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Abstract

Many separable dynamic incentive problems have primal recursive formulations

in which utility promises serve as state variables. We associate families of dual recur-

sive problems with these by selectively dualizing constraints. We make transparent

the connections between recursive primal and dual approaches, relate value iteration

under each and give conditions for it to be convergent to the true value function.

1 Introduction

Dynamic incentive models have received widespread application in finance and macroe-

conomics. They have been used to provide micro-foundations for market incompleteness,

firm capital structure and bankruptcy law. In macroeconomics, first Ramsey and later

more general Mirrlees models have informed thinking on tax policy and social insurance.

In each of these varied cases, the associated dynamic incentive problem recovers equilib-

rium payoffs and outcomes from a game played by a population of privately informed

or uncommitted agents and, often, a committed mechanism designer or principal. Equi-

librium restrictions from the game provide the problem’s constraints and given additive

separability of payoffs over histories, tractable recursive primal and dual formulations
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are available. In contrast to many other problems in economics, however, this recursiv-

ity is often implicit and these formulations must be recovered from the payoff/constraint

structure via the addition of constraints that define state variables or through the manipu-

lation of a Lagrangian. Recursive formulations of dynamic incentive problems have been

developed in different contexts by Kydland and Prescott (1980), Abreu et al (1990), Green

(1987), Spear and Srivastava (1987), Fernandes and Phelan (2000), Judd et al (2003) and

Marcet and Marimon (1999). Each of these papers uses or develops a particular method

and several consider a particular application. Our goal is to provide a unified treatment

of recursive primal and dual approaches for dynamic incentive problems. We use basic

results from the theory of dynamic programming and duality, especially conjugate func-

tion duality, to do so. We emphasize practical issues associated with the application of

these methods and identify when particular methods are valid. We relate value iteration

under each method and give conditions for it to be convergent to the true value function.

Our starting point is the well known primal recursive formulation in which incentive

constraints are re-expressed in terms of utility promises and these promises are used to

perturb future constraints via auxiliary "promise-keeping" conditions. The latter ensure

consistency of constraints and choices across periods.1 We show that the promise-keeping

formulation is applicable to many problems in which payoffs are separable over histories.

The approach can be used to recover the optimal payoff of a principal seeking to motivate

a population of uncommitted or privately informed agents or to recover the entire set of

equilibrium payoffs available to such a population. In the latter case, we use indicator

functions to represent equilibrium payoff sets, permitting a recasting of the set-theoretic

treatment of equilibrium payoffs in Abreu et al (1990) in terms of value functions.2 A

difficulty with the primal approach is that the associated value functions are very often

non-finite at some points in their domain, i.e. are extended real-valued. For example,

the indicator function representation assigns infinite values to points outside of a payoff

set. From the point of view of practical computation extended real-valued functions are

awkward as they introduce arbitrarily large discontinuities or arbitrarily large steepness

at the boundaries of their effective domains, the regions upon which they are finite. This

has led some economists to first approximate the effective domain (or "endogenous state

1In some settings, for all feasible choices of a principal, agent choice problems are concave, smooth
and independent of other agents. Optimal agent choices are then completely characterized by first order
conditions and agent shadow values can be used as state variables instead of promises. This can drastically
reduce the number of incentive constraints and the dimensionality of the state space. Such first order
approaches are commonly used to solve Ramsey models recursively and have been used in some dynamic
private information settings. We do not pursue first order approaches in this paper.

2The indicator function of X ⊆ RN is given by δX : RN → {0, ∞} with δX(x) = 0 if x ∈ X and δX(x) = ∞

otherwise.
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space") and then, in a second step, calculate the relevant value function.3 However, the

former approximation may not be straightforward, the domain may be complicated and

the value function may be discontinuous with respect to misspecification of the domain.

Primal problems can be re-expressed using Lagrangians that incorporate some or all

constraints. In these re-expressed problems, a sup-inf operation over choices and La-

grange multipliers replaces a sup operation. The sequencing of sup and inf is important.

By interchanging them, a dual problem is obtained. Constraints absorbed into the dual

problem’s Lagrangian are said to be dualized. We show how by selectively dualizing

constraints from the recursive primal problem various recursive dual problems may be

recovered. In one the current promise-keeping constraint is dualized to give a formu-

lation close to Judd et al (2003). In another the current incentive and promise-keeping

constraints are dualized. This second dual problem is related to problems considered by

Marcet and Marimon (2011). We elaborate the relationship in Section 2 below.

The different formulations described above introduce duality gaps, differences be-

tween optimal primal and dual values. We discuss conditions for these to be zero and

show that they are weaker for the Judd et al (2003) formulation. In many cases, recursive

dual problems are formulated on state spaces of payoff weights. In these cases, updated

weights that perturb the objective encode rewards and penalties for adherence to and

violation of past incentive constraints.While the introduction of duality gaps (and the

additional assumptions required for their absence) is a disadvantage of recursive dual

approaches, the formulation of the problem on state spaces of weights can be useful.

Specifcally, it can avoid the non-finite value functions that emerge under the primal ap-

proach. Consider again the indicator function representation of an equilibrium payoff set.

If this set is closed and convex (and its indicator function lower semicontinuous and con-

vex), then it is represented on the space of weights by its support function.4 The indicator

function can be interpreted as a promise domain value function, the support function as

a weight domain one. Importantly, when the equilibrium set is bounded, the indicator

function is sometimes infinite-valued, while the support function is everywhere finite.

Primal promise and dual weight domain value functions are tightly connected. Geo-

metrically, the latter gives the family of affine functions minorized by the former. Analyt-

ically, modulo a sign change, the weight domain value function is the Legendre-Fenchel

transform or conjugate of the promise domain function.5 Conversely, if (the negative of)

the promise domain value function is convex and lower semicontinuous, then it is the

3For example, see Abraham and Pavoni (2008).
4If X ⊆ RN , then σX : RN → R with σX(z) = supX〈z, x〉 is the support function.
5If f : RN → R, then its Legendre-Fenchel transform or conjugate is f ∗(y) = supx∈RN{〈x, y〉 − f (x)}.
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conjugate of its weight domain counterpart. The recursive primal and recursive dual

formulations give rise to Bellman operators. We show that these are also related to one

another by conjugacy operations. Theorems may be more easily proven in one setting,

calculations more easily done in another. Our results makes precise the relations between

recursive formulations and the extent to which we can interchange and move between

them.

Our main interest in Bellman operators is as devices for recovering value functions. It

is standard in economics to consider problems in which the value function belongs to a

space of functions that is sup or, more generally, weight-norm bounded and in which the

Bellman operator is contractive on this space. In the context of dynamic incentive prob-

lems, it is often not possible or obvious to determine spaces of candidate value functions

on which the Bellman operator is contractive. In particular this is the case if the value

function is extended real-valued. However, we give conditions for the epiconvergence of

Bellman operator iterates to the value function in primal promise domain problems. Since

the Legendre-Fenchel operator and conjugation is continuous with respect to epiconver-

gence, our earlier results relating Bellman operators via conjugation ensure that, absent

duality gaps, certain dual Bellman iterations also converge to the true value function on a

weight domain. We briefly also discuss when dual Bellman operators are contractive on

suitable function spaces.

The paper proceeds as follows. Section 2 provides further discussion of the literature

and two motivating examples. Section 3 lays out a two period environment and gives eco-

nomic examples. The essential constraint structure common to many incentive problems

is isolated here. Sections 4 and 5 develop the key recursive approaches in a straightfor-

ward way in this two period setting. Section 6 describes a framework that accommodates

many infinite-horizon problems and that incorporates the necessary constraint and objec-

tive structure. Sections 7 to 9 extend and apply the recursive formulations and duality re-

lations from earlier sections to these problems. The additional consideration in the infinite

horizon setting concerns the derivation of convergent value iteration procedures. This is

taken up in Section 10 where sufficient conditions for epiconvergent promise and weight

domain primal value iteration are obtained. Some first results on the contractivity of dual

Bellman operators and uniformly convergent value iteration are also provided. Section 11

briefly discusses practical issues relating to the approximation of value functions. Proofs

are given in Appendix A, while Appendix B gives background duality results.
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2 Literature

In this section, we review the literature and relate our contribution to others. Green (1987)

and Spear and Srivastava (1987) provide early applications of the primal promise ap-

proach to dynamic incentive problems. Abreu et al (1990) developed a related formula-

tion in the context of repeated games played by privately informed players. Further ap-

plications are provided by, inter alia, Fernandes and Phelan (2000), Kocherlakota (1996)

and Rustichini (1998). Judd et al (2003) implement a theoretical algorithm proposed by

Abreu et al (1990) for finding all of the subgame perfect equilibrium payoffs of an in-

finitely repeated game. Their implementation dualizes the promise-keeping conditions.

In an important and influential contribution, Marcet and Marimon (1999) (revised:

Marcet and Marimon (2011)) develop recursive saddle point methods for a class of dy-

namic contracting problems. Our approach is quite distinct from theirs. To understand

the distinction, let f : A → R, g : A → R and consider the following simple primal

problem:

P = sup
(a1,a2)∈A2

f (a1) + f (a2) s.t. g(a1) + g(a2) ≥ 0. (1)

Rewriting (1) in terms of a Lagrangian,

P = sup
(a1,a2)∈A2

inf
λ≥0

f (a1) + f (a2) + λ[g(a1) + g(a2)], (2)

and interchanging the sup and inf operations, the following dual problem is obtained:

D = inf
λ≥0

sup
(a1,a2)∈A2

f (a1) + f (a2) + λ[g(a1) + g(a2)]. (3)

In (3), we say that the constraint g(a1) + g(a2) ≥ 0 is dualized. (3) can be decomposed as:

D = inf
λ≥0

sup
a1∈A

f (a1) + λg(a1) + sup
a2∈A

{ f (a2) + λg(a2)} . (4)

Thus, defining P(λ) = supa2∈A { f (a2) + λg(a2)} and assuming conditions for a zero du-

ality gap, P = D, we obtain the recursive problem:

P = inf
λ≥0

sup
a1∈A

f (a1) + λg(a1) + P(λ). (5)

This combination of decomposition and duality is the essence of our approach. In the

remainder of the paper, we present refinements and extensions of it. With respect to
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refinements, the constraint g(a1)+ g(a2) ≥ 0 may be broken down into: {(a1, a2) : g(a1)+

w ≥ 0, g(a2) = w} and each piece dualized separately. Dualization of only the g(a2) =

w component is done by Judd et al (2003) and, in itself, delivers a key computational

advantage. The central extension is to infinite horizon problems with many constraints.

There one has many choices about what to dualize. We proceed by dualizing (subsets

of) current constraints rather than all constraints. This avoids technical complications by

keeping the dual space which houses Lagrange multipliers finite dimensional.

Now Marcet and Marimon (2011) pursue a different approach. They consider the

saddle point problem:

maxmin
(a1,a2;λ)∈A2×R+

f (a1) + f (a2) + λ[g(a1) + g(a2)], (6)

where maxmin is the saddle value operation, i.e. maxmin
(x,y)∈X×Y

h(x, y) = h(x∗, y∗) with x∗ ∈

arg maxX h(x, y∗) and y∗ ∈ arg minY h(x∗, y). They relate this to:

maxmin
(a1;λ)∈A×R+

f (a1) + λg(a1) + max
a2∈A

{ f (a2) + λg(a2)} . (7)

Note that in (6), the minimization over λ is done holding both a1 and a2 constant, whereas

in (7) only a1 is held constant. Decomposition of our inf
λ

sup
a

operation is more direct and

straightforward than decomposition of the maxmin
(a,λ)

operation. It is also possible under

weaker assumptions. On the other hand, in some situations the recursive saddle approach

can give more refined results, see the discussion of policies below.

There are several other differences between Marcet and Marimon (2011) and the cur-

rent paper. First, there are differences between the sets of incentive problems considered

in each paper. Marcet and Marimon explicitly incorporate physical state variables such

as capital, we do not. On the other hand, they exclude problems with private information

and focus on ones with a committed principal or government. We extend both of these

elements. Second, Marcet and Marimon (2011) construct Lagrangians that include in-

centive constraints (and, implicitly, the law of motion for promises), but exclude the law

of motion for physical state variables. As a result, their recursive formulation features

a mixture of primal and dual constraints and primal and dual state variables. We keep

all laws of motion in either primal or dual form. Thus, we use either primal (promise) or

dual (multiplier) state variables, but never a mixture.6 Third, we spell out the connections

6A further difference between us and Marcet and Marimon’s original contribution, Marcet and Marimon
(1999), is that in this they incorporate incentive constraints from all periods into the Lagrangian and seek
a recursive formulation of the resulting problem. This necessitates an explicit treatment of the infinite
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between the recursive primal problem and a family of recursive dual problems. Finally,

we relax the boundedness conditions necessary for convergent value iteration.

Messner et al (2011) develop recursive primal and dual methods in abstract two and

multi-period settings. They consider general separable constraint structures that can ac-

commodate resource or incentive constraints or combinations of both. They associate

constraints with periods and derive a recursive primal formulation in which state vari-

ables have physical interpretations (e.g. as capital) or accounting interpretations (e.g. as

promises) depending upon the setting. They dualize all constraints across all periods and

then seek a recursive formulation. We reverse this, first finding a primal recursive formu-

lation and then dualizing current constraints to obtain new recursive problems. Messner

et al (2011) show that primal and recursive dual values are equal if there is a saddle point

in the original non-recursive problem, rather than a saddle point after every history. They

also consider alternative forms of constraint separability. In contrast to the current paper,

they do not focus on infinite horizon problems.

The focus of this paper is on values rather than policies. We invoke assumptions

that ensure a zero duality gap between primal and dual problems. Sleet and Yeltekin

(2010a) show that if the assumptions are strengthened to ensure strong duality (i.e. a

zero duality gap and the existence of a minimizing multiplier), then any solution to the

original primal problem attains the suprema in the corresponding recursive dual prob-

lem. For example, if (a∗1 , a∗2) solves (1), P = D and λ∗ attains the minimum in (5), then

P = f (a∗1) + λ∗g(a∗1) + P(λ∗) and P(λ∗) = f (a∗2) + λ∗g(a∗2). However, as pointed out by

Messner and Pavoni (2004), the converse does not hold: strong duality does not guaran-

tee that recursive dual maximizers solve the primal problem. Thus, even if P = D, λ∗ is

minimizing, and for each i, ai ∈ arg maxA f (a) + λ∗g(a), (a1, a2) may not solve (1). The

recursive saddle approach of Marcet and Marimon (2011) can refine the set of maximizing

policies obtained by the recursive dual approach. However, it may still admit maximizers

that do not solve the primal problem, see Messner et al (2011). A sufficient condition for

either approach to yield a primal solution, if one exists, is uniqueness of the maximizers

in the recursive dual, see, for example, Sleet and Yeltekin (2010a) or Messner et al (2011).

In recent work Marimon et al (2011) and Cole and Kubler (2010) extend recursive dual/

saddle point methods to permit recovery of optimal solutions in settings when recursive

dual maximizers are not unique.

dimensional dual space. Our sequential dualization procedure avoids this.
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3 A two period framework

In the next few sections, we pursue our main ideas in an abstract, but simple two period

setting. This allows us to highlight their generality and to avoid cluttering the exposi-

tion with the more detailed notation needed for infinite horizon applications. The two

period problem we consider incorporates a constraint structure common to many dy-

namic incentive problems. We illustrate this with examples. We then derive recursive

decompositions of this problem by selectively dualizing intertemporal constraints. These

decompositions define Bellman operators that have direct application to infinite horizon

settings. Indeed our two period formulation may be interpreted as a decomposition of an

infinite horizon problem into its first and subsequent periods.

3.1 A two period primal problem

Assume an event tree Z(0) with a first period node 0 and a set of second period successor

nodes K = {1, · · · , K}. The nodes in K are identified with the aftermath of distinct

shocks also indexed by K. A choice ak ∈ Ak is made at each node. Let a = {ak}
K
k=0 denote

a profile of choices and A = ∏
K
k=0 Ak the set of such profiles. The component sets Ak are

not further specified. In applications additional mathematical (and economic) structure

is placed upon them, but for the general formulation of the problem in this section such

structure is not needed.7 Economic applications and interpretations are provided below.

Let f : A → R denote an objective function. f is assumed to be additively separable

in the components {ak}:

f (a) =
K

∑
k=0

fk(ak)q
0
k , (8)

with fk : Ak → R and q0 = {q0
k} ∈ RK+1

+ a family of non-negative weights. In applications

the weights {q0
k} will incorporate discounting and probabilistic weighting of nodes.

We consider the maximization of the objective (8) subject to a separable constraint

structure that is common to many incentive problems. This structure is illustrated in

Figure 1. M first period constraints are applied to the entire tree. Anticipating later ap-

plications we call them incentive constraints. These constraints are indexed by m ∈ M,

where the index set has cardinality M. For example, in hidden information applications

constraints are naturally indexed by pairs of shocks (the true shock and a lie). The m-

th constraint is constructed from functions gm
0 : A0 → R and gk,n : Ak → R, k ∈ K,

7Ak is most often a subset of Rpk . Node specific choices are often identified with allocations of consump-
tion, effort or lotteries over these things.
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b

b

b

gm
0 (a0)

∑
N
n=1 g1,n(a1)q

m
k,n

∑
N
n=1 g2,n(a2)q

m
k,n

t = 1 t = 2

(a) Period 1: gm
0 (a0) + ∑

K
k=1 ∑

N
n=1 gk,n(ak)q

m
k,n ≥ 0

b

b

b

gM+1
1 (a1)

gM+2
2 (a2)

t = 1 t = 2

(b) Period 2: gM+k
k (ak) ≥ 0

Figure 1: Common Constraint Structure

n ∈ {1, · · · , N} and weights qm = {qm
k,n} ∈ RKN according to:

gm
0 (a0) +

K

∑
k=1

N

∑
n=1

gk,n(ak)q
m
k,n ≥ 0. (9)

The function gm
0 and weights qm are allowed to be constraint specific. However, the func-

tions gk,n are common to all constraints (and, therefore, have no constraint superscript).

There are K further constraints that are node-specific. Each describes a restriction on a

second period shock-contingent choice that is independent of past choices and of other

second period shock-contingent choices. In applications, these will describe incentive and

other constraints applied after the first period. For each k ∈ K, let Yk be a partially ordered

vector space with zero element 0k and let gM+k
k : Ak → Yk. The additional node-specific

constraints are given by:

∀k ∈ K, gM+k
k (ak) ≥ 0k. (10)

The constraint structure in (9) and (10) identifies constraints with nodes and constructs

them from functions that are additively separable across histories. In addition, the M first

period constraint functions map each future node choice ak to {gk,n(ak)}
N
n=1 ∈ RN. The

latter variables summarize the impact of ak on each of the first M constraints and do so

economically if Ak is of higher dimension than N. A further reduction in the dimension

of the summary variables occurs if all of the weights qm
k,n are multiplicatively separable as
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qm
k,n = qm

k qk,n since then (9) becomes:

gm
0 (a0) +

K

∑
k=1

qm
k

N

∑
n=1

gk,n(ak)qk,n ≥ 0, (11)

and ∑
N
n=1 gk,n(ak)qk,n summarizes the impact of ak in the first M constraints. These fea-

tures of the constraint structure are essential for the recursive decompositions that follow.

To ensure a non-trivial problem, the constraint set is assumed to be non-empty:

Ω1 =

{
a ∈ A

∣∣∣∣∣∀m ∈ M, gm
0 (a0) +

K

∑
k=1

N

∑
n=1

gk,n(ak)q
m
k,n ≥ 0 and ∀k ∈ K, gM+k

k (ak) ≥ 0

}
6= ∅,

and the objective ∑
K
k=0 fk(ak)q

0
k is assumed to be bounded above on this set. The sequential

primal problem is then:

P = sup
Ω1

K

∑
k=0

fk(ak)q
0
k (SP)

with P finite.

3.2 A first motivating example

This example is based on Atkeson and Lucas (1992). Suppose there are two periods. An

agent receives privately observed taste shocks {θt}2
t=1. These are described by a probabil-

ity space (Θ × Θ,G, P), where for simplicity Θ = {θ̂k}
K
k=1 is finite and K = {1, · · · , K}.

The shocks perturb the agent’s utility from consumption {ct}2
t=1:8

2

∑
t=1

βt−1 ∑
θt

θtv(ct(θ
t))P(θt). (12)

In eq. (12), β ∈ (0, 1) is a discount factor, v : R+ → D ⊆ R is a per period utility. v is

assumed increasing, concave and continuous with inverse C = D → R+.

A planner seeks to insure the agent against different taste shock realizations. She must,

however, induce the agent to truthfully report them. Her objective incorporates both the

agent’s utility and the cost of resources evaluated at (shadow) prices {Qt}. She solves:

sup
2

∑
t=1

βt−1 ∑
θt

[
θtv(ct(θ

t))− Qtct(θ
t)
]

P(θt) (13)

8The model is easily extended to one with multiple goods. By labeling one of these goods leisure, it
accommodates a Mirrleesian model.
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subject to for all t, θt, ct(θ
t) ≥ 0, and the incentive constraints, for all m ∈ M := {(m1, m2) ∈

K2, m1 6= m2},

θ̂m1
v(c1(θ̂m1

)) + β
K

∑
l=1

θ̂lv(c2(θ̂m1
, θ̂l))P(θ̂l |θ̂m1

) (14)

≥ θ̂m1
v(c1(θ̂m2)) + β

K

∑
l=1

θ̂lv(c2(θ̂m2 , θ̂l))P(θ̂l |θ̂m1
),

and for all k ∈ K and m ∈ M, θ̂m1
v(c2(θ̂k, θ̂m1

)) ≥ θ̂m1
v(c2(θ̂k, θ̂m2)). Notice that the

incentive constraints are indexed by pairs of shock indices m = (m1, m2), where m1 is the

true state and m2 an alternative state that the agent must be deterred from reporting.

This example can easily be re-expressed along the lines of the abstract two period

problem. Let gm
0 (c1) = θ̂m1

u(c1(θ̂m1
))− θ̂m1

u(c1(θ̂m2)) and gk,l(c) = u(c). Set the weights

{qm
k,l} according to: qm

k,l = βP(θ̂l |θ̂m1
) if k = m1 (the "true shock"), qm

k,l = −βP(θ̂l |θ̂m1
)

if k = m2 (the "lie") and qm
k,l = 0 otherwise. The first period constraints may then be

re-expressed as:

gm
0 (c1) +

K

∑
k=1

K

∑
l=1

gk,l(c2(θ̂k, θ̂l))q
m
k,l ≥ 0. (15)

The second period incentive constraints may be summarized as:

gM+k
k (c2(θ̂k, ·)) = {θ̂m1

v(c2(θ̂k, θ̂m1
))− θ̂m1

v(c2(θ̂k, θ̂m2))}m∈M ≥ 0. (16)

In this example, the future node choice ak is identified with {c2(θ̂k, ·)} ∈ RK
+ and the

summary variables with {gk,l(c2(θ̂k, θ̂l))}l∈K ∈ RK The latter offer no reduction in dimen-

sion. However, in problems with simpler shock structures (that require lower dimension

summary variables) and/or longer time horizons (that involve higher dimension future

choices), the summary variables will offer such a reduction. For example, suppose that

taste shocks are i.i.d. with per period probability distribution P. In this case, the weights

are multiplicatively separable, qm
k,l = βqm

k P(θ̂l), with qm
k = 1 if k = m1 (k indexes the true

shock), qm
k = −1 if k = m2 (k indexes the lie) and qm

k = 0 otherwise. Then, (15) reduces to:

gm
0 (c1) +

K

∑
k=1

qm
k

K

∑
l=1

gk,l(c2(θ̂k, θ̂l))P(θ̂l ) ≥ 0, (17)

and all constraints map the k-th subtree to the summary variable ∑
K
l=1 gk,l(c2(θ̂k, θ̂l))P(θ̂l).

Problem (13) may be embedded into a family of constraint or objective-perturbed

problems. The former augment the constraint set with "promise-keeping" constraints of
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the form:

wk = θ̂kv(c1(θ̂k)) + β
K

∑
l=1

θ̂lv(c2(θ̂k, θ̂l))P(θ̂l |θ̂k),

for some w ∈ RK and each k ∈ K. Letting Ω1(w) denote the augmented, promise-

perturbed constraint set, the promise-perturbed problem is:

S(w) =





supΩ1(w) ∑
2
t=1 βt−1 ∑θt

[
θtv(ct(θt))− Qtct(θt)

]
Pt(θt) Ω1(w) 6= ∅.

−∞ otherwise
(18)

As shown below, this problem has recursive primal and dual formulations that exploit the

previously described constraint structure and that use utility promises as state variables.

The objective-perturbed problem attaches a weighted sum of utilities to the objective:

V(ζ) = sup
Ω1

2

∑
t=1

βt−1 ∑
θt

[
θtv(ct(θ

t))− Qtct(θ
t)
]

Pt(θt) (19)

+
K

∑
k=1

ζk

[
θ̂kv(c1(θ̂k)) + β

K

∑
l=1

θ̂lv(c2(θ̂k, θ̂l))P(θ̂l |θ̂k)

]
.

In (19), Ω1 is the original (unperturbed) constraint set. This problem has recursive formu-

lations that use weights ζ ∈ RK as state variables.

3.3 A second motivating example

In our next example, based upon Kocherlakota (1996), the goal is to characterize the

incentive-feasible risk sharing arrangements of a group of agents I = {1, . . . , I} who

receive shocks to their endowments of goods and their outside utility options. No agent

can be compelled to accept a utility below her outside option.

Again there are two periods, t = 1, 2. The publicly observable endowment shock

θt ∈ Θ := {θ̂k}k∈K determines the aggregate resources available to agents in each period:

I

∑
i=1

ci
t(θ

t) ≤ Y(θt), Y : Θ → R+, (20)

where ci
t is the consumption of agent i at t. Agent i values consumption according to:

2

∑
t=1

βt−1 ∑
θt

v(ci
t(θ

t))P(θt)

12



and has a date and state-contingent outside utility option: Vi
t : Θ → R, t = 1, 2. A

consumption process c = {ci
t} is incentive-feasible if it satisfies (20) and gives each agent

m1 more than their outside option in each first period shock state m2:

u(cm1
1 (θ̂m2)) + β

K

∑
l=1

u(cm1
2 (θ̂m2 , θ̂l))P(θ̂l |θ̂m2) ≥ Vm1

1 (θ̂m2), (21)

and each second period shock state m2:

u(cm1
2 (θ̂k , θ̂m2)) ≥ Vm1

2 (θ̂m2). (22)

It is readily seen that these incentive constraints have the same basic structure as in

the last example. Indexing constraints by agent and shock, m = (m1, m2) ∈ I × K, the

first period constraints (21) apply to the entire associated event tree Z(0). They may be

re-expressed as in (15) where now gm
0 (c1) = um1(c1(θ̂m2))− Vm1

1 (θ̂m2), gk,l(c) = u(c) and

qm
k,l = qm

k βP(θ̂l |θ̂k) with qm
k = 1 if k = m2 (k indexes the actual shock received by the m1

agent) and 0 otherwise. The second period incentive constraints (22) are summarized as:

gM+k
k ({c2(θ̂k, ·)}) = {um1(c2(θ̂k, θ̂m2))− Vm1

2 (θ̂m2)}m∈M ≥ 0. (23)

The set of incentive-feasible payoffs is given by:

V0 =

{
w ∈ R I

∣∣∣∣∣∃ an incentive-feasible c s.t. ∀i, wi =
2

∑
t=1

βt−1 ∑
θt

v(ci
t(θ

t))P(θt)

}
.

The problem of finding V0 may be formulated as a constraint-perturbed planning prob-

lem. Let Ω1(w) denote the set of incentive-feasible consumption processes that deliver

the utility w and let f (θ, c) := 0. Define the planning problem:

S(w) =





supΩ1(w) ∑
2
t=1 βt−1

∑θt f (θt, ct(θ
t))P(θt) if Ω1(w) 6= ∅,

−∞ otherwise.
(24)

Then S(w) = 0 if w ∈ V0 and −∞ otherwise. Thus −S is simply the indicator function for

the set V0.9 Contrasting (24) with (18) reveals the parallel between this example and the

last. Moreover, as for the last example, (24) leads to recursive primal and dual problems

formulated in terms of utility promises. These problems now involve indicator functions

for incentive-feasible payoff and continuation incentive-feasible payoff sets. As an alter-

9The indicator function of X ⊆ RK is given by δX : X → R, where δX(x) = 0 if x ∈ X and ∞ otherwise.
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native, the following objective-perturbed problem may be formulated:

V(ζ) = sup
Ω1

2

∑
t=1

βt−1 ∑
θt

f (θt, ct(θ
t))P(θt)

+
K

∑
k=1

ζk

[
v(c1(θ̂k)) + β

K

∑
l=1

v(c2(θ̂k, θ̂l))P(θ̂l |θ̂k)

]

= sup
Ω1

K

∑
k=1

ζk

[
v(c1(θ̂k)) + β

K

∑
l=1

v(c2(θ̂k, θ̂l))P(θ̂l |θ̂k)

]
. (25)

In this case, V is the support function of V0.10 Recursive problems are available for (25).

These use utility weights as a state variable and involve the support functions of incentive-

feasible and continuation incentive-feasible payoff sets.

4 A quartet of recursive decompositions

A recursive formulation of the primal problem (SP) is obtained by introducing supple-

mentary promise-keeping constraints. These are redundant from the point of view of

the original problem, but enforce prior constraints in the recursive formulation. Primal

optimizations may be expressed as sup-inf problems using Lagrangians. Our subsequent

decompositions are obtained by selectively interchanging sup and inf operations to obtain

decomposable dual problems. Since there are multiple constraints, there are multiple op-

portunities for such interchange leading to different decompositions. We focus on three.

Their connections to our first primal decomposition are summarized in Figure 2.

Primal decomposition Second decomposition

Fourth decompositionThird decomposition

Partly dualize promise-keeping

Dualize incentive

constraintsDualize recursive

incentive constraints

Dualize promise-keeping

Fully dualize promise

keeping and recursive

incentive constraints

Figure 2: Relations between decompositions

10The support function of X ⊆ RK is given by σX : RK → R, where σX(d) = supx∈X〈x, d〉.
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4.1 First decomposition: a primal formulation with promises as states

A recursive decomposition of (SP) is obtained as follows. First define the promise variables:

wk = {wk,n}n∈N, wk,n := gk,n(ak), k ∈ K, n ∈ N

and decompose the constraints (9) into a collection of recursive incentive constraints and

promise-keeping constraints:

∀m ∈ M, gm
0 (a0) +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n ≥ 0, ∀k ∈ K, n ∈ N, wk,n = gk,n(ak). (26)

(SP) may then be rewritten as:

P = sup
Ω̂1

K

∑
k=0

fk(ak)q
0
k , (27)

where

Ω̂1 =




(a, w) ∈ A × RKN

∣∣∣∣∣∣∣∣

∀m, gm
0 (a0) +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n ≥ 0,

∀k, n, wk,n = gk,n(ak), ∀k, gM+k
k (ak) ≥ 0





.

Next, define the continuation problems, for all k ∈ K,

Sk(wk) =





sup fk(ak) Φk(wk) 6= ∅

−∞ otherwise,
(28)

where:

Φk(wk) =
{

ak ∈ Ak

∣∣∣∀n ∈ N, wk,n = gk,n(ak), gM+k
k (ak) ≥ 0

}
.

A routine application of the principal of optimality yields the following decomposition.

Proposition 1 (Primal Decomposition). The primal value P satisfies:

P = sup
Ψ0

f0(a0)q
0
0 +

K

∑
k=1

Sk(wk)q
0
k , (29)

where: Ψ0 =
{
(a0, w) ∈ A0 × RKN

∣∣∣∀m ∈ M, gm
0 (a0) + ∑

K
k=1 ∑

N
n=1 wk,nqm

k,n ≥ 0
}

.

Proof. See Appendix A. �
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The preceding decomposition relies on the association of the first group of incentive

constraints with the initial period; the promises w then act as forward state variables. They

enforce the initial incentive constraints by compelling constraint-consistent first and sec-

ond period choices. The label "forward" stems from the fact that promises are defined as

functions of future second period choices.11

In general, not all promise values ensure feasible problems for the second period. Con-

sequently, the functions Sk may be −∞-valued over some subset of their domains. The

effective domain of a function f : X → R is the set upon which it is finite, i.e. Dom

f := {x ∈ X| f (x) ∈ R}. In the context of dynamic incentive problems, the sets Dom Sk

are often referred to as endogenous state spaces. Numerical implementation of the primal

decomposition is complicated by lack of knowledge of these sets and by their computa-

tional representation.

4.2 Second decomposition: weights as states and the dualization of the

promise-keeping constraint

Our second decomposition uses an alternative representation of the second period value

function and an alternative state space. It is obtained via the partial dualization of the

promise-keeping constraints in the preceding primal decomposition.

Returning to (27), the primal problem may be re-expressed in terms of a Lagrangian

that incorporates the promise-keeping constraints:

P = sup
Ω̂PK

1

inf
RKN

K

∑
k=0

fk(ak)q
0
k +

K

∑
k=1

N

∑
n=1

zk,n[gk,n(ak)− wk,n],

where z ∈ RKN is the multiplier on the promise-keeping constraints and Ω̂PK
1 omits these

constraints from Ω̂1. Rearrangement gives:

P = sup
Ψ0

f0(a0)q
0
0 +

K

∑
k=1

sup
{Ak:gM+k

k (ak)≥0}

inf
RN

{
fk(ak) +

N

∑
n=1

zk,n[gk,n(ak)− wk,n]

}
qk

0. (30)

Equivalently, (30) re-expresses the continuation problems in (29) in sup-inf form. Now

consider partially dualizing the promise-keeping constraints in (30) by interchanging the

11In contrast to "backward" state variables which are defined as functions of past first period ones.
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sup and inf operations over ak and zk (but not over (a0, w) ∈ Ψ0 and z). Defining:

Vk(zk) = sup
{Ak:gM+k(ak)≥0}

fk(ak) +
K

∑
n=1

zk,ngk,n(ak), (31)

we obtain the dual problem:

DPK = sup
Ψ0

inf
RKN

f0(a0)q
0
0 +

K

∑
k=1

{
Vk(zk)−

K

∑
n=1

zk,nwk,n

}
qk

0. (32)

Problem (32) is recursive, but it replaces the promise state variable w with the weight state

variable z. In the continuation problem (31), the objective fk is perturbed by the weighted

sum ∑
K
n=1 zk,ngk,n(ak). In the sequel we refer to such problems as "objective-perturbed". If

for each k and all wk ∈ RN,

Sk(wk) = inf
RN

{
Vk(zk)−

K

∑
n=1

zk,nwk,n

}
, (33)

then P = DPK and (32) permits the recovery of the optimal primal value. Condition (33)

corresponds to the absence of a duality gap in all continuation problems. We consider

this absence and the equivalence of (30) and (32) below. Before doing so, we introduce

the concept of a conjugate function and recast the discussion in terms of such functions.

4.2.1 Conjugate functions

The conjugate of f : RN → R is given by f ∗ : RN → R, where

f ∗(x∗) = sup
x∈RN

{〈x, x∗〉 − f (x)} ,

and 〈·, ·〉 : RN × RN → R denotes the usual dot product operation. Geometrically, f ∗

describes the family of affine functions majorized by f . The conjugate of f ∗ (i.e. the con-

jugate of the conjugate) is referred to as the biconjugate of f and is denoted f ∗∗. Let FN
0

denote the set of proper functions f : RN → R that are nowhere −∞ and are somewhere

less than ∞ and let FN denote the set of proper, lower semicontinuous and convex func-

tions. A well known result12 asserts that if f ∈ FN
0 , then f ∗ ∈ FN and f ∗∗ is the lower

semicontinuous and convex regularization of f . The Legendre-Fenchel transform maps a

function to its conjugate and is denoted C. It follows that C : FN
0 → FN and C is a self-

12See Rockafellar (1970), p. 103-104.
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inverse on FN.

With minor qualifications on the boundaries of effective domains, differentiability du-

alizes under C to strict convexity. If f ∈ FN is differentiable on the interior of Dom f ,

then f ∗ is strictly convex on the relative interior of Dom f ∗ and vice versa. There is also

an attractive conjugacy between Dom f and Dom f ∗ which we elaborate below. Finally,

conjugacy provides a convenient framework for expressing duality relations between op-

timization problems. This is elaborated in Appendix B.

4.2.2 Relating the decompositions

Suppose that each value function Vk : RN → R is finite at 0 in which case −Sk ∈ FN
0 .13

It is an immediate consequence of Proposition B0 in the appendix, that Vk = C[−Sk] and

that it is in FN, i.e. is proper, convex and lower semicontinuous. However, except at 0

by assumption, Vk may be ∞-valued over some part of its domain. If −Sk ∈ FN as well,

then −Sk = C[Vk]. In this case, Sk and Vk provide alternative representations of the upper

surface of the k-th continuation incentive-feasible payoff set. The geometric implications

of these relations are illustrated below in Figure 3 (for the case N = 1).

(z, 1)

Vk(z)

w

Sk(w)

w

s

Sk

(a) Vk = C(−Sk)

Vk(z)

z

−Sk(w)

z

v

(−w, 1)

Vk

(b) −Sk = C(Vk)

Figure 3: Conjugacy between value functions

Since:

C[Vk] = inf
RN

{
Vk(zk)−

K

∑
n=1

zk,nwk,n

}
,

the preceding discussion implies the absence of a duality gap in the continuation problem

when −Sk ∈ FN and, hence, the following result.

13If Vk(0) is finite, Sk cannot be ∞ anywhere. Since Ω1 is non-empty, Sk is more than −∞ somewhere.
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Proposition 2. Assume that each −Sk ∈ FN, then:

P = sup
Ψ0

inf
RKN

f0(a0)q
0
0 +

K

∑
k=1

{
Vk(zk)−

N

∑
n=1

wk,nzk,n

}
q0

k . (34)

In Section 4.1, we emphasized that the potential infinite-valuedness of the functions

{−Sk} creates difficulties for the primal decomposition. Similar concerns potentially ap-

ply to the second decomposition (34) and the value functions Vk. However, the effective

domains of Vk and Sk are related by conjugacy arguments. This relation is described in

Proposition 3 and leads to the identification of an important case in which the functions

Vk are finite-valued.

Recall again that the support function of a set X ⊆ RN is given by σX(d) = supX〈x, d〉.

Also note the following definition.

Definition 1. If f ∈ FN, then its asymptotic function f ∞ : RN → R is given by: f ∞(y) =

limλ→∞
f (x+λy)− f (x)

λ for any x ∈ RN.

Proposition 3. Let −Sk ∈ FN. The support function of Dom (−Sk) equals the asymptotic

function of Vk and vice versa.

Proof. Follows from the previous discussion and Rockafellar (1970), p. 116. �

The following corollary is of particular use. Recall that the epigraph of a function

f : RN → R, epi f , is given by epi f = {(x, r) ∈ RN+1| f (x) ≤ r}.

Corollary 1. Assume that −Sk ∈ FN and epi (−Sk) contains no non vertical half lines, then Dom

Vk = RN. In particular, if fk is bounded above and each gk,n is bounded, then Dom Vk = RN.

It follows that when gk,n represents the bounded continuation utility of an agent and

the objective is bounded above, then the effective domain ("endogenous state space") of

the objective-perturbed value function Vk is immediately given as all of RN. Boundedness

above of the objective is quite common. It occurs in most applications with a committed

principal and in applications in which a value set is encoded as an indicator function.14

For comparison with the results from later decompositions it is useful to recast (32) us-

ing a Lagrangian that incorporates the first period incentive constraints. Letting η denote

14Every point x in RN can be identified with a point on the unit hemisphere Hn = {(γ, λ) ∈ RN ×R|λ >

0, ‖γ‖2 + λ2 = 1} in RN+1 by the mappings γ(x) = x/(‖x‖2 + 1) and λ(x) = 1/(‖x‖2 + 1). Thus, in this
case, the effective domain can alternatively be identified with this set.
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the multiplier on these constraints, we obtain:

DPK = sup
A0×RKN

inf
RM

+×RKN

f0(a0)q
0
0 +

M

∑
m=1

ηmgm
0 (a0) +

K

∑
k=1

{
V(zk) +

N

∑
n=1

[ζk,n(η)− zk,n] wk,n

}
q0

k ,

(35)

where: ζk,n(η) := ∑
M
m=1 ηm

qm
k,n

q0
k

, ∀k ∈ K, n ∈ N.

4.3 Third decomposition: promises as states and the dualization of the

incentive constraints

We return to (27) and instead of (partially) dualizing the promise-keeping constraints, we

dualize the recursive incentive constraints. Using a Lagrangian that incorporates these

constraints, (27) may be re-expressed as:

P = sup
Ω̂IC

1

inf
RM

+

K

∑
k=0

fk(ak)q
0
k +

M

∑
m=1

ηm

{
gm

0 (a0)q
m
0 +

N

∑
n=1

wk,nqm
k,n

}
, (36)

where Ω̂IC
1 omits the recursive incentive constraints from Ω̂1 and η ∈ RM

+ is the multiplier

upon them. Interchanging the sup and inf operations gives the dual problem:

D IC = inf
RM

+

sup
Ω̂IC

1

K

∑
k=0

fk(ak)q
0
k +

M

∑
m=1

ηm

{
gm

0 (a0)q
m
0 +

N

∑
n=1

wk,nqm
k,n

}
. (37)

Breaking apart the inner supremum optimization and substituting for Sk gives our next

decomposition.

Proposition 4. The dual value D IC satisfies the following condition:

D IC = inf
RM

+

sup
A0×RKN

f0(a0)q
0
0 +

M

∑
m=1

ηmgm
0 (a0)q

m
0 +

K

∑
k=1

{
M

∑
m=1

ηm

N

∑
n=1

wk,nqm
k,n + Sk(wk)q

0
k

}
.

(38)

As for the first decomposition, (38) uses promises as state variables and employs the

constraint-perturbed value functions Sk.

Problem (38) permits the recovery of the optimal primal value if there is no duality

gap between (36) and (37). This absence can be expressed in terms of the conjugacy of

value functions, but now these functions involve perturbations of first period incentive
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constraints. Specifically, (SP) may be embedded into the family of incentive-perturbed

problems:

P(δ) := sup
a∈Ω1(δ)

K

∑
k=0

fk(ak)q
0
k , (39)

where

Ω1(δ) =

{
a ∈ A

∣∣∣∣∣each gm
0 (a0) +

K

∑
k=1

N

∑
n=1

gk,n(ak)q
m
k,n ≥ −δ and each gM+k

k (ak) ≥ 0

}
.

P(·) is the value function associated with perturbations of the first period incentive con-

straints. Evidently, the optimal primal value from (SP) equals P(0). By Theorem B1 in

the appendix, after the elimination of the promises,15 −D IC = C2[−P(·)](0) and a zero

duality gap occurs if −P(·) ∈ FM.

4.4 A fourth decomposition: weights as states and the dualization of

the incentive constraints

Our final decomposition uses weights as state variables and the objective-perturbed value

function. It is obtained by dualizing the recursive incentive and promise-keeping con-

straints . Problem (27) may be re-expressed as:

P = sup
Ω̂PKIC

1

inf
RM

+×RKN

K

∑
k=0

fk(ak)q
0
k +

M

∑
m=1

ηm

{
gm

0 (a0)q
m
0 +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n

}

+
K

∑
k=1

q0
k

N

∑
n=1

zk,n[gk,n(ak)− wk,n], (40)

where η and z are the multipliers on the recursive incentive and promise-keeping con-

straints and both are omitted from Ω̂PKIC
1 . The associated dual is:

DPKIC = inf
RM

+×RKN

sup
Ω̂PKIC

1

K

∑
k=0

fk(ak)q
0
k +

M

∑
m=1

ηm

{
gm

0 (a0)q
m
0 +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n

}

+
K

∑
k=1

q0
k

N

∑
n=1

zk,n[gk,n(ak)− wk,n]. (41)

15The promises and the promise-keeping constraints deliver the recursive formulation which is not used
in establishing conditions for a zero duality gap.
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Rearrangement of the supremum component gives:

DPKIC = inf
RM

+×RKN

sup
A0

{
f0(a0)q

0
0 +

M

∑
m=1

gm
0 (a0)q

m
0

}
+

K

∑
k=1

sup
{Ak:gM+k(ak)≥0}

{
fk(ak) +

N

∑
n=1

zk,ngk,n(ak)

}
q0

k

+ sup
RKN

K

∑
k=1

q0
k

N

∑
n=1

wk,n

{
M

∑
m=1

ηm

qm
k,n

q0
k

− zk,n

}
. (42)

Substituting for Vk and using the earlier definition of ζk,n, (42) reduces to:

DPKIC = inf
RM

+×RKN

sup
A0×RKN

f0(a0)q
0
0 +

M

∑
m=1

ηmgm
0 (a0) +

K

∑
k=1

{
V(zk) +

N

∑
n=1

[ζk,n(η)− zk,n] wk,n

}
q0

k .

(43)

In (42), the sup value is ∞ unless each zk,n is chosen to equal ∑
M
m=1 ηm

qm
k,n

q0
k

. Substituting

these values into (42) and using the definition of Vk implies the following result.

Proposition 5. The dual value DPKIC satisfies:

DPKIC = inf
RM

+

sup
A0

f0(a0)q
0
0 +

M

∑
m=1

ηmgm
0 (a0)q

m
0 +

K

∑
k=1

Vk(ζk(η))q
0
k , (44)

where ζ(η) = {ζk(η)}k =

{
∑

M
m=1 ηm

qm
k,n

q0
k

}

k,n

∈ RKN.

In this context, ζ(η) ∈ RKN may be interpreted as a backwards state variable for the dual

problem. It penalizes first period constraint violations via perturbations of the continu-

ation objective. The label "backward" stems from the fact that ζ is a function of the first

period choice η.

Remark 1. If each A0 = RP and the current constraint functions gm
0 are affine, i.e., {gm

0 (a0)}

= b0 + B1a0, with B1 an M × P matrix, then the value function from the inner supremum

operation equals f ∗0 (h
′B1), where h′ = (η1q0

1/q0
0 . . . ηMq0

M/q0
0). Affine constraint functions

are quite common in applications in which the action variables a0 are identified with

agent utilities. If A0 = RP and f0 is additively separable, then the inner supremum is

itself decomposable and each component of a0 can be solved for separately. If both of the

preceding assumptions hold and f0 is an additive sum of standard functional forms, e.g.

polynomial or exponential, then the conjugate f ∗0 is often immediately available and no

maximization needs to be done explicitly. Again, this is often the case in applied economic

problems.
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The decomposition (44) is readily related to the preceding three. Relative to the sec-

ond, it dualizes the incentive and fully dualizes the promise-keeping constraint (compare

(43) to (35)). Relative to the third, it dualizes the promise-keeping constraint. However, it

is straightforward to check that in the latter case, this additional dualization does not in-

troduce a duality gap and that DPKIC = D IC. In addition, if P = D IC, then P = DPKIC and

so conditions for the absence of a duality gap between the primal and the third decompo-

sition ensure the absence of such a gap between the primal and the fourth decomposition.

4.5 Value function properties

We have seen that duality gaps are absent and the various decompositions give the same

optimal value when the value functions obtained by perturbing "intertemporal" con-

straints are proper, lower semicontinuous and convex. In this case these functions and

their conjugates give alternative, but equivalent representations of a relevant payoff sur-

face. We are thus led to consider when value functions inherit properness, lower semicon-

tinuity and convexity from the primitives of a problem. This issue is taken up in general

terms in Appendix B. Here we relate the results from Appendix B to the present setting.

Properness is a mild condition. We have previously assumed that Ω1 is non-empty. This

ensures the constraint sets for the continuation promise-perturbed problems (31) and the

incentive-perturbed problem (39) are non-empty for some parameters. Provided the ob-

jective functions in these problems are bounded above on all constraint sets, properness

of the relevant primal value functions is obtained. A well known condition for convexity

of −Sk or −P(·) is that the constraint correspondences Φk and Ω1 have convex graphs and

the problem objectives are concave. For the continuation problems (31), this requires that

the functions gk,n, gM+k
k and fk are, respectively, affine, quasiconcave and concave. For

the problems (39), concavity of gm
0 , gk,n(·)q

m
k,n and fk along with quasiconcavity of gM+k

k

is needed. Some dynamic incentive problems satisfy these conditions, see for example

Atkeson and Lucas (1992) or Kocherlakota (1996). Others such as Thomas and Worrall

(1990) do not, but, instead satisfy weaker conditions that are sufficient for convexity of

the value function. The following example and Appendix B provide further discussion.

The latter also provides discussion of conditions for lower semicontinuity of the value

function.

Example. Consider the class of hidden information problems in which the planner has

an objective of the form:

∑
θt

f (at(θ
t))Pt(θt),
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a single agent has preferences:

2

∑
t=1

βt−1 ∑
θt

r(θt, at(θ
t))Pt(θ),

and shocks θt are i.i.d.. The planner maximizes her objective subject to each at(θt) ∈ A,

first period incentive constraints, ∀(m1, m2) ∈ M,

r(θ̂m1
, a1(θ̂m1

)) + β
K

∑
l=1

r(θ̂l , a2(θ̂m1
, θ̂l))P(θ̂l )

≥ r(θ̂m1
, a1(θ̂m2)) + β

K

∑
l=1

r(θ̂l , a2(θ̂m2 , θ̂l))P(θ̂l),

and second period constraints, , ∀(m1, m2) ∈ M, r(θ̂m1
, a2(θ̂k, θ̂m1

)) ≥ r(θ̂m1
, a2(θ̂k, θ̂m2)).

Suppose that the agent’s action a can be decomposed into two components (a1, a2) ∈ A =

A1 × A2, where each Ak is an interval of R and that:

f (a) = f1(a
1) + f2(θ, a2), a = (a1, a2),

and

r(θ, a) = r1(a
1) + r2(θ, a2), a = (a1, a2).

This covers many cases. For example, if f1 = r1 = 0, f2(a
2) = −a2 and r2(θ, a2) =

u(a2 + θ) the hidden endowment model of Thomas and Worrall (1990) is obtained. If

f1(a
1) = −a1, r1(a

1) = u(a1), f2(a
2) = a2 and r2(θ, a2) = v(a2/θ), a two period Mirrlees

model is derived. In many applications, it is natural to assume that f1, f2, r1 and each

r2(θ, ·) are concave. However, unless r1 and r2(θ, ·) are linear, as they are, for example, in

Atkeson and Lucas (1992), the constraint correspondence does not have a convex graph.

Fortunately, alternative weaker assumptions are sufficient for concavity/convexity of the

relevant value functions. For example, suppose, in addition to concavity, that f1 and f2

are decreasing, r1 and r2(θ, ·) are increasing, and r2 has decreasing differences, i.e., for all

k = 1, . . . , K − 1, r2(θ̂k+1, ·)− r2(θ̂k, ·) is decreasing. These conditions are quite standard.

Suppose, in addition, r2 satisfies: for each δ ∈ (0, 1), k = 1, . . . , K − 1 and pair a2 and a′2,

let ã2 satisfy r2(θ̂k, ã2) = δr2(θ̂k , a2) + (1 − δ)r2(θ̂k, a2′), then r2(θ̂k+1, ã2) > δr2(θ̂k+1, a2) +

(1 − δ)r2(θ̂k+1, a2′). Under this assumption, each −Sk is convex. For example, in Thomas

and Worrall (1990)’s hidden endowment model, the agent’s utility function u is assumed

to be increasing, strictly concave and to satisfy NIARA. This is sufficient to imply that the

analogues of −Sk are strictly convex. For further results see Sleet (2011).
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5 A quartet of Bellman operators

The decompositions of the preceding sections made use of families of constraint or objec-

tive perturbed continuation problems. We now consider perturbing the original problem

in analogous ways. This leads to a fully recursive formulation. Moreover, the initial

perturbing parameter often has an economic interpretation as a utility promise or Pareto

weight.

Constraint-perturbed problems Given functions {g0,h}
N
h=1, g0,h : A0 → R, and weights

p = {ph
k,n}, a family of auxiliary "promise constraints" is defined according to, for h ∈

N = {1, · · · , N},

wh = g0,h(a0) +
K

∑
k=1

N

∑
n=1

gk,n(ak)ph
k,n. (45)

Like the initial period incentive constraints, these depend on second period actions ak,

k ∈ K, via weighted sums of the functions gk,n. By augmenting the constraint set in

(SP), the equations (45) define a family of constraint-perturbed problems parameterized by

w ∈ RN:

S0(w) =





supΦ0(w) ∑
K
k=0 fk(ak)q

0
k Φ(w) 6= ∅

−∞ otherwise,
(46)

where

Φ0(w) =

{
a ∈ Ω1

∣∣∣∣∣∀h ∈ N, wh = g0,h(a0) +
K

∑
k=1

N

∑
n=1

gk,n(ak)ph
k,n

}
.

Of course, P = supRN S0(w) = C[−S0](0).

Constraint-perturbed problems have a recursive formulation in terms of promises

which parallels the first decomposition from the previous section. This formulation as-

sociates the new promise keeping constraints (45) and the initial tree-wide incentive con-

straints with the initial period. Elements in the range of the functions gk,n which appear

in both sets of constraints act as state variables. The formulation relates a first period

constraint-perturbed problem to a family of second period constraint-perturbed prob-

lems (28) with value functions Sk. It is expressed in terms of a Bellman operator on the

space of functions W0 = {{Wk}k∈K|Wk ∈ FN
0 }.

Proposition 6. Define the primal constraint-perturbed Bellman operator TS : −W0 → −FN
0 ,

according to:

TS(W)(w) = sup
Ψ0(w)

f0(a0) +
K

∑
k=1

Wk(wk)q
0
k ,
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where : Ψ0(w) =

{
(a0, {w′

k}) ∈ Ψ0

∣∣∣∣∣ ∀h ∈ N, wh = g0,h(a0) +
K

∑
k=1

N

∑
n=1

wk,nph
k,n

}
.

Then:

S0 = TS({Sk}). (47)

The proof is a straightforward extension of Proposition 1 and is omitted. Equation (47)

is the type of Bellman equation most commonly encountered in dynamic incentive prob-

lems. In these the functions fk are often interpreted as the per period payoffs of a commit-

ted principal. However, if the functions fk = 0, then the value functions Sk are indicator

functions for the sets of incentive-feasible promises at each node of the event tree. The

Bellman equation (47) is then closely related to the B-operator considered by Abreu et al

(1990). Properties of value sets emphasized by Abreu et al (1990) such as monotonicity

(in the set inclusion ordering) and closure, then translate into monotonicity and lower

semicontinuity of the value functions −Sk.

By dualizing the first period incentive and promise constraints, the following problem

may be associated with (46):

SD
0 (w) = inf

RM
+×RN

sup
Ω2

K

∑
k=0

fk(ak)q
0
k +

M

∑
m=1

ηm

[
gm

0 (a0) +
K

∑
k=1

N

∑
n=1

gk,n(ak)q
m
k,n

]

+
N

∑
h=1

zh

[
gh

0(a0) +
K

∑
k=1

N

∑
n=1

gk,n(ak)ph
k,n − wh

]
.

Along the lines of the third decomposition, this admits the recursive formulation:

SD
0 (w) = inf

RM
+×RN

sup
A0×RKN

f0(a0)q
0
0 +

K

∑
k=1

Sk(wk)q
0
k +

M

∑
m=1

ηm

[
gm

0 (a0) +
K

∑
k=1

N

∑
n=1

wk,nqm
k,n

]

+
N

∑
h=1

zh

[
gh

0(a0) +
K

∑
k=1

N

∑
n=1

wk,nph
k,n − wh

]
.

Defining the dual Bellman operator for the constraint perturbed problem as:

TS,D(W)(w) = inf
η∈RM

+ ,z∈RN

sup
A0×RKN

f0(a0)q
0
0 +

K

∑
k=1

Wk(wk)q
0
k

+
M

∑
m=1

ηm

[
gm

0 (a0) +
K

∑
k=1

N

∑
n=1

wk,nqm
k,n

]
+

N

∑
h=1

zh

[
gh

0(a0) +
K

∑
k=1

N

∑
n=1

wk,nqh
k,n − wh

]
,

we obtain: SD
0 = TS,D({Sk}).
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Objective-perturbed problems An objective-perturbed problem is parameterized by

z ∈ RN and is given by:

V0(z) = sup
Ω1

K

∑
k=0

fk(ak)q
0
k +

N

∑
h=1

zh

[
g0,h(a0) +

K

∑
k=1

N

∑
n=1

gk,n(ak)ph
k,n

]
. (48)

Thus, P = V0(0). By extending our first decomposition, a recursive formulation involving

weights may be associated with (48). This formulation relates a first period objective-

perturbed problem to a family of second period objective-perturbed problems (31) with

value functions Vk. The next proposition states the formulation; it uses the definition

W = {{Wk}|Wk ∈ FN} ⊂ W0.

Proposition 7. Define the objective-perturbed Bellman operator TV : W0 → FN
0 ,

TV(W)(z) = sup
A0×RKN

inf
RM

+×RKN

f0(a0)q
0
0 +

N

∑
h=1

zhgh
0(a0) +

M

∑
m=1

ηmgm
0 (a0)

+
K

∑
k=1

Wk(zk)q
0
k +

K

∑
k=1

N

∑
n=1

[
ζ′k,n(z, η)− zk,n

]
q0

kwk,n, (49)

where: ζ′k,n(z, η) = ∑
N
h=1 zh

ph
k,n

q0
k

+ ∑
M
m=1 ηm

qm
k,n

q0
k

. If {−Sk} ∈ W, then V0(z) = TV({Vk})(z).

Proof. See Appendix. �

The proof involves the dualization of the second period promise-keeping constraint.

The assumption in the proposition ensures the absence of a duality gap. Note that the

law of motion for the weight ζ′ now incorporates the initial weight z.

Although the Bellman operator (49) may initially appear unfamiliar, it is close to the

one used by Judd et al (2003) to compute the payoff surfaces of equilibrium value sets in

repeated games. To see this consider the case in which each fk = 0. Then, as before, the

value functions −Sk are indicator functions for the sets of incentive-feasible promises (or

payoffs) at each node of the event tree. The functions Vk are support functions for these

sets. In this case, TV({Vk})(z) may be rearranged to give:

TV({Vk})(z) = sup
A0×RKN

inf
RM

+×RKN

N

∑
h=1

zh

[
gh

0(a0) +
K

∑
k=1

N

∑
n=1

wk,nph
k,n

]
(50)

+
M

∑
m=1

ηm

[
gm

0 (a0) +
K

∑
k=1

N

∑
n=1

wk,nqm
k,n

]
+

K

∑
k=1

q0
k

[
Vk(zk)−

N

∑
n=1

zk,nwk,n

]
.
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Equivalently, using the fact that Vk is a support function and, hence, homogenous of de-

gree 1,

TV({Vk})(z) = sup
A0×RKN

N

∑
h=1

zh

[
gh

0(a0) +
K

∑
k=1

N

∑
n=1

wk,nph
k,n

]

s.t. ∀m ∈ M, gm
0 (a0) +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n ≥ 0, ∀k ∈ K, inf

‖zk‖=1
Vk(zk)−

N

∑
n=1

zk,nwk,n ≥ 0.

Judd et al (2003) consider an extension of this problem in which the consequence of a

player defection is endogenized. Here, this consequence is absorbed into the incentive

constraint functions gm
0 .

In (49), the second period promise-keeping constraint was dualized. By dualizing the

first period incentive constraint, the following alternative problem may also be associated

with (48).16

VD
0 (z) = inf

RM

sup
Ω2

K

∑
k=0

fk(ak)q
0
k +

N

∑
h=1

zh

[
g0,h(a0) +

K

∑
k=1

N

∑
n=1

gk,n(ak)ph
k,n

]
(51)

+
M

∑
m=1

ηm

[
gm

0 (a0) +
K

∑
k=1

N

∑
n=1

gk,n(ak)q
m
k,n

]
.

Following the fourth decomposition and the line of argument used to derive Proposi-

tion 5, we obtain our final Bellman equation.

Proposition 8. Define the Bellman operator TV,D : W0 → FN
0 , according to:

TV,D(W)(z) = inf
RM

+

sup
A0

f0(a0)q
0
0 +

N

∑
h=1

zhgh
0(a0) +

M

∑
m=1

ηmgm
0 (a0) +

K

∑
k=1

Wk(ζ
′
k,n(z, η))q0

k ,

where ζ′ is as before. Then: VD
0 = TV,D({Vk}).

The terms z and ζ′k,n(z, η) may be interpreted as initial and updated weights on, re-

spectively, the function g0,h(a0) + ∑
K
k=1 ∑

N
n=1 gk,n(ak)ph

k,n and its continuations gk,n(ak).

The conditions for TV,D({Vk}) = V0 are stronger than those required for TV({Vk}) =

V0. Roughly, the optimization TV,D({Vk}) dualizes more of the constraint structure than

TV({Vk}). Weak duality arguments imply: TV,D(V)(z) ≥ TV({Vk})(z) ≥ V0(z) with

16As the fourth decomposition makes, this is essentially equivalent to dualizing the first period recursive
incentive constraint and the second period promise-keeping constraint, i.e. dualizing all constraints that
link the first and second periods.
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TV,D({Vk})(z) = V0(z) if and only if TV({Vk})(z) = V0(z) and there is a zero duality

gap between the values TV({Vk})(z) and TV,D({Vk})(z).

In the preceding analysis, the first period incentive constraints were dualized, whereas

the second period incentive constraints were not. Consequently, in deriving (51), detailed

specification of the image spaces of the second period incentive functions, Yk, and their

duals was unnecessary. In contrast, if all constraints, first and second period, were si-

multaneously dualized such specification would be necessary. In this case, the dual of

each Yk contains the Lagrange multipliers on the k-th second period incentive constraint.

Application of the above approach to infinite horizon settings allows us to work with

sequences of finite dimensional dual spaces, each housing current constraint Lagrange

multipliers, rather than a single infinite dimensional dual space housing the multipliers

from all constraints. Technical complications stemming from an explicit treatment of the

latter are avoided.17

The Bellman operator TV,D is close to that derived by Marcet and Marimon (2011)

except that they leave some state variables and constraints in primal form. In addition,

their derivation is quite different, relying on the recursive decomposition of a saddle point

rather than a dual problem.

Conjugacy relations for perturbed problems We round this section off by stating con-

jugacy relations between the value functions S0, V0, SD
0 and VD

0 . These are combined with

similar relations between S and V and the definitions of the Bellman operators to obtain

conjugacy relations between Bellman operators.

Exactly paralleling our discussion of the conjugacy of −Sk and Vk, we have the follow-

ing results.

Proposition 9. Assume that −S0 ∈ FN
0 , then 1) V0 = C[−S0] and V0 ∈ FN, 2) −S0 =

C[V0] if −S0 ∈ FN, and 3) Dom V0 = RN if and only if epi (−S0) contains no non-vertical

half-lines. In particular, this is true if ∑
K
k=0 fk(ak)q

0
k is bounded above and each g0,h(a0) +

∑
K
k=1 ∑

N
n=1 gk,n(ak)ph

k,n is bounded on Ω1.

Proposition 10. Assume that VD
0 ∈ FN

0 , then 1) −SD
0 = C[VD

0 ] and −SD
0 ∈ FN, 2) VD

0 =

C[−SD
0 ] if VD

0 ∈ FN and 3) Dom SD
0 = RN if and only if epi (VD

0 ) contains no non-vertical

half-lines.

We exploit the connections between problems implied by Propositions 9 and 10 in

infinite-horizon settings later in the paper. As in the discussion of properties of −Sk, the

17These complications include the explicit imposition of topological and linear structure on the infinite
dimensional image space explicitly and the placing of further restrictions on the problem to ensure that
multipliers are summable, i.e. lie in the sub-space of bounded additive sequences.
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assumed properness of −S0 in Proposition 9 is mild, while convexity and lower semi-

continuity are significantly stronger. Concavity of each fk and convexity of Graph Φ0

is sufficient for convexity of −S0. Quasiconcavity of each gm
0 and gM+k

k coupled with

affineness of each g0,h and gk,n is sufficient of convexity of Graph Φ0. Weaker convex-like

conditions also suffice.

Conjugacy relations for Bellman operators The various Bellman operators defined above

are related by conjugacy arguments.

Proposition 11. Let W ∈ W0, then 1) TV(W) = C[−TS(−C[W])] ∈ W and 2) −TS,D(−W) =

C[TV,D(C[W])] ∈ W.

Proof. See Appendix �

Corollary 2. 1) If −S ∈ W, then V0 = TV(V) = C[−TS(−C[V])]; 2) S0 = TS(S) and if

−S ∈ W and −S0 ∈ FN, then −S0 = C[TV(C[−S])].

Proof. If −S ∈ W, then −S = C2[−S] = C[V] and V0 = C[−S0] = C[−TS(S)] =

C[−TS(−C[V])] = TV(V). If −S0 ∈ FN, then −S0 = C2[−S0] = C[V0]. Hence, by the

last result, if −S ∈ W, then −S0 = C[V0] = C[TV(V)] = C[TV(C[−S])]. �

Policies Our focus so far has been on optimal values. It is well known that even if strong

duality obtains (i.e. primal and dual problems have equal optimal values and a minimiz-

ing multiplier exists for the dual problem), the set of actions that attain the supremum

in the dual problem may still be a strict superset of those that attain the optimum in the

primal problem. This point was made and elaborated in the context of dynamic incen-

tive problems by Messner and Pavoni (2004). We briefly discuss additional conditions for

dual problem maximizers to solve the primal problem in Appendix B.

6 Infinite horizon

The remainder of the paper extends the recursive formulations and dual relations from

the previous section to dynamic incentive problems in infinite horizon settings. To keep

the exposition relatively simple, the focus is on problems with time-homogenous objec-

tives and constraints and a finite number of per period shock realizations. Time varying

problems and a continuum of shock realizations may be introduced at the cost of addi-

tional notation and an explicit treatment of measure-theoretic details. In infinite horizon
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settings, a given problem is embedded within a family of perturbed problems. The as-

sociated primal or dual Bellman operator is then used to recover the true value function

(with an appeal to strong duality in the latter case). Policies are obtained subject to the

caveats elaborated above. Establishing that a value function from a problem satisfies an

associated Bellman equation proceeds along the lines described above. The recovery of

such value functions from the Bellman equation raises additional challenges as they may

be extended real valued. Convergent value function iteration requires function conver-

gence concepts for such settings and/or further refinement of the set of candidate value

functions. We turn to these issues next.

6.1 Infinite horizon framework

A framework that accommodates many infinite horizon dynamic incentive problems is

now specified. In these problems the objective is often explicitly identified as a social

payoff and we label it as such. The auxiliary variables that are used to perturb constraints

in the objective are identified with private agent payoffs.

6.1.1 Shocks and agents.

Let I = {1, . . . , I} denote a finite set of agents and Θ = {θ̂k}
K
k=1 ⊂ RS a finite set of

shocks with K = {1, · · · , K} the corresponding set of shock indices. In specific contract-

ing problems these shocks may include components that affect a group of agents and/or

components that are idiosyncratic to a specific agent. In the latter case, these components

may be common knowledge or privately observed by the affected agent. The shock pro-

cess is described by a probability space (Θ∞,G, P). This process is assumed either to be

Markov with transition matrix π = {πk,l} and initial seed shock θ̂j ∈ Θ or i.i.d. with

per period distribution π = {πl}. The random variables describing t-period shocks and

t-period histories of shocks are denoted θt and θt respectively. The corresponding proba-

bility distribution for the latter is denoted Pj(θ
t) (or just P(θt) in the i.i.d. case).

6.1.2 Action plans.

Let A : Θ ։ RL denote a correspondence mapping states to action sets. A period t action

profile is a function at : Θt → RL with at(θt) ∈ A(θt). A plan is a sequence of action

profiles α = {at}
∞
t=1 belonging to a set Ω. It is often convenient to express plans in the

form: α = {ak, α′
k}

K
k=1, where ak = a1(θ̂k) and α′

k = {at+1(θ̂k, ·)}∞
t=1. Ω is assumed to

satisfy the following condition.
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Assumption 1. Ω is a non-empty subset of {{at}
∞
t=1, at : Θt → RN, at(θ

t) ∈ A(θt)}. If

α ∈ Ω, then each continuation α′
k is also in Ω.

6.1.3 Social and private payoffs.

Let f : Graph A → R denote the per period social payoff and βP ∈ (0, 1) the social

discount factor. The following is assumed.

Assumption 2. βP, f , π and Ω are such that for all k and α ∈ Ω,

Fk(α) := E
[ ∞

∑
t=1

βt−1
P f (θt, at(θ

t))
∣∣∣θ1 = θ̂k

]

is well defined and finite.

Fk(α) gives the social payoff conditional on the period 1 shock. The social objective is

identified with the unconditional payoff ∑k∈K Fk(α)πj,k.

Remark 2. Dynamic incentive problems can be formulated as games and incentive con-

straints derived as equilibrium restrictions. In many settings the social objective may

be identified with that of a committed mechanism designer and equilibria that are best

from her perspective found. Alternatively, with an appropriate specification of the social

payoff, the entire set of equilibrium payoffs. See Example 3 below.

The private payoff to the i-th agent conditional on shock θ̂k is defined by a tuple

(ri, βA, π), with ri : Graph A → R and βA ∈ (0, 1), according to:

Ri
k(α) = E

[ ∞

∑
t=1

βt−1
A ri(θt, at(θ

t))
∣∣∣θ1 = θ̂k

]
.

βA is a common private agent discount factor. The following assumption is made.

Assumption 3. βA, {ri}, π and Ω are such that for all i, k and α ∈ Ω, Ri
k(α) is well defined

and finite.

For α = {ak, α′
k}k∈K, the definition of Ri

k implies:

Ri
k(α) = ri(θ̂k, ak) + βA ∑

l∈K

Ri
l(α

′
k)πk,l .

6.1.4 Constraints.

Incentive constraints ensure that it is in the interests of agents to take prescribed courses of

actions. These constraints are expressed in terms of private agent payoffs. Let M denote
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a finite set of constraint indices with cardinality M. Call G : Ω → RM the current incentive

constraint mapping, where:

G(α) =
{

∑
k∈K

gm
0,k(ak) + βA ∑

i∈I

∑
k∈K

∑
l∈K

Ri
l(α

′
k)q

m
i,k,l

}
m∈M

. (52)

G is a specialized version of the constraint functions considered in Section 4. The continu-

ation constraint functions previously denoted gk,n are now identified with sums of agent

continuation payoffs and denoted accordingly. Explicit examples are given below.

An important special case of eq. (52) occurs when the coefficients qm
i,k,l can be decom-

posed as:

qm
i,k,l = qm

i,kπk,l (k, l) ∈ K2. (53)

Then,

∑
k∈K

∑
l∈K

qm
i,k,lR

i
l(α

′
k) = ∑

k∈K

qm
i,k ∑

l∈K

Ri
l(α

′
k)πk,l

and, for each k, the relative weighting of the continuation payoffs {Ri
l(α

′
k)}l∈K coincides

with the probability distribution {πk,l}l∈K. As will become clear this constraint structure

affords a considerable simplification of the analysis and is quite common in applications.

Let αt(θt−1) denote the continuation of α after θt−1. Define the set of incentive-constrained

allocations Ω1 ⊂ Ω according to:

Ω1 = {α ∈ Ω|∀t, θt−1, G(αt(θ
t−1)) ≥ 0}. (54)

In addition, let Ω2 = {{ak, α′
k} ∈ Ω|each α′

k ∈ Ω1} be the set of plans that satisfy the

incentive constraints from t = 2 onwards.

Assumption 4. Ω1 is non-empty.

6.1.5 Societal choice problem.

The remainder of the paper considers choice problems of the form:

sup
α∈Ω1

∑
k∈K

Fk(α)πj,k. (55)

and perturbations thereof. The following is assumed.

Assumption 5. βA, f , {ri}, π and Ω are such that for all j, supα∈Ω1
∑k∈K Fk(α)πj,k < ∞.
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6.2 Examples

Example 1. Atkeson-Lucas component planner with i.i.d shocks. As in Section 2, an

agent receives privately observed, i.i.d. taste shocks {θt}. These perturb the agent’s utility

from consumption {ct}:

lim inf
T

T

∑
t=1

βt−1 ∑
θt

θtv(ct(θ
t))Pt(θt). (56)

In eq. (56), β ∈ (0, 1) is a discount factor and v : R+ → A ⊆ R is a per period utility. v

is assumed increasing, concave and continuous with inverse C = A → R+. Attention is

restricted to allocations such that limT ∑
T
t=1 βt−1 ∑θt θtv(ct(θt))Pt(θt) exists and is finite.

The planner maximizes agent utility net of resource costs:

∞

∑
t=1

βt−1 ∑
θt

[
θtv(ct(θ

t))− Qct(θ
t)
]

Pt(θt) (57)

subject to the incentive constraints, for all t, θt−1, m1 6= m2 ∈ K,

θ̂m1
v(ct(θ

t−1, θ̂m1
)) + β

∞

∑
r=1

βr−1 ∑
θr

θrv(ct+r(θ
t−1, θ̂m1

, θr))Pr(θr)

≥ θ̂m1
v(ct(θ

t−1, θ̂m2)) + β
∞

∑
r=1

βr−1 ∑
θr

θrv(ct+r(θ
t−1, θ̂m2 , θr))Pr(θr).

It is straightforward to map this model into our general framework. Define the t-th period

action at(θt) = v(ct(θt)) and let:

Ω =
{
{at}

∣∣∣each at(θ
t) ∈ A and lim

T→∞

T

∑
t=1

βt−1 ∑
θt

θtat(θ
t)Pt(θt) exists and is finite

}
.

Let the per period social and private payoffs be given by:

f (θ, a) = θa − QC(a) and r(θ, a) = θa.

Set βP = βA = β. The aggregators F and R are then defined in the obvious ways. Let

M = {(m1, m2) ∈ K2, m1 6= m2}, and collect current constraints together as:

G(α) =
{

θ̂m1
am1

− θ̂m1
am2 + β ∑

l∈K

Rl(α
′
m1
)πl − β ∑

l∈K

Rl(α
′
m2
)πl

}
(m1,m2)∈M

≥ 0. (58)
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Thus, constraints can be written in the form (52) with gm1,m2
0 (a) = θ̂m1

am1
− θ̂m1

am2 and

qm1,m2
k,l = qm1,m2

k πl, where qm1,m2
k equals 1 if k = m1, −1 if k = m2, and 0 otherwise. �

This example can be extended to accommodate Farhi and Werning (2007)’s formula-

tion by setting the societal discount factor βP strictly larger than the private one βA. The

aggregator F incorporates the discount factor βP, while R incorporates βA. The con-

straint function remains the same.

Example 2. Atkeson-Lucas component planner with Markov shocks. The next exam-

ple is identical to Example 1, except that shocks evolve according to a Markov process

with kernel π. In this case, qm1,m2
k,l equals πm1,l if k = m1, −πm1,l if k = m2, and 0 other-

wise. These q weights do not in general satisfy eq. (53). Thus, the relative weighting of

future plans can differ across the objective and constraints. Consider the action path after

some history (· · · , θ̂k, θ̂l). The agent payoff associated with this path receives a weight

proportional to πk,l in the objective and the (k, m2)-th (m2 6= k) constraint, but a weight

proportional to −πm1,l in the (m1, k)-th (m1 6= k) constraint. Such variation in weighting

across constraints complicates the history dependence of the optimal allocation and the

recursive formulation necessary to find it. �

Example 3. Kocherlakota’s model of no commitment. The second example of Section 2

can be extended to an infinite-horizon setting to give the model of Kocherlakota (1996).

Everything is as before except that now agents m1 ∈ I live for an infinite number of

periods, have an outside utility option Vm1 : Θ → R in each period and face the per

period incentive constraints, for all t, θt−1 and m2 ∈ K,

v(cm1
t (θt−1, θ̂m2)) + β

∞

∑
r=1

βr−1 ∑
θr

v(cm1
t (θt−1, θ̂m2 , θr))P(θr |θ̂m2) ≥ Vm1(θ̂m2).

Identifying action plans with consumption allocations and setting βA = β, the current

incentive constraints can be expressed as:

G(α) =
{

v(am1
m2
)− Vm1(θ̂m2) + β ∑

l∈K

Rm1
l (α′

m2
)πm2,l

}
(m1,m2)∈M

≥ 0, (59)

where M = I × K. Thus, constraints can be written in the form (52) with gm1,m2
0 (a) =

v(am1
m2
)− Vm1(θ̂m2), qm1,m2

i,k,l = qm1,m2
i,k πk,l and qm1,m2

i,k = 1 if i = m1 and k = m2 and 0 other-

wise. It follows that the weights qm1,m2
i,k,l satisfy eq. (53).

Let f (θ, a) = 0 and set Fk(α) = ∑
∞
t=1 ∑Θt βt−1

P f (θt, at(θt))P(θt |θ̂k) = 0 for some

βP ∈ (0, 1). Then identifying Ω1 with the set of plans satisfying (59) one obtains the
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optimization: sup 0 subject to α ∈ Ω1. This is trivial if Ω1 is (assumed) non-empty. Its

constraint-perturbed variation identifies whether a given utility promise w ∈ R I is feasi-

ble or not:

Sj(w) =





supΩ1,j(w) ∑
K
k=1 Fk(α)πj,k if Ω1,j(w) 6= ∅

−∞ otherwise,

where Ω1,j(w) denotes the set of plans in Ω1 which deliver w to agents in shock state j.

Sj is then simply an indicator function for the set of incentive-feasible payoffs. The value

function from the objective-perturbed version of this problem gives the support function

of this payoff set.18,19
�

7 Constraint-perturbed incentive problems

This section considers incentive-constrained problems perturbed with initial utility promises

to private agents.

7.1 Constraint-perturbed problem

Agents are partitioned into two groups: I1 and I2. I1 consists of those agents for whom

each qm
i satisfies eq. (53). I2 consists of the remaining agents. Let N = |I1|+ K|I2|. Define

the constraint-perturbed problem by:

Sj(w) =

{
supα∈Ω1,j(w) ∑k Fk(α)πj,k if Ω1,j(w) 6= ∅

−∞ otherwise
(60)

where w ∈ RN and

Ω1,j(w) =

{
α ∈ Ω1

∣∣∣∣∣w
i = ∑

k∈K

Ri
k(α)πj,k, i ∈ I1, and wi

k = Ri
k(α), i ∈ I2

}
. (61)

w ∈ RN is referred to as a promise. Agents i ∈ I1 receive ex ante promises that do

not depend on the first period shock k; agents i ∈ I2 receive ex post utility promises that

18An alternative approach maximizes the utility of a player subject to incentive constraints and the de-
livery of utility promises to the other I − 1 players. This approach incorporates the continuation value
function of the maximized player into the constraint set. See Kocherlakota (1996) and Rustichini (1998).

19In the current example, as in Kocherlakota (1996), the outside utility option is exogenously given. Our
approaches can be readily extended to accommodate the case in which these are determined endogenously
as payoffs from continuation sub-game perfect equilibria. In this case, the B-operator of Abreu et al (1990)
is recovered as a Bellman operator on a space of indicator functions.
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do.20 (60) augments the original societal choice problem with additional promise-keeping

constraints (contained in (61)). Let Dom Sj = {w|Sj(w) > −∞} = {w : Ω1,j(w) 6= ∅}

denote the effective domain of Sj and let S = {Sj}j∈K. We note the following immediate

implication of our assumptions.

Lemma 1. Under Assumptions 2-5, −S ∈ W0 and, for each j, Dom Sj 6= ∅.

Proof. By Assumptions 3 and 4, there is some w such that α ∈ Ω1,j(w) 6= ∅. By Assump-

tion 2 and the definition of Sj, −Sj(w) < ∞. Hence, Dom Sj 6= ∅. By Assumption 5,

infw −Sj(w) > −∞ and so −Sj is proper. Since j was arbitrary, the result follows. �

7.2 Constraint-perturbed Bellman equations

Inspection of (60) reveals that it has essentially the same structure as the constraint per-

turbed problems considered in Section 5. This is easily seen by defining, for a fixed

j ∈ K, A0 = ∏
K
k=1 A(θ̂k), each Ak = Ω1, N = I1 ∪ (I2 × K), f0(a) = ∑

K
k=1 f (θ̂k , ak)πj,k,

fk(α
′
k) = ∑

K
l=1 Fl(α

′
k)πk,l , q0

k = βπj,k,

g0,h(a) =





∑
K
k=1 ri(θ̂k, ak)πj,k h = i ∈ I1

ri(θ̂k, ak) h = (i, k) ∈ I2 × K

gk,n(α
′
k) =





∑
K
k=1 R

i
l(α

′
k)πk,l n = i ∈ I1

Ri
l(α

′
k) n = (i, l) ∈ I2 × K,

pi
k,i = πj,k if i ∈ I1 and pi,k

k,i,l = πk,l if i ∈ I2. The objective, promise and incentive-

constraints may be re-expressed in terms of these functions and weights. Pursuing exactly

the line of argument in Section 5, let

Ψj(w) =




(a, w′)

∣∣∣∣∣∣∣

wi = ∑K[ri(θ̂k, ak) + βAw′
i,k]πj,k, i ∈ I1

wi,k = ri(θ̂k, ak) + βA ∑K w′
i,k,lπk,l, i ∈ I2, k ∈ K

gm
0 (a) + βA ∑I1,K qm

i,kw′
i,k + βA ∑I2,K,K qm

i,k,lw
′
i,k,l ≥ 0, m ∈ M





.

Then as a corollary to Proposition 6, we obtain the following result.

20In principle any agent could receive an ex ante or ex post utility promise. But the subsequent recursive
formulation relies on ex ante promises for I1 agents and ex post promises for I2.
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Corollary 3. Define TS : −W0 → −W0 by TS = {TS
j }j∈K with for all W ∈ −W0,

TS
j (W)(w) =





sup (a,w′)∈Ψj(w) ∑k∈K

{
f (θ̂k, ak) + βWk(w

′
k)
}

πj,k Ψj(w) 6= ∅

−∞ otherwise.

Then: S = TS(S).

The first period incentive constraints in (60) may be dualized to give:

SD
j (w) = inf

RM×RN

sup
A×RKN

∑
k∈K

{
f (θ̂k , ak) + βPSk(w

′
k)
}

πj,k (62)

+ ∑
i∈I1

ζi

[

∑
k∈K

[ri(θ̂k, ak) + βAw′
i,k]πj,k − wi

]

+ ∑
i∈I2

∑
k∈K

ζi
k

[
ri(θ̂k, ak) + βA ∑

l∈K

w′
i,k,lπk,l − wi

k

]
πj,k

+∑
m

ηm

[
gm

0 (a) + βA ∑
I1,K

qm
i,kw′

i,k + βA ∑
I2,K

qm
i,k,lw

′
i,k,l

]
.

Then as a corollary to the discussion following Proposition 6 we obtain the following

result.

Corollary 4. Define TS,D : −W0 → −W0 by TS,D = {TS,D
j }j∈K with for all W ∈ −W0,

TS,D
j (W)(w) = inf

RM×RN

sup
A×RKN

∑
k∈K

{
f (θ̂k , ak) + βPWk(w

′
k)
}

πj,k (63)

+ ∑
i∈I1

ζi

[

∑
k∈K

[ri(θ̂k, ak) + βAw′
i,k]πj,k − wi

]

+ ∑
i∈I2

∑
k∈K

ζi
k

[
ri(θ̂k, ak) + βA ∑

l∈K

w′
i,k,lπk,l − wi

k

]
πj,k

+ ∑
m

ηm

[
gm

0 (a) + βA ∑
I1,K

qm
i,kw′

i,k + βA ∑
I2,K

qm
i,k,lw

′
i,k,l

]
.

Then: SD = TS,D(S).
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8 Objective-perturbed incentive problems

This section considers dynamic incentive problems whose objectives are perturbed with

weighted utilities of private agents.

8.1 Objective-perturbed problem

Define the objective-perturbed problem:

Vj(ζ) = sup
α∈Ω1

∑
k∈K

Fk(α)πj,k + ∑
i∈I1

ζi ∑
l∈K

Ri
k(α)πj,k + ∑

i∈I2

∑
k∈K

ζi
kR

i
k(α)πj,k (64)

and let V = {Vj}j∈K. The problem in eq. (64) perturbs the objective from the date t societal

problem (55) with weighted sums of private payoffs Ri
k(α). The weights are collected into

ζ ∈ RN. For agents i ∈ I2, these weights are allowed to depend on the current shock θ̂k.

Assumptions 1-4 ensure that Ω1 is non-empty and that the objective in eq. (64) is well

defined and real-valued on Ω1. Hence, Vj : RN → R ∪ {∞} is also well defined, though

possibly infinite-valued. Let Dom Vj = {ζ ∈ RN | Vj(ζ) < ∞} ⊆ RN denote the effective

domain of Vj and Dom V = {(ζ, j) ∈ RN ×K|Vj(ζ) < ∞} the effective domain of V.

8.2 Objective-perturbed Bellman equations

Problem (64) has the same structure as the objective-perturbed problems considered in

Section 5. The following result is derived as a corollary to Proposition 7.

Corollary 5. Define the operator TV : W0 → W0 by TV = {TV
j }j∈K with for all W ∈ W0,

TV
j (W)(ζ) = sup

A×RKN

inf
RM

+×RKN

{
f (θ̂k , ûk) + ∑

m∈M

ηm

πj,k
gm

0,k(âk) + ∑
i∈I1

ζiri(θ̂k, âk) + ∑
i∈I2

ζi
kri(θ̂k, âk)

+βP

(
W(zk) +

βA

βP
∑

k∈K

〈
ζ′j,k(ζ, η) − zk, wk

〉)}
πj,k, (65)

where 〈x, y〉 = ∑i∈I1
xiyi + ∑i∈I2

∑l∈K xi,lyi,lπk,l, wk = {{wi
k}I1

, {wi
k,l}I2×K} and

ζi′
j,k(ζ, η) =

βA

βP

[
ζi + ∑

m∈M

ηmqm
i,k

πj,k

]
, i ∈ I1, j and k ∈ K, (66)

ζi′
j,k,l(ζ, η) =

βA

βP

[
ζi

k + ∑
m∈M

ηmqm
i,k,l

πj,kπk,l

]
, i ∈ I2, j, k and l ∈ K.

Then if −S ∈ W, V = TV(V).
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Alternatively, dualizing the first period recursive incentive and promise-keeping con-

straints, we obtain:

VD
j (ζ) = inf

RM
+×RKN

sup
A×RKN

∑
k∈K

{
f (θ̂k, âk) + ∑

m∈M

ηm

πj,k
gm

0,k(âk) + ∑
i∈I1

ζiri(θ̂k, âk) + ∑
i∈I2

ζi
kri(θ̂k, âk)

+βP

(
V(zk) +

βA

βP
∑

k∈K

〈
ζ′j,k(ζ, η)− zk, wk

〉)}
πj,k. (67)

Then, as a corollary to Proposition 8 we have the following result.

Corollary 6. Define the operator TV,D : W0 → W0 by TV,D = {TV,D
j }j∈K with

TV,D
j (W)(ζ) = inf

RM
+

sup
A

∑
k∈K

{
f (θ̂k , âk) + ∑

m∈M

ηm

πj,k
gm

0,k(âk) + ∑
i∈I1

ζiri(θ̂k, âk)

+ ∑
i∈I2

ζi
kri(θ̂k, âk) + βPW(ζ′j,k(ζ, η))

}
πj,k, (68)

then VD = TV,D(V).

9 Duality relations for incentive problems

9.1 Duality of value functions and state spaces

Duality results from Section 4 are applicable. The following propositions are immediate

consequences of Lemma 1 and Propositions 9 to 10.

Proposition 12. Given Assumptions 2-5, 1) V = C[−S] and V ∈ W; 2) −S = C[V] if −S ∈ W

and 3) each Dom Vj is convex and non-empty. Also, Dom Vj = RN if and only if epi (−Sj)

contains no non-vertical half-lines. A sufficient condition for the latter is that each Fk is bounded

above and each Ri
k is bounded.

Proposition 13. Assume that VD ∈ W0, then 1) −SD = C[VD] and −SD ∈ W; 2) VD =

C[−SD ] if VD ∈ W and 3) each Dom SD
j is convex and non-empty. Also, Dom SD

j = RN if and

only if epi (VD
j ) contains no non-vertical half-lines.

Earlier remarks on functions and their conjugates are applicable here. V and −SD are

convex and lower semicontinuous (given the properness of −S and VD). Other properties

are inherited via conjugacy arguments. In particular, conditions for strict convexity and

differentiability of −Sj have been established in several settings21 and so, under these

21For example, Atkeson and Lucas (1992), Atkeson and Lucas (1995), Farhi and Werning (2007).
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conditions, Vj is strictly convex and continuously differentiability on the interior of its

domain as well.

In summary, each value function (and effective domain) can be characterized directly

or via the conjugacy properties of the other. In a given application, the most convenient

route may be chosen.

9.2 Conjugacy of TV and TS.

Proposition 11 has immediate application to dynamic incentive problems. It implies that,

for W ∈ W0,

TV(W) = C[−TS(−C[W])] and TS,D(W) = −C[TV,D(C[−W])]. (69)

If TS : W → W, then, for W ∈ W, −TS(−W) = C[TV(C[W])] and the Bellman operators

TS and TV are conjugate in the sense that (modulo sign changes) applying the Legendre-

Fenchel transform, then one of the operators and then the transform again is equivalent

to applying the other operator. If, in addition, TV,D = TV on W, then TV,D and TS are

conjugate as well.

9.3 Conjugacy in value iteration

Ultimately our goal in deriving Bellman equations is to use them to solve problems. This

section begins our discussion of this by relating value iteration under the various Bell-

man operators introduced in the preceding discussion. The corollary is an immediate

implication of eq. (69) and the above discussion.

Corollary 7. Suppose that −S0 ∈ W and for r = 0, 1, . . ., −Sr+1 = −TSSr ∈ W. Then for

r = 0, 1, . . ., C[−Sr+1] = TVC[−Sr ]. If, in addition, TV,D = TV on W, then for r = 0, 1, . . .,

C[−Sr+1] = TV,DC[−Sr ]. Suppose that V0 ∈ W and for r = 0, 1, . . ., Vr+1 = TV,DVr ∈ W.

Then for r = 0, 1, . . ., −C[Vr+1] = TS,D(−C[Sr ]). If, in addition, TS = TS,D on W, then for

r = 0, 1, . . ., −C[Vr+1] = TS(−C[Vr ]).

Proof. If −Sr ∈ W, then TV(C[−Sr ]) = C[−TS(−C2[−Sr])] = C[−TS(Sr)] = C[−Sr+1].

The first part of the result then follows by induction from r = 0. The second part of the

result is immediate. The remainder follows by an analogous argument. �

Consequently, if repeated application of TS to S0 induces a sequence of functions

whose negatives are in W, then repeated application of TV to C[−S0] induces the corre-

sponding sequence of conjugates. If TV,D = TV on W, then of, course, the same sequence
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of conjugates is generated by repeated application of TV,D. Similar relations hold with

respect to iteration on TV,D from V0 and TS,D from −C[V0].

We are led to consider whether convergent-TS (resp. -TV,D) value iteration implies

convergent-TV (resp. -TS,D) value iteration.

Definition 2. A sequence of functions { f r}∞
r=1, f r : RN → R is said to epiconverge to

f : RN → R written f r e
→ f if for any x, 1) ∀xr → x, lim infr f r(xr) ≥ f (x) and 2)

∃xr → x, lim supr f r(xr) ≤ f (x). f is called the epi-limit of { f r}∞
r=1.

Extending this definition slightly, we will say that a sequence {Wr} in W0 or W epi-

converges to W (in W0 or W) if each Wr,k
e
→ Wk. We will write Wr

e
→ W. Epiconvergent

sequences of functions have several desirable properties. In particular, the limit of a se-

quence of minimizers for an epiconvergent function sequence is the minimizer of the

epi-limit.22 Epiconvergence also relates well to the conjugation operation. Specifically, by

a well known theorem of Wijsman, the Fenchel transform is epi-continuous on W, i.e. if

the functions Wr and W belong to W, then Wr
e
→ W ⇐⇒ C[Wr]

e
→ C[W]. This result has

the following implication for our setting.

Proposition 14. Let −S0 ∈ W and for r = 0, 1, . . ., Sr+1 = TS(Sr). Suppose that each −Sr ∈

W and that −Sr
e
→ −S∞. Let Vr = C[−Sr ]. Then Vr+1 = TV(Vr) and Vr

e
→ V∞ = C[−S∞].

Let V0 ∈ W and for r = 0, 1, . . . Vr+1 = TV,D(Vr). Suppose that each Vr ∈ W and that

Vr
e
→ V∞. Let Sr = −C[Vr]. Then Sr+1 = TS,DSr and −Sr

e
→ −S∞ = C[V∞].

In summary, epiconvergent TS (resp. TV,D) value iteration from some W0 ∈ W, im-

plies epiconvergent TV (resp. TS,D) value iteration from C[−W0] (resp. −C[W0]). Modulo

sign changes, the limit of the latter iteration is the conjugate of the limit of the former.

Contractive relations Recall that the Fenchel transform is a one-to-one mapping on

W with C[W] = C−1[W], W ∈ W. Let (D, ρ) with D ⊆ W be a metric space. Then

(C(D), φ) with φ(W ′, W ′′) = ρ(C−1(W ′), C−1(W ′′)) = ρ(C(W ′), C(W ′′)) is isometric to

(D, ρ). In particular, if (D, ρ) is complete, then so is (C(D), φ). Suppose that S ∈ D,

(D, ρ) is complete, TS : D → D and TS is contractive on (D, ρ). Then, by the contrac-

tion mapping theorem, S is the unique fixed point of TS on D and for any sequence

{Sr} with S0 ∈ D and Sr+1 = TSSr, Sr
ρ
→ S. By Corollary 7, the sequence of func-

tions Vr+1 = TVVr, with V0 = C[−S0], corresponds to the sequence of conjugates of {Sr}.

Hence, φ(Vr, C[−S]) = ρ(Sr , S) and so iterative application of TV to C[−S0] induces a

22For this reason, epiconvergence is more useful than pointwise convergence which relates poorly to
maximization and minimization. On the other hand, uniform convergence (or weighted norm convergence)
which relates well is stronger and more restrictive.
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sequence that φ-converges to C[−S]. If TV,D = TV on C[D], then iterative application of

TV,D to C[−S0] converges to C[−S].

10 Dynamic programming

The previous section related convergent value iteration across cases. This section gives

sufficient conditions for such convergence. Section 10.1 considers TS-value iteration and

provides sufficient conditions for it to generate an epiconvergent sequence (with limit

−S) on W. Epiconvergence of TV-value iteration (to V) then follows from the results in

the preceding section. The key condition is the existence of a bounding function S0 for

S that has bounded level sets and that becomes arbitrarily negative as expected future

utilities become arbitrarily large. This condition subsumes the stronger requirement that

agents have bounded utilities used in, for example, Abreu et al (1990).

Epiconvergence is well suited to handling the convergence of possibly extended real-

valued functions. However, when the effective domain of the relevant value function

is known, it is sometimes possible to refine the set of candidate value functions so that

the Bellman operator is a contractive upon it. In particular, we have previously noted

that the effective domain of the objective-perturbed value function is all of RN when the

social objective is bounded above and agent utilities are bounded. Section 10.2 develops

contractive arguments for this case.

10.1 Level bounded problems

Let W = {W = {Wk}|Wk : RN → R} denote the set of extended real valued functions

with domain K × RN. For W and W ′ ∈ W, let W ≥ W ′ denote for all k, w, Wk(w) ≥

W ′
k(w). For W ∈ W, define U(W) = {Uj(W)}j∈K, where:

Uj(W)(w, a, w′) :=





∑k∈K

{
f (θ̂k, ak) + βPWk(w

′
k)
}

πj,k if Ψj(w) 6= ∅

−∞ otherwise.

Given u ∈ R, levuUj(W)(w, ·) := {(a, w′)|Uj(W)(w, a, w′) ≥ u} is called the u-level

set of Uj(W)(w, ·). Uj(W)(w, ·) is said to be level bounded if for every u ∈ R the set

levuUj(W)(w, ·) is bounded (and possibly empty). Uj(W) is said to be level bounded lo-

cally in w if for each ŵ ∈ RN and u ∈ R there is a neighbourhood V of ŵ and a bounded

set B such that levuUj(W)(w, ·) ⊂ B for each w ∈ V. If each Uj(W), j ∈ K is level bounded

locally in w, then U(W) is said to be locally level bounded in w. Clearly, if each f (θ̂k, ·)
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and Wk are level bounded, then Uj(W) is level bounded locally in w.

Lemma 2. Let W ≥ W ′ ∈ W. If U(W) is level bounded locally in w, then U(W ′) is level

bounded locally in w.

Proof. See Appendix. �

Lemma 3. Assume that Uj(W) 1) belongs to −W0, 2) is upper semicontinuous and 3) is level-

bounded locally in w. Then TS
j (W) belongs to −W0 and is upper semicontinuous. In addition,

if TS
j (W)(w) > −∞, then Γj(w) = arg min Uj(W)(w, ·) is non-empty and compact, otherwise

it is empty. If (av , w
′v) ∈ Γj(w

v), wv → w and TS
j (w

v) → TS
j (w) > −∞, then (av, w

′v) is

bounded and its cluster points lie in Γj(w).

Proof. See Appendix. �

The following assumption is placed on primitives in the remainder of the section.

Assumption 6. Each function f (θ̂k, ·) is upper semicontinuous and bounded above on A(θ̂k).

Remark 3. Much of the dynamic incentive literature assumes continuity of the social ob-

jective functions f (θ̂k , ·). It is also standard to identify the latter with a bounded sum of

agent utilities or a sum of agent utilities net of a resource costs that is bounded above. All

of the previously described examples satisfy Assumption 6.

Theorem 8. Let Assumption 6 holds and let S0 ∈ −W0 be upper semicontinuous. Suppose that

1) Uj(S0) is level bounded locally in w, 2) S0 ≥ TS(S0), and 3) S0 ≥ S. For n = 0, 1, 2, . . ., let

Sn+1 = TSSn. Then the sequence {Sn} has a pointwise limit S∞ ≥ S with S∞ = TSS∞.

Proof. See Appendix. �

Given W ∈ W, let W(θ̂k, w) := Wk(w). We will call a function W ∈ W coercive in

expectation if for all j ∈ K and {wt+1 : Θt → RN} such that lim βt
AE[‖wt+1‖|θ0 = θ̂j] 6= 0,

βt
PE[W(θt , wt+1(θ

t))|θ0 = θ̂j] → ∞.

Remark 4. Coercivity in expectation is satisfied if each Wk is finite on a bounded set and

is otherwise ∞. The negative of the true value function S satisfies this condition when

agent utilities are bounded. Alternatively, coercivity in expectation is satisfied if each

Wk is proper, lower semicontinuous, level bounded and convex (in which case it is level

coercive, i.e. lim inf‖w‖ Wk(w)/‖w‖ > 0, see Rockafellar and Wets (1998), p. 92).

Theorem 9. Let the assumptions of Theorem 8 hold. Assume additionally that −S0 ∈ W0 is

coercive in expectation. For n = 0, 1, . . ., let Sn+1 = TSSn. Then the sequence of functions of

{Sn} epiconverges to S.
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Proof. See Appendix. �

We say that the problems defined by TSW are concave-like if for each j, (w0, a0, w0′),

(w1, a1, w1′) and λ ∈ [0, 1], there is a (aλ , wλ′) such that Uj(W)(λw0 + (1 − λ)w1, aλ, wλ′)

≥ λ Uj(W)(w0 , a0, w0′) + (1 − λ) Uj(W)(w, a1 , w1′). Note that concave-likeness does not

require that aλ and wλ′ are convex combinations of a0 and a1 and w0′ and w1′. It is easy to

see that if the problems defined by TS(W) are concave-like, then TS(W) is concave.

Assumption 7. If −W ∈ W, then the family of problems defined by TS(W) are concave-like.

The following result is then immediate.

Theorem 10. Under Assumption 7 and the assumptions of Theorem 9, the sequence of functions

{−Sn} epiconverges to −S and {Sn} ∪ {S} ⊂ W.

Proof. Follows from preceding discussion, Theorem 9 and the fact that set of convex

functions is closed under pointwise convergence. �

Hence, from our earlier results, under the conditions of Theorem 10 the sequence {Vn}

with V0 = C[−S0] and, for n = 0, 1, . . ., Vn+1 = TVVn epiconverges to C[−S]. Moreover,

following the argument from Section 4, V = C[−S] is the true objective perturbed value

function. Also, if TV,D = TV , then V may be obtained by iterating on TV,D from C[−S].

10.2 Contraction mapping based approaches (Preliminary)

It is sometimes possible to refine the set of candidate value functions so that the Bellman

operator is contractive upon it. Sharper characterizations of the true value function and

rates of convergence for value iteration are then available.

As had been emphasized, the optimal value functions from dynamic incentive prob-

lems are often unbounded and extended real valued. A further difficulty concerns the

fact that the conventional theorem of the maximum is often not available because the

constraint correspondence is not compact-valued or upper hemicontinuous. In this sec-

tion tighter restrictions are made on the problem to alleviate these difficulties.

The following assumptions are made.

Assumption 8. (Bounds) The functions ri(θ̂k, ·) have finite infima and suprema given by ri
k and

ri
k. For each θ̂k, f is bounded above on Graph A.

Assumption 9. (Convexity) The problem (64) is convex-like with respect to perturbations of the

incentive constraints, for example f (θ, ·) is concave for all θ, ri(θ, ·) is affine and G is concave.
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Assumption 10. (Slater) There is an α ∈ Ω such that G(α) > 0.

Assumption 8 ensures that each Vj : RN → R is convex and continuous. Assumptions

9 and 10 guarantee that V = TV,D(V). Thus, use can be made of the objective-perturbed,

dual Bellman operator TV,D. The convenient feature of this operator is that it can be

written as TV,D = {TV,D
j }j∈K,

TV,D
j (W)(ζ) = inf

RM
+

∑
k∈K

{
Jk(ζ, η) + βPW(ζ′j,k(ζ, η))

}
πj,k, (70)

where:

Jk(ζ, η) = sup
A(θ̂k)

{
f (θ̂k, âk) + ∑

m∈M

ηm

πj,k
gm

0,k(âk) + ∑
i∈I1

ζiri(θ̂k, âk) + ∑
i∈I2

ζi
kri(θ̂k, âk)

}
.

Consequently, the "supremum" operation is cleanly distributed across periods and the

dynamic link is purely through the weight ζ′ and the multiplier choice η. If W = {Wj}

with each Wj convex, real-valued and, hence, continuous on RN, then TV,D
j (W) is easily

shown to be convex, real-valued and continuous on RN also.

A remaining difficulty is that the function V is unbounded, even if real-valued. One

approach to dealing with this is to enlarge the space of candidate value functions to in-

clude those that are norm-bounded with respect to a weighting function and then to show

that the growth of optimal multipliers is bounded with respect to this norm. This is the

approach taken by Marcet and Marimon (2011). An alternative approach is to consider

candidate value functions contained between two bounding functions. If the bounds are

tight enough, then the relevant space of candidate value functions may a complete metric

space with respect to the usual sup-metric. We sketch this approach below.23

Assume the existence of constraint functions G and G such that:

{α ∈ Ω|G(α) ≥ 0} ⊂ {α ∈ Ω|G(α) ≥ 0} ⊂ {α ∈ Ω|G(α) ≥ 0}.

Let Ω(α) denote all continuations of a given plan α and let

Ω = {α ∈ Ω|∀α′ ∈ Ω(α), G(α′) ≥ 0}.

Ω is defined analogously from G. Then Ω ⊂ Ω1 ⊂ Ω. For each j, define the corresponding

23The two approaches may be combined, see Sleet and Yeltekin (2010a). In addition, Sleet and Yeltekin
(2010a) show that Marcet and Marimon’s approach is equivalent to restricting attention to candidate value
functions within {W : RN → R, supζ∈RN |W(ζ)|/‖(1, ζ)‖ < ∞} with metric induced by the weight func-

tion τ(ζ) = ‖(1, ζ)‖. Sleet and Yeltekin (2010a) use more general and flexible weight functions.
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more and less constrained problems:

V j(ζ) = sup
Ω

∑
k∈K

Fk(α)πj,k + ∑
i∈I1

ζi ∑
k∈K

Ri
k(α)πj,k + ∑

i∈I2

∑
k∈K

ζi
kR

i
k(α)πj,k

V j(ζ) = sup
Ω

∑
k∈K

Fk(α)πj,k + ∑
i∈I1

ζi ∑
k∈K

Ri
k(α)πj,k + ∑

i∈I2

∑
k∈K

ζi
kR

i
k(α)πj,k.

Suppose that V j and V j are convex and real-valued on RN. Define:

V := {W = {Wk}|each Wk : RN → R is convex and V ≤ W ≤ V}.

It is evident that V ∈ V. Also,

V j ≤ TV,D
j (V) ≤ TV,D

j (V) ≤ TV,D
j (V) ≤ V j, (71)

(see Lemma A1 in the Appendix for the proof), so that given the preceding discussion:

TV,D : V → V.

Assumption 11. There is an L ∈ R+ such that: sup(j,ζ)∈Z V j(ζ) − V j(ζ) < L.

Given a pair of bounding problems with convex value functions satisfying Assump-

tion 11, define V as above and let d : V × V → R+ be such that d(W, W ′) = supZ

|Wj(ζ)−W ′
j (ζ)|, W, W ′ ∈ V. (V, d) is then a complete metric space. A mapping T : V →

V is contractive if for any W and W ′ in V, d(T(W), T(W ′)) ≤ δd(W, W ′), δ ∈ (0, 1). The

following result is now routine.

Proposition 15. Assume the existence of a pair of more and less constrained problems with convex

value functions satisfying Assumption 11. Define V as above. Then TV,D is contractive on (V, d)

and if W0 ∈ V, the sequence {Ws} with Ws+1 = TV,DWs converges in the d-metric to V. Also,

V is the unique function in V satisfying V = TV,D(V).

The remaining question concerns the determination of good bounding problems. This

issue is taken up in Sleet and Yeltekin (2010a).

11 Approximation

Convex/concave functions lend themselves to piecewise linear inner and outer approxi-

mations.24 As emphasized by Judd et al (2003), such approximation of iterates interacts

24An outer (resp. inner) approximation to a convex function lies everywhere below (resp. above) this
function. An outer (resp. inner) approximation to a concave function lies everywhere above (resp. below)
this function.
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with the monotone nature of the Bellman operator to yield inner or outer limiting approx-

imations to the true value function (given concavity or convexity).

Let − f ∈ FN and f ∗ = C[− f ]. A piecewise linear outer approximation f̂ to the concave

function f can be obtained by fixing a finite set of points {ẑq}q∈Q in RN and forming the

"approximate conjugate":

− f̂ (w) = sup
Q

{〈w, ẑq〉 − f ∗(ẑq)} ≤ sup
RN

{〈w, z〉 − f ∗(z)} = − f (w).

Each hq(w) = 〈w, ẑq〉 − f ∗(ẑq) may be interpreted as a hyperplane with normal ẑq. Thus,

− f̂ (w) is the convex hull formed from these hyperplanes. Alternatively, substituting for

f ∗, f̂ may be determined as: f̂ (w) = −D[− f ](w), where D(− f )(w) = supQ infRN{〈w −

w′, ẑq〉 − f (w′)}. The outer approximation operator, D, is a composition of the approxi-

mate conjugate and conjugate operators and is monotone increasing on FN (when this set

is ordered in the usual pointwise way).

A piecewise linear inner approximation f̂ ∗ to the convex function f ∗ may be obtained

by forming the conjugate of the approximation f̂ , f̂ ∗(z) = C[− f̂ ](z) = D[ f ∗](z) =

supRN infQ{〈w, (z − ẑq)〉 + f ∗(ẑq)} ≥ f ∗(z). Thus, the inner approximation operator D

reverses the composition of approximate conjugate and conjugate operators relative to

the outer approximation operator D. f̂ ∗ also has a geometric interpretation: its epigraph

is the convex hull of the union of halflines {(ẑq, v)| f ∗(ẑq) ≤ v}. Of course, by applying

D to − f and D to f ∗, inner approximations to f and outer approximations to f ∗ may be

obtained. Figure 4 illustrates the application of D and D.

ẑ1

ẑ2

ẑ3

ẑ4

f

w
(a) −D(− f )

ẑ1 ẑ2 ẑ3 ẑ4 ẑ5

f ∗

z
(b) D( f ∗)

Figure 4: Outer and inner approximation
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The operators D and D may be combined with the Bellman operators described in

previous sections. Iteration of the resulting approximate Bellman operators can yield

an epiconvergent value iteration whose limit is an outer or inner approximation to the

true value function. We sketch an example in which D is combined with TV = {TV
j }.

Let {ẑq}Q denote a finite set of weights and consider a piecewise linear function W0 ≥ V

satisfying for each j, W0
j = D[W0

j ] ≥ TV
j (W

0) = W1
j . Then, the monotonicity of D, TV and

the fixed point property of V implies: W0
j = D[W0

j ] ≥ D[TV
j (W0)] = Ŵ1

j ≥ Vj, where Ŵ
p
j ,

p = 1, 2, . . . , is the p-th iterate of the approximate Bellman operator. The monotonicity of

the approximate operator DTV then implies that the sequence of approximations {Ŵ p}

satisfies: W ≥ Ŵ p ≥ Ŵ p+1 ≥ . . . ≥ V. Thus, the pointwise (and epigraphical) limit of the

sequence limp Ŵ p is an inner approximation (upper bound) to V.

12 Conclusion

This paper derives and relates alternative recursive formulations of dynamic incentive

problems. Under appropriate separability assumptions, primal formulations that use

promises as state variables are available. These formulations incorporate promise-keeping

and recursive incentive constraints either or both of which may be dualized to obtain re-

lated recursive dual problems. To recover primal values, from a recursive dual problem

additional assumptions are required (e.g. concave or convex-likeness). Still further as-

sumptions (e.g. strict concavity) or an extension of the methods described here25 are

needed to obtain optimal policies. These represent disadvantages of the recursive dual

approaches. On the other hand, recursive dual problems are less likely to involve value

functions that are extended real valued.

Our results indicate the extent to which recursive primal and recursive dual approaches

can be interchanged and clarify the connections between approaches taken elsewhere in

the literature. In addition, our analysis of epiconvergent value iteration relaxes bounded-

ness assumptions needed for contraction mapping based analyses of value iteration.
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Appendix A: Proofs

Proof of Prop. 1 Let a′ = (a′0, {a′k}) ∈ Ω1 and for k ∈ K define w′
k = {gk,n(a

′
k)}. Then

since a′ ∈ Ω1 implies for k ∈ K, gM+k
k (a′k) ≥ 0, a′k ∈ Φk(w

′
k). Hence, Sk(w

′
k) ≥ fk(a

′
k).

Also, since for each m, gm
0 (a

′
0) + ∑

K
k=1 ∑

N
n=1 w′

k,nqm
k,n = gm

0 (a
′
0) + ∑

K
k=1 ∑

N
n=1 gk,n(a

′
k)q

m
k,n ≥
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0, (a′0, {w′
k}) ∈ Ψ0 and so supΨ0

f0(a0) + ∑
K
k=1 Sk(wk)q

0
k ≥ f0(a

′
0) + ∑

K
k=1 Sk(w

′
k)q

0
k ≥

∑
K
k=0 fk(a

′
k)q

0
k . Since a′ was an arbitrary element of Ω1, supΦ0

f0(a0) + ∑
K
k=1 Sk(wk)q

0
k ≥ P.

Conversely, if (a′0, {w′
k}) ∈ Ψ0, then either Φk(w

′
k) = ∅ for some k ∈ K in which case

f0(a0)+∑
K
k=1 Sk(wk)q

0
k = −∞ ≤ P or Φk(w

′
k) 6= ∅ for all k ∈ K. In the latter case, for each

k ∈ K, let a′k ∈ Φk(w
′
k), then (a′0, {a′k}) ∈ Ω1 and so P ≥ f (a′0)q

0
0 + ∑

K
k=0 fk(a

′
k)q

0
k . Since

the a′k are arbitrary elements of Φk(w
′
k), P ≥ f (a′0)q

0
0 + ∑

K
k=0 Sk(w

′
k)q

0
k . Since (a′0, {w′

k}) is

an arbitrary element of Ψ0, P ≥ supΨ0
f (a0)q

0
0 + ∑

K
k=0 Sk(wk)q

0
k . �

Proof of Prop. 7 Following a similar argument to that used in proving Proposition 1,

V0(z) = sup
Ψ0

f0(a0)q
0
0 +

K

∑
k=1

Sk(wk)q
0
k +

N

∑
h=1

zh

[
gh

0(a0) +
K

∑
k=1

N

∑
n=1

wk,n ph
k,n

]
.

Incorporating the first period incentive constraints into a Lagrangian and rearranging:

V0(z) = sup
A0×RKN

inf
RM

+

f0(a0)q
0
0 +

K

∑
k=1

Sk(wk)q
0
k +

N

∑
h=1

zh

[
gh

0(a0) +
K

∑
k=1

N

∑
n=1

wk,n ph
k,n

]

+
M

∑
m=1

ηm

[
gm

0 (a0) +
K

∑
k=1

N

∑
n=1

wk,nqm
k,n

]

= sup
A0×RKN

inf
RM

+

f0(a0)q
0
0 +

N

∑
h=1

zhgh
0(a0) +

M

∑
m=1

ηmgm
0 (a0)

+
K

∑
k=1

Sk(wk)q
0
k +

K

∑
k=1

N

∑
n=1

[
M

∑
m=1

ηmqm
k,n +

N

∑
h=1

zh ph
k,n

]
wk,n

Since −S ∈ W, for each k ∈ K, Sk(wk) = infRN − ∑
N
n=1 wk,nzk,n + Vk(zk) and so, after

substitution and rearrangement,

V0(z) = sup
A0×RKN

inf
RM

+×RKN

f0(a0)q
0
0 +

N

∑
h=1

zhgh
0(a0) +

M

∑
m=1

ηmgm
0 (a0)

+
K

∑
k=1

Vk(zk)q
0
k +

K

∑
k=1

N

∑
n=1

[
ζ′k,n(z, η)− zk,n

]
q0

kwk,n

as required. �
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Proof of Prop. 11. Fix W ∈ W0. Using the definitions of TV,D and ζ′ and rearranging:

TV,D(C[W])(z) = inf
RM

+

[
sup

a0

{
f0(a0)q

0
0 +

M

∑
m=1

ηmgm
0 (a0)q

m
0 +

N

∑
h=1

zhg0,h(a0)

}

+ ∑
k∈K

sup
RN

{〈ζ′k(z, η), w〉+ Wk(w)}q0
k

]

= inf
RM

+

sup
A0×RKN

{[
f0(a0)q

0
0 +

K

∑
k=1

Wk(wk)q
0
k

]
+

N

∑
h=1

zh

[
g0,h(a0) +

K

∑
k=1

N

∑
n=1

wk,n ph
k,n

]

+
M

∑
m=1

ηm

[
gm

0 (a0)q
m
0 +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n

]}
.

Combining this with C[TV,D(C[−W])](w) = − supRN

{
∑

N
h=1 zhwh − TV,D(C[−W])(z)

}

and rearranging yields:

−C[TV,D(C[−W])](w) = inf
RN



−

N

∑
h=1

zhwh + inf
RM

+

sup
A0×RKN

{[
f0(a0)q

0
0 +

K

∑
k=1

Wk(wk)q
0
k

]

+
N

∑
h=1

zh

[
g0,h(a0) +

K

∑
k=1

N

∑
n=1

wk,nph
k,n

]
+

M

∑
m=1

ηm

[
gm

0 (a0)q
m
0 +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n

]}}
.

= inf
RN×RM

+

sup
A0×RKN

{[
f0(a0)q

0
0 +

K

∑
k=1

Wk(wk)q
0
k

]

+
N

∑
h=1

zh

[
g0,h(a0) +

K

∑
k=1

N

∑
n=1

wk,nph
k,n − wh

]
+

M

∑
m=1

ηm

[
gm

0 (a0)q
m
0 +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n

]}

= TS,D(W)(w).

Now, TS(−C[W])(w) = supΦ(w) f0(a0)q
0
0 − ∑

K
k=1 supRN

{
∑

N
n=1 wk,nzk,n + W(zk)

}
and so,

C[−TS(−C[W])](z) = sup
RN

(
N

∑
h=1

zhwh + sup
Φ0(w)

[
f0(a0)q

0
0 −

K

∑
k=1

sup
RN

{
N

∑
n=1

wk,nzk,n + W(zk)

}
q0

k

])
.

Collecting the supremum operations together and using the definition of Φ0 and Ψ0 gives:

C[−TS(−C[W])](z) = sup
Ψ0

(
N

∑
h=1

zh

[
g0,h(a0) +

K

∑
k=1

N

∑
n=1

wk,nph
k,n

]
+ f0(a0)q

0
0

−
K

∑
k=1

sup
RN

{
N

∑
n=1

wk,nzk,n + W(zk)

}
q0

k

)
.
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Hence, bringing the incentive constraints into the Lagrangian:

C[−TS(−C[W])](z) = sup
A0×RKN

inf
RM

+

(
f0(a0)a

0
0 +

N

∑
h=1

zh

[
g0,h(a0) +

K

∑
k=1

N

∑
n=1

wk,nph
k,n

]

−
K

∑
k=1

sup
RN

{
N

∑
n=1

wk,nzk,n − W(zk)

}
q0

k +
M

∑
m=1

ηm

[
gm

0 (a0)q
m
0 +

K

∑
k=1

N

∑
n=1

wk,nqm
k,n

])
.

Grouping infimum operations together and rearranging gives:

C[−TS(−C[W])](z) = sup
A0×RKN

inf
RM

+×RKN

[(
f0(a0)q

0
0 +

N

∑
h=1

zhg0,h(a0) +
M

∑
m=1

ηmgm
0 (a0)q

m
0

)

+
K

∑
k=1

(
N

∑
n=1

wk,n

(
N

∑
h=1

zh
ph

k,n

q0
k

+
M

∑
m=1

ηm

qm
k,n

q0
k

− zk,n

)
+ W(zk)

)
q0

k

]

= TV(W)(z).

The remaining equalities in the proposition are immediate. �

Proof of Lemma 2. If W ≥ W ′ and levuUj(W)(w, ·) ⊂ B for all w ∈ V a neighborhood of

ŵ, then levuUj(W
′)(w, ·) ⊂ levuUj(W)(w, ·) ⊂ B. Thus, if Uj(W)(w, ·) is level bounded

locally in w, so is Uj(W
′)(w). �

Proof of Lemma 3. Follows from Rockafellar and Wets (1998), Theorem 1.17, p. 16. �

Proof of Theorem 8. TS is readily shown to be monotone on −W0 (i.e. S′ ≥ S′′ implies

TS(S′) ≥ TS(S′′)). Consider the interval of functions I := {S′|S0 ≥ S′ ≥ S} ⊂ −W0.

TS : I → I since, using 1) and 2) in the proposition, the monotonicity of TS and the fact

that S is a fixed point of TS, S0 ≥ TSS0 ≥ TSS′ ≥ TSS = S. Thus, {Sn} ⊂ I. Moreover,

the sequence of functions {Sn} is a decreasing sequence since S0 ≥ TSS0 = S1 and, by

monotonicity of TS, Sn ≥ Sn+1 implies Sn+1 = TSSn ≥ TSSn+1 = Sn+2. For each j

and w, {Sn,j(w)} is a decreasing sequence bounded below by Sj(w) ∈ R ∪ {−∞} and so

limn Sn,j(w) = S∞,j(w) ≥ Sj(w). It follows that Sn converges pointwise to the function

S∞ = {S∞,j(w)}. Also, Sn ≥ S∞ implies that for all n, Sn+1 = TSSn ≥ TSS∞. Hence,

S∞ = lim Sn+1 ≥ TSS∞.

Note that ∞ > S0,j ≥ S1,j = TS
j (S0) ≥ Uj(S0) and S1,j ≥ Sj(w). It follows that
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Uj(S0) is everywhere less than ∞ and is somewhere more than −∞. By assumption,

Uj(S0) is level bounded locally and since each f (θ̂k, ·) and S0,k are upper semicontinuous

and Graph Φj is closed, Uj(S0) is upper semicontinuous. It follows from Lemma 3 that

if Uj(S0)(w) ≥ S∞,j(w) > −∞ that arg min Uj(S0)(w, ·) is nonempty and compact. In

addition, arg min Uj(S0)(w, ·) ⊂ levS∞,j(w)Uj(S0)(w, ·), where the latter set is nonempty

and, since Uj(S0)(w, ·) is upper semicontinuous and level bounded, compact. Also by

Lemma 3, S1,j is upper semicontinuous and, since S0 ≥ S1, by Lemma 2 Uj(S1) is level

bounded locally in w. Since ∞ > S1,j ≥ S2,j = TS
j (S1) ≥ Uj(S1) and S2,j ≥ Sj(w)

implies that Uj(S1) is everywhere less than ∞ and is somewhere more than −∞. Re-

peatedly applying these arguments, each Sn is found to be upper semicontinuous and

each Uj(Sn) is found to be upper semicontinuous, level bounded locally, everywhere less

than ∞ and somewhere more than −∞. In addition, if S∞,j(w) > −∞, there is a se-

quence (an, w′
n) ∈ arg min Uj(Sn)(w) ⊂ levS∞,j(w)Uj(S0)(w, ·). Since levS∞,j(w)Uj(S0)(w, ·)

is compact, the sequence {an, w′
n} admits a convergent subsequence {anv , w′

nv
} with limit

(a∞, w′
∞) ∈ levS∞,j(w)Uj(S0)(w, ·). Now,

TS
j (S∞)(w) = sup

(a,w′)

Uj(S∞)(w, a, w′) ≥ Uj(S∞)(w, a∞, w′
∞) = lim

v→∞
Uj(Snv)(w, a∞, w′

∞)

≥ lim
v→∞

lim sup
ṽ≥v

Uj(Snv)(w, anṽ
, w′

nṽ
) ≥ lim

v→∞
lim sup

ṽ≥v

Uj(Snṽ
)(w, anṽ

, w′
nṽ
)

= lim sup
ṽ≥v

Uj(Snṽ
)(w, anṽ

, w′
nṽ
) = lim sup

ṽ≥v

Snṽ+1(w) = S∞(w).

Combining inequalities S∞ = TSS∞. The sequence {Sn} is a decreasing sequence of up-

per semicontinuous functions with pointwise limit S∞. Thus, {−Sn} is an increasing

sequence of lower semicontinuous functions with pointwise limit −S∞. By Rockafellar

and Wets (1998), Proposition 7.4(d), the sequence {−Sn} epiconverges to supn[cl(−Sn)].

But since each −Sn is proper and lower semicontinuous, cl(−Sn) = −Sn and since the

sequence is increasing supn(−Sn) = −S∞, the result follows. �

Proof of Theorem 9. By Theorem 8, S∞, the epi-limit of {Sn}, satisfies S∞ ≥ S. It re-

mains only to show the reverse inequality. If S∞,j(w) = −∞, then immediately S∞,j(w) =

Sj(w) = −∞. Suppose that S∞,j(w) > −∞. By Theorem 8, TS
j S∞(w) = S∞,j(w). Also,

each S∞,j is upper semicontinuous (as the pointwise limit of a decreasing sequence of up-

per semicontinuous functions) and bounded above by S0,j. Hence, Uj(S∞) is upper semi-

continuous and level bounded locally in w. and applying Lemma 3, there is a (a∗1 , w∗
2) ∈
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Φj(w) such that:

S∞,j(w) =
K

∑
k=1

[ f (θ̂k , a∗1(θ̂k)) + βPS∞,k(w
∗
2(θ̂k))]πj,k.

Since S∞,j(w) > −∞, each S∞,k(w
∗
2(θ̂k)) > −∞. Repeatedly applying this argument at

successive nodes gives a sequence {a∗t , w∗
t+1} such that for each θt−1, (a∗t (θ

t−1), w∗
t+1(θ

t−1))

∈ Φk(θt−1)
(w∗

t (θ
t−1)), where w∗

1(θ
0) = w, k(θ0) = j and k(θt−1), t > 0, gives the index of

the θt−1 shock. Also for each T,

S∞,j(w) = E

[
T

∑
t=1

βt−1
P f (θt, a∗t (θ

t))|θ0 = θ̂j

]
+ βT+1

P E
[

S∞(w∗
T+1(θ

T))|θ0 = θ̂j

]
. (72)

Hence, using the fact that S∞ is bounded above (since it is upper semicontinuous and co-

ercive) gives: S∞,j(w) ≤ lim supT→∞ E
[
∑

T
t=1 βt−1

P f (θt, a∗t (θ
t))|θ0 = θ̂j

]
. In addition, since

each (a∗t (θ
t−1), w∗

t+1(θ
t−1)) ∈ Φk(θt−1)

(w∗
t (θ

t−1),

wi = E

[
T

∑
t=1

ri(θt, a∗t (θ
t))|θ0 = θ̂j

]
+ βT+1

A E[wi,∗
T+1(θ

T)|θ0 = θ̂j], i ∈ I1

wi
k = E

[
T

∑
t=1

ri(θt, a∗t (θ
t))|θ1 = θ̂k

]
+ βT+1

A E

[

∑
l

wi,∗
T+1,l(θ

T)π(θ̂l |θT)|θ1 = θ̂k

]
, i ∈ I2, k ∈ K.

Since S0 is coercive in expectation and S0 ≥ S∞, S∞ is coercive in expectation as well.

Hence, if lim βT
AE[‖w∗

T+1‖|θ0 = θ̂j] 6= 0, then lim βT
PE[S∞(w∗

T+1(θ
T))|θ0 = θ̂j] = −∞. But

this, eq. (72) and the fact that f is bounded above, contradict S∞,j(w) ≥ Sj(w) > −∞.

Thus, we infer that lim supT→∞ βT
A‖E[w∗

T+1|θ0 = θ̂j]‖ = 0 and so

wi = lim
T→∞

E

[
T

∑
t=1

ri(θt, a∗t (θ
t))|θ0 = θ̂j

]
and wi

k = lim
T→∞

E

[
T

∑
t=1

ri(θt, a∗t (θ
t))|θ1 = θ̂k

]
.

By similar logic, each w∗
t+1(θ

t) satisfies: wi,∗
t+1(θ

t) = limT→∞ E
[

∑
T
s=1 ri(θt+s, a∗t+s(θ

t+s))|θt
]

and wi,∗
t+1,k = limT→∞ E

[
∑

T
s=1 ri(θt+s, a∗t+s(θ

t+s))|θt, θt+1 = θ̂k

]
. Combining these equali-

ties with (a∗t (θ
t−1, ·), w∗

t+1(θ
t−1, ·)) ∈ Φk(θt−1)

(w∗
t−1(θ

t−1)) ensures that {a∗t } ∈ Ω1,j(w)

and so is feasible for 60. Thus, Sj(w) ≥ S∞,j(w) ≥ Sj(w) > −∞. �

Proposition A1 V j ≤ TV,D
j V ≤ Vj = TV,D

j V ≤ TV,D
j V ≤ V j.
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Proof. First,

V j(ζ) = sup
Ω

∑
k∈K

Fk(α)πj,k + ∑
i∈I1

ζi ∑
k∈K

Ri
k(α)πj,k + ∑

i∈I2

∑
k∈K

ζi
kR

i
k(α)πj,k + ∑

m∈M

ηmGm(α)

≤ sup
{α|G(α)≥0}∩Ω2

∑
k∈K

Fk(α)πj,k + ∑
i∈I1

ζi ∑
k∈K

Ri
k(α)πj,k + ∑

i∈I2

∑
k∈K

ζi
kR

i
k(α)πj,k

= inf
η∈RM

+

sup
Ω2

∑
k∈K

Fk(α)πj,k + ∑
i∈I1

ζi ∑
k∈K

Ri
k(α)πj,k + ∑

i∈I2

∑
k∈K

ζi
kR

i
k(α)πj,k + ∑

m∈M

ηmGm(α),

where Ω2 = {α = (a, α′) ∈ Ω0| each α′
k ∈ Ω}. Rearrangements similar to those in the text

and the definition of V imply that the last expression equals TV,D
j V(ζ). Hence, the first

inequality in the proposition holds. The monotonicity of TV,D
j , V ≥ V and Vj = TV,D

j V

gives TV,D
j V ≤ Vj = TV,D

j V. The other inequalities follow by similar reasoning. �

Appendix B: Duality

The problems from the preceding sections incorporate first period incentive and, in some

cases, auxiliary second period promise-keeping conditions. Relations between these prob-

lems can be expressed in terms of the value functions associated with perturbations of

these constraints and their conjugates. The results underpinning these relations are clas-

sical and are collected into two theorems given below. The first considers a family of

optimizations subject to parameterized equality and inequality constraints.26

Theorem B0. (Dualizing all constraints) Let Ω be a non-empty subset of a vector space,

f : Ω → R, g : Ω → RN and h : Ω → RM. Let:

ψ(w, δ) = sup
{x∈Ω|g(x)=w,h(x)≥δ}

f (x), (73)

and

ϕ(z, η) = sup
x∈Ω

f (x) + 〈z, g(x)〉 + 〈η, h(x)〉, (74)

where by convention ψ equals −∞ if the constraint set is non-empty. Assume that −ψ ∈

FNM
0 , then: 1) ϕ = C[−ψ] ∈ FNM and 2) −ψ = C[ϕ] = C2[−ψ] if −ψ ∈ FNM.

It follows from Theorem B0 that, modulo sign changes, the "objective-perturbed" value

function ϕ is the conjugate of the "constraint-perturbed" value function ψ and is in FNM

if −ψ is in FNM
0 . Conversely, −ψ is the conjugate of ϕ if −ψ ∈ FNM. Writing ψ(w, δ) in

26Theorem B0 is classical. For a related proofs see Borwein and Lewis (2006), p. 90.
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terms of the associated Lagrangian gives:

ψ(w, δ) = sup
x∈Ω

inf
(z,η)∈RN×RM

+

f (x) + 〈z, g(x)− w〉+ 〈η, h(x)− δ〉. (75)

Writing −C2[−ψ](w, δ) out explicitly:

−C2[−ψ](w, δ) = inf
(z,η)∈RN×RM

+

sup
x∈Ω

f (x) + 〈z, g(x)− w〉+ 〈η, h(x)− δ〉, (76)

it follows that there is no difference between primal and dual values in (73) if and only

if, after a sign change, the associated primal value function ψ equals its biconjugate. This

result holds at all (w, δ) if −ψ ∈ FNM.

Theorem B1 below decomposes the conjugation operations of Theorem B0 in various

useful ways. Parts A1)-A2) consider the dualization of the equality constraint only. Part

A3) treats the conjugation operation C[−ψ] recursively, decomposing it into a supremum

operation over w and then δ. Part A4) dualizes the inequality constraint only (leaving the

equality constraint inside the objective); Part A5) dualizes the inequality constraint after

the objective has been perturbed with the equality constraint function g.

Theorem B1. (Dualizing subsets of constraints) Let Ω, f , g, h and ψ be as before and let:

γ(z, δ) = sup
{x∈Ω|h(x)≥δ}

f (x) + 〈z, g(x)〉.

For given δ ∈ RM, assume that −ψ(·, δ) ∈ FN
0 , then:

A1) γ(·, δ) = C[−ψ(·, δ)] ∈ FN and −ψ(·, δ) = C[γ(·, δ)] if −ψ(·, δ) ∈ FN;

A2) there is no duality gap with respect to the equality constraint if: −ψ(w, δ) = −C[γ(·, δ)](w) =

infz∈RN sup{x∈Ω|h(x)≥δ} f (x) + 〈z, g(x)− w〉;

A3) C[−ψ](z, η) = C[γ(z, ·)](η);

A4) C2[−ψ(w, ·)](δ) = infη∈RM
+

sup{x∈Ω|g(x)=w} f (x) + 〈η, h(x)− δ〉;

A5) C2[−γ(z, ·)](δ) = infη∈RM
+

supx∈Ω f (x) + 〈z, g(x)〉 + 〈η, h(x)− δ〉.

The preceding results lead us to focus on cases in which value functions are proper,

convex and lower semicontinuous. In particular, since equality constraints are used to de-

fine state variables in our decompositions, we will be interested in cases in which −ψ(·, 0)

lies in FN.27 We briefly review some assumptions on primitives that ensure this.

27In other words, −ψ(·, 0) = C [−ψ(·, 0)]. We will also be interested in situations in which for all w,
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Properness Properness of −ψ is ensured if the constraint set is non-empty at some pa-

rameter pair (w, δ) and f is bounded on each {x ∈ Ω|g(x) = w, h(x) ≥ δ}.

Convexity/ concavity Convexity of −ψ(·, 0) (concavity of ψ(·, 0)) is ensured if ( f , g, h, Ω)

define a family of convex-like problems. Formally, let Ω1(w) = {x ∈ Ω|g(x) = w, h(x) ≥

δ} and define f̂ such that f̂ (w, x) = f (x) if x ∈ Ω1(w) and f̂ (w, x) = −∞ other-

wise. The family of problems supΩ1(w) f (x) = sup f̂ (w, x) is said to be convex-like

if for all pairs (w1, x1) and (w2, x2) and numbers λ ∈ [0, 1], there is an xλ such that

f̂ (λw1 + (1− λ)w2, xλ) ≥ λ f̂ (w1, x1)+ (1− λ) f̂ (w2, x2).We say that ( f , g, h, Ω) is concave-

like if (− f , g, h, Ω) is convex-like. A well known sufficient condition for convex-likeness

is that the graph of Ω1 is a convex set and f is concave. Convexity of Graph Ω1 is ensured

if Ω is convex, g is affine and h is concave. However, weaker conditions for the convexity

of −ψ(·, 0) are available see Sleet (2011).

Lower semicontinuity If −ψ(·, 0) is convex and its effective domain is all of RN, then

it is immediately continuous and, hence, lower semicontinuous. If its effective domain

is a strict subset of RN, then additional assumptions are required. These relate to the

structure of the objective and constraint function level sets.28 Following Rockafellar and

Wets (1998), −ψ(·, 0) is lower semicontinuous if Ω is a subset of finite dimensional vector

space and f̂ is proper, upper semicontinuous and uniformly level bounded in x locally in

w.29 The latter property is ensured if the level sets of the Lagrangian λ0 f (x) + 〈z, g(x)〉+

〈η, h(x)〉 are compact for some (λ0, z, η), see Borwein and Lewis (2006). This in turn is

guaranteed if either f , g or h have compact level sets.30

Primal and dual attainment The above mentioned compactness conditions on level sets

used to obtain lower semicontinuity of −ψ(·, 0) also ensure primal attainment whenever

−ψ(w, 0) is finite and the constraint set Ω1(w) is non-empty. An alternative route to a

zero duality gap is via dual attainment. There is strong duality (i.e. a zero duality gap and

dual attainment) with respect to inequality constraint perturbations at (w, 0) if −ψ(w, ·)

is subdifferentiable at 0. In this case, the subdifferentials of the value function are the

minimizing multipliers of the dual. Since convex functions are subdifferentiable on the

−ψ(w, 0) = C [−ψ(w, ·)](0) and for all z, γ(z, 0) = C [γ(z, ·)](0).
28The (upper) level set of f : X → R is given by levr f{x ∈ X| f (x) ≥ r}.
29 f̂ is uniformly level bounded in x locally in w if for each w ∈ RN and r ∈ R, there is a neighborhood

N(w) of w and a bounded set B ⊂ X such that {x| f̂ (w′, x) ≥ r} ⊂ B, w′ ∈ N(w).
30That is, if Ω is finite dimensional, are upper semicontinuous and have bounded level sets. If these

functions are concave, then boundedness of level sets is equivalent to level coercivity: lim‖x‖→∞
f (x)
‖x‖

< 0.
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interior of their effective domain, a sufficient condition for strong duality at a (w, 0) is that

the −ψ(w, ·) is convex and 0 lies in the interior of Dom −ψ(w, ·). A classical condition

for ensuring the latter is the so called Slater condition which requires the existence of an

x ∈ Ω ∩ {g(x) = w} satisfying h(x) > 0.

Coincidence of primal and dual solutions Conditions for the coincidence of optimal

primal and dual solutions (as opposed to values) are more stringent. Consider the dual

pair (75)-(76) (at some (w, δ)). If strong duality holds, x∗ is maximal for (75) and (z∗, η∗)

is minimal for (76), then x∗ maximizes L(x; z∗, η∗) = f (x) + 〈z∗, g(x)〉 + 〈η∗, h(x)〉 over

Ω. However, L(·; z∗, η∗) may admit additional maximizers that do not solve (75). A max-

imizer x∗ of L(·; z∗, η∗) solves (75) if (z∗, η∗) minimizes L(x∗; ·), i.e. (x∗, z∗, η∗) is a saddle

point, or if strong duality holds, (z∗, η∗) solves (76) and x∗ is the unique maximizer of

L(·, z∗, η∗) (which is, for example, the case case if L(·, z∗, η∗) is strictly concave). These

ideas are further developed in Messner et al (2011) and Sleet and Yeltekin (2010a). Re-

cently, Cole and Kubler (2010) and Marimon et al (2011) have shown how the optimal

policy might be recovered in non-strictly concave recursive problems (in which checking

complementary slackness is not straightforward).
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