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Itzhak Gilboay and Massimo Marinacciz
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Abstract
This is a survey of some of the recent decision-theoretic literature involving beliefs that cannot

be quanti�ed by a Bayesian prior. We discuss historical, philosophical, and axiomatic founda-
tions of the Bayesian model, as well as of several alternative models recently proposed. The
de�nition and comparison of ambiguity aversion and the updating of non-Bayesian beliefs are
brie�y discussed. Finally, several applications are mentioned to illustrate the way that ambiguity
(or �Knightian uncertainty�) can change the way we think about economic problems.

1 Introduction

1.1 Varying probability estimates

John and Lisa are o¤ered additional insurance against the risk of a heart disease. They would like

to know the probability of developing such a disease over the next ten years. The happy couple

shares some key medical parameters: they are 70 years old, smoke, and never had a blood pressure

problem. A few tests show that both have a total cholesterol level of 310 mg/dL, with HDL-C (good

cholesterol) of 45 mg/dL, and that their systolic blood pressure is 130. Googling �heart disease risk

calculator�, they �nd several sites that allow them to calculate their risk. The results (May 2010)

are:

John Lisa

Mayo Clinic 25% 11%

National Cholesterol Education Program 27% 21%

American Heart Association 25% 11%

Medical College of Wisconsin 53% 27%

University of Maryland Heart Center 50% 27%
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The di¤erent calculators don�t completely agree on the probability in question. Partly, the reason

is that no two human bodies are identical, and therefore simple relative frequencies cannot be used

as a de�nition of �the probability of a heart disease�. Rather, the probabilities above are computed

by more sophisticated techniques such as logistic regression and variants thereof. These techniques

allow researchers to assess probabilities for di¤erent individuals depending on their characteristics.

But the resulting numbers are not perfectly objective: the researchers have to choose the variables

(predictors), the database, as well as the estimation technique itself. Consequently, the estimated

probability is not unique. The estimates vary substantially: the highest for John is 100% higher

than the lowest, whereas for Lisa the ratio is 5:2. Moreover, gender di¤erently a¤ects the estimated

numbers across risk calculators. Clearly, di¤erent probability estimates in the range of 25%-50% and

11%-27% may result in di¤erent decisions.

Next consider Mary, who contemplates an investment in a beach resort. The pro�tability of this

venture depends on global warming: the resort will not be very successful if, due to climate changes,

the beach becomes much rainier than it is now, or if the oceans�level increases signi�cantly. Mary

wonders what the probabilities of these eventualities are.

For this problem the estimation of probabilities seems conceptually harder. We have but one

globe to base our predictions on. The history of global warmings in the past is only indirectly

attested to, and the number of past cases is not very large. Worse still, current conditions di¤er from

past ones in signi�cant ways, especially in the much-discussed human-generated conditions. Finally,

it is not obvious that one can assume causal independence across di¤erent warmings. Due to all

these di¢ culties, it is perhaps not very surprising that the estimates of the distribution of average

temperature several years hence vary considerably across experts.

1.2 Does rationality necessitate probability?

Since the mid-20th century, economic theory is dominated by the Bayesian paradigm, which holds

that any source of uncertainty can and should be quanti�ed probabilistically.1 According to this view,

John and Lisa should have well-de�ned probabilities that they will develop a heart disease within

the next ten years, as should Mary for the temperature distribution anywhere on the globe �ve years

hence. But where should John, Lisa, or Mary get these probabilities from? If they are to consult

experts, they will typically obtain di¤erent estimates. Which experts are they to believe? Should

they compute an average of the experts�estimates, and, if so, how much weight should each expert

have in this average?

1As Cyert and DeGroot (1974) write on p. 524 �To the Bayesian, all uncertainty can be represented by probability
distributions.�
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The standard line of reasoning of the Bayesian approach is that, in the absence of objective

probabilities, the decision maker (DM, for short) should have her own, subjective probabilities, and

that these probabilities should guide her decisions. Moreover, the remarkable axiomatic derivations of

the Bayesian approach (culminating in Savage, 1954), show that axioms that appear very compelling

necessitate that the DM behave as if she maximized expected utility relative to a certain probability

measure, which is interpreted as her subjective probability. Thus, the axiomatic foundations basically

say, �Even if you don�t know what the probabilities are, you should better adopt some probabilities

and make decisions in accordance with them, as this is the only way to satisfy the axioms.�

There is a heated debate regarding the claim that rationality necessitates Bayesian beliefs. Knight

(1921) and Keynes (1921, 1937) argued that not all sources of uncertainty can be probabilistically

quanti�ed. Knight suggested to distinguish between �risk�, referring to situations described by known

or calculable probabilities, and �uncertainty�, where probabilities are neither given nor computable.

Keynes (1937) wrote,

�By �uncertain�knowledge, let me explain, I do not mean merely to distinguish what

is known for certain from what is only probable. The game of roulette is not subject, in

this sense, to uncertainty ... The sense in which I am using the term is that in which the

prospect of a European war is uncertain, or the price of copper and the rate of interest

twenty years hence ... About these matters there is no scienti�c basis on which to form

any calculable probability whatever. We simply do not know.�

Gilboa, Postlewaite, and Schmeidler (2008, 2009, 2012) argue that the axiomatic foundations of

the Bayesian approach are not as compelling as they seem, and that it may be irrational to follow

this approach. In a nutshell, their argument is that the Bayesian approach is limited because of

its inability to express ignorance: it requires that the agent express beliefs whenever asked, without

being allowed to say �I don�t know�. Such an agent may provide arbitrary answers, which are likely

to violate the axioms, or adopt a single probability and provide answers based on it. But such a

choice would be arbitrary, and therefore a poor candidate for a rational mode of behavior.

The notion that rational individuals would select probabilities to serve as their subjective belief

might be particularly odd in the context of a market. Consider John and Lisa�s problem again.

Suppose that they receive a phone call from an agent who o¤ers them an insurance policy. They

�nd the policy too expensive. In the process of negotiation, the insurance agent quotes the Medical

College of Wisconsin�s site and estimates the probability of John and Lisa developing a heart disease

within ten years at 53% and 27%, respectively. John and Lisa, by contrast, looked up the site of the

Mayo Clinic and concluded that these probabilities are only 25% and 11%. They decide not to buy

the insurance, and the conversation ends by John, Lisa, and the agent politely agreeing to disagree.
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After John and Lisa hang up, they look up a few other sites and realize that there are estimates that

indeed place the probability at around 50% and 27%. They might think, �How can we be so sure

that 25% and 11% are indeed the right numbers? We are glad we didn�t say 50% and 27% when

talking to this agent, but, truth be told, we don�t know where it is between 25% and 50% for John

and between 11% and 27% for Lisa�.

Axiomatic derivations such as Savage�s may convince the DM that she ought to have a probability,

but they do not tell her which probability it makes sense to adopt. If there are no additional guiding

principles, an agent who picks a probability measure arbitrarily should ask herself, is it so rational to

make weighty decisions based on my arbitrarily-chosen beliefs? If there are good reasons to support

my beliefs, others should agree with me, and then the probabilities would be objective. If, however,

the probabilities are subjective, and others have di¤erent probabilities, what makes me so committed

to mine? Wouldn�t it be more rational to admit that these beliefs were arbitrarily chosen, and that,

in fact, I don�t know the probabilities in question?

1.3 Modeling diverging opinions

Economic reality provides a host of examples of events for which there is no objective, agreed-upon

probability. For example, internet betting sites suggest that people hold di¤erent beliefs over many

events. The volume of trade in the stock market also raises a serious doubt about the assumption that

all agents have a common probabilistic belief. Theoretical results such as the impossibility of agreeing

to disagree (Aumann, 1976) and the no-trade theorem (Milgrom and Stokey, 1982) further question

the agreement among beliefs.2 But the most compelling evidence may be self-reported beliefs: people

state assessments and opinions that cannot be reconciled with common probabilistic beliefs. As

pointed out in the examples above, experts may provide di¤erent assessments of probabilities for

such events as the onset of a heart disease or global warming. And it su¢ ces to leaf through any

daily newspaper to see that people disagree about the prediction of rates of growth and of in�ation,

about the success of products, the intentions of world leaders, and so forth.

In view of these disagreements, one may relax the assumption that agents are Bayesian, or defend

it by assuming that di¤erent agents have di¤erent subjective beliefs. As mentioned above, we think

that it is not entirely rational for an agent to hold on to particular probabilistic beliefs though she

knows that other, equally reasonable DMs, entertain di¤erent beliefs. Relatedly, at a steady state

one would not expect di¤erent agents to hold di¤erent beliefs.

We therefore hold that a potentially fruitful path is to relax the assumption that agents are

Bayesian. This does not mean that agents never think in probabilistic terms or that they fail to

2The no-trade theorem does not depend on there being a shared prior, but it does depend on the assumption that
agents have probabilistic beliefs. See section 6 below.
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perform probability calculations correctly. It only means that regarding some events the rational

agents are allowed to say �the probability of this event isn�t precisely known�. Indeed, in empirical

work economists use classical statistics techniques, such as hypotheses tests and con�dence intervals.

These techniques are non-Bayesian, and re�ect the researcher�s state of knowledge, specifying the

objectively given distributions and remaining silent on the unknown parameters. A non-Bayesian

approach allows the agents in the model to be as aware of their own ignorance as are economists.

There are many uncertain situations for which one can assume that probabilities are known, or

agreed upon. The most convincing examples are games of chance, involving fair dice and coins, or

balls that are randomly drawn from urns. Unfortunately, these examples tend to pop up mostly in

the context of gambling or probability courses. As one moves on to analyze more realistic examples, it

becomes harder to justify the assumption that agents have known probabilities. Even examples that

involve repetitions, such as insurance problems, already begin to compromise the notion of objective

probability, as explained above. Worse still, many of the important events in our lives are never

repeated in the same, or even in a similar way. This class includes wars and stock market crashes at

the economy level, as well as losing one�s job or getting a divorce at the individual level. For such

events it is di¢ cult to assign a single probability number. For theoretical purposes, it is convenient

to assume that each event A has a probability p, shared by all agents. But as we argue below, such

an assumption may lead us to wrong conclusions.

1.4 Outline

The rest of this paper is organized as follows. Section 2 discusses the history and background of

the Bayesian approach. It highlights the fact that this approach has probably never been adopted

with such religious zeal as it has within economic theory over the past 60 years. Section 3 describes

several alternatives to the standard Bayesian model. It surveys only a few of these, attempting to

show that much of the foundations and machinery of the standard model need not be discarded in

order to deal with uncertainty. Section 4 surveys the notion of ambiguity aversion. The updating of

non-Bayesian beliefs is discussed in Section 5. Section 6 brie�y describes some applications of non-

Bayesian models. The applications mentioned here are but a few examples of a growing literature.

They serve to illustrate how non-Bayesian models may lead to di¤erent qualitative predictions than

Bayesian ones. A few general comments are provided in Section 7.
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2 History and background

2.1 Early pioneers

Decision theory was born as a twin brother of probability theory through the works of a few scholars

in the 16th and 17th century, originally motivated by the study of games of chance. Among them

the works of Christiaan Huygens (1629-1695) and Blaise Pascal (1623-1662) are particularly relevant.

We begin with Pascal, whose footsteps Huygens followed.

Pascal (1670) Since its very early days, probability had two di¤erent interpretations: �rst, it

captures the notion of chance, referring to relative frequencies of occurrences in experiments that

are repeated under the same conditions. This includes the various games of chance that provided

the motivation for the early development of the theory. Second, probability can capture the notion

of degree of belief, even when no randomness is assumed, and when nothing remotely similar to a

repeated experiment can be imagined.

It is this second interpretation that, over time, evolved into the Bayesian approach in both decision

and probability theory. In this regard, Pascal is perhaps the most important pioneer of probability

theory. Though he made early key contributions to the probabilistic modeling of games of chance,

it is his famous wager that is mostly relevant here. Roughly at the same time that Descartes and

Leibniz were attempting to prove that God existed,3 Pascal changed the question from the proof of

existence to the argument that it is worthwhile to believe in God, an option that he identi�ed with

the choice of a pious form of life based on the precepts of the Christian religion (�taking the holy

water, having masses said ... [being] faithful, humble, grateful, generous, a sincere friend, truthful

... [without] those poisonous pleasures, glory and luxury;�Serie II in Pascal, 1670).4 In so doing, he

applied the mathematical machinery developed for objective probabilities in games of chance to the

subjective question of God�s existence, where no repeated experiment interpretation is possible. This

led him to informally introduce several major ideas of modern decision theory.5

Speci�cally, Pascal considers the choice between two acts, a pious form of life and a more worldly

one. He recognizes that their consequences depend on what today we would call two states of the

world, that is, whether or not God exists (�God is, or He is not.�). Thus, from his verbal description

3Pascal was younger than Descartes (1596-1650) and older than Leibniz (1646-1716).
4According to Pascal a pious life would ultimately induce faith, �You would soon have faith, if you renounced

pleasure� in his words. It is important, however, that Pascal did not assume that one can simply choose one�s beliefs.
5Pascal did not �nish his Pensées, which appeared in print in 1670, eight years after his death. The text that was

left is notoriously hard to read since he only sketches his thoughts (here we use the 1910 English edition of W. F.
Trotter). Our rendering of his argument crucially relies on Hacking (1975)�s interpretation (see Hacking, 1975, pp.
63-72, and Gilboa, 2009, pp. 38-40).
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the following decision matrix can be inferred:

God exists God does not exist

Pious Salvation (�Gain all�) Constrained Life

Worldly �Error and misery� Unconstrained Life

that is, by quantifying consequences (in utils) and beliefs,

p 1� p

Pious +1 a

Worldly b c

with c > a and b 2 [�1;1).6 The very formulation of the matrix, with its distinction between acts

(the actual object of choice) and states (over which DMs have no in�uence), is a �rst breakthrough.

Pascal observes that for an individual that does not value pleasurable sins, to be pious is what

today we would call a weakly dominant alternative (�if you gain, you gain all; if you lose, you lose

nothing�). But, even for individuals who value these sins, to be pious is a better alternative as long as

they attach a positive, however small, probability to the existence of God (�a chance of gain against

a �nite number of chances of loss�). For, salvation is in�nitely better than �error and misery�and

so the expected utility of being pious is higher than that of the worldly alternative. The notions of a

dominant strategy and of expected utility maximization �rst appear here, in an almost formal model

of decision making. These are two additional major breakthroughs, dividends of the connection that

Pascal made between decision problems and games of chance.

Importantly, in this argument Pascal seems to consider the possibility that the probability of

God�s existence may not be given a precise value. The argument is that, as long as this probability

is within a certain range, say p 2 (0; ") for some " > 0, however small, one can determine that it

is better to be pious because of the in�nite di¤erence between salvation and �error and misery�.7

For, +1 = (+1� b) = (c� a) > (1� p) =p for each p 2 (0; "). This argument is in the spirit of the

multiple priors model a la Bewley, presented in Section 3.4.

Summing up, apart from its (widely debated) theological merits, Pascal�s famous wager was an

incredible leap in several ways and marks the birth of decision theory. Thanks to the connection

between decision problems and games of chance that he envisioned, he sketched the basic ideas of

this discipline, with the formalization of decision problems through decision matrices, as well as their

resolution through weak dominance and expected utility maximization, possibly with a multiple priors

twist.
6Setting b = �1 is not an obvious implication of Pascal�s text and is immaterial for his argument.
7�You would act stupidly ... by refusing to stake one life against three at a game in which out of an in�nity of

chances there is one for you, if there were an in�nity of an in�nitely happy life to gain.�
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The main point for our discussion of Pascal�s wager is that the subjective interpretation of prob-

abilities and their application as a tool to quantify beliefs showed up on the scene more or less as

soon as did the objective interpretation and the application to games of chance. Further, as soon

as the notion of subjective probability came on stage, it was accompanied by the possibility that

this probability might not be known (see Shafer, 1986, for related remarks on Bernoulli, 1713, who

introduced the law of large numbers).

Huygens (1657) In the wake of the early probability discussions of Fermat and Pascal, Huygens

(1657) �rst clearly proposed expected values to evaluate games of fortune.8 Unlike Pascal�s grand

theological stand, Huygens only dealt with games of fortune (�cards, dice, wagers, lotteries, etc.�as

reported in the 1714 English version). Nevertheless, he was well aware of the intellectual depth of his

subject.9

Huygens�arguments are a bit obscure (at least for the modern reader; see Daston, 1995). His

essay has, however, a few remarkable features from our perspective. First, he does not present the

expected value criterion as an axiom; rather, he justi�es its relevance by starting from more basic

principles. In other words, Huygens did not claim that expected value was the appropriate criterion

to value games of fortune; he tried to prove it. For this reason his essay is articulated in a sequence of

mathematical propositions that establish the expected value criterion for more and more complicated

games.10 Huygens�propositions can be thus viewed as the very �rst decision-theoretic representation

theorems, in which the relevance of a decision criterion is not viewed as self-evident, but needs to

be justi�ed through logical arguments based on �rst principles. In so doing Huygens opened up

a research path that, through Bernoulli�s 1738 masterpiece, culminated in the celebrated expected

utility axiomatization of von Neumann and Morgenstern (1947).

A second remarkable feature of Huygens�essay is the basic principle, his �postulat�in the English

version, which he based his analysis upon. We may call it the principle of equivalent games, in which

he assumes that the values of games of chances should be derived through the value of equivalent

fair games. In his words �... I use the fundamental principle that a person�s lot or expectation to

obtain something in a game of chance should be judged to be worth as much as an amount such

8Huygens acknowledged the in�uence of Fermat and Pascal in the preface of his essay �Lest anyone give me un-
deserved glory of �rst discovering this matter, it should be known that this calculus was already discussed some time
ago by some of the most outstanding mathematicians of all of France.� (English translation here and in the rest of the
section is from the 2005 edition of Bernoulli 1713 by Edith Dudley Sylla). More on the relationships between Fermat,
Huygens, and Pascal can be found in Ore (1960).

9 In the preface of his essay Huygens warns the reader not to consider frivolous its subject matter (�Quippe cum
in re levi ac frivola operam collocasse videri alioqui possem�), which is instead beautiful and very subtle, comparable
in depth to Diophantus�books and even more interesting since it does not just consider mere properties of numbers
(�... sed pulchrae subtilissimaeque contemplationis fundamenta explicari. Et problemata quidem quae in hoc genere
proponuntur, nihilo minus profundae indaginis visum iri con�do, quam que Diophanti libris contenitur, voluptatis
autem aliquanto plus habitura, cum non, sicut illa, in nuda numerorum consideratione terminentur.�)
10The essay, which is about seventeen pages long, consists of fourteen propositions and �ve problems.
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that, if he had it, he could arrive again at a like lot or expectation contending under fair conditions,

that is, in a game which works to no one�s advantage.�11 Though his de�nition of a fair game is

ambiguous, it is a class of games that he regarded to have self-evident values, possibly because of

suitable symmetries in their structure (cf p. 25 of Daston, 1995, and p. 95 of Hacking, 1975). The

meaning of �equivalent� is also unclear. But, despite all these obscurities, the idea of postulating

the existence of benchmark games in order to use them to evaluate general games has played a

prominent role in decision theory, in di¤erent guises. Ramsey�s assumption of the existence of bets

with equally likely outcomes (that he calls �ethically neutral�) is an instance of this principle, as well

as de Finetti�s assumption of the existence of partitions of equally likely events (see axiom D.4 below).

More recently, the central role that certainty equivalents play in many axiomatic derivations can be

viewed as a later instance of Huygens�comparative principle of studying uncertain alternatives by

means of benchmark alternatives with suitably simple structures.

Hacking (1975) makes some further observations on the relevance of Huygens�book for the history

of subjective probability. We refer the interested reader to his book, with a warning on the di¢ culty

of interpreting some of Huygens�arguments.

2.2 Subjective probabilities and the axiomatic approach

Modern decision theory, and in particular the way it models uncertainty, is the result of the pioneering

contributions of a truly impressive array of scholars. Some of the �nest minds of the �rst half

of last century contributed to the formal modeling of human behavior. Among them, especially

remarkable are the works of Frank Plumpton Ramsey (1903-1930) with his early insights on the

relations between utilities and subjective probabilities, John von Neumann (1901-1957) and Oskar

Morgenstern (1902-1977) with their classic axiomatization of expected utility presented in the 1947

edition of their famous game theory book, Bruno de Finetti (1906-1985) with his seminal contributions

to subjective probability, and Leonard J. Savage (1917-1971), who �in an unparalleled conceptual and

mathematical tour de force �integrated von Neumann-Morgenstern�s derivation of expected utility

with de Finetti�s subjective probability.

For our purposes the contributions of de Finetti, Ramsey, and Savage are especially relevant since

they shaped modern Bayesian thought and, through it, the modeling of uncertainty in economics.

Next we brie�y review their landmark contributions.

Ramsey (1926a) A main motivation of Ramsey (1926a) was Keynes (1921)�s logical approach

to probability theory, in which the degrees of beliefs in di¤erent propositions were connected by

11The Latin text, pp. 521-522, is �Hoc autem utrobique utar fundamento: nimirum, in alae ludo tanti estimandam
esse cuiusque sortem seu expectationem pervenire, aequa conditione certans.�The �nal sentence �that is, ... advantage�
only appeared in the Dutch version as �dat is, daer in niemandt verlies geboden werdt.�
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necessary/objective relations, called probability relations. Skeptical regarding the existence of such

relations, Ramsey argued that degrees of belief should be viewed and studied as subjective entities.

To this end, he promoted the behavioral de�nition of subjective probability as willingness to bet, and

claimed that if subjective probabilities, so de�ned, do not follow standard probability calculus, the

individual will make incoherent decisions. These are two central ideas in the methodology of decision

theory, which in about the same years were also advocated by Bruno de Finetti.

Speci�cally, the �rst tenet of Ramsey�s approach is that the only sensible way to measure degrees

of beliefs is not through introspection, but by considering them as a basis of action ��the kind of

measurement of beliefs with which probability is concerned ... is a measurement of belief qua basis

of action�, p. 171. How strongly DMs believe in the occurrence of an event is revealed by how much

they are willing to act on them (by �how far we should act on these beliefs�in his words). This �rst

key insight leads Ramsey to consider betting behavior as a way to quantify beliefs on given events

through the odds that DMs are willing to accept for bets on these events (�The old-established way

of measuring a person�s beliefs is to propose a bet, and see what are the lowest odds which he will

accept. This method I regard as fundamentally sound�p. 172).

Very similar remarks can be found in de Finetti.12 This elicitation/measurement of subjective

probabilities through betting behavior �that is, through action based on them �as opposed to mere

introspection, gives the theory an operational, empirical content and relates theoretical concepts to

observations. This is in line with the preaching of the logical positivist, culminating in the Received

View, �rst stated by Rudolf Carnap in the 1920s (see Carnap, 1923, and Suppe, 1977). de Finetti

explicitly adopted the doctrine of Operationalism (see, e.g., the last chapter of his 1937 article), and

saw the elicitation of subjective probabilities through betting behavior as methodologically akin to

Vilfredo Pareto�s ordinal utility theory based on the elicitation of indi¤erence curves rather than

on some psychological entities that could not measured (when data are assumed to be only a weak

order over alternatives). Ramsey was motivated by similar methodological concerns, in a Pragmatist

perspective,13 and viewed this approach as akin to what was done in the physical sciences (see, Section

3 of his article).

Ramsey understood that the measurement of subjective probabilities through betting behavior

might be inexact if it does not properly take into account the utility of money, which he viewed

as subject to diminishing marginal utility and to what today we call risk attitudes (�...eagerness or

reluctance to bet...�in his words, p. 172). To overcome this problem he outlined a theory in which �...

12See, e.g., de Finetti (1931) p. 302 �Anche nel linguaggio ordinario ... si esperime il grado di �ducia che abbiamo
nel veri�carsi di un dato evento mediante le condizioni a cui ci si potrebbe scommettere.�(�Even in everyday language
... our degree of con�dence in the occurrence of an event is expressed through the conditions at which we would bet
on it.�)
13Operationalism started with Bridgman (1927), after Ramsey�s articles of 1926.
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a person�s actions are completely determined by his desires and opinions�(p. 173), thus anticipating

some of the main themes of Savage�s analysis.

The view that the rules of standard probability calculus correspond to consistent betting behavior

is the second main tenet of Ramsey�s approach. By consistent betting behavior he meant behavior

that was not subject to so-called �Dutch books�. That is, consistency requires that the DMs do not

accept series of bets in which they will incur a sure loss. Ramsey observed that the probabilities

elicited from betting behavior satisfy the rules of probability calculus if and only if this behavior is

consistent. Remarkably, subjective probabilities measured via consistent betting behavior are thus

characterized exactly by these rules. As Ramsey wrote on p. 183 �Having degrees of beliefs obeying

the laws of probability implies a further measure of consistency, namely such a consistency between

the odds acceptable on di¤erent proposition as shall prevent a book made against you.�

Like the �rst tenet on the measurement of beliefs via betting behavior, also this second consistency

tenet was made by de Finetti in very similar terms.14 Together, the two tenets form the basis of

de Finetti and Ramsey�s approach to subjective probability. Their parallel, altogether independent,

development of these key ideas is impressive. We close by remarking that the consistency tenet is

an early instance of the weak, internal, notion of rationality adopted by decision theory, which only

requires consistency of choices without any reference to their motives.15 This consistency approach

was part of a more general intellectual movement in the 1920s, with its most famous instance being

Hilbert�s program on the axiomatization of mathematics.16

de Finetti (1931) Bruno de Finetti, one of the greatest probabilists of the twentieth century, was a

key �gure in the development of the Bayesian approach. To the best of our knowledge, he was the �rst

to promote the Bayesian approach as an all-encompassing method of reasoning about uncertainty,

and he did so with a religious zeal. His two main papers in this regard are probably de Finetti (1931,

1937). In both papers he forcefully emphasized the two key ideas on subjective probabilities that

we just discussed in relation with Ramsey�s work.17 Besides these methodological issues, the main

contribution of the 1937 article is a complete presentation of his classic extension of the law of large
14See, e.g., de Finetti (1931) p. 305 �[Il decisore] è costretto a ... rispettare ... i teoremi del calcolo delle probabilità.

Altrimenti egli pecca di coerenza, e perde sicuramente, purchè l�avversario sappia sfruttare il suo errore.� (�[The DM]
must ... follow ... the theorems of probability calculus. Otherwise he will not be coherent, and will lose for sure,
provided the opponent knows how to exploit his mistake.�) Emphasis as in the original.
15See Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) and Gilboa, Postlewaite, and Schmeidler (2012) for a

recent discussion of this issue.
16See Ramsey (1926b) for a critical account of Hilbert�s program. As Weyl (1944) p. 550 remarked, in this program

�Admittedly the question of truth is thus shifted into the question of consistency.�
17Both de Finetti and Ramsey developed their seminal ideas on subjective probability when they were in their early

twenties. They both made exceptional contributions to several �elds. This is all the more remarkable for Ramsey, who
in his short life was able to make important contribution in economics, mathematics, and philosophy (in the Arrow�s
(1980) words, �Frank P. Ramsey must be one of the most remarkable minds of all times, though the contributions to
human knowledge of which he was capable were so severely rationed by the chance of an early death�).
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numbers to deal with sequences of random variables that were merely exchangeable, an extension

that he had developed in a series of papers in the 1930s. His theorem was a crucial step for Bayesian

statistics because it provided the subjective foundation for the parametric statistical model, the basic

framework of statistical inference that is based on a set of possible probabilistic models fP�g�2� that

may govern a given stochastic process, indexed through a parameter space � over which there is a

prior probability � (see, e.g., Kreps, 1988, Schervish, 1995, and Cifarelli and Regazzini, 1996).

For the modelling of uncertainty in economics, however, the most important contribution of de

Finetti is his 1931 article in Fundamenta Mathematicae, arguably the most innovative mathematics

journal in the interwar years. The central part of that paper, in particular pages 320-324, are truly

remarkable. In these few pages de Finetti �rst introduced a binary relation %, a qualitative probability,
over a collection � of events of a state space S, where E % E0 is interpreted as �event E is at least as

likely as event E0.�de Finetti viewed this relation as a primitive (�supponiamo acquisita la nozione

della relazione�,18 p. 320) and did not explicitly relate it to betting behavior. The connection was

made explicit later on by Savage (1954), as we will see momentarily.

de Finetti proposed a few basic properties that % should satisfy. Speci�cally:

D.1 % is a weak order, that is, it is complete and transitive.

D.2 S % E % ; for all events E, with S � ;.

D.3 Given any two events E and E0,

E % E0 ) E [ E00 % E0 [ E00

for all events E00 such that E \ E00 = E0 \ E00 = ;.

As de Finetti emphasized, these are natural properties to require on %, with D.3 being the main
conceptual property (�la proprietà essenziale� in his words). In modern terminology, D.3 is a basic

independence assumption.

The central question that de Finetti raised was whether a qualitative probability that satis�es

properties D.1-D.3 can be represented by a standard (�nitely additive) probability measure P on �,

that is, whether there exists a probability P such that, for every two events E;E0,

E % E0 , P (E) � P (E0) . (1)

In this way, the qualitative probability relation, which is very appealing from a foundational stand-

point, can be given a much broader modelling scope thanks to a numerical representation P to which

standard probability theory can be applied.

18�Let us assume as known the meaning of the relation.�
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de Finetti was only able to prove that there exists a probability P on � such that

E % E0 ) P (E) � P (E0) (2)

provided the following �equidivisibility�condition holds:19

D.4 For each n � 1 there is a partition fEigni=1 of equally likely events.

de Finetti�s question remained open for several years and was �nally answered in the negative by

Kraft, Pratt, and Seidenberg (1959). They provided some ingenious counter-examples of qualitative

probabilities on �nite state spaces that satisfy axioms D.1-D.3, but that do not have a probability

measure that satis�es (1) or even the weaker (2), as well as conditions that characterize a qualitative

probability that can be represented by a probability measure.

Mathematically and operationally, de Finetti�s approach brings to mind Laplace�s classic approach

to probability. Both make a reference to a partition fEigni=1 of equally-likely events, and it is easy to

see that de Finetti�s assumptions D.1-D.3 imply that their quantitative probability is P (Ei) = 1=n

and P

 [
i2I

Ei

!
= jIj =n for each �nite index set I � f1; :::; ng. In the proof of (2) these assessments

are then used to evaluate the probability of more complicated events by suitably approximating them.

Focusing on the words, �... to a certain number of cases equally possible, that is to say, to such as

we may be equally undecided about in regard to their existence�, one may interpret Laplace himself

as a subjectivist.20 This is in line with Laplace�s deterministic view of the world (cf. �Laplace�s

demon�), which suggests that the notion of probability results from our ignorance.21 However, this

interpretation of Laplace as a precursor of de Finetti is quite di¤erent from the way that the �Principle

of Indi¤erence� or �Principle of Insu¢ cient Reason� is often read: for a subjectivist such as de

Finetti, the subjective judgment, whether justi�ed or not, is primitive. By contrast, the �Principle

of Indi¤erence� is taken to mean that whenever one cannot justify a preference for one event over

the other, their probabilities should equal. This interpretation has a much stronger objective �avor.

Unfortunately, it often yields incoherent assessments.22

The novelty of de Finetti (1931) was both methodological and scienti�c. Methodologically, it

is one of very �rst articles that adopted the axiomatic method based on a binary relation % and

its numerical representation derived from suitable axioms on %.23 Scienti�cally, he provided the

19See Kreps (1988) p. 121 and Gilboa (2009) p. 111.
20See pages 6 and 7 of the 1951 English edition. As Hacking (1975) p. 122 remarks, the idea of de�ning probability

through equipossibility was known since the early days of Probability Theory (for example, Hacking mentions a 1678
essay of Leibniz that relied on that idea).
21This does not mean that objective probabilities did not exist for him. Perhaps he just did not need this hypothesis...
22This was already pointed out by Bertrand (1907). See Gilboa (2009) and the end of Section 2.3 below.
23Frisch (1926) was the �rst article we are aware of that adopted a similar approach in economic theory.
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�rst result that axiomatized subjective probability, thereby establishing one of the two pillars which

Savage�s great synthesis relied upon.24

We close with a few words on the works of Koopman (1940a, 1940b, 1941), who is best known for

the Hilbert space formulation of classical mechanics that he pioneered along with von Neumann (see,

e.g., Koopman and von Neumann, 1932). In these works, Koopman studied qualitative probabilities

in a logical perspective a la Keynes, not as a basis for action as in de Finetti and Ramsey.25 His logical

approach was based on conditional probability comparisons a=h - b=k involving logical propositions

a , b, h and k, which he read as �a on the presumption h is no more probable than b on the presumption

k�. Koopman interpreted these propositions as �empirical propositions�, that is, scienti�c assertions

(e.g., outcomes of physical or biological experiments) whose truth value can be veri�ed through

experimental observation, as prescribed by Bridgam�s Operationalism.

Consistency conditions among conditional comparisons a=h - b=k play a central role in Koop-

man�s logic approach. Through them he is able to derive numerical representations of the conditional

comparative relation -. Though Koopman was not interested in the decision theoretic side of prob-
ability, his analysis of qualitative probability has some formal overlaps with the works of de Finetti

and Ramsey.

Savage (1954) de Finetti�s derivation of subjective probability was conceptually complementary

with von Neumann and Morgenstern�s (vNM, 1947) derivation of expected utility maximization under

risk, which assumed known numerical probability measures. The integration of de Finetti�s subjec-

tive probability with vNM�s expected utility was achieved by Savage�s (1954) book, which derived

subjective expected utility maximization when neither probabilities nor utilities were given.

Inspired by Wald (1950), in his book Savage introduced what is now the standard model of a

Bayesian decision problem. There is an abstract space S of states of the world and an abstract set

X of outcomes. Subsets of S are the events and Savage considered all them, that is, the power set

2S . Preferences % are over acts, which are maps f : S ! X from states to outcomes. For simplicity,

we consider % on the collection F of simple acts, that is, acts that have a �nite number of outcomes.

Savage considered six axioms on %, which he called P1-P6. The �rst one, P.1, requires that % be
transitive and complete. The other ones are more subtle and are discussed in detail in Gilboa (2009)

pp. 97-105. For later reference here we brie�y recall P.2, the celebrated Sure-Thing Principle,26 which

is especially important for our purposes. Given any pair of acts f and g, and any event E, let us

24See, e.g., chapter 8 of Kreps, 1988.
25As he writes at the beginning of his 1941 article, his purpose was �a general study probability regarded as a branch

of intuitive logic�.
26Though nowadays P.2 is commonly referred with this name, this was not Savage�s original terminology (see Gilboa,

2009, p. 99).
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write

fEg =

(
f (s) if s 2 E

g (s) if s =2 E
In other words, fEg is the act equal to act f on E and to act g otherwise. Using this notation we

can introduce the Sure-Thing Principle.

P.2 SURE-THING PRINCIPLE: given any acts f; g; h; h0 2 F and any event E, we have

fEh % gEh() fEh0 % gEh0:

The two comparisons in P.2 involve acts that only di¤er in their common parts h and h0. The

Sure-Thing Principle requires that if act fEh is preferred to act gEh, no reversal in preference can

occur if their common part h is replaced by a di¤erent, but still common, part h0. In other words,

rankings of acts should be independent of common parts.

In his classic representation theorem, Savage proved that axioms P.1-P.6 are equivalent to the

existence of a utility function u : X ! R and a (nonatomic27) probability measure P on the power set

2S such that acts f 2 F are ranked according to their subjective expected utility
R
S
u (f (s)) dP (s).28

Relative to the vNM derivation, the novelty was the subjective probability P , whose derivation was

based on de Finetti (1931). However, the fact that Savage combined ideas of de Finetti and of vNM

may be misleading: de Finetti used bets on numerical amounts, interpreted as measuring money, to

derive probability. vNM used probabilities to derive a utility. But having neither numerical concept

as primitive, Savage was coping with a problem that was conceptually and mathematically much

more challenging.29

To see the gist of Savage�s approach, observe that bets on events are binary acts xEy that pay x if

event E obtains and y otherwise. If x � y,30 then xEy can be viewed as a bet on event E. Through

bets, Savage de�nes a qualitative probability %� on 2S by setting

E %� E0 , xEy % xE0y (3)

when x � y. In the wake of de Finetti and Ramsey, Savage thus also assumes that DMs reveal their

likelihood assessments over events through betting behavior: we can say that according to a DM

event E is at least as likely as event E0 if she �nds a bet on E at least as attractive as a bet on E0.
27A probability P is nonatomic if, for each P (A) > 0 and each � 2 (0; 1), there is B � A such that P (B) = �P (A).

This property re�ects equidivisibility assumptions a la D.4.
28Here and in the sequel we follow the tradition of de Finetti and Savage, and do not assume that P is necessarily

countably additive. See Theorem 6 and its discussion for more on this issue.
29Savage�s investigation apparently started with conversations with Herman Cherno¤, who showed him that his 1951

minimax regret criterion did not satisfy Arrow�s principle of irrelevant alternatives. As Cherno¤ says in Bather (1996)
�I brought this to Savage�s attention and, after arguing futilely for a little while that it proved how good his criterion
was, he �nally agreed that it was wrong. He felt then that perhaps we should be elaborating on de Finetti�s Bayesian
approach, which he had come across. (He was a voracious reader.)�
30An outcome x is indenti�ed with the constant act, still denoted by x, that delivers x in all states. This naturally

suggests a de�ntion of % on X, and makes expressions such as x � y well de�ned.
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Savage showed that P1-P6 imply that %� satis�es de Finetti�s axioms D.1-D.3, as well as a version
of de Finetti�s Laplacian condition D.4. As a result, Savage was able to prove that there is a nonatomic

probability measure P that represents %� as in (1).
The derivation of P completes the �rst part of Savage�s derivation, based on de Finetti�s subjective

probability theory, the �rst pillar which he was building on. The second part of his derivation builds

on the other pillar, von Neumann-Morgenstern�s expected utility theory. This theory is based on a

preference over the lotteries on outcomes, that is, over the collection �(X) of all probability measures

p : 2X ! [0; 1] on outcomes that are simple.31 Through the subjective probability P , each act f 2 F

induces a probability measure pf 2 �(X) given by:

pf (A) = P (s 2 S : f (s) 2 A) ; 8A � X.

Thanks to the nonatomicity of P , Savage was able to prove that, given any p 2 �(X), there is a

suitable f 2 F such that p = pf . Therefore, the primitive preference % induces on �(X) a derived

preference %�� given by
pf %�� pg , f % g.

Using P , the preference %�� reduces a choice problem under uncertainty to a choice problem under

risk a la von Neumann-Morgenstern. In particular, Savage showed that P1-P6 imply that %�� is well
de�ned32 and satis�es von Neumann-Morgenstern�s axioms. As a result, their classic representation

theorem implies the existence of a utility function u : X ! R such that the lotteries pf are ranked

according to their expected utility
P

x2supp pf u (x) pf (x).

We can now put all pieces together. For, given any two simple acts f and g, we can write:

f % g , pf %�� pg ,
X

x2supp pf

u (x) pf (x) �
X

x2supp pg

u (x) pg (x)

,
Z
S

u (f (s)) dP (s) �
Z
S

u (g (s)) dP (s) ;

where the last equivalence follows from a simple change of variable.

Acts f and g are thus ranked through their subjective expected utilities, and this completes

Savage�s derivation.33 From both conceptual and mathematical viewpoints, Savage�s theorem remains

an unparalleled gem in the literature. To this day, it is universally viewed as the most compelling

reason to assume that rational choice necessitates Bayesian quanti�cation of all uncertainty, that is,

the reduction of uncertainty to risk.

31A probability measure p : 2X ! [0; 1] is simple if it has a �nite support, i.e., if there is a �nite set, written supp p,
such that p (supp p) = 1.
32 In this regard a key step in Savage�s derivation is to show that from his axioms it follows that pf = pg implies

f � g (see, e.g., Theorem 14.3 of Fishburn, 1970).
33The Savage derivation is spelled out we refer the reader to Fishburn (1970), Kreps (1988), and Gilboa (2009).

Recent extensions of Savage�s result can be found in Kopylov (2007, 2010).
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2.3 Ellsberg paradox

The classic Bayesian theory culminating in Savage�s opus represents beliefs probabilistically, but it

does not capture the degree of con�dence that DMs have in their own probabilistic assessments, a

degree that depends on the quality of the information that DMs use in forming these assessments.

The classic theory focused on how to measure beliefs, without providing a way to assess the quality

of such measurements.

Savage himself was well aware of this issue. For example, on p. 57 of his book he writes �there

seem to be some probability relations about which we feel relatively �sure�as compared with others.�

But, as he remarked soon after �The notion of �sure�and �unsure�introduced here is vague, and my

complaint is precisely that neither the theory of personal probability, as it is developed in this book,

nor any other device known to me renders this notion less vague.�

Ellsberg (1961) provided two stark thought experiments that showed how this limitation may lead

many people to violate Savage�s otherwise extremely compelling axioms, and to express preferences

that are incompatible with any (single, additive) probability measure. Ellsberg argued that a situation

in which probabilities are not known, which he referred to as ambiguity,34 induces di¤erent decisions

than situations of risk, namely, uncertainty with known probabilities.

Ellsberg�s two urns Speci�cally, one of Ellsberg�s experiments involves two urns, I and II, with

100 balls in each. The DM is told that:

(i) in both urns balls are either white or black;

(ii) in urn I there are 50 black and 50 white balls.

No information is given on the proportion of white and black balls in urn II.

The DM has to choose among the following 1 euro bets on the colors of a ball drawn from each

urn:

1. bets IB and IW , which pay 1 euro if the ball drawn from urn I is black and white, respectively;

2. bets IIB and IIW , which pay 1 euro if the ball drawn from urn II is black and white, respec-

tively.

Let us model the DM�s choice among these bets in a Savage framework. The state space is

S = fB;Wg � fB;Wg, with the following four possible states:
34Today, the terms �ambiguity�, �uncertainty� (as opposed to �risk�), and �Knightian uncertainty� are used inter-

changeably to describe the case of unknown probabilities.
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1. state BB: in both urns a black ball is drawn;

2. state BW : in urn I a black ball is drawn and in urn II a white ball is drawn;

3. state WB: in urn I a white ball is drawn and in urn II a black ball is drawn;

4. state WW : in both urns a white ball is drawn.

The next table summarizes the DM�s choice problem.

BB BW WB WW
IB 1 1 0 0
IW 0 0 1 1
IIB 1 0 1 0
IIW 0 1 0 1

Suppose that the DM ranks these bets according to the subjective expected utility criterion.

First of all, normalize his utility function by setting u (1) = 1 and u (0) = 0. As to his subjective

probability, in view of the information that the DM was given about urn I, it is natural to set

P (BB [BW ) = P (WW [WB) =
1

2
. (4)

On the other hand, due to symmetry it seems natural also to set

P (BB [WB) = P (BW [WW ) ; (5)

because the DM has no information on the colors�proportion in urn II and there is no reason to

consider the draw of either color as more likely. But the symmetric evaluation (5) when combined

with the additivity of P leads to:

P (BB [WB) = P (BW [WW ) =
1

2
. (6)

In other words, in both urns we end up with the same probabilities, despite the stark di¤erence in

the quality of the information on which the subjective probability assessments have been based. It is

natural to think that the DM�s degree of con�dence in his probability assessment (4) is much higher

than that in (6).

From (4) and (6) it follows that all four acts have the same subjective expected utility, equal to

1=2. The following indi¤erence pattern

IB � IW � IIB � IIW

thus characterizes a subjective expected utility DM with subjective probability (4) and (6). But it

is not obvious that all rational DMs will be indi¤erent among betting on urn I, on which they have

18



solid information, and betting on urn II, on which they have much more limited information. The

following ranking is introspectively much more plausible

IB � IW � IIB � IIW: (7)

An overwhelming experimental evidence has con�rmed that many subjects have this preference

pattern in this choice problem. This pattern is, however, not compatible with Savage�s axioms, in

particular with his classic Sure-Thing Principle (see, e.g., Gilboa, 2009, p. 134). Hence, no subjective

expected utility DM can exhibit the preference pattern (7).

Ellsberg�s single urn Why the Sure-Thing Principle may be less compelling than one might think

prima facie is, however, best illustrated by the second Ellsberg experiment. Suppose there is a single

urn, with 90 balls. The DM is told that:

(i) in the urn balls are either red, yellow, or green;

(ii) there are 30 red balls.

No information is given on the proportion of yellow and green balls in the 60 balls that are not

red.

Suppose that the DM has to choose among the following 1 euro bets on the colors of a ball drawn

from the urn:

1. bets 1R and 1Y , which pay 1 euro if the ball drawn from the urn is red and yellow, respectively;

2. bet 1R[G, which pays 1 euro if the ball drawn from the urn is either red or green;

3. bet 1Y [G, which pays 1 euro if the ball drawn from the urn is either yellow or green.

The state space is S = fR; Y;Gg, with the following three possible states

1. R: a red ball is drawn;

2. Y : a yellow ball is drawn;

3. G: a green ball is drawn.

The next table summarizes the DM�s choice problem.

R Y G
1R 1 0 0
1Y 0 1 0
1R[G 1 0 1
1Y [G 0 1 1

19



The DM has much better information on the event R and its complement Y [G than on the events

Y and G and their complements. As a result, it seems reasonable to expect that a DM would regard

1R as a �safer�bet than 1Y and, therefore, she would prefer to bet on R rather than on Y ; that is,

1R � 1Y .

For the very same reason, when comparing bets on R[G and on Y [G it seems reasonable to expect

that a DM would prefer to bet on the latter event because of the much better information that she

has about it. That is,

1Y [G � 1R[G.

Summing up, the quality of the information on which the DM�s beliefs are based should lead to the

following preference pattern

1R � 1Y and 1Y [G � 1R[G (8)

that is, that the DMs consistently prefers to bet on events on which they have superior information.

Pattern (8), which has been indeed con�rmed in a number of actual experiments that carried out

Ellsberg�s thought experiment, is not compatible with the Sure-Thing Principle. In fact, set A =

fR; Y g. Bets 1R and 1Y are identical on Ac. According to the Sure-Thing Principle, changing their

common value in Ac from 0 to 1 should not alter their ranking. But, these modi�ed acts are the bets

1R[G and 1Y [G, respectively. Hence, by Sure-Thing Principle

1R % 1Y () 1Y [G % 1R[G;

which is violated by pattern (8).

Ambiguity aversion The phenomenon illustrated by the patterns (7) and (8) is known as uncer-

tainty aversion, or ambiguity aversion: people tend to prefer situations with known probabilities to

unknown ones, to the extent that these can be compared. Clearly, one can have the opposite phenom-

enon, of uncertainty/ambiguity liking, when people exhibit the opposite preferences. While gambling

is an important exception, it is commonly assumed that people who are not uncertainty neutral tend

to be uncertainty averse, in a way that parallels the common assumptions about attitudes toward

risk.

Ellsberg�s experiments are extremely elegant and they pinpoint precisely which of Savage�s axioms

is violated by DMs who are not indi¤erent between betting on the two urns. But the elegance of

these experiments is also misleading. Since they deal with balls and urns, and the information about

the colors is completely symmetric, it is very tempting to adopt a probabilistic belief that would

re�ect this symmetry. Speci�cally, one may reason about the urn with unknown composition, �The
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number of red balls in it can be any number between 0 and 100. My information is completely

symmetric, and there is no reason to believe that there are more red balls than black balls or vice

versa. Hence, if I were to adopt a prior probability over the composition of the urn, from [0:100] to

[100:0], I should choose a symmetric prior. That is, the probability that there are 3 red balls should

be equal to the probability that there are 97 red balls, and so forth. In this case, the probability

that a red ball is drawn out of the urn is precisely 50%, and I should no longer express preferences

for the known probabilities.�Relatedly, one may also use the unknown urn to generate a bet with

objective probability of 50%: use an external chance device, which is known to be fair, and decide

between betting on red or on black based on this device. If the DM has symmetric beliefs about the

composition of the urn, she can thereby generate a bet that is equivalent to the bet on the urn with

the known composition.

Based on such arguments, theorists often feel that there is no problem with subjective probabilities,

at least as far as normative theories of choice are concerned. But this conclusion is wrong. In most real

life examples there are no symmetries that allow the generation of risky bets. For example, suppose

that Mary does not know what is the probability of the globe warming up by 4 degrees within the

next ten years. She cannot assume that this probability is 50%, based on Laplace�s Principle of

Indi¤erence (or �Principle of Insu¢ cient Reason�). The two eventualities, �average temperature

increases by 4 degrees or more�and �average temperature does not increase by 4 degrees� are not

symmetric. Moreover, if Mary replaces 4 degrees by 5 degrees, she will obtain two similar events, but

she cannot generally assign a 50%-50% probability to any pair of complementary events. Nor will

a uniform distribution over the temperature scale be a rational method of assigning probabilities.35

The fundamental di¢ culty is that in most real life problems there is too much information to apply

the Principle of Indi¤erence, yet too little information to single out a unique probability measure.36

Global warming and stock market crashes, wars and elections, business ventures and career paths face

us with uncertainty that is neither readily quanti�ed nor easily dismissed by symmetry considerations.

2.4 Other disciplines

The Bayesian approach has proved useful in statistics, machine learning, philosophy of science, and

other �elds. In none of these fellow disciplines has it achieved the status of orthodoxy that it enjoys

35Bertrand�s (1907) early critique of the principle of indi¤erence was made in the context of a continuous space. See
also Gilboa (2009) and Gilboa, Postlewaite, and Schmeidler (2009).
36 It is not entirely clear how one can justify the Principle of Indi¤erence even in cases of ignorance. For example,

Kass and Wasserman (1996) p. 1347 discuss the partition paradox and lack of parametric invariance, two closely
related issues that arise with Laplace�s Principle. Similar remarks from a Macroeconomics perspective can be found in
Kocherlakota (2007) p. 357.
Based on a result by Henri Poincaré, Machina (2004) suggests a justi�cation of the Laplace�s Principle using a

sequence of �ne partitions of the state stace. This type of reasoning seems to underlie most convincing examples of
random devices, such as tossing coins, spinning roulette wheels, and the like. It is tempting to suggest that this is the
only compelling justi�cation of the Principle of Indi¤erence, and that this principle should not be invoked unless such
a justi�cation exists.
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within economic theory. It is a respectable approach, providing fundamental insights and relishing

conceptual coherence. It is worth pointing out, however, that in these disciplines the Bayesian

approach is one among many. More importantly, in all of these disciplines the Bayesian approach is

applied to a restricted state space, such as a space of parameters, whereas in economics it is often

expected to apply also to a grand state space, whose elements describe anything that can possibly be

of interest.

Consider statistics �rst. The statistical inference problem is de�ned by a set of distributions, or

data generating processes, out of which a subset of distributions has to be chosen. In parametric

problems, the set of distributions is assumed to be known up to the speci�cation of �nitely many

parameters. Classical statistics does not allow the speci�cation of prior beliefs over these parameters.

By contrast, Bayesian statistics demands that such beliefs be speci�ed. Thus the Bayesian approach

o¤ers a richer language, within which the statistician can represent prior knowledge and intuition.

Further, the Bayesian prior, updated to a posterior based on sampling, behaves in a much more

coherent way than the techniques of classical statistics. (See, for example, Welch, 1939, also described

in DeGroot, 1975, pp. 400-401.)

The main disadvantage of the Bayesian approach to statistics is its subjectivity: since the prior

beliefs of the parameters is up to the statistician to choose, they will di¤er from one statistician to

another. Admittedly, classical statistics cannot claim to be fully objective either, because the very

formulation of the problem as well as the choice of statistics, tests, and signi�cance levels leave room

for the statistician�s discretion. Yet, these are typically considered necessary evils, with objectivity re-

maining an accepted goal, whereas the Bayesian approach embraces subjective inputs unabashedly.37

On the bright side, if a Bayesian statistician selects a su¢ ciently �di¤used�or �uninformative�prior,

she hopes not to rule out the true parameters a priori, and thereby to allow learning of objective

truths in the long run, despite the initial reliance on subjective judgments.38

The Bayesian approach has a similar status in the related �elds of computer science and machine

learning.39 On the one hand, it appears to be the most conceptually coherent model of inference. On

the other, its conclusions depend on a priori biases. For example, the analysis of algorithms�com-

plexity is typically conducted based on their worst case. The Bayesian alternative is often dismissed

because of its dependence on the assumptions about the underlying distribution.

It is important to emphasize that in statistics and in computer science the state space, which is

the subject of prior and posterior beliefs, tends to be a restricted space that does not grow with the

37See Lewis (1980) and chapter 4 of van Frassen (1989) (and the references therein) for a discussion of the relations
between �objectivity� and subjective probabilities from a philosophical standpoint.
38Kass and Wasserman (1996), Bayarri and Berger (2004), and Berger (2004) discuss uninformative priors and related

�objective� issues in Bayesian statistics (according to Efron, 1986, some of these issues explain the relatively limited
use of Bayesian methods in applied statistics).
39See Pearl (1986) and the ensuing literature on Bayesian networks.
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data. For example, it can comprise of all combinations of values of �nitely many parameters, which

are held �xed throughout the sampling procedure. By contrast, the standard approach in economic

theory suggests that the state of the world resolves all uncertainty, and thus describes everything

that might be of relevance to the problem at hand, from the beginning of time until eternity. As a

result, the state space that is often assumed in economics is much larger than in other disciplines.

Importantly, it increases with the size of the data.

Consider the following example. The year is 1900 and we are interested in forecasting wars over

the next 200 years. For simplicity, assume that every year we either observe war (1) or no-war (0).

Suppose that we believe that wars occur randomly, so that every year there might be a war with

probability p, where consecutive occurrences are i.i.d. We do not know what the parameter p is. A

Bayesian approach to the statistical problem would be to form a certain distribution over the values

of p, say, [0; 1], and to update it as new information comes in. If our basic assumption about the

process is correct, that is, if we do observe i.i.d Bernoulli random variables, our posterior probability

will converge to the true value of p with very high probability.

But the assumption that consecutive wars are independent is dubious. Some wars are horri�c

enough to make people want to avoid future wars; and some wars simply drain resources, thereby

making future wars less likely; by contrast, some wars end in defeat or humiliation that induce revenge

in future wars. Thus, the assumption that the occurrence of wars is an i.i.d process is highly doubtful.

Moreover, it seems fair to say that we do not know the data generating process by which wars erupt.

In such a case, the standard way to model the problem in economics is to de�ne the grand state

space, which is not the space of the parameter, p 2 [0; 1], but all the 2200 sequences of 0�s and 1�s of

length 200. This state space is detailed enough to describe any eventuality, and any theory about the

world can be stated as an event in this model, namely, as the subset of states that conform to the

theory. However, assuming that we have a prior probability over the 2200 states is quite di¤erent from

assuming that we have such a probability over a �xed parameter space such as [0; 1]. In particular,

if the forecast horizon increases from 200 to 300, the parameter space [0; 1] is �xed, whereas the

grand state space grows from 2200 to 2300 states. Therefore, it makes sense to assume that Bayesian

updating will converge to assign a high conditional probability to the true state in the �rst case, but

it is less clear how learning could take place in the grand state space.

Relatedly, if one considers a restricted set of parameters, one may argue that the prior probability

over this set is derived from past observations of similar problems, each with its own parameters,

taken out of the same set. But when the grand state space is considered, and all past repetitions

of the problem are already included in the description of each state, the prior probability should be

speci�ed on a rather large state space before any data were observed. With no observations at all,

and a very large state space, the selection of a prior probability seems highly arbitrary.
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In applications of the Bayesian approach in statistics, computer science, and machine learning, it

is typically assumed that the basic structure of the process is known, and only a bounded number

of parameters need to be learnt. Many non-parametric methods allow an in�nitely dimensional

parameter space, but one that does not grow with the number of observations. This approach is

su¢ cient for many statistical inference and learning problems in which independent repetitions are

allowed. But economics is often interested in events that do not repeat. Applying the Bayesian

approach to these is harder to justify.

We are not fully aware of the origins of the application of the Bayesian approach to the grand state

space. It is well known that de Finetti was a devout Bayesian. Savage, who followed his footsteps, was

apparently much less religious in his Bayesian beliefs. Yet, he argued that a state of the world should

�resolve all uncertainty�and, with a healthy degree of self-criticism, urged the reader to imagine that

she had but one decision to be taken in her lifetime, and this is her choice of her strategy before being

born. Harsanyi (1967, 1968) made a fundamental contribution to economics by showing how players�

types should be viewed as part of the state of the world, and assumed that all unborn players start

with a common prior over the grand state space that is thus generated. Aumann (1974, 1976, 1987)

pushed this line further by assuming that all acts and all beliefs are fully speci�ed in each and every

state, while retaining the assumption that all players have a prior, and moreover, the same prior over

the resulting state space.

Somewhere along recent history, with path-breaking contributions by de Finetti, Savage, Harsanyi,

and Aumann, economic theory found itself with a state space that is much larger than anything that

statisticians or computer scientists have in mind when they generate a prior probability. Surprisingly,

the economic theory approach is even more idealized than the Bayesian approach in the philosophy

of science. There is nothing wrong in formulating the grand state space as a canonical model within

which claims can be embedded. But the assumption that one can have a prior probability over this

space, or that this is the only rational way to think about it is questionable.

2.5 Summary

Since the mid-20th century economic theory has adopted a rather unique commitment to the Bayesian

approach. By and large, the Bayesian approach is assumed to be the only rational way to describe

knowledge and beliefs, and this holds irrespective of the state space under consideration. Importantly,

economic theory clings to Bayesianism also when dealing with problems of unique nature, where

nothing is known about the structure of the data generating process. Research in recent decades

plainly shows that the Bayesian approach can be extremely fruitful even when applied to such unique

problems. But it is also possible that the commitment to the Bayesian approach beclouds interesting

�ndings and new insights.
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The preceding discussion highlights our view that there is nothing irrational about violating the

Bayesian doctrine in certain problems. As opposed to models of bounded rationality, psychological

biases, or behavioral economics, the focus of this survey are models in which DMs may sometimes

admit that they do not know what the probabilities they face are. Being able to admit ignorance is

not a mistake. It is, we claim, more rational than to pretend that one knows what cannot be known.

Bounded rationality and behavioral economics models often focus on descriptive interpretations.

At times, they would take a conditionally-normative approach, asking normative questions given

certain constraints on the rationality of some individuals. Such models are important and useful.

However, the models discussed here are di¤erent in that they are fully compatible with normative

interpretations. When central bank executives consider monetary policies, and when leaders of a coun-

try make decisions about military actions, they will not make a mistake if they do not form Bayesian

probabilities. On the contrary, they will be well advised to take into account those uncertainties that

cannot be quanti�ed.

3 Alternative models

3.1 The Anscombe-Aumann setup

Anscombe and Aumann (1963) developed a version of the subjective expected utility model of Savage

that turned out to be especially well suited for subsequent extensions of the basic Bayesian decision

model. For this reason, in this sub-section we present this important setup.

The basic feature of the Anscombe-Aumann (AA, for short) model is that acts map states into

lotteries, that is, acts�consequences involve exogenous probabilities a la von Neumann-Morgenstern.

This feature is important both conceptually and mathematically. We now turn to introduce the

setting formally, in the version presented by Fishburn (1970).

The set of simple probabilities �(X) on some underlying space X of alternatives is the space

of consequences considered by the AA model.40 There is a space of states of the world S endowed

with an event algebra �. The objects of choice are acts, which map states into lotteries. We denote

by F the collection of all simple acts f : S ! �(X), that is, acts that are �nitely valued and �-

measurable.41 In particular, if state s obtains the consequence of act f is lottery f (s), which assigns

probability f (s) (x) to x 2 X.

A key feature of �(X) is its convexity, which makes it possible to combine acts. Speci�cally,

given any � 2 [0; 1], set

(�f + (1� �) g) (s) = �f (s) + (1� �) g (s) ; 8s 2 S. (9)

40Throughout the section we use interchangeably the terms lotteries and simple probabilities.
41Simple acts have the form f =

Pn
i=1 pi1Ei , where fEig

n
i=1 � � is a partition of S and fpigni=1 � �(X) is a

collection of lotteries.
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The mixed act �f + (1� �) g delivers in each state s the compound lottery �f (s) + (1� �) g (s). In

other words, ex post, after the realization of state s, the DM obtains a risky outcome governed by

the lottery �f (s) + (1� �) g (s).42

The possibility of mixing acts is a key dividend of the assumption that �(X) is the consequence

space, which gives the AA setting a vector structure that the Savage setting did not have. The

derivation of the subjective expected utility representation in the AA setting is based on this vector

structure.

Risk preference The DM has a primitive preference % on F . In turn, this preference induces a

preference %� on lotteries by setting, for all p; q 2 �(X),

p %� q , f % g;

where f and g are the constant acts such that f (s) = p and g (s) = q for all s 2 S.

Constant acts are not a¤ected by state uncertainty, only by the risk due to the lotteries�exogenous

probabilities. For this reason, %� can be seen as the risk preference of the DM. This is an important
conceptual implication of having �(X) as the consequence space. This richer consequence space

mathematically delivers a most useful vector structure, while from a decision theoretic standpoint it

enriches the setting with a risk preference that allows to consider the DMs�risk behavior separately.

Di¤erently put, the AA consequence space can be viewed as derived from an underlying consequence

space X a la Savage, enriched by a lottery structure that allows to calibrate risk preferences.

Alternatively, one may view AA�s model as an improved version of de Finetti�s (1931, 1937)

axiomatic derivation of expected value maximization with subjective probabilities. de Finetti assumed

additivity or linearity in payo¤s. This is a problematic assumption if payo¤s are monetary, but it

is more palatable if payo¤s are probabilities of receiving a �xed desirable outcome. Replacing the

payo¤s in de Finetti�s model by probabilities of outcomes, one obtains a model akin to AA�s.

In a sense, the AA model is a hybrid between vNM�s and Savage�s. Mathematically it is akin

to the former, as it starts with a vNM theorem on a particular mixture space, and imposes addi-

tional axioms to derive subjective probabilities. Conceptually, it is closer to Savage�s model, as it

derives probabilities from preferences. Many view this derivation as conceptually less satisfactory

than Savage�s, because the latter does not assume probabilities, or any numbers for that matter, to

be part of the data. Anscombe and Aumann, however, viewed the use of objective probabilities as

a merit, because they believed that people think in terms of subjective probabilities after they have

42For this reason, mixing acts in this way is sometimes called �ex post randomization.� For recent models with ex
ante randomization, see Epstein, Marinacci, and Seo (2007), Ergin and Sarver (2009), and Seo (2009).
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internalized the concept of objective probability. Be that as it may, there is no doubt that the AA

model has become the main testbed for new models of decision under uncertainty.43

Axioms We now make a few assumptions on the primitive preference %. The �rst one is a standard
weak order axiom.

AA.1 WEAK ORDER: % on F is complete and transitive.

The next axiom is a monotonicity assumption: if state by state an act f delivers a weakly better

(risky) consequence than an act g, then f should be weakly preferred to g. It is a basic rationality

axiom.

AA.2 MONOTONICITY: for any f; g 2 F , if f (s) %� g (s) for each s 2 S, then f % g.

Next we have an independence axiom, which is peculiar to the AA setting since it relies on its

vector structure.

AA.3 INDEPENDENCE: for any three acts f; g; h 2 F and any 0 < � < 1, we have

f � g ) �f + (1� �)h � �g + (1� �)h. (10)

According to this axiom, the DM�s preference over two acts f and g is not a¤ected by mixing

them with a common act h. In the special case when all these acts are constant, axiom AA.3 reduces

to von Neumann-Morgenstern�s original independence axiom on lotteries.

We close with standard Archimedean and nontriviality assumptions.44

AA.4 ARCHIMEDEAN: let f , g, and h be any three acts in F such that f � g � h. Then, there are

�; � 2 (0; 1) such that �f + (1� �)h � g � �f + (1� �)h.

AA.5 NONDEGENERACY: there are f; g 2 F such that f � g.

We can now state the AA subjective expected utility theorem.

Theorem 1 Let % be a preference de�ned on F . The following conditions are equivalent:

(i) % satis�es axioms AA.1-AA.5;

43See Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003) for a subjective underpinning of the AA setup.
44See Gilboa (2009) for some more details on them.
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(ii) there exists a non-constant function u : X ! R and a probability measure P : � ! [0; 1] such

that, for all f; g 2 F , f % g if and only if

Z
S

0@ X
x2supp f(s)

u(x)f (s) (x)

1A dP (s) �
Z
S

0@ X
x2supp g(s)

u(x)g (s) (x)

1A dP (s) : (11)

Moreover, P is unique and u is cardinally unique.45

The preference functional V : F ! R in (11) has the form

V (f) =

Z
S

0@ X
x2supp f(s)

u(x)f (s) (x)

1A dP (s) (12)

and consists of two parts. The inner partX
x2supp f(s)

u(x)f (s) (x) (13)

is the expected utility of the lottery f (s) that act f delivers when state s obtains.46 It is easy to see

that this expected utility represents the DM�s risk preference %�. The outer partZ
S

0@ X
x2supp f(s)

u(x)f (s) (x)

1A dP (s)

averages all expected utilities (13) according to the probability P , which quanti�es the DM�s beliefs

over the state space.

The classical models of Savage and Anscombe-Aumann were considered the gold standard of

decision under uncertainty, despite the challenge posed by Ellsberg�s experiments. In the 1980s,

however, several alternatives were proposed, most notably models based on probabilities that are not

necessarily additive, or on sets of probabilities. We now turn to review these contributions and some

of the current research in the area.

Notation To ease notation, in the rest of the paper we will write u (f (s)) in place of
P

x2supp f(s) u(x)f (s) (x).

Under this notation, (12) becomes V (f) =
R
S
u (f (s)) dP (s).

3.2 Choquet expected utility

The �rst general-purpose, axiomatically-based non-Bayesian decision model was the Choquet Ex-

pected Utility (CEU) model proposed by David Schmeidler in 1982, which appeared as Schmeidler

(1989). Schmeidler�s starting point was that the Bayesian model is a straightjacket that does not

allow the DM to express her own degree of con�dence in her beliefs. Schmeidler gave the example of

45Throughout the paper, cardinally unique means unique up to positive a¢ ne transformations.
46Recall that f (s) (x) is the probability that lottery f (s) assigns to x 2 X.
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two coins, one that has been tested extensively and is known to be fair, and the other about which

nothing is known. He noted that a Bayesian would probably have 50%-50% beliefs regarding the re-

sult of the toss of either coin, but that these beliefs di¤er: in one case, the DM practically knows that

each side of the coin has probability of 50% of coming up. In the other case, the numbers 50%-50%

are obtained with a shrug of one�s shoulders, relying on symmetry of ignorance rather than symmetry

of information.47 Observe that Schmeidler�s two-coin example is very close to Ellsberg�s two-urn ex-

periment. However, Schmeidler was not motivated by the desire to explain Ellsberg�s results; rather,

he considered the standard theory and found it counter-intuitive.

Schmeidler (1989) suggested to model probabilities by set functions that are not necessarily ad-

ditive. For example, if H (T ) designates the event �the unknown coin falls with H (T ) up�, and � is

the measure of credence, we may have

�(H) + �(T ) < �(H [ T )

Thus, the �probability�of events, as measured by our willingness to bet on them, may not satisfy

the standard axioms of probability theory. Schmeidler referred to them as non-additive probabilities,

and required that they be positive and monotone with respect to set inclusion. Such mathematical

entities are also known by the term capacities. Formally, given an event algebra � of state space S,

a set function � : �! [0; 1] is a capacity if

(i) �(;) = 0 and �(S) = 1;

(ii) E � E0 implies �(E) � �(E0).

Dempster (1967) and Shafer (1976) also suggested a theory of belief in which the degree of belief

in an event did not obey additivity. They focused on the representation of uncertainty by belief

functions. There is a vast literature that followed, often referred to as �imprecise probabilities�(see

Walley, 1991). Most of this literature, however, does not address the question of decision making.

By contrast, Schmeidler had decision theory in mind, and he sought a notion of integration that

would generalize standard expectation when the capacity � happens to be additive. Such a notion of

integration was suggested by Choquet (1953).

Choquet Integral To understand the gist of the Choquet integral,48 suppose that � is a �-algebra

(e.g., the power set 2S) and consider a positive and bounded �-measurable function � : S ! R. The

Choquet integral of � with respect to a capacity � is given by:Z
�d� =

Z 1

0

� (fs 2 S : � (s) � tg) dt; (14)

47See Fischho¤ and Bruine De Bruin (1999) for experimental evidence on how people use 50%-50% statements in
this sense.
48We refer the interested reader to Denneberg (1994) and to Marinacci and Montrucchio (2004) for detailed exposi-

tions of Choquet integration.
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where on the right-hand side we have a Riemann integral. To see why the Riemann integral is well

de�ned, let Et = fs 2 S : � (s) � tg be the the upper contour set of � at t. Since � is �-measurable,

Et 2 � for all t 2 R. De�ne the survival function G� : R! R of � with respect to � by

G� (t) = � (Et) , 8t 2 R:

Using this function, we can write (14) asZ
�d� =

Z 1

0

G� (t) dt:

The upper contour sets fEtgt2R are nested, with Et � Et0 if t � t0. Since � is a capacity, � (Et) �

� (Et0) if t � t0, and so G� is a decreasing function. Moreover, since � is positive and bounded,

the function G� is positive with compact support. By standard results on Riemann integration, the

Riemann integral
R1
0
G� (t) dt exists, and so the Choquet integral (14) is well de�ned. Moreover, it

is easy to see that when � is additive the Choquet integral reduces to a standard Lebesgue integral.

When � is a simple function,49 the Choquet integral can be written in a couple of useful equivalent

ways. For simplicity, suppose that S is a �nite state space f1; :::; ng and set � = 2S . Assume further

that the states of the world are ordered so that � is decreasing:

�(1) � �(2) � ::: � �(n) � 0

Then, it is easy to see thatZ
S

�dv = [�(1)� �(2)] � (f1g)

+ [�(2)� �(3)] � (f1; 2g)

� � �

+ [�(n� 1)� �(n)] � (f1; :::; ng) :

Equivalently, Z
S

�dv = �(1)� (f1g)

+�(2) [� (f1; 2g)� � (f1g)]

+�(3) [� (f1; 2; 3g)� � (f1; 2g)]

� � �

+�(n) [� (S)� � (f1; :::; n� 1g)] :

49That is, there is a partition fEigni=1 � � of S and a �nite collection f�ig
n
i=1 of scalars such that � =

nX
i=1

�i1Ei .
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This last way of writing the Choquet integral sheds light on its additivity properties. For, it shows

that the Choquet integral
R
S
�dv is the standard Lebesgue integral of � with respect to an (additive)

probability measure P : 2S ! [0; 1] de�ned by

P (1) = � (f1g)

P (2) = � (f1; 2g)� � (f1g)

� � �

P (n) = � (S)� � (f1; :::; n� 1g)

If we were to consider a di¤erent function  , we may �nd that the appropriate additive measure

di¤ers from �. More precisely, if it so happens that

 (1) �  (2) � � � � �  (n)

that is, that a single permutation of the states render both � and  non-increasing, then the Choquet

integrals of both � and  can be replaced by standard integrals with respect to the same measure P .

In this case, we say that � and  are comonotonic (short for �commonly monotonic�), and we �nd

that the integral will also preserve its additivity:

Z
S

(�+  )dv =

Z
S

�dv +

Z
S

 dv: (15)

If, however, we �nd that

�(1) > �(2) and  (1) <  (2)

we may conclude that � and  are not comonotonic: any permutation of the states that makes �

non-increasing has to place state 2 after state 1, and the converse holds for  . In this case, each of

the Choquet integrals of � and of  equals an integral of the respective function with respect to a

certain probability measure, but it will typically not be the same measure. As a result, the Choquet

integral generally does not satisfy additivity, except under comonotonicity.

In general state spaces S, not necessarily �nite, two �-measurable functions � : S ! R and

 : S ! R are said to be comonotonic if

[� (s)� � (s0)] [ (s)�  (s0)] � 0; 8s; s0 2 S, (16)

that is, if it is never the case that � (s) > � (s0) and  (s) <  (s0) for some states s and s0. Dellacherie

(1971) showed that (15) holds in general state spaces if � and  are comonotonic. This important

additivity result can be proved by suitably generalizing the argument outlined before for �nite state

spaces.
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Schmeidler (1989) Schmeidler (1989) axiomatized Choquet expected utility in the AA setup. The

key innovation relative to the AA axioms AA.1-AA.4 was to restrict the independence axiom AA.3

to comonotonic acts, that is, acts f; g 2 F for which it is never the case that both f (s) � f (s0) and

g (s) � g (s0) for some states of the world s and s0. This is the preference version of comonotonicity.

S.3 COMONOTONIC INDEPENDENCE: for any pairwise comonotonic acts f; g; h 2 F and any

0 < � < 1,

f � g ) �f + (1� �)h � �g + (1� �)h. (17)

According to this axiom, the DM�s preference between two comonotonic acts f and g is not

a¤ected by mixing them with another act h that is comonotonic with both. The intuition behind

this axiom can best be explained by observing that the classical independence axiom may not be

very compelling in the presence of uncertainty. For example, assume that there are two states of the

world, and two vNM lotteries p � q. Let f = (p; q) and g = (q; p). Suppose that, due to ignorance

about the state of the world, the DM is driven to express indi¤erence, f � g. By AA�s independence,

for every h we will observe
1

2
f +

1

2
h � 1

2
g +

1

2
h

However, for h = g this implies that 12f +
1
2g � g, despite the fact that the act 12f +

1
2g is risky while

g is uncertain.

In this example, g can serve as a hedge against the uncertainty inherent in f , but it clearly

cannot hedge against itself. The standard independence axiom is too demanding, because it does

not distinguish between mixing operations �f + (1� �)h that reduce uncertainty (via hedging) and

mixing operations that do not. Restricting the independence axiom to pairwise comonotonic acts

neutralizes this asymmetric e¤ect of hedging.

Similar remarks can be made to explain why the Ellsberg�s experiments patterns violate the

independence axiom AA.3. For instance, consider Ellsberg�s single urn experiment. Too see that its

pattern (8) violates AA.3, consider the mixed bets

1

2
1R +

1

2
1G and

1

2
1Y +

1

2
1G.

By de�nition, �
1

2
1R +

1

2
1G

�
(s) =

(
1
2 s 2 R [G

0 else
=

�
1

2
1R[G +

1

2
0

�
(s) ,

that is,
1

2
1R +

1

2
1G =

1

2
1R[G +

1

2
0:

Similarly,
1

2
1Y +

1

2
1G =

1

2
1Y [G +

1

2
0:
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Hence, by AA.3 we have

1R � 1Y =)
1

2
1R +

1

2
1G �

1

2
1Y +

1

2
1G ()

1

2
1R[G +

1

2
0 � 1

2
1Y [G +

1

2
0 (18)

and

1Y [G � 1R[G =)
1

2
1Y [G +

1

2
0 � 1

2
1R[G +

1

2
0;

a contradiction. Instead, under comonotonic independence we do not reach this contradiction since

bets 1R, 1Y and 1G are not pairwise comonotonic, and so the �rst implication in (18) may not hold.

Using Axiom S.3, Schmeidler (1989) was able to prove the following representation theorem, which

generalizes the subjective expected utility representation established by Theorem 1 by allowing for

possibly non-additive probabilities. The proof of the result is based on some results on Choquet

integration established in Schmeidler (1986).

Theorem 2 Let % be a preference de�ned on F . The following conditions are equivalent:

(i) % satis�es axioms AA.1, AA.2, S.3, AA.4, and AA.5;

(ii) there exists a non-constant function u : X ! R and a capacity � : � ! [0; 1] such that, for all

f; g 2 F , f % g if and only ifZ
S

u (f (s)) d� (s) �
Z
S

u (f (s)) d� (s) : (19)

Moreover, � is unique and u is cardinally unique.

Gilboa (1987), Wakker (1989a, 1989b), and Nakamura (1990) established purely subjective ver-

sions of Schmeidler�s representation result.50 Sarin and Wakker (1992) showed that the existence of a

suitable rich collection of unambiguous events substantially streamlines the derivation of Schmeidler�s

representation through a simple cumulative dominance condition.

3.3 Maxmin expected utility

Schmeidler�s model is a generalization of Anscombe-Aumann�s in a way that allows us to cope with

uncertainty, or ambiguity. The capacity in the model can be interpreted as a lower bound on probabil-

ities. Speci�cally, let �(�) be the collection of all �nitely additive probability measures P : �! [0; 1]

and de�ne the core of � to be, as in cooperative game theory,

core (�) = fP 2 �(�) : P (E) � � (E) for all E 2 �g .
50Nakamura and Wakker�s papers use versions of the so-called tradeo¤ method (see Kobberling and Wakker, 2003,

for a detailed study of this method and its use in the establishment of axiomatic foundations for choice models).
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If core(�) 6= ;, we may think of �(E) as the lower bound on P (E), and then � is a concise way to

represent a set of probabilities, presumably those that are considered possible.51 This interpretation

was also suggested by Dempster (1967) and Shafer (1976) for the special case of capacities that are

belief functions.

Schmeidler (1986) has shown that if � is convex in the sense that

�(E) + �(E0) � �(E [ E0) + �(E \ E0); 8E;E0 2 �;

(Shapley, 1971), then Z
S

�d� = min
P2core(�)

Z
S

�dP (20)

for every �-measurable bounded function � : S ! R (see also Rosenmueller, 1971 and 1972). Thus,

when the capacity � happens to be convex (e.g., a belief function a la Dempster-Shafer), Choquet

integration has a simple and intuitive interpretation: a DM who evaluated an act f by the Choquet

integral of its utility pro�le u � f can be viewed as if she entertained a set of possible probabilities,

core(�), and evaluated each act by its minimal expected utility, over all probabilities in the set.

There is a simple behavioral condition that characterizes CEU preferences with convex �. To

introduce it, denote by B0 (�) the vector space of all simple functions � : S ! R and consider the

Choquet functional I : B0 (�) ! R given by I (�) =
R
�d�. This functional is easily seen to be

concave when (20) holds. Actually, according to a classic result of Choquet (1953), I is concave if

and only if its capacity � is convex.52 This concavity property suggests the following convexity axiom,

due to Schmeidler (1989), which models a negative attitude toward ambiguity.

S.6 UNCERTAINTY AVERSION: for any f; g 2 F and any 0 < � < 1, we have

f � g ) �f + (1� �)g % f .

Thus, uncertainty aversion states that mixing, through randomization, between equivalent acts

can only make the DM better o¤. For example, in Ellsberg�s example it is natural to expect that

DMs prefer to hedge against ambiguity by mixing acts IIB and IIW , that is,

�IIB + (1� �) IIW % IIB � IIW; 8� 2 [0; 1] .

This mixing can be thus viewed as a form of hedging against ambiguity that the DM can choose.53

51As Diaconis and Freedman (1986) observe in the Conclusion of their classic paper on Bayesian consistency, �Often,
a statistician has prior information on a problem (say as to the rough order of magnitude of a key parameter), but
does not have really a sharply de�ned prior probability distribution. Many di¤erent distributions would have the right
qualitative features and a Bayesian typically chooses one of the basis of mathematical convenience.�
52See Marinacci and Montrucchio (2004) p. 73. They show on p. 78 that (20) can be derived from this result of

Choquet through a suitable application of the Hahn-Banach Theorem.
53Klibano¤ (2001a, 2001b) studied in detail the relations between randomization and ambiguity aversion.
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Theorem 3 In Theorem 2, % satis�es axiom S.6 if and only if the capacity � in (19) is convex.

This result of Schmeidler (1989) shows that convex capacities characterize ambiguity averse Cho-

quet expected utility DMs (in the sense of axiom S.6). Since most DMs are arguably ambiguity

averse, this is an important result in Choquet expected utility theory. Moreover, relating this theory

to maximization of the worst-case expected utility over a set of probabilities has several advantages.

First, it obviates the need to understand the unfamiliar concept of Choquet integration. Second,

it provides a rather intuitive, if extreme, cognitive account of the decision process: as in classical

statistics, the DM entertains several probability measures as potential beliefs. Each such �belief�

induces an expected utility index for each act. Thus, each act has many expected utility values.

In the absence of second-order beliefs, the cautious DM chooses the worst-case expected utility as

summarizing the act�s desirability. Wakker (1990, 1991) established several important behavioral

properties and characterizations of concave/convex capacities in the CEU model.

Gilboa and Schmeidler (1989) This account of Choquet expected utility maximization also

relates to the maxmin criterion of Wald (1950; see also Milnor, 1954). However, there are many

natural sets of probabilities that are not the core of any capacity. Assume, for example, that there

are three states of the world, S = f1; 2; 3g. Assume that the DM is told that, if state 1 is not the case,

then the (conditional) probability of state 2 is at least 2=3. If this is all the information available to

her, she knows only that state 2 is at least twice as likely than state 3. Hence the set of probability

vectors P = (p1; p2; p3) that re�ects the DM�s knowledge consists of all vectors such that

p2 � 2p3

It is easy to verify that this set is not the core of a capacity. Similarly, one may consider a DM who

has a certain probability measure P in mind, but allows for the possibility of error in its speci�cation.

Such a DM may consider a set of probabilities

C = fQ 2 �(�) : kP �Qk < "g

for some norm k�k and " > 0, and this set is not the core of any capacity (such sets were used in

Nishimura and Ozaki, 2007).

It therefore makes sense to generalize Choquet expected utility with convex capacities to the

maxmin rule, where the minimum is taken over general sets of probabilities. Decision rules of this

type have been suggested �rst by Hurwicz (1951), under the name of Generalized Bayes-minimax

principle, and then by Smith (1961), Levi (1974, 1980), and Gärdenfors and Sahlin (1982).54

54Recently, related ideas appeared in mathematical �nance (see Artzner, Delbaen, Eber, and Heath, 1997, 1999).
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Gilboa and Schmeidler (1989) provided an axiomatic model of maxmin expected utility maximiza-

tion (�MMEU�, also referred to as �MEU�). This model is also formulated in the AA framework

and, like the Choquet expected utility model, is based on a suitable weakening of the Independence

Axiom AA.3. Schmeidler�s comonotonic independence axiom restricted AA.3 to the case that all acts

are pairwise comonotonic. This rules out obvious cases of hedging, but it may allow for more subtle

ways in which expected utility can be �smoothed out� across states of the world. A more modest

requirement restricts the independence condition to the case in which the act h is constant:

GS.3 C-INDEPENDENCE: for all acts f; g 2 F and all lottery acts p,

f % g ) �f + (1� �)p % �g + (1� �)p; 8� 2 [0; 1] .

C-Independence is essentially weaker than Comonotonic Independence S.3 because lottery (con-

stant) acts are comonotonic with all other acts.55 The axiom is arguably easier to accept because

the mixture with a lottery act can be viewed as a change of the unit of measurement. Indeed, this

axiom may be viewed as the preference version of the following property of real-valued functionals:

a functional I : B0 (�)! R is said to be translation invariant if

I (��+ k) = �I (�) + I (k) ; 8� 2 R;

given any � 2 B0 (�) and any constant function k.56

Gilboa and Schmeidler thus used a weaker version of the independence axiom, but they also

imposed the uncertainty aversion axiom S.6. Both axioms GS.3 and S.6 follow from the indepen-

dence axiom AA.3. Thus, the following representation result, due to Gilboa and Schmeidler (1989),

generalizes Theorem 1 by allowing for possibly nonsingleton sets of probabilities.

Theorem 4 Let % be a preference de�ned on F . The following conditions are equivalent:

(i) % satis�es axioms AA.1, AA.2, GS.3, AA.4, AA.5, and S.6;

(ii) there exists a non-constant function u : X ! R and a convex and compact set C � �(�) of

probability measures such that, for all f; g 2 F ,

f % g , min
P2C

Z
S

u (f (s)) dP (s) � min
P2C

Z
S

u (f (s)) dP (s) ; (21)

Moreover, C is unique and u is cardinally unique.

55Schmeidler required that all three acts be pairwise comonotonic, whereas C-Independence does not restrict attention
to comonotonic pairs (f; g). Thus, C-Independence is not, strictly speaking, weaker than Comonotonic Independence.
However, in the presence of Schmeidler�s other axioms, Comonotonic Independence is equivalent to the version in which
f and g are not required to be comonotonic.
56See Ghirardato, Klibano¤, and Marinacci (1998) for details.
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The set C is a singleton if and only if % satis�es the Independence Axiom AA.3. A slightly more

interesting result actually holds, which shows that maxmin expected utility DMs reduce to subjective

expected utility ones when their choices do not involve any hedging against ambiguity.57

Proposition 5 In Theorem 4, C is a singleton if and only if, for all f; g 2 F ,

f � g ) 1

2
f +

1

2
g � g.

When C is not a singleton, the model can express more complex states of knowledge, re�ected by

various sets C of probabilities. For applications in economic theory, the richness of the maxmin model

seems to be important. In particular, one may consider any model in economic theory and enrich

it by adding some uncertainty about several of its parameters. By contrast, in order to formulate

Choquet expected utility, one needs to explicitly consider the state space and the capacity de�ned on

it. Often, this exercise may be intractable.

By contrast, for some practical applications such as in medical decision making, the richness of

the maxmin model may prove a hindrance. Wakker (2010) presents the theory of decision making

under risk and under ambiguity geared for such applications. He focuses on capacities as a way to

capture ambiguity, rather than on sets of probabilities.58

The maxmin model allows for more degrees of freedom than the CEU model, but it does not

generalize it. In fact, the overlap of the two models is described in Theorem 3 and occurs when

the uncertainty averse axiom S.6 holds. But, whereas uncertainty aversion �through axiom S.6 �is

built into the decision rule of the maxmin model, Choquet expected utility can express attitudes of

uncertainty liking. This observation in part motivated the search by Ghirardato, Maccheroni, and

Marinacci (2004) of a class of preferences that may not satisfy S.6 and is able to encompass both

CEU and MMEU preferences. We review this contribution below.

Finally, Casadesus-Masanell, Klibano¤, and Ozdenoren (2000), Ghirardato, Maccheroni, Mari-

nacci, and Siniscalchi (2003), and Alon and Schmeidler (2010) established purely subjective versions

of Gilboa and Schmeidler�s representation result.59

Countably additive priors Theorem 4 considers the set �(�) of all �nitely additive probabilities.

In applications, however, it is often important to consider countably additive probabilities, which have

57See Ghirardato, Maccheroni, and Marinacci (2004) for details.
58Wakker (2010) also introduces the gain-loss asymmetry that is one of the hallmarks of Prospect Theory (Kahneman

and Tversky, 1979). The combination of gain-loss asymmtry with rank-dependent expected utility (Quiggin, 1982,
Yaari, 1987) resulted in Cumulative Prospect Theory (CPT, Tversky and Kahneman, 1992). When CPT is interpreted
as dealing with ambiguity, it is equivalent to Choquet expected utility with the additional re�nement of distinguishing
gains from losses.
59For a critical review of the maxmin and other non-Bayesian models, see Al-Najjar and Weinstein (2009) (see

Mukerji , 2009, and Siniscalchi, 2009b, for a discussion).
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very convenient analytical properties that many important results in probability theory crucially rely

upon.

The behavioral condition that underlies countably additive priors is Monotone Continuity, intro-

duced by Arrow (1970) to characterize countable additivity of the subjective probability P in Savage�s

model.

MC MONOTONE CONTINUITY: If f; g 2 F , x 2 X, fEngn�1 2 � with E1 � E2 � ::: andT
n�1En = ;, then f � g implies that there exists n0 � 1 such that xEn0f � g.

Marinacci (2002a) and Chateauneuf, Maccheroni, Marinacci, and Tallon (2005) showed that this

condition keeps characterizing countable additivity in the MMEU model. Next we state a version of

their results, a countably additive counterpart of Theorem 4. Here Q� P means that Q is absolutely

continuous with respect to P , i.e., P (E) = 0 implies Q (E) = 0 for all E 2 �.

Theorem 6 In Theorem 4, % satis�es Axiom MC if and only if all probabilities in C are countably

additive. In this case, there exists P 2 C such that Q� P for all Q 2 C.

Besides the countable additivity of priors, axiom MC also delivers the existence of a �control�

prior P 2 C relative to which all other priors Q 2 C are absolutely continuous.60

In decision theory the use of countably additive priors has been often debated, most forcefully by

de Finetti and Savage themselves, who argued that it is a purely technical property that, if anything,

actually impairs the analysis (e.g., over countable state spaces it is not possible to de�ne uniform

priors that are countably additive). However, Arrow�s characterization of countably additive priors

in Savage�s model through Monotone Continuity and its MMEU version in Theorem 6 show that

behaviorally this technically most useful property requires a relatively small extra baggage compared

to the basic axioms of the �nitely additive case.61

Equivalent priors A minimal consistency requirement among priors in C is that they agree on

what is possible or impossible. Formally, this is the case if any two priors P and P 0 in C are equivalent,

i.e., if they are mutually absolutely continuous (P (E) = 0 if and only if P 0 (E) = 0 for all E 2 �).

Epstein and Marinacci (2007) provide a behavioral condition that ensures this minimal consistency

among priors, which is especially important in dynamic problems that involve priors�updating.
60As Chateauneuf et al (2005) show, this control prior exists because, under Axiom MC, the set C is weakly compact,

a stronger compactness condtion than the weak�-compactness that C features in Theorem 4. Their results have been
generalized to variational preferences by Maccheroni et al (2006a).
61 In this regard, Arrow (1970) wrote that �the assumption of Monotone Continuity seems, I believe correctly, to be

the harmless simpli�cation almost inevitable in the formalization of any real-life problem.� See Kopylov (2010) for a
recent version of Savage�s model under Monotone Continuity.
In many applications, countable additivity of the measure(s) necessitates the restriction of the algebra of events to

be a proper subset of 2S . Ignoring many events as �non-measurable�may appear as sweeping the continuity problem
under the measurability rug. However, this approach may be more natural if one does not start with the state space
S as primitive, but derives it as the semantic model of a syntactic system, where propositions are primitive.
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Interestingly, this condition turns out to be a translation in a choice under uncertainty setup of

a classic axiom introduced by Kreps (1979) in his seminal work on menu choices. Given any two

consequences x and y, let

x _ y =
(

x if x % y

y otherwise

and given any two acts f and g, de�ne the act f _ g by (f _ g) (s) = f (s) _ g (s) for each s 2 S.

GK GENERALIZED KREPS: For all f; f 0; g 2 F , f � f _ f 0 ) f _ g � (f _ g) _ f 0.

In every state, the act f _ f 0 gives the better of the two outcomes associated with f and f 0. Thus

we say that f _ f 0 weakly improves f in �the direction�f 0. GK requires that if an improvement of f

in direction f 0 has no value, then the same must be true for an improvement in direction f 0 of any

act (here f _ g) that improves f . The next result of Epstein and Marinacci (2007) shows that for

maxmin preferences this seemingly innocuous axiom is equivalent to the mutual absolute continuity

of priors.

Theorem 7 In Theorem 4, % satis�es Axiom GK if and only if the probabilities in C are equivalent.

3.4 Unanimity preferences

Another way to deal with ambiguity is to relax the completeness of preferences. Indeed, because of

the poor information that underlies ambiguity, the DM may not be able to rank some pairs of acts.

If so, one of the most basic assumptions in decision theory, namely, that preferences are complete,

may be relaxed because of ambiguity.

This is the approach proposed by Truman Bewley. Incomplete preferences were already studied

by Aumann (1962), interpreted as a DM�s inability to decide between some pairs of alternatives.

Building on Aumann�s work, Bewley presented in 1986 a model of incomplete preferences in the

context of uncertainty, which appeared as Bewley (2002). In his model the Weak Order Axiom AA.1

is replaced by two weaker assumptions.

B.1a PARTIAL ORDER: % on F is re�exive and transitive.

Hence, % is no longer required to be complete. The DM, however, knows her tastes: the only

reason for incompleteness is ignorance about probabilities. For this reason, Bewley assumes the next

weak form of completeness, which only applies to lottery acts.

B.1b C-COMPLETENESS: for every lottery acts p; q 2 �(X), p % q or q % p.
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In other words, B.1 requires the risk preference %� to be complete. Using these two axioms,

Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) established the following general form of

Bewley�s representation theorem.62

Theorem 8 Let % be a preference de�ned on F . The following conditions are equivalent:

(i) % satis�es axioms B.1, and AA.2-AA.5;

(ii) there exists a non-constant function u : X ! R and a convex and compact set C � �(�) of

probability measures such that, for all f; g 2 F ,

f % g ,
Z
S

u (f (s)) dP (s) �
Z
S

u (f (s)) dP (s) ; 8P 2 C: (22)

Moreover, C is unique and u is cardinally unique.

In this representation a set of probability measures C arises, interpreted as the probabilistic models

that are compatible with the DM�s information. Two acts f and g are comparable only when their

expected utilities with respect to the probabilities in C unanimously rank one act over the other. If

this is not the case �that is, if the probabilities in C do not agree in ranking of the two acts�the

DM is unable to rank the two acts.

When preferences are incomplete, the model does not always specify what the DM will do. In

particular, acts are not evaluated by a numerical index V that represents preferences and that makes

it possible to formulate the optimization problems that most economic applications feature. To

complete the model, one needs to add some assumptions about choices in case preferences do not

have a maximum. One possibility is to assume that there exists a status quo, namely, an alternative

that remains the default choice unless it is dethroned by another alternative that is unanimously

better. This might be a rather reasonable descriptive model, especially of organizations, but it is

considered by many to be less than rational. Recently, Ortoleva (2010) reconsidered Bewley�s inertia

insight from a di¤erent angle by showing, within a full-�edged axiomatic model, how status quo biases

may lead to incomplete preferences.

Another approach suggests to complete preferences based on the same set of probabilities C.

Gilboa et al. (2010) o¤er a model involving two preference relations, and show that certain axioms,

stated on each relation separately as well as relating the two, are equivalent to a joint representation

of the two relations by the same set of probabilities C: one by the unanimity rule, and the other

�by the maxmin rule. Their results provide a bridge between the two classic representations (21)

and (22), as well as a possible account by which maxmin behavior might emerge from incomplete

preferences.
62A caveat: the unanimity rule (22) is slightly di¤erent from Bewley�s, who represents strict preference by unanimity

of strict inequalities. This is generally not equivalent to representation of weak preference by unanimity of weak
inequalities.
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3.4.1 Unanimity, scenarios, and uncertainty aversion

Ghirardato, Maccheroni, and Marinacci (GMM, 2004) used some insights from Bewley�s unanimity

representation to remove the Uncertainty Aversion axiom S.6 in the derivation of Gilboa and Schmei-

dler (1989) and, in this way, to propose a class of preferences that encompasses both Choquet and

maxmin preferences. To this end, they consider the following de�nition.

De�nition 9 A preference % on F is said to be invariant biseparable if it satis�es axioms AA.1,

AA.2, GS.3, AA.4, and AA.5.

Invariant biseparable (IB) preferences thus satisfy all AA axioms, except for the independence

axiom AA.3, which is replaced by the C-Independence axiom GS.3 of Gilboa and Schmeidler (1989).63

Thanks to this key weakening, invariant biseparable preferences include as special cases both CEU

and MMEU preferences: the former constitute the special case when the Comonotonic Independence

axiom S.3 holds, while the latter �when the Uncertainty Aversion axiom S.6 holds.

The main tool that GMM use to study IB preferences is an auxiliary relation %� on F . Speci�cally,
given any two acts f; g 2 F , act f is said to be unambiguously (weakly) preferred to g, written f %� g,
if

�f + (1� �)h % �g + (1� �)h

for all � 2 [0; 1] and all h 2 F . In words, f %� g holds when the DM does not �nd any possibility of

hedging against or speculating on the ambiguity that she may perceive in comparing f and g. GMM

argue that this DM�s choice pattern reveals that ambiguity does not a¤ect her preference between f

and g, and this motivates the �unambiguously preferred�terminology.

The unambiguous preference relation is, in general, incomplete. This incompleteness is due to

ambiguity

Lemma 10 The following statements hold:

(i) If f %� g, then f % g.

(ii) %� satis�es axioms B.1, AA.2, and AA.3

(iii) %� is the maximal restriction of % satisfying the independence axiom AA.3.64

By (i) and (ii), the unambiguous preference %� is a restriction of the primitive preference relation
% that satis�es re�exivity, transitivity, monotonicity, and independence. By (iii), it is the maximal

such restriction that satis�es independence.65

63The name biseparable originates in Ghirardato and Marinacci (2001, 2002), which we will discuss later.
64That is, if %0�% and %0 satis�es independence, then %0�%�.
65This latter feature of %� relates this notion to an earlier one by Nehring (2001), as GMM discuss.
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The next result proves, along the lines of the Bewley-type representation (22), that the unam-

biguous preference can be represented by a set of priors.

Proposition 11 Let % be an IB preference on F . Then, there exists a function u : X ! R and a

convex and compact set C � �(�) of probability measures such that, for all f; g 2 F ,

f %� g ,
Z
S

u (f (s)) dP (s) �
Z
S

u (g (s)) dP (s) ; 8P 2 C: (23)

In words, f is unambiguously weakly preferred to g if and only if every probability P 2 C assigns

a weakly higher expected utility to f . It is natural to interpret each prior P 2 C as a �possible

scenario�that the DM envisions, so that unambiguous preference corresponds to preference in every

scenario. GMM thus argue that C represents the (subjective) perception of ambiguity of the DM,

and that the DM perceives ambiguity in a decision problem if C is not a singleton.

The relation %� thus makes it possible to elicit a set of priors C for a general IB preference %.
When % is a MMEU preference, C is the set of priors of the maxmin representation (21). When %
is a CEU preference that satis�es axiom S.6, C is the core of the representing capacity �.66

More generally, GMM prove a representation theorem for IB preferences based on the set C,

which generalizes Theorems 2 and 4. To this end, given any act f consider its expected utility pro�le�R
S
u (f) dP (s) : P 2 C

	
under C. Write f � g if two acts f and g feature isotonic pro�les, that is,Z

S

u (f (s)) dP 0 (s) �
Z
S

u (f (s)) dP 00 (s),
Z
S

u (g (s)) dP 0 (s) �
Z
S

u (g (s)) dP 00 (s) ; 8P 0; P 00 2 C:

Intuitively, in this case the DM perceives a similar ambiguity in both acts. For example, p � q for all

lottery acts, which are unambiguous.

It is easy to see that � is an equivalence relation. Denote by [f ] the relative equivalence class

determined by an act f , and by Fp� the quotient space of F that consists of these equivalence classes.

Theorem 12 Let % be an IB preference on F . Then, there exists a function u : X ! R, a convex

and compact set C � �(�) of probability measures, and a function a : Fp� ! [0; 1] such that % is

represented by the preference functional V : F ! R given by

V (f) = a ([f ]) min
P2C

Z
S

u (f (s)) dP (s) + (1� a ([f ]))max
P2C

Z
S

u (f (s)) dP (s) ; (24)

where u and C represent %� in the sense of (23).
Moreover, C is unique, u is cardinally unique, and a is unique on Fp� (with the exclusion of the

equivalence class [p] of lottery acts).

In this representation, due to GMM, the revealed perception of ambiguity, embodied by the

set C, is separated from the DM�s reaction to it, modelled by the function a. Both C and a are
66GMM also show the form that C takes for some CEU preferences that do not satisfy S.6.
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derived endogenously within the model. When a is constant equal to 1, we get back to the maxmin

representation. Otherwise, we have a more general choice criterion that may well exhibit ambiguity

loving (the polar case is, clearly, when a is a constant equal to 0).

Giraud (2005) and Amarante (2009) studied invariant biseparable preferences, with novel impor-

tant insights. Amarante established an alternative characterization of IB preferences through the two

stage form

V (f) =

Z
�

�Z
S

u (f (s)) dP (s)

�
d� (P )

where � is a capacity over the set of measures � = �(�) on S. In a statistical decision theory

vein, the capacity � quanti�es DM�s beliefs over the possible models P . Giraud thoroughly studies

a similar representation, motivated by the desire to incorporate probabilistic information in a choice

under ambiguity framework.

Finally, Siniscalchi (2006) investigates an interesting class of invariant biseparable preferences that

satisfy a local no-hedging condition that gives preferences a piecewise structure that makes them SEU

on each component (see Castagnoli, Maccheroni, and Marinacci, 2003, for a related representation).

a-MEU Preferences In the special case when the function a is constant the representation (24)

reduces to

V (f) = amin
P2C

Z
S

u (f (s)) dP (s) + (1� a)max
P2C

Z
S

u (f (s)) dP (s) . (25)

This is the a-MEU criterion that Ja¤ray (1988) suggested to combine Hurwicz (1951)�s criterion (see

also Arrow and Hurwicz, 1972) with a maxmin approach. Intuitively, a 2 [0; 1] measures the degree

of the individual�s pessimism, where a = 1 yields the maxmin expected utility model, and a = 0 �

its dual, the maxmax expected utility model. However, this apparently natural idea turned out to

be surprisingly tricky to formally pin down. GMM provided a speci�c axiom that reduces the IB

representation to (25), where C represent %� in the sense of (23). Because of this latter clause, when
a 2 (0; 1) it is not possible to take any pair u and C as a given and assume that the DMs�preferences

are represented by the corresponding a-MEU criterion (25). In a nutshell, the issue is the uniqueness

properties of C in (25), which are problematic when a 2 (0; 1). We refer the reader to GMM and

to Eichberger, Grant, and Kelsey (2008) and to Eichberger, Grant, Kelsey, and Koshevoy (2011) for

more on this issue. (The latter paper shows that for �nite state spaces the a-MEU axiomatized as a

very special case of (24) by GMM only allows for � = 0 or � = 1).

3.5 Smooth preferences

The MMEU model discussed above is often viewed as rather extreme: if, indeed, a set of proba-

bility measures C is stipulated, and each act f is mapped to a range of expected utility values,
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�R
S
u(f (s))dP (s) jP 2 C

	
, why should such an f be evaluated by the minimal value in this inter-

val? This worst-case scenario approach seems almost paranoid: why should the DM assume that

nature67 will choose a probability as if to spite the DM? Isn�t it more plausible to allow for other

ways that summarize the interval by a single number?

The extreme nature of the maxmin model is not evident from the axiomatic derivation of the

model. Indeed, this model is derived from Anscombe-Aumann�s by relaxing their independence

axiom in two ways: �rst, by restricting it to mixing with a constant act (h above) and, second, by

assuming uncertainty aversion. These weaker axioms do not seem to re�ect the apparently-paranoid

attitude of the maxmin principle. A question then arises, how do these axioms give rise to such

extreme uncertainty attitude?

In this context it is important to recall that the axiomatic derivation mentioned above is in

the revealed preferences tradition, characterizing behavior that could be represented in a certain

mathematical formula. An individual who satis�es the axioms can be thought of as if she entertained

a set C of priors and maximized the minimal expected utility with respect to this set. Yet, this set

of priors need not necessarily re�ect the individual�s knowledge. Rather, information and personal

taste jointly determine the set C. Smaller sets may re�ect both better information and a less averse

uncertainty attitude. For example, an individual who bets on a �ip of a coin and follows the expected

utility axioms with respect to a probability p = 0:5 of �Head�may actually know that the probability

p is 0:5, or she may have no clue about p but chooses the model p = 0:5 because she is insensitive to her

ignorance about the true data generating process. Thus, information and attitude to uncertainty are

inextricably intertwined in the set C. More generally, it is possible that the individual has objective

information that the probability is in a set D, but behaves according to the maxmin expected utility

rule with respect to a set C � D, re�ecting her uncertainty attitude. This intuition has motivated the

model of Gajdos, Hayashi, Tallon, and Vergnaud (2008) that axiomatically established the inclusion

C � D (some related ideas can be found in Wang, 2003a, and Giraud, 2005).

If, however, the set of priors C is interpreted cognitively a la Wald, that is, as the set of prob-

abilities that are consistent with objectively available information, one may consider alternatives to

the maxmin rule that, under this Waldean interpretation, has an extreme nature. One approach

to address this issue is to assume that the DM has a prior probability over the possible probability

distributions in C. Thus, if �(�) is the space of all ��rst order�probability distributions (viewed as

data generating processes), and � is a �second order�prior probability over them, one can use � to

have an averaging of sorts over all expected utility values of an act f .

Clearly, the expectation of expectations is an expectation. Thus, if one uses � to compute the

67Relations between ambiguity and games against nature are discussed in Hart, Modica, and Schmeidler (1994),
Maccheroni, Marinacci, and Rustichini (2006a, 2006b), and Ozdenoren and Peck (2008).

44



expectation of the expected utility, there will exist a probability P̂ on S, given by

P̂ =

Z
�(�)

Pd� (P )

such that for every act f (and every utility function u)Z
�(�)

�Z
S

u(f (s))dP (s)

�
d� (P ) =

Z
S

u(f (s))dP̂ (s) .

In this case, the new model cannot explain any new phenomena, as it reduces to the standard

Bayesian model. However, if the DM uses a non-linear function to evaluate expected utility values,

one may explain non-neutral attitudes to uncertainty. Speci�cally, assume that

' : R! R

is an increasing function, and an act f is evaluated by

V (f) =

Z
�(�)

'

�Z
S

u(f (s))dP (s)

�
d� (P ) :

In this representation, � is read as representing information (about the probability model P ), whereas

' re�ects attitude towards ambiguity, with a concave ' corresponding to ambiguity aversion, similarly

to the way that concave utility represents risk aversion in the classical model of expected utility under

risk. In this way we have a separation between ambiguity perception, an information feature modelled

by � and its support, and ambiguity attitude, a taste trait modelled by ' and its shape.

This decision rule has been axiomatized by Klibano¤, Marinacci, and Mukerji (2005). It has

become to be known as the smooth model of ambiguity because, under mild assumptions, V is a

smooth functional, whereas the Choquet expected utility and the maxmin expected utility functionals

are typically not everywhere di¤erentiable (over the space of acts).

The notion of second order probabilities is rather old and deserves a separate survey.68 This idea

is at the heart of Bayesian statistics, where Bayes�s rule is retained and a probability over probabilities

over a state space is equivalent to a probability over the same space. Within decision theory, Segal

(1987) already suggested that Ellsberg�s paradox can be explained by second-order probabilities,

provided that we allow the decision maker to violate the principle of reduction of compound lotteries.

Speci�cally, Segal�s model assumed that the second-order probabilities are used to aggregate �rst-

order expectations via Quiggin�s (1982) anticipated utility. Other related models have been proposed

by Neilson (1993), Nau (2001, 2006, 2011), Chew and Sagi (2008), Ergin and Gul (2009), and Seo

(2009). Halevy and Feltkamp (2005) proposed another approach according to which the decision

maker does not err in the computation of probabilities, but uses a mis-speci�ed model, treating a

one-shot choice as if it were repeated.
68Bayes (1763) himself writes in his Proposition 10 that �the chance that the probability of the event lies somewhere

between ... �(at the beginning of his essay, in De�nition 6 Bayes says that �By chance I mean the same as probability�).
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As compared to Choquet expected utility maximization, the smooth model, like the maxmin

model, has the advantage of having a simple and intelligible cognitive interpretation. As opposed

to both Choquet and maxmin expected utility models, the smooth model has the disadvantage of

imposing non-trivial epistemological demands on the DM: it requires the speci�cation of a prior over

probability models, that is, of a probability � over a much larger space, �(�), something that may

be informationally and observationally demanding.

That said, beyond the above mentioned separation, the smooth model enjoys an additional advan-

tage of tractability. Especially if one speci�es a simple functional form for ', one gets a simple model

in which uncertainty/ambiguity attitudes can be analyzed in a way that parallels the treatment of

risk attitudes in the classical literature. Speci�cally, assume that

'(x) = � 1
�
e��x

for � > 0. In this case, the DM can be said to have a constant ambiguity aversion �; when �! 0, the

DM�s preferences converge to Bayesian preferences with prior P̂ , whereas when � !1, preferences

converge to MMEU preferences relative to the support of �. (See Klibano¤, Marinacci, and Mukerji,

2005, for details.) Thus, the smooth ambiguity aversion model can be viewed as an extension of the

maxmin model, in its Waldean interpretation.

3.6 Variational preferences

Maccheroni, Marinacci, and Rustichini (MMR, 2006a) suggested and axiomatized an extension of

the maxmin model in order to better understand the theoretical foundations of the works of Hansen

and Sargent on model uncertainty in macroeconomics (see the surveys Hansen, 2007, and Hansen

and Sargent, 2008). These works consider agents who take into account the possibility that their

(probabilistic) model Q may not be the correct one, but only an approximation. For this reason, they

rank acts f according to the following choice criterion

V (f) = min
P2�(�)

�Z
S

u (f (s)) dP (s) + �R (PkQ)
�
; (26)

where � > 0, and R (�kQ) : � (�)! [0;1] is the relative entropy with respect to Q.

Preferences % on F represented by criterion (26) are called multiplier preferences by Hansen and

Sargent. The relative entropy R (PkQ) measures the relative likelihood of the alternative models P

with respect to the reference model Q. The positive parameter � re�ects the weight that agents are

giving to the possibility that Q might not be the correct model (as � becomes larger, agents focus

more on Q as the correct model, giving less importance to the alternatives P ).

Model uncertainty, which motivated the study of multiplier preferences, is clearly akin to the

problem of ambiguity, underlying maxmin preferences. Yet, neither class of preferences is nested in
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the other. A priori, it was not clear what are the commonalities between these models and how they

can be theoretically justi�ed. To address this issue, MMR introduced and axiomatized a novel class

of preferences that includes both multiplier and maxmin preferences as special cases.

Speci�cally, observe that the maxmin criterion (21) can be written as

V (f) = min
P2�(�)

�Z
S

u (f (s)) dP (s) + �C (P )

�
; (27)

where �C : �! [0;1] is the indicator function of C given by

�C (P ) =

�
0 if P 2 C;
1 otherwise.

Like the relative entropy, the indicator function is a convex function de�ned on the simplex �(�).

This suggests the following general representation

V (f) = min
P2�(�)

�Z
u (f (s)) dP (s) + c (P )

�
; (28)

where c : � (�)! [0;1] is a convex function on the simplex. MMR call variational the preferences

% on F represented by (28). Multiplier and maxmin preferences are the special cases of variational

preferences where c is, respectively, the relative entropy �R (�kQ) and the indicator function �C .

MMR establish a behavioral foundation for the representation (28), which in turn o¤ers a common

behavioral foundation for multiplier and maxmin preferences. Their axiomatization is based on a

relaxation of the C-Independence GS.3 of Gilboa and Schmeidler. To understand it, consider the

following equivalent form of GS.3.

Lemma 13 A binary relation % on F satis�es axiom GS.3 if and only if, for all f; g 2 F , p; q 2

�(X), and �; � 2 (0; 1], we have:

�f + (1� �)p % �g + (1� �)p) �f + (1� �)q % �g + (1� �)q:

Lemma 13 (MMR p. 1454) shows that axiom GS.3 actually involves two types of independence:

independence relative to mixing with constants and independence relative to the weights used in such

mixing. The next axiom, due to MMR, retains the �rst form of independence, but not the second

one.

MMR.3 WEAK C-INDEPENDENCE: If f; g 2 F , p; q 2 �(X), and � 2 (0; 1),

�f + (1� �)p % �g + (1� �)p) �f + (1� �)q % �g + (1� �)q:

Axiom MMR.3 is therefore the weakening of axiom GS.3 in which the mixing coe¢ cients � and

� are required to be equal. In other words, axiom MMR.3 is a very weak independence axiom that
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requires independence only with respect to mixing with lottery acts, provided the mixing weights are

kept constant.

This is a signi�cant weakening of axiom GS.3. One might wonder, why would the DM follow

MMR.3 but not GS.3 in its full strength. To see this, consider the re-statement of axiom GS.3 in

Lemma 13 in the case that the weights � and � are very di¤erent, say � is close to 1 and � is close to

0. Intuitively, acts �f + (1� �)p and �g + (1� �)p can then involve far more uncertainty than acts

�f+(1��)q and �g+(1��)q, which are almost constant acts. As a result, we expect that, at least in

some situations, the ranking between the genuinely uncertain acts �f+(1��)p and �g+(1��)p can

well di¤er from that between the almost constant acts �f + (1� �)q and �g+ (1� �)q. By contrast,

Axiom MMR.3 is not susceptible to this critique: since only the same coe¢ cient � is used in both

sides of the implication, the axiom does not involve acts that di¤er in their overall uncertainty, as it

were.

The representation result of MMR is especially sharp when the utility function u is unbounded

(above or below), that is, when its image u (X) = fu (x) : x 2 Xg is an unbounded set. In an AA

setup this follows from the following assumption (see Kopylov, 2001).

AA.7 UNBOUDEDNESS: There exist x � y in X such that for all � 2 (0; 1) there exists z 2 X

satisfying either y � �z + (1� �)x or �z + (1� �) y � x.

We can now state the representation result of MMR, which generalizes Theorem 4 by allowing for

general functions c : � (�)! [0;1]. Here xf denotes the certainty equivalent of act f ; i.e., f � xf .

Theorem 14 Let % be a binary relation on F . The following conditions are equivalent:

(i) % satis�es conditions AA.1, AA.2, MMR.3, AA.4, AA.5, S.6, and AA.7;

(ii) there exists an a¢ ne function u : X ! R, with u (X) unbounded, and a grounded,69 convex,

and lower semicontinuous function c : � (�)! [0;1] such that, for all f; g 2 F

f % g , min
P2�(�)

�Z
S

u (f (s)) dP (s) + c (P )

�
� min

P2�(�)

�Z
u (g (s)) dP (s) + c (P )

�
: (29)

For each u there is a unique c : � (�)! [0;1] satisfying (29), given by

c (P ) = sup
f2F

�
u (xf )�

Z
S

u (f (s)) dP (s)

�
: (30)

MMR show how the function c can be viewed as an index of ambiguity aversion, as we will discuss

later in Section 4. Alternatively, they observe that the function c can be interpreted as the cost of

an adversarial opponent of selecting the prior P . In any case, formula (30) allows to determine the

69The function c : � (�)! [0;1] is grounded if its in�mum value is zero.

48



index c from behavioral (e.g., experimental) data in that it only requires to elicit u and the certainty

equivalents xf .

Behaviorally, maxmin preferences are the special class of variational preferences that satisfy the C-

Independence axiom GS.3. For multiplier preferences, however, MMR did not provide the behavioral

assumption that characterize them among variational preferences. This question left open by MMR

was answered by Strzalecki (2011), who found the sought-after behavioral conditions. They turned out

to be closely related to some of Savage�s axioms. Strzalecki�s �ndings thus completed the integration

of multiplier preferences within the framework of choice under ambiguity.

The weakening of C-Independence in MMR.3 has a natural variation in which independence is

restricted to a particular lottery act, but not to a particular weight �. Speci�cally, one may require

that, for the worst possible outcome x� (if such exists),

�f + (1� �)x� % �g + (1� �)x� , �f + (1� �)x� % �g + (1� �)x�

for every two acts f; g 2 F and every �; � 2 (0; 1],

This condition has been used by Chateauneuf and Faro (2009), alongside other conditions, to

derive the following representation: there exists a so-called con�dence function ' on �(�), and a

con�dence threshold �, such that acts are evaluated according to

V (f) = min
fP2�(�)j'(P )��g

�
1

'(P )

Z
S

u(f (s))dP (s)

�
This decision rule suggests that the DM has a degree of con�dence '(P ) in each possible prior P .

The expected utility associated with a prior P is multiplied by the inverse of the con�dence in P ,

so that a low con�dence level is less likely to determine the minimum con�dence-weighted expected

utility of f .

The intersection of the classes of variational preferences with con�dence preferences is the maxmin

model, satisfying C-Independence in its full force.70 See also Ghirardato, Maccheroni, and Marinacci

(2005) for other characterizations of C-Independence.

3.6.1 Beyond independence: uncertainty averse preferences

All the choice models that we reviewed so far feature some violation of the independence axiom AA.3,

which is the main behavioral assumption questioned in the literature on choice under ambiguity in a

AA setup. In order to better understand this class of models, Cerreia-Vioglio, Maccheroni, Marinacci,

and Montrucchio (2011) recently established a common representation that uni�es and classi�es them.

70This is so because one axiom relates preferences between mixtures with di¤erent coe¢ cients �; � and the other �
between mixtures with di¤erent constant acts x�; p.
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Since a notion of minimal independence among uncertain acts is, at best, elusive both at a theoretical

and empirical level, this common representation does not use any independence condition on uncertain

acts, however weak it may appear.

Cerreia-Vioglio et al. (2011) thus studied uncertainty averse preferences, that is, complete and

transitive preferences that are monotone and convex, without any independence requirement on

uncertain acts. This general class of preferences includes as special cases variational preferences,

con�dence preferences, as well as smooth preferences with a concave '.

Though no independence assumption is made on uncertain acts, to calibrate risk preferences

Cerreia-Vioglio et al. (2011) assumed standard independence on lottery acts.

CMMM.3 RISK INDEPENDENCE: If p; q; r 2 �(X) and � 2 (0; 1), p � q ) �p + (1� �) r � �q +

(1� �) r.

Along with the other axioms, CMMM.3 implies that the risk preference %� satis�es the von

Neumann-Morgenstern axioms. In the representation result of Cerreia-Vioglio et al. (2011) functions

of the form G : R��(�) ! (�1;1] play a key role. Denote by G (R��(�)) the class of these

functions such that:

(i) G is quasiconvex on R��(�),

(ii) G (�; P ) is increasing for all P 2 �(�),

(iii) infP2�(�)G (t; P ) = t for all t 2 T .

We can now state a version of their main representation theorem.

Theorem 15 Let % be a binary relation on F . The following conditions are equivalent:

(i) % satis�es axioms AA.1, AA.2, CMMM.3, AA.4, AA.5, S.6, AA.7;

(ii) there exists a non-constant a¢ ne u : X ! R, with u (X) = R, and a lower semicontinuous

G : R��(�)! (�1;1] that belongs to G (R��(�)) such that, for all f and g in F ,

f % g , min
P2�(�)

G

�Z
u (f) dP; P

�
� min

P2�(�)
G

�Z
u (g) dP; P

�
: (31)

The function u is cardinally unique and, given u, the function G in (31) is given by

G (t; P ) = sup
f2F

�
u (xf ) :

Z
u (f) dP � t

�
8 (t; P ) 2 R��(�) : (32)
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In this representation DMs can be viewed as if they considered, through the termG
�R
u (f) dP; P

�
,

all possible probabilities P and the associated expected utilities
R
u (f) dP of act f . They then behave

as if they summarized all these evaluations by taking their minimum. The quasiconvexity of G and

the cautious attitude re�ected by the minimum in (31) derive from the convexity of preferences. Their

monotonicity, instead, is re�ected by the monotonicity of G in its �rst argument.

The representation (31) features both probabilities and expected utilities, even though no in-

dependence assumption whatsoever is made on uncertain acts. In other words, this representation

establishes a general connection between the language of preferences and the language of probabilities

and utilities, in keeping with the tradition of the representation theorems in choice under uncertainty.

Cerreia-Vioglio et al. (2011) show that G can be interpreted as index of uncertainty aversion,

in the sense of Section 4 below. Moreover, (32) shows that this index can be elicited from choice

behavior.

Variational preferences correspond to additively separable functions G, i.e., these preferences are

characterized by

G (t; P ) = t+ c (P )

where c : � (�) ! [0;1] is a convex function. In this case (31) reduces to the variational represen-

tation (29)

Smooth preferences with concave � correspond to the uncertainty aversion index given by

G (t; P ) = t+ min
�2�(P )

It (� k �) (33)

where It (� k �) is a suitable statistical distance function that generalizes the classic relative entropy,

and � (P ) is the set of all second-order probabilities � that are absolutely continuous with respect to

� and that have P as their reduced, �rst-order, probability measure on S.

3.7 Other classes of preferences

The scope of this paper does not allow us to do justice to the variety of decision models that have

been suggested in the literature to deal with uncertainty in a non-probabilistic way, let alone the

otherwise growing literature in decision theory.71 Here we only mention a few additional approaches

to the problem of ambiguity.

As mentioned above, Segal (1987, 1990) suggested a risk-based approach to uncertainty, founded

on the idea that people do not reduce compound lotteries. Recently, Halevy (2007) provided some

experimental evidence on the link between lack of reduction of compound lotteries and ambiguity, and

Seo (2009) carried out an in depth theoretical analysis of this issue. Since failure to reduce compound

71Other sub-�elds include choices from menus, decision under risk, minmax regret approaches, and others. On the
�rst of these, see Lipman and Pesendorfer (2011).
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lotteries is often regarded as a mistake, this source of ambiguity has a stronger positive �avor than

the absence of information, which is our main focus.

Stinchcombe (2003), Olszewski (2007), and Ahn (2008) model ambiguity through sets of lotteries,

capturing exogenous or objective ambiguity. (See also Ja¤ray, 1988, who suggested related ideas).

Preferences are de�ned over these sets, with singleton and nonsingleton ones modelling risky and

ambiguous alternatives, respectively. For example, these sets can be ranked either according to

the criterion V (A) =
�R
A
� � ud�

�
=� (A) where � and � model ambiguity attitudes (Ahn, 2008)

or the criterion V (A) = �minl2A U (l) + (1� �)maxl2A U (l) where � models ambiguity attitudes

(Olszewski, 2007). Viero (2009) combines this approach with the Anscombe-Aumann model.

Chateauneuf, Eichberger, and Grant (2007) axiomatize neo-additive Choquet expected utility, a

tractable CEU criterion of the �Hurwicz� form V (f) = �
R
u (f (s)) dP (s) + �maxs u (f (s)) +

(1� �� �)mins u (f (s)). Through the values of the weights � and �, the preference functional

V captures in a simple way di¤erent degrees of optimism and pessimism, whose extreme forms are

given by the min and max of u (f (s)).

Gajdos, Hayashi, Tallon, and Vergnaud (2008) axiomatize, as discussed before, a model with

objective information. Preferences are de�ned over pairs (f; C) of acts and sets of probabilities

(that represent objective information). Such pairs are ranked through the functional V (f; C) =

minP2'(C)
R
u (f (s)) dP (s), where ' (C) � C is the subset of C that we denoted in the earlier

discussion as D. When ' (C) = C, we get back to the MMEU model.

Gul and Pesendorfer (2008) suggested subjective expected uncertain utility theory, according to

which acts can be reduced to bilotteries, each specifying probabilities for ranges of outcome val-

ues, where these probabilities need not be allocated to sub-ranges. Arlo-Costa and Helzner (2010a)

propose to deal with the comparative ignorance hypothesis of Tversky and Fox (1995), and present

experimental �ndings that challenge the explanation provided by the latter. (See also Arlo-Costa and

Helzner, 2010b).

Siniscalchi (2009a) axiomatizes vector expected utility, in which Savage�s acts are assessed according

to V (f) =
R
u (f (s)) dP (s) + A

��R
�i � u (f (s)) dP (s)

�
i=1;:::;n

�
where the �rst term on the right

hand side is a baseline expected-utility evaluation and the second term is an adjustment that re�ects

DMs�perception of ambiguity and their attitudes toward it. In particular, �i are random variables

with zero mean that model di¤erent sources of ambiguity (see Siniscalchi, 2009a, p. 803).

Given the variety of the models of decision making that allow for non-neutral approaches to

ambiguity, one is led to ask, how should we select a model to work with? There are at least three

possible approaches to this problem. First, one may follow the classical empirical tradition and

compare the di¤erent models by a �horse-race�. The model that best explains observed phenomena
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should be used for prediction, with the usual trade-o¤s between the model�s goodness of �t and its

simplicity and generality. The degree to which models �t the data should be measured both for

their assumptions and for their conclusions. (Indeed, the assumptions are also, in a trivial sense,

conclusions.) Thus, this approach calls both for experimental tests of particular axioms and of entire

models, as well as for empirical tests of theories based on these models. Importantly, when engaging

in such an endeavor, one should be prepared to �nd that a model may be the most appropriate

for analyzing certain phenomena but not for others. Thus, for example, it is possible that smooth

preferences are the best model for the behavior of organizations, whereas variational preferences are

a better description for the behavior of individuals. Or that labor search models are best explained

by the maxmin model, while �nancial investments call for the Hurwicz-Ja¤ray model, and so forth.

For qualitative analysis, one may adopt a second approach, which does not commit to a particular

model of decision under uncertainty, but uses representatives of these models in order to gain robust

insights. Adopting this approach, a researcher may start with a benchmark Bayesian model, and add

the uncertainty ingredient using any of the models mentioned above, as a sensitivity analysis of the

Bayesian model. In this approach, theoretical convenience may be an important guideline. However,

it will be advisable to trust only the qualitative conclusions that emerge from more than one model.

That is, sensitivity analysis itself should not be too sensitive.

Finally, in light of the variety of models and the theoretical di¢ culties in selecting a single one,

one may choose a third approach, which attempts to obtain general conclusions within a formal

model, without committing to a particular theory of decision making. This approach has been

suggested in the context of risk by Machina (1982). In this celebrated paper, facing a variety of

decision models under risk, Machina attempted to show that much of economic analysis of choice

under risk can be carried through without specifying a particular model. More concretely, Machina

stipulated a functional on lotteries (with given probabilities) that was smooth enough to allow local

approximations by linear functions. The gradient of the functional was considered to be a local utility

function. Machina has shown that some results in economic theory could be derived by allowing the

local utility function to vary, as long as it satis�ed the relevant assumptions. Machina�s approach

was therefore not about decision theory per se. It was about the degree to which decision theory

mattered: it showed that, for some applications, economists need not worry about how people really

make decisions, since a wide range of models were compatible with particular qualitative conclusions.

A similar approach has been suggested for decisions under uncertainty. An early example of this

approach is the notion of biseparable preferences, suggested by Ghirardato and Marinacci (2001), and

mentioned above. Biseparable preferences are any monotone and continuous preferences over general

acts that, when restricted to acts f with only two outcomes, say, x and y, can be described by the
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maximization of

J(f) = u(x)�(A) + (u(x)� u(y))(1� �(A))

where � is a capacity and

f(s) =

�
x s 2 A
y s =2 A

with x � y. Biseparable preferences include both CEU and MMEU. Ghirardato and Marinacci (2001)

provide a de�nition of uncertainty aversion that does not depend on the speci�c model of decision

making and applies to all biseparable preferences.

More recently, Machina (2005) suggested a general approach to preferences under uncertainty

which, similarly to Machina (1982), assumes mostly smoothness and monotonicity of preferences, but

remains silent regarding the actual structure of preferences, thereby o¤ering a highly �exible model.

4 Ambiguity aversion

Schmeidler�s axiom S.6 provided a �rst important characterization of ambiguity aversion, modelled

through a preference for hedging/randomization. Epstein (1999) and Ghirardato and Marinacci

(2002) studied this issue from a di¤erent perspective, inspired by Yaari (1969)�s analysis of compar-

ative risk attitudes.

Here we present the approach of Ghirardato and Marinacci because of its sharper model implica-

tions. This approach relies on two key ingredients:

(i) A comparative notion of ambiguity aversion that, given any two preferences %1 and %2 on F ,
says when %1 is more ambiguity averse than %2.

(ii) A benchmark for neutrality to ambiguity; that is, a class of preferences % on F that are viewed
as neutral to ambiguity.

The choice of these ingredients in turn determines the absolute notion of ambiguity aversion,

because a preference % on F is classi�ed as ambiguity averse provided it is more ambiguity averse

than an ambiguity neutral one.

The comparative notion (i) is based on comparisons of acts with lottery acts that deliver a lottery

p at all states. We consider them here because they are the most obvious example of unambiguous

acts, that is, acts whose outcomes are not a¤ected by the unknown probabilities.

Consider DM1 and DM2 , whose preferences on F are %1 and %2, respectively. Suppose that

f %1 p;
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that is, DM1 prefers the possibly ambiguous act f to the unambiguous lottery act p. If DM1 is more

ambiguity averse than DM2 it is natural to expect that DM2 will also exhibit such preferences:

f %2 p.

For, if DM1 is bold enough to have f %1 p, then DM2 �who dislikes ambiguity no more than DM1

�must be at least equally bold.

We take this as the behavioral characterization of the comparative notion of ambiguity aversion.

De�nition 16 Given two preferences %1 and %2 on F , %1 is more ambiguity averse than %2 if, for
all f 2 F and p 2 �(X),

f %1 p) f %2 p. (34)

As benchmark for neutrality to ambiguity we consider subjective expected utility (SEU) prefer-

ences on F . These preferences intuitively embody ambiguity neutrality. They might not be the only

preference embodying ambiguity neutrality, but they seem to be the most obvious ones.72

Methodologically, like the choice of lottery acts as the unambiguous acts in the comparison (34),

also the neutrality benchmark is chosen by making the weakest prejudgment on which preferences

qualify for this role. Sharp model implications will follow, nevertheless, as we will see momentarily.

Having thus prepared the ground, we can de�ne ambiguity aversion

De�nition 17 A preference relation % on F is ambiguity averse if it is more ambiguity averse than

some SEU preference on F .

The next result, due to Ghirardato and Marinacci (2002), applies these notions to the maxmin

expected utility (MEU) model. Here u1 � u2 means that there exist � > 0 and � 2 R such that

u1 = �u2 + �.

Theorem 18 Given any two MMEU preferences %1 and %2 on F , the following conditions are
equivalent:

(i) %1 is more ambiguity averse than %2,

(ii) u1 � u2 and C2 � C1 (provided u1 = u2).

Given that u1 � u2, the assumption u1 = u2 is just a common normalization of the two utility

indices. Therefore, Theorem 18 says that more ambiguity averse MMEU preferences are characterized,

72Epstein (1999) takes the standard for ambiguity neutrality to be preferences that are probabilistically sophisticated
in the sense of Machina and Schmeidler (1992). In his approach Theorem 18 below does not hold.

55



up to a normalization, by larger sets of priors C. Therefore, the set C can be interpreted as an index

of ambiguity aversion.

This result thus provides a behavioral foundation for the comparative statics exercises in ambiguity

through the size of the sets of priors C that play a key role in the economic applications of the MMEU

model. In fact, a central question in these applications is how changes in ambiguity attitudes a¤ect

the relevant economic variables.

An immediate consequence of Theorem 18 is that, not surprisingly, MMEU preferences are always

ambiguity averse. That is, they automatically embody a negative attitude toward ambiguity, an

attitude inherited from axiom S.6.

The condition u1 � u2 ensures that risk attitudes are factored out in comparing the MMEU

preferences %1 and %2. This is a dividend of the risk calibration provided by the AA setup via the
risk preference %� discussed in Section 3.1. In a Savage setup, where this risk calibration is no longer
available, De�nition 16 has to be enriched in order to properly factor out risk attitudes, so that they

do not interfere with the comparison of ambiguity attitudes (see Ghirardato and Marinacci, 2002, for

details on this delicate conceptual issue).

Maccheroni, Marinacci, and Rustichini (2006a) generalize Theorem 18 to variational preferences

by showing that the condition C2 � C1 takes in this case the more general form c1 � c2. The

function c can thus be viewed as an index of ambiguity aversion that generalizes the sets of priors

C. Variational preferences are always ambiguity averse, a fact that comes as no surprise since they

satisfy axiom S.6.

For CEU preferences, Ghirardato and Marinacci (2002) show that more ambiguity averse CEU

preferences are characterized, up to a common normalization of utility indexes, by smaller capacities

�. More interestingly, they show that CEU preferences are ambiguity averse when the cores of the

associated capacities are nonempty. Since convex capacities have nonempty cores, CEU preferences

that satisfy axiom S.6 are thus ambiguity averse. The converse, however, is not true since there

are capacities with nonempty cores that are not convex. Hence, there exist ambiguity averse CEU

preferences that do not satisfy S.6, which is thus a su¢ cient but not necessary condition for the

ambiguity aversion of CEU preferences. Ghirardato and Marinacci (2002) discuss at length this

feature of CEU preferences, and we refer the interested reader to that paper for details (see also

Chateauneuf and Tallon, 2002, who present a notion of weak ambiguity aversion for CEU preferences,

as well as Montesano and Giovannoni, 1996, who investigate how CEU preferences may re�ect aversion

to increasing ambiguity).
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Unambiguous events Unambiguous events should be events over which decision makers do not

perceive any ambiguity. Intuitively, in terms of functional forms an event E is unambiguous for a

preference % if:

(i) � (E) + � (Ec) = 1 when % is CEU;

(ii) P (E) = P 0 (E) for all P; P 0 2 C when % is MMEU and, more generally, for all P; P 0 2 dom c

when % is variational;73

(iii) P (E) = k �-a.e. for some k 2 [0; 1] when % is smooth.

A few behavioral underpinnings of these notions of unambiguous event have been proposed by

Nehring (1999), Epstein and Zhang (2001), Ghirardato and Marinacci (2002), Zhang (2002), Ghi-

rardato, Maccheroni, and Marinacci (2004), Klibano¤, Marinacci, and Mukerji (2005), and Amarante

and Feliz (2007) (who also provide a discussion of some of the earlier notions which we refer the

interested to).

5 Updating beliefs

How should one update one�s beliefs when new information is obtained? In the case of probabilistic

beliefs there is an almost complete unanimity that Bayes�s rule is the only sensible way to update

beliefs. Does it have an equivalent rule for the alternative models discussed above? The answer

naturally depends on the particular non-Bayesian model one adopts. At the risk of over-generalizing

from a small sample, we suggest that Bayes�s rule can typically be extended to non-Bayesian beliefs

in more than one way. Since the focus of this survey is on static preferences, we mention only a few

examples, which by no means exhaust the richness of dynamic models.

For instance, if one�s beliefs are given by a capacity �, and one learns that an event B has obtained,

one may assign to an event A the weight corresponding to the straightforward adaptations of Bayes�s

formula:

� (AjB) = � (A \B)
�(B)

However, another formula has been suggested by Dempster (1967, see also Shafer, 1976) as a special

case of his notion of merging of belief functions:

� (AjB) = � ((A \B) [Bc)� � (Bc)
1� � (Bc)

Clearly, this formula also boils down to standard Bayesian updating in case � is additive. Yet,

the two formulae are typically not equivalent if the capacity � fails to be additive. Each of these

73dom c is the e¤ective domain of the function c; i.e., dom c = fP 2 �(S) : c (p) < +1g.
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formulae extends some, but not all, of the interpretations of Bayesian updating from the additive to

the non-additive case.

If beliefs are given by a set of priors C, and and event B is known to have occurred, a natural

candidate for the set of priors on B is simply the same set C, where each probability is updated

according to Bayes rule. This results in full Bayesian updating (FBU), de�ning the set of priors (on

B)

CB = fP (�jB) jP 2 C g

FBU allows standard learning given each possible prior, but does not re�ect any learning about the set

of priors that should indeed be taken into consideration. It captures Bayesian learning (conditional

on a prior) but not the statistical inference typical of classical statistics, namely, the selection of

subsets of distributions from an a priori given set of distributions. If we were to think of each prior P

in C as an expert, who expresses her probabilistic beliefs, FBU can be interpreted as if each expert

were learning from the evidence B, while the DM does not use the evidence to decide which experts�

advice to heed.74

Following this line of reasoning, and in accordance with statistical principles, one may wish to

select probabilities from the set C based on the given event B. One, admittedly extreme way of doing

so is to adopt the maximum likelihood principle. This suggests that only the priors that a priori used

to assign the highest probability to the event B should be retained among the relevant ones. Thus,

maximum likelihood updating (MLU) is given by

CMB =

�
P (�jB)

����P 2 argmaxQ2C
Q(B)

�
If one�s beliefs are given by a convex capacity, or, equivalently, by a set C which is the core of a

convex capacity, MLU is equivalent to Dempster-Shafer�s updating. This rule has been axiomatized by

Gilboa and Schmeidler (1993), whereas FBU, suggested by Jean-Yves Ja¤ray, has been axiomatized

by Pires (2002).

FBU and MLU are both extreme. Using the experts metaphor, FBU retains all experts, and gives

as much weight to those who were right as to those who were practically proven wrong in their past

assessments. By contrast, MLU completely ignores any expert who was not among the maximizers

of the likelihood function. It therefore makes sense to consider intermediate methods, though, to the

best of our knowledge, none has been axiomatized to date.

The tension between FBU and MLU disappears if the set of priors C is rectangular (Epstein and

Schneider, 2003) in the sense that it can be decomposed into a set of current-period beliefs, coupled

with next-period conditional beliefs, in such a way that any combination of the former and the latter

is in C. Intuitively, rectangularity can be viewed as independence of sorts: it suggests that whatever
74See Seidenfeld and Wasserman (1993) who study counter-intuitive updating phenomena in this context.
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happens in the present period does not teach us which prior (or expert) is to be trusted more in the

next period. Formally, the set of conditional probabilities on the given event B using all priors and

the set obtained using only the maximum likelihood ones coincide. Related arguments, in particular

how rectangular sets of priors would lead to consistent dynamic MMEU behavior, were made by Sarin

and Wakker (1998) (see in particular their Theorem 2.1). See also Epstein and Schneider (2007), who

consider updating in a more explicit model, distinguishing between the set of parameters and the

likelihood functions they induce.

Epstein and Schneider (2003) consider preferences over consumption processes, and axiomatize a

decision rule that extends MMEU to the dynamic set-up recursively. Their axioms also guarantee

that the set of priors C is rectangular. The recursive structure means that the maxmin expected

utility at a given period for the entire future can also be written as maxmin expected utility over

the present period and the discounted continuation (MMEU) value starting in the following period.

Wang (2003b) proposed a related recursive approach.

This recursive approach extends beyond the MMEU model. It has similarly been applied to

extend smooth preferences (see Klibano¤, Marinacci, and Mukerji, 2009, and Hayashi and Miao,

2011) and variational preferences to dynamic set-ups (see Maccheroni, Marinacci, and Rustichini,

2006b). Equipped with a variety of models of behavior with ambiguous beliefs, which are adapted

to deal with dynamic problems recursively, the stage is set to analyze economic problems in not-

necessarily Bayesian ways.

Another approach to updating was proposed by Hanany and Klibano¤ (2007, 2009). They retain

dynamic consistency by allowing the update rule to depend not only on original beliefs and new

information, but also on the choice problem. In the case of the MMEU model, their approach

consists of selecting a subset of priors, and updating them according to Bayes rule, while the relevant

subset of priors generally depends on the act chosen before the arrival of new information.

A di¤erent route was pursued by Siniscalchi (2011), who investigated choices over decision trees

rather than over temporal acts. This modi�cation allows him to consider sophisticated choices,

characterized through a natural notion of consistent planning, under ambiguity.

An important problem relating to updating is the long-run behavior of beliefs. Suppose that a

non-Bayesian decision maker faces a process that is, in a well-de�ned sense, repeated under the same

conditions. Will she learn the true process? Will the set of probabilities converge in the limit to

the true one? A partial answer was given in the context of capacities, where laws of large numbers

have been proved by Marinacci (1999, 2002b) and Maccheroni and Marinacci (2005). The behavior

of the set of probabilities in the context of the maxmin model was analyzed in Epstein and Schneider

(2007).
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6 Applications

There are many economic models that lead to di¤erent qualitative conclusions when analyzed in

a Bayesian way as compared to the alternative, non-Bayesian theories. The past two decades have

witnessed a variety of studies that re-visited classical results and showed that they need to be quali�ed

when one takes ambiguity into account. The scope of this paper allows us to mention but a fraction

of them. The following is a very sketchy description of a few studies, designed only to give a general

idea of the scope of theoretical results that need to be re-examined in light of the limitations of the

Bayesian approach.75

Dow and Werlang (1992) analyzed a simple asset pricing model. They showed that, if an economic

agent is ambiguity averse as in the CEU or MMEU model, then there will be a range of prices at

which she will wish neither to buy nor to sell a �nancial asset. This range will be of non-zero length

even if one ignores transaction costs. To see the basic logic of this result, consider two states of the

world, where the probability of the �rst state, P , is only known to lie in the interval [0:4; 0:6]. (This

will also be the core of a convex capacity.) Assume that a �nancial asset X yields 1 in the �rst state

and �1 in the second. The MMEU model values both X and �X at �0:2. In a Bayesian model, P

would be known, and the agent would switch, at a certain price �, from demanding X to o¤ering it.

This is no longer the case when P is not known. In this case, assuming ambiguity aversion, there

will be an interval of prices � at which neither X nor �X will seem attractive to the agent. This

may explain why people refrain from trading in certain markets. It can also explain why at times

of greater volatility one may �nd lower volumes of trade: with a larger set of probabilities that are

considered possible, there will be more DMs who prefer neither to buy nor to sell.76 The question

of trade among uncertainty averse agents has been also studied in Billot, Chateauneuf, Gilboa and

Tallon (2000), Kajii and Ui (2006, 2009), and Rigotti, Shannon, and Strzalecki (2008).

Epstein and Miao (2003) use uncertainty aversion to explain the home bias phenomenon in in-

ternational �nance, namely, the observation that people prefer to trade stocks of their own country

rather than foreign ones. The intuition is that agents know the �rms and the stock market in their

own country better than in foreign ones. Thus, there is more ambiguity about foreign equities than

about domestic ones. A Bayesian analysis makes it more di¢ cult to explain this phenomenon: when

a Bayesian DM does not know the distribution of the value of a foreign equity, she should have

beliefs over it, reducing uncertainty to risk. Thus, a Bayesian would behave in qualitatively similar

ways when confronting known and unknown distributions. By contrast, the notion that agents are

ambiguity averse may more readily explain why they prefer to trade when the value distribution is

75Mukerji and Tallon (2004) survey early works in this area.
76This argument assumes that the decision maker starts with a risk-free portfolio. A trader who already holds an

uncertain position may be satis�ed with it with a small set of probabilities, but wish to trade in order to reduce
uncertainty if the set of probabilities is larger.
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closer to being known than when there is a great deal of ambiguity about it.

There are many other applications of ambiguity aversion to models of asset pricing. For example,

Epstein and Schneider (2008) show that models involving ambiguity can better capture market reac-

tion to the quality of information than can Bayesian models (see also Epstein and Schneider, 2010),

while Gollier (2011) shows that ambiguity aversion may not reinforce risk aversion and investigates

how this may a¤ect asset prices. Other recent asset pricing applications include Garlappi, Uppal and

Wang (2007), Caskey (2009), Miao (2009), Ju and Miao (2012), Miao and Wang (2011) (see also

Guidolin and Rinaldi, 2011).

The MMEU model has also been employed in a job search model by Nishimura and Ozaki (2004).

They ask how an unemployed agent will react to increasing uncertainty in the labor market. In a

Bayesian model, greater uncertainty might be captured by higher variance of the job o¤ers that the

agent receives. Other things being equal, an increase in variance should make the agent less willing

to accept a given o¤er, knowing that he has a chance to get better ones later on. This conclusion is

a result of the assumption that all uncertainty is quanti�able by a probability measure. Nishimura

and Ozaki (2004) show that for an ambiguity averse agent, using the MMEU model, the conclusion

might be reversed: in the presence of greater uncertainty, modeled as a larger set of possible priors,

the agent will be more willing to take a given job o¤er rather than bet on waiting for better ones in

the future.

Hansen, Sargent, and Tallarini (1999) and Hansen, Sargent, and Wang (2002) compare savings

behavior under expected utility maximization with savings behavior of a robust DM who behaves

in accordance with the multiple prior model. They show that the behavior of a robust DM puts

the market price of risk much closer to empirical estimates than does the behavior of the classical

expected utility maximizer, and, in particular, can help account for the equity premium. Hansen

and Sargent (2001, 2008) apply multiplier preferences to macroeconomic questions starting from the

viewpoint that, whatever the probability model a policy maker might have, it cannot be known with

certainty. They ask how robust economic policy would be to variations in the underlying probability,

and �nd conclusions that di¤er qualitatively from classical results. See also Miao (2004), who studies

the consumption-savings decision in a di¤erent set-up.

Other (published) applications of ambiguity averse preferences include Epstein and Wang (1994,

1995), who explain �nancial crashes and booms, Mukerji (1998), who explains incompleteness of con-

tracts, Chateauneuf, Dana, and Tallon (2000), who study optimal risk-sharing rules with ambiguity

averse agents, Greenberg (2000), who �nds that in a strategic set-up a player may �nd it bene�cial

to generate ambiguity about her strategy choice, Mukerji and Tallon (2001), who show how incom-

pleteness of �nancial markets my arise because of ambiguity aversion, Rigotti and Shannon (2005),

who characterize equilibria and optima and study how they depend on the degree of ambiguity, Bose,
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Ozdenoren and Pape (2006), who study auctions under ambiguity, Nishimura and Ozaki (2007), who

show that an increase in ambiguity changes the value of an investment opportunity di¤erently than

does an increase in risk, Easley and O�Hara (2009, 2010), who study how ambiguity a¤ects mar-

ket participation, and Treich (2010), who studies when the value of a statistical life increases under

ambiguity aversion.

As mentioned above, this list is but a sample of applications and has no claim even to be a

representative sample.

7 Conclusion

Uncertainty is present in practically every �eld of economic enquiry. Problems in growth and �nance,

labor and development, political economy and industrial organization lead to questions of uncertainty

and require its modeling.

For the most part, economic theory has strived to have a unifying approach to decision making in

general, and to decision under uncertainty in particular. It is always desirable to have simple, unifying

principles, especially if, as is the case with expected utility theory, these principles are elegant and

tractable.

At the same time, expected utility theory appears to be too simple for some applications. Despite

its considerable generality, there are phenomena that are hard to accommodate with the classical

theory. Worse still, using the classical theory alone may lead to wrong qualitative conclusions, and

may make it hard to perceive certain patterns of economic behavior that may be readily perceived

given the right language.

At this point it is not clear whether a single paradigm of decision making under uncertainty will

ever be able to replace the Bayesian one. It is possible that di¤erent models will prove useful to

varying degrees in di¤erent types of problems. But even if a single paradigm will eventually emerge,

it is probably too soon to tell which one it will be.

For the time being, it appears that economic theory may bene�t from having more than a single

theory of decision under uncertainty in its toolbox. The Bayesian model is surely a great candidate to

remain the benchmark. Moreover, often it is quite obvious that the insights learned from the Bayesian

analysis su¢ ce. For example, Akerlof�s (1970) lemons model need not be generalized to incorporate

ambiguity. Its insight is simple and clear, and it will survive in any reasonable model. But there are

other models in which the Bayesian analysis might be misleadingly simple. In some cases, adding a

touch of ambiguity to the model, often in whatever model of ambiguity one fancies, su¢ ces to change

the qualitative conclusions. Hence it seems advisable to have models of ambiguous beliefs in our

toolbox, and to test each result, obtained under the Bayesian assumptions, for robustness relative to
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the presence of ambiguity.
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