max{v ∈ v : v < vj} if vj ≥ v̂

min{v ∈ v : v > vj} if vj < v̂.

Notice that {ṽj}nj=0 is well defined (since v is closed) and entirely contained in V . This

means that q̄(ṽj ; v̂) = q(ṽj) for all j. Furthermore, by the definition of q̄i, and the construction

of {ṽj}nj=0 we have q̄(vj ; v̂) = q̄(ṽj ; v̂) for all j. Finally, notice that vj ≥ ṽj for all j if v < v̂ and

vj ≤ ṽj for all j if v > v̂. In addition, q being implementable implies that it is nondecreasing

along the increasing sequence from v̂ to v, when v̂ < v and nonincreasing along the decreasing

sequence from v̂ to v, when v̂ > v. Combining these observations we get
n∑

j=1

ṽj
i

[
q̄(ṽj ; v̂)− q̄(ṽj−1; v̂)

]
≤

n∑
j=1

vj
[
q̄(vj ; v̂)− q̄(vj−1; v̂)

]
. (17)

Using (15), (16) and (17) we obtain

∆ = inf
{vj}∈S∗(v;v̂)

n∑
j=0

vj [q̄(vj ; v̂)− q̄(vj−1; v̂)]−
∫ v

v̂
xdq̄(x; v̂) (18)

≤
n∑

j=1

ṽj
[
q̄(ṽj ; v̂)− q̄(ṽj−1

i ; v̂)
]
−
∫ v

v̂
xdq̄(x; v̂) (19)

≤
n∑

j=1

vj
[
q(vj)− q(vj−1)

]
−
∫ v

v̂
xdq̄(x; v̂) <

∆
2
, (20)

which is a contradiction. Thus we can conclude that∫ v

v̂
xdq̄(x; v̂) ≥ inf

{vj}∈S∗(v;v̂)

n∑
j=0

vj [q̄(vj ; v̂)− q̄(vj−1; v̂)]
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must hold.

Next we show that for any given pair v, v̂ ∈ V ,∫ v

v̂
xdq̄(x; v̂) ≤ t̄(v; v̂, q).

Recall that t̄(·; v̂, q) is the largest transfer schedule which i) implements q and ii) is equal to zero

at v̂. Thus we can verify the above inequality by showing that t(v) =
∫ v
v̂ xdq̄(x; v̂) constitutes a

transfer which implements q and vanishes at v̂.

The condition
∫ v̂
v̂ xdq̄(x; v̂) = 0 is satisfied by construction. So it remains to be shown that

(q, t) is incentive compatible.

Suppose that contrary to our hypothesis t fails to implement q. Then there must exist types

v′, v′′ ∈ V such that

v′q(v′)−
∫ v′

v̂
xdq̄(x; v̂) < v′q(v′′)−

∫ v′′

v̂
xdq̄(x; v̂),

or equivalently

v′[q(v′)− q(v′′)] <
∫ v′

v̂
xdq̄(x; v̂)−

∫ v′′

v̂
xdq̄(x; v̂) =

∫ v′

v′′
xdq̄(x; v̂).

The integral on the right hand side of this inequality is bounded above by v′[q(v′)−q(v′′)] which

is incompatible with the strict inequality sign. This allows us to conclude that (q, t) is incentive

compatible and therefore
∫ v
v̂ xdq̄(x; v̂) ≤ t̄(v; v̂, q) for all v ∈ V .

Proof of Proposition 3. As already mentioned in the main text the result follows from the

following two facts:

i) By Proposition 2 we know that for any transfer scheme, T , which implements Q in an

individually rational way we have ti(vi) = Ev−i [Ti(vi, v−i)] ≤ T̄i(vi) for all i.6 From this

it immediately follows that in the set of all individually rational and incentive compatible

transfer schemes for the implementation of Q, T̄ is the one which delivers the largest ex

ante surplus.

ii) The set of all transfers which implement Q in an individually rational way, contains an ex

post budget balanced transfer scheme if and only if it contains a transfer scheme which

generates an ex ante budget surplus.
6Observe that for each i the transfer scheme T̄i only depends on vi but not on v−i. That is, under T̄ each

individual’s ex post transfers coincide with its interim expected transfers.
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In order to see that the second observation is true notice that ex post budget balance

implies a zero ex ante budget surplus. Conversely, suppose that there exists a transfer

scheme T such that (Q,T ) satisfies IR and IC and generates a positive ex ante budget

surplus, Π ≥ 0. Denote the interim expected transfers associated with T by t and consider

the transfer scheme T̃ defined as follows: For each i < I set

T̃i(v) = ti(vi)−
αi

1− αI

∑
j 6=i

tj(vj) + Evi [ti(vi)]

+
αiαI

1− αI
Π,

where 0 ≤ αi < 1, such that
∑I

i=1 αi = 1. The transfer of the Ith agent instead is given

by

T̃I(v) = −
∑
i 6=I

T̃i(v).

Notice that T̃ has been constructed so that it satisfies ex post budget balance. We will

now argue that (Q, T̃ ) also satisfies incentive compatibility and individual rationality. Both

these properties depend only on the interim expected transfers. We will show now that

the interim expected transfers are given by

t̃i(vi) = Ev−i [T̃i(v)] = ti(vi)− αiΠi.

In the case i < I this immediately follows from the fact that

Ev−i

∑
j 6=i

tj(vj) + Evi [ti(vi)]

 =
∑
j 6=i

Evj [tj(vj)] + Evi [ti(vi)] = Π.

As for agent I, the interim expected transfer is given by

t̃I(vI) = −Ev−I

∑
i 6=I

ti(vi)−
αi

1− α

∑
j 6=i

tj(vj) + Evi [ti(vi)]

+
αiαI

1− αI
Π


Using Ev−I [ti(vi)] = Evi [ti(vi)] and

∑
i 6=I Evi [ti(vi)] = Π − EvI [tI(vI)] this expression can

be rewritten as follows

t̃I(vI) = − (Π− EvI [t(vI)]) +
∑
i 6=I

αi

1− αI
{tI(vI) + (Π− EvI [tI(vI)])}+ Π

∑
i 6=I

αiαI

1− αI
.

Since
∑

i 6=I αi = 1− αI the first term of the sum cancels out with expression∑
i 6=I

αi

1− αI
(Π− EvI [tI(vI)])
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in the sum’s second term. Moreover, the last term of the sum is equal to αIΠ. We thus

obtain the desired result

t̃I(vI) = tI(vI)− αIΠ.

Observe that the interim expected transfer for player i = 1, . . . , I, t̃i, is a translation of ti.

Since we have assumed that T implements Q it therefore follows that so does T̃ .

Finally, as for individual rationality observe that t̃i ≤ ti. Thus, at the interim stage each

type of each player must be at least as well of under the mechanism (Q, T̃ ) as under the

mechanism (Q,T ). Since the latter is individually rational so must be the first one.

Proof of Proposition 4. Let Q∗ be an optimal allocation rule. Since the objective function is

decreasing in transfers it follows that any transfer rule which implements Q∗ in an optimal way

must satisfy the resource constraint with equality. In order to see this, observe that whenever

there is a strictly positive (ex ante) budget surplus then all transfers can be decreased by some

(positive) constant without violating the ex ante budget constraint. Of course, a downward

shift of all transfers by some constant also preserves incentive compatibility. At the same time,

since all agents benefit from lower transfers, the shift cannot lead to a violation of individual

rationality but implies an increase of the designer’s objective function.

Exploiting the fact that at an optimum the budget constraint must hold with equality we

can eliminate the transfer of agent 1 from the objective function in order to obtain

U(Q∗, T ) =
I∑

i=1

λiEv[ui(Q∗(v), v)] +
I∑

i=2

(λ1 − λi)Evi [ti(vi)].

Since λ1 ≥ λi for all i > 1 this expression is non-decreasing in the expected transfer of each

agent i > 1. By Proposition 2 we know that Ti(v) = t̄i(vi; v∗i , Q
∗) + c∗ is the pointwise largest

transfer scheme for agent i which is incentive compatible and satisfies individual rationality.

This implies that there can be no other feasible transfer scheme which yields a larger expected

payment from agent i and thus Ti(v) must be an optimal transfer for the implementation of

Q∗.

Proof of Proposition 5. We have already seen in the discussion preceding this proposition

that incentive compatibility of µ implies U(v; v̂, µ) ≤ u(µ(v), v)−u(µ(v̂), v̂) ≤ Ū(v; v̂, µ). Hence,

we only need to prove statement ii) of the proposition.
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We will show that if for some v̂ ∈ V we have u(µ(v), v) − u(µ(v̂), v̂) = Ū(v; v̂, µ) for all

v ∈ V , then for every pair of types v′, v′′ ∈ V we have u(µ(v′), v′) ≥ u(µ(v′′), v′) (the case

U(v; v̂, µ) = u(µ(v), v) is treated in an analogous way and is therefore omitted). The condition

u(µ(v′), v′) ≥ u(µ(v′′), v′) is equivalent to

u(µ(v′), v′)− u(µ(v′′), v′′) ≥ u(µ(v′′), v′)− u(µ(v′′), v′′).

The left hand side of this inequality is by assumption equal to Ū(v′; v̂, µ)− Ū(v′′; v̂, µ). By the

definition of Ū(v′; v̂, µ) we know that for every ε > 0 there exists a finite sequence {vj}nj=1 ∈
S(v′; v̂) such that

Ū(v′; v̂, µ) ≥
n∑

j=1

[
u(µ(vj), vj)− u(µ(vj), vj−1)

]
− ε.

By adding v′′ as final element to the sequence {vj
ε} we obtain an element of S(v′′; v̂) and hence

Ū(v′′; v̂, µ) ≤
[
u(µ(v

′′
), v

′′
)− u(µ(v

′′
), v

′
)
]

+
n∑

j=1

[
u(µ(vj), vj)− u(µ(vj), vj−1)

]
Combining the last two inequalities delivers

Ū(v′; v̂, µ)− Ū(v′′; v̂, µ) ≥ u(µ(v′′), v′)− u(µ(v′′), v′′)− ε.

Since this inequality holds for every ε > 0 it follows that Ū(v′; v̂, µ)− Ū(v′′; v̂, µ) ≥ u(µ(v′′), v′)−
u(µ(v′′), v′′), which is what we had to show.
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