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Abstract

We study orders of risk and model uncertainty aversion in the smooth ambiguity model
proposed by Klibano¤, Marinacci, and Mukerji (2005). We consider a quadratic approximation
of their model and we show that both risk and model uncertainty attitudes have at most a second
order e¤ect. Speci�cally, the order depends on the properties of the support of the decision
maker�s limit prior, which we fully characterize. We �nd that model uncertainty attitudes have a
second order e¤ect unless the support is a singleton, that is, unless model uncertainty fades away
in the limit. Special attention is given to the binomial state spaces often used in mathematical
�nance.

1 Introduction

In this paper we study the order of convergence, as uncertainty becomes smaller and smaller, of risk
and model uncertainty attitudes in a quadratic approximation of the smooth ambiguity model of
Klibano¤, Marinacci, and Mukerji [6].
We show that, under standard di¤erentiability assumptions, both risk and model uncertainty

attitudes have at most a second order e¤ect. The order that they feature depends on the properties
of the support of the decision maker�s limit prior. In particular, both attitudes have a second order
e¤ect when this support is not degenerate. For example, model uncertainty attitudes have a second
order e¤ect unless this support is a singleton, that is, unless model uncertainty fades away in the
limit.
We illustrate these �ndings with a binomial example. Consider a binary state space 
 = f1;�1g

and the random variable W (!) = !. The net fWtgt>0 de�ned by

Wt (!) = tW (!) =

(
t if ! = 1

�t if ! = �1

is a small uncertainty as t # 0.1 For every t > 0, if the decision maker knows the probability qt of
state ! = 1 and has wealth w, then she evaluates a perturbation Wt by its certainty equivalent

u�1 (qtu (w + t) + (1� qt)u (w � t)) :
�The �nancial support of the European Research Council (advanced grant, BRSCDP-TEA) and the Carlson School

of Management at the University of Minnesota (Deans�Research Grant) is gratefully acknowledged.
1The notion of small uncertainty will be made precise in De�nitions 22 and 38. Index t has no speci�c temporal

meaning; the net fWtgt>0 should not be regarded as a process, but as a sequence of static settings (see Section 3).
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Ignorance of qt renders this quantity a random monetary amount

u�1 (qu (w + t) + (1� q)u (w � t)) 8q 2 [0; 1] :

The smooth ambiguity model of Klibano¤, Marinacci, and Mukerji [6] (KMM hereafter) evaluates it
through its certainty equivalent

C (Wt; �t) = v�1
�Z 1

0

v
�
u�1 (qu (w + t) + (1� q)u (w � t))

�
d�t (q)

�
relative to a prior �t on [0; 1] and to an index v of model uncertainty aversion. Our Theorem 40
shows that, if u and v are su¢ ciently regular and �t weakly converges to �, the Taylor polynomial of
C (Wt; �t) with respect to t at zero is

C (Wt; �t) = w + E� (E (W )) t�
1

2
�u (w)E�

�
�2 (W )

�
t2 � 1

2
�v (w)�

2
� (E (W )) t

2 + o
�
t2
�
: (1)

Here the arguments E (W ) : [0; 1] ! R and �2 (W ) : [0; 1] ! R are, respectively, the average and
variance of W with respect to each model q 2 [0; 1], and so the second order terms E�

�
�2 (W )

�
and

�2� (E (W )) are, respectively, an average of models�variances and a variance of models�averages.

The next result shows that there are four cases to consider according to the properties of the
support of the limit prior �.

Proposition 1 Suppose �t weakly converges to �. Then

1. E�
�
�2 (W )

�
> 0 and �2� (E (W )) > 0 if and only if supp� is neither a singleton nor f0; 1g;

2. E�
�
�2 (W )

�
> 0 and �2� (E (W )) = 0 if and only if supp� is a singleton in (0; 1);

3. E�
�
�2 (W )

�
= 0 and �2� (E (W )) > 0 if and only if supp� = f0; 1g;

4. E�
�
�2 (W )

�
= �2� (E (W )) = 0 if and only if � = �0 or � = �1.

The simple proof follows from two observations. First,

E�
�
�2 (W )

�
=

Z
1� (2q � 1)2 d� (q) = 4

Z �
q � q2

�
d� (q)

and so,

E�
�
�2 (W )

�
= 0 ()

Z �
q � q2

�
d� (q) = 0() �

�
q 2 [0; 1] : q � q2 = 0

�
= 1

() � (f0; 1g) = 1() supp� � f0; 1g :

Second,

�2� (E (W )) =

Z
(2q � 1)2 d� (q)�

�Z
(2q � 1) d� (q)

�2
= 4

 Z
q2d� (q)�

�Z
qd� (q)

�2!

and so, by setting �q =
R
qd� (q),

�2� (E (W )) = 0 ()
Z
q2d� (q)�

�Z
qd� (q)

�2
= 0()

Z
(q � �q)2 d� (q) = 0

() � (q 2 [0; 1] : q = �q) = 1() � (f�qg) = 1() � = ��q:

In view of points 1-4 of Proposition 1, to study the order e¤ects of risk and model uncertainty
attitudes we must consider the following four possible cases.
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Case 1 Suppose supp� is neither a singleton nor f0; 1g. In this case both risk and model uncertainty
attitudes have a second order e¤ect at fWt; �tgt>0 as t # 0 and the same relevance in the quadratic
approximation.2

Case 2 Suppose supp� is a singleton in (0; 1). In this case risk attitudes have a second order e¤ect
at fWt; �tgt2(0;1] while model uncertainty attitudes have a negligible e¤ect. In this case a KMM
decision maker is eventually indistinguishable from a subjective expected utility one.

Case 3 Suppose supp� = f0; 1g. In this case only model uncertainty attitudes have a second order
e¤ect at fWt; �tgt2(0;1], while risk attitudes have a negligible e¤ect.

Case 4 Suppose � = �0 or � = �1. In this case both risk and model uncertainty attitudes have a
negligible e¤ect at fWt; �tgt2(0;1].

Summing up, order e¤ects of risk and model uncertainty attitudes depend on the properties of
the support of �. Case 1 is the �normal�one that features a support not degenerate, that is, neither
a singleton nor f0; 1g. In this case, both attitudes have the same asymptotic importance as t goes to
zero. Cases 2-4 describe what happens under di¤erent cases of a degenerate �. In particular, unless
the limit prior � concentrates on a single model p �so that model uncertainty eventually vanishes
� the attitude toward model uncertainty is relevant in the second order approximation. This is a
natural feature of the smooth ambiguity model that Theorem 49 will establish in full generality for
the important binomial case.

The rest of the paper investigates in full detail and rigor the meaning of small risks and uncer-
tainties, �rst in a subjective expected utility setup and then in a more general smooth ambiguity
setting. Section 3 considers the notion of small risk in a subjective expected utility setting that
suitably extends to a Savagean setting the orders of risk aversion studied by Segal and Spivak [11]
in a lottery setup. Section 4 further extends the analysis to the smooth ambiguity model. In this
case we deal with small uncertainties and we show when risk and model uncertainty attitudes have a
second or higher order e¤ect. The properties of the support of � will play a key role, along the lines
discussed before.
Sections 5 and 6 study order e¤ects for time varying risk and time varying uncertainty, respec-

tively. In the latter case priors �t are allowed to depend on index t. This dependence substantially
complicates matters and requires a sharper version of the Taylor approximation that we establish in
Theorem 40, the main technical result of the paper. Under suitable assumptions, Theorem 40 shows
that

Ct (w + ht) = w + E�qt (ht)�
1

2
�u (w)E�t

�
�2 (ht)

�
� 1
2
�v (w)�

2
�t (E (ht)) + o

�
khtk2�qt

�
where fhtgt>0 is a net of random variables. The previous approximation (1) is the special case of
this approximation for the net fWtgt>0.
Section 8 illustrates the �ndings of the earlier sections in the important binomial setup. As already

mentioned, in this setup Theorem 49 fully characterizes �through the properties of the support of
� �the cases when risk and model uncertainty attitudes have either a second order or a negligible
e¤ect. In particular, risk and model uncertainty attitudes have a similar order when this support is
not degenerate. In view of the importance in mathematical �nance of the binomial case, Theorem 49
can be viewed as the paper main result. Finally, Section 9 considers a special binomial case, related
to Skiadas [12]. We show that, at least in a static setting comparable to ours, [12]��ndings on the
negligible e¤ect of model uncertainty attitudes depend on the singleton nature of the support of �

2To be precise, this conclusion requires that �u (w) (�q � #) + �v (w)
�
#� �q2

�
6= 0, that is, risk propensity (resp.,

aversion) does not perfectly compensate model uncertainty aversion (resp., propensity) in the limit.
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that [12] considers for its purposes. In a continuous time framework, Hansen and Sargent (2009)
propose a continuous-time limit of the smooth model in which model uncertainty attitudes survive
(see Gindrat and Lefoll, 2010, for another approach to this issue).

We close with couple of methodological remarks on this paper. First, its focus is on the di¤eren-
tiable case; for this reason, most of our analysis deals with second order and higher e¤ects. Second,
the approach of the paper is analytical rather than behavioral, that is, we consider the properties of
the functional forms. A natural follow-up of our analysis would carry out a more detailed investigation
of �rst order e¤ects and of the behavioral underpinnings of our exercise.

2 Preliminaries

2.1 Mathematical setup

Throughout the paper we consider a �nite state space 
 of cardinality n and a base probability
measure P : 2
 ! R de�ned for simplicity on the power set 2
 (all our results actually hold in any
algebra of subsets of 
).
The collection of all functions f : 
! R can be thus identi�ed with Rn. Given an interval I � R,

we set
L (I) = ff 2 Rn : f (!) 2 I for almost all ! 2 
g :

Throughout the paper k�k denotes the Euclidean norm of Rn. Recall that in Rn all norms are
equivalent; i.e., given any norm k�k0 there exist positive constants c1; c2 > 0 such that

c1 kfk � kfk0 � c2 kfk ; 8f 2 Rn: (2)

We denote by EP (f) and �2P (f) the expectation and variance of a function f : 
 ! R, respec-
tively.

Barycenters The set of all probability measures q : 2
 ! [0; 1] is the simplex of Rn, which
we denote by �. We endow � with the Borel �-algebra B (�). Each Borel probability measure
� : B (�)! [0; 1] induces a measure �q 2 � given by

�q (!) =

Z
�

q (!) d� (q) ; (3)

called the barycenter of � (and also denoted by ��). It follows that,

X
!2


f (!) �q (!) =

Z
�

 X
!2


f (!) q (!)

!
d� (q) ; 8f 2 Rn: (4)

The barycenter �q has a natural interpretation in terms of reduction of compound lotteries. In
fact, if supp� = fq1; :::; qmg is �nite3 and � (qi) = �i for i = 1; :::;m, then (3) becomes

�q (!) = �1q1 (!) + :::+ �mqm (!) ; 8! 2 
:

Hence, � can be seen as a lottery whose outcomes are all possible models q, which in turn can be
seen as lotteries that determine the state.

3A carrier of � is any Borel subset of � having full measure. If the intersection of all closed carriers is a carrier, it
is called support of � and denoted by supp�.
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Orders of convergence Orders of convergence as t # 0 (that is, t ! 0+) are cardinal to our
analysis. Given two functions '; : (0; 1]! R,

(i) ' (t) = o ( (t)) if for all M > 0 there exist � such that j' (t)j �M j (t)j for t < �;4

(ii) ' (t) = O ( (t)) if there exist �;M > 0 such that j' (t)j �M j (t)j for t < �;5

(iii) ' (t) �  (t) if ' (t) = O ( (t)) and  (t) = O (' (t));6

(iv) ' (t) �  (t) if limt#0 ' (t) = (t) = 1, provided  (t) 6= 0 for t su¢ ciently close to 0.
It is important to recall that ' (t) = o ( (t)) and  (t) = O (' (t)) are abuses for ' (t) 2 o ( (t))

and  (t) 2 O (' (t)).

The following property plays a key role in the paper.

Lemma 2 Given any two functions '; : (0; 1]! R, it holds ' = O ( ) if and only if

� = o (') =) � = o ( ) (5)

for any function � : (0; 1]! R.

In particular, ' (t) �  (t) if and only if, for any function � : (0; 1]! R,

� = o (')() � = o ( ) ;

that is, o (') = o ( ) when o (') (resp., o ( )) is identi�ed with the set f� : (0; 1]! R : � = o (')g.

Weak and quadratic convergence Some of our results will use the standard notion of weak
convergence of Borel probability measures on B (�). Speci�cally, a net f��g� of Borel probability
measures �� : B (�)! [0; 1] weakly converges to some Borel probability measure �, written ��

w
=) �,

if

lim
�

Z
�

' (q) d�� (q) =

Z
�

' (q) d� (q) ; 8' 2 C (�) , (6)

where C (�) is the space of continuous functions ' : �! R.7 Weak convergence implies the following
moments�convergence.

Lemma 3 If ��
w
=) �, then, for each ! 2 
, lim�

R
�
qn (!) d�� (q) =

R
�
qn (!) d� (q) for each

n � 1.
In the special case in which 
 is binary, the simplex � = f(q; 1� q) : q 2 [0; 1]g can be identi�ed

with the unit interval [0; 1]. In this case, the converse of Lemma 3 is also true.

Lemma 4 ��
w
=) � on [0; 1] if and only if lim�

R
[0;1]

qnd�� (q) =
R
[0;1]

qnd� (q) for each n � 1.

In view of Lemmas 3 and 4, we give the following de�nition.

De�nition 5 A net f��g� of probability measures �� : � ! [0; 1] quadratically converges to a
probability � : �! [0; 1], written ��

sq
=) �, if for each ! 2 
,

lim
�

Z
�

q (!) d�� (q) =

Z
�

q (!) d� (q) and lim
�

Z
�

q2 (!) d�� (q) =

Z
�

q2 (!) d� (q) .

Thus, quadratic convergence only requires convergence of the �rst two moments. It is straight-
forward to construct nets of probability measures that quadratically converge, but do not weakly
converge.

4 In other words, limt#0 ' (t) = (t) = 0, provided  (t) 6= 0 for t su¢ ciently close to 0.
5 In other words, lim supt#0 j' (t) = (t)j <1, provided  (t) 6= 0 for t su¢ ciently close to 0.
6Equivalently, there exist �; c1; c2 > 0 such that c1 j (t)j � j' (t)j � c2 j (t)j for t < �. In other words, 0 <

lim inft#0 j' (t) = (t)j � lim supt#0 j' (t) = (t)j <1, provided  (t) 6= 0 for t su¢ ciently close to 0.
7For details on weak convergence we refer the reader to Aliprantis and Border (2006). Notice that since � is

a compact metric space, weak convergence coincides with weak* convergence when probability measures on � are
regarded as continuous linear functionals on C (�).
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2.2 Decision theoretic setup

Given any nonsingleton interval I � R of monetary outcomes, we consider decision makers who behave
according to the smooth ambiguity model. Their preferences % over monetary acts are represented
by the preference functional V : L (I)! R de�ned by

V (f) =

Z
�

�

 X
!2


u (f (!)) q (!)

!
d� (q) ; 8f 2 L (I) ; (7)

where � is a Borel probability measure on �, and u : I ! R and � : u (I)! R are strictly increasing
and continuous functions.
We adopt the same setting of Maccheroni, Marinacci, and Ru¢ no [7]. In particular, since we

consider monetary acts, it is natural to study monetary certainty equivalents. To this end, set
v = � � u : I ! R (see [6, p. 1859]). In [7] we discuss to what extent v describes attitudes toward
model uncertainty. Using v we can rewrite (7) as

V (f) =

Z
�

�
v � u�1

� X
!2


u (f (!)) q (!)

!
d� (q) ; 8f 2 L (I) : (8)

The certainty equivalent function C : L (I)! R induced by V is de�ned by V (C (f)) = V (f) for all
acts f , that is,

C (f) = v�1

 Z
�

v

 
u�1

 X
!2


u (f (!)) q (!)

!!
d� (q)

!
; 8f 2 L (I) . (9)

This is the composition of two monetary certainty equivalents,

c (f; q) = u�1
�Z




u (f (!)) dq (!)

�
and v�1

�Z
�

v (c (f; q)) d� (q)

�
:

Consider the Arrow-Pratt coe¢ cients �u (w) = �u00 (w) =u0 (w) and �v (w) = �v00 (w) =v0 (w). By
[6, Prop. 1], the decision maker is ambiguity averse (as de�ned in [6, p. 1863]) if and only if � is
concave, that is, if and only if �v � �u. Ambiguity neutrality corresponds to � (x) = x, that is, u = v
(up to a normalization). In this case,

C (f) = u�1

 Z
�

 X
!2


u (f (!)) q (!)

!
d� (q)

!
= u�1 (E�q (u � f)) = c (f; �q) ; 8f 2 L (I) (10)

where �q is the barycenter of � given in (3). Under ambiguity neutrality we thus get back to the
certainty equivalent of a subjective expected utility decision maker with prior �q. The same happens
when the support of � is a singleton fqg, that is, when the decision maker does not perceive any
ambiguity. In this case it trivially holds �q = q and again C (f) = u�1 (E�q (u � f)).

In the ambiguity neutral and risk neutral case u (x) = v (x) = x, the certainty equivalent (9)
reduces to the expected value E�q (f) of f under �q. For this reason, the uncertainty premium � (f) of
act f for the decision maker described by (9) is given by

� (f) = E�q (f)� C (f) ; 8f 2 L (I) :

Throughout the paper we maintain the following assumption.

Assumption 1 The functions u; v : I ! R are continuous, strictly increasing, and concave.

Under this assumption the certainty equivalent (9) is well de�ned and � (f) � 0 for each f 2 L (I).
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2.3 Quadratic approximation

Let w 2 int I be a scalar that we interpret as current wealth. To ease notation, we also denote by w
the degenerate random variable w1
. Given h 2 Rn such that w+h 2 L (I), the certainty equivalent
C (w + h) of w + h is

C (w + h) = v�1

 Z
�

v

 
u�1

 X
!2


u (w + h) q (!)

!!
d� (q)

!
: (11)

For all h 2 Rn, the function
E (h) : q 7!

X
!2


h (!) q (!)

is continuous and bounded on �. Its variance with respect to � is given byZ
�

 X
!2


h (!) q (!)

!2
d� (q)�

 Z
�

 X
!2


h (!) q (!)

!
d� (q)

!2
;

and it is denoted by �2� (E (h)). This variance re�ects the uncertainty on the expectation E (h) as it
is perceived by the decision maker. Thus, higher values of �2� (E (h)) correspond to a higher incidence
of model uncertainty in the valuation of E (h).

We now report the second order approximation of the certainty equivalent (11), a special case
of a more general approximation derived by [7]. The approximation is based on the Arrow-Pratt

coe¢ cients �u (w) and �v (w). The Peano remainder o
�
khk2�q

�
is in terms of the L2 (�q) norm khk2�q =

E�q
�
h2
�
.

Proposition 6 Let � : B (�)! [0; 1] be a Borel probability measure on � and u; v : I ! R be twice
continuously di¤erentiable with u0; v0 > 0. Then,

C (w + h) = w + E�q (h)�
1

2
�u (w)�

2
�q (h)�

1

2
(�v (w)� �u (w))�2� (E (h)) + o

�
khk2�q

�
(12)

as khk�q ! 0.

Thus, the sign and magnitude of the e¤ect of perceived model uncertainty on the certainty equiv-
alent depend on the di¤erence �v (w)� �u (w). Since it holds

E�
�
�2 (h)

�
= �2�q (h)� �2� (E (h))

for the study of risk and model uncertainty attitudes it is useful to rearrange (12) as

C (w + h) = w + E�q (h)�
1

2
�u (w)

�
�2�q (h)� �2� (E (h))

�
� 1
2
�v (w)�

2
� (E (h)) + o

�
khk2�q

�
= w + E�q (h)�

1

2
�u (w)E�

�
�2 (h)

�
� 1
2
�v (w)�

2
� (E (h)) + o

�
khk2�q

�
;

where we group terms according to the Arrow-Pratt coe¢ cients. Risk and model uncertainty attitudes
are thus weighted by the average (w.r.t. the models) variance E�

�
�2 (h)

�
and the variance (w.r.t.

the models) of the averages �2� (E (h)).
Similarly, the quadratic approximation of the uncertainty premium � (w + h) of w + h is

� (w + h) =
1

2
�u (w)E�

�
�2 (h)

�
+
1

2
�v (w)�

2
� (E (h)) + o

�
khk2�q

�
. (13)

Since
C (w + h) = w + E�q (h)� � (w + h) ;

the e¤ects of risk and model uncertainty attitudes on the second order approximation (12) can be
studied directly via the premium (13). For this reason in what follows we focus on (13), although our
main interest is ultimately in the certainty equivalent approximation (12).
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2.4 First remarks on attitudes

In view of the quadratic approximation (13) of the uncertainty premium � (w + h) we can make a few
preliminary remarks on risk and model uncertainty attitudes. Speci�cally, according to the properties
of the support of � we consider four basic cases:

Case 1: The support of � is neither a singleton nor a collection of Dirac measures. In this case
both risk and model uncertainty attitudes typically matter.

Case 2: The support of � is a singleton; i.e., supp� = fpg for some p 2 �. In this case, �q = p and
only risk attitudes may matter. Speci�cally,

� (w + h) =
1

2
�u (w)�

2
p (h) + o

�
khk2p

�
:

Case 3: The support of � consists of Dirac measures, that is,

� =
nX
i=1

�i��!i

with (�1; :::; �n) 2 �. Simple computation delivers (�q1; :::; �qn) = (�1; :::; �n) and hence �2� (E (h)) =
�2�q (h). In this case only model uncertainty attitudes may matter. In fact, we can write

� (w + h) =
1

2
�v (w)�

2
� (E (h)) + o

�
khk2�q

�
=
1

2
�v (w)�

2
�q (h) + o

�
khk2�q

�
:

Case 4: The support of � is a singleton consisting of a Dirac measure; i.e., supp� = f�!g. Neither
risk nor model uncertainty attitudes matter in this case (which is the intersection of the two previous
ones) and actually � (w + h) = 0.

As argued in the Introduction, Case 1 is the normal one, while Cases 2-4 are special. They are all
based on the properties of the support of �, an information trait. In the asymptotic analysis that we
will carry out in the paper the limit behavior of h will also matter, along with that of �. This will
give rise to the Limit Cases 1-4 of Sections 7 and 8.

3 Small risks

3.1 Notion and characterization

The notion of small risk is key to this paper. Since a de�nition of absolute risk smallness is elusive,
we follow Pratt [10] in studying it via limit behavior. We �rst consider the case of a given probability
measure q 2 �. Our analysis will be based on nets fht; qgt2(0;1] where each ht : 
! R is a monetary
act. We call them risky monetary nets when lim supt#0Eq (jhtj) <1 and ht is never q-a.e null. This
limit condition put some discipline on how outcomes ht (!) can diverge as t goes to zero.
In a coin toss example with 
 = fH;Tg, the net fht; qgt2(0;1] consists of acts whose outcomes

ht (H) and ht (T ) depend on whether heads or tails come up, with probabilities q (H) and q (T ). As
observed in the Introduction, index t has no temporal meaning. The net fht; qgt2(0;1] should not be
regarded as a process, but as a sequence of static settings ��snapshots��that at each t feature an
act ht whose �riskiness�depends on q.8

8Few remarks on notation: (i) we choose the letter h because small risks will be relevant for the approximations
(12) and (13); (ii) the reason why we mention explicitly q in the net fht; qgt2(0;1] will become clear later in the paper.
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In this risk setting the certainty equivalent (9) reduces to

C (f) = u�1

 X
!2


u (f (!)) q (!)

!
: (14)

In terms of the smooth model, this can be due to either � (x) = x (ambiguity neutrality) or a singleton
support for � (no perceived ambiguity). Either way, here we are in a standard subjective expected
utility setting.
We can now present the key notion of small risk.

De�nition 7 A risky monetary net fht; qgt2(0;1] is a small risk if Eq
�
h2t
�
! 0 as t # 0.

We illustrate this notion with few important examples.

Example 8 A net fhtgt2(0;1] such that

lim
t#0

ht (!) = 0; 8! 2 
 (15)

or, equivalently, such that limt#0 khtk = 0, forms a small risk when paired with any q 2 �. In view
of (2), it does not matter what norm of Rn is used to measure outcomes�sizes. N

Example 9 Adapted to our setting, Pratt [10]�s analysis considers a net fhtgt2(0;1] of monetary
acts that are actuarially neutral with respect to q and whose variances vanish; i.e., Eq (ht) = 0 and
limt#0 �

2
q (ht) = 0. In other words, the net fhtgt2(0;1] goes to zero in L2 (q) norm. The net fht; qgt2(0;1]

is a small risk. N

Example 10 Adapted to our setting, Segal and Spivak [11]�s analysis is based on a �xed monetary
act h that determines a net fhtgt2(0;1] so that each ht has the same distribution under q as th, for
all t 2 (0; 1]. That is,

q (ht 2 E) = q (th 2 E) (16)

for all t 2 (0; 1] and all Borel subsets B of R. Since Eq
�
h2t
�
= t2Eq

�
h2
�
, then the net fht; qgt2(0;1] is

a small risk. N

Example 11 A special case of the previous example is

ht = th q-a.e.

for some monetary act h. We call directional small risks the nets fht; qgt2(0;1] with ht = th. N

The next result �a version for nets of a known result for sequences �characterizes small risks
by considering three types of limit behavior and showing their equivalence to the notion of small
risk. In particular, in (ii) limit behavior is in the sense of convergence in probability and acts�values
eventually vanish with probability one according to q. In (iii) limit behavior is in the sense of Ln (p)
convergence and acts�moments eventually vanish.9 Finally, in (iv) limit behavior is in the sense
of almost sure convergence and acts�outcomes eventually vanish in each state that belongs to the
support of q.

Proposition 12 For a risky monetary net fht; qgt2(0;1], the following conditions are equivalent:

(i) fht; qgt2(0;1] is a small risk;
9The condition lim supt!0 Eq (jftj) = lim"#0 supt2(0;") Eq (jftj) <1 only requires that the expectation Eq (jftj) be

eventually bounded.
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(ii) limt#0 q (! : jht (!)j < ") = 1 for each " > 0;

(iii) limt#0Eq (jhtjn) = 0 for all n � 1;

(iv) limt#0 ht (!) = 0 for all ! 2 supp q.

Condition (iv) easily implies (iii), which implies (i). In turn, (i) easily implies (ii). By the
Chebyshev inequality, for all " > 0

0 � q (! : jht (!)j � ") � 1

"2
Eq
�
h2t
�
! 0 as t # 0:

Showing that (ii) implies (iv) is less immediate and is proved in the Appendix.

3.2 Order e¤ects

Small risks can be used to model small risky deviations ht from a sure prospect w and to study their
e¤ects on the risk premium

� (w + ht) = w + Eq (ht)� C (w + ht) : (17)

Consider the following classi�cation: risk attitudes have a

(i) �rst order e¤ect at fht; qgt2(0;1] if � (w + ht) � khtkq;

(ii) second order e¤ect at fht; qgt2(0;1] if � (w + ht) � khtk
2
q;

(iii) (quadratically) negligible e¤ect at fht; qgt2(0;1] if � (w + ht) = o
�
khtk2q

�
.

This classi�cation revisits in our Savagean setup the orders of risk aversion that Segal and Spivak
[11] studied in a lottery setting (see Montesano [9] for related ideas and Machina [8] for a compre-
hensive analysis). It is straightforward to see that (i)-(iii) are mutually exclusive alternatives, though
not exhaustive.
The next result is related with [11, Proposition 1] and provides a behavioral characterization of

these e¤ects. To this end, set

k� = lim inf
t#0

E2q (ht)

Eq (h2t )
and k� = lim sup

t#0

E2q (ht)

Eq (h2t )
:

Since it always holds E2q (ht) � Eq
�
h2t
�
, we have 0 � k� � k� � 1. For instance, for the small risk of

Example 10 it holds k� = k� = E2q (h) =Eq
�
h2
�
.

Proposition 13 Consider a small risk fht; qgt2(0;1] with Eq (ht) > 0 for all t.

(i) If � (w + ht) � k khtkq and k >
p
k�, then for all t small enough

C (w + ht) < w:

(ii) If � (w + ht) � k khtkq and 0 < k <
p
k�, then for all t small enough

C (w + ht) > w:

(iii) If � (w + ht) = o
�
khtkq

�
, then for all t small enough

C (w + ht) > w:

10



Points (i) and (ii) consider �rst order e¤ects, while point (iii) considers second or higher order
e¤ects. Point (i) shows that when k is high enough (e.g., k � 1), then � (w + ht) � k khtkq implies
that for all t small enough the decision maker strictly prefers the sure amount w over the risky one
w + ht. Since Eq (ht) > 0, a risk neutral decision maker would prefer the opposite. Hence, in this
case even for small risks the decision maker is not risk neutral.
Points (ii) and (iii) show that this is no longer the case when either k is small enough or

� (w + ht) = o
�
khtkq

�
, that is, the e¤ect is of second or higher order. In these cases, for t small

enough the decision maker compares w + ht and w as if he were risk neutral. That is, risk attitudes
do not matter.
In sum, Proposition 13 shows that risk attitudes that have a �rst order e¤ects may or may not

matter when comparing w + ht and w; with second or higher order e¤ects they do not matter.

3.3 Di¤erential case

Throughout this subsection we make the following assumption.

Assumption 2 The utility function u is twice continuously di¤erentiable with u0 > 0 and �u (w) 6= 0.

By Proposition 6, under this assumption a small risk fht; qgt2(0;1] has the quadratic approximation
of its premium � (w + ht) given by

� (w + ht) =
1

2
�u (w)�

2
q (ht) + o

�
khtk2q

�
: (18)

Remarkably, this approximation makes it possible to study risk attitudes�order e¤ects through the
variance �2q (ht), an insight that goes back to Pratt (1964) and Arrow (1970). In particular, these
attitudes have a �rst order e¤ect at fht; qgt2(0;1] if and only if �2q (ht) � khtkq, a second order e¤ect
if and only if �2q (ht) � khtk

2
q, and a negligible e¤ect if and only if �

2
q (ht) = o

�
khtk2q

�
.

Since �2q (ht) � khtk
2
q, we have �

2
q (ht) = o

�
khtkq

�
, and so risk attitudes do not have a �rst order

e¤ect under Assumption 2. They can have a second or higher e¤ects, as we show next.

Lemma 14 It holds
�2q (ht) � khtk

2
q () k� < 1

and
�2q (ht) = o

�
khtk2q

�
() k� = 1:

Hence, risk attitudes have a second order e¤ect at fht; qgt2(0;1] when k� < 1 and a negligible one
when k� = 1. In contrast, there are no clear cut e¤ects when k� < k� = 1.

Since k� � k� � 1, condition k� = 1 is equivalent to k� = k� = 1, that is,

lim
t#0

E2q (ht)

Eq (h2t )
= 1. (19)

This condition holds when fht; qgt2(0;1] is asymptotically constant, that is,

ht (!) � ht (!
0) 8!; !0 2 supp q: (20)

Intuitively, small risks that satisfy this condition are asymptotically riskless (notice that condition
(20) trivially holds when supp q is a singleton). Under a regularity condition, the asymptotic condition
(20) is also necessary for (19).
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Proposition 15 Let fht; qgt2(0;1] be a small risk.

(i) If fht; qgt2(0;1] is asymptotically constant, then (19) holds and risk attitudes are negligible at
fht; qgt2(0;1].

(ii) Conversely, fht; qgt2(0;1] is asymptotically constant provided (19) and at least one of the follow-
ing conditions hold:

(a) supp q = f!1; !2g and ht (!1) = O (ht (!2));

(b) supp q = f!1; !2; :::; !sg and ht (!i) � kijht (!j) for all !i; !j 2 supp q.

In other words, risk attitudes are negligible when risk asymptotically vanishes, that is, for small
risks that are asymptotically constant, and so asymptotically riskless. In this case,

� (w + ht) = o
�
khtk2q

�
:

Instead, when a small risk is not asymptotically constant (and we are not in the indeterminate case
k� < k� = 1) we have

� (w + ht) �
1

2
�u (w)�

2
q (ht) ;

that is, when risk attitudes have a second order e¤ect, then the risk premium is asymptotically
equivalent to 2�1�u (w)�2q (ht). In this term, risk attitudes captured by �u (w) are multiplicatively
separated from the riskiness of the net fht; qgt2(0;1] captured by �2q (ht).

Example 16 (i) Consider a small risk fht; qgt2(0;1] de�ned by (16); for example, a directional small
risk. It holds k� = E2q (h) =Eq

�
h2
�
< 1 if h is not constant q-a.e. In this case �2q (ht) � khtk

2
q and so

risk attitudes have a second order e¤ect. If, instead, h is constant q-a.e., then k� = E2q (h) =Eq
�
h2
�
=

1 and so risk attitudes have a negligible e¤ect (it actually holds � (w + ht) = 0 for each 0 < t � 1).
(ii) Consider a space 
 = f1; 2g and a risky monetary net fht; qgt2(0;1] with 0 < q (1) < 1 and

ht (!) =

(
t+ t2 if ! = 1

t if ! = 2

This net is an asymptotically constant small risk (i.e., k� = 1). Hence, � (w + ht) = o
�
khtk2�q

�
and

risk attitudes have a negligible e¤ect at this small risk. N

Till now we studied order e¤ects at some small risk fht; qgt2(0;1]. It is a �directional�standpoint.
A global one would require that the order be consistent across all small risks. For this reason, we say
that risk attitudes have a

(i) �rst order e¤ect if � (w + h) � khkq as khkq ! 0;

(ii) second order e¤ect if � (w + h) � khk2q as khkq ! 0;

(iii) (quadratically) negligible e¤ect if � (w + h) = o
�
khk2q

�
as khkq ! 0.

Clearly, if risk attitudes have a �rst, second, or negligible order e¤ect, the same applies to all
small risks. Indeed, any small risk fht; qgt2(0;1] is such that khtkq ! 0 as t # 0.
The next result shows that, unless q is trivial, there is always some small risk at which risk

attitudes are not negligible.

Proposition 17 Risk attitudes have a negligible e¤ect if and only if q is trivial, i.e., q = �! for some
! 2 
.
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3.4 Scales of risks

Some classic scales can be used to benchmark the rate at which Eq
�
h2t
�
converges to zero (see, e.g.,

Hardy [5]). The simplest is the power scale

:::; t
1
n ; :::; t

1
2 ; t; t2; :::; tn; :::

Let us consider the case of quadratic speed t2 (while similar considerations would apply to other
powers).

De�nition 18 A risky monetary net fht; qgt2(0;1] is a quadratic small risk if Eq
�
h2t
�
= O

�
t2
�
.

In other words, quadratic small risks feature second moments Eq
�
h2t
�
that go to zero with at least

quadratic speed.

Example 19 The net fht; qgt2(0;1] a la Segal and Spivak de�ned by (16) is a quadratic small risk
since Eq

�
h2t
�
= t2Eq

�
h2
�
. In particular, this is the case for directional small risks. N

By Lemma 2, for quadratic small risks the quadratic approximation (18) holds with a Peano

remainder o
�
t2
�
in place of o

�
khtk2q

�
, that is,

� (w + ht) =
1

2
�u (w)�

2
q (ht) + o

�
t2
�
:

Next we characterize quadratic small risks.

Proposition 20 Given a monetary net fhtgt2(0;1], the following conditions are equivalent:

(i) fhtgt2(0;1] is a quadratic small risk;

(ii) Eq (jhtjn) = O (tn) for some n � 1;

(iii) Eq (jhtjn) = O (tn) for all n � 1;

(iv) ht (!) = O (t) for all ! 2 supp q.

Example 21 For the net fht; qgt2(0;1] de�ned by (16) we have Eq (jhtj) = tEq (jhj). N

Points (iv) of Propositions 12 and 20 show that the di¤erence between small risks and quadratic
ones can be seen by looking at the limit behavior of ht (!) for each ! 2 supp q. Small risks correspond
to their convergence to zero, i.e., ht (!)! 0, while quadratic small risks require that this convergence
occurs at least at linear speed, i.e., ht (!) = O (t).

4 Small uncertainties

The earlier risk analysis can be extended to account for ambiguity. We call uncertain monetary nets,
indicated fht; �gt2(0;1], nets of monetary acts ht : 
! R and probability distributions � on �, with
lim supt#0E�q (jhtj) < 1. In a coin toss example, � is the decision maker�s prior on the probability
models q that determine how likely heads and tails are.
Now the relevant certainty equivalent is (9), that is,

C (f) = v�1

 Z
�

v

 
u�1

 X
!2


u (f (!)) q (!)

!!
d� (q)

!
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As in (3), we set

�q (!) =

Z
�

q (!) d� (q) :

Hence, an uncertain monetary net fht; �gt2(0;1] induces a risky monetary net fht; �qgt2(0;1]. Using
these induced nets we can extend to uncertain monetary nets some of the notions that we previously
established for risky ones.

De�nition 22 An uncertain monetary net fht; �gt2(0;1] is a small uncertainty if and only if the
induced risky monetary net fht; �qgt2(0;1] is a small risk.

This fact is important to extend to small uncertainties the analysis carried out for small risks. A
�rst consequence is that Proposition 12 holds verbatim with �q in place of q. This means that, for
example, fht; �gt2(0;1] is a small uncertainty if and only if limt#0 ht (!) = 0 for all ! 2 supp �q.
Regarding order e¤ects, we now have uncertainty attitudes in place of just risk ones. In particular,

uncertainty attitudes have a

(i) �rst order e¤ect at fht; �gt2(0;1] if � (w + ht) � khtk�q;

(ii) second order e¤ect at fht; �gt2(0;1] if � (w + ht) � khtk
2
�q;

(iii) (quadratically) negligible e¤ect at fht; �gt2(0;1] if � (w + ht) = o
�
khtk2�q

�
.

Proposition 13 holds verbatim with �q in place of q. Hence, the order e¤ects of uncertainty attitudes
depend on the limit behavior of the ratio E�q

�
h2t
�
= khtk2�q.

More can be said assuming di¤erentiability. Throughout the rest of the section we assume the
following version of Assumption 1 (in which strict inequalities simplify the analysis).

Assumption 3 The functions u; v : I ! R are twice di¤erentiable with u0; v0 > 0, �u (w) ; �v (w) 6= 0
and �u (w) 6= �v (w).

Under Assumption 3 we can consider the quadratic approximation

� (w + ht) =
1

2
�u (w)E�

�
�2 (ht)

�
+
1

2
�v (w)�

2
� (E (ht)) + o

�
khtk2�q

�
(21)

of the premium � (w + ht) of a small uncertainty fht; �gt2(0;1]. This makes it possible to separate the
e¤ects of risk and model uncertainty attitudes. In the present di¤erential setting �rst order e¤ects
never arise with small uncertainties.

Lemma 23 It holds E�
�
�2 (ht)

�
= o

�
khtk�q

�
and �2� (E (ht)) = o

�
khtk�q

�
for each small uncertainty

fht; �gt2(0;1].

In view of this lemma, in the di¤erential case we only need to consider second and higher order
e¤ects. In particular, risk attitudes have a

(i) second order e¤ect at fht; �gt2(0;1] if E�
�
�2 (ht)

�
� khtk2�q;

(ii) (quadratically) negligible e¤ect at fht; �gt2(0;1] if E�
�
�2 (ht)

�
= o

�
khtk2�q

�
.
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A similar classi�cation holds for model uncertainty attitudes, with �2� (E (ht)) in place of E�
�
�2 (ht)

�
.

If risk and model uncertainty attitudes both have a second order e¤ect, then overall uncertainty
attitudes have a second order e¤ect. If, instead, risk and model uncertainty attitudes have e¤ects
of di¤erent orders, the overall uncertainty attitudes have e¤ects of the lower order. In particular,
uncertainty attitudes have a second order e¤ect either if risk attitudes have a second order e¤ect and
model uncertainty attitudes have a higher order e¤ect or if the opposite is true. In this case we have

� (w + ht) =
1

2
�u (w)E�

�
�2 (ht)

�
+ o

�
khtk2�q

�
or � (w + ht) =

1

2
�v (w)�

2
� (E (ht)) + o

�
khtk2�q

�
;

respectively. Finally, � (w + ht) = o
�
khtk2�q

�
if both risk and model uncertainty attitudes have

negligible e¤ects.

Example 24 Consider the net fht; �gt2(0;1] such that the induced net fht; �qgt2(0;1] is de�ned by
(16). For example, a directional small uncertainty with ht = th, for a given a monetary act h. We
have �2�q (ht) = t2�2�q (h) and �

2
� (E (ht)) = t2�2� (E (h)). Hence,

E�
�
�2 (ht)

�
= t2E�

�
�2 (h)

�
and �2� (E (ht)) = t2�2� (E (h)) :

Suppose that h is such that �2�q (h) > 0 and �2� (E (h)) > 0. Since khtk2�q = t2 khk2�q, both risk and
model uncertainty attitudes have second order e¤ects if �2�q (h) 6= �2� (E (h)) while only uncertainty
attitudes have a second order e¤ect if �2�q (h) = �2� (E (h)). N

We defer to Sections 7 and 8 a detailed analysis (for the binomial case) of the asymptotic versions
of the four cases discussed in Section 2.4. Here we consider global e¤ects. In particular, in the
di¤erential case risk attitudes have a

(i) second order e¤ect if E�
�
�2 (ht)

�
� khk2�q as khk

2
�q ! 0;

(ii) (quadratically) negligible e¤ect if E�
�
�2 (ht)

�
= o

�
khk2�q

�
as khk2�q ! 0.

A similar classi�cation holds for model uncertainty attitudes, with �2� (E (ht)) in place of E�
�
�2 (ht)

�
.

The following result extends Proposition 17 to uncertainty.

Proposition 25 (i) Model uncertainty attitudes have a negligible e¤ect if and only if supp� = fpg for
some p 2 �. (ii) Risk attitudes have a negligible e¤ect if and only if supp� consists of Dirac measures.
(iii) Both risk and model uncertainty attitudes have a negligible e¤ect if and only if supp� = f�!g
for some ! 2 
.

In other words, risk attitudes are �globally�negligible if and only if the support of � consists of
Dirac measures on 
, while model uncertainty attitudes are globally negligible if and only if � is itself
a Dirac measure on � (i.e., it gives full weight to a single model p 2 �). Finally, both attitudes are
negligible when � is a Dirac measure on a Dirac measure, that is, supp� = f�!g. These cases are
asymptotic global versions of Cases 2-4 discussed in Section 2.4.

Finally, we can de�ne quadratic small uncertainties when E�q
�
h2t
�
= O

�
t2
�
. The analysis is

similar, up to obvious modi�cations, to the one carried out for the risk case. For brevity we thus
omit it.
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5 Risk varying setting

5.1 Small risks

We extend our analysis to a risk varying setting in which q may depend on t. Thus, we now focus on
nets fht; qtgt2(0;1] of monetary acts ht : 
! R and probability distributions qt 2 � that we call risky
monetary nets provided ht is never qt-a.e null and qt ! q for some q 2 �; that is, limt#0 qt (!) = q (!)
for all ! 2 
. These two conditions put some discipline on how outcomes and probabilities can vary
as t goes to zero.
This notion of risky monetary nets fht; qtgt2(0;1] reduces to the earlier one when qt = q for all

t 2 (0; 1]. Here, each act ht delivers outcomes under possibly di¤erent risk conditions determined by
qt. We therefore relax the assumption that each static situation t features the same risk conditions.
In a coin toss example, the probability qt (H) and qt (T ) with which heads and tails come up may
depend on the index t.10

The notion of small risk, introduced in De�nition 7, is readily extended to the present more general
setting.

De�nition 26 A risky monetary net fht; qtgt2(0;1] is a small risk if limt#0Eqt
�
h2t
�
= 0:

There is a key novelty in this notion of small risk for the risk varying case: now there are two
(complementary) sources of smallness, outcomes and probabilities. That is, we may have Eqt

�
h2t
�
! 0

because either outcomes ht (!) or their probabilities qt (!) (or both) are becoming smaller and smaller
as t goes to zero. For example, consider 
 = f1; 2g and

ht (!) =

(
' (t) if ! = 1

 (t) if ! = 2

Set qt = qt (1) ! q = q (1). If q 2 (0; 1), then Eqt
�
h2t
�
! 0 provided  (t) ! 0 and ' (t) ! 0. In

contrast, if q = 0 then Eqt
�
h2t
�
! 0 provided only  (t)! 0, without any requirement on ' (t).

To characterize small risks we extend Proposition 12 to the risk varying setting. To this end, set11

S =
\

t2(0;1]

[
��t

supp q� ;

that is, S = lim supt#0 (supp qt). In words, ! 2 S if and only if for all t 2 (0; 1] there exists � � t
such that q� (!) > 0. It is easy to see that supp q � lim supt#0 (supp qt). In addition, set

�q = S � supp q;

that is, �q is de�ned as the di¤erence between the sets lim supt#0 (supp qt) and supp q. Clearly, �q = ;
when qt = q for all t 2 (0; 1]. In other words, the possible nonemptiness of �q is peculiar to the risk
varying setting. Indeed ! 2 �q if and only if for all t 2 (0; 1] there exists � � t such that q� (!) > 0
and 0 = q (!) = lim�#0 q� (!).

Lemma 27 It holds ! =2 S if and only if qt (!) = 0 eventually.
10The risk varying setting is more general than the previous one, even in terms of induced distributions on outcomes.

For example, given 
 = f1; 2g, let fht; qtgt2(0;1] be such that qt (1) 6= qt0 (1) for each t 6= t0 and ht (1) 6= ht (2)

for each t. Given any q 2 �, it holds q (ht = x) 2 fq (1) ; 1� q (1)g for all t. Hence, there is no q 2 � such that
q (ht = x) = qt (ht = x) for all t.
11The limit is meaningful since

[
��t

supp q� �
[
��t0

supp q� if t < t0 (see, e.g., [?, p. 23] and [?, p. 39]).
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A direct implication of this lemma is qt (S) = 1 for each t small enough.

We now characterize small risks by generalizing Proposition 12, which is the special case qt = q
for all t 2 (0; 1].

Proposition 28 For a risky monetary net fht; qtgt2(0;1] such that lim supt#0 jht (!)j < 1 for all
! 2 �q, the following conditions are equivalent:

(i) limt#0Eqt (jhtj
n
) = 0 for all n � 1;

(ii) fht; qtgt2(0;1] is a small risk;

(iii) limt#0Eqt (jhtj
n
) = 0 for some n � 1;

(iv) limt#0 qt (! : jht (!)j � ") = 0 for each " > 0;

(v) limt#0 ht (!) = 0 for each ! 2 supp q.

Clearly, (i) implies (ii) and (ii) implies (iii). Moreover, (iii) is easily seen to imply (iv) since, by
the Chebyshev inequality, for each " > 0,

0 � qt (! : jht (!)j � ") � 1

"n
Eqt (h

n
t )! 0

as t # 0. The remaining implications are less straightforward and are proved in the Appendix.

Let us adapt Examples 8-10 to the present setting.

Example 29 (i) A net fhtgt2(0;1] that statewise converges as in (15) forms a small risk fht; qtgt2(0;1]
along with any net fqtgt2(0;1] that converges to some q 2 �.

(ii) In a risk varying setting, Pratt [10]�s analysis amounts to consider a risky monetary net
fht; qtgt2(0;1] with Eqt (ht) = 0 and limt#0Eqt

�
h2t
�
= 0.

(iii) As to Segal and Spivak [11], let fqtgt2(0;1] be any net such that qt ! q. Fix a monetary act
h1 2 Rn and de�ne a risky monetary net fht; qtgt2(0;1] such that, at each t 2 (0; 1], ht has the same
distribution under qt as th1 under q1. That is,

qt (ht 2 E) = q1 (th1 2 E) ; 8t 2 (0; 1] ; (22)

for all Borel subsets B of R. Since Eqt
�
h2t
�
= t2Eq1

�
h21
�
, this net is a small risk. For example, given


 = f1; 2g let (h1; q1) be such that h1 (1) = �h1 (2) = 1 and q1 (1) = 1=3. Then, setting

qt (ht = x) = q1 (th1 = x) =

(
1
3 if x = t

2
3 if x = �t

If ht is such that ht (1) = �h1 (2) = t, then fht; qtgt2(0;1] is a risky monetary net that satis�es (22).

(iv) In the spirit of the previous example are the directional small risks fht; qtgt2(0;1], where
ht = th, qt-a.e. and qt ! q, for a given monetary act h 2 Rn. In fact, Eqth2t = Eqtt

2h2 = t2Eqth
2 ! 0

because Eqth
2 ! Eqh

2. N

17



5.2 Order e¤ects

To study the order e¤ects of small risks in the present risk varying setting we need to consider the
indexed certainty equivalent

Ct (f) = u�1

 X
!2


u (f (!)) qt (!)

!
: (23)

Relative to (14), the model qt may now change with t. In particular, the risk premium (17) now takes
the form

�t (w + ht) = w + Eqt (ht)� Ct (w + ht) :

We can de�ne order e¤ects in the usual way: risk attitudes have a

(i) �rst order e¤ect at fht; qtgt2(0;1] if �t (w + ht) � khtkqt ;

(ii) second order e¤ect at fht; qtgt2(0;1] if �t (w + ht) � khtk
2
qt
;

(iii) (quadratically) negligible e¤ect at fht; qtgt2(0;1] if �t (w + ht) = o
�
khtk2qt

�
.

If we de�ne

k� = lim inf
t#0

E2qt (ht)

Eqt (h
2
t )

and k� = lim sup
t#0

E2qt (ht)

Eqt (h
2
t )

(24)

we can extend Proposition 13 to the present setting, up to obvious changes (i.e., we ought to add the
index t whenever needed). Therefore, provided Eqt (ht) > 0 eventually, for all t small enough it holds

Ct (w + ht) < w

if �t (w + ht) � k khtkqt and k >
p
k�, while

Ct (w + ht) > w

if either �t (w + ht) � k khtkqt and k <
p
k� or �t (w + ht) = o

�
khtkqt

�
. As in the constant risk

case, risk attitudes with �rst order e¤ects may or may not matter when comparing w + ht and w;
risk attitudes with second or higher order do not matter.

Substantially more delicate is the extension of the di¤erential case to this risk varying setting.
Indeed, because of the dependence on t, we need to improve the quadratic approximation (18) to
control for variations in t. To see why this is the case, consider a risky monetary net fht; qgt2(0;1] in
which qt does not depend on t. In this case limt#0Eq

�
h2t
�
= 0 and so the quadratic approximation

of the uncertainty premium is given by (18), that is,

� (w + ht) =
1

2
�u (w)�

2
q (ht) + o

�
khtk2q

�
: (25)

When qt depends on t, we need an approximation based on the time varying certainty equivalent
Ct (w + ht) that at each t may feature a di¤erent model qt. This complication of the risk varying
case has to be carefully addressed. To this end the next notion is key.

De�nition 30 A small risk fht; qtgt2(0;1] is controllable if max!2supp qt jht (!)j = O
�
khtkqt

�
as

t # 0.

The following proposition collects some useful features of controllable small risks.

18



Proposition 31 Let fht; qtgt2(0;1] be a small risk.

1. fht; qtgt2(0;1] is controllable if �q = ;, that is, supp qt = supp q eventually.

2. fht; qtgt2(0;1] is controllable if and only if Eqt
�
h2t
�
�
P
!2supp qt h

2
t (!).

3. fht; qtgt2(0;1] is controllable if and only if lim inft#0
Eqt(h

2
t)P

!2supp qt
h2t (!)

> 0.

4. If lim inft#0
Eqt(h

2
t)P

!2S h
2
t (!)

> 0, then fht; qtgt2(0;1] is controllable.

Example 32 (i) Let 
 = f1; 2g and

ht (!) =

(
' (t) if ! = 1

 (t) if ! = 2

with ' (t) �  (t). If 0 < qt < 1 (where qt = qt (1) for all t 2 (0; 1]), then

Eqt
�
h2t
�P

!2supp qt h
2
t (!)

=
qt'

2 (t) + (1� qt) 2 (t)
'2 (t) +  2 (t)

� 1

2

and so this risky monetary net is controllable. If, instead,  (t) = o (' (t)), then

Eqt
�
h2t
�P

!2supp qt h
2
t (!)

=
qt + (1� qt) o (1)

1 + o (1)
! q

and so, in this case, fht; qtgt2(0;1] is controllable if and only if q > 0.

(ii) Directional small risks are controllable. For example, �x h and consider a risk pattern
fqtgt2(0;1] with qt ! q. Let fht; qtgt2(0;1] be such that ht = th, qt-a.e., for each t 2 (0; 1]. Then,
eventually

Eqt
�
h2t
�P

!2supp qt h
2
t (!)

=
Eqt

�
h2
�P

!2supp qt h
2 (!)

�
Eqt

�
h2
�P

!2S h
2 (!)

!
Eq
�
h2
�P

!2S h
2 (!)

and so fht; qtgt2(0;1] is controllable when Eq
�
h2
�
> 0, i.e., h 6= 0 q-a.e. N

The next result, a special case of Theorem 40 below, shows that in the controllable case we can
suitably extend the quadratic approximation (25) to risky monetary nets.

Theorem 33 Let fht; qtgt2(0;1] be a controllable small risk. If Assumption 2 holds with u three times
continuously di¤erentiable, then

Ct (w + ht) = w + Eqt (ht)�
1

2
�u (w)�

2
qt (ht) + o

�
khtk2qt

�
(26)

for all w 2 R.

In other words, the risk premium takes the form

�t (w + ht) =
1

2
�u (w)�

2
qt (ht) + o

�
khtk2qt

�
; (27)
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that is, as t # 0,
�t (w + ht)� 1

2�u (w)�
2
qt (ht)

khtk2qt
! 0;

where khtk2qt ! 0 because fht; qtgt2(0;1] is a small risk. Approximation (25) is the special case of (27)
where qt = q for all t.

Thanks to quadratic approximation (26) we can study order e¤ects through the variances �2qt (ht).
Since Lemma 14 is easily extended to the risk varying case, with k� and k� given by (24), we have:

(i) risk attitudes do not have a �rst order e¤ect at fht; qtgt2(0;1] since �2qt (ht) � khtk2qt implies
�2qt (ht) = o

�
khtkqt

�
;

(ii) risk attitudes have a second order e¤ect at fht; qtgt2(0;1] if and only if k� < 1;

(iii) risk attitudes have a negligible e¤ect at fht; qtgt2(0;1] if and only if k� = 1, that is,

lim
t#0

E2qt (ht)

Eqt (h
2
t )
= 1. (28)

We defer a detailed analysis of these cases to Sections 7 and 8, where we study the binomial case
in the more general setting of varying uncertainty that we will introduce in the next section. Now we
extend Proposition 15 to show that risk attitudes are negligible when risk asymptotically vanishes.

Proposition 34 Under Assumption 2 with u three times continuously di¤erentiable, risk attitudes
are negligible at controllable small risks fht; qtgt2(0;1] that are asymptotically constant, that is,

ht (!) � ht (!
0) 8!; !0 2 S: (29)

In words, risk eventually vanishes and risk attitudes do not matter.

5.3 Quadratic small risks

The notion of quadratic small risks, introduced in De�nition 18, readily extends to the present setting.

De�nition 35 A risky monetary net fht; qtgt2(0;1] is a quadratic small risk if Eqt
�
h2t
�
= O

�
t2
�
.

Next we characterize quadratic small risks: relative to Proposition 20, here the case of n = 2 plays
a special role.

Proposition 36 Given a risky monetary net fht; qtgt2(0;1] the following conditions are equivalent:

(i) fht; qtgt2(0;1] is a quadratic small risk;

(ii) ht (!) = O (t) for all ! 2 supp q and h2t (!) qt (!) = O
�
t2
�
for all ! 2 �q.

Given ! 2 �q, su¢ cient conditions for h2t (!) qt (!) = O
�
t2
�
are qt (!) = O

�
t2
�
and lim supt#0 jht (!)j <

1. That is, (ii) holds � and so fht; qtgt2(0;1] is a quadratic small risk � if ht (!) = O (t) for all
! 2 supp q and if qt (!) goes to zero fast enough, with jht (!)j bounded for all ! 2 �q.

The next example shows that, unlike Proposition 20, condition (ii) in Proposition 36 does not
hold for any n.
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Example 37 (i) Directional small risks are quadratic. For

Eqt
�
h2t
�

t2
= Eqt

�
h2
�
! Eq

�
h2
�

(ii) Given 
 = f1; 2g, let fht; qtgt2(0;1] be given by ht (1) = 1, ht (2) = t, and qt (1) = t3. Then,
Eqt

�
h2t
�
= O

�
t2
�
, but Eqt

�
h4t
�
6= O

�
t4
�
. Hence, fht; qtgt2(0;1] is a quadratic small risk, although it

is not true that Eqt (jhtj
n
) = O (tn) for all n � 1. N

Finally, when fht; qtgt2(0;1] is a (controllable) quadratic small risk, we can replace o
�
khtk2�qt

�
with

o
�
t2
�
in the risk premium approximation (27), that is,

�t (w + ht) =
1

2
�u (w)�

2
qt (ht) + o

�
t2
�
:

6 Uncertainty varying setting

In this section we extend our earlier risk analysis to account for ambiguity, as modeled by the smooth
ambiguity model (7). We consider a net of probability measures f�tgt2(0;1] on � and we allow � to
depend on the index t. As in (3), we set

�qt (!) =

Z
�

q (!) d�t (q)

We call uncertain monetary nets, indicated fht; �tgt2(0;1], nets of monetary acts ht : 
 ! R and

probability distributions �t on � such that ht is never �qt-a.e null and �t
sq
=) � for some � on �. In

a coin toss example, �t is the decision maker�s prior on the probability models q that determine how
likely heads and tails are. This prior now can vary with t.

Set �q (!) =
R
�
q (!) d� (q). By De�nition 5, limt#0 �qt (!) = �q (!) for each ! 2 
 if �t

sq
=) �.

Hence, an uncertain monetary net fht; �tgt2(0;1] induces a risky monetary net fht; �qtgt2(0;1] such that
�qt ! �q. Using these induced nets we can readily extend to uncertain monetary nets what we have
previously established for risky ones. Let us begin with the notions of small uncertainties.

De�nition 38 An uncertain monetary net fht; �tgt2(0;1] is a small uncertainty if and only if the
induced risky monetary net fht; �qtgt2(0;1] is a small risk.

This de�nition extends the scope of De�nition 26 to uncertainty. In particular, an uncertain
monetary net fht; �tgt2(0;1] is a a small uncertainty if and only if limt#0E�qt

�
h2t
�
= 0. For this reason,

Proposition 28 holds with �qt and �q in place of qt and q, respectively.

To study the behavior of small uncertainties we consider the indexed certainty equivalent

Ct (f) = v�1

 Z
�

v

 
u�1

 X
!2


u (f (!)) q (!)

!!
d�t (q)

!
;

Relative to the certainty equivalent (14), the prior �t may now change with t.
Through the induced small risk fht; �qtgt2(0;1] we can easily extend to uncertainty all results on

order e¤ects established in Section 5.2 by setting

k� = lim inf
t#0

E2�qt (ht)

E2�qt (h
2
t )

and k� = lim sup
t#0

E2�qt (ht)

E2�qt (h
2
t )
:
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For brevity, we omit the details.
As in the risk varying case, the dependence on t requires a substantial improvement of the

quadratic approximation (12) to control variations in t. In order to do so we �rst extend the notion
of controllability to uncertainty.

De�nition 39 A small uncertainty fht; �tgt2(0;1] is controllable if max!2supp �qt jht (!)j = O
�
khtk�qt

�
as t # 0.

That is, fht; �tgt2(0;1] is controllable if and only if fht; �qtgt2(0;1] is. In particular, Proposition 31
has a natural counterpart and directional small uncertainties are controllable provided h 6= 0, �q-a.e..

We can now generalize the quadratic approximation (12). The dependence on t of the priors �t
substantially complicates the derivation of the following quadratic approximation, which we prove in
Appendix B. It is the main technical contribution of the paper.

Theorem 40 Let fht; �tgt2(0;1] be a controllable small uncertainty. If Assumption 3 holds with u
and v three-times continuously di¤erentiable, then

Ct (w + ht) = w + E�qt (ht)�
1

2
�u (w)E�t

�
�2 (ht)

�
� 1
2
�v (w)�

2
�t (E (ht)) + o

�
khtk2�qt

�
(30)

for all w 2 R.12

Thus, the uncertainty premium takes the form

�t (w + ht) =
1

2
�u (w)E�t

�
�2 (ht)

�
+
1

2
�v (w)�

2
�t (E (ht)) + o

�
khtk2�qt

�
: (31)

Approximation (21) is the special case of (31) where �t = � for all t. Approximation (31) allows
to study separately the order e¤ects of risk and model uncertainty attitudes through the mean of
variances E�t

�
�2 (ht)

�
and the variance of means �2�t (E (ht)).

Lemma 23 is readily extended to the present setting, so that E�t
�
�2 (ht)

�
= o

�
khtk�qt

�
and

�2�t (E (ht)) = o
�
khtk�qt

�
for each small uncertainty fht; �tgt2(0;1]. As a result, in the di¤erential

case we can have only second and higher order e¤ects. In particular, risk attitudes have a

(i) second order e¤ect at fht; �tgt2(0;1] if E�t
�
�2 (ht)

�
� khtk2�qt ;

(ii) (quadratically) negligible e¤ect at fht; �tgt2(0;1] if E�t
�
�2 (ht)

�
= o

�
khtk2�qt

�
.

A similar classi�cation holds for model uncertainty attitudes, with �2�t (E (ht)) in place of E�t
�
�2 (ht)

�
.

The next two sections will illustrate these notions in the important binomial case. In particular, The-
orem 49 will show that the order e¤ect of E�t

�
�2 (ht)

�
and �2�t (E (ht)) critically depends on the

limit properties of both outcomes, ht, and beliefs, �t. The latter dependence is especially interesting:
in a nutshell, when the support of �t is trivial, model uncertainty attitudes are negligible; when it
is not trivial, model uncertainty persists as t goes to zero. As a matter of fact, both risk and model
uncertainty attitudes have a second order e¤ect when the support is not trivial.

Finally, we can de�ne quadratic small uncertainties by proceeding as in Section 5.3, mutatis
mutandis. Brie�y, quadratic small uncertainties are de�ned by E�qt

�
h2t
�
= O

�
t2
�
. In this case in (31)

we can replace o
�
khtk2�qt

�
with o

�
t2
�
.

12Here E�t
�
�2 (ht)

�
= �2�qt (ht)� �2�t (E (ht)).
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7 A binomial illustration

Consider a binomial model 
 = f1; 2g. Let f�tgt2(0;1] be any net of priors that quadratically converges
to some �, and let Wt : 
! R be given by Wt = tW with

W (!) =

(
1 if ! = 1

�1 if ! = 2

In this section we consider directional small uncertainties fWt; �tgt2(0;1].

Lemma 41 fWt; �tgt2(0;1] is a controllable and quadratic small uncertainty.

Given q 2 �, to ease notation we set q = q (1). In particular, each �t can be viewed as a Borel
probability measure on [0; 1]. Set #t =

R
q2d�t (q) for each t > 0. Then,

0 � �q2t � #t � �qt � 1; (32)

and

�2�qt (Wt) = 4t
2�qt (1� �qt)

�2�t (E (Wt)) = 4t
2
�
#t � �q2t

�
E�t

�
�2 (Wt)

�
= 4t2 (�qt � #t) :

Hence, for all w the quadratic approximation (31) of the uncertainty premium �t (w +Wt) takes the
form

�t (w +Wt) = 2�u (w) (�qt � #t) t2 + 2�v (w)
�
#t � �q2t

�
t2 + o

�
t2
�
: (33)

Our goal is to study the limit behavior of �t (w +Wt) as t goes to zero, thereby determining the
impact of risk and model uncertainty attitudes on the certainty equivalent Ct (w +Wt). To this end,
throughout this section we suppose that Assumption 3 holds with u and v three times continuously
di¤erentiable and �u (w) ; �v (w) > 0.
In particular, risk attitudes have a �rst order, second order, negligible e¤ect at fWt; �tgt2(0;1]

if, respectively, (�qt � #t) t2 � t, (�qt � #t) t2 � t2, and (�qt � #t) t2 = o
�
t2
�
. As usual, a similar

classi�cation holds for model uncertainty attitudes, with
�
#t � �q2t

�
t2 in place of (�qt � #t) t2.

By (32) it holds 0 � �qt � #t; #t � �q2t � 1, and so both E�t
�
�2 (Wt)

�
and �2�t (E (Wt)) are

O
�
t2
�
. This, in turn, implies that risk and model uncertainty attitudes never have a �rst order e¤ect.

Moreover, limt#0 (�qt � #t) = �q � # and limt#0
�
#t � �q2t

�
= # � �q2 exist �nite since �t quadratically

converges to some �. As a result, E�t
�
�2 (Wt)

�
and �2�t (E (Wt)) have a well-de�ned limit behavior.

Summing up:

Lemma 42 Suppose �t
sq
=) �. Then

0 � lim
t#0

E�t
�
�2 (Wt)

�
t2

= 4 (�q � #) � 4

0 � lim
t#0

�2�t (E (Wt))

t2
= 4

�
#� �q2

�
� 4

and

(i) E�t
�
�2 (Wt)

�
� 4 (�q � #) t2 if �q 6= #, while E�t

�
�2 (Wt)

�
= o

�
t2
�
otherwise;

(ii) �2�t (E (Wt)) � 4
�
#� �q2

�
t2 if # 6= �q2, while �2�t (E (Wt)) = o

�
t2
�
otherwise.

Thus, risk and model uncertainty attitudes have either a second order or a negligible e¤ect at
fWt; �tgt2(0;1]. Depending on which e¤ect prevails, the following four possible cases have to be
considered.
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Limit Case 1 �q2 < # < �q: Then (33) becomes

�t (w +Wt) = 2�u (w) (�q � #) t2 + 2�v (w)
�
#� �q2

�
t2 + o

�
t2
�

=
1

2
�u (w)E�

�
�2 (W )

�
t2 +

1

2
�v (w)�

2
� (E (W )) t

2 + o
�
t2
�
;

that is, both risk and model uncertainty attitudes have a second order e¤ect at fWt; �tgt2(0;1] and
the same relevance in the quadratic approximation.13

Limit Case 2 �q2 = # < �q: Then (33) becomes

�t (w +Wt) = 2�u (w) (�q � #) t2 + o
�
t2
�

=
1

2
�u (w)E�

�
�2 (W )

�
t2 + o

�
t2
�
;

that is, risk attitudes have a second order e¤ect at fWt; �tgt2(0;1] while model uncertainty attitudes
have a negligible e¤ect. In this case a KMM decision maker is eventually indistinguishable from a
subjective expected utility one.

Limit Case 3 �q2 < # = �q: Then (33) becomes

�t (w +Wt) = 2�v (w)
�
#� �q2

�
t2 + o

�
t2
�

=
1

2
�v (w)�

2
� (E (W )) t

2 + o
�
t2
�
;

that is, model uncertainty attitudes have a second order e¤ect at fWt; �tgt2(0;1], while risk attitudes
have a negligible e¤ect.

Limit Case 4 �q2 = # = �q: Then (33) becomes

�t (w +Wt) = o
�
t2
�
;

that is, both risk and model uncertainty attitudes have a negligible e¤ect at fWt; �tgt2(0;1].

These four fundamental cases are asymptotic versions of the four cases discussed in Section 2.4
and they show that, in any case,

�t (w +Wt) = 2�u (w) (�q � #) t2 + 2�v (w)
�
#� �q2

�
t2 + o

�
t2
�

(34)

=
1

2
�u (w)E�

�
�2 (W )

�
t2 +

1

2
�v (w)�

2
� (E (W )) t

2 + o
�
t2
�
:

Next we essentially restate Proposition 1 of the Introduction, which characterizes the four cases
through the properties of the limit prior �.

Proposition 43 Suppose �t
sq
=) �. Then

1. �q2 < # < �q if and only if supp� is neither a singleton nor f0; 1g;

2. �q2 = # < �q if and only if supp� is a singleton in (0; 1);

3. �q2 < # = �q if and only if supp� = f0; 1g;
13Notice that to derive this conclusions we do not actually need �u (w) ; �u (w) > 0. It is enough to exclude

�u (w) (�q � #) + �v (w)
�
#� �q2

�
= 0, that is the case in which risk propension (resp. aversion) perfectly compensates

model uncertainty aversion (resp. proprension) in the limit.

24



4. �q2 = # = �q if and only if � = �0 or � = �1.

The proof follows from the two simple observations mentioned in the Introduction. By now, the
interpretation of these four cases in terms of the properties of the support of � should be clear. For
this reason we move directly to illustrate these cases with couple of examples.

Example 44 Let 0 � at < bt � 1, for each t. Then, for each Borel subset B of [0; 1], set

�t (B) = �[at;bt] (B) =
� (B \ [at; bt])

bt � at
; (35)

where � is the Lebesgue measure on [0; 1]. The support of �t is supp�t = [at; bt] and it is easy to
show that if at ! a and bt ! b as t # 0, then

�t
w
=) � =

(
�[a;b] if a < b;

�a if a = b:

Moreover, notice that in this case,

q =
b+ a

2
and # =

b2 + ab+ a2

3

and the approximation can be explicitly written as

�t (w +Wt) = �u (w)
3b+ 3a� 2b2 � 2ab� 2a2

3
t2 + �v (w)

(b� a)2

6
t2 + o

�
t2
�
: (36)

N

Example 45 Consider the net fWt; �tgt2(0;1]. Suppose that �t = �[(1=3)+t;(2=3)�t] for each t 2
(0; 1=3] . Then, by (36),

�t (w + ht) =

�
13

27
�u (w) +

1

54
�v (w)

�
t2 + o

�
t2
�
:

If �t = �[2�1�t;2�1+t] for each t 2 (0; 1=3] . Then, by (36),

�t (w +Wt) =
1

2
�u (w) t

2 + o
�
t2
�
:

If �t = (1=3)�[0;t]+(2=3)�[1�t;1] for each t 2 (0; 1=3] . Then, �t
w
=) (1=3) �0+(2=3) �1. In particular,

# = �q = 2=3 and (34) becomes

�t (w +Wt) =
4

9
�v (w) t

2 + o
�
t2
�
:

Finally, if �t = �[0;t] for each t 2 (0; 1=3] . Then, �t (w +Wt) = o
�
t2
�
by (36). N

8 General binomial analysis

In this section we extend our analysis to a general ht : 
 = f1; 2g ! R such that, for each t > 0,

ht (!) =

(
' (t) if ! = 1

 (t) if ! = 2

where ' and  are nonzero real-valued functions de�ned on (0; 1]. If ' (t) = � (t) = t, then ht =Wt.

Throughout this section we consider an uncertain monetary net fht; �tgt2(0;1] such that �t is
quadratically convergent to � and �qt 2 (0; 1) for all t 2 (0; 1]. Next we show that such net is a
controllable small uncertainty when � 6= �p with p 2 f0; 1g.
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Lemma 46 If � 6= �p with p 2 f0; 1g, then fht; �tgt2(0;1] is a small uncertainty if and only if
limt#0 ' (t) = limt#0  (t) = 0. In this case, fht; �tgt2(0;1] is always controllable.

Next we consider the degenerate case � = �0 (a similar result holds when � = �1).

Lemma 47 If � = �0 and limt#0  (t) = 0, then fht; �tgt2(0;1] is a controllable small uncertainty if
and only if ' (t) = O ( (t)).

It is convenient to de�ne  : (0; 1]! R by

 (t) = ' (t)�  (t) : (37)

For example,  (t) = 2t when ht =Wt. Some algebra shows that

�2�qt (ht) = 2 (t) �qt (1� �qt)
�2�t (E (ht)) = 2 (t)

�
#t � �q2t

�
E�t

�
�2 (ht)

�
= 2 (t) (�qt � #t)

Therefore, if fht; �tgt2(0;1] is a controllable small uncertainty, (31) becomes

�t (w + ht) =
1

2
�u (w) (�qt � #t) 2 (t) +

1

2
�v (w)

�
#t � �q2t

�
2 (t) + o

�
khtk2�qt

�
(38)

for all w. When fht; �tgt2(0;1] is a quadratic small uncertainty, approximation (38) becomes

�t (w + ht) =
1

2
�u (w) (�qt � #t) 2 (t) +

1

2
�v (w)

�
#t � �q2t

�
2 (t) + o

�
t2
�

which reduces to (33) when ht =Wt.
We now study the order e¤ects of risk and model uncertainty attitudes by extending Limit Cases

1-4 to the present general binomial setting.

Proposition 48 Let fht; �tgt2(0;1] be a controllable small uncertainty, where �t
sq
=) �. Then  (t) =

O
�
khtk�qt

�
and

�t (w + ht) =
1

2
�u (w) (�q � #) 2 (t) +

1

2
�v (w)

�
#� �q2

�
2 (t) + o

�
khtk2�qt

�
: (39)

Notice that we already observed that (�q � #) and
�
#� �q2

�
are never negative and we characterized

their positivity in Proposition 43. Condition  (t) = O
�
khtk�qt

�
shows that �rst order e¤ects never

arise at a controllable small uncertainty.
Thus, only second order and negligible e¤ects are relevant . We study them through the analysis

of Limit Cases 1-4, as the next result shows. Since it fully characterizes the binomial case, often used
in mathematical �nance, it can be viewed as the paper main result.

Theorem 49 Let fht; �tgt2(0;1] be a controllable small uncertainty, where �t
sq
=) �. Then:

1. E�t
�
�2 (ht)

�
� khtk2�qt and �

2
�t (E (ht)) � khtk

2
�qt
if and only if supp� is neither a singleton nor

f0; 1g, and khtk�qt = O ( (t));

2. E�t
�
�2 (ht)

�
� khtk2�qt and �

2
�t (E (ht)) = o

�
khtk2�qt

�
if and only if supp� is a singleton in (0; 1)

and khtk�qt = O ( (t));
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3. E�t
�
�2 (ht)

�
= o

�
khtk2�qt

�
and �2�t (E (ht)) � khtk

2
�qt
if and only if supp� = f0; 1g and khtk�qt =

O ( (t));

4. E�t
�
�2 (ht)

�
= o

�
khtk2�qt

�
and �2�t (E (ht)) = o

�
khtk2�qt

�
if and only if � 2 f�0; �1g or  (t) =

o
�
khtk�qt

�
.

In Limit Case 1 both risk and model uncertainty attitudes have a second order e¤ect at fht; �tgt2(0;1].
This case is characterized by a � with nonsingleton support di¤erent from f0; 1g.
In Limit Case 2 approximation (39) becomes

�t (w + ht) =
1

2
�u (w) �q (1� �q) 2 (t) + o

�
khtk2�qt

�
; (40)

where risk attitudes have a second order e¤ect at fht; �tgt2(0;1], while model uncertainty attitudes
have a negligible e¤ect.
In Limit Case 3 approximation (39) becomes

�t (w +Wt) =
1

2
�v (w) �q (1� �q) 2 (t) + o

�
khtk2�qt

�
; (41)

where model uncertainty attitudes have a second order e¤ect at fht; �tgt2(0;1], while risk attitudes
have a negligible e¤ect.
Finally, in Limit Case 4 approximation (39) trivially becomes

�t (w +Wt) = o
�
khtk2�qt

�
: (42)

Here, neither u nor v play any role in the approximation since both model uncertainty and risk
attitudes have a negligible e¤ect at fht; �tgt2(0;1].

Example 50 (i) If ' � k with k 6= 0; 1, then  (t) � khtk�qt . In this case the properties of �
determine which one, among Limit Cases 1-4, arises. (ii) If ' �  , then  (t) = o

�
khtk�qt

�
and so

Limit Case 4 arises. N

9 A special case

Our analysis so far shows that both risk and model uncertainty attitudes are relevant to describe the
limit behavior of Ct (w +Wt) and �t (w +Wt) as t # 0, unless �t quadratically converges to a Dirac
probability measure �p or has support f0; 1g. In particular, the attitude toward model uncertainty
is relevant in the second order approximation unless �t

sq
=) �p, that is, unless the decision maker�s

priors concentrate on a single model p, so that model uncertainty eventually vanishes in terms of
quadratic convergence. This is a natural feature of the KMM model that Theorem 49 establishes in
full generality for the binomial case.
Intuitively, an instance when model uncertainty eventually vanishes is when the support of the

probability �t becomes more and more concentrated. The next result shows that this is indeed the
case.

Proposition 51 Suppose that the collection of convex hulls fco (supp�t)gt>0 has the �nite intersec-
tion property.14 If diam (supp�t)! 0 as t # 0, then

\
t

co (supp�t) contains one point p 2 [0; 1] and

�t
w
=) �p.

14That is, it holds
\
t2T

co (supp�t) 6= ; given any �nite index set T . For example, this property trivially holds if

co (supp�t) � co (supp�t0 ) when t < t0.
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Along with Proposition 48, this implies that if p 2 (0; 1) and ht is such that limt#0 ' (t) =
limt#0  (t) = 0, then

�t (w + ht) =
1

2
�u (w) p (1� p) 2 (t) + o

�
khtk2�qt

�
: (43)

While, if p = 0 and ht is such that limt#0  (t) = 0 and ' (t) = O ( (t)) as t # 0, then

�t (w + ht) = o
�
khtk2�qt

�
: (44)

A similar result holds when p = 1. Hence, under the �shrinking�hypotheses of Proposition 51, only
attitudes toward risk may have a second order e¤ect at fht; �tgt2(0;1]. That is, only Limit Cases 2
and 4 apply. As we emphasized, this is not surprising given that model uncertainty itself vanishes
because �t

w
=) �p. When p = 0 (or p = 1) risk vanishes too; as (44) shows, in this case both risk and

model uncertainty attitudes are negligible.

We now provide some examples to show how the properties of the KMM model established in
Theorems 4 and 5 of Skiadas [12] may represent a special case of (43) and (44). As a consequence, [12]�
�ndings that attitudes toward model uncertainty become irrelevant as t goes to 0 may be attributed
to the fact that, in the special case it considers for its purposes, model uncertainty itself vanishes
(�t

w
=) �p).

Example 52 Given a scalar � 2 R, let

qt =
1

2
(1 + �t) : (45)

Then, 1� qt = 2�1 (1� �t) and

qt 2 [0; 1]() � 2
�
� 1
2t
;
1

2t

�
: (46)

Consider a �nite collection of scalars �1 < ::: < 0 < ::: < �K . By (46), eventually
�
qkt
	K
k=1

� [0; 1].
Let �t be a discrete probability measure on [0; 1] with supp�t =

�
qkt
	K
k=1

.15 Since

diam (supp�t) =
1

2
(�K � �1) t;

we have diam (supp�t) ! 0 as t # 0. Moreover, co (supp�t0) � co (supp�) for each t0 < t. By
Proposition 51, �t

w
=) �1=2 so that model uncertainty vanishes and approximation (43) applies.

For instance, consider the uncertain monetary net fht; �tgt2(0;1], where ht = Wt + O
�
t2
�
as in [12,

Theorem 4]. It is straightforward to verify that this is a controllable quadratic small uncertainty.
Hence, (43) takes the form

�t (w + ht) =
1

2
�u (w) t

2 + o
�
t2
�

because 2 (t) = 4t2+O
�
t3
�
and khtk2�qt = t2+O

�
t3
�
. Only risk attitudes have a second order e¤ect

at fht; �tgt2(0;1]. N

Example 53 Given a scalar � 2 R and a function o
�
t2
�
, let

qt = (1 + �) t
2 + o

�
t2
�
: (47)

15Skiadas uses Q,
p
h, and � instead of q, t, and �, respectively. This same observation also applies to Example 53.
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Then, 1� qt = 1� (1 + �) t2 + o
�
t2
�
and eventually qt 2 (0; 1) if � > �1. Consider a �nite collection

of scalars �1 < �1 < ::: < �K . Then, de�ne through (47) a �nite collection of probabilities
�
qkt
	K
k=1

.

Let �t be a discrete probability measure on [0; 1] with supp�t =
�
qkt
	K
k=1

. Then, by Lemma 4,

�t
w
=) �0 and model uncertainty vanishes.
That said, as in [12, Theorem 5] consider the uncertain monetary net fht; �tgt2(0;1], where ht =

h+O
�
t2
�
and

h (!) =

(
1 if ! = 1

0 if ! = 2

This net is a quadratic small uncertainty since khtk2�qt = O
�
t2
�
. It is not, however, controllable

since ht (1) does not converge to zero. Hence, we do not know whether it admits the quadratic
approximation (38). However, if it did, then it would hold

�t (w + ht) =
1

2
�u (w) �qt + o

�
t2
�

because #t = O
�
t4
�
, �q2t = O

�
t4
�
, and 2 (t) = 1 + O

�
t2
�
. Risk attitudes only would have a second

order e¤ect at fht; �tgt2(0;1]. N

A Proofs and related Analysis

Proof of Lemma 2. Suppose ' 2 O ( ), then there are �;M > 0 such that

j' (t)j �M j (t)j 8t < �:

Let � 2 o ('). For all " > 0 there exists 0 < � < � such that

j� (t)j � "

M
j' (t)j 8t < �:

Hence
j� (t)j � "

M
j' (t)j � " j (t)j 8t < �

and � 2 o ( ).
Conversely, suppose ' =2 O ( ). Then for all �;M > 0 there is t�;M < � such that

j' (t�;M )j > M j (t�;M )j :

Hence, for all n 2 N (choosing � = 1=n and M = n) there exists tn < 1=n such that

j' (tn)j > n j (tn)j :

Without loss of generality, assume that ftng is strictly decreasing. Set � (tn) =  (tn) for all n 2 N
such that  (tn) 6= 0, set � (tn) = 1

n' (tn) for all n 2 N such that  (tn) = 0, and set � (t) = 0
otherwise. Let " > 0 and choose N so that 1=N < ". Set � = tN . Now for t < � consider the two
following cases:

� t = tn for some n 2 N, then t < tN implies n > N , and hence j� (t)j � 1
n j' (tn)j �

1
N j' (tn)j �

" j' (t)j;

� t 6= tn for all n 2 N, then j� (t)j = 0 � " j' (t)j.
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In conclusion, � 2 o ('). But, letting M = 1=2,

j� (tn)j > M j (tn)j

for all n 2 N. Since tn # 0 as n!1, there cannot exist � > 0 such that

j� (t)j �M j (t)j 8t < �:

Thus � 2 o (') and � =2 o ( ). �

Proof of Lemma 4 We prove the �if� part, the converse being trivial. Given ' 2 C ([0; 1]), let
" > 0. By the Weierstrass Approximation Theorem, there is some polynomial '" on [0; 1] with

k'� '"k1 � ". By hypothesis, there is �" such that
���R[0;1] '" (q) d�� (q)� R[0;1] '" (q) d� (q)��� < " for

all � � �". Hence, for all � � �",�����
Z
[0;1]

' (q) d�� (q)�
Z
[0;1]

' (q) d� (q)

����� � k'� '"k1+
�����
Z
[0;1]

'" (q) d�� (q)�
Z
[0;1]

'" (q) d� (q)

�����+k'" � 'k1 � 3"

This implies lim�
R
[0;1]

' (q) d�� (q) =
R
[0;1]

' (q) d� (q). �

Proof of Proposition 12. We refer to the proof of the more general Proposition 28. �

Proof of Proposition 13 Consider a small risk fht; qgt2(0;1]. Let � (w + ht) � k khtkq for some
k > 0. Then

w + Eq (ht)� C (w + ht) � k khtkq
and so for every " > 0 there is t" such that

(1� ") k khtkq � w + Eq (ht)� C (w + ht) � (1 + ") k khtkq 8t 2 (0; t"]

that is

Eq (ht)� (1 + ") k khtkq � C (w + ht)� w � Eq (ht)� (1� ") k khtkq 8t 2 (0; t"]

(i) Suppose k >
p
k� =

q
lim supt#0E

2
q (ht) = khtk

2
q. Take " small enough so that k (1� ") >

p
k�.

Since k� = lims#0 supt2(0;s)
E2
q (ht)

khtk2q
, there is t0" 2 (0; t"] such that

Eq (ht)

khtkq
< k (1� ") 8t 2 (0; t0"]

and hence
C (w + ht)� w � Eq (ht)� (1� ") k khtkq < 0 8t 2 (0; t0"] :

(ii) Suppose k <
p
k� =

q
lim inft#0E2q (ht) = khtk

2
q. Take " small enough so that k (1 + ") <

p
k�.

Since k� = lims#0 inft2(0;s)
E2
q (ht)

khtk2q
, there is t00" 2 (0; t"] such that

Eq (ht)

khtkq
> k (1 + ") 8t 2 (0; t00" ]

and hence
C (w + ht)� w � Eq (ht)� (1 + ") k khtkq > 0 8t 2 (0; t00" ] :
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(iii) Finally, � (w + ht) = o
�
khtkq

�
and Eq (ht) > 0 imply � (w + ht) = o (Eq (ht)). Therefore

C (w + ht)� w = Eq (ht)� � (w + ht) = Eq (ht) (1 + o (1)) :

The proof is concluded dividing both sides by Eq (ht) > 0. �

Proof of Lemma 14 By contrapositive, we �rst show that �2q (ht) 6� khtk
2
q if and only if k

� = 1.
For all t, it holds

0 � lim inf
t#0

�2q (ht) = khtk
2
q � lim sup

t#0
�2q (ht) = khtk

2
q � 1:

Hence

�2q (ht) 6� khtk
2
q () lim inf

t#0

�2q (ht)

khtk2q
= 0

() lim inf
t#0

 
1� (Eq (ht))

2

khtk2q

!
= 0

() 1� lim sup
t#0

(Eq (ht))
2

khtk2q
= 0

() lim sup
t#0

(Eq (ht))
2

khtk2q
= 1.

Hence, �2q (ht) � khtk
2
q if and only if k

� < 1.
On the other hand,

�2q (ht) = o
�
khtk2q

�
() lim sup

t#0

�2q (ht)

khtk2q
= 0

() lim inf
t#0

(Eq (ht))
2

khtk2q
= 1

and so �2q (ht) = o
�
khtk2q

�
if and only if k� = 1. �

Proof of Proposition 15 We only prove point (ii). Set supp q = f!1; :::; !sg.
If s = 2, set xt = ht (!1) and yt = ht (!2) and q (!1) = q. Recall that xt = O (yt), that is, there

exist �;M > 0 such that jxtj � M jytj for t < �. The assumption khtkq 6= 0 for all t, implies that
jytj > 0 for all t < �. As t # 0, (19) amounts to

(qxt + (1� q) yt)2

qx2t + (1� q) y2t
! 1;

that is, q2x2t + (1� q)
2
y2t + 2q (1� q)xtyt = qx2t + (1� q) y2t + o

�
qx2t + (1� q) y2t

�
. Simple compu-

tations deliver (xt � yt)2 = o
�
qx2t + (1� q) y2t

�
, and, dividing by y2t ,�

xt
yt
� 1
�2

q
x2t
y2t
+ (1� q)

! 0:

Finally, x2t �M2y2t for t < �, implies

0 �

�
xt
yt
� 1
�2

qM2 + (1� q) �

�
xt
yt
� 1
�2

q
x2t
y2t
+ (1� q)

! 0:
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Else, if s > 2, then ht (!i) � ki1ht (!1) for i = 1; 2; :::; s. Write ki rather than ki1 and notice that
ki 2 Rn f0g for all i = 1; :::; s. Then,

E2q (ht)

khtk2q
=
([k1ht (!1) + o (ht (!1))] q (!1) + � � �+ [ksht (!1) + o (ht (!1))] q (!s))2

[k1ht (!1) + o (ht (!1))]
2
q (!1) + � � �+ [ksht (!1) + o (ht (!1))]2 q (!s)

=
(k1q (!1) + � � �+ ksq (!s) + o (1))2

(k21q (!1) + � � �+ k2sq (!s) + o (1))
:

Set �2 = k21q (!1) + � � �+ k2sq (!s) > 0 and { = k1q (!1) + � � �+ ksq (!s). Now

({ + o (1))2

(�2 + o (1))
! 1 and � 6= 0 =) {2

�2
= 1 :

Therefore Eq
�
k2
�
= (Eq (k))

2 and k is constant. The observation that k1 = 1 concludes the proof.�

Proof of Proposition 17. Let us prove the �only if�, the converse being trivial. Let h 2 Rn. Since
kthkq ! 0 as t # 0,

�2q (h) =
�2q (th)

t2
=
o
�
kthk2q

�
t2

=
o
�
t2
�

t2
! 0

and so �2q (h) = 0. Since this holds for any h 2 Rn, there is some ! 2 
 such that q = �!. �

Proof of Proposition 20 For convenience we add two points that will turn out to be equivalent to
(i)-(iv):

(v)
��ht

t

�� = O (1) for some norm on L (q).

(vi)
��ht

t

�� = O (1) for every norm on L (q).

Clearly, (i) implies (ii) and (iii) implies (i).
Next we show that (ii) implies (v). Let n 2 N be such that Eq (jhtjn) = O (tn), there exist

M; � > 0 such that Eq (jhtjn) �Mtn for all t 2 (0; �). Then,

n

s
Eq

�����htt
����n� � n

p
M

for all t 2 (0; �), that is,
ht
t


Ln(q)

= O (1), so that (v) holds.

By (v), there exists a norm jk�kj0 on L (q) and M; � > 0 such that����htt
����0 �M

for all t 2 (0; �). Since 
 is �nite, all norms on L (q) are equivalent. Therefore for every norm jk�kj
on L (q), there is c > 0 such that jk�kj � c jk�kj0. Finally,����htt

���� � c

����htt
����0 � cM

for all t 2 (0; �), that is,
��ht

t

�� = O (1). Thus (vi) holds.
(vi) implies that

ht
t


Ln(q)

= O (1) for all n 2 N, that is, there exist M = M (n) ; � = � (n) > 0

such that

n

s
Eq

�����htt
����n� �M:
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This is clearly equivalent to (iii). Therefore (i), (ii), (iii), (v), (vi) are equivalent.

(vi) implies (iv). In fact, considering the L1 (q) norm, there existM; � > 0 such thatmax!2supp q
���ht(!)t

��� �
M for all t 2 (0; �).
(iv) implies (v). In fact, for all ! 2 supp q, there exist M!; �! > 0 such that

���ht(!)t

��� �M! for all

t 2 (0; �!). Let � = min!2supp q �! and M =
P

!2supp q
q (!)M!. Clearly, for all t 2 (0; �),

htt

L1(q)

=
X

!2supp q
q (!)

����ht (!)t

���� � X
!2supp q

q (!)M! =M;

that is
ht
t


L1(q)

= O (1). �

Proof of Lemma 23 Since �2�q (ht) � khtk
2
�q, it holds �

2
�q (ht) = o

�
khtk�q

�
. Notice that

�2� (E (ht)) = �2� (�!2
ht (!) he!; �i)

where e! is the !-th vector of the canonical base of R
 (hence he!; �i : � ! R is the projection on
the !-th component q 7! q (!)).
The usual variance-covariance decomposition delivers

�2� (�!2
ht (!) he!; �i) = hTt �ht

where

� (!; !0) =

Z
�

he!; �i he!0 ; �i d��
Z
�

he!; �i d�
Z
�

he!0 ; �i d�

=

Z
�

q (!) q (!0) d� (q)�
Z
�

q (!) d� (q)

Z
�

q (!0) d� (q)

=

Z
�

q (!) q (!0) d� (q)� �q (!) �q (!0) 2 [�1; 1]

for all !; !0 2 
. Moreover notice that ! =2 supp �q is equivalent to
R
�
he!; �i d� = �q (!) = 0,

which in turn amounts to he!; �i = 0 �-almost everywhere. In particular � (!; !0) = 0 if (!; !0) =2
supp �q � supp �q. Therefore

�2� (E (ht))

khtk�q
=

P
!;!02
 ht (!)ht (!

0) � (!; !0)

khtk�q
=

P
!;!02supp �q ht (!)ht (!

0) � (!; !0)

khtk�q

�
P
!;!02supp �q jht (!)j jht (!0)j j� (!; !0)j

khtk�q
�
P
!;!02supp �q jht (!)j jht (!0)j

khtk�q

�
P
!;!02supp �q khtk

2
L1(�q)

khtk�q
�
j
j2 khtk2L1(�q)

khtk�q
� c

khtk2�qt
khtk�qt

= c khtk�qt

because all norms on L (q) are equivalent. Since khtk�qt ! 0, then �2� (E (ht)) = o
�
khtk�q

�
. This

concludes the proof. �

Proof of Proposition 25 Set �u (h; �) = E�
�
�2 (h)

�
and �v (h; �) = �2� (E (h)). We prove the

�only if�, the converses being trivial.
(ii) Let h 2 Rn n f0g. Notice that,

�2�q (h)� �2� (E (h)) =
�2�q (th)

t2
�
�2� (E (th))

t2
=
�u (th; �)

kthk2�q
khk2�q
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for all t > 0. Since �u (k; �) = o
�
kkk2�q

�
as k

k�k�q! 0, then

lim
t#0

�u (th; �)

kthk2�q
khk2�q = 0:

Therefore, �2�q (h) = �2� (E (h)) for all h 2 R
. In turn, this is equivalent to
R
�
Eq
�
h2
�
d� (q) =R

�
E2q (h) d� (q). Since Eq

�
h2
�
� E2q (h) for all q 2 �, we conclude that Eq

�
h2
�
= E2q (h) �-a.e.. In

particular, Eq
�
h2
�
= E2q (h) for all q 2 supp�,16 and this is true for all h 2 R
. This implies that

each q 2 supp� is a Dirac measure.
(i) Similarly, for all h 2 Rn n f0g,

�2� (E (h)) =
�2� (E (th))

t2
=
�v (th; �)

kthk2�q
khk2�q

for all t > 0. Since �v (k; �) = o
�
kkk2�q

�
as k

k�k�q! 0, then

lim
t#0

�v (th; �)

kthk2�q
khk2�q = 0

and �2� (E (h)) = 0 for all h 2 Rn. Therefore, for each ! 2 
, setting h = e! it follows that

0 =

Z
�

�
Eq (e!)�

�Z
�

Eq (e!) d� (q)

��2
d� (q)

=

Z
�

(q (!)� �q (!))2 d� (q) :

Then q (!) = �q (!) �-a.e.. In particular, q (!) = �q (!) for all q 2 supp�,17 and this is true for all
! 2 
. That is, supp� = f�qg.
(iii) Follows from (i) and (ii). �

Proof of Lemma 27 By de�nition

! =2
\

t2(0;1]

[
��t

supp q� () ! 2

0@ \
t2(0;1]

[
��t

supp q�

1Ac

() ! 2
[

t2(0;1]

\
��t

(supp q� )
c

if and only if there exists t 2 (0; 1] such that ! 2
\
��t

(supp q� )
c, if and only if there exists t 2 (0; 1]

such that ! 2 (supp q� )c for all � � t, if and only if there exists t 2 (0; 1] such that q� (!) = 0 for all
0 < � � t. �

Proof of Proposition 28We already observed that (i) implies (ii), which implies (iii), which implies
(iv).
(iv) implies (v). Assume per contra that there exists ! 2 supp q such that there is a sequence

ftng, with tn # 0, such that htn (!) does not converge to 0. Then, for some " > 0, jhtn (!)j > "
for in�nitely many n. Passing to a subsequence, we can assume jhtn (!)j > " for all n. Setting
� = min f"=2; q (!) =2g, we have q (!) ; "; jhtn (!)j > � for all n. Since limn!1 qtn (!) = q (!), for n
large enough it holds qtn (!) � q (!)� �. For all such n,

qtn (!
0 : jhtn (!0)j � �) � qtn (!) � q (!)� � > 0;

16Notice that q 7! Eq
�
h2
�
and q 7! E2q (h) are continuous functions on �.

17Notice that q 7! q (!) and q 7! �q (!) are continuous functions on �.
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which contradicts (iv).
Notice that, for the chain of implications (i) ) (ii) ) (iii) ) (iv) ) (v), we did not use the

assumption lim supt#0 jht (!)j <1 for all ! 2 �q, which will be crucial in showing that
(v) implies (i). Let n � 1.
Let ! 2 supp q. Then 0 � jht (!)jn qt (!) � jht (!)jn, for all t, implies limt#0 jht (!)jn qt (!) = 0.
Let ! 2 �q, then qt (!) ! 0 as t # 0. Moreover, jht (!)jn is eventually bounded so that

limt#0 jht (!)jn qt (!) = 0.
If ! =2 S, by Lemma 27 there is t! 2 (0; 1] such that qt (!) = 0 for all t � t!. Hence,

limt#0 jht (!)jn qt (!) = 0. Summing up:

lim
t#0

Eqt (jhtj
n
) = lim

t#0

 X
!2


jhtjn qt (!)
!
=
X
!2


lim
t#0
jhtjn qt (!) = 0;

as desired. This completes the proof. �

Proof of Theorem 33 See the more general proof of Theorem 40. �

Proof of Proposition 34 Let fht; qtgt2(0;1] be a controllable small risk that is asymptotically
constant. Since eventually supp q � supp qt � S, then choosing !0 2 supp q,X

!2supp qt

ht (!) qt (!) =
X

!2supp qt

ht (!
0) (1 + o (1)) qt (!) � ht (!

0)

then  X
!2supp qt

ht (!) qt (!)

!2
� h2t (!

0)

Analogously, X
!2supp qt

h2t (!) qt (!) =
X

!2supp qt

h2t (!
0) (1 + o (1)) qt (!) � h2t (!

0) :

Therefore, E2qt (ht) � Eqt
�
h2t
�
. �

Proof of Proposition 36 To see that (i) implies (ii) it is enough to observe that there is a > 0 such
that, for each t small enough,

h2t (!) qt (!)

t2
�
Eqt

�
h2t
�

t2
� a; 8! 2 
.

(ii) implies (i). For, there are a; b > 0 such that, for t small enough,

0 �
Eqt

�
h2t
�

t2
=

X
!2supp q

h2t (!)

t2
qt (!) +

X
!2�q

h2t (!)

t2
qt (!) � a+ b.

Hence, Eqt
�
h2t
�
= O

�
t2
�
. �

Proof of Theorem 40 Since fht; �tgt2(0;1] is a small uncertainty, then limt#0E�qt
�
h2t
�
= 0. By con-

trollability, eventuallymax!2supp �qt jht (!)j �M
p
E�qt (h

2
t ) for someM > 0. Thenmax!2supp �qt jht (!)j !

0. As observed immediately after the proof of Corollary 59, this implies

Ct (w + ht)�
�
w + E�qt (ht)�

1

2
�u (w)�

2
�qt (ht)�

1

2
(�v (w)� �u (w))�2�t (hht; �i)

�
= o

 �
max

!2supp �qt
jht (!)j

�2!

then, (max!2supp �qt jht (!)j)
2
= O

�
khtk2�qt

�
and Lemma 2 deliver (30). �

Proof of Lemma 46 It follows from Lemmas 54 and 55 below. �
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Lemma 54 An uncertainty monetary net fht; �tgt2(0;1] is a small uncertainty if and only if:

(i) limt#0 ' (t) = limt#0  (t) = 0 when � 6= �p with p 2 f0; 1g;

(ii) limt#0 '2 (t) �qt = limt#0  (t) = 0 when � = �0;

(iii) limt#0 ' (t) = limt#0  2 (t) (1� �qt) = 0 when � = �1.

Moreover, fht; �tgt2(0;1] is a quadratic small uncertainty if and only if:

(a) ' (t) = O (t) and  (t) = O (t) when � 6= �p with p 2 f0; 1g;

(b) '2 (t) �qt = O
�
t2
�
and  (t) = O (t) when � = �0;

(c) ' (t) = O (t) and  2 (t) (1� �qt) = O
�
t2
�
when � = �1.

Proof It follows from Propositions 28, 36, and their uncertainty counterparts. �

Lemma 55 If � 6= �p with p 2 f0; 1g, then any small uncertainty fht; �tgt2(0;1] is controllable.

Proof In fact, � 6= �0; �1 is equivalent to �q 6= 0; 1. Then �qt; �q 2 (0; 1) for all t 2 (0; 1] which implies
controllability by Proposition 31. �

Proof of Lemma 47 If fht; �tgt2(0;1] is a controllable small uncertainty, there exists �;M > 0 such
that, for all t 2 (0; �)

'2 (t) +  2 (t) �M
�
'2 (t) �qt +  

2 (t) (1� �qt)
�
:

Since �qt ! 0, there is " > 0 such that M �qt < 1=2 for all t 2 (0; "). Then, for all t 2 (0; � ^ "),

'2 (t) (1�Mqt) �  2 (t) (M (1� �qt)� 1) , 1�Mqt >
1

2
, and M (1� �qt)� 1 �M

so that
1

2
'2 (t) � '2 (t) (1�Mqt) �  2 (t) (M (1� �qt)� 1) �M 2 (t)

hence, ' (t) = O ( (t)).
Conversely, if ' (t) = O ( (t)), then there exist �;M > 0 such that

j' (t)j �M j (t)j

for all t 2 (0; �). This implies limt#0 ' (t) = 0 and

lim
t#0

'2 (t) �qt +  
2 (t) (1� �qt) = 0

that is, fht; �tgt2(0;1] is a small uncertainty. Moreover,

'2 (t) �qt +  
2 (t) (1� �qt)

'2 (t) +  2 (t)
=
�qt
'2(t)
 2(t) + 1� �qt
'2(t)
 2(t) + 1

� 1� �qt
M2 + 1

! 1

M2 + 1
> 0

and so fht; �tgt2(0;1] is a controllable small uncertainty by Proposition 31. �

Proof of Proposition 48 For all t 2 (0; 1],

2 (t)

'2 (t) +  2 (t)
� 2
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hence 2 (t) = O
�
'2 (t) +  2 (t)

�
. But, by controllability, '2 (t) +  2 (t) = O

�
khtk2�qt

�
, thus 2 (t) =

O
�
khtk2�qt

�
and  (t) = O

�
khtk�qt

�
.

Since �t
sq
=) �, then

�qt � #t = �q � #+ o (1)
#t � �q2t = #� �q2 + o (1)

and so

1

2
�u (w) (�qt � #t) 2 (t) =

1

2
�u (w) (�q � #) 2 (t) + o

�
khtk2�qt

�
1

2
�v (w)

�
#t � �q2t

�
2 (t) =

1

2
�v (w)

�
#� �q2

�
2 (t) + o

�
khtk2�qt

�
which together with (38) deliver (39). �

Proof of Theorem 49 By Proposition 48  (t) = O
�
khtk�qt

�
, and, as observed in the proof of the

same proposition,

E�t
�
�2 (ht)

�
= (�qt � #t) 2 (t) = (�q � #) 2 (t) + o

�
khtk2�qt

�
�2�t (E (ht)) =

�
#t � �q2t

�
2 (t) =

�
#� �q2

�
2 (t) + o

�
khtk2�qt

�
:

1. If. By Proposition 43, if supp� is neither a singleton nor f0; 1g, then �q2 < # < �q. Moreover,

khtk�qt = O ( (t)) together with  (t) = O
�
khtk�qt

�
, implies  (t) � khtk�qt . Therefore  (t)

2 � khtk2�qt ,
whence

(�q � #) 2 (t) � khtk2�qt�
#� �q2

�
2 (t) � khtk2�qt

and so (�q � #) 2 (t) + o
�
khtk2�qt

�
� khtk2�qt and

�
#� �q2

�
2 (t) + o

�
khtk2�qt

�
� khtk2�qt .

1. Only if. The assumption E�t
�
�2 (ht)

�
� khtk2�qt and �

2
�t (E (ht)) � khtk

2
�qt
implies

(�q � #) 2 (t) � khtk2�qt and
�
#� �q2

�
2 (t) � khtk2�qt : (48)

Therefore, �q2 < # < �q and by Proposition 43, supp� is neither a singleton nor f0; 1g.
Moreover, (48) implies 2 (t) � khtk2�qt , whence  (t) � khtk�qt .

2. If. By Proposition 43, �q2 = # < �q, then �2�t (E (ht)) =
�
#� �q2

�
2 (t) + o

�
khtk2�qt

�
= o

�
khtk2�qt

�
.

Moreover, khtk�qt = O ( (t)) together with  (t) = O
�
khtk�qt

�
, implies  (t) � khtk�qt . Therefore

 (t)
2 � khtk2�qt , whence

(�q � #) 2 (t) � khtk2�qt
and so E�t

�
�2 (ht)

�
� khtk2�qt .

2. Only if. The assumption E�t
�
�2 (ht)

�
� khtk2�qt implies

(�q � #) 2 (t) � khtk2�qt :

Therefore, # < �q and 2 (t) � khtk2�qt , so that  (t) � khtk�qt .
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Since �2�t (E (ht)) = o
�
khtk2�qt

�
, it cannot be the case that �q2 < #, because it would deliver

o
�
khtk2�qt

�
= �2�t (E (ht)) =

�
#� �q2

�
2 (t) + o

�
khtk2�qt

�
� khtk2�qt

which is absurd. Then �q2 = # < �q and, by Proposition 43, supp� is a singleton in (0; 1).

3. If. By Proposition 43, �q2 < # = �q, then E�t
�
�2 (ht)

�
= (�q � #) 2 (t) + o

�
khtk2�qt

�
= o

�
khtk2�qt

�
.

Moreover, khtk�qt = O ( (t)) together with  (t) = O
�
khtk�qt

�
, implies  (t) � khtk�qt . Therefore

 (t)
2 � khtk2�qt , whence �

#� �q2
�
2 (t) � khtk2�qt

and so �2�t (E (ht)) � khtk
2
�qt
.

3. Only if. The assumption �2�t (E (ht)) � khtk
2
�qt
implies�

#� �q2
�
2 (t) � khtk2�qt :

Therefore, �q2 < # and 2 (t) � khtk2�qt , so that  (t) � khtk�qt .
Since E�t

�
�2 (ht)

�
= o

�
khtk2�qt

�
, it cannot be the case that # < �q, because it would deliver

o
�
khtk2�qt

�
= E�t

�
�2 (ht)

�
= (�q � #) 2 (t) + o

�
khtk2�qt

�
� khtk2�qt

which is absurd. Then �q2 < # = �q and, by Proposition 43, supp� = f0; 1g.

4. If. If � = �0 or � = �1, by Proposition 43, �q2 = # = �q, then E�t
�
�2 (ht)

�
= (�q � #) 2 (t) +

o
�
khtk2�qt

�
= o

�
khtk2�qt

�
and �2�t (E (ht)) =

�
#� �q2

�
2 (t) + o

�
khtk2�qt

�
= o

�
khtk2�qt

�
. Else  (t) =

o
�
khtk�qt

�
, implies k (t)2 = o

�
khtk2�qt

�
for all k � 0, whence E�t

�
�2 (ht)

�
= o

�
khtk2�qt

�
and

�2�t (E (ht)) = o
�
khtk2�qt

�
:

4. Only if. The assumption E�t
�
�2 (ht)

�
= o

�
khtk2�qt

�
and �2�t (E (ht)) = o

�
khtk2�qt

�
implies

o
�
khtk2�qt

�
= E�t

�
�2 (ht)

�
= (�q � #) 2 (t) + o

�
khtk2�qt

�
o
�
khtk2�qt

�
= �2�t (E (ht)) =

�
#� �q2

�
2 (t) + o

�
khtk2�qt

�
whence

(�q � #) 2 (t) = o
�
khtk2�qt

�
�
#� �q2

�
2 (t) = o

�
khtk2�qt

�
:

Suppose, per contra, � 6= �0 and � 6= �1, and  (t) 6= o
�
khtk�qt

�
. By Proposition 43, it cannot be

the case that �q2 = # = �q. Then either # � �q2 6= 0 or �q � # 6= 0, in any case 2 (t) = o
�
khtk2�qt

�
and

 (t) = o
�
khtk�qt

�
, which is absurd. �

Proof of Proposition 51 For all t 2 (0; 1], supp�t being closed in the compact [0; 1] is compact.
Let at = min supp�t and bt = max supp�t. Then clearly [at; bt] � co (supp�t), but also the con-
verse inclusion is true since [at; bt] is convex and contains supp�t. Thus [at; bt] = co (supp�t) and
diam (supp�t) = diam (co (supp�t)) = bt � at.
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By the compactness of [0; 1] and the �nite intersection property,\
t2(0;1]

[at; bt] 6= ;

and bt � at ! 0 (as t # 0) implies that
\

t2(0;1]

[at; bt] is actually a singleton fpg.18

Then at � p � bt and bt � at ! 0 (as t # 0), imply limt#0 at = limt#0 bt = p. For all f 2 C ([0; 1])
and all t > 0, there exists ct 2 [at; bt] such thatZ 1

0

fd�t =

Z bt

at

fd�t = f (ct) :

Then at � ct � bt implies ct ! p (as t # 0) and continuity of f delivers f (ct)! f (p), that is,Z
fd�t !

Z
fd�p:

Finally, �t
w
=) �p. �

B Taylor

B.1 Preliminaries

Let 
 = f1; 2; :::; Ng be a �nite state space � = �(
) the probability simplex. If � is a Borel
probability measure on �,

�� =

Z
�

qd� (q) 2 �

is called barycenter of �.
Let I � R be a nonsingleton interval and consider two functions functions u : I ! R and v : I ! R

that are continuous on I and thrice continuously di¤erentiable on its interior, with u0; v0 > 0. Set

C (x; �) = v�1

 Z
�

v

 
u�1

 X
!2


u (x!) q!

!!
d� (q)

!
8x 2 I
:

Notice that for each x 2 I
, u (x) =

264 u (x1)
...

u (xN )

375 2 u (I)

 (and u (I) is an interval since u is

continuous), and
hu (x) ; �i : � ! R

q 7!
P
!2
 u (x!) q! = hu (x) ; qi

is a¢ ne, hence it is continuous, bounded, and measurable, with range in u (I). Therefore,�
v � u�1

�
� hu (x) ; �i : � ! R

q 7! v
�
u�1

�P
!2
 u (x!) q!

��
is continuous, bounded, and measurable too, with range in v (I). Hence,Z

�

v
�
u�1 (hu (x) ; qi)

�
d� (q) 2 v (I)

18 If p0; p00 2
\

t2(0;1]
[at; bt], then jp00 � p0j � bt � at for all t 2 (0; 1]. Passing to the limit delivers jp00 � p0j = 0.
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is well de�ned, and so is

v�1
�Z

�

v
�
u�1 (hu (x) ; qi)

�
d� (q)

�
2 I:

The next two lemmas on derivatives will play a key role in the derivation of the Taylor approxi-
mation.

Lemma 56 Let O be an open subset of a �nite dimensional euclidean space, (S;�) be a measurable
space, and f : O � S ! R be a function with the following properties:

(a) for each x 2 O, s 7! f (x; s) is �-measurable;

(b) for each s 2 S, x 7! f (x; s) is k-times continuously di¤erentiable on O;

(c) the functions f and @�f are bounded (hence uniformly bounded by M) on O � S for every
multi-index � such that j�j � k.

Then, for each probability measure P on �:

(i) the function de�ned on O by

FP (x) =

Z
S

f (x; s) dP (s)

is k-times continuously di¤erentiable;

(ii) the functions s 7! @�f (x; s) are �-measurable for all x 2 O, with

@�FP (x) =

Z
S

@�f (x; s) dP (s) (49)

for all x 2 O and � such that j�j � k.

Moreover, as y ranges in O, Q ranges in the set of all probability measures on �, � ranges in the set
of all multi-indexes of length not greater than k, supy;Q;� j@�FQ (y)j �M .

Proof. First observe that, by (a) and (c), for each x 2 O, f (x; �) is bounded and measurable, then
FP is well de�ned on O for every P in the set �� (S;�) of all probability measures on �.

Let k = 1, and arbitrarily choose a multi-index � with j�j � 1. All components of � except
one, say the j-th, are zero, and �j = 1. Denote by ej the j-th element of the canonical basis of the
euclidean space.
For each x 2 O, there is � = �x > 0 such that x+tej 2 O for all t 2 (��; �). For each vanishing

sequence ftngn2N 2 (��; �) n f0g of real numbers

@jf (x; s) = lim
n!1

f
�
x+tne

j ; s
�
� f (x; s)

tn

for all s 2 S. Thus, for each x 2 O, @jf (x; �) is the statewise limit of a sequence
�
t�1n

�
f
�
x+tne

j ; �
�
� f (x; �)

�	
n2N

of measurable functions, and it is measurable.
For each x 2 O, t 2 (��x; �x) n f0g, and s 2 S, by the Mean Value Theorem on the segment

[xj ; xj + t] (if t > 0, or [xj + t; xj ] if t < 0), there is � 2 (0; 1) such that��f �x+tej ; s�� f (x; s)��
jtj =

��@jf �x+�tej ; s��� �M:
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Then, for each x 2 O, and each vanishing sequence ftngn2N 2 (��x; �x) n f0g, the sequence of func-
tions

�
t�1n

�
f
�
x+tne

j ; �
�
� g (x; �)

�	
n2N is uniformly bounded by M . The Dominated Convergence

Theorem impliesZ
@jf (x; s) dP (s) =

Z
lim
n!1

f
�
x+tne

j ; s
�
� f (x; s)

tn
dP (s)

DCT = lim
n!1

Z
f
�
x+tne

j ; s
�
� f (x; s)

tn
dP (s)

= lim
n!1

R
f
�
x+tne

j ; s
�
dP (s)�

R
f (x; s) dP (s)

tn

= lim
n!1

FP
�
x+tne

j
�
� FP (x)

tn

for every P 2 �� (S;�). Since this is true for all vanishing sequences ftngn2N 2 (��x; �x) n f0g, FP
has partial derivative at x, in direction j, given by

@jFP (x) =

Z
@jf (x; s) dP (s) : (50)

Summing up, @�f (x; �) is measurable (and bounded) for all x 2 O, and, for each P 2 �� (S;�), the
function FP : O ! R has �-th partial derivative given by (49) at every x 2 O. Moreover,

sup
x2O;P2��(S;�)

j@�FP (x)j = sup
x2O;P2��(S;�)

����Z @�f (x; s) dP (s)

���� � sup
x2O;P2��(S;�)

Z
j@jf (x; s)j dP (s) �M

and the generality of � implies supx2O;P2��(S;�);j�j�1 j@�FP (x)j �M .
Let xn ! x in O. For each s 2 S, by (b),

lim
n!1

@�f (xn; s) = @�f (x; s)

then the sequence of measurable functions f@�f (xn; �)gn2N statewise converges to @�f (x; �) and, by
(c), it is uniformly bounded, another application of the Dominated Convergence Theorem yields

lim
n!1

@�FP (xn) = lim
n!1

Z
@�f (xn; s) dP (s)

DCT =

Z
@�f (x; s) dP (s) = @�FP (x) :

This shows the continuity of @�FP .

Assume the result is true for k 2 N. Next we show it holds for k + 1. The induction hypothesis
guarantees that points (i) and (ii) hold verbatim for all the derivatives of order not greater than k
and supx2O;P2��(S;�);j�j�k j@�FP (x)j � M . Let j�j = k + 1 and j be the �rst non-zero component
of �, then � = �+ ej where � is a multi-index of length k. Set

g (x; s) = @�f (x; s) 8 (x; s) 2 O � S:

By the induction hypothesis, and the assumptions on f :

� for each x 2 O, s 7! g (x; s) = @�f (x; s) is measurable;

� for each s 2 S, x 7! g (x; s) is 1-time continuously di¤erentiable on O, since x 7! f (x; s) is
k + 1-times continuously di¤erentiable on O;
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� the function g = @�f and all its �rst partial derivatives are uniformly bounded by M on O�S.

Then (by the initial step), for each probability measure P on �, the function de�ned on O by

GP (x) =

Z
g (x; s) dP (s) = @�FP (x)

is 1-time continuously di¤erentiable and the function s 7! @jg (x; s) = @�f (x; s) is measurable for all
x 2 O, with

@jGP (x) =

Z
@jg (x; s) dP (s) i.e. @�FP (x) =

Z
@�f (x; s) dP (s)

for all x 2 O. Moreover, again by the initial step,

sup
x2O;P2��(S;�)

j@�FP (x)j = sup
x2O;P2��(S;�)

j@jGP (x)j �M

which concludes the proof, thanks to the generality of �. �

Set � = v � u�1 : u (I) ! v (I) and  = v�1 : v (I) ! I, clearly they are strictly increasing and
continuous. Set W = int I.

Lemma 57 The functions � : u (W ) ! v (W ) and  : v (W ) ! W are thrice continuously di¤eren-
tiable.
In particular, for each w 2W ,

�0 (u (w)) =
v0 (w)

u0 (w)
; �00 (u (w)) =

v00 (w)

u0 (w)
2 � v

0 (w)
u00 (w)

u0 (w)
3 ; (52a)

 0 (� (u (w))) =
1

v0 (w)
;  00 (� (u (w))) = � v00 (w)

v0 (w)
3 ; (52b)

and there exist " > 0 such that [w � "; w + "] � W and M > 1 such that the absolute values of u, v,
�, and  �as well as their �rst, second, and third derivatives �are bounded by M on [w � "; w + "],
[w � "; w + "], u ([w � "; w + "]), and v ([w � "; w + "]), respectively.

Proof. Since u and v are strictly increasing and continuous, then u (int I) = intu (I) and v (int I) =
int v (I), that is

u (W ) = intu (I) and v (W ) = int v (I) :

Moreover, u; v 2 C3 (W ) and u0; v0 > 0 imply u�1 2 C3 (u (W )) and
�
u�1

�0
> 0, � = v � u�1 2

C3 (u (W )) and �0 > 0,  = v�1 2 C3 (v (W )) and  0 > 0. The relations (52a) and (52b) descend
from the usual calculus of the derivatives of inverse functions and composite functions. The �nal part
descends from C3 di¤erentiability and the Weierstrass Theorem. �

B.2 Approximation

Theorem 58 Let x 2 (�"; ")
, then����C (w + x; �)� �w + E�� (x)� 12�u (w)�2�� (x)� 12 (�v (w)� �u (w))�2� (hx; �i)
����� � L jxj3 (53)

for all Borel probability measures � on �, where " and M are as in Lemma 57 and

L =
125M13 + 75M9 + 5M5

6
j
j3=2 :
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Before entering the proof�s details notice that

� 1
2
�u (w)�

2
�� (x)�

1

2
(�v (w)� �u (w))�2� (hx; �i)

= �1
2
�u (w)x

| ���� �ek; ej��x� 1
2
(�v (w)� �u (w))x|

�
��
�

ek; �

�
;


ej ; �

���
x

=
1

2
x|
�
��u (w)���

�
ek; ej

�
� (�v (w)� �u (w))��

�

ek; �

�
;


ej ; �

���
x

=
1

2
x|
�
(�u (w)� �v (w))��

�

ek; �

�
;


ej ; �

��
� �u (w)���

�
ek; ej

��
x = z

and

��
�

ek; �

�
;


ej ; �

��
=

Z
�



ek; q

� 

ej ; q

�
d� (q)�

�Z
�



ek; q

�
d� (q)

��Z
�



ej ; q

�
d� (q)

�
=

Z
�

qkqjd� (q)� ��k��j

���
�
ek; ej

�
=

NX
i=1

eki e
j
i ��i �

 
NX
i=1

eki ��i

! 
NX
i=1

eji ��i

!
=

�
���k��j k 6= j
��j � ��k��j k = j

= �kj ��j � ��k��j

�nally

z = 1

2
x|
�
(�u (w)� �v (w))

�Z
�

qkqjd� (q)� ��k��j
�
� �u (w) (�kj ��j � ��k��j)

�
x

=
1

2
x|
�
�u (w)

Z
�

qkqjd� (q)� �u (w) ��k��j � �v (w)
Z
�

qkqjd� (q) + �v (w) ��k��j � �u (w) �kj ��j + �u (w) ��k��j
�
x

=
1

2
x|
�
(�u (w)� �v (w))

Z
�

qkqjd� (q) + �v (w) ��k��j � �u (w) �kj ��j
�
x

Proof. Notice that, for all x 2 (�"; ")
 = O, w1+ x 2 (w � "; w + ")
 � I
:
De�ne

g : O �� ! R
(x; q) 7! hu (w + x) ; qi =

PN
i=1 u (w + xi) qi 2 (u (w � ") ; u (w + "))

next we show that g satis�es assumptions (a), (b), (c) of Lemma 56 for 3-times continuously di¤er-
entiable functions.

(a) For each x 2 O, q 7! g (x; q) is continuous, bounded, and measurable.

(b) For each q 2 
, x 7! g (x; q) is thrice continuously di¤erentiable on O. In fact, given q 2 �, for
all x 2 O and all j; k; l 2 f1; 2; :::; Ng

@jg (x; q) = qju
0 (w + xj)

@kjg (x; q) =

�
0 k 6= j

qju
00 (w + xj) k = j

= qju
00 (w + xj) �kj

@lkjg (x; q) =

8<: 0 k 6= j
0 l 6= k = j

qju
000 (w + xj) l = k = j

= qju
000 (w + xj) �lkj

and the functions de�ned by the above equations (for �xed q and j; k; l) are continuous on O.
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(c) The functions g, @jg, @kjg, and @lkjg are bounded on O�
 for all j; k; l 2 f1; 2; :::; Ng; in fact,
given j; k; l 2 f1; 2; :::; Ng, for all (x; q) 2 O �� (choosing M like in Lemma 57)

jg (x; q)j =
�����
NX
i=1

u (w + xi) qi

����� �
NX
i=1

ju (w + xi)j qi �M

j@jg (x; q)j = jqju0 (w + xj)j �M

j@kjg (x; q)j = jqju00 (w + xj) �kj j �M

j@lkjg (x; q)j = jqju000 (w + xj) �lkj j �M:

Consider
f = � � g : O �� ! R

(x; q) 7! � � g (x; q) 2 (v (w � ") ; v (w + "))

next we show that f satis�es assumptions (a), (b), (c) of Lemma 56 for 3-times continuously di¤er-
entiable functions.

(a) For each x 2 O, q 7! � � g (x; q) is continuous, bounded, and measurable.

(b) For each q 2 
, x 7! � � g (x; q) is thrice continuously di¤erentiable on O; in fact, given q 2 �,
for all x 2 O and all j; k; l 2 f1; 2; :::; Ng

@j (� � g) (x; q) = �0 (g (x; q)) @jg (x; q)

@kj (� � g) (x; q) = �00 (g (x; q)) @kg (x; q) @jg (x; q) + �
0 (g (x; q)) @kjg (x; q)

@lkj (� � g) (x; q) = �000 (g (x; q)) @lg (x; q) @kg (x; q) @jg (x; q) + �
00 (g (x; q)) (@lkg (x; q) @jg (x; q) + @kg (x; q) @ljg (x; q))

+ �00 (g (x; q)) @lg (x; q) @kjg (x; q) + �
0 (g (x; q)) @lkjg (x; q)

= �000 (g (x; q)) @lg (x; q) @kg (x; q) @jg (x; q) + �
0 (g (x; q)) @lkjg (x; q)

+ �00 (g (x; q)) [@jg (x; q) @lkg (x; q) + @kg (x; q) @ljg (x; q) + @lg (x; q) @kjg (x; q)]

and the functions de�ned by the above equations (for �xed q and j; k; l) are continuous on O.

(c) The functions � � g, @j (� � g), @kj (� � g), and @lkj (� � g) are bounded by 5M4 on O � 
 for
all j; k; l 2 f1; 2; :::; Ng; in fact, given j; k; l 2 f1; 2; :::; Ng, for all (x; q) 2 O �� (choosing M
like in Lemma 57 and observing g (x; q) 2 (u (w � ") ; u (w + ")))

j(� � g) (x; q)j = j� (g (x; q))j �M � 5M4

j@j (� � g) (x; q)j = j�0 (g (x; q))j j@jg (x; q)j �M2 � 5M4

j@kj (� � g) (x; q)j � j�00 (g (x; q)) @kg (x; q) @jg (x; q)j+ j�0 (g (x; q)) @kjg (x; q)j �M3 +M2 � 5M4

j@lkj (� � g) (x; q)j � j�000 (g (x; q)) @lg (x; q) @kg (x; q) @jg (x; q)j+ j�0 (g (x; q)) @lkjg (x; q)j
+ j�00 (g (x; q))j [j@jg (x; q) @lkg (x; q)j+ j@kg (x; q) @ljg (x; q)j+ j@lg (x; q) @kjg (x; q)j]
�M4 +M2 + 3M3 � 5M4:

Then (by Lemma 56), for each Borel probability measure � on � the function de�ned on O by

F� (x) = F (x) =

Z
f (x; q) d� (q) =

Z
�

�

 
NX
i=1

u (w + xi) qi

!
d� (q)
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is thrice continuously di¤erentiable; the functions q 7! @�f (x; q) are measurable for all x 2 O, with

@�F (x) =

Z
@�f (x; q) d� (q)

for all x 2 O and � such that j�j � 3; supx2O;�2��(�;B);j�j�3 j@�F� (x)j � 5M4.
Finally, for all x 2 O and all q 2 �, g (x; q) 2 (u (x� ") ; u (x+ ")) implies f (x; q) = � (g (x; q)) 2

v
�
u�1 ((u (w � ") ; u (w + ")))

�
= (v (w � ") ; v (w + ")) and F (x) 2 (v (w � ") ; v (w + ")).19 Thus

c� (x) =  � F� (x) 2 (w � "; w + ") 8x 2 O

is well de�ned and thrice continuously di¤erentiable on O = (�"; ")N .
Next we explicitly compute its derivatives, using repeatedly the relations obtained above as well

as those provided by Lemma 57. As we did for F we just write c rather than c�.
For all x 2 O and all j; k; l 2 f1; 2; :::; Ng

@jc (x) = @j ( � F ) (x) =  0 (F (x)) @jF (x)

@kjc (x) = @kj ( � F ) (x) =  00 (F (x)) @kF (x) @jF (x) +  
0 (F (x)) @kjF (x)

@lkjc (x) = @lkj ( � F ) (x) =  000 (F (x)) @lF (x) @kF (x) @jF (x) +  
0 (F (x)) @lkjF (x)

+  00 (F (x)) [@jF (x) @lkF (x) + @kF (x) @ljF (x) + @lF (x) @kjF (x)]

in particular

jc (x)j = j (F (x))j �M � 205M13

j@jc (x)j = j 0 (F (x))j j@jF (x)j � 5M5 � 205M13

j@kjc (x)j � j 00 (F (x)) @kF (x) @jF (x)j+ j 0 (F (x)) @kjF (x)j � 25M9 + 5M5 � 205M13

j@lkjc (x)j � j 000 (F (x)) @lF (x) @kF (x) @jF (x)j+ j 0 (F (x)) @lkjF (x)j
+ j 00 (F (x))j [j@jF (x) @lkF (x)j+ j@kF (x) @ljF (x)j+ j@lF (x) @kjF (x)j]
� 125M13 + 5M5 + 75M9 � 205M13

by Taylor�s inequality (see, e.g., [2, p. 95])����c (x)� �c (0) +rc (0)x+ 12x|r2c (0)x
����� � 125M13 + 75M9 + 5M5

6

 
NX
i=1

jxij
!3

(55)

� 125M13 + 75M9 + 5M5

6
N3=2 jxj3

= L jxj3

Notice that L does not depend on �.
Since

c (x) = v�1

 Z
�

v

 
u�1

 
NX
i=1

u (w + xi) qi

!!
d� (q)

!
= C (w + x; �) 8x 2 O;

it only remains to explicitly evaluate c (0), rc (0)x, and x|r2c (0)x.
19Clearly, F (x) 2 [v (w � ") ; v (w + ")], if F (x) = v (w � "), then

R
(f (x; q)� v (w � ")) d� (q) = 0 and f (x; q) =

v (w � ") for � almost all q 2 �, a contradiction. A similar contradiction derives from assuming F (x) = v (w + ").
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First,

g (0; q) = u (w) 8q 2 �

F (0) =

Z
� (g (0; q)) d� (q) = � (u (w))

then
c (0) = v�1 (� (u (w))) = w:

Second, for all j 2 f1; 2; :::; Ng,

@jg (0; q) = qju
0 (w) 8q 2 �

@jF (0) =

Z
@jf (0; q) d� (q) =

Z
�0 (g (0; q)) @jg (0; q) d� (q)

=

Z
�0 (u (w)) qju

0 (w) d� (q) = �0 (u (w))u0 (w) ��j

= v0 (w) ��j

then
@jc (0) =  0 (F (0)) @jF (0) =  0 (� (u (w))) v0 (w) ��j = ��j :

Finally, for all j; k 2 f1; 2; :::; Ng,

@kjg (0; q) = qju
00 (w) �kj 8q 2 �

@kjF (0) =

Z
@kjf (0; q) d� (q) =

Z
[�00 (g (0; q)) @kg (0; q) @jg (0; q) + �

0 (g (0; q)) @kjg (0; q)] d� (q)

=

Z
[�00 (u (w)) qku

0 (w) qju
0 (w) + �0 (u (w)) qju

00 (w) �kj ] d� (q)

= �00 (u (w))u0 (w)
2
Z
qkqjd� (q) + �

0 (u (w))u00 (w) �kj

Z
qjd� (q)

= �00 (u (w))u0 (w)
2
Z
qkqjd� (q) + �

0 (u (w))u00 (w) �kj ��j

then

@kjc (0) =  00 (F (0)) @kF (0) @jF (0) +  
0 (F (0)) @kjF (0)

=  00 (� (u (w))) v0 (w) ��kv
0 (w) ��j +  

0 (� (u (w)))

�
�00 (u (w))u0 (w)

2
Z
qkqjd� (q) + �

0 (u (w))u00 (w) �kj ��j

�
= � v00 (w)

v0 (w)
3 v

0 (w)
2
��k��j +

1

v0 (w)

  
v00 (w)

u0 (w)
2 � v

0 (w)
u00 (w)

u0 (w)
3

!
u0 (w)

2
Z
qkqjd� (q) +

v0 (w)

u0 (w)
u00 (w) �kj ��j

!

= �v
00 (w)

v0 (w)
��k��j +

�
v00 (w)

v0 (w)
� u00 (w)

u0 (w)

�Z
qkqjd� (q) +

u00 (w)

u0 (w)
�kj ��j

= (�u (w)� �v (w))
Z
qkqjd� (q) + �v (w) ��k��j � �u (w) �kj ��j

as wanted. In fact ����c (x)� �c (0) +rc (0)x+ 12x|r2c (0)x
����� � L jxj3

then amounts to����C (w + x; �)� �w + hx; ��i+ 12x|
�
(�u (w)� �v (w))

Z
�

qkqjd� (q) + �v (w) ��k��j � �u (w) �kj ��j
�
x

����� � L jxj3

that is (53). �
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B.3 Other Approximations

For all x 2 R
 such that w + x 2 I
 and each Borel probability measure � on �, set

R2 (x; �) = C (w + x; �)�
�
w + E�� (x)�

1

2
�u (w)�

2
�� (x)�

1

2
(�v (w)� �u (w))�2� (hx; �i)

�
:

Equation (55) in the proof of Theorem 58 shows that if x 2 (�"; "), then

jR2 (x; �)j �
125M13 + 75M9 + 5M5

6

 X
!2


jx!j
!3

=
L

j
j3=2

 X
!2


jx!j
!3

: (56)

Corollary 59 For each Borel probability measure � on �, and each x 2 R
 such that w + x 2 I


and max!2supp �� jx!j < ", then

jR2 (x; �)j �
L

�m3=2
kxk32;�� (57)

where �m = min f��! : ! 2 supp ��g, and

jR2 (x; �)j � L j
j3=2 kxk31;�� : (58)

The proof builds on the following fact.

Proposition 60 Let y; z 2 R
, then

1. yj supp �� = zj supp �� , y = z ��-a.e. on 
;

2. yj supp �� = zj supp �� ) E�� (y) = E�� (z) and �2�� (y) = �2�� (z);

3. yj supp �� = zj supp �� ) hy; �i = hz; �i �-a.e. on �;

4. yj supp �� = zj supp �� ) �2� (hy; �i) = �2� (hz; �i) and, provided w+x 2 I
 for x = y; z, C (w + y; �) =
C (w + z; �).

Proof. 1. and 2. are trivial.
3. For each ! 2 
, ��! = 0 is equivalent to

R
�
he!; qi d� (q) = 0, which in turn is equivalent to

he!; �i = 0 �-a.e. on �.

Thus, hy; �i =
P
!2
 y! he!; �i =

P
!2supp �� y! he!; �i+

P
!2
nsupp �� y! he!; �i

��a:e:
=

P
!2supp �� y! he!; �i

=
P
!2supp �� z! he!; �i

��a:e:
=

P
!2supp �� z! he!; �i+

P
!2
nsupp �� z! he!; �i = hz; �i.

4. The equality �2� (hy; �i) = �2� (hz; �i) follows from 3. while, setting u (w + x) = [u (w + x!)]!2

for x = y; z,

yj supp �� = zj supp �� =) u (w + y)j supp �� = u (w + z)j supp ��

=) hu (w + y) ; �i = hu (w + z) ; �i �-a.e. on �

=) v
�
u�1 (hu (w + y) ; �i)

�
= v

�
u�1 (hu (w + z) ; �i)

�
�-a.e. on �

=)
Z
�

v
�
u�1 (hu (w + y) ; qi)

�
d� (q) =

Z
�

v
�
u�1 (hu (w + z) ; qi)

�
d� (q)

=) C (w + y; �) = C (w + z; �)

where the second implication, again follows from 3. �
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Proof of Corollary 59. The vector x�� = xsupp ��0 (which coincides with x on supp �� and with
0 on 
 n supp ��) belongs to (�"; ")
, and obviously x and x�� coincide on supp ��. Thus Proposition
60 and (56) deliver

jR2 (x; �)j =
����C (w + x; �)� �w + E�� (x)� 12�u (w)�2�� (x)� 12 (�v (w)� �u (w))�2� (hx; �i)

�����
=

����C �w + x��; ��� �w + E�� �x���� 12�u (w)�2�� �x���� 12 (�v (w)� �u (w))�2� �
x��; ���
�����

� L

j
j3=2

 X
!2


��x��!��
!3

=
L

j
j3=2

 X
!2supp ��

jx!j
!3

:

In particular,

� setting �m = min f��! : ! 2 supp ��g,X
!2supp ��

jx!j � jsupp ��j1=2
s X
!2supp ��

x2! � j
j
1=2

s X
!2supp ��

��i
�m
x2i �

j
j1=2

�m1=2
kxk2;��

thus

jR2 (x; �)j �
L

j
j3=2
j
j3=2

�m3=2
kxk32;��

which is (57);

� analogously X
!2supp ��

jx!j �
X

!2supp ��
max

!02supp ��
jx!0 j = kxk1;�� jsupp ��j � j
j kxk1;��

thus

jR2 (x; �)j �
L

j
j3=2
j
j3 kxk31;��

which is (58).

As wanted. �

Now assume there is a net (xt; �t)t>0 such that eventually w+xt 2 I
 and kxtk1;��t
! 0 as t # 0,

then eventually max!2supp �� jx!j < ", by (58),

jR2 (xt; �t)j � L j
j3=2 kxtk31;��t

and R2 (xt; �t) = O
�
kxtk31;��t

�
= o

�
kxtk21;��t

�
.

It is important to observe that (57) cannot be directly used to obtain a similar result, in fact, in
this case, kxtk2;��t ! 0 as t # 0 and (57) delivers

jR2 (xt; �t)j �
L

�m
3=2
t

kxtk32;��t

which does not allow to conclude R2 (xt; �t) = O
�
kxtk32;��t

�
unless �m3=2

t is bounded away from 0.

Corollary 61 Assume the net (xt; �t)t>0 is such that eventually w + xt 2 I
, kxtk2;��t ! 0 and

kxtk1;��t
= O

�
kxtk2;��t

�
as t # 0, then R2 (xt; �t) = O

�
kxtk32;��t

�
.

The simple proof is omitted.
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