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Abstract

We derive the analogue of the classic Arrow-Pratt approximation of the certainty equivalent
under model uncertainty as de�ned by the smooth model of decision making under ambiguity of
Klibano¤, Marinacci and Mukerji (2005). We study its scope via a portfolio allocation exercise
that delivers a tractable mean-variance model adjusted for model uncertainty. In a problem with
a risk-free asset, a risky asset, and an ambiguous asset, we �nd that portfolio rebalancing in
response to higher model uncertainty only depends on the ambiguous asset�s alpha, setting the
performance of the risky asset as benchmark. In addition, the portfolios recommended by our
model are not systematically conservative on the share held in the ambiguous asset: indeed, in
general, it is not true that greater ambiguity reduces the optimal demand for the ambiguous
asset. The analytical tractability of the enhanced Arrow-Pratt approximation renders our model
especially well suited for calibration exercises aimed at exploring the consequences of ambiguity
aversion on equilibrium asset prices.

�Crises feed uncertainty. And uncertainty a¤ects behaviour, which feeds the crisis.�

Olivier Blanchard, The Economist, January 29, 2009

1 Introduction

When an expected utility maximizer with utility u and wealth w considers a (self-�nancing) invest-
ment h, the Arrow-Pratt approximation of his certainty equivalent for the resulting uncertain prospect
w + h is

c (w + h; P ) � w + EP (h)�
1

2
�u (w)�

2
P (h) ; (1)

where P is the probabilistic model the agent uses to describe the stochastic nature of the problem.
This classic approximation has two main merits, a theoretical and a practical one. Its theoretical

merit is to show that, for an expected utility agent, the premium associated with facing risk h is
proportional to the variance �2P (h) of h with respect to P . This relation between risk and variance
is a central pillar of risk management. In particular, the coe¢ cient �u (w) = �u00 (w) =u0 (w) that
links volatility and risk premium is determined by the agent�s risk aversion at w. The practical merit

�Maccheroni and Marinacci are at the Department of Decision Sciences, Dondena, and Igier, Università Bocconi,
Italy; Ru¢ no is at the Department of Finance, University of Minnesota, USA. We thank David Bates, Giulia Brancaccio,
Simone Cerreia-Vioglio, Sujoy Mukerji, and Alessandro Sbuelz for helpful comments. The �nancial support of ERC
(advanced grant, BRSCDP-TEA) and the Carlson School of Management at the University of Minnesota (Dean�s
Research Grant) is gratefully acknowledged.
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of (1) is in providing the foundation for the mean-variance preference model, where a prospect f is
evaluated through

U (f) = EP (f)�
1

2
��2P (f) ; (2)

obtained from (1) by setting w + h = f and �u (w) = �. This model is the workhorse of asset
management in the �nance industry.

The purpose of this paper is to extend the classic Arrow-Pratt analysis to account for ambiguity (or
Knightian uncertainty), that is, to the case when the agent is uncertain about the true probabilistic
model P that governs the occurrence of the di¤erent states. If only risk is present and so the agent
fully relies on a single probabilistic model P , then the certainty equivalent c (w + h; P ) of w+h, that
is, the sure amount of money that he considers equivalent to the uncertain prospect w + h, is given
by

c (w + h; P ) = u�1 (EP (u (w + h))) : (3)

Here u represents the agent�s attitude toward risk. If, in contrast, the agent is not able to identify a
single probabilistic model P , but he also considers alternative models Q, then c (w + h;Q) becomes
a variable amount of money that depends on Q. Suppose � is the agent�s prior probability on the
space � of possible models and v is his attitude toward model uncertainty (stricto sensu; see Section
2.2). The rationale used to obtain the certainty equivalent (3) leads to a (second-order) certainty
equivalent

C (w + h) = v�1 (E� (v (c (w + h)))) (4)

= v�1
�
E�
�
v
�
u�1 (E (u (w + h)))

���
; (5)

where c (w + h) is the random variable that associates c (w + h;Q) to each model Q in �.
If u = v, it can be shown that

C (w + h) = c
�
w + h; �Q

�
where �Q is the reduced probability

R
Qd� (Q) induced by the prior �. The certainty equivalent (4)

thus reduces to (3) where the reduced probability P = �Q is considered. A similar reduction holds also
when the support of the prior � is a singleton, that is, � concentrates on a single probabilistic model.
However, if u and v di¤er (a taste feature) and if the support of � is nonsingleton (an information
feature), this reduction no longer holds �the analysis of ambiguity cannot be reduced to risk only �
and the Arrow-Pratt analysis needs to be extended.

The �rst step in our extension of the Arrow-Pratt analysis is to derive in Section 3 the analogue
of approximation (1) under ambiguity, as de�ned by the smooth ambiguity certainty equivalent of
Klibano¤, Marinacci and Mukerji (2005), henceforth abbreviated KMM. Speci�cally, Theorem 4
shows that:

C (w + h) � w + E �Q (h)�
1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h)) ; (6)

where �Q =
R
Qd� (Q) is the reduced probability induced by the prior �, and E (h) : � ! R is a

random variable
Q 7! EQ (h)

that associates the expected value EQ (h) to each possible model Q. Its variance �2� (E (h)), along
with the di¤erence �v (w)� �u (w) in uncertainty attitudes, determines an ambiguity premium �the
last term in (6) �that is novel relative to (1). In other words, model uncertainty renders volatile the
return E (h) of h, thereby a¤ecting agent�s certainty equivalent.
In Section 4 we show that unambiguous prospects are characterized by the condition �2� (E (h)) =

0, that is, they are una¤ected by model uncertainty. For this special class of prospects, approximation
(6) reduces to its classic counterpart (1).
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The quadratic approximation (6) allows us to extend in Section 5 the mean-variance model (2).
Speci�cally, by setting w + h = f , �u (w) = �, �v (w) � �u (w) = �, and by imposing �Q = P , we
obtain the following natural and parsimonious extension

U (f) = EP (f)�
�

2
�2P (f)�

�

2
�2� (E (f)) (7)

of the mean-variance model (2) that is able to deal with ambiguity. This augmented mean-variance
model is determined by the three parameters �, �, and �, as opposed to the two parameters � and
P of the classic model. The taste parameters � and � represent negative attitudes toward risk and
ambiguity, respectively. Higher values of these parameters correspond to stronger negative attitudes.
The information parameter � determines the variances �2�Q (h) and �

2
� (E (h)) that measure the risk

and model uncertainty perceived in the valuation of prospect h. Higher values of these variances
correspond to poorer information on prospect�s outcomes and on models.

In Section 6 we study the scope of the augmented mean-variance model (7) via a portfolio allo-
cation exercise. In particular, we study a tripartite portfolio problem with a risk-free asset, a risky
but unambiguous asset, and an ambiguous one. Relative to more traditional portfolio analyses with
a risk-free and a risky asset only, the addition of an ambiguous asset allows for the study of model
uncertainty.
Our portfolio analysis shows that the optimal portfolio rebalancing in response to changes in

ambiguity depends only on the risk adjusted performance � � the alpha, see eq. (32) � of the
ambiguous asset with respect to the risky one. In particular, if the ambiguous asset has a positive �,
then the proportional holdings of the ambiguous asset decrease as ambiguity rises. Conversely, if the
ambiguous asset has a negative �, then the proportional holdings of the ambiguous asset increase as
ambiguity rises.
As a result, the portfolios recommended by our model are not systematically conservative with

respect to the ambiguous asset holdings. The intuition is simple. Following the standard practice of
considering the risky asset as a benchmark, � captures the residual performance of the ambiguous
asset that cannot be explained in terms of risk only. Thus, an ambiguity averse agent that observes
a positive � attributes the, otherwise unexplained, augmented return to an unmeasurable increase in
uncertainty (ambiguity) that drives him away from the ambiguous asset. Analogously, a negative � is
associated with a diminution of uncertainty that, in turn, makes the ambiguous asset more desirable.

Some fundamental asset allocation problems feature a natural tripartite structure. This is the case
for international portfolio allocation problems with domestic �riskless�bonds, domestic stocks and
foreign stocks. Our analysis is relevant for these problems when the information available to investors
is such that the tripartite structure may be interpreted as re�ecting di¤erent types of uncertainty (i.e.,
risk and ambiguity) that a¤ect the assets. We expect this to be often the case.1 In the last subsection
of the paper we construct a concrete example of our tripartite problem. We choose 3-month Treasury
bills, the S&P500 index and the MSCI World ex-U.S. index to represent the risk-free asset, the risky
asset and the ambiguous asset, respectively. We compute the alpha gains of the ambiguous asset (with
respect to the risky asset) before and concurrently with the six recessions ensued between 1971 and
today. During expansions, � is positive and our model�s implications are consistent with the evidence
of home bias. In two instances, during the 1981-1982 and 2007-2009 recessions, � is negative. In this
case, our analysis would have advised to tilt the portfolio toward the foreign (ambiguous) index.

Related Works Our work is related to recent papers by Nau (2006), Izhakian and Benninga (2008),
and Skiadas (2009) that construct an approximated ambiguity premium to detect and measure the
agent�s ambiguity aversion in a two-stage smooth model. Their analyses, however, are very di¤erent
from ours and, more important, they do not study portfolio decisions.

1See Canner, Mankiw and Weil (1997) and Huberman (2001) for evidence on these and related allocation problems
that is inconsistent with existing static choice models.
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Our formulation of the portfolio selection problem shares some features with the models of Ep-
stein and Miao (2003), Taboga (2005), Gollier (2009) and Boyle, Garlappi, Uppal and Wang (2010).
In particular, Taboga (2005) proposes a model of portfolio selection based on a two-stage valuation
procedure to disentangle ambiguity and ambiguity aversion. Gollier (2009) investigates the compara-
tive statics of more ambiguity aversion in a static two-asset portfolio problem. He exhibits su¢ cient
conditions to guarantee that, ceteris paribus, an increase in ambiguity aversion reduces the optimal
exposure to uncertainty. Epstein and Miao (2003) use a recursive multiple priors models to study
the home bias, while Boyle, Garlappi, Uppal and Wang (2010) employ the concepts of ambiguity and
ambiguity aversion in a multiple priors framework to formalize the idea of investor�s �familiarity�
toward assets.
In addition, the analytical tractability of the enhanced Arrow-Pratt approximation (6) favors

empirical tests of our model�s implications to several observationally puzzling (and economically
interesting) investment behaviors. These include the home bias puzzle, the equity premium puzzle,
as well as the employer-stock ownership puzzle. For this reason, our paper is also related to several
papers in the literature that explore the consequences of ambiguity aversion on equilibrium prices.
Among others, Chen and Epstein (2002) identify separate excess return premia for risk and ambiguity
within a representative agent asset market setting, while Garlappi, Uppal, and Wang (2007) extend
a traditional portfolio problem to a multiple priors setting. Caskey (2009) and Illeditsch (2009)
study the e¤ects of �ambiguous� information on investors�market trades and valuations. Easley
and O�Hara (2009) and (2010) explain how low trading volumes during part of the recent �nancial
crisis may have resulted from investors�perceived uncertainty and how designing markets to reduce
ambiguity may induce participation by both investors and issuers. By use of recursive versions of the
smooth ambiguity model, Collard, Mukerji, Sheppard and Tallon (2009) match the historical equity
premium, while Ju and Miao (2010) generate a variety of dynamic asset pricing phenomena observed
in the data.

2 Preliminaries

2.1 Mathematical Setup

Given a probability space (
;F ; P ), let L2 = L2 (
;F ; P ) be the Hilbert space of square integrable
random variables on 
 and L1 = L1 (
;F ; P ) be the subset of L2 consisting of its almost surely
bounded elements. Given an interval I � R, we set

L1 (I) = ff 2 L1 : essinf f; esssup f 2 Ig :

Throughout the paper k�k denotes the L2 norm. The space L2 is the natural setting for this paper
because of our interest in quadratic approximations.
We indicate by EP (X) and �2P (X) the expectation and variance of a random variable X 2

L2, respectively. Moreover, we indicate by �P (X;Y ) and �P (X;Y ) the covariance and correlation
coe¢ cients

�P (X;Y ) = EP [(X � EP (X)) (Y � EP (Y ))] and �P (X;Y ) =
�P (X;Y )

�P (X)�P (Y )

between two random variables X;Y 2 L2.

The set of probability measures Q on F that have square integrable density q = dQ=dP with
respect to P can be identi�ed, via Radon-Nikodym derivation, with the closed and convex subset of
L2 given by

� =

�
q 2 L2+ :

Z



q (!) dP (!) = 1

�
:

By a general theorem of Bonnice and Klee (1963) (see their Theorem 4.3), we have the following
existence result.
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Proposition 1 Given a Borel probability measure � on � with bounded support,2 there exists a
unique �q 2 � such thatZ




X (!) �q (!) dP (!) =

Z
�

�Z



X (!) q (!) dP (!)

�
d� (q) ; 8X 2 L2: (8)

The density �q is denoted by
R
�
qd� (q) and is called barycenter of �. Notice that, when restricted

to indicator functions 1A of elements of F , (8) delivers

�Q (A) =

Z
�

Q (A) d� (Q) ; 8A 2 F ; (9)

where the identi�cation of each probability measure Q with its density q allows to write d� (Q) instead
of d� (q). The probability measure �Q is called reduction of � on 
. In fact, (9) suggests a natural
interpretation of �Q in terms of reduction of compound lotteries. For example, if supp� = fQ1; :::; Qng
is �nite and � (Qi) = �i for i = 1; :::; n, then (9) becomes

�Q (A) = �1Q1 (A) + :::+ �nQn (A) ; 8A 2 F :

Hence, � can be seen as a lottery whose outcomes are all possible models, which in turn can be seen
as lotteries that determine the state.

2.2 Decision Theoretic Setup

Given any nonsingleton interval I � R of monetary outcomes, we consider decision makers (DMs)
who behave according to the smooth model of decision making under ambiguity of KMM. That is,
DMs who rank prospects through the functional V : L1 (I)! R de�ned by

V (f) =

Z
�

�

�Z



u (f (!)) q (!) dP (!)

�
d� (q) ; 8f 2 L1 (I) ; (10)

where � is a Borel probability measure on � with bounded support, and u : I ! R and � : u (I)! R
are smooth and strictly increasing functions.

Lemma 2 The functional V : L1 (I)! R is well de�ned, with V (L1 (I)) = � (u (I)).

The certainty equivalent function C : L1 (I) ! I induced by V is de�ned by V (C (f)) = V (f)
for all prospects f , that is,

C (f) = u�1
�
��1

�Z
�

�

�Z



u (f (!)) q (!) dP (!)

�
d� (q)

��
; 8f 2 L1 (I) : (11)

In the monetary setting of the present paper, where outcomes are amounts of money and acts are
�nancial assets, it is natural to consider monetary certainty equivalents. To this end, set v = � � u :
I ! R (see KMM p. 1859). It is then possible to rewrite (10) as

V (f) =

Z
�

�
v � u�1

��Z



u (f (!)) q (!) dP (!)

�
d� (q) ; 8f 2 L1 (I) ; (12)

and so (11) as

C (f) = v�1
�Z

�

v

�
u�1

�Z



u (f (!)) q (!) dP (!)

��
d� (q)

�
; 8f 2 L1 (I) . (13)

2A carrier of � is any Borel subset of � having full measure. If the intersection of all closed carriers is a carrier, it
is called support of � and denoted by supp�.
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Here the certainty equivalent C (f) is viewed as the composition of two monetary certainty equivalents,

c (f; q) = u�1
�Z




u (f (!)) q (!) dP (!)

�
and v�1

�Z
�

v (c (f; q)) d� (q)

�
:

This is the approach we sketched in the Introduction, motivated by the paper monetary setting.
In KMM the function v represents attitudes toward stricto sensu model uncertainty, that is, the

uncertainty that agents face when dealing with alternative possible probabilistic models. The function
v is characterized in KMM along the prior � through second order acts, whose outcomes depend on
models and, as such, are only a¤ected by model uncertainty.
Model uncertainty cumulates with the state uncertainty that any nontrivial probabilistic model

features. The combination of these two sources of uncertainty determines in the KMM model the
ambiguity that DMs face in ranking monetary acts f : 
 ! R. KMM show that overall attitudes
toward ambiguity are captured by the function �. In particular, its concavity characterizes ambiguity
aversion, which therefore implies positive Arrow-Pratt coe¢ cients �� = ��00=�0. Since

�� (u (w)) =
1

u0 (w)
(�v (w)� �u (w)) (14)

we conclude that ambiguity aversion amounts to �v � �u � 0, a key condition for the paper.
Ambiguity neutrality is modelled by � (x) = x, that is, �v = �u, while absence of ambiguity is

modelled by a trivial � with singleton support (i.e., a Dirac measure). In both cases the criterion
(10) reduces to subjective expected utility, though in one case the reduction originates in a taste
component �a neutral attitude, under which the two sources of uncertainty �linearly�combine via
the reduction (9) �while in the other case it originates in an information component (absence of a
source of uncertainty, i.e., model uncertainty).

3 Quadratic Approximation

Let w 2 int I be a scalar interpreted as current wealth. To ease notation, we also denote by w the
degenerate random variable w1
. Given any prospect h 2 L1 such that w + h 2 L1 (I), we are
interested in the certainty equivalent C (w + h) of w + h, that is,

C (w + h) = v�1
�Z

�

v

�
u�1

�Z



u (w + h) qdP

��
d� (q)

�
: (15)

For all h 2 L1, the function
E (h) : q 7!

Z



hqdP

is continuous and bounded on �, and hence belongs to L1 (�;B; �). Its variance with respect to �Z
�

�Z



h (!) q (!) dP (!)

�2
d� (q)�

�Z
�

�Z



h (!) q (!) dP (!)

�
d� (q)

�2
is denoted by �2� (E (h)). This variance re�ects the uncertainty on the expectation E (h), due to the
model uncertainty that the DM perceives. Thus, higher values of �2� (E (h)) correspond to a higher
incidence of model uncertainty in the valuation of E (h).

We can now state the second order approximation of the certainty equivalent (15). We start by
considering the special case when F is �nite (e.g., because 
 is �nite).

Proposition 3 Let � be a Borel probability measure on � and u; v : I ! R be twice continuously
di¤erentiable with u0; v0 > 0. If F is �nite, then

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h)) + o

�
khk2

�
(16)

as h! 0 in L2.
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Thus, the sign and magnitude of the e¤ect of perceived ambiguity on the certainty equivalent
depend on the di¤erence �v (w) � �u (w). In the rest of the paper we will focus on the ambiguity
averse case, that is, �v (w)� �u (w) � 0. Similarly, we will consider the risk averse case �u (w) � 0.

Notice that the �rst three components of the right hand side of (16) correspond to the Arrow-
Pratt approximation of u�1

�R
u (w + h) d �Q

�
. To the contrary, the fourth component represents

model uncertainty. In particular, (16) reduces to (1) under either the taste condition �v (w) = �u (w)
�the DM is neutral to ambiguity �or the information condition �2� (E (h)) = 0 �model uncertainty
does not a¤ect the expectation of h.

We now extend the approximation to a general state space 
. In this case, the Peano remainder
is in the sense of Gateaux, as clari�ed by (18). This approximation will su¢ ce for our purposes.

Theorem 4 Let � be a Borel probability measure with bounded support on � and u; v : I ! R be
twice continuously di¤erentiable with u0; v0 > 0. Then,

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h)) +R2 (h) ; (17)

for all h 2 L1 such that w + h 2 L1 (I), where

lim
t!0

R2 (th)

t2
= 0: (18)

4 Approximately Unambiguous Prospects

Since our setting encounters both risk and ambiguity, it is important to identify unambiguous
prospects, i.e., prospects that are not a¤ected by the presence of ambiguity. These are the prospects
considered in classic risk theory.

De�nition 5 A prospect h 2 L2 is unambiguous if Fh;Q = Fh;Q0 for all Q;Q0 2 supp�.

In words, a prospect is unambiguous if its distribution Fh is invariant across all models in the
support of �, that is, according to all models that a DM with prior � deems possible.3 Equivalently,
h 2 L2 is unambiguous if and only if Q (A) = Q0 (A) for all events A that belong to the �-algebra
generated by h. Hence, the notion of unambiguous prospects that we use here is a special case, for
the present setup, of the notion proposed by Ghirardato, Maccheroni, and Marinacci (2004).4

When restricted to the family of unambiguous prospects, the certainty equivalent (13) coincides
with u�1

�R
u (f) d �Q

�
. Classic risk theory can thus be viewed as the special case in which all prospects

are unambiguous. In particular, for unambiguous prospects our quadratic approximation (17) coin-
cides with the Arrow-Pratt one. The class of prospects for which this is the case is, however, larger
than that of unambiguous prospects. Given our focus on the quadratic approximation, it is important
to identify this larger class of prospects.

De�nition 6 A prospect h 2 L2 is (�rst order) approximately unambiguous if EQ (h) = EQ0 (h) for
all Q;Q0 2 supp�:

In words, a prospect is approximately unambiguous if it has the same �rst moment according to
all models that the DM deems possible. For an unambiguous prospect, all moments coincide and,
hence, unambiguous prospects are approximately unambiguous.5 The converse is false.

3Recall that Fh;Q (x) = Q (h � x) for all x 2 R.
4The interpretation of supp� as the set of plausible models, à la Ghirardato, Maccheroni, and Marinacci (2004), is

formally discussed by Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2009) (see their Theorem 21).
5 It is easy to see that a bounded h is unambiguous if and only if EQ (hn) = EQ0 (hn) for all Q;Q0 2 supp� and for

all n � 1, that is, all of its moments coincide on supp�.
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Proposition 7 For a prospect h 2 L2, the following properties are equivalent:

(i) h is approximately unambiguous;

(ii) �2� (E (h)) = R2 (h);6

(iii) �2� (E (h)) = 0.

In words, a prospect h is approximately unambiguous if and only if its variance �2� is zero. When
w+ h 2 L1 (I) this amounts to say that, in evaluating such prospect, the DM is indistinguishable in
the second order approximation

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h) +R2 (h)

from a subjective expected utility DM with utility u and subjective beliefs given by the reduced
probability measure �Q induced by � on 
. This second equivalence motivates the �approximately
unambiguous� terminology and shows that approximately unambiguous prospects form the larger
class of prospects for which our quadratic approximation (17) coincides with that of Arrow-Pratt.
Approximately unambiguous prospects are thus equivalent to risky ones in our approximation.

The imprecision that is peculiar to any approximation �the cost of its higher analytical tractability
�results here in an approximate notion of unambiguous prospects.

That said, next we show that the approximate and the �full-�edged� notions of unambiguous
prospects become equivalent when they apply to all prospects. This is an important consistency
check of the approximate notion.

Proposition 8 The following facts are equivalent:

(i) all prospects in L2 are approximately unambiguous;

(ii) all prospects in L2 are unambiguous;

(iii) � = � �Q;

(iv) �2� (E (1A)) = 0 for all A 2 F .

The equivalence of (i) and (ii) is the announced equivalence among approximate and full-�edged
unambiguity when they apply to all prospects. In turn, they are equivalent to (iii), that is, to a trivial
�. In this case the DM is subjective expected utility with utility u and subjective beliefs given by
the reduced probability measure �Q induced by � on 
. The equivalence with (iv) shows that for this
to happen is actually enough that the bets 1A be approximately unambiguous.

Next we give a further characterization of the absence of ambiguity.

Proposition 9 Let �v (w)� �u (w) 6= 0. There is an absorbing7 subset B of L1 such that w + h 2
L1 (I) and

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h) +R2 (h) 8h 2 B (19)

if and only if the prior � is trivial, i.e., � = � �Q.
8

6Here R2 (h) is as in (18).
7A subset B of L1 is absorbing if for any point of the space there exists a (strictly) positive multiple of B that

contains the segment joining the point and zero. For example, any open ball that contains the origin is absorbing.
8 In turn, this is equivalent to conditions (i), (ii) and (iv) of the previous result.
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This result shows that the only case in which our approximation (17) coincides with that of
Arrow-Pratt for all �small� prospects (i.e., the prospects in B) is when there was no ambiguity to
start with, that is, when � is trivial. Otherwise, for each " > 0, however small, there is a prospect
h with khk < " for which the two approximations di¤er. In other words, as long as � is not trivial,
ambiguity may keep having second order e¤ects in the quadratic approximation of arbitrarily small
prospects. Ambiguity may never fade away, even approximately, for arbitrarily �small�prospects (the
counterparts in our more general setting of what are sometimes called �small risks�in risk theory).

We close this section with a useful decomposition. In view of Proposition 7, the collection M of
all approximately unambiguous prospects is easily seen to be a closed linear subspace of L2 given by

M =
�
h 2 L2 : �2� (E (h)) = 0

	
:

As a consequence, M contains all risk-free (constant) prospects, and its orthogonal complement M?

is a closed subspace of
�
h 2 L2 : EP (h) = 0

	
. The classic Projection Theorem then implies the

following decomposition of each prospect.

Proposition 10 For each prospect h 2 L2 there exist unique hc 2 R, hg 2M with EP (hg) = 0, and
ha 2M? such that

h = hc + hg + ha: (20)

Moreover,
�2P (h) = �2P (hg) + �

2
P (ha) (21)

and
�2� (E (h)) = �2� (E (ha)) : (22)

In particular, h is approximately unambiguous if and only if ha = 0, and it is risk-free if and only if
hg = ha = 0.

In view of decomposition (20), the constant hc �which is equal to EP (h) �can be interpreted
as the risk-free component of h. Indeed, h = hc if and only if �2P (h) = 0. The next component,
hg, can be viewed as a fair gamble because hg 2 M and EP (hg) = 0. The sum hc + hg of the �rst
two components is approximately unambiguous. In contrast, (21) and (22) show that the �residual�
component ha re�ects both risk and ambiguity in pure variability terms (net of any level e¤ect factored
out by the constant hc).
Summing up, hc is the risk-free component of h, hg is the (fair) gamble component of h, and ha

is the residual ambiguous component of h.

5 Robust Mean-Variance Preferences

In the next section we will apply the quadratic approximation (17) to a portfolio allocation problem.
To this end, we �rst generalize standard mean-variance preferences to account for model uncertainty.
Speci�cally, we consider a DM who ranks prospects h in L2 through the robust mean-variance func-
tional C : L2 ! R given by

C (h) = E �Q (h)�
�

2
�2�Q (h)�

�

2
�2� (E (h)) ; 8h 2 L2; (23)

where � and � are (strictly) positive coe¢ cients, and � is a Borel probability measure on � with
bounded support and barycenter �Q given by (9).
As mentioned in the Introduction, this preference functional is fully determined by three para-

meters: �, �, and �. Its theoretical foundation is given by the quadratic approximation (17), which
shows that (23) can be viewed as a local approximation of a KMM preference functional (13) at a
constant w such that � = �u (w) and � = �v (w)��u (w). Thus, the taste parameters � and � model
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the DM�s negative attitudes toward risk and ambiguity, respectively. In particular, higher values of
these parameters correspond to stronger negative attitudes.
In turn, the information parameter � determines the variances �2�Q (h) and �

2
� (E (h)) that measure

the risk and model uncertainty that the DM perceives in the valuation of prospect h. Higher values
of these variances correspond to a DM�s poorer information on prospect�s outcomes and on models.

Since the probability measure �Q is the reference model for a DM with prior �, in order to facilitate
comparison with the classic case we identify the barycenter �Q of � with the baseline probability P .
That is, in the rest of the paper we maintain the following assumption:

Assumption 1 �Q = P .

Under this assumption, (23) takes the form

C (h) = EP (h)�
�

2
�2P (h)�

�

2
�2� (E (h)) ; 8h 2 L2, (24)

which we will consider hereafter. When the information condition �2� (E (h)) = 0 holds, we obtain
the standard mean-variance evaluation

C (h) = EP (h)�
�

2
�2P (h) (25)

for prospect h. Approximately unambiguous prospects are thus regarded as purely risky by robust
mean-variance preferences, that is, they form the class of prospects on which robust and conventional
mean-variance preferences agree. Similarly, when the taste condition � = 0 holds, the standard
mean-variance evaluation (25) holds for all prospects h.9

Like standard mean-variance preferences, our robust mean-variance preferences (24) nicely sepa-
rate taste parameters, � and �, and uncertainty measures, �2P (h) and �

2
� (E (h)). This sharp sepa-

ration gives standard mean-variance preferences an unsurpassed tractability and is the main reason
for their success and widespread use. These key features fully extend to robust mean-variance pref-
erences, as (24) shows. As a result, they are well-suited for �nance and macroeconomics applications
and can improve calibration and other quantitative exercises. Their scope will be illustrated in detail
in the portfolio problem of next section.

Couple of �nal remarks. First, thanks to the decomposition (20) the robust mean-variance pref-
erence functional (24) can be written as

C (h) = C (hc + hg)�
�

2
�2P (ha)�

�

2
�2� (E (ha)) ; 8h 2 L2

where C (hc + hg) is the standard Arrow-Pratt functional (25) of the approximately unambiguous
prospect hc + hg. The decomposition (20) thus provides a further view of the robust mean-variance
functional as an �augmented�mean-variance functional.
Second, we expect that a monotonic version of robust mean-variance preferences can be derived

by suitably generalizing what Maccheroni, Marinacci, Rustichini, and Taboga (2009) established for
conventional mean-variance preferences.

9Notice that condition �2� (E (h)) = 0 is about prospect h and only a¤ects it, while condition � = 0 is a general
taste condition that a¤ects all prospects.
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6 The Portfolio Allocation Problem

In this section we apply the newly obtained robust mean-variance preferences to a portfolio allocation
problem. In particular, we consider a portfolio of three assets: a risk-free asset, a risky asset, and
an ambiguous asset. This problem is the natural extension of the standard portfolio problem (with a
risk-free and a risky asset) to our setting with model uncertainty.
As mentioned in the introduction, international portfolio allocation problems provide a straight-

forward application of our setting with domestic Treasury bonds viewed as the risk-free asset, other
domestic assets viewed as the risky assets, and foreign assets viewed as the ambiguous assets. This
will be our motivating example in this section.

6.1 The General Setting

We consider the one-period allocation problem of an agent who has to decide how to allocate a unit
of wealth among n + 1 assets at time 0. The gross return on asset i after one period, i = 1; :::; n,
is denoted by ri 2 L2. The (n � 1) vector of returns on the �rst n assets is then denoted by r and
the (n � 1) vector of portfolio weights (indicating the fraction of wealth invested in each asset), is
denoted by w. The return on the (n+ 1)-th asset is risk-free and it is equal to a constant rf .
The end-of-period wealth rw induced by a choice w is given by

rw = rf +w � (r� 1rf ) ;

where 1 is the n-dimensional unit vector. We assume frictionless �nancial markets in which assets are
traded in the absence of transaction costs and both borrowing and short-selling are allowed without
restrictions. Then, w can be optimally chosen in Rn and the portfolio problem can be written as

max
w2Rn

C (rw) = max
w2Rn

�
EP (rw)�

�

2
�2P (rw)�

�

2
�2� (E (rw))

�
: (26)

Straightforward computation delivers the optimality condition

[�VarP [r] + �Var� [E [r]]] bw = EP [r� 1rf ] ; (27)

where:

� VarP [r] = [�P (ri; rj)]ni;j=1 is the variance-covariance matrix of returns under P ,

� Var� [E [r]] = [�� (E (ri) ; E (rj))]
n
i;j=1 is the variance-covariance matrix of expected returns

under �,

� EP [r� 1rf ] = [EP (ri � rf )]ni=1 is the vector of expected excess returns under P .

A key feature of condition (27) is that it allows us to make use of the vast body of research on mean-
variance preferences developed for problems involving risk to analyze problems involving ambiguity.
On the other hand, the ability to take advantage of conventional risk theory is a feature of the KMM
model.

6.2 The Case of One Ambiguous Asset

If n = 1, then there is only one uncertain asset and (27) delivers

bw = EP (r)� rf
��2P (r) + ��

2
� (E (r))

: (28)
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If either r is approximately unambiguous �i.e., �2� (E (r)) = 0 �or the DM is ambiguity neutral �
i.e., � = 0 �then (30) reduces to the standard mean-variance Markowitz (1952) solution

bw = EP (r)� rf
��2P (r)

: (29)

Ambiguity does not a¤ect excess returns and the di¤erence between (28) and (29) lies in their
denominators only. Speci�cally, an increase in ��2� (E (r)) �that is, an increase in either perceived
ambiguity �2� (E (r)) or ambiguity aversion � � leads to an increase in the DM�s demand for the
risk-free asset.

By decomposing r orthogonally, as in (20), we obtain r = rc + rg + ra. This allows us to rewrite
(28) as bw = EP (r)� rf

��2P (r) + ��
2
� (E (ra))

: (30)

where in the argument of E (�) in place of r appears, more accurately, its ambiguity component ra. In
this sharper version the approximate unambiguous nature of r is modelled by ra = 0, while �2� (E (ra))
models changes in perceived ambiguity.

6.3 The Case of One Risky and One Ambiguous Assets

We now turn to the case of two assets with uncertain returns rm and re in L2, interpreted as
representing a home security index and a foreign security index respectively. For this reason, we
choose rm to be approximately unambiguous (i.e., purely risky for robust mean-variance preferences)
and re to be approximately ambiguous, according to the de�nitions of Section 4. The DM can now
invest in a risk-free asset rf , in a purely risky one rm, and in an uncertain one re.

Here condition (27) becomes

�

�
�2P (rm) �P (rm; re)

�P (rm; re) �2P (re)

� � bwmbwe
�
+ �

�
0 0
0 �2� (E (re))

� � bwmbwe
�
=

�
EP (rm)� rf
EP (re)� rf

�
;

that is,
EP (rm)� rf = bwm��2P (rm) + bwe��P (rm; re)

and
EP (re)� rf = bwm��P (rm; re) + bwe ���2P (re) + ��2� (E (re))� :

Set

A = EP (re)� rf
B = EP (rm)� rf
C = ��2P (rm)

D = ��2P (re) + ��
2
� (E (re))

H = ��P (rm; re) ;

The optimal portfolio weights associated with the risky and the ambiguous assets are

bwm = BD �HA
CD �H2

and bwe = CA�HB
CD �H2

;

respectively, provided CD 6= H2. We are interested in how changes in the preference parameters
a¤ect the optimal amounts bwm and bwe, as well as their ratiobwmbwe = BD �HA

CA�HB :
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This ratio varies with �, the prior probability over models, with �, the ambiguity aversion para-
meter, as well as with �, the risk aversion parameter. Before stating the results, we collect all the
assumptions that we will need (most of them are non-triviality assumptions).

Omnibus Condition Suppose CD 6= H2, i.e., the portfolio problem admits a unique solution;
CA 6= HB, i.e., the ratio of optimal portfolio weights is well-de�ned; A > 0 and B > 0, i.e., excess
returns on uncertain assets are both positive.

The next simple lemma simpli�es the analysis of variations in model uncertainty.

Lemma 11 Suppose the Omnibus Condition holds and set �2� = �2� (E (re)). Then,

@ ( bwm= bwe)
@�2�

=
�

�2�

@ ( bwm= bwe)
@�

;
@ bwm
@�2�

=
�

�2�

@ bwm
@�

and
@ bwe
@�2�

=
�

�2�

@ bwe
@�

: (31)

Notice that, since the optimal portfolio allocation varies with � (the prior over models) only
through �2� (the variance of expected returns), changes in � can be measured by taking derivatives
with respect to �2�. Moreover, variations in bwm, bwe and bwm= bwe due to changes in �2� and � share the
same sign. In view of this result, hereafter we will only consider variations in � and we will generally
refer to them as variations in ambiguity.

The orthogonal decompositions of rm and re are rm = rm;c + rm;g and re = re;c + re;g + re;a. In
particular, inter alia we have

�2P (rm) = �2P (rm;g) , �2� (E (re)) = �2� (E (re;a)) , �P (rm; re) = �P (rm;g; re;g) ;

and so we can write more accurately

C = ��2P (rm;g) ; D = ��2P (re) + ��
2
� (E (re;a)) ; H = ��P (rm;g; re;g) :

Here the variance �2� (E (re;a)) only depends on the ambiguous component of re and the covariance
�P (rm;g; re;g) re�ects the correlation among the risk components of rm and re. Though to ease
notation we will not mention explicitly these orthogonal components, the variances and covariances
that will appear in the portfolio analysis can be read in their terms.

6.3.1 Uncorrelated Asset Returns

We �rst consider the case in which rm and re are uncorrelated, that is, �P (rm; re) = 0 (which implies
H = 0). In this case, the optimal sums bwm and bwe are similar to those derived in Section 6.2 with a
single uncertain asset. In fact, we have

bwm = EP (rm)� rf
��2P (rm)

and bwe = EP (re)� rf
��2P (re) + ��

2
� (E (re))

:

The value of bwm is the same as (29) and it is not a¤ected by changes in model uncertainty. Such
changes, in contrast, determine the optimal bwe. In particular, an increase in ��2� (E (re)) determines
a decrease in bwe �i.e., a decrease in the DM�s demand for the uncertain asset. On the other hand,
an increase in � decreases the values of both bwm and bwe. Additionally, when asset returns are
uncorrelated, the optimal ratio of risky to ambiguous assets is given bybwmbwe = BD

CA
;

so that
@

@�

� bwmbwe
�
= �2�

B

CA
> 0 and

@

@�

� bwmbwe
�
= ���2�

B

AC2
�2P (rm) < 0:

Thus, an increase in ambiguity aversion rises the relative share of risky asset holdings, while an
increase in risk aversion produces the opposite e¤ect.
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6.3.2 Correlated Asset Returns I: Changes in �

Let us now turn to the case of non-zero correlation between returns, that is, �P (rm; re) 6= 0 (which
implies H 6= 0). Here we consider the e¤ects of changes in �, in the next section we study the e¤ects
of changes in �.
Following common practice, we take the index rm as a benchmark and we measure the performance

of re through the alpha-beta decomposition, that is,

EP (re)� rf = �P (rm; re) +
�P (rm; re)

�2P (rm)| {z }
=�P (rm;re)

(EP (rm)� rf ) : (32)

Here � represents the excess return�s sensitivity of re to systematic risk as represented by rm, and �
captures the residual uncertainty that cannot be explained in terms of systematic risk only.
The next stark result shows that the sign of � alone determines the e¤ects on the ratio of the

optimal amounts bwm and bwe as ambiguity aversion varies.
Proposition 12 Suppose the Omnibus Condition holds. Then,

sgn
@

@�

� bwmbwe
�
= sgn�P (rm; re) : (33)

As anticipated, the interpretation is natural: an ambiguity averse agent interprets a positive �
and the corresponding extra return as the premium for an unmeasurable increase in uncertainty. This
drives him away from the ambiguous asset as ambiguity aversion increases. Analogously, a negative
� is associated with an unmeasurable diminution of uncertainty that, in turn, makes the ambiguous
asset more desirable.
As the above intuition suggests, the sign of � also governs the absolute (rather than relative)

variations of the optimal bwe when model uncertainty varies. On the other hand, also the sign of �
becomes relevant to describe the absolute variation of bwm.
Proposition 13 Suppose the Omnibus Condition holds. Then,

sgn
@ bwe
@�

= � sgn�P (rm; re) : (34)

and
@ bwm
@�

= ��P (rm; re)
@ bwe
@�

: (35)

Thanks to Propositions 12 and 13 we can show how variations in � a¤ect the optimal portfolio
composition, both in relative and in absolute terms. Two possible cases arise.

Case 1 If � is positive, then

4� > 0 =) 4
� bwmbwe

�
> 0 and 4 bwe < 0; (36)

where 4 denotes a small variation.10 Here, an increase in ambiguity aversion determines a higher
ratio bwm= bwe and a lower optimal bwe. The sign of the variation in bwm coincides with the sign of �,
that is, of the covariance �P (rm; re),

4� > 0 =) 4 bwm ? 0 if and only if �P (rm; re) ? 0:
10Not to be confounded with the set of probability measures �.
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Case 2 If � is negative, then

4� > 0 =) 4
� bwmbwe

�
< 0, with 4 bwe > 0 and 4 bwm < 0:

That is, an increase in � determines a lower ratio bwm= bwe, due to a higher optimal bwe and a lower
optimal bwm (it is easy to check that � < 0 implies � > 0).

In sum, depending on the values of the technical risk measures � and �, we have altogether
di¤erent e¤ects of variations in � on the composition of the optimal portfolio. For example, even
though the valuation of the risky asset is not directly a¤ected by changes in �, only under positivity
of both � and � higher ambiguity aversion results in a higher value of bwm and a lower value of bwe,
that is, in an increase in the optimal amount of the risky asset and a decrease in that of the uncertain
asset. If � is negative, the ratio bwm= bwe still increases, but only because the optimal amount bwm
decreases less than bwe. Under negativity of �, everything is reversed: now, higher ambiguity aversion
results in a higher value of bwe and a lower value of bwm.
When the ambiguous asset underperforms the risky one (Case 2), agents hold relatively more of

it as uncertainty rises, formally violating the risk-return trade-o¤ rule (and behaving much alike con-
sumers of Gi¤en goods do when prices rise).11 To the contrary, when the ambiguous asset outperforms
the risky one (Case 1), higher uncertainty drives agents away from it.

The analysis of the above cases fully characterizes the e¤ect of higher ambiguity aversion on
optimal portfolios. Next we provide a numerical illustration of our comparative statics.

Example 1 Consider a DM allocating $1 among a safe asset, an approximately unambiguous (risky)
asset and an approximately ambiguous asset. Suppose that � > 0 and � > 0. Then, as � increases,
holding risk attitude �xed, uncertainty in the payo¤ of the ambiguous asset drives the agent away
from it. Hence, the ratio of risky to ambiguous assets holdings also increases. Figure I gives a
graphical representation of this e¤ect.

Insert Figure I Here

Now suppose that � < 0. Then, as � increases, the agent will want to diversify away ambiguity in
payo¤s and hold a larger amount in the safe asset and a relatively larger amount in the risky asset.
Notice that it is the sign of the correlation between the return of the risky asset and the return of
the ambiguous asset that determines the variations of risky asset holdings in Case 1. That is, since
the risky asset and the ambiguous asset are not perfectly correlated, the risky asset provides a hedge
to �uctuations in model uncertainty. Figure II depicts these variations in portfolio shares.

Insert Figure II Here

Finally, if the risky asset has a higher expected return per unit of risk than the ambiguous asset
�i.e., � < 0 �then, the agent trades o¤ return against risk. In particular, higher model uncertainty
results in a smaller value of bwm and a higher value of of bwe, which combined decrease the ratiobwm= bwe. These changes are exhibited in Figure III.

Insert Figure III Here
11The Gi¤en analogy for uncertain assets was inspired by Gollier (2009).
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6.3.3 Correlated Asset Returns II: Changes in �

We now study the e¤ects of changes in risk attitudes on the agent�s assets holdings.

Proposition 14 Suppose the Omnibus Condition holds. Then,

sgn
@ bwe
@�

= sgn
@

@�

� bwmbwe
�
= � sgn�P (rm; re) : (37)

Interestingly, variations in the ratio bwm= bwe due to changes in � have opposite sign relative to
changes in �. That is, changes in risk attitudes vary the portfolio composition among uncertain
assets in the opposite direction to changes in ambiguity attitudes (and in ambiguity itself). This
con�rms the numerical �ndings of KMM p. 1878, in the general theoretical setting of this paper.
Moreover, variations in bwm= bwe and bwe share the same sign, which again is determined by �. As

to @ bwm=@�, we have:
@ bwm
@�

= bwe @ ( bwm= bwe)
@�

+
bwmbwe @ bwe@�

: (38)

If bwm and bwe are positive, then variations in bwm have the same sign as those in bwm= bwe and bwe.
That is, increases in bwm= bwe correspond to higher values of both bwm and bwe. If bwm and bwe are not
both positive, then the relations among variations in bwm= bwe and bwe and variations in bwm are more
complicated, but can be determined through (38).

Example 2 Consider the DM of Example 1 and assume bwm and bwe are positive. If also � is positive,
then, irrespective of the sign of the correlation between asset returns, an increase in � results in
systematically lower bwm, bwe and bwm= bwe. For this reason, Figure IV and V present similar trends in
comparative statics.

Insert Figure IV and Figure V Here

Assume now negativity of �. In this case, the risky asset has a higher expected return per unit of
risk than the ambiguous asset. Then, as � increases, the agent trades o¤ return against risk but the
ratio bwm= bwe still increases. This is because the optimal amount bwe increases less than bwm. Moreover,
in all three cases, changes in risk attitudes vary the portfolio composition in the opposite direction
to changes in attitudes toward model uncertainty.

Insert Figure VI Here

6.4 U.S. Business Cycles

In what follows we employ historical data from the past four decades to calculate the alpha gains
of an ambiguous asset relative to a purely risky asset to determine an investor�s optimal portfolio
rebalancing in response to increasing ambiguity aversion. We choose the S&P500 index to represent
the purely risky asset and the MSCI World ex-U.S. index to represent the ambiguous asset. The
return on 3-month Treasury bills proxies the return of the risk-free asset.12

According to the National Bureau of Economic Research six recessions ensued between 1971 and
today: 1973(IV) - 1975(I), 1980(I) - 1980(III), 1981(III) - 1982(IV), 1990(III) - 1991(I), 2001(I) -
2001(IV) and 2007(IV) - 2009(III).13 During all six episodes the correlation between the two indexes
spiked. However, in only two instances, 1981-1982 and 2007-2009, the ambiguous asset�s alpha became
negative, which suggested rebalancing toward the foreign index. Table I contains our results.

12All asset prices are in real U.S. dollars.
13Quarterly dates are in parentheses. The National Bureau of Economic Research does not de�ne a recession in terms

of two consecutive quarters of decline in real GDP. Rather, a recession is a signi�cant decline in economic activity spread
across the economy, lasting more than a few months, normally visible in real GDP, real income, employment, industrial
production, and wholesale-retail sales.
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Table I: U.S. Business Cycle Contractions

Reference Dates Duration in Months Sgn(�P (rm; re))
Peak Trough Pre-crisis Crisis
November 1973 (IV) March 1975 (I) 16 + +
January 1980 (I) July 1980 (III) 6 + +
July 1981 (III) November 1982 (IV) 16 + �
July 1990 (III) March 1991(I) 8 + +
March 2001 (I) November 2001 (IV) 8 + +
December 2007 (IV) July 2009 (III) 19 + �

Despite the fact that Sharpe Ratio calculations may be blunted by noise over short periods of time,
it is indicative that a �switch�occurred over recessions of comparable depth. Indeed, the Bureau of
Economic Analysis reported a percentage change of �6:4 in real Gross Domestic Product (quarterly
data seasonally adjusted at annual rates) in the �rst quarter of both 1982 and 2009 (U.S. National
Income and Product Accounts). On the other hand, while considering the S&P500 as approximately
unambiguous during expansions seems reasonable, the same intuition is less clear during recessions
when information quality might well become poorer.

7 Conclusions

In this paper we study how the classic Arrow-Pratt approximation of the certainty equivalent is altered
by ambiguity. Under the smooth ambiguity model of Klibano¤, Marinacci and Mukerji (2005), we
�nd that the uncertainty-adjusted approximation contains an additional ambiguity premium that
depends both on the degree of ambiguity aversion displayed by the agent and on the ambiguity that
he perceives.
Then, we derive the solution to the static portfolio problem when the agent perceives ambiguity

with respect to the true probability of an asset�s expected return. The comparative statics of more
ambiguity aversion engender two noteworthy results: (i) portfolio rebalancing in response to higher
uncertainty depends solely on the return generated by the uncertain asset in excess of the risky asset
return after correcting for risk (the alpha), and (ii) ambiguity aversion does not generally reinforce
risk aversion and, indeed, an increase in ambiguity aversion may increase the optimal demand for the
ambiguous asset.
Finally, we note that the analytical tractability of the enhanced approximation renders our model

particularly �t for the study of puzzling investment behaviors including the equity premium puzzle,
the asset allocation puzzle, the home bias puzzle, and the employer-stock ownership puzzle.

A Proofs and Related Analysis

To prove the quadratic approximation (17) we need the following version of standard results on
di¤erentiation under the integral sign.

Lemma 15 Let O be an open subset of RN , (
;F) be a measurable space, and g : O � 
! R be a
function with the following properties:

(a) for each x 2 O, ! 7! g (x; !) is F-measurable;

(b) for each ! 2 
, x 7! g (x; !) is twice continuously di¤erentiable on O;

(c) the functions g, @jg, and @jkg are bounded on O � 
 for all j; k 2 f1; 2; :::; Ng.

Then,
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(i) for each probability measure � on F , the function de�ned on O by G (x) =
R
g (x; !) d� (!) is

twice continuously di¤erentiable;

(ii) the functions ! 7! @jg (x; !) and ! 7! @jkg (x; !) are measurable for all x 2 O, with

@jG (x) =

Z
@jg (x; !) d� (!) (39a)

@jkG (x) =

Z
@jkg (x; !) d� (!) (39b)

for all x 2 O and j; k 2 f1; 2; :::; Ng.

A.1 Quadratic Approximation

Here we prove Proposition 3 and Theorem 4. We assume throughout the section that � is a Borel
probability measure with bounded support on � and the functions u : I ! R and v : I ! R are twice
continuously di¤erentiable, with u0; v0 > 0. We start with a simple lemma.

Lemma 16 Let � = v�u�1 : u (I)! v (I) and  = v�1 : v (I)! I. The functions � and  are twice
continuously di¤erentiable on u (int I) and v (int I), respectively. In particular, there exist " > 0 such
that [w � "; w + "] � int I and M > 1 such that the absolute values of u, v, �, and  �as well as their
�rst and second derivatives �are bounded by M on [w � "; w + "], [w � "; w + "], u ([w � "; w + "]),
and v ([w � "; w + "]), respectively. Finally, for all x 2 int I:

�0 (u (x)) =
v0 (x)

u0 (x)
; �00 (u (x)) =

v00 (x)

u0 (x)
2 � v

0 (x)
u00 (x)

u0 (x)
3 ;

 0 (� (u (x))) =
1

v0 (x)
;  00 (� (u (x))) = � v00 (x)

v0 (x)
3 :

If h 2 L1 (
;F ; P )N and x 2 RN , set x � h =
NX
i=1

xihi 2 L1. Denote by j�j the Euclidean norm

of RN . The next Theorem yields Proposition 3 and Theorem 4 as corollaries.

Theorem 17 Let � be a Borel probability measure with bounded support on � and u; v : I ! R be
twice continuously di¤erentiable, with u0; v0 > 0. Then, for each h 2 L1 (
;F ; P )N and all x 2 RN
such that w + x � h 2 L1 (I),

C (w + x � h) = w+E �Q (x � h)�
1

2
�u (w)�

2
�Q (x � h)�

1

2
(�v (w)� �u (w))�2� (E (x � h))+o

�
jxj2

�
(40)

as x! 0.

Proof. Let h =(h1; :::; hN ) and (wlog) assume that all the his are bounded. Clearly, kx � hksup �
NX
i=1

jxij khiksup therefore there exists � > 0 such that kx � hksup < " (" is as in Lemma 16) for all

x 2 (��; �)N .14 In particular, for all x 2 (��; �)N and all ! 2 
,

w � " < w � kx � hksup � w + x � h (!) � w + kx � hksup < w + "

14Take for example � = "

 
NX
i=1

khiksup + 1
!�1

. Then,

kx � hksup �
NX
i=1

jxij khiksup � �
NX
i=1

khiksup = "
 

NX
i=1

khiksup

!
=

 
NX
i=1

khiksup + 1
!
< ":

18



that is, w + x � h (!) 2 (w � "; w + "), and so w + x � h 2 L1 ([w � "; w + "]) � L1 (I). Set
O = (��; �)N .
De�ne g : O � 
 ! R as (x; !) 7! u (w + x � h (!)). Next we show that g satis�es assumptions

(a), (b), and (c) of Lemma 15.

(a) For each x 2 O, ! 7! g (x; !) is F-measurable; in fact, ! 7! w + x � h (!) 2 (w � "; w + ") is
measurable and u : (w � "; w + ")! R is continuous.

(b) For each ! 2 
, x 7! g (x; !) is twice continuously di¤erentiable on O; in fact, given ! 2 
, for
all x 2 O and all j; k 2 f1; 2; :::; Ng

@jg (x; !) = u0 (w + x � h (!))hj (!) and @jkg (x; !) = u00 (w + x � h (!))hj (!)hk (!)

and the latter equation de�nes (for �xed !; j; k) a continuous function on O.

(c) The functions g, @jg, and @jkg are bounded on O � 
 for all j; k 2 f1; 2; :::; Ng; in fact, given
j; k 2 f1; 2; :::; Ng, for all (x; !) 2 O � 
 (choosing M like in Lemma 16)

jg (x; !)j = ju (w + x � h (!))j �M ; j@jg (x; !)j = ju0 (w + x � h (!))j jhj (!)j �M khjksup
j@jkg (x; !)j = ju00 (w + x � h (!))j jhj (!)j jhk (!)j �M khjksup khkksup
and indeed a uniform bound K for the supnorms on O�
 of all these functions can be chosen.

By Lemma 15, for each q 2 �, the function de�ned on O by

G (x; q) =

Z
g (x; !) dQ (!)

�
=

Z



u (w + x � h) qdP
�

is twice continuously di¤erentiable, the functions ! 7! @jg (x; !) and ! 7! @jkg (x; !) are measurable
for all x 2 O, and

@jG (x; q) =

Z
@jg (x; !) dQ (!)

�
=

Z



u0 (w + x � h)hjqdP
�

@jkG (x; q) =

Z
@jkg (x; !) dQ (!)

�
=

Z



u00 (w + x � h)hjhkqdP
�

for all x 2 O and j; k 2 f1; 2; :::; Ng.
Notice that, by point (c) above, for all j; k 2 f1; 2; :::; Ng and all (x; q) 2 O ��,

jG (x; q)j � K, j@jG (x; q)j � K, and j@jkG (x; q)j � K

and that, by de�nition, G (x; q) 2 u ([w � "; w � "]) where � is twice continuously di¤erentiable.
Set f = ��G. Next we show that the function f : O��! R, with (x; q) 7! � (G (x; q)), satis�es

assumptions (a), (b), and (c) of Lemma 15.

(a) For each x 2 O, q 7! f (x; q) is Borel measurable; in fact, given x 2 O, the function f (x; �) =
� (G (x; �)) = � (hu (w + x � h) ; �i), being a composition of continuous functions, is continuous.15

(b) For each q 2 �, x 7! f (x; q) is twice continuously di¤erentiable on O; this follows from the fact
that it is a composition of twice continuously di¤erentiable functions, speci�cally, given q 2 �,
for all x 2 O and all j; k 2 f1; 2; :::; Ng

@jf (x; q) = �0 (G (x; q)) @jG (x; q)

@jkf (x; q) = �00 (G (x; q)) @kG (x; q) @jG (x; q) + �
0 (G (x; q)) @jkG (x; q)

and the latter equation de�nes (for �xed q; j; k) a continuous function on O.

15The duality pairing EP (XY ) in L2 is denoted, as usual, by hX;Y i for all X;Y 2 L2.
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(c) the functions f , @jf , and @jkf are bounded on O �� for all j; k 2 f1; 2; :::; Ng; in fact, given
j; k 2 f1; 2; :::; Ng, for all (x; q) 2 O �� (choosing M like in Lemma 16 and K as above)

jf (x; q)j = j� (G (x; q))j �M ; j@jf (x; q)j = j�0 (G (x; q))j j@jG (x; q)j �MK

j@jkf (x; q)j � j�00 (G (x; q))j j@kG (x; q)j j@jG (x; q)j+ j�0 (G (x; q))j j@jkG (x; q)j �MK2 +MK

and the latter majorization holds term by term.

By Lemma 15, the function de�ned on O by

F (x) =

Z
f (x; q) d� (q)

�
=

Z
�

�

�Z



u (w + x � h) qdP
�
d� (q)

�
is twice continuously di¤erentiable, the functions q 7! @jf (x; q) and q 7! @jkf (x; q) are measurable
for all x 2 O, and, for all x 2 O and j; k 2 f1; 2; :::; Ng,

@jF (x) =

Z
@jf (x; q) d� (q) and @jkF (x) =

Z
@jkf (x; q) d� (q)

Finally, for all x 2 O and all q 2 �, G (x; q) 2 u ([w � "; w � "]) implies f (x; q) = � (G (x; q)) 2
v
�
u�1 (u ([w � "; w � "]))

�
= v ([w � "; w � "]) and F (x) 2 v ([w � "; w � "]). Thus,

c (x) =  � F (x) 8x 2 O

is well de�ned and twice continuously di¤erentiable on O = (��; �)N . Its second order McLaurin
expansion is

c (x) = c (0) +rc (0)x+ 1
2
x|r2c (0)x+ o

�
jxj2

�
: (43)

Next we explicitly compute it using repeatedly the relations obtained above as well as those
provided by Lemma 16. For all x 2 O,

@jc (x) =  0 (F (x)) @jF (x) and @jkc (x) =  00 (F (x)) @kF (x) @jF (x) +  
0 (F (x)) @jkF (x)

in particular for x = 0,

@jc (0) =  0 (F (0)) @jF (0) and @jkc (0) =  00 (F (0)) @kF (0) @jF (0) +  
0 (F (0)) @jkF (0)

but F (0) = � (u (w)) for all j; k 2 f1; 2; :::; Ng

@jF (0) =

Z
�

@jf (0; q) d� (q) =

Z
�

�0 (G (0; q)) @jG (0; q) d� (q) =

Z
�

�0 (u (w))

�Z



u0 (w)hjqdP

�
d� (q)

= �0 (u (w))u0 (w)

Z
�

�Z



hjqdP

�
d� (q) = v0 (w)

Z
�

�Z



hjqdP

�
d� (q) = v0 (w)E �Q (hj)

and

@jkF (0) =

Z
�

@jkf (0; q) d� (q) =

Z
�

�00 (G (0; q)) @kG (0; q) @jG (0; q) + �
0 (G (0; q)) @jkG (0; q) d� (q)

=

Z
�

�00 (G (0; q)) @kG (0; q) @jG (0; q) d� (q) +

Z
�

�0 (G (0; q)) @jkG (0; q) d� (q)

where the last equality is justi�ed by the fact that both summands are continuous and bounded in
q.16 NowZ
�

�00 (G (0; q)) @kG (0; q) @jG (0; q) d� (q) =

Z
�

�00 (u (w))

�Z



u0 (w)hkqdP

��Z



u0 (w)hjqdP

�
d� (q)

= �00 (u (w))u0 (w)
2
Z
�

hhk; qi hhj ; qi d� (q) =
�
v00 (w)� v0 (w) u

00 (w)

u0 (w)

�
E� (hhk; �i hhj ; �i)

16Boundedness was already observed. Continuity in q descends from G (0; q) = u (w), @iG (0; q) = hu0 (w)hi; qi for
i = j; k, and @jkG (0; q) = hu00 (w)hjhk; qi.
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andZ
�

�0 (G (0; q)) @jkG (0; q) d� (q) =

Z
�

�0 (u (w))

�Z



u00 (w)hjhkqdP

�
d� (q) =

v0 (w)

u0 (w)
u00 (w)E �Q (hjhk) :

Finally
c (0) = w (44)

for all j 2 f1; 2; :::; Ng

@jc (0) =  0 (F (0)) @jF (0) =  0 (� (u (w))) v0 (w)E �Q (hj) =
1

v0 (w)
v0 (w)E �Q (hj) = E �Q (hj)

so that
rc (0)x = E �Q (x � h) 8x 2 O (45)

and, for all j; k 2 f1; 2; :::; Ng,

@jkc (0) =  00 (F (0)) @kF (0) @jF (0) +  
0 (F (0)) @jkF (0) =  00 (� (u (w))) v0 (w)

2
E �Q (hk)E �Q (hj)

+  0 (� (u (w)))

��
v00 (w)� v0 (w) u

00 (w)

u0 (w)

�
E� (hhk; �i hhj ; �i) +

v0 (w)

u0 (w)
u00 (w)E �Q (hjhk)

�
= �v

00 (w)

v0 (w)
E �Q (hk)E �Q (hj) +

�
v00 (w)

v0 (w)
� u00 (w)

u0 (w)

�
E� (hhk; �i hhj ; �i) +

u00 (w)

u0 (w)
E �Q (hjhk)

= �v (w)E �Q (hj)E �Q (hk) + (�u (w)� �v (w))E� (hhj ; �i hhk; �i)� �u (w)E �Q (hjhk)

= �
�
�u (w)� �Q (hj ; hk) + (�v (w)� �u (w))�� (hhj ; �i ; hhk; �i)

�
:

denoting by � �Q and �� the variance-covariance matrixes
�
� �Q (hj ; hk)

�N
j;k=1

and [�� (hhj ; �i ; hhk; �i)]Nj;k=1

r2c (0) = �
�
�u (w)� �Q + (�v (w)� �u (w))��

�
and

1

2
x|r2c (0)x =� 1

2
�u (w)�

2
�Q (x � h)�

1

2
(�v (w)� �u (w))�2� (E (x � h)) 8x 2 O: (46)

This concludes the proof since replacement of (44), (45), and (46) into (43) delivers

c (x) = w + E �Q (x � h)�
1

2
�u (w)�

2
�Q (x � h)�

1

2
(�v (w)� �u (w))�2� (E (x � h)) + o

�
jxj2

�
as x! 0, and c (x) = v�1 (F (x)) = C (w + x � h) for all x 2 O. If x 2 RN nO and w+x �h 2 L1 (I)
just set

o
�
jxj2

�
= C (w + x � h)�

�
w + E �Q (x � h)�

1

2
�u (w)�

2
�Q (x � h)�

1

2
(�v (w)� �u (w))�2� (E (x � h))

�
the property of vanishing faster than jxj2 as x! 0 has no bite there. �

Proof of Proposition 3. Let A = fA1; :::; ANg be the family of atoms of F that are assigned a
positive probability by P . Then f1A1

; :::; 1AN
g is a base for L2 and, setting h = (1A1

; :::; 1AN
), the

map  : x 7!
NX
i=1

xi1Ai
= x � h is a norm isomorphism between RN and L2.17 In particular, choosing

� > 0 as in the proof of Theorem 17, for all x 2 
�
(��; �)N

�
=
n
x � h : x 2 (��; �)N

o
C (w + x) = w + E �Q (x)�

1

2
�u (w)�

2
�Q (x)�

1

2
(�v (w)� �u (w))�2� (E (x)) + o

�
jxj2

�
(47)

17Finite dimensionality guarantees that � is bounded and a fortiori the support of � is bounded too.
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as x! 0 in RN . Set

R2 (x) = C (w + x)�
�
w + E �Q (x)�

1

2
�u (w)�

2
�Q (x)�

1

2
(�v (w)� �u (w))�2� (E (x))

�

for all x 2 
�
(��; �)N

�
, p = mini=1;:::;N P (Ai), and p = maxi=1;:::;N P (Ai). Then p

NX
i=1

x2i � kxk
2 �

p
NX
i=1

x2i . Now, if xn is a (non-zero) vanishing sequence in 
�
(��; �)N

�
,

jR2 (xn)j

p
NX
i=1

(xn)
2
i

� jR2 (xn)j
kxnk2

� jR2 (xn)j

p
NX
i=1

(xn)
2
i

and by (47) the three sequences above vanish as n ! 1. That is, R2 (x) = o
�
kxk2

�
, since


�
(��; �)N

�
is a neighborhood of 0 in L2. �

Proof of Theorem 4. Let h 2 L1 (
;F ; P ). By Theorem 17, for all t 2 R such that w+th 2 L1 (I),

C (w + th) = w + E �Q (th)�
1

2
�u (w)�

2
�Q (th)�

1

2
(�v (w)� �u (w))�2� (E (th)) + o

�
t2
�

as t! 0. That is, setting for all t 2 R such that w + th 2 L1 (I),

R2 (th) = C (w + th)�
�
w + E �Q (th)�

1

2
�u (w)�

2
�Q (th)�

1

2
(�v (w)� �u (w))�2� (E (th))

�
(48)

it results limt!0R2 (th) =t
2 = 0. Moreover, the assumption w + h 2 L1 (I) guarantees that we can

consider t = 1 in (48), that is

C (w + h) = w + E �Q (h)�
1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h)) +R2 (h)

as wanted. �

A.2 Approximately Unambiguous Prospects

Proof of Proposition 7. (i) trivially implies (iii), which in turn implies (ii). To complete the proof,
we show that (ii) implies (i). First notice that for all h 2 L2 and all t 2 R

�2� (E (th)) = �2� (tE (h)) = t2�2� (E (h)) : (49)

Therefore, �2� (E (h)) = R2 (h) implies

0 = lim
t!0

�2� (E (th))

t2
= �2� (E (h)) ;

It remains to show that �2� (E (h)) = 0 implies that h is approximately unambiguous. If h 2 L2 and
�2� (E (h)) = 0, then hh; qi = E� (hh; qi) = E �Q (h) for �-almost all q 2 �. If, per contra, there exists
q� 2 supp� such that hh; q�i 6= E �Q (h), then the continuity of hh; �i on � implies the existence of an
open subset G of � such that hh; qi 6= E �Q (h) for all q 2 G. But G \ supp� 6= ;, and so � (G) > 0, a
contradiction. We conclude that h is approximately unambiguous. �
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Proof of Proposition 8. Clearly, (iii)) (ii)) (i)) (iv). Next we show that (iv)) (iii). Assume
per contra supp� is not a singleton. Then, there are Q0 6= Q00 in supp�. In particular, Q0 (A) 6= Q00 (A)
for some A 2 F , and this contradicts �2� (E (1A)) = 0. In fact, �2� (E (1A)) = 0 and Proposition 7
imply that 1A is approximately unambiguous, and hence Q0 (A) = EQ0 (1A) = EQ00 (1A) = Q00 (A).�

Proof of Proposition 9 We prove the �only if,�the converse being trivial. For all h 2 B, set

F (h) = C (w + h)�
�
w + E �Q (h)�

1

2
�u (w)�

2
�Q (h)

�
and

G (h) = C (w + h)�
�
w + E �Q (h)�

1

2
�u (w)�

2
�Q (h)�

1

2
(�v (w)� �u (w))�2� (E (h))

�
by (19) and Theorem 4, limt!0 F (th) =t

2 = limt!0G (th) =t
2 = 0. Therefore, for all h 2 B, setting

k = 2 (�v (w)� �u (w))�1,

�2� (E (h)) = lim
t!0

�2� (E (th))

t2
= k lim

t!0

G (th)� F (th)
t2

= 0:

Since B is absorbing in L1, for all A 2 F there is " = "A > 0 such that "1A 2 B, thus

�2� (E (1A)) =
�2� (E ("1A))

"2
= 0

and (iv) of Proposition 8 holds. In turn, this implies � = � �Q. �

Proof of Proposition 10. Let h 2 L2. By de�nition of M? and by the Hilbert Decomposition
Theorem, decomposition (20) and its uniqueness are easily checked. In particular, EP (h) = hc.
Moreover, the maps h 7! hg 2M and h 7! ha 2M? are linear and continuous operators.
Since hg and ha are orthogonal and have zero mean, then

�2P (h) = kh� EP (h)k
2
= kEP (h) + hg + ha � EP (h)k2 = khg + hak2

= khgk2 + khak2 = �2P (hg) + �
2
P (ha) ;

which proves (21).
Finally, observe that hh; �i = hhc + hg; �i + hha; �i and hc + hg 2 M implies that hhc + hg; �i is

�-almost surely constant, thus �2� (hh; �i) = �2� (hha; �i). The rest is trivial. �

A.3 Portfolio

First order conditions for (26). Setting

m = [EP (r1 � rf ) ; :::; EP (rn � rf )]| ; �P = [�P (ri; rj)]
n
i;j=1

�� = [�� (E (ri) ; E (rj))]
n
i;j=1 ; � = ��P + ���

(26) becomes

max
w2Rn

�
rf +w �m� �

2
w|�Pw �

�

2
w|��w

�
which is equivalent to

max
w2Rn

�
w �m� 1

2
w|�w

�
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so that the optimal solution bw satis�es �bw=m. �

Proof of Lemma 11 Since @D=@�2� = � and @D=@� = �2�, simple algebra shows that

@ ( bwm= bwe)
@�2�

= �
B

CA�HB and
@ ( bwm= bwe)

@�
= �2�

B

CA�HB (50)

and this implies the �rst equality in (31). Analogously,

@ bwm
@�2�

= �
(AC �BH)H
(CD �H2)

2 and
@ bwe
@�2�

= �� (CA�HB)C
(CD �H2)

2 ; (51)

@ bwm
@�

= �2�
(AC �BH)H
(CD �H2)

2 and
@ bwe
@�

= ��2�
(CA�HB)C
(CD �H2)

2 (52)

which imply the other equalities in (31). �

Proof of Proposition 12 By de�nition

�P (rm; re) =
H

C
and �P (rm; re) = EP (re)� rf � �P (rm; re) (EP (rm)� rf ) = A� H

C
B (53)

while, by (50),
@ ( bwm= bwe)

@�
= �2�

B

CA�HB
thus

sgn
@

@�

� bwmbwe
�
= sgn (CA�HB) = sgn

�
CA�HB

C2

�
= sgn�P (rm; re)

as wanted. �

Proof of Proposition 13 By (52),

@ bwm
@�

= �
 
��2�

(CA�HB)
(CD �H2)

2C

!
H

C
= �@ bwe

@�
�P (rm; re)

that is (35) holds. Moreover, (52) again implies

sgn
@ bwe
@�

= sgn (HB � CA) = � sgn�P (rm; re)

as wanted. �

Proof of Proposition 14. Direct computation delivers

�
@ ( bwm= bwe)

@�
= ��@ ( bwm= bwe)

@�

which together with Proposition 12 determines the sign of @ ( bwm= bwe) =@�. Moreover,
@ bwe
@�

@ ( bwm= bwe)
@�

= �
��2�B

�2 (CD �H2)
2

�
H2 � C

�
D � ��2�

��
hence

@ bwe
@�

@ ( bwm= bwe)
@�

> 0, H2 � C
�
D � ��2�

�
< 0, �P (rm; re)

2
< �2P (rm)�

2
P (re) :

By the Cauchy-Schwartz inequality the above relation fails if and only if

re � EP (re) = k (rm � EP (rm))

for some k 2 R, but this would imply that re is approximately unambiguous, which is absurd. �

24



A.4 Proofs of Section 2

Proof of Proposition 1. Consider the duality inclusion � :supp�!
�
L2
��
given by q 7! h�; qi. For

all X 2 L2, the composition X � � :supp�! R given by q 7! hX; � (q)i = hX; qi is (norm) continuous
and hence Borel measurable on supp�, that is, � is weak* measurable (see, e.g., Aliprantis and Border,
2006, Ch. 11.9). The range of � is norm bounded since supp� is norm bounded and � is an isometry.
Therefore, � is Gelfand integrable over supp� (ibidem, Cor. 11.53). In particular, there exists a unique
�q 2 L2 such that

hX; �qi =
Z
supp�

hX; � (q)i d� (q) ; 8X 2 L2: (54)

By (54) it readily follows that �q 2 �. �

Proof of Lemma 2 Let f 2 L1 (I) and set a = essinf f and b = esssup f . There exists A 2 F
with P (A) = 1 such that f (A) � [a; b] � I. Since u is increasing and continuous u (f (!)) 2
[u (a) ; u (b)] � u (I) for all ! 2 A. Moreover, u � fjA : A ! [u (a) ; u (b)] is measurable since fjA is
measurable and u is continuous. Therefore, u (f) is de�ned P -almost surely on 
, measurable, and
u (a) � u (f) � u (b) P -almost surely. It follows that hu (f) ; �i : � ! R, with q 7!

R


u (f) qdP , is

norm continuous, a¢ ne, with range in [u (a) ; u (b)] � u (I). Therefore, � � hu (f) ; �i : � ! R, with
q 7! �

�R


u (f) qdP

�
, is well de�ned, norm continuous, with range in [� (u (a)) ; � (u (b))] � � (u (I)).

Therefore, V (f) =
R
�
� � hu (f) ; �i d� 2 [� (u (a)) ; � (u (b))] � � (u (I)) is well de�ned.

The �rst part of this proof yields V (L1 (I)) � � (u (I)). Conversely, if z = � (u (x)) for some
x 2 I, then x1
 2 L1 (I) and V (L1 (I)) 3 V (x1
) =

R
�
� � hu (x) ; �i d� = � (u (x)) = z. �

Proof of Eq. (14) Set ' = u�1. It holds

�� (u (w)) = �
�00 (u (w))

�0 (u (w))
= �v

00 (' (u (w))) ('0 (u (w)))
2
+ v0 (' (u (w)))'00 (u (w))

v0 (' (u (w)))'0 (u (w))

= �'0 (u (w)) v
00 (' (u (w)))

v0 (' (u (w)))
� '00 (u (w))

'0 (u (w))
= � 1

u0 (w)

v00 (w)

v0 (w)
+
u00 (w)

u0 (w)
2

=
1

u0 (w)
(�v (w)� �u (w)) :

as desired. �
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Figure I

Notes: If the sum of the optimal amounts allocated to the risky and to the ambiguous assets exceeds $1,
then the safe asset is sold short.



Figure II

Notes: If the sum of the optimal amounts allocated to the risky and to the ambiguous assets exceeds $1,
then the safe asset is sold short.



Figure III

Notes: If the sum of the optimal amounts allocated to the risky and to the ambiguous assets exceeds $1,
then the safe asset is sold short.



Figure IV

Notes: If the sum of the optimal amounts allocated to the risky and to the ambiguous assets exceeds $1,
then the safe asset is sold short.



Figure V

Notes: If the sum of the optimal amounts allocated to the risky and to the ambiguous assets exceeds $1,
then the safe asset is sold short.



Figure VI

Notes: If the sum of the optimal amounts allocated to the risky and to the ambiguous assets exceeds $1,
then the safe asset is sold short.


