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Abstract

We derive envelope theorems for optimization problems in which the value function

takes values in a general Banach lattice, and not necessarily in the real line. We impose

no restriction whatsoever on the choice set. Our result extend therefore the ones of

Milgrom and Segal (2002). We apply our results to discuss the existence of a well-

de�ned notion of marginal utility of wealth in optimal consumption-portfolio problems

in which the utility from consumption is additive but possibly state-dependent and,

most importantly, the information structure is not required to be Markovian. In this

general setting, the value function is itself a random variable and, if integrable, takes

values in a Banach lattice so that our general results can be applied.

1 Introduction

Envelope theorems constitute one of the genuine workhorses of economics, and their appli-

cations are truly ubiquitous. Over the years, in fact, several extensions of the traditional

envelope theorems have emerged, as a response to the necessity of analyzing the behavior

of the value function of optimization problems lacking the assumptions for the applicability

of the standard envelope results of any graduate textbook. To our knowledge, the most

general set of envelope theorems currently available in the literature is due to Milgrom

and Segal (2002), who develop envelope results that do not require any assumption on the

choice set of the optimization problem. In particular, they �rst show that the traditional
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envelope formula holds at any di¤erentiability point of the value function, and then they

establish conditions for the (left, right or full) di¤erentiability of the value function.

The contribution of this paper is to extend Milgrom and Segal�s results by allowing the

objective function of the optimization problem under scrutiny to take values in a general

Banach lattice, instead of simply in the set of real numbers. In doing so, we still allow

the choice set to be arbitrary, while we let our parameters to belong to a general Banach

space. In this setting, we show that all the results in Milgrom and Segal (2002) can

be nicely extended, provided that the standard notion of di¤erentiability for real-valued

functions is suitably replaced by the more general notion of Fréchet-di¤erentiability. Given

a function from a Banach spaces into another Banach space, in fact, the Fréchet di¤erential

constitutes the right tool to analyze the incremental e¤ect on the value of the function due

to an increment in the independent variable.

The obvious question at this point is: why Banach lattices? This question can be

answered from two angles. A �rst, more general angle involves the long standing tradition

of using the lattice structure in economic theory, in particular in general equilibrium theory

and in its applications to �nance theory (see e.g. the references in Aliprantis, Monteiro

and Tourky, 2004). In his fundamental contribution to general equilibrium theory, Mas-

Colell (1986) analyzes the existence problem in economies where the commodity space is a

general topological vector lattice (of which Banach Lattices are clearly special cases). The

fundamental motivation for his approach lies in the mounting interest for economies with

in�nitely many commodities, such as Arrow-Debreu economics with in�nitely-lived agents,

or in the analysis of commodity di¤erentiation, or in the arbitrage literature dating back

to Black and Scholes (1973) and Harrison and Kreps (1979). The utility of employing the

techniques associated with the lattice structure comes from the fact that, in many of these

applications, the positive orthant would have empty interior, a fact that could produce

insurmountable di¢ culties unless the lattice structure is taken to full bearing.

A second angle comes from a speci�c, interesting problem in asset pricing that we en-

countered when working on Battauz et al. (2011), and that actually motivated the present

paper. Consider a standard, multi-period optimal consumption-portfolio problem for an

agent with �nite life. Let the agent�s utility function be time-additive but possibly state-

dependent. Crucially, depart from the standard treatments available in the literature by

not imposing the information structure to be Markovian. More precisely, take for given the
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information structure modelled as a �ltration of a standard probability space, and assume

that prices and dividends are any stochastic processes adapted to the given, general �ltra-

tion. To any time t associate a value function that, given the level of wealth accumulated

up to t; gives the maximum remaining utility (continuation utility) conditional on following

an optimal consumption-portfolio strategy from t on. The question is then: is the marginal

utility of wealth well de�ned and, if so, how does it compare to the marginal utility from

consumption at time t? In a Markovian framework, the usual envelope result could be

invoked to obtain that, under standard conditions, the marginal utility of wealth is indeed

well de�ned and it coincides with the marginal utility from consumption. This conclusion

would easily derive from the fact that the, in a Markovian setting, the value function is

a real-valued function of the wealth level (and, possibly, of other state variables). In a

our general setting, however, this is not the case, since the value function itself would be

a random variable, obtained by taking the �right type�of sup over all possible controls,

i.e. consumption paths and investment strategies. Upon requiring the value function to

be at least integrable, the �right type�of sup manifests itself upon recognizing that the

set of integrable random variables is a nice Banach lattice, with the sup among random

variables de�ned via the standard pointwise max operator. At this point, our general

envelope results for Banach lattices can be taken to bear on this problem, to show that

under a suitable set of conditions the value function is in fact (Fréchet)-di¤erentiable, and

its (Fréchet) di¤erential equals the (Fréchet) di¤erential of the utility function, when the

latter exists.

The remainder of the paper is as follows. In the next section, we introduce the notation

and de�nitions to set up the Banach lattice-valued optimization problem, we discuss the

assumptions underlying our results and we then prove our extension of the envelope theorem

to Banach lattices. In Section 3, we describe the asset pricing application of our result,

that is we introduce a general optimal consumption-portfolio problem and we apply our

general results from Section 2 to discuss the conditions under which the marginal utility of

wealth is well de�ned and coincides with the marginal utility from consumption. Section

4 concludes. The appendix contains some basic material on Banach lattices useful for the

problem at hand.
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2 The general results

To prove their envelope theorem for arbitrary choice sets, Milgrom and Segal (2002) assume

their parameter to lie in [0; 1] but make clear that their approach applies to parameters

lying in a more general normed vector space. Here we extend their results by allowing the

objective function, and, as a consequence the value function, to take values in a Banach

lattice and not just in R, while maintaining the arbitrariness of the choice set.

In our extended framework, the usual notion of di¤erentiability must be replaced with a

notion of di¤erentiability in Banach spaces. Several notions of di¤erentiability can be given

for functions between normed vector spaces. We recall them hereafter (see for instance

Bonnans-Shapiro (2000) or the classical textbook by Luenberger (1969)). Let X, Y be

normed vector spaces and G a mapping de�ned on a open domain U � X, with values

in Y .

De�nition 2.1 We say that G admits directional derivative at a point u 2 U in a

direction x 2 X if the limit:

G0(u;x) := lim
h!0+

G(u+ hx)�G(u)
h

(2.1)

exists, where the limit is meant in Y -norm.

The function G is said to be Gateaux di¤ erentiable at u if it is directional di¤eren-

tiable at u in every direction x 2 X and the directional derivative G0(u; � ) : X ! Y is a

continuous and linear operator. In this case, we denote this operator with DG(u) (namely,

DG(u)(x) = G0(u;x)) and call it the Gateaux di¤ erential of G at u.

The Gateaux-di¤erential extends the classical concept of directional derivative and it

is a rather weak notion. Indeed, for instance, it does not imply continuity of the function

in the di¤erentiability points. A stronger notion which is often employed is the following:

De�nition 2.2 We say that G is Fréchet-di¤ erentiable at u if there exists a continuous

and linear operator DG(u) : X ! Y such that

lim
kxkX!0

kG(u+ x)�G(u)�DG(u)(x)kY
kxkX

= 0 (2.2)

The operator DG(u)(x) is called the Fréchet di¤ erential of G at u.
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If G is Fréchet di¤erentiable at some point u, then it is also Gateaux di¤erentiable at u and

the two di¤erentials coincide. For this reason, we use the same notation and will make it

clear what we mean when it is not apparent from the context. Another important property

of the Fréchet di¤erentiability is that it implies continuity in the di¤erentiability points.

Precisely, if G is Fréchet di¤erentiable at some point u, then it is continous at u.

Let now X be a Banach space and Y a order continuous Banach lattice. As it is usually

done, we adjoin to Y the abstract maximal and minimal elements f�1g and denote by �Y

the enlarged space.

We take an open set U in X as the set of parameters. Let � denote an arbitrary choice

set and let F : ��U ! Y be the objective function. For each parameter u 2 U , we de�ne

the value function as:

V (u) = sup
�2�

F (�; u): (2.3)

We set V (u) = �1 if � = ;. Moreover, V (u) belongs to Y if and only if the set

(F (�; u))�in� is bounded from above.

Following Milgrom and Segal (2002), we start by showing that the envelope formula

holds at any di¤erentiability point of the value function. For any u 2 U , we de�ne the set

of optimal choices

��(u) = f� 2 � : F (�; u) = V (u)g:

We point out that in general ��(u) can possibly be empty. In what follows, we �x u� 2 U

and make the following assumption:

Assumption 2.1 The set ��(u�) is not empty.

Theorem 2.1 Assume that there exists some r > 0 such that V (x) 2 Y for every x 2

B(u; r)1. Let � 2 ��(u�). Then

1. if both F (�; � ) and V ( � ) admits directional derivative at u� in some direction x 2 X,

then F 0(�; u�;x) � V 0(u�;x);

2. if both F (�; � ) and V ( � ) are Gateaux-di¤erentiable at u�, then DF (�; u�) = DV (u�);
1B(u; r) denotes as usual the ball centered in u and with radius r
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3. if both F (�; � ) and V ( � ) are Fréchet-di¤erentiable at u�, then DF (�; u�) = DV (u�)

Proof.

1. Let h 2 R and y 2 X such that khykX < r. Then:

F (�; u� + hx)� F (�; u�) � V (u� + hx)� V (u�):

In particular, taking hn in R+, which decreases to 0 as n! +1, and dividing both

sides of the inequalities by hn, we obtain

F (�; u� + hnx)� F (�; u�)
hn

� V (u� + hnx)� V (u�)
hn

: (2.4)

If F (�; � ) admits directional derivative at u� along x, then according to (2.1), we

have that
F (�; u� + hnx)� F (�; u�)

hn

converges in Y -norm to F 0(�; u�;x). Then there exists a a subsequence which con-

verges in order to the same limit (see Remark A.1). Analogously, if V has a derivative

at u� along x, then
V (u� + hnx)� V (u�)

hn

will converge in Y -norm, and, up to a subsequence, in order, to V 0(u�;x): Hence

F 0(�; u�;x) � V 0(u�;x): (2.5)

2. If the two functions are Gateaux-di¤erentiable then, they admit directional deriv-

atives along all directions. In particular, they admit directional derivatives along

x and �x and we have F 0(�; u�;x) � V 0(u�;x) and F 0(�; u�;�x) � V 0(u�;�x).

Since the Gateaux di¤erential is homogeneous, DF (�; u�)(�x) = �DF (�; u�)(x) and

DV (u�)(�x) = �DV (u�)(�x). Therefore,

DF (�; u�)(x) = DV (u�)(x)

for all x 2 X.

3. If F (�; � ) and V are Fréchet di¤erentiable at u�, then they are a fortiori Gateuax

di¤erentiable and the di¤erentials coincide. �

6



Our aim now is to determine a set of su¢ cient conditions for the value function to

be Fréchet di¤erentiable. As already observed by Milgrom and Siegel, the structure of

the choice set is not relevant to this aim, though several versions of the envelope theorem

exploit topological properties of the choice set and regularity of the objective function in

the choice variable (see for instance subsection 2.1). The basic idea is to require that the

objective function satis�es some properties uniformly with respect to the choice parameter.

We consider agains as �xed a value of the parameter u� 2 U and make the following

assumptions:

Assumption 2.2 The objective function F (�; � ) is Fréchet di¤erentiable at u� for every

� 2 �. In particular, it is equidi¤erentiable, i.e.:

F (�; u� + x)� F (�; u�) = DF (�; u�)(x) + �(�; u�; x) � kxkX

where j�(�; u�; x)j � � kxkX ; for � 2 Y , for all � 2 �, for x 2 X such that u� + x 2 U .

This assumption implies in particular that F (�) is di¤erentiable at u� for any � in the

choice set. In addition, we have that

kF (�; u� + x)� F (�; u�)�DF (�; u�)(x)kY
kxkX

goes to 0 uniformly in � as kxkX tends to 0.

Before introducing the next assumption, it is useful to recall some basic notation from

functional analysis. We denote with L(X;Y ) the vector space of all linear continuous

(bounded) operators from X to Y . When well-de�ned, the Fréchet di¤erential DF (�; u�)

belongs to L(X;Y ). We can de�ne a norm on this space as follows: for T 2 L(X;Y ), we

set

kTkL = sup
x2X;kxkX�1

kT (x)kY :

The spirit of the next assumption is basically to require the Fréchet di¤erential of F to

be norm bounded uniformly in �.

Assumption 2.3 For every x 2 X there exists a vector yx 2 Y such that

jDF (�; u�)(x)j � yx kxkX

for all � 2 �.
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As a consequence, kDF (�; u�)(x)kY �Mx for all � 2 �, where Mx = kyxkY kxkX , that is,

the family of operators (DF (�; u�))�2� is pointwise bounded. The Banach-Steinhaus the-

orem, also known as the Uniform Boundedness Principle (see, for instance, Brezis (1983)),

implies that the set (DF (�; u�))�2� is also norm bounded, namely

sup
�2�

kDF (�; u�)kL < +1:

In other words, there exists a constant � such that

kDF (�; u�)(x)kY � � kxkX (2.6)

for all � 2 �:

A �rst step in the search for su¢ cient conditions for the value function to be di¤er-

entiable at u� is to show that V is at the minimum, continuous at the di¤erentiability

points of the objective function. This is ensured by the previous assumptions as the next

proposition proves.

Proposition 2.1 Assume that there exists r > 0 such that V (x) 2 Y for all x 2 B(u�; r).

If Assumptions 2.1, 2.2, 2.3 hold, the value function V is continuous in u�.

Proof. Let x 2 B(u�; r). Then, we have:

jV (x)� V (u�)j =

����sup
�1

F (�1; x)� sup
�2

F (�2; u
�)

����
� sup

�
jF (�; x)� F (�; u�)j

� sup
�
jDF (�; u�)(x� u�)j

+sup
�
j�(�; u�; x� u�)j � k x� u�kX

where the last inequality is a consequence of Assumption 2.2. Taking the Y -norms of

both sides and exploiting the triangle inequality together with Assumption 2.2 and 2.3 (in

particular, inequality (2.6)), we obtain

kV (x)� V (u�)kY < � kx� u
�kX + k�kY � kx� u

�k2X :

This shows that V is continuous in u�. �

In order to obtain that V is di¤erentiable, we will need to require the Fréchet di¤erential

of F at u� to be continuous (in some sense better speci�ed below). To this end, we impose

the following assumption:
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Assumption 2.4 (i) There exists some r > 0, such that V is �nite on B(u�; r) and for

all x 2 B(u�; r), the set ��(x) is not empty;

(ii) for x 2 B(u�; r), for every �x 2 ��(x); � 2 ��(u�), the Fréchet di¤erential of F at u�

satis�es:

lim
kx�u�kX!0

kDF (�x; u�)�DF (�; u�)kL = 0:

We do not require continuity of the Fréchet di¤erential in the classical sense: in fact we

do not ask F to be di¤erentiable in other points but u�. Instead, we ask F (�; � ) to be

di¤erential at u� for all � (Assumption 2.2) and we require continuity of the family of

di¤erentials (DF (�; u�))�2� as the choice � approaches an optimal choice.

Exploiting this assumption, which naturally implies Assumption 2.1, together with As-

sumption 2.2 on the equidi¤erentiability of F , we are able to derive the following property,

which is useful to show the di¤erentiability of the value function.

Lemma 2.1 Suppose that Assumptions 2.2 and 2.4 hold. Let let � 2 ��(u�). Moreover,

for some x 2 X with kxk < r let �u�+x 2 ��(u� + x). Then

lim
kxkX!0

kF (�u�+x; u� + x)� F (�u�+x; u�)�DF (�; u�)(x)kY
kxkX

= 0

Proof. We have, thanks to Assumption 2.2, that:

F (�u�+x; u
� + x)� F (�u�+x; u�) = DF (�u�+x; u�)(x) + �(�u�+x; u�; x) � kxkX :

where j�(�u�+x; u�; x)j � � kxkX : Hence, the following inequalities hold:

kF (�x; u� + x)� F (�x; u�)�DF (�; u�)(x)kY

� kDF (�u�+x; u�)(x)�DF (�; u�)(x)kY + k�(�u�+x; u
�; x)kY � kxkX

� kDF (�u�+x; u�)�DF (�; u�)kL � kxkX + k�kY kxk
2
X :

Dividing by kxkX and taking the limit as kxkX ! 0 we obtain the claim by using Assump-

tion 2.4 (ii). �

We are �nally ready to prove our main theorem.
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Theorem 2.2 If Assumptions 2.2, 2.4 hold, then the value function V is Fréchet-di¤erentiable

at u� and

DV (u�) = DF (�; u�)

for � 2 ��(u�).

Proof. Let �u� 2 ��(u�). Then,

V (u�) = F (�u� ; u
�) � F (�; u�) for any � 2 �:

Now, let x be such that kxkX < r and take �u�+x in ��(u� + x), which is not empty by

Assumption 2.4 (i). Then

V (u� + x) = F (�u�+x; u
� + x) � F (�; u� + x) for any � 2 �:

In particular, V (u�) � F (�u�+x; u�) and V (u� + x) � F (�u� ; u� + x). Thus, we can write:

F (�u� ; u
� + x)� F (�u� ; u�) � V (u� + x)� V (u�) � F (�u�+x; u� + x)� F (�u�+x; u�) :

Substracting the di¤erential DF (�u� ; u�)(x) and dividing by kxkX , we obtain the following

inequalities:

F (�u� ; u
� + x)� F (�u� ; u�)�DF (�u� ; u�)(x)

kxkX

� V (u� + x)� V (u�)�DF (�u� ; u�)(x)
kxkX

� F (�u�+x; u
� + x)� F (�u�+x; u�)�DF (�u� ; u�)(x)

kxkX

Take now the limit as kxkX ! 0. Since the �rst and the last term converge to 0 in Y -norm,

the middle term must converge to 0 as well. This implies that V is Fréchet-di¤erentiable

at u� and DV (u�) = DF (�; u�): �

2.1 The concavity assumption

In this section we want to investigate su¢ cient condition for the value function to be

di¤erentiable when a concavity assumption is made on the objective function in the spirit

of Benveniste and Scheinkman (1979). For vector-valued concave functions, analogous

results on di¤erentiablity holds as in the real-valued case. For ease of the reader, we collect
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in Appendix B the main results on concavity and di¤erentiability for functions on vector

spaces.

Throughout this section, we make the following assumption:

Assumption 2.5 The sets � and U are convex and the objective function F is concave

with respect to both � and u.

The following result is immediate:

Lemma 2.2 The value function V is concave.

Proof. For any � 2 [0; 1], u1; u2 2 X, �1; �2 2 �, we have the following inequalities:

V (�u1 + (1� �)u2) � F (�1 + (1� �)�2; �u1 + (1� �)u2)

� �F (�1; u1) + (1� �)F (�2; u2):

As a consequence,

V (�u1 + (1� �)u2) � � sup
�12�

F (�1; u1)+(1��) sup
�22�

F (�2; u2) = �V (u1)+(1��)V (u2): �

We now �x as usual u� 2 U and work under Assumption 2.1. The next two results show

that under the concavity assumption the di¤erentiability of the objective function implies

the di¤erentiability of the value function without further assumptions on the di¤erential

of F .

Theorem 2.3 Let F (�) be Gateaux di¤erentiable and continuous at u� for some � 2

��(u�). Then V is continuous and Gateaux di¤erentiable at u� and

DV (u�) = DF (�; u�):

Proof. By Lemma 2.2, we know that V is concave. Moreover, V (u) � F (�; u) for all

u 2 U . Therefore V is continuous at u� thanks to Proposition B.1. It follows that @V (u�)

is non-empty, where @V (u�) is the superdi¤erential set of V at u� (Proposition B.3). Take

L 2 @V (u): then,

Lx � V (u� + x)� V (u�) � F (�; u� + x)� F (�; u�);
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namely L 2 @F (�; u�). This means that @V (u�) � @F (�; u�) = fDF (�; u�)g, where the

last equality is a consequence of Proposition B.4. Since @V (u�) is non-empty, it must be

necessarily

@V (u�) = fDF (�; u�)g;

hence by Proposition B.4, we can say that V is Gateaux-di¤erentiable at u� and DV (u�) =

DF (�; u�). �

Corollary 2.1 Let F (�) be Fréchet di¤erentiable at u� for some � 2 ��(u�). Then V is

Fréchet di¤erentiable at u� and

DV (u�) = DF (�; u�):

Proof. If F (�) is Fréchet di¤erentiable at u�, then it is continuous and Gateaux di¤eren-

tiable at u�. In virtue of the previous theorem, V is continuous and Gateaux-di¤erentiable

at u� and

DV (u�) = DF (�; u�):

Moreover, since V is concave, the di¤erential is a superdi¤erential, hence the following

inequalities hold for all x 2 X:

DV (u�)(x) � V (u� + x)� V (u�) � F (�; u� + x)� F (�; u�)

or, equivalently,

0 � V (u� + x)� V (u�)�DV (u�)(x) � F (�; u� + x)� F (�; u�)�DF (�; u�)(x):

The inequalities are clearly reversed when taking the absolute values, that is:

0 � jV (u� + x)� V (u�)�DV (u�)(x)j � jF (�; u� + x)� F (�; u�)�DF (�; u�)(x)j

Passing to the norms and dividing by kxkX one obtains:

0 � kV (u� + x)� V (u�)�DV (u�)(x)kY
kxkX

� kF (�; u� + x)� F (�; u�)�DF (�; u�)kY
kxkX

:

One can then take the limit as kxkX goes to 0: the right-hand term goes to 0 because of

the Fréchet di¤erentiability of F (�). As a consequence, the middle term goes to 0, which

implies that V is Fréchet di¤erentiable. �
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3 Envelope results for general asset pricing models

We consider a frictionless security market in which J assets are traded over the investment

horizon T = f0; 1; : : : ; Tg. Asset prices and cash-�ows are denominated in units of the

single good consumed in the economy. We assume that investors can freely dispose of the

good. To describe the stochastic evolution of asset prices and cash-�ows we take as given a

�ltered probability space (
;F ; P; fFtgTt=0),2 and denote by dj (t) the Ft�measurable cash

�ow distributed by asset j at date t and by Sj (t) the Ft�measurable date t price of asset

j net of the current cash �ow. Given p 2 [1;+1[, we assume that Sj (t) ; dj (t) 2 Lp(Ft)

for all t. Without loss of generality, we assume that the assets distribute no cash �ow at

date 0 and a liquidating one at date T , that is dj (0) = Sj (T ) = 0 almost surely.

A dynamic investment strategy is a sequence � = f� (t)gT�1t=0 of J-dimensional, Ft�mea-

surable random variables, that is � (t) = f�1 (t) ; �2 (t) ; : : : ; �J (t)g, where �j (t) represents

the position (in number of units) in assets j taken at date t and liquidated at date t + 1.

We denote by V� = fV� (t)gTt=0 the value process of the dynamic investment strategy �,

namely V� (t) is the date t value of a dynamic investment strategy, de�ned as the cost of

establishing the positions in the J assets at their net-of-cash-�ow prices, if t precedes the

last trading date, and, at T , as the payo¤ from the �nal liquidation of �. Formally:

V� (t) =

8<: �(t) � S(t) t < T

�(T � 1) � d(T ) t = T .

At any date t, a dynamic investment strategy � produces a cash �ow x� (t), generated

by the di¤erence between the resources obtained from liquidating the positions taken at

t� 1 at the cum-cash �ow prices S(t)+ d(t), and the cost to establish the new positions at

the net-of-cash �ow prices S(t). The cash-�ow x� (t) is therefore related to the value V� (t)

as follows:

x� (t) =

8>>><>>>:
�V�(0) t = 0

� (t� 1) � [S(t) + d(t)]� V�(t) t = 1; : : : ; T � 1

V� (T ) t = T .

(3.1)

Henceforth, we call the sequence x� = fx� (t)gTt=0 the cash-�ow process of �.
2As usual, we assume that F is augmented with P�null sets, F0 is the trivial sigma-algebra f?;
g and

FT = F .
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De�nition 3.1 We call admissible any dynamic investment strategy � such that V�(t),

x�(t) 2 Lp(Ft) for t = 0; 1; : : : ; T . We denote with � the set of all admissible dynamic

investment strategies.

An agent in this market is identi�ed by an initial endowment e0 � 0 of the single con-

sumption good and a complete and transitive preference relation on the set C =
TQ
t=0
Lp(Ft)

of consumption sequences c = (c(0); c(1); : : : ; c(T )); with c(t) 2 Lp(Ft) for all t. In choos-

ing the optimal intertemporal consumption and asset allocation, each agent (e0;�) in A

faces the budget constraint

B(e0) = fc 2 C j c(0) � x�(0) + e0; c(t) � x�(t) 8 t > 0 for some � 2 �g :

In particular, we consider the class of agents whose preferences have a time-additive

von Neumann-Morgenstern representation, such that the period-utilities are allowed to

depend on the state !. In details, we assume that the preference U(c) of an agent takes

the following form

U(c) =

TX
t=0

Z


ut(c(t; !); !)dP (!) =

TX
t=0

E [ut (c(t)] (3.2)

where for all t < T ,the period utilities ut : <�
! < are assumed to satisfy the following

conditions:3

(i) for all t, the function ut(c; !) : <�
! < is measurable with respect to the product

�-algebra B(<)
Ft (where B(<) denotes the Borel �-algebra)4;

(ii) for all c 2 B(e0), the integrals in (3.2)
R

 ut(c(t; !); !)dP (!) are well de�ned

5 and

either are �nite or take the value �1; as a consequence, U(c) < +1 for all c 2 B(e0).

(iii) for all t, the function ut( � ; !) : < ! < is real-valued and strictly increasing for

almost every !.
3For a discussion of period utilities that depend directly also on the state of nature ! see for instance

Berrier, Rogers and Tehranchi (2007) or Frittelli, Maggis (2011).
4This condition guarantees that for every Ft-measurable random vector (c(t)), the function ut (c(t; !); !)

(de�ned on 
 with values in <) is Ft-measurable.
5As usual for a random variable Z the integral

R


Z(!)dP (!) is well de�ned and �nite if bothR



Z+(!)dP (!) < +1 and

R


Z�(!)dP (!) < +1:We set

R


Z(!)dP (!) = �1 if

R


Z�(!)dP (!) = +1

and
R


Z+(!)dP (!) < +1:We set

R


Z(!)dP (!) = +1 if

R


Z+(!)dP (!) = +1 and

R


Z�(!)dP (!) <

+1: Otherwise the integral is not de�ned.
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An optimal consumption-portfolio choice for such an agent is a couple (c�; ��) 2 C��

such that c�(0) � x��(0)+ e0, c�(t) � x��(t) for t = 1; : : : ; T and U(c�) � U(c) for all c 2 C

such that c(0) � x�(0) + e0, c(t) � x�(t) for t = 1; : : : ; T for some � 2 �. We make the

following assumption:

Assumption 3.1 : There exists an optimal solution to the consumption-portfolio problem

for an agent with preferences as in (3.2) and initial endowment e0.

It can be easily shown, as a consequence of the strict monotonicity of the period-utilities,

that the constraints will be binding at the optimum, namely

c�(0) = x��(0) + e0

c�(t) = x��(t) for t = 1; : : : ; T:

To any optimal consumption-portfolio choice (c�; ��) for an agent with preferences as

in (3:2) and initial endowment e0, we associate the optimal intertemporal wealth W � =

fW �(t)gTt=0 generated by ��, that is

W �(t) =

8<: e0 t = 0

��(t� 1) � [S(t) + d(t)]; t = 1; : : : ; T:

Note that W �(t) = x��(t) + V��(t) = c
�(t) + V��(t) for t = 1; : : : ; T � 1.

Fix now t 2 f0; 1; : : : ; T � 1g; and let W be an Ft-measurable random variable. We

de�ne a random variable H(t;W ) which represents the maximum remaining utility (or

continuation utility) at time t for an agent whose current level of wealth is W :

H(t;W ) � ess sup
(c;�)2C��

TP
s=t
Et [us(c(s))]

s:t:

8<: c(t) + V�(t) �W

c(s) � x�(s) s = t+ 1; : : : ; T

(3.3)

for t = 0; 1; : : : ; T , where Et[ � ] denotes the conditional expectation with respect to Ft.

We assume that the integrals E [us(c(s))] (and hence the conditional expectations in (3:3))

are well de�ned, and, for all consumptions satisfying the budget constraint at time t; are

either �nite or take the value �1 (in which case we set Et [us(c(s))] = �1). In particular,

for W = W �(t), we have the maximum remaining utility H(t;W �(t)), given the optimal

wealth level and the optimal past consumption.
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We remark that the necessity to de�ne the maximum remaining utility H via an es-

sential sup, instead of a normal sup over real numbers, is due to the fact that we do not

impose the information structure of the model to be Markovian.

In Battauz et al. (2011, Proposition 1), it is shown that at the optimum H is well-

de�ned and �nite, and that it satis�es the dynamic programming principle, that is:

H (t;W �(t)) = ut(c
�(t)) + Et [H (t+ 1;W

�(t+ 1))] ;

or, equivalently

H (t;W �(t)) =
TX
s=t

Et [us (c
�(s))] : (3.4)

In what follow, we consider the time t as �xed: therefore, for the sake of simplicity,

we will let H(W ) = H(t;W ) for some W 2 Lp(Ft). Following now the approach and the

notation introduced in Section 2, we de�ne the function:

F (�;W ) = ut(W � V�(t)) + Et

"
TX

s=t+1

us (x�(s))

#
:

Since all the period-utilities are not satiated, the constraints in (3:3) will be binding, so we

can write the optimization problem (3.3) as

H(W ) � ess sup
�2�t

F (�;W )

where the choice set �t is the set of admissible strategies at time t, namely the set of

sequences � = f� (s)gT�1s=t of J-dimensional, Fs�measurable random variables such that

V�(s), x�(s) 2 Lp(Fs) for s = t; : : : ; T . Note that �t is a convex set. This property

becomes relevant when a concavity assumption is made on the period-utilities. Assume

that F (�;W ) takes value in L1(Ft) in a neighbourhood of the optimal wealth W �(t). We

have thus reduced our initial problem to a problem of the form (2.3), where the parameter

W lies in the Banach space Lp(Ft) and the objective function takes values in the Banach

lattice L1(Ft).
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Remark 3.1 Note that if we �x a strategy � 2 �t; and two wealth levels W1;W2 2 Lp(Ft)

and de�ne ci(t) =Wi � V�(t) for i = 1; 2 we have that

F (�;W1)� F (�;W2) = ut(W1 � V�(t))� ut(W2 � V�(t))

= ut(c1(t))� ut(c2(t)):

In particular, if ut is Fréchet-di¤erentiable at some point c(t) = W � V�(t) 2 Lp(Ft); the

function F (�; � ) is Fréchet-di¤erentiable at W and

DF (�;W ) = Dut(W � V�(t)) = Dut(c(t)): (3.5)

As in the previous section, we denote with ��(W ) the set of optimal choices given the

parameter W , namely the set of optimal admissible strategies (from time t up to time

T � 1), given the wealth level W at time t:

��(W ) = f� 2 �t : F (�;W ) = H(W )g :

Under Assumption 3.1, the set��(W �(t)) is not empty, as it is easily shown by exploting

the Dynamic Programming Principle (3.4).

Proposition 3.1 Let Assumption 3.1 hold and assume that the time t-period utility ut(c)

is Fréchet-di¤erentiable at the optimal consumption c�(t) and the time t value function

H(W ) is Fréchet-di¤erentiable at the optimal wealth W �(t) = c�(t) + V��(t). Then

Dut(c
�(t)) = DH(W �(t)):

Proof. The optimal strategy �� belongs to the set ��(W �(t)). From Remark 3.1, we deduce

that F (��; � ) is Fréchet-di¤erentiable in W �(t). The claim then follows from Theorem 2.1

and equality (3.5). �

The Frechet di¤erentials of H and u allow to de�ne a notion of marginal utilities of

wealth and consumption respectively. Following the argument in Battauz et alii. (2011),

given the Frechet di¤erential of H, one can de�ne a linear and continuous functional EH :

Lp(Ft)! < via

EH(Y ) = E [DH(W �(t))(Y )]
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for all Y 2 Lp(Ft): By the Riesz representation theorem, there exists a uniqueHW 2 Lq(Ft)

such that

EH(Y ) = E [DH(W �(t))(Y )] = E [HW Y ] for all Y 2 Lp(Ft):

We call HW the time t-marginal utility of optimal wealth. Analogously, we can

uniquely �nd a random variable uc 2 Lq(Ft) such that

E [Dut(c
�)(Y )] = E [uc Y ] for all Y 2 Lp(Ft)

which we call time t-marginal utility of optimal consumption. Then Proposition

3.1 implies that, if they exist, the time t- marginal utilities of optimal consumption and

of optimal wealth coincide because of the uniqueness of the Riesz representation. If, in

particular, ut is not state-dependent, namley ut : < ! <, and it is di¤erentiable, then

Dut(c
�)(Y ) = u0t(c

�)Y . Therefore, in this case, uc = u0t(c
�) which is the standard marginal

utility of consumption.

In general, conditions are given on the utility functions us but not on the value func-

tion. It becomes important then to understand which assumptions on the period utilities

guarantee the Fréchet di¤erentiability of the value function. Benveniste and Scheinkman

(1979) give su¢ cient condition for the case t = 0, when the choice set is convex and the

objective function is concave. Milgrom and Segal showed that this result can be seen as

a particular case of their envelope theorem. Following their lines, we will now exploit the

results in Section 2 to obtain an envelope condition for general asset pricing models in

which the utility function is allowed to be state-dependent and the information structure

is not required to be markovian. To do so, we �rst translate the Assumptions introduced

in the previous section in terms of the period utility ut of our general asset pricing model.

First of all, we observe that Assumption 3.1 implies that there exists an optimal

consumption-portfolio choice for an agent whose wealth at time t is W �(t). Hence As-

sumption 2.1 is satis�ed.

We de�ne the set of admissible maximal consumptions at time t which can be obtained

with the wealth W �:

C�(W �) = fc 2 Lp(Ft) : c =W � � V�(t) for some � 2 �tg

= fc 2 Lp(Ft) : c = c�(t) + V�(t) for some � 2 �tg:
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Assumptions 2.2 and 2.3 becomes respectively a sort of equidi¤erentiability and uniform

boundedness on the set of admissible consumptions. In particular, Assumption 3.2 implies

that ut is Fréchet-di¤erentiable in c�(t).

Assumption 3.2 For every X 2 Lp(Ft) with a su¢ ciently small norm:

ut(c+X)� ut(c) = Dut(c)(X) + �t(c;X) � kXkLp

with

ess sup
c2C�(W �)

j�t(c;X)j � � kXkLp ;

for some integrable random variable �

Assumption 3.3 For every X 2 Lp(Ft) there exists an integrable random variable �X

such that

ess sup
c2C�(W �)

jDut(c)(X)j < �X kXkLp :

This two assumptions, together with Assumption 3.1, imply the continuity of the value

function, as an immediate application of Proposition 2.1:

Proposition 3.2 Under Assumptions 3.1, 3.2, 3.3, the value function H is �nite in a

neighborhood of the optimal wealth and is continuous at the optimum W �(t).

Finally Assumption 3.4 requires a continuity of the Fréchet di¤erential of u as an admis-

sible consumption approaches the optimal consumption c�, provided that after perturbing

the optimal wealth the agent is still able to �nd an optimal consumption-portfolio pair and

that the optimal consumption is continuous as a function of the optimal wealth.

Assumption 3.4 There exists a neighbourhood I� of W � such that:

(i) for each W 2 I� the set ��(W ) is not empty, namely there exists an optimal

consumption-portfolio choice for every level of wealth W 2 I�;

(ii) if W 2 I� tends to W � in Lp(Ft), then the corresponding optimal consumption at

time t, cW (t) converges to c�(t) in Lp(Ft);
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(iii) the Fréchet di¤erential Dut is continuous in c�(t)

lim
kXkLp!0

kDut(c�(t) +X)�Dut(c�(t))kL = 0:

Remark 3.2 It is not di¢ cult to verify that if Assumption 3.4 holds for ut, then F satis�es

Assumption 2.4. Indeed, let (cW ; �W ) be the optimal consumption-portfolio pair for some

W 2 I�: this means in particular that cW (t) + V�W (t) =W . Moreover

DF (�W ;W
�)�DF (��;W �) = Dut(W

� � V�W (t))�Dut(W � � V��(t))

= Dut(c
�(t) + V��(t)� V�W (t))�Dut(c�(t)):

If we denote X = V��(t) � V�W (t) = (W � � W ) � (cW (t) � c�(t)), it is evident that,

by Assumption 3.4 (ii), if W tends to W � in Lp then X tends to 0 in Lp. Therefore

Assumption 3.4 (iii) implies Assumption 2:4 (ii).

We are now ready to obtain the envelope theorem for state-dependent utilities and for

a general (i.e. not required to be Markov) information structure as a consequence of our

general Theorem 2.2:

Proposition 3.3 If the time t period utility ut satis�es Assumptions 3.2,3.4, then the

value function H(t;W (t)) is Fréchet-di¤erentiable at the optimal wealth W �(t) and

Dut(c
�(t)) = DH(W �(t)) (3.6)

In the literature, it is often assumed that the period-utilities are concave. As a con-

sequence of Corollary 2.1, we see that in this case, Assumptions 3.2, 3.3, 3.4 are not

necessary to obtain the di¤erentiability of the value function. More precisely, the following

result holds:

Proposition 3.4 Assume that the period utilities us are concave for all s = t; : : : ; T . If ut

is continuous and Gateaux-di¤erentiable (resp. Fréchet di¤erentiable) at the optimal con-

sumption c�(t), then the value function H(t;W (t)) is continuous and Gateaux-di¤erentiable

(resp. Fréchet di¤erentiable) at the optimal wealth W �(t) and equality (3.6) holds.
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3.1 The habit-formation case

In this section we extend the previous results to a class of period-utilities which may depend

on past consumptions, so to include the habit formation case. In details, consider an agent

with initial endowment e0 whose preferences U(c) over consumption sequences c 2 C take

the form

U(c) =
TX
t=0

Z


ut(
(t; !); !)dP (!) =

TX
t=0

E [ut (
(t)]

where for all t < T , 
(t) = (c(0); c(1); : : : ; c(t)) is the collection of consumptions up to time

t. Coherently to the previous section, we assume that the period utilities ut : <t+1�
! <

satisfy the following conditions:

(i) for all t, the function ut(
; !) : <t+1 � 
 ! < is measurable with respect to the

product �-algebra B(<t+1)
Ft;

(ii) for all c 2 B(e0), the integrals in (3.2)
R

 ut(
(t; !); !)dP (!) are well de�ned and

either are �nite or take the value �1;

(iii) for every t, the function ut( � ; !) : <t+1 ! < is real-valued and strictly increasing6

for almost every !.

One can de�ne an optimal-consumption portofolio choice as above, as well as the op-

timal intertemporal wealth. We assume that there exists an agent who solves her optimal

consumption-portfolio problem and denote with (
�(t))0�t�T the stream of optimal con-

sumptions and, as usual, with �� andW � respectively the optimal strategy and the optimal

wealth. For this agent, the maximum remaining utility at time t, given the stream of op-

timal past consumptions 
�(t� 1) and a Ft-measurable level of wealth W , is de�ned as:

H(t; 
�(t� 1);W ) � ess sup
(c;�)2C��

TP
s=t
Et [us(


�(t� 1); c(t); : : : ; c(s))]

s:t:

8<: c(t) + V�(t) �W

c(s) � x�(s) s = t+ 1; : : : ; T

(3.7)

As it was proved in Battauz et alii. (2011), the dynamic programming principle (3.4)

is still valid for this class of preferences. Moreover, the strict monotonicity of the period-

6The function u : <t+1 ! < is strictly increasing if u(c0; : : : ; ct) > u(~c0; � � � ; ~ct) for every pair
(cs)0�s�t; (~cs)0�s�t such that cs � ~cs for all s and c�s > ~c�s for at least one �s.
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utilities forces the constraints to be binding, so that (3.7) can be written as:

H(t; 
�(t);W ) � ess sup
�2�t

F (t; 
�; �;W )

where

F (t; 
�; �;W ) = ut(

�(t�1);W�V�(t))+Et

"
TX

s=t+1

us (

�(t� 1);W � V�(t); x�(t+ 1); : : : ; x�(s))

#

and �t is the set of admissible strategies at time t. In what follows, we omit the dependence

of F on t, since the time is �xed.

Proposition 3.5 Assume that the functions ~us( � ) = us(
�(t � 1); � ; x�(t + 1); x�(s)) are

Fréchet di¤erentiable at some point W � V�(t) for all s = t; : : : ; T . Then the function

F (
�; �; � ) is Fréchet di¤erentiable at W and, in this case,

DF (
�; �;W )(X) =
TX
s=t

Et [D~us(W � V�(t))(X)]

=
TX
s=t

Et [Dus(

�(t� 1);W � V�(t); x�(t+ 1); : : : ; x�(s))]

This proposition is an easy consequence of the following lemma:

Lemma 3.1 Let g : Lp ! L1 be Fréchet di¤erentiable at some point W 2 Lp. Then the

function

G(W ) = Et [g(W )]

is Fréchet di¤erentiable at W and DG(W )(X) = Et [Dg(W )(X)].

Proof. Since g is is Fréchet di¤erentiable at W , we have that

lim
kXkLp!0

E [jg(W +X)� g(W )�Dg(W )(X)j]
kXkLp

= 0:

On the other hand, exploiting the properties of conditional expectation and, in particular,

Jensen�s inequality, we obtain that:

E [jG(W +X)�G(W )� Et [Dg(W )(X)]j] = E [jEt [g(W +X)� g(W )�Dg(W )(X)]j]

� E [Et [jg(W +X)� g(W )�Dg(W )(X)j]]

= E [jg(W +X)� g(W )�Dg(W )(X)j] :
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It follows immediately that

lim
kXkLp!0

E [jG(W +X)�G(W )� Et [Dg(W )(X)]j]
kXkLp

= 0

which implies that G is Fréchet di¤erentiable at W and DG(W ) = Et [Dg(W )] : �

In light of this result, it is immediate to extend Proposition 3.1 to the habit-formation

case.

Proposition 3.6 Assume that all the time s-period utilities ~ut(�) = us(
�(t� 1); � ; c�(t+

1); : : : ; c�(s)) are Fréchet-di¤erentiable at the optimal consumption c�(t) and the time t

value function H(t; 
�(t � 1); � ) is Fréchet-di¤erentiable at the optimal wealth W �(t) =

c�(t) + V��(t). Then

DH(W �(t))(X) =
TX
s=t

Et [D~us(c
�(t))(X)] (3.8)

=
TX
s=t

Et [Dus(

�(t� 1); c�(t); c�(t+ 1); : : : ; c�(s))] :

Proposition 3.3 can also be reformulated for this case, provided that all the period-

utilities satisfy the regularity assumptions. For ease of the reader we write the equivalent

of Assumptions 3.2,3.3,3.4 for the case where utilities depend on past consumption.

We �rst observe that the set of admissible maximal consumptions at time t, given the

optimal wealth W � in the current framework is:

C�(W �) =

(
c 2

TY
s=t

Lp(Fs) : c(t) =W � � V�(t); c(s) = x�(s); for s = t : : : ; T; for some � 2 �t

)

=

(
c 2

TY
s=t

Lp(Fs) : c(t) = c�(t) + V�(t); c(s) = c�(s) + x�(s) for some � 2 �t

)
:

Fix now s 2 ft; : : : ; Tg. For sake of notation, we denote cst = (c(t); : : : ; c(s)).

Assumption 3.5 Given c 2 C�(W �), the period-utility us(
�(t � 1); � ; cst+1) is Fréchet

di¤erentiable at c(t) and for every X 2 Lp(Ft) with a su¢ ciently small norm:

us(

�(t� 1); c(t) +X; cst+1)� us(
�(t� 1); c(t); cst+1) = Dus(


�; � ; cst+1)(c(t))(X)

+ �s(c;X) � kXkLp
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with

ess sup
c2C�(W �)

j�s(c;X)j � � kXkLp ;

for some integrable random variable �.

Assumption 3.6 For every X 2 Lp(Ft) there exists an integrable random variable �X

such that

ess sup
c2C�(W �)

��Dus(
�; � ; cst+1)(c(t))(X)�� < �X kXkLp :

Assumption 3.7 There exists a neighbourhood I� of W � such that:

(i) for each W 2 I� the set ��(W ) is not empty, namely there exists an optimal

consumption-portfolio choice for every level of wealth W 2 I�;

(ii) if W 2 I� tends to W � in Lp(Ft), then the corresponding stream of optimal consump-

tions after time t, (cW (u))t�u�T converges to (c
�(u))t�u�T in

QT
u=t L

p(Fu);

(iii) the Fréchet di¤erential Dus(
�; � ; cst+1)(c(t)) is continuous in c�(t) in the sense that

lim
kW�W �kLp!0

kDus(
�; � ; (cW )st+1)(cW (t))�Dus(
�; � ; (c�)st+1)(c�(t))kL = 0:

We summarize in the next proposition all the results for the habit-formation case:

Proposition 3.7 1. If Assumptions 3.1 holds and the period utilities us satisfy As-

sumptions 3.5 and 3.6 for all s = t : : : ; T , , then the value function H(t; 
�(t� 1); � )

is �nite in a neighborhood of the optimal wealth and continuous at W �(t),

2. If the period utilities us satisfy Assumptions 3.5 and 3.7 for all s = t : : : ; T , then the

value function H(t; 
�(t� 1); � ) is Fréchet-di¤erentiable at the optimal wealth W �(t)

and equality (3.8) holds.

3. If the period utilities us are concave and Fréchet-di¤erentiable at the optimal con-

sumption c�(t), for all s = t : : : ; T , then the value function is concave and Fréchet-

di¤erentiable at the optimal wealth W �(t) and equality (3.8) holds.
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4 Conclusions

In this paper we have extended the most general class of envelope results, i.e. those due

to Milgrom and Segal (2002), to the case in which the objective function takes values in

a general Banach Lattice, and not necessarily the real line. Employing the concept of

Fréchet-di¤erentiability, our main results consists in identifying a set of assumptions under

which the value function is Fréchet-di¤erentiable, and its Fréchet di¤erential coincides with

the Fréchet di¤erential of the objective function, seen as a function of the parameters.

We then apply our general result to the consumption-portfolio problem of an agent with

time additive but possibly state-dependent utility, in a context in which the information

structure is not required to be Markovian. In this setting, at any time t the value function

(maximum remaining utility) is in fact a random variable itself, and not just a real-valued

function de�ned on a set of state variables. To investigate if the value function for this

problem has a well-de�ned marginal utility of wealth, de�ned as the Fréchet di¤erential of

the value seen as a function of wealth levels accumulated up to time t, we recognize that

the value function takes values in L1; the space of integrable random variables, and that

L1 is indeed a Banach lattice. This allows us to bring to full bearing our general results to

identify a set of conditions under which the marginal utility of wealth is well de�ned and

coincides with the marginal utility consumption, when the last one exists.

A Banach lattices

In this appendix, we recall the main de�nition and results on Banach lattices which are

needed in our paper. We will mainly refer to Aliprantis and Border (1999).

Let (X;C;�) be a partially ordered vector space, where C is a pointed convex cone

which induces the order on X de�ned as:

x � y () x� y 2 C:

Given x; y; z 2 X, we say that z is the supremum of x; y, and denote z = supfx; yg = x_y,

if:

1. z � x and z � y;

2. if u � x and u � y, then u � z.
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The in�mum of two elements is de�ned similarly and denoted z = inffx; yg = x ^ y.

De�nition A.1 A partially ordered set X is called a lattice if each pair of elements has

a supremum or an in�mum.

A partially ordered vector space that is also a lattice is called a Riesz space.

De�nition A.2 A subset A of a Riesz space X is order bounded from above if there

is a vector u 2 X (called an upper bound of A) that dominates each element of A. A

nonempty subset of a Riesz spaces has a supremum if there is an upper bound u such that

v � x for all x 2 A implies v � u. The supremum, if it exists, is unique.

The de�nition of order bounded from below and in�mum are analogous.

It is clear that A is order bounded from above if and only inf �A is order bounded from

below. Moreover, we say that A is order bounded if it is order bounded both from above

and below.

De�nition A.3 A Riesz space is Archimedean if 0 � nx � y for all n 2 N and some

y 2 X+ implies x = 0.

A Riesz space is called order complete if every nonempty susbset that is order bounded

from above has a supremum.

Every order complete Riesz space is Archimedean, but the converse is not true.

De�nition A.4 A net (x�) converges in order to some x 2 X (x�
o! x) if there is a

net (y�) such that y� # 0 and jx� � xj � y� for each �.

A net can have at most one order limit.

A Riesz space can be equipped with a norm. A lattice norm k � k has the property that

jxj � jyj implies kxk � kyk:

De�nition A.5 A complete normed Riesz space is called a Banach lattice

Examples

1. The Euclidean space Rn with the Euclidean norm.
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2. The space C(K) of all continuous functions on a compact space K with the sup norm

(it is Archimedean but not order complete).

3. The spaces Lp(�) (1 � p � 1) with the usual Lp-norm. Order convergence coincide

with �-almost-sure convergence.

De�nition A.6 A lattice norm k � k on a Riesz space is order continuous if x� # 0

implies kx�k # 0.

All re�exive Banach lattices are order continuous. This property is important because

a Banach lattice with order continuous norm is order complete. For instance, Lp(�) is

order continuous for 1 � p <1 but not for p =1.

Remark A.1 In a Banach space, the norm convergence is equivalent to relative uniform

star convergence, namely a sequence xn converges in norm to x if and only if for every

subsequence xnk there exist a subsequence xnk(l) and an element y 2 X such that jxnk(l)�

xj � y=l for l = 1; 2; : : :.

In an Archimedean vector lattice, relative uniform convergence implies order conver-

gence. As a consequence, in an order complete Banach lattice, if a sequence xn converges

in norm to x, then there exist a subsequence which is order convergent to x.

B Concavity and di¤erentiability

In this section we summarize the main de�nition and results for cone-concave functions

on vector spaces and, in particular, on the relation between concavity and di¤erentiability.

The results which follow can be found in Valadier (1972), Borwein (1982), Papageorgiou

(1983). Usually, de�nition and results are stated for convex function. Since we work

under a concavity assumption, we reformulated them in the appropriate form for concave

functions.

Let X be a topological vector space and (Y;C;�) a order complete Banach lattice. We

adjoin to Y the abstract maximal elements �1 and denote the new object by �Y .

De�nition B.1 A function F : X ! Y is C-concave (or simply concave) if for all

x; y 2 X, � 2 [0; 1]

F (�x+ (1� �)y) � �F (x) + (1� �)F (y);
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namely, F (�x+ (1� �)y)� �F (x) + (1� �)F (y) 2 C.

The sets of points at which F is �nite is called the essential domain of F and denoted

by domF . The algbraic interior of F is denoted coreF .

Proposition B.1 (Proposition 2.3 in Borwein (1982)) Let G : X ! �Y be concave. As-

sume that there exists a function F : X ! �Y such that G(x) � F (x) for all x 2 X. If F

is continuous at some point x0 2 X, then G is continuous at x0.

Let now L(X;Y ) denote the set of continous and linear operators between X and Y

and let F be a concave function form X to �Y .

De�nition B.2 An operator L 2 L(X;Y ) is called a superdi¤ erential for F at x0 if for

all x 2 X

L(x) � F (x0 + x)� F (x0):

The superdi¤ erential set is denoted by @F (x0).

Proposition B.2 (Proposition 3.2 (a) and Proposition 3.7 (a) in Borwein (1982)) If F :

X ! �Y is concave, with x0 2 coreF , then

F>(x0; x) = sup
h>0

F (x0 + hx)� F (x0)
h

exists and is everywhere �nite and superlinear.

Proposition B.3 (Proposition 4 and Théorème 6 in Valadier (1972)) If F : X ! �Y is

concave and x0 2 coreF then:

(i) L 2 L(X;Y ) is a superdi¤erential for F at x0 if and only if L(x) � F>(x0; x) for all

x 2 X;

(ii) if in addition F is continuous at x0, then @F (x0) is non-empty, convex and equicon-

tinuous in L(X;Y ) and

F>(x0; x) = minfL(x); L 2 @F (x0)g:

Proposition B.4 (Theorem 4.6 in Papageorgiou (1983)) Let F : X ! �Y be a concave

function. If F is continuous at x0, then F is Gateaux-di¤erentiable at x0 if and only if

@F (x0) is a singleton.
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