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Abstract

We establish integral representation results for suitably pointwise continuous and comonotonic addi-

tive functionals of bounded variation de�ned on Stone lattices.
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1 Introduction

In the past twenty years and after the seminal papers of Schmeidler [19] and Artzner, Delbaen, Eber and

Heath [4], Choquet integrals played an important role in Mathematical Economics and Finance. Two di¤erent

frameworks are typically used in these �elds. The �rst, introduced by Schmeidler [18] and [19], adopts as

function space the space B (�) of bounded measurable functions where � is an algebra. This approach is

particularly well suited for Decision Theory. The second approach, studied by Zhou [20] and [21], relies on

a Stone vector lattice L. A particular case of Stone vector lattice is the space C (S) of continuous functions

over a compact space S: a more familiar setting in the theory of integral representations. The purpose of

this paper is threefold:

(i) to provide a uni�ed treatment that encompasses these two di¤erent settings, B (�) and C (S). This is

achieved by considering Stone lattices with suitable density properties in a vector lattice of bounded

functions. This notion allows us to use techniques from both frameworks which we combine and extend;

(ii) to extend Choquet integral representations from monotone set functions, often called capacities, to

general, not necessarily monotone, set functions. Besides the mathematical interest of our exercise,

nonmonotone Choquet integrals are of interest in applications (see, e.g., [8]);

(iii) to provide a genuine version of the Daniell-Stone theorem (see, e.g., [9, Chapter 4] and [17, Chapter

16]) for comonotonic additive functionals de�ned on a Stone vector lattice.

Our main results are Theorem 13 and Theorem 22. Theorem 13 shows that a functional V : L ! R
de�ned on a comonotonic Stone lattice L is comonotonic additive, of bounded variation, and pointwise outer

continuous if and only if there exists a unique outer continuous set function � : �L ! R, de�ned on the
collection �L = f(f � t) : f 2 L and t 2 Rg of upper level sets, such that

V (f) =

Z 1

0

� (f � t) dt+
Z 0

�1
[� (f � t)� � (S)] dt 8f 2 L: (1)
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Here, the integrals in the right hand side are in the sense of Riemann. Theorem 13 extends to the non-

monotone case the integral representation results of Schmeidler [18] and Zhou [20]. In doing so, it also extends

to the nonadditive case some classic integral representation results with signed measures, as shown in Sec-

tion 5. Moreover, it extends to comonotonic Stone lattices (the nonmonotone) related results of Murofushi,

Sugeno, and Machida [15] derived for the case B (�).1

Theorem 22 extends the Daniell-Stone theorem to the comonotonic additive case. Speci�cally, if V is also

assumed to be supermodular and pointwise continuous (only at 0) then V admits an integral representation

as in (1). In this case � can be taken to be continuous and supermodular, as well as de�ned on the entire

�-algebra generated by L. Surprisingly, � maintains its uniqueness features despite its larger domain. For

this reason, the integral contained in the right hand side of (1) is a Choquet integral. The Daniell-Stone

theorem is then the particular case where V is assumed to be linear or, equivalently, modular and � turns

out to be �-additive.

Finally in proving Theorem 13, we establish some new result on the decomposition of set functions of

bounded variation. This allows to re�ne the representation in (1).

The paper is organized as follows. After some preliminaries in Section 2, we establish in Section 3 the

decomposition results just mentioned. Sections 4 and 6 contain the main integral representation results while

Section 5 shows that our results generalize some classic ones.

2 Preliminaries

2.1 Sets

A collection � of subsets of a space S is a lattice (with zero and unit) if given any two sets A;B 2 � both
A[B and A\B belong to � (and ?; S 2 �). We assume that all lattices � considered in this paper contain
? and S; moreover, generic subsets A and B are understood to belong to �.

A function � : �! R is a set function if � (?) = 0. In particular, a set function � : �! R is:

(i) positive if � (A) � 0 for all A;

(ii) monotone if � (A) � � (B) whenever A � B;

(iii) supermodular (convex) if � (A [B) + � (A \B) � � (A) + � (B) for all A and B;

(iv) submodular (concave) if � (A [B) + � (A \B) � � (A) + � (B) for all A and B;

(v) additive if � (A [B) = � (A) + � (B) for all pairwise disjoint sets A and B;

(vi) outer (resp., inner) continuous at A if limn!1 � (An) = � (A) whenever An # A (resp., An " A);

(vii) continuous at A if it is both inner and outer continuous at A;

(viii) outer (resp., inner) continuous if it is outer (resp., inner) continuous at each A;

(ix) continuous if it is continuous at each A;

(x) countably additive if � (
S1
n=1An) =

P1
n=1 � (An) for all countable collections of pairwise disjoint sets

fAng1n=1 such that
S1
n=1An 2 �.

1These earlier results were rediscovered by Marinacci and Montrucchio [13].
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Monotone set functions are called capacities. Notice that capacities are always positive. If � is an algebra,

additive set functions are called charges and the countably additive ones are called measures. Finally, observe

that a set function which is modular �that is, both supermodular and submodular �is additive.

When � is an algebra, each set function � : � ! R has a dual set function �� : � ! R given by

�� (A) = � (S)� � (Ac). It is easy to see that a set function � is outer (resp., inner) continuous if and only if
its dual �� is inner (resp., outer) continuous.

2.2 Functions

Throughout the paper, L is a nonempty collection of bounded functions f : S ! R where S is a nonempty
set. We consider L endowed with the metric induced by the supnorm k�k. The collection L is

(i) a lattice if f _ g; f ^ g 2 L whenever f; g 2 L;

(ii) a Stone lattice if it is a lattice and �f + � 2 L for all f 2 L and all �; � 2 R;2

(iii) a Stone vector lattice if it is both a Stone lattice and a vector space.

Two functions f; g 2 L are comonotonic (i.e., commonly monotonic) if

(f (s)� f (s0)) (g (s)� g (s0)) � 0 8s; s0 2 S:

Next, we introduce a key notion for our analysis.

De�nition 1 A Stone lattice L is comonotonic if there is a Stone vector lattice E such that L � E and,

given any two comonotonic f; g 2 E and given any " > 0, there exist two comonotonic f"; g" 2 L such that
kf � f"k < ", kg � g"k < ", and f" + g" 2 L.

In other words, a Stone lattice is comonotonic if it is suitably dense (in the sense of comonotonicity) in

a Stone vector lattice. In particular, Stone vector lattices are automatically comonotonic. Moreover, if L is

a comonotonic Stone lattice then it is easy to check that

L � E � L = �E; (2)

where L is the supnorm closure of L in the space of all bounded functions f : S ! R:

For a given collection of functions L, consider the collections of subsets �L = f(f � t) : f 2 L and t 2 Rg
and �0L = f(f > t) : f 2 L and t 2 Rg.3

Lemma 2 If L is a Stone lattice then both �L and �0L are lattices.

Proof. We just prove the statement for �L. A similar proof delivers the result for �0L. Since L is a Stone
lattice take t1 = 2, t2 = 0, and f 2 L such that f = 1. It is immediate to see that ? = ff � t1g and
S = ff � t2g, proving that ?; S 2 �L. Consider A;B 2 �L. Then, there exist f1; f2 2 L and t1; t2 2 R
such that A = (f1 � t1) and B = (f2 � t2). Wlog, suppose that t1 � t2. De�ne f3 = f2 + t1 � t2. Since
L is a Stone lattice, it follows that f3, f1 _ f3, and f1 ^ f3 belong to L. Hence, (f3 � t1) = (f2 � t2) = B,
A [B = (f1 _ f3 � t1) 2 �L, and A \B = (f1 ^ f3 � t1) 2 �L. �

2Observe that f + � denotes f + �1S . With a small abuse of notation, we denote by the same symbol a real number and
the constant function that takes that value. By setting � = 0, it follows that a Stone lattice contains all constant functions.

3Given f 2 L and t 2 R, we denote by (f � t) and (f > t) the sets fs 2 S : f (s) � tg and fs 2 S : f (s) > tg.
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Example 3 Let � be an algebra. A function f : S ! R is �-measurable if f�1 (I) 2 � for each Borel

set I of R (see, e.g., [10, p. 240]). We denote by B (�) the set of all bounded �-measurable f : S ! R.
The collection B (�) is a Stone lattice but it is not a vector space unless � is a �-algebra (see, e.g., [13,

pp. 75-76]). Its supnorm closure �B (�) is a Stone vector lattice with the property that, given any two

comonotonic f; g 2 B (�), there exist two sequences ffngn ; fgngn � B (�) that supnorm converge to f and

g, respectively, such that fn and gn are comonotonic and fn + gn 2 B (�) for all n 2 N. Thus, B (�) is a
comonotonic Stone lattice. Finally, �B(�) = �: For, �B(�) � � by de�nition of B (�) , and � � �B(�) since
B (�) contains all indicator functions. N

Example 4 If we endow S with a topology, the collection of all bounded continuous functions C (S) is easily
seen to be a Stone vector lattice. N

Thus, the notion of comonotonic Stone lattice allows to cover classic spaces that, like C (S), are already

Stone vector lattices, as well as classic spaces that, like B (�), are not Stone vector lattices but nicely (in

the sense of comonotonicity) embeds into Stone vector lattices. Without this notion these di¤erent types of

spaces would require a separate analysis.

Let L be a Stone lattice, a functional V : L! R is:

(i) monotone if f � g implies V (f) � V (g);

(ii) positively homogeneous if V (�f) = �V (f) for all � � 0;

(iii) comonotonic additive if V (f + g) = V (f)+V (g) for any comonotonic pair f; g 2 L such that f+g 2 L;

(iv) translation invariant if V (f + �) = V (f) + �V (1) for all f 2 L and � 2 R;

(v) supermodular if V (f _ g) + V (f ^ g) � V (f) + V (g) for all f; g 2 L;

(vi) submodular if V (f _ g) + V (f ^ g) � V (f) + V (g) for all f; g 2 L;

(vii) outer (resp., inner) continuous if limn!1 V (fn) = V (f) whenever ffngn � L and f 2 L are such
that fn # f (resp., fn " f);4

(viii) continuous if it is both inner and outer continuous;

(ix) Lipschitz continuous if there is k > 0 such that jV (f)� V (g)j � k kf � gk for all f; g 2 L.

In the sequel we will also consider functionals V : L+ ! R, where L+ = ff 2 L : f � 0g. For them the

previous properties apply, up to the obvious modi�cations.

Finally, let L be a Stone lattice. Given a functional V : L ! R and two functions f; g 2 L such that
f � g, set

T (f; g) = sup
nX
i=1

jV (fi)� V (fi�1)j 2 [0;1] ;

where the supremum is taken over all �nite chains f = f0 � f1 � � � � � fn = g. We say that V is of bounded
variation if T (0; f) <1 for all f 2 L+ (see, e.g., [13] and [15]).

Given a functional V : L ! R de�ned on a Stone lattice, its dual functional V : L ! R is given by

V (f) = �V (�f). Next, we collect few basic relations between V and its dual V . Their simple proofs are

omitted.
4Given a sequence ffngn � L and f 2 L we say that fn # f (resp., fn " f) if for each s 2 S we have limn fn (s) = f (s) and

fn � fn+1 (resp., fn � fn+1) for all n 2 N.
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Lemma 5 Let V : L! R be a functional de�ned on a Stone lattice. Then,

(i)
�
V
�
= V ;

(ii) V is comonotonic additive if and only if V is;

(iii) V is monotone if and only if V is;

(iv) V is outer (resp., inner) continuous if and only if V is inner (resp., outer) continuous;

(v) V is supermodular (submodular) if and only if V is submodular (resp., supermodular);

(vi) V is translation invariant if and only if V is;

(vii) V is positively homogeneous if and only if V is;

(viii) if V is comonotonic additive, then V is of bounded variation if and only if V is.

3 Decomposition

In this section we study inner and outer variations that we will use to decompose set functions of bounded

variation as di¤erences of capacities. In turn, these decompositions will play an important role in the

integral representation results of next section. Below, given a real number a we denote a+ = max f0; ag and
a� = max f0;�ag.
We consider a lattice of sets �. Given a set function � : �! R and two nested sets A � B, set

�+ (A;B) = sup

nX
i=1

[� (Si)� � (Si�1)]+ ;

�� (A;B) = sup

nX
i=1

[� (Si)� � (Si�1)]� ;

j�j (A;B) = sup
nX
i=1

j� (Si)� � (Si�1)j ;

where the supremum is taken over all �nite chains A = S0 � S1 � � � � � Sn = B.
Following Aumann and Shapley [5], de�ne k�k by k�k = j�j (?; S). This is the variation norm of �,

which reduces to the classic total variation norm when � is a charge. Denote by bv (�) the collection of

all set functions � such that k�k < 1. Set functions in bv (�) are necessarily bounded. Indeed, j� (A)j =
j� (A)� � (?)j � j�j (?; A) � j�j (?; S) = k�k for all A 2 �.

Lemma 6 ([5, p. 28]) If � is a lattice then (bv (�) ; k�k) is a Banach space.5

Given a set function � in bv (�), its

(i) inner upper variation �+ : �! [0;1) is given by �+ (A) = �+ (?; A);

(ii) inner lower variation �� : �! [0;1) is given by �� (A) = �� (?; A);

(iii) outer upper variation �+ : �! [0;1) is given by �+ (A) = �+ (S)� �+ (A;S);

(iv) outer lower variation �� : �! [0;1) is given by �� (A) = �� (S)� �� (A;S);
5More precisely, Aumann and Shapley [5] prove the previous lemma when � is a �-algebra. However, their techniques apply

when � is a lattice. A similar observation applies to Proposition 7, for the equivalence between points (i), (ii), and (iv).
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(v) total variation j�j : �! [0;1) is given by j�j (A) = j�j (?; A).

Outer variations are the natural counterparts of inner variations, which were �rst studied by [5]. Notice

that �+ (?) = �+ (?) = �� (?) = �� (?) = 0 and that �+ (S) = �+ (S) as well as �� (S) = �� (S).

Moreover, all variations (i)-(iv) are capacities, provided � 2 bv (�). The following result summarizes these
facts and extends a basic decomposition result proved in [5].

Proposition 7 Let � be a lattice and � : �! R a set function. The following conditions are equivalent:

(i) � 2 bv (�);

(ii) �+ and �� are two capacities;

(iii) �+ and �� are two capacities;

(iv) there exist two capacities �1 and �2 on � such that � = �1 � �2.

Moreover,

� = �+ � �� = �+ � �� and j�j = �+ + �� (3)

and

�+ � �1 and �� � �2; (4)

whenever � = �1 � �2 is any decomposition with capacities �1 and �2.

Proof. The equivalence of (i), (ii), and (iv) is proved in [5], as well as the equalities � = �+ � �� and

j�j = �+ + ��. In their analysis, � is a �-algebra but their arguments are easily adapted to lattices.
(iii) implies (i). Suppose that �+ and �� are two capacities on �. This implies that �+ (S) and �� (S) are

�nite. We next show that � = �+���. Pick A 2 �. Notice that for each chain A = S0 � S1 � � � � � Sn = S
we have that

� (S)� � (A) =
nX
i=1

(� (Si)� � (Si�1)) =
X

i:�(Si)>�(Si�1)

(� (Si)� � (Si�1))+
X

i:�(Si)��(Si�1)

(� (Si)� � (Si�1)) :

This implies that

�+ (A) = �
+ (S)� �+ (A;S) = �+ (S)� sup

(
nX
i=1

max f� (Si)� � (Si�1) ; 0g
)

= �+ (S) + inf

(
nX
i=1

�max f� (Si)� � (Si�1) ; 0g
)

= �+ (S) + inf

(
nX
i=1

min f� (Si�1)� � (Si) ; 0g
)

= �+ (S) + inf

8<:� X
i:�(Si)>�(Si�1)

(� (Si)� � (Si�1))

9=;
= �+ (S) + inf

8<: X
i:�(Si)��(Si�1)

(� (Si)� � (Si�1))� � (S) + � (A)

9=;
= �+ (S)� � (S) + � (A) + inf

(
nX
i=1

min f� (Si)� � (Si�1) ; 0g
)

= �+ (S)� � (S)� �� (A;S) + � (A) :

6



This implies that

� (A) = �+ (A) + �
� (A;S) + � (S)� �+ (S) = �+ (A) + �� (A;S) + � (S)� �+ (S)� �� (S) + �� (S)

= �+ (A)� �� (A) + � (S)� �+ (S) + �� (S) :

Since A 2 � was chosen to be generic, the previous equality holds for all A 2 �. Since �, �+, and �� are set
functions, by choosing A = ? it follows that 0 = � (S) + �� (S) � �+ (S). Hence, � (A) = �+ (A) � �� (A)
for all A 2 �. Thus, � = �+ � �� and, since � is di¤erence of two capacities, � 2 bv (�).
(i) implies (iii). Suppose that � 2 bv (�). Given any A 2 �, we have that 0 � �+ (A;S) � �+ (?; S) = �+ (S)
and 0 � �� (A;S) � �� (?; S) = �� (S). Since � 2 bv (�) and by (ii), �+ (S) and �� (S) are real numbers.
It follows that �+ (A) = �+ (S) � �+ (A;S) and �� (A) = �� (S) � �� (A;S) are well de�ned positive real
numbers for all A 2 �. Hence, �+; �� : � ! [0;1) are well de�ned functions. It remains to prove that �+
and �� are capacities. Since it is immediate to check that �+ (?) = �� (?) = 0, we only need to show that
�+ and �� are monotone. If A � B then

�+ (B;S) � �+ (B;S) + [� (B)� � (A)]+ � �+ (A;S) and
�� (B;S) � �� (B;S) + [� (B)� � (A)]� � �� (A;S) :

This implies that �+ (B) = �+ (S)� �+ (B;S) � �+ (S)� �+ (A;S) = �+ (A) and, similarly, that �� (B) �
�� (A).

Next, assume one between the four equivalent facts (i), (ii), (iii), and (iv). � = �+��� and j�j = �++��

basically follow from [5] while � = �+ � �� follows from the proof of (iii) implies (i).

Finally, (4) is proven in [15]. �

When � is an algebra, inner and outer variations can be connected through dual set functions.

Lemma 8 Let � be a lattice and � : �! R a set function of bounded variation. If � is an algebra then

�+ = (�)
+ and �� = (�)

�
:

Proof. Suppose � is an algebra and suppose that � 2 bv (�). We only prove that �+ = (�)+, as the other
equality can be similarly proved. Pick A 2 �. It follows that ? = S0 � S1 � � � � � Sn = A if and only if
Ac = Scn � Scn�1 � � � � � Sc0 = S. Moreover,

nX
i=1

[�� (Si)� �� (Si�1)]+ =
nX
i=1

�
�
�
Sci�1

�
� � (Sci )

�+
: (5)

This implies that ��+ (?; A) = �+ (Ac; S). If A = S then we have that ��+ (S) = �+ (S). On the other hand,
we have that

(��)
+
(A) = ��+ (S)� ��+ (Ac) = �+ (S)� �+ (A;S) = �+ (A) ;

as desired. �

Remark 9 In light of previous lemma, we observe that the second equality of (3) can be derived in a simpler
way when � is an algebra. For, assume � 2 bv (�). This implies that �� 2 bv (�) and so �� = ��+ � ���. By
Lemma 8, � = (��) = (��+)� (���) = �+ � ��.
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It is useful to introduce the following order in bv (�) : Given two elements �; � 2 bv (�), say that � � � if
and only if � �� is a capacity. For instance, some of the results of Proposition 7 can be formulated through
the order � as follows: j�j � �+ � � � ��� � � j�j for each � 2 bv (�). In addition, we have �+ � � � ���.
Nevertheless, when � is an algebra, the ordered vector space (bv (�) ;�) is not a vector lattice unless �

is trivial (see, e.g., [15, Proposition 3.4]).

The next �sandwich�result provides a simple way to check the continuity of a set function � 2 bv (�).

Lemma 10 Let � be a lattice and � : �! R a set function of bounded variation. A set function � is outer
(resp., inner) continuous provided �1 � � � �2, where �1 and �2 are both outer (resp., inner) continuous.

Proof. If A � B then it follows that �1 (B) � �1 (A) � � (B) � � (A) � �2 (B) � �2 (A). If fAngn � �,

A 2 �, and An # A then �1 (An) � �1 (A) � � (An) � � (A) � �2 (An) � �2 (A) for all n 2 N. This implies
that limn � (An) = � (A). A similar argument applies for inner continuity. �

Proposition 11 Let � be a lattice and � : �! R a set function of bounded variation. Then,

(i) � is inner continuous if and only if both �+ and �� are;

(ii) � is outer continuous if and only if both �+ and �� are;

(iii) j�j is continuous if and only if both �+ and �� are continuous, which in turn implies that � is contin-
uous.

Proof. In light of Proposition 7 and (3), the su¢ ciency part of points (i), (ii), and (iii) is immediate. The
necessity part of point (i) and (ii) follows from routine arguments.6 As to (iii), by the relations j�j � �+ � 0
and j�j � �� � 0 and by Lemma 10, if j�j is continuous then �+ and �� are continuous. Finally, in this case
and given (3), we can conclude that � is continuous. �

Proposition 11 characterizes the inner and outer continuity of set functions in bv (�) in terms of the inner

and outer continuity of their variations. A natural question is whether the continuity of a set function has

a similar characterization, that is, whether a continuous � can be decomposed in two continuous �+ and

��. The next negative result shows that, in general, this is not the case. In other words, the implication

contained in point (iii) of Proposition 11 does not admit a converse: there exist continuous set functions �

for which j�j is not continuous. In this case, we can only assert that j�j is inner continuous by point (i) of
Proposition 11.

To see why this is the case, say that � is a nonatomic �-algebra if it admits a nonatomic probability

measure. For example, Borel �-algebras of uncountable Polish spaces have this property (see, e.g., [1,

Theorem 12.22]).

Proposition 12 If � is a nonatomic �-algebra then there exists a continuous � 2 bv (�) such that its inner
variations �+ and �� are not outer continuous.

This negative result is important for our analysis since it shows that we cannot provide a uni�ed repre-

sentation for the continuous case, but only separately for inner and outer continuity.

Proof. Let � be the nonatomic probability measure on �. Let A be such that � (A) = � (Ac) = 1=2, and
de�ne �1; �2 : �! [0; 1] by �1 (B) = � (Ac \B) =� (Ac) and �2 (B) = � (A \B) =� (A). Clearly, �1 and �2
are mutually singular nonatomic probability measures. By the Lyapunov Theorem,

f(�1 (B) ; �2 (B)) : B 2 �g = [0; 1]2 : (6)
6Proofs are available upon request. Point (i) was proven �rst by [16, Proposition 2.1] when � is a �-algebra. Particularly,

in the case � is an algebra, the necessity part of (ii) is an easy consequence of point (i) and Lemma 8.
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Consider the function f : [0; 1]2 ! R de�ned in [5, note 3 p. 56] and de�ne � : � ! R by � (B) =

f (�1 (B) ; �2 (B)). By the properties of this function proved by [5], � belongs to bv (�), � is continuous, and

�+ (B) = f+ (�1 (B) ; �2 (B)).7 However, limm f+ (2�m; 1) 6= f+ (0; 1).
By (6) and since �1 and �2 are mutually singular, there exists a sequence fAmgm � A such that

�1 (Am) = 2
�m and �2 (Am) = 1 for all m 2 N. Set A0 =

\
m2N

Am. We have �1 (A0) = 0 and �2 (A0) = 1.

Hence,

�+ (A0) = f+ (0; 1) 6= lim
m
f+
�
1

2m
; 1

�
= lim

m
f+ (�1 (Am) ; �2 (Am)) = lim

m
�+ (Am) ;

which shows that �+ is not outer continuous. A similar argument shows that also �� is not outer continuous.

�

4 Integral Representation of Comonotonic Additive Functionals

Let L be a Stone lattice. Given an element � 2 bv (�L) and an element �0 2 bv (�0L), we de�ne Vc : L! R
and Vsc : L! R the Choquet functionals given by

Vc (f) =

Z 1

0

� (f � t) dt+
Z 0

�1
[� (f � t)� � (S)] dt 8f 2 L; (7)

and

Vsc (f) =

Z 1

0

�0 (f > t) dt+

Z 0

�1
[�0 (f > t)� �0 (S)] dt 8f 2 L:

The Riemann integrals on the right hand sides are well de�ned. Indeed, the scalar functions ' (t) = � (f � t)
and '0 (t) = �0 (f > t) are of bounded variation over [�kfk � 1; kfk+ 1]. For, if t0 � t1 � � � � � tn,

t0 = �kfk � 1, and tn = kfk+ 1 then
nX
i=1

j' (ti)� ' (ti�1)j =
nX
i=1

j� (f � ti)� � (f � ti�1)j � k�k : (8)

A similar argument holds for '0. Hence, the two integrands of (7) are of bounded variations on the interval

[�kfk � 1; kfk+ 1] and zero on the rest of their respective domains of integration. When � is de�ned over
the entire �-algebra generated by �L we write alternatively Vc (f) =

R
fd� for all f 2 L.

We can now state and prove our �rst main result.

Theorem 13 Let V : L ! R be a functional de�ned on a comonotonic Stone lattice. The following condi-
tions are equivalent:

(i) V is comonotonic additive, of bounded variation, and outer continuous;

(ii) there exists an outer continuous set function � 2 bv (�L) such that

V (f) =

Z 1

0

� (f � t) dt+
Z 0

�1
[� (f � t)� � (S)] dt 8f 2 L; (9)

(iii) there exist two outer continuous capacities �1 and �2 over �L such that

V (f) = V 1c (f)� V 2c (f) 8f 2 L: (10)

Moreover,

7Here f+ is de�ned as in [5, p. 50].
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(a) the outer continuous set function � : �L ! R for which (9) holds is unique;

(b) � is a capacity if and only if V is monotone;

(c) � is supermodular if and only if V is supermodular.

The proof of this theorem relies on few lemmas.

Lemma 14 Let V : L ! R be a comonotonic additive functional of bounded variation de�ned on a Stone
lattice L. Then,

(i) there exist two functionals V1; V2 : L! R that are monotone, translation invariant, positively homoge-
neous, and such that V = V1 � V2 on L;

(ii) V is inner (resp., outer) continuous if and only if both V1 and V2 are inner (resp., outer) continuous;

(iii) V is Lipschitz continuous, translation invariant, and positively homogeneous on L.

Proof. (i) By proceeding as in [13, p. 69], it is easy to see that comonotonic additivity implies that

V (�f + �) = �V (f) + V (�) 8� 2 Q+ and � 2 R: (11)

Being V of bounded variation, we have that T (0; f) < 1 for all f 2 L+. De�ne V1 : L+ ! R by

V1 (f) = T (0; f). Since V is of bounded variation, V1 is well de�ned. Clearly, it is monotone.

Claim 1 T (0; f + �) = T (��; f) for all f 2 L+ and for all � 2 R+.
Proof of the Claim. Fix f 2 L+ and � 2 R+. Notice that fgigni=0 is a chain in L such that �� = g0 �
� � � � gn = f if and only if there exists a chain ffigni=0 in L such that 0 = f0 � � � � � fn = f + � and

fi = gi + � for all i 2 f0; :::; ng. In view of (11), it follows that

T (��; f) = sup
nX
i=1

jV (gi)� V (gi�1)j = sup
nX
i=1

jV (fi � �)� V (fi�1 � �)j

= sup
nX
i=1

jV (fi)� V (fi�1)j = T (0; f + �) :

�

Claim 2 T (��; f) = T (��; 0) + T (0; f) for all f 2 L+ and � 2 Q++.
Proof of the Claim. Fix f 2 L+ and � 2 Q++. Since V is comonotonic and of bounded variation and

by de�nition and Claim 1, 1 > T (��; f) � T (��; 0) + T (0; f). We are now left to prove the opposite

inequality. Fix " > 0. Then, there exists a �nite chain ffigni=0 � L, with �� = f0 and fn = f , such that

nX
i=1

jV (fi)� V (fi�1)j � T (��; f)� ":

Since L is a Stone lattice,
�
f+i
	n
i=0

and
�
�f�i

	n
i=0

are chains in L. Moreover, observe that f+i and

�f�i are comonotonic for all i 2 f0; :::; ng, since
�
f+i (s1)� f

+
i (s2)

� �
f�i (s2)� f

�
i (s1)

�
= f+i (s1) f

�
i (s2) +

f+i (s2) f
�
i (s1) � 0.8 So that V (fi) = V

�
f+i
�
+ V

�
�f�i

�
for all i 2 f0; :::; ng.

8More generally, f ^ a and f _ a are comonotone for all a 2 R (see, e.g., [15]).
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Finally, from �� = �f�0 � � � � � �f�n = 0 and 0 = f+0 � � � � � f+n = f , it follows that

T (��; 0) + T (0; f) �
nX
i=1

��V ��f�i �� V ��f�i�1���+ nX
i=1

��V �f+i �� V �f+i�1���
�

nX
i=1

��V ��f�i �� V ��f�i�1�+ V �f+i �� V �f+i�1���
=

nX
i=1

jV (fi)� V (fi�1)j � T (��; f)� ":

Since " was arbitrarily chosen, the statement follows. �
Claim 3 T (0; �f) = �T (0; f) for all f 2 L+ and � 2 Q++.
Proof of the Claim. Fix f 2 L+ and � 2 Q++. Given " > 0, there is a chain in L such that 0 = f0 � � � � �
fn = f and for which

nP
i=1

jV (fi)� V (fi�1)j � T (0; f) � ". Consider the chain 0 = �f0 � � � � � �fn = �f .

In view of (11), we have that

T (0; �f) �
nX
i=1

jV (�fi)� V (�fi�1)j � �T (0; f)� �":

It follows that T (0; �f) � �T (0; f). Since � was generic, particularly, we have that T
�
0; ��1f

�
� ��1T (0; f)

for all � 2 Q++. By replacing f with �f , we obtain that T (0; f) � ��1T (0; �f). Consequently, T (0; �f) =
�T (0; f). �
By construction, V1 is monotone. Given Claims 1-3, if � 2 Q++ then we can conclude that

V1 (f + �) = T (0; f + �) = T (��; f) = T (��; 0) + T (0; f) = T (0; �) + T (0; f) (12)

= �T (0; 1) + T (0; f) = V1 (f) + �V1 (1) :

Let f; g 2 L+. Since L is a Stone lattice, g + kf � gk 2 L+. Let frngn � Q++ be such that rn # kf � gk.
By (11) and (12), and since f � g + kf � gk, we have that

V1 (f) � V1 (g + kf � gk) � V1 (g + rn) = V1 (g) + rnV1 (1) 8n 2 N. (13)

By a symmetric argument, we can interchange the roles of f and g in (13). Passing to the limit, we get

jV1 (f)� V1 (g)j � V1 (1) kf � gk, which shows that V1 is Lipschitz continuous. Given Claims 1-3, we have
that for each f 2 L+ and for each �; � 2 Q++

V1 (�f + �) = �V1 (f) + �V1 (1) : (14)

Since V1 is Lipschitz continuous, it follows that (14) holds for all f 2 L+ and �; � � 0.
De�ne now V2 = V1 � V on L+. Consider f; g 2 L+ such that f � g. Since V is of bounded variation,

we have that

V (f)� V (g) � jV (f)� V (g)j � T (g; f) � T (0; f)� T (0; g) = V1 (f)� V1 (g) :

In turn, this implies that V2 is monotone. By (11) and (14), we have that for each f 2 L+ and for each
�; � 2 Q++

V2 (�f + �) = �V2 (f) + �V2 (1) : (15)

Since V2 is monotone and by the same argument used for V1, it follows that V2 is Lipschitz continuous.

Finally, by Lipschitz continuity, we can conclude that (15) holds for all �; � � 0.
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In sum, we have proved that there exist two monotone functionals, V1 and V2, from L+ to R such that
V = V1 � V2 on L+ and such that for each i 2 f1; 2g

Vi (�f + �) = �Vi (f) + �Vi (1) 8f 2 L+;8�; � � 0:

We complete the proof by extending V1 and V2 to L. To this end, observe that L = ff + k : f 2 L+ and k 2 Rg.
For i = 1; 2, de�ne bVi : L! R by bVi (f) = Vi (f + �)� �Vi (1) where � is any nonnegative scalar such that
f + � 2 L+. The functionals bVi are easily seen to be well de�ned with bVi (f) = Vi (f) for all f 2 L+. It
is also easy to check that they are monotone, translation invariant, and positively homogeneous. Thus, it

remains to prove that V = bV1 � bV2. Let f 2 L and de�ne k = bkfkc+ 1. Notice that f + k 2 L+. By (11)
and since V = V1 � V2 on L+, it follows that

V (f) + kV (1) = V (f + k) = V1 (f + k)� V2 (f + k) = bV1 (f + k)� bV2 (f + k)
= bV1 (f)� bV2 (f) + k �bV1 (1)� bV2 (1)� = bV1 (f)� bV2 (f) + k (V1 (1)� V2 (1))
= bV1 (f)� bV2 (f) + kV (1) :

This completes the proof of (i).

(ii) The su¢ ciency part of the statement is obvious. We next prove the necessity part. We �rst show the

inner continuity of V1 : L+ ! R. Let ffmgm � L+ be such that fm " f . Since V1 is monotone, limm V1 (fm)
is well de�ned, with limm V1 (fm) � V1 (f). As to the converse inequality, pick " > 0 and consider a chain
0 = g0 � g1 � � � � � gn = f such that

V1 (f)� " = T (0; f)� " �
nX
i=1

jV (gi)� V (gi�1)j :

De�ne fmi = gi ^ fm for all m 2 N and for all i 2 f0; :::; ng. Since L is a Stone lattice, we have that

fmi 2 L for all m 2 N and for all i 2 f0; :::; ng, moreover, fmi " gi for all i 2 f0; :::; ng and 0 = fm0 �
fmi�1 � fmi � fmn = fm for all i 2 f1; :::; ng and for all m 2 N. Since V is inner continuous, it follows that

limm
��V (fmi )� V �fmi�1��� = jV (gi)� V (gi�1)j for each i 2 f1; :::; ng. Therefore,

lim
m

nX
i=1

��V (fmi )� V �fmi�1��� = nX
i=1

jV (gi)� V (gi�1)j :

By de�nition, for each m 2 N we have that V1 (fm) = T (0; fm) �
nP
i=1

��V (fmi )� V �fmi�1���. This implies that
lim
m
V1 (fm) � lim

m

nX
i=1

��V (fmi )� V �fmi�1��� � V1 (f)� ":
Since " > 0 was arbitrarily chosen, this proves the statement.

It remains to show that the extension bV1 : L ! R is also inner continuous. Consider ffmgm � L and

f 2 L such that fm " f . De�ne k = kf1k. Then, ffm + kgm � L+, f + k 2 L+, and fm + k " f + k. Since
V1 is inner continuous, this implies that

bV1 (f + k) = V1 (f + k) = lim
m
V1 (fm + k) = lim

m
bV1 (fm + k) :

Hence, bV1 (f) = bV1 (f + k) � kbV1 (1) = limm

�bV1 (fm + k)� kbV1 (1)� = limm bV1 (fm). Clearly, since bV2 =
V � bV1 and V and bV1 are inner continuous, it follows that bV2 is inner continuous as well.
Finally, we prove the outer continuous case. If V is outer continuous, by Lemma 5 it follows that �V is an

inner continuous and comonotonic additive functional of bounded variation. Therefore, by the previous part
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of the proof �V = V1�V2, where V1; V2 : L! R are monotone, translation invariant, positively homogeneous,
and inner continuous functionals. By Lemma 5, V =

�
V
�
= �V1 � �V2, where �V1; �V2 : L ! R are monotone,

translation invariant, positively homogeneous, and outer continuous functionals.

(iii) It follows from (i) since V is the di¤erence of two functionals that share these properties. �

In the sequel, we still consider a comonotonic functional of bounded variation, V , de�ned on a Stone

lattice L. We will need to extend V to the supnorm closure �L of L. The next result tells us that we can

extend V to �L maintaining some of its properties, particularly and surprisingly, the property of (outer)

continuity. Given the mappings V; V1; V2 : L ! R as in Lemma 14, we denote by W;W1;W2 : �L ! R their
unique continuous extensions to �L.9 By de�nition, W (f) = limm V (fm) for all f 2 �L where ffmgm � L

and kfm � fk ! 0. Clearly, this implies that if the functional is Lipschitz continuous so is its extension and

if the functional is monotone so is its extension.

Lemma 15 Let L be a Stone lattice. If V : L! R is a comonotonic additive and outer continuous functional
of bounded variation then W is an outer continuous functional of bounded variation.

Proof. By Lemma 14, we have that V = V1 � V2 where V1 and V2 are monotone, translation invariant,
positively homogeneous, and outer continuous functionals. It follows that W =W1 �W2 where W1 and W2

are monotone. Indeed, consider a generic f 2 �L and ffmgm � L such that kfm � fk ! 0. Then, we have

that

W (f) = lim
m
V (fm) = lim

m
fV1 (fm)� V2 (fm)g = lim

m
V1 (fm)� lim

m
V2 (fm) =W1 (f)�W2 (f) : (16)

Monotonicity of W1 and W2 follows similarly. Since W is a di¤erence of two monotone functionals, it follows

that W is of bounded variation (on �L). We are left to prove that W is outer continuous. We proceed by

proving few facts. Fix i 2 f1; 2g.
Claim 1 For each f 2 �L there exists ffmgm � L (resp., ff 0mgm � L) such that kfm � fk ! 0 and fm � f
for all m 2 N (resp., kf 0m � fk ! 0 and f 0m � f for all m 2 N).
Proof of the Claim. The proof follows from standard arguments. �
Claim 2 For each f 2 �L and for each fgmgm � �L such that gm # f there exists ffmgm � L such that

fm # f and kfm � gmk � 1
m .

Proof of the Claim. By Claim 1, for eachm 2 N there exists hm 2 L such that hm � gm and khm � gmk �
1
m . De�ne fm = ^mk=1hk for all m 2 N. It is immediate to see that ffmgm is a nonincreasing sequence of

functions. Moreover, since L is a Stone lattice, we have that ffmgm � L. Furthermore, we have that

fm � gm � f for all m 2 N. Indeed, we have that hk � gk � gm for all m 2 N and for all k � m. It follows
that

jfm (s)� gm (s)j = fm (s)� gm (s) � hm (s)� gm (s) = jhm (s)� gm (s)j �
1

m
8m 2 N;8s 2 S:

This implies that kfm � gmk � 1
m for all m 2 N. Finally, we have that

gm (s) +
1

m
� fm (s) � f (s) 8m 2 N;8s 2 S:

This implies that fm # f . �
Claim 3 If f 2 �L and ffmgm � L is such that fm # f then limm Vi (fm) =Wi (f).

Proof of the Claim. By monotonicity of Vi and since L is a Stone lattice, it follows that fVi (fm)gm is a

nonincreasing sequence which is bounded from below by Vi (�kfk) 2 R. Hence, limm Vi (fm) is well de�ned.
Since Wi is monotone as well, it follows that limm Vi (fm) = limmWi (fm) �Wi (f).

9Since V , V1, and V2 are Lipschitz continuous, these extensions exist and are unique.
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Viceversa, by Claim 1, there exists a sequence fgkgk � L such that gk � f and kgk � fk ! 0. Notice

that, by de�nition of Wi, we have that limk Vi (gk) =Wi (f).

Fix k 2 N. De�ne for each k 2 N the sequence
�
fkm
	
m
such that fkm = fm _ gk for all m 2 N.

Since L is a Stone lattice,
�
fkm
	
m
� L. By construction, fkm # gk 2 L. By monotonicity and outer

continuity of Vi, this implies that limm Vi (fm) � limm Vi
�
fkm
�
= Vi (gk) for all k 2 N. This implies that

limm Vi (fm) � limk Vi (gk) =Wi (f), proving the statement. �
Claim 4 Wi is outer continuous.

Proof of the Claim. Consider f 2 �L and fgmgm � �L such that gm # f . We want to show that

limmWi (gm) = Wi (f). By Claim 2, there exists ffmgm � L such that fm # f and kfm � gmk � 1
m . It

follows that

jWi (gm)�Wi (f)j � jWi (fm)�Wi (f)j+ jWi (gm)�Wi (fm)j

� jVi (fm)�Wi (f)j+
1

m
Wi (1) 8m 2 N:

The second inequality follows since Wi is the unique continuous extension of Vi to �L and Wi is Lipschitz

of order Vi (1) = Wi (1) given that Vi is. By Claim 3, it follows that jVi (fm)�Wi (f)j ! 0, proving the

statement. �
By Claim 4 and (16), it follows that W1 and W2 are outer continuous, and so is W . This completes the

proof of the lemma. �

The next Lemma can be proved by using the same techniques of [20, Lemma 1 and Theorem 1].

Lemma 16 Let V : L ! R be a monotone, translation invariant, positively homogeneous, and outer con-
tinuous functional de�ned on a Stone vector lattice L. For any A 2 �L there exists a sequence ffmgm in

L+ such that fm # 1A. Moreover, the set function � : �L ! R given by � (A) = limm V (fm), where ffmgm
is a generic sequence in L+ such that fm # 1A, is a well de�ned outer continuous capacity.

We can now prove Theorem 13.

Proof of Theorem 13. (i) implies (ii). Suppose �rst that L is a Stone vector lattice. By Lemma 14 and
since V is comonotonic additive, of bounded variation, and outer continuous, there exist two functionals

V1; V2 : L ! R that are monotone, translation invariant, positively homogeneous, outer continuous, and

such that V = V1 � V2. De�ne � : �L ! R by � (A) = �1 (A) � �2 (A) for all A 2 �L where �1 and �2 are
de�ned as in Lemma 16 via the functionals V1 and V2. By Theorem 7, Lemma 14 point (ii), and Lemma 16,

� is an outer continuous set function of bounded variation.

We now prove that (9) holds. Suppose that f 2 L+ and de�ne k = kfk + 1. By (8),
R1
0
� (f � t) dt is

well de�ned. Let " > 0. There exists a partition ftigni=0 such that 0 = t0 < � � � < tn = k, k=n < ", and�����
Z 1

0

� (f � t) dt�
nX
i=1

� (f � ti�1) (ti � ti�1)
����� =

�����
Z k

0

� (f � t) dt�
nX
i=1

� (f � ti�1) (ti � ti�1)
����� < ": (17)

By [20, pag. 1815], for each i 2 f1; :::; ng there exists fi 2 L+ such that

(a) j� (f � ti�1)� V (fi�1)j < "=k;

(b) fi�1 (ti � ti�1) and �nj=i+1fj�1 (tj � tj�1) are comonotonic for each i 2 f1; :::; n� 1g;

(c) f � �ni=1fi�1 (ti � ti�1) � f + 2".
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By (c) and Lemma 14, it follows that

Vj (f) � Vj

 
nX
i=1

fi�1 (ti � ti�1)
!
� Vj (f) + 2"Vj (1) for j 2 f1; 2g :

This implies that �����Vj
 

nX
i=1

fi�1 (ti � ti�1)
!
� Vj (f)

����� � 2"Vj (1) for j 2 f1; 2g :

By (17), (a), and (b), it follows that����Z 1

0

� (f � t) dt� V (f)
���� �

�����
Z 1

0

� (f � t) dt� V
 

nX
i=1

fi�1 (ti � ti�1)
!�����+

�����V
 

nX
i=1

fi�1 (ti � ti�1)
!
� V (f)

�����
�
�����
Z 1

0

� (f � t) dt�
nX
i=1

V (fi�1) (ti � ti�1)
�����+ 2"V1 (1) + 2"V2 (1)

�
�����
Z 1

0

� (f � t) dt�
nX
i=1

� (f � ti�1) (ti � ti�1)
�����

+

�����
nX
i=1

� (f � ti�1) (ti � ti�1)�
nX
i=1

V (fi�1) (ti � ti�1)
�����+ 2" (V1 (1) + V2 (1))

� 2" (1 + V1 (1) + V2 (1)) :

Since " was arbitrarily chosen, this proves the statement. If f 62 L+ then f + kfk 2 L+. It follows that

V (f) + kfkV (1) = V (f + kfk) =
Z 1

0

� (f + kfk � t) dt

=

Z 1

0

� (f � t) dt+
Z 0

�kfk
� (f � t) dt

=

Z 1

0

� (f � t) dt+
Z 0

�kfk
[� (f � t)� � (S)] dt+ kfk � (S)

=

Z 1

0

� (f � t) dt+
Z 0

�1
[� (f � t)� � (S)] dt+ kfkV (1) ;

proving the statement when L is a Stone vector lattice.

Suppose that L is not a vector space. By Lemma 14, V : L ! R is Lipschitz continuous. By Lemma
15, this implies the existence and uniqueness of its extension to �L. We still denote by V this extension.

Moreover, this extension is of bounded variation and outer continuous. In view of (2), the restriction of V

on E is also comonotonic additive. For, given any comonotonic pair f; g 2 E, there exist two sequences
ffngn ; fgngn � L that supnorm converge to f and g, respectively, and such that fn and gn are comonotonic

and fn + gn 2 L for each n 2 N. Then, by the Lipschitz continuity of V , we have that V (f + g) =

limn V (fn + gn) = limn (V (fn) + V (gn)) = V (f) + V (g). Since E is a Stone vector lattice, by the �rst

part of the proof there exists an outer continuous � 2 bv (�E) such that (9) holds on E for the extension of

V . In turn, this implies the existence of an outer continuous � 2 bv (�L) such that (9) holds on L.
(ii) implies (iii). From � = �+ � �� and Proposition 11, we get (10).
(iii) implies (i). It is easy to check that the functional V : L! R de�ned by (9) is comonotonic additive, of
bounded variation, and outer continuous since it is di¤erence of functionals sharing these properties.

(a). Assume that L is a Stone vector lattice and let � be de�ned as in the previous part of the proof.

Consider an outer continuous set function �0 in bv (�L) that satis�es (9). Given any A = (f � t) 2 �L,

15



following [20, p. 1814] set

fn = 1�
h
1 ^ n (t� f)+

i
:

We have fn (s) 2 [0; 1] for all s 2 S and the nonincreasing sequence ffngn is such that fn # 1A. In particular,
A = (fn � 1) for all n 2 N and

(fn � t) # A 8t 2 (0; 1] . (18)

De�ne gn : [0; 1]! R by gn (t) = �0 (fn � t) for all n 2 N. We have that fgngn is a sequence of functions of
bounded variation, uniformly bounded by k�0k. By (18) and since �0 is outer continuous, limn gn (t) = �0 (A)
for all t 2 (0; 1]. By the Arzelà Dominated Convergence Theorem (see, e.g., [12]), limn

R 1
0
gn (t) dt = �

0 (A).

By (9) and by de�nition of �, we have � (A) = limn V (fn) = limn
R 1
0
gn (t) dt = �0 (A), thus proving the

uniqueness of �. If L is a comonotonic Stone lattice, then � is constructed on �E � �L. By following the
same technique, it follows that any outer continuous �0 2 bv (�L) must coincide with �j�L .
(b). Necessity follows from a routine argument. On the other hand, su¢ ciency follows by noticing that

V = V1 and V2 = 0. By Lemma 16, this implies that � = �1 is an outer continuous capacity on �L.

(c). If � is supermodular then we have that

� ((f ^ g) � t) + � ((f _ g) � t) = � ((f � t) \ (g � t)) + � ((f � t) [ (g � t))
� � (f � t) + � (g � t) 8f; g 2 L;8t 2 R

By (9), we have that

V (f ^ g) + V (f _ g) � V (f) + V (g) 8f; g 2 L:

Viceversa, assume that V is further supermodular. Pick A;B 2 �L. De�ne � as in the initial part of the
proof. Consider ffngn ; fgngn � L such that fn # 1A and gn # 1B . We have that fn _ gn # A [ B and

fn ^ gn # A \B. By Lemma 16 and since V is supermodular, this implies that

� (A [B) + � (A \B) = lim
n
V (fn _ gn) + lim

n
V (fn ^ gn) � lim

n
V (fn) + lim

n
V (gn) = � (A) + � (B) ;

proving the statement. �

4.1 Inner Continuous Representation

We now use the previous results to provide a characterization in terms of Choquet integral of inner continuous

and comonotonic additive functionals of bounded variation from L to R.

Proposition 17 Let V : L ! R be a functional de�ned on a comonotonic Stone lattice. The following

conditions are equivalent:

(i) V is comonotonic additive, of bounded variation, and inner continuous;

(ii) there exists an inner continuous set function � 2 bv (�0L) such that

V (f) =

Z 1

0

� (f > t) dt+

Z 0

�1
[� (f > t)� � (S)] dt 8f 2 L; (19)

(iii) there exist two inner continuous capacities �1 and �2 over �0L such that

V (f) = V 1sc (f)� V 2sc (f) 8f 2 L: (20)

In particular, the inner continuous set function � for which (19) holds is unique.
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Proof. (i) implies (ii) Given a set function � : �L ! R, de�ne � : �0L ! R by � (A) = � (S)� � (Ac). The
dual set function � is well de�ned since, being L a Stone lattice, it is easy to check that A 2 �L if and only
if Ac 2 �0L. Moreover, � is outer continuous and of bounded variation if and only if � is inner continuous
and of bounded variation.

Since V is comonotonic additive, of bounded variation, and inner continuous, by Lemma 5 the functional

V is comonotonic additive, of bounded variation, and outer continuous. By Theorem 13, there exists a

unique outer continuous set function � 2 bv (�L) such that

V (f) =

Z 1

0

� (f � t) dt+
Z 0

�1
[� (f � t)� � (S)] dt, 8f 2 L.

Then,

V (f) = �V (�f) = �
�Z 1

0

� (�f � t) dt+
Z 0

�1
[� (�f � t)� � (S)] dt

�
=

Z 0

�1
[� (S)� � (�f � t)] dt�

Z 1

0

� (�f � t) dt

=

Z 1

0

[� (S)� � (f � t)] dt�
Z 0

�1
� (f � t) dt

=

Z 1

0

[� (S)� � (f � t)] dt+
Z 0

�1
[� (S)� � (f � t)� � (S)] dt

=

Z 1

0

� (f > t) dt+

Z 0

�1
[� (f > t)� � (S)] dt

where �� is inner continuous and of bounded variation. This proves (19).

(ii) implies (iii). From � = �+ � �� and Proposition 11, we get (20).

(iii) implies (i). It is easy to check that the Choquet functional V : L ! R de�ned by (20) is comonotonic
additive, of bounded variation, and inner continuous since it is di¤erence of functionals sharing these prop-

erties.

A suitable modi�cation of the arguments used to prove uniqueness in Theorem 13 shows that � is unique

even in this case. �

5 Two Special Cases

In this section we show what form Theorem 13 takes in the two classic comonotonic Stone lattices of Examples

3 and 4, that is, B (�) and C (S). In so doing, we both illustrate the unifying power of Theorem 13 and

generalize two classic integral representation results.

We begin with the collection B (�) of measurable functions. An early version of this result was stated in

[15] without any continuity assumption on V .

Corollary 18 Let V : B (�)! R be a functional. The following conditions are equivalent:

(i) V is comonotonic additive, of bounded variation, and outer (resp., inner) continuous;

(ii) there exists an outer (resp., inner) continuous set function � 2 bv (�) such that

V (f) = Vc (f) (resp:; = Vsc (f)) 8f 2 B (�) ; (21)
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(iii) there exist two outer (resp., inner) continuous capacities �1 and �2 over � such that

V (f) = V 1c (f)� V 2c (f) (resp:; = V 1sc (f)� V 2sc (f)) 8f 2 B (�) :

The unique � that satis�es (21) is given by � (A) = V (1A).

Proof. The result follows from Theorem 13 (resp., Proposition 17) since � = �B(�) (resp., = �0B(�)), as

observed in Example 3. �

Remark. Rébillé [16] proves a version of Corollary 18 where he does not assume bounded variation and,
as a result, the right hand side of (21) is a Lebesgue integral (without bounded variation the function

' (t) = � (f � t) may not be Riemann integrable).

Endow now S with a topology and consider the classic Stone vector lattice C (S) of bounded continuous

functions. When S is compact, Theorem 13 takes the following stark form, where thank to Dini�s Theorem

we no longer need to require the outer continuity of V .

Corollary 19 Let V : C (S) ! R be a functional where S is a compact topological space. The following

conditions are equivalent:

(i) V is comonotonic additive and of bounded variation;

(ii) there exists a unique outer continuous set function � 2 bv (�L) such that

V (f) =

Z 1

0

� (f � t) dt+
Z 0

�1
[� (f � t)� � (S)] dt 8f 2 C (S) ; (22)

(iii) there exist two outer continuous capacities �1 and �2 over �L such that

V (f) = V 1c (f)� V 2c (f) 8f 2 C (S) :

Proof. Let V be comonotonic additive and of bounded variation. By Lemma 14, it is Lipschitz continuous.
Suppose ffngn � C (S) is such that fn # f 2 C (S). By Dini�s Theorem (see, e.g., [1, p. 54]), kfn � fk ! 0,

so that limn V (fn) = V (f). This shows that V is outer continuous. In view of this observation, the result

now follows from Theorem 13. �

6 A Daniell-Stone Theorem for Comonotonic Additive Function-
als

In this section we assume that L is a Stone vector lattice. Since L is endowed with the supnorm, L is a

normed vector space and we denote by L� the norm dual of L. It follows that L� endowed with the dual

norm k�k� is an AL-space (see, e.g., [3, Theorem 4.1] and [2, Theorem 3.38]).10 We denote by A the smallest
�-algebra such that each function in L is measurable. It is immediate to see that A = � (�0L) = � (�L).

We denote by ca (A) the class of set functions on A that are countably additive and bounded on A. We
endow ca (A) with the total variation norm, k�kvar. Notice that (ca (A) ; k�kvar) is a normed Riesz space,
particularly, it is an L-space (see, e.g., [1, Theorem 10.56]). Finally, we de�ne L0 � L� to be such that

L0 =
n
I 2 L� : lim

n
I (fn) = 0 if fn # 0

o
:

10Recall that for each I 2 L� we have that kIk� = sup fjI (f)j : kfk � 1g = sup fjI (f)j : �1 � f � 1g. Moreover, if I � 0

then kIk� = I (1).
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Proposition 20 L0 is a Riesz subspace of L�.

Proof. By de�nition of L0, it is immediate to see that L0 is a vector subspace of L�. We are just left to
show that L0 is a lattice as well. Notice that for each I 2 L0 and for each f 2 L+ we have that

I+ (f) = sup fI (g) : 0 � g � fg � 0: (23)

Consider ffngn2N � L+ such that fn # 0. For each n 2 N de�ne gn 2 L to be such that I (gn)+ 1
n � I

+ (fn)

and 0 � gn � fn. By (23) and since I 2 L0 and gn # 0, we have that

0 � lim inf
n
I+ (fn) � lim sup

n
I+ (fn) � lim

n

�
I (gn) +

1

n

�
= 0:

It follows that I+ belongs to L0, provided I 2 L0. Given the equality I = I+ � I� and since L0 is a vector
space, we have that I� belongs to L0 as well. Hence, we can conclude that jIj 2 L0 and that L0 is a Riesz
subspace of L�. �

Given a functional V : L! R, we say that V is (bounded) pointwise continuous at f 2 L if and only if
V (fn) ! V (f) whenever fn (s) ! f (s) for all s 2 S and ffngn is uniformly bounded. We say that V is

pointwise continuous if and only if V is pointwise continuous at each f 2 L. Notice that if V is pointwise

continuous then it is inner and outer continuous. Moreover, V is pointwise continuous at 0 if and only if �V

is.

In the theory of integration, elements in L0+ are usually called Daniell integrals (see, e.g., [17, Chapter

16]). By the celebrated Daniell-Stone theorem, they turn out to be pointwise continuous.

Theorem 21 (Daniell-Stone) Let V : L ! R be a functional de�ned on a Stone vector lattice. The

following conditions are equivalent:

(i) V is monotone, linear, and pointwise continuous;

(ii) V is monotone, linear, and pointwise continuous at 0;

(iii) V is monotone, linear, and outer continuous at 0;

(iv) there exists a unique � 2 ca+ (A) such that

V (f) =

Z
fd� 8f 2 L:

In this section, we propose a generalization of the Daniell-Stone theorem in which linearity is replaced

by comonotonic additivity and supermodularity, while monotonicity is replaced by bounded variation. This

is the second main result of the paper.

Theorem 22 Let V : L! R be a functional de�ned on a Stone vector lattice. The following conditions are
equivalent:

(i) V is comonotonic additive, supermodular, pointwise continuous, and of bounded variation;

(ii) V is comonotonic additive, supermodular, pointwise continuous at 0, and of bounded variation;
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(iii) there exists a unique continuous and supermodular � 2 bv (A) such that

V (f) =

Z
fd� 8f 2 L:

Moreover, V is monotone if and only if � is a capacity.

As before, we prove few ancillary lemmas before proving the main theorem. First observe that, by the

Daniell-Stone theorem, for each I 2 L0+ there exists a unique element �I 2 ca+ (A) such that

I (f) =

Z
fd�I 8f 2 L: (24)

De�ne the map S : L0+ ! ca+ (A) to be such that I 7! �I . Moreover, without loss of generality, de�ne by �S

the map from L0 to ca (A) such that

�S (I) = S
�
I+
�
� S

�
I�
�

8I 2 L0:

Lemma 23 Let S and �S be de�ned as above. The following statements are true:

1. S is well de�ned, additive, and bijective;

2. �S is a lattice isomorphism;

3. �S is an isometry;

4. �S is continuous when L0 and ca (A) are endowed with their respective weak topologies.

Proof. 1. By the Daniell-Stone theorem, it follows that S is well de�ned. Consider I1; I2 2 L0+. With the
previous notation, it follows thatZ

fd�I1+I2 = (I1 + I2) (f) = I1 (f) + I2 (f)

=

Z
fd�I1 +

Z
fd�I2 =

Z
fd (�I1 + �I2) 8f 2 L:

By the uniqueness part of the Daniell-Stone theorem, it follows that S (I1 + I2) = �I1+I2 = �I1 + �I2 =

S (I1) + S (I2). The fact that S is injective follows easily from (24). The fact that S is surjective follows

from the uniqueness part of the Daniell-Stone theorem and the the fact that each � 2 ca+ (A) induces a
linear, monotone, and outer continuous functional on L.

2. Since (ca (A) ; k�kvar) is a Banach lattice and by [1, Theorem 8.43], we have that (ca (A) ; k�kvar)
is an Archimedean Riesz space. Since ca (A) is an Archimedean Riesz space, L0 is a Riesz space, and by
point 1. and the Kantorovich theorem (see, e.g., [3, Theorem 1.10]), it follows that S admits a unique

extension to a positive operator from L0 to ca (A). Moreover, this extension is �S. For each I 2 L0 de�ne
�I = �S (I) 2 ca (A). From the previous part of the proof and the de�nition of S, it follows that for each

I 2 L0

I (f) =

Z
fd�I 8f 2 L:

This implies that �S (I) = 0 only if I = 0. It follows that �S is injective. On the other hand, take � 2 ca (A).
De�ne I1 = S�1 (�+) and I2 = S�1 (��). Notice that I = I1 � I2 2 L0. Since �S is linear and S is bijective,
it follows that

�S (I) = �S (I1 � I2) = �S (I1)� �S (I2) = S (I1)� S (I2) = �+ � �� = �;

proving that �S is surjective. Finally, observe that if � 2 ca+ (A) then
�
�S
��1

(�) = (S)
�1
(�) 2 L0+. It follows

that �S and its inverse are positive operators. By [3, Theorem 2.15], it follows that �S is a lattice isomorphism.
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3. First, notice that if � 2 ca+ (A) then we have that k�kvar = � (S). It follows that �S (I)
var

= k�Ikvar = �I (S) = I (1) = kIk� 8I 2 L0+: (25)

Finally, since (L0; k�k�) is a normed Riesz space, we have that I = I+� I�, jIj = I++ I�, and kIk� = kjIjk�
for all I 2 L0. Since �S is a lattice isomorphism and by (25), we have that �S (I)

var
=
�� �S (I)��

var
=
 �S (jIj)

var
= kjIjk� = kIk� 8I 2 L0;

proving the statement.

4. Since �S is a linear isometry, �S is norm continuous. By [1, Theorem 6.17], it follows that �S is weakly

continuous. �

Lemma 24 Let V : L ! R be a comonotonic additive and supermodular functional of bounded variation

de�ned on a Stone vector lattice. The following conditions are equivalent:

(i) V is pointwise continuous;

(ii) V is pointwise continuous at 0;

(iii) there exists a unique convex and weak compact set C � L0 such that I (1) = V (1) for all I 2 C and

V (f) = min
I2C

I (f) 8f 2 L;

(iv) there exists a unique convex and weak compact set D � ca (A) such that � (S) = V (1) for all � 2 D
and

V (f) = min
�2D

Z
fd� 8f 2 L:

Proof. Since V is a comonotonic additive and supermodular functional of bounded variation, we have that
V is translation invariant, positively homogeneous, and Lipschitz continuous.

Claim 1 V is superlinear.

Proof of the Claim. We here present the argument when V is further monotone. The proof when V is

just of bounded variation follows again by routine but signi�cantly longer arguments.

Consider the real valued extension of V to B (A) de�ned by

f 7! sup fV (g) : f � gg :

It is immediate to see that this functional is well de�ned and coincides to V on L. Moreover, it is translation

invariant, positively homogeneous, supermodular, and Lipschitz continuous. By [14, Lemma 9], it follows

that this extension is superlinear on the positive cone of B (A). By translation invariance, it follows that
the extension is superlinear on the entire space B (A). It follows that V is superlinear on L. �
(i) implies (ii). It is obvious.

(ii) implies (iii). By [11] and since V is translation invariant and superlinear, it follows that there exists

a unique convex and weak� compact set C � L� such that I (1) = V (1) for all I 2 C and

V (f) = min
I2C

I (f) 8f 2 L:

Notice that �V (f) = maxI2C I (f) for all f 2 L. Next, we show that C � L0. Consider a sequence ffngn � L
such that fn # 0. It follows that

V (fn) � I (fn) � �V (fn) 8n 2 N;8I 2 C: (26)
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Since V is pointwise continuous at 0 and passing to the limit, it follows that

0 = lim
n
V (fn) � lim

n
I (fn) � lim

n
�V (fn) = 0:

This implies that C � L0. Finally, we are left to show that C is weak compact. Consider an order disjoint

bounded sequence ffngn2N � L+. It is immediate to see that fn ! 0. By (26), it follows that

sup
I2C

jI (fn)j � max
�
V (fn) ; �V (fn) ;�V (fn) ;� �V (fn)

	
8n 2 N:

Since V is pointwise continuous at 0, it follows that limn (supI2C jI (fn)j) = 0. By using the same arguments
contained in the proof of [3, Theorem 4.41], it follows that C is weak compact.

(iii) implies (iv). Given the set C, it is enough to de�ne D = �S (C). By Lemma 23, it follows that

D � ca (A) is a convex and weak compact set such that � (S) = V (1) for all � 2 D. Uniqueness follows
from a standard separation argument.

(iv) implies (i). De�ne V̂ : B (A)! R by

V̂ (f) = min
�2D

Z
fd� 8f 2 B (A) :

It is immediate to see that V̂jL = V . Since D is a weak compact subset of ca (A), it follows that V̂ is

pointwise continuous. Hence, V is pointwise continuous. �

Proof of Theorem 22. (i) implies (ii). It is trivial.

(ii) implies (iii). By Lemma 24, we have that V is even inner and outer continuous. Moreover, there

exists a weak compact set D � ca (A) such that

V (f) = min
�2D

Z
fd� 8f 2 L: (27)

De�ne � : A ! R by � (A) = min�2D � (A) for all A 2 A. It is not hard to show that � is an exact

set function, that is, core f�g = D. By [13], it follows that � is an inner and outer continuous bounded

set function. On the other hand, by Theorem 13 and its proof, we have that there exists a unique outer

continuous set function � 2 bv (�L) such that

V (f) =

Z 1

0

� (f � t) dt+
Z 0

�1
[� (f � t)� � (S)] dt 8f 2 L:

Moreover, for each E 2 �L there exists ffngn � L such that fn # 1E and limn V (fn) = � (E). It follows

that

� (E) = lim
n
V (fn) = min

�2D

Z
fnd� = min

�2D
� (E) = � (E) 8E 2 �L: (28)

Next, de�ne V̂ : B (A)! R by

V̂ (f) =

Z
fd� 8f 2 B (A) :

Since � is a continuous and bounded set function, it is easy to show that V̂ is a well de�ned functional (see,

e.g., [16, Corollary 2.2]). De�ne L̂ =
n
f 2 B (A) : V̂ (f) = min�2D

R
fd�

o
. By (27) and (28), we have that

V̂ (f) = V (f) = min
�2D

Z
fd� 8f 2 L:

It follows that L � L̂. Next, consider ffngn � L̂ such that ffngn is bounded and fn # f (resp., fn " f).
Since � is outer (resp., inner) continuous and D is convex and weak compact, it is immediate to see that

V̂ (f) = lim
n
V̂ (fn) = lim

n

�
min
�2D

Z
fnd�

�
= min

�2D

Z
fd�.
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By [6, Theorem 22.3], it follows that L̂ = B (A). By [13, Theorem 4.7], this implies that � is supermodular,

proving the statement.

We are left to prove uniqueness. Consider two continuous supermodular set functions �1; �2 2 bv (A) such
that V (f) =

R
fd�i for all f 2 L and for all i 2 f1; 2g. For each i 2 f1; 2g de�ne V̂i to be the the functional

from B (A) to R such that V̂i (f) =
R
fd�i for all f 2 B (A). By [13, Theorem 4.7], for each i 2 f1; 2g there

exists a convex and weak compact set Di � ca (A) such that

V̂i (f) = min
�2Di

Z
fd� 8f 2 B (A) :

In particular, notice that �i (A) = min�2Di
� (A) for all A 2 A and for all i 2 f1; 2g.

De�ne Ci = �S�1 (Di) for all i 2 f1; 2g. By Lemma 23, we have that Ci is a weak compact and convex
subset of L0. Since V̂i (f) = V (f) for all f 2 L and for all i 2 f1; 2g, it follows that for each i 2 f1; 2g

V (f) = min
I2Ci

I (f) 8f 2 L:

By Lemma 24, it follows that C1 = C2. By Lemma 23, we have that D1 = �S (C1) = �S (C2) = D2, proving

that �1 = �2.

(iii) implies (i). It follows from routine arguments.

Finally, if � is a capacity trivially V is monotone. Viceversa, since �S is a positive operator, if V is

monotone then D is a subset of ca+ (A) since C in Lemma 24 can be chosen to be a subset of L0+. This

implies that � is a capacity. �
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