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Abstract

We consider decision makers who know that payo¤ relevant observations are generated by

a process that belongs to a given class M , as postulated in Wald [36]. We incorporate this

Waldean piece of objective information within an otherwise subjective setting a la Savage [33]

and show that this leads to a two-stage subjective expected utility model that accounts for both

state and model uncertainty.

1 Introduction

Consider a decision maker who is evaluating acts whose outcomes depend on some veri�able states,

that is, on observations (workers�outputs, urns�drawings, rates of in�ation, and the like). If the

decision maker believes that observations are generated by some probability model, two sources of

uncertainty a¤ect his evaluation: model uncertainty and state uncertainty. The former is about

the probability model that generates observations, the latter is about the state that obtains (and

that determines acts�outcomes).

State uncertainty is payo¤ relevant and, as such, it is directly relevant for decision maker�s

decisions. Model uncertainty, in contrast, is not payo¤ relevant and its role is instrumental relative

to state uncertainty. Moreover, models cannot be observed and, while in some cases they have a

simple physical description (e.g., urns�compositions), often they do not have it (e.g., fair coins).1

For all these reasons, the purely subjective choice models a la Savage [33] focus on the veri�able

and payo¤ relevant state uncertainty. They posit an observation space S over which subjective

probabilities are derived via betting behavior.

In contrast, classical statistical decision theory a la Wald [36] supposes that decision makers

know that observations are generated by a probability model that belongs to a given subset M ,

whose elements are regarded as alternative random devices that Nature may select to generate

�First preliminary draft: May 2011. We thank Pierpaolo Battigalli and a seminar audience at U. Paris 1 for useful

comments. The �nancial support of the European Research Council (advanced grant, BRSCDP-TEA) is gratefully

acknowledged.
1See Diaconis, Holmes, and Montgomery [8] for some physical analysis of coin tossing.
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observations.2 In other words, Wald�s approach posits a model space M in addition to the obser-

vation space S. In so doing, Wald adopted a key tenet of classical statistics, that is, to posit a

set of possible data generating processes (e.g., Normal distributions with some possible means and

variances), whose relative performance is assessed via available evidence (often collected with i.i.d.

trials) through maximum likelihood methods, hypothesis testing, and the like. Though models

cannot be observed, in Wald�s approach their study is key to better understand state uncertainty.

Is it possible to incorporate this Waldean key piece of objective information within Savage�s

framework? Our work addresses this question and tries to embed this classical datum within an

otherwise subjective setting. Besides its theoretical interest, this question is relevant since some

important economic applications assume, at least as a working hypothesis, this Waldean piece of

information. For example, M may be the set of equilibrium distributions for observations (e.g.,

prices in a cobweb model a la Muth).

Our approach takes the objective information M as a primitive and enriches the standard

Savage framework with this datum: decision makers know that the true model m that generates

data belongs to M . Behaviorally, this translates into the requirement that their betting behavior

(and so their beliefs) be consistent with datum M :

m (F ) � m (E) 8m 2M =) xFy % xEy

where xFy and xEy are bets on events F and E, with x � y. We do not, instead, consider bets on
models and, as a result, we do not elicit prior probabilities on models through hypothetical (since

models are not observable) betting behavior on models. Nevertheless, our basic representation re-

sult, Proposition 4, shows that, under Savage�s axioms P.1-P.6 and the above consistency condition,

acts are ranked according to the criterion

V (f) =

Z
�

�Z
S
u (f (s)) dm (s)

�
d� (m) (1)

where � is a prior subjective probability on models, whose support is included in M . We call this

representation Classical Subjective Expected Utility because of the classical Waldean tenet on which

it relies.

The prior � is a subjective probability that may also re�ect some personal information on

models that decision makers may have, in addition to the objective information M (Proposition

5 behaviorally characterizes its support). Uniqueness of � corresponds to the linear independence

of the set M . For example, M is linearly independent when its members are pairwise orthogonal.

Remarkably, Section 5 shows that in intertemporal problems this condition is often satis�ed in

applications. Speci�cally, consider a standard intertemporal observation space Z1 whose points

are in�nite histories (z1; :::; zt; :::) of observations. Suppose that Z is at most countable, and endow
2As Wald [37] writes �A characteristic feature of any statistical decision problem is that F is unknown. It is

merely assumed to be known that F is a member of a given class 
 of distributions functions. The class 
 is to be

regarded as a datum of the decision problem.�
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Z1 with the �ltration fBtg generated by the elementary cylinder sets zt = fz1; :::; ztg, that is,
histories of observations. By Proposition 6, the conditional version of (1) at zt is

Vzt (f) =

Z
�

�Z
Z1

u (f (z)) dm
�
z j zt

��
d�
�
m j zt

�
wherem

�
z j zt

�
and �

�
m j zt

�
are, respectively, the conditional model and the posterior probability

given the observation history zt. In this intertemporal setting, pairwise orthogonality holds for

collections of i.i.d. models (Proposition 14) and for collections of Markov chains (Proposition 15).

Models that are widely used in applications thus satisfy the condition of linear independence that

ensures the uniqueness of prior �.

Moreover, Section 6 shows that under this orthogonality condition there is full learning. That

is, decision makers eventually behave as Expected Utility decision makers that know the true model

that generates observations. They thus behave consistently with the observations they make, that

is, they are long run empiricists. Classical Subjective Expected Utility thus provides a proper

decision theoretic framework where to set a common justi�cation of rational expectations that,

�with a long enough historical data record, statistical learning will equate objective and subjective

probability distributions.�3

A �nal, more technical but equally noteworthy, feature of orthogonal data M is that for them

the celebrated Lyapunov Convexity Theorem holds also in the in�nite case, something that in

general is altogether false. In our Savagean setting this key nonatomic property allows to establish

in Proposition 10 the representation (1) for countably in�nite orthogonal data.

As we detail in the paper, each prior � induces a predictive probability �� on the sample space

S through averaging:

�� (E) =

Z
�
m (E) d� (m)

In particular,

V (f) =

Z
S
u (f (s)) d�� (s) (2)

is the reduced form of V , its Savage Subjective Expected Utility representation. When M is a

singleton fmg, we have �� = m for all priors � and we thus get the von Neumann-Morgenstern

Expected Utility representation

V (f) =

Z
S
u (f (s)) dm (s) (3)

where subjective probabilities do not play any role.4 Classical Subjective Expected Utility thus

encompasses both the Savage and von Neumann-Morgenstern representations.

3Sargent and Williams [32, p. 361].
4Lucas [24, p. 15] writes that �Muth [30] ... [identi�es] ... agents�subjective probabilities ... with �true�prob-

abilities, calling the assumed coincidence of subjective and �true�probabilities rational expectations.� (Italics in the

original). In our setting, this coincidence is modelled by singleton M and results in the Expected Utility criterion

(3). Later in the paper we will consider Muth�s cobweb model and what form the rational expectation hypothesis

may take in our approach.
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In particular, the Savage criterion (2) is what an outside observer, unaware of datum M , would

be able to elicit from decision maker�s behavior. It is a much weaker representation than the

�structural�one (1), which is the criterion that, instead, an outside observer aware of M would be

able to elicit. For, this informed observer would be able to focus on the map � ! �� from priors

with support included in datum M to predictive probabilities. Under the linear independence of

datum M , by inverting this map the observer would be able to recover prior � from the predictive

probability ��, which can be elicited through standard methods. The richer Waldean representation

(1) is thus summarized by a triple (u;M; �), with supp� � M , while for the usual Savagean

representation (2) is enough a pair (u; P ).

Summing up, though the work of Savage [33] was inspired by the seminal decision theoretic

approach of Wald [36], his purely subjective setup and the ensuing large literature5 did not consider

Wald�s classical datum, central in Wald�s approach. In this paper we show how to embed this datum

in a Savage setting and how to derive the richer Waldean representation (1) by only considering

choice behavior based on observables. Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2011)

use the Wald-Savage setup of the present paper to study selfcon�rming equilibria.

The paper is organized as follows. Section 2 introduces the basic decision theoretic setting and

some mathematical preliminaries. Section 3 presents the basic representation result, that Section

4 extends to in�nite data. Section 5 illustrates our representation in an important intertemporal

setup, in which Section 6 shows that learning occurs. A few important issues, best discussed after

the development of the paper analysis, are collected in the Concluding Remarks.

2 Preliminaries

2.1 Setting

We consider a standard Savage setting, where S is a nonempty state space and X is an outcome

space. An act is a map f : S ! X that produces outcome f (s) in state S. Denote by F the set of

all simple (i.e., �nitely valued) acts available to the decision maker.

We consider a binary relation % over F that represents the decision maker�s preferences. We

assume that % satis�es the classic Savage�s axioms P.1-P.6. By the famous Savage Representation
Theorem, due to Savage [33], the preference % satis�es P.1-P.6 if and only if there is a utility

function u : X ! R and a convex-ranged6 �nitely additive probability P : � ! [0; 1] such that

V (f) =
R
S u (f (s)) dP (s) represents %. This representation is called Subjective Expected Utility

(SEU).

Given any f; g 2 F and E 2 �, we denote by fEg the act equal to f on E and to g otherwise,

that is,

fEg =

(
f (s) if s 2 E
g (s) if s =2 E

5See Fishburn [12], Kreps [22], and Gilboa [13]. See Ja¤ray [15] for a di¤erent �objective�approach.
6That is, for each E 2 � such that P (E) > 0 and each � 2 [0; 1] there exists F � E such that P (F ) = �P (E).
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Given any f; g 2 F and E 2 �, the conditional preference %E is a binary relation on F such that

f %E g whenever fEh % gEh for all h 2 F . By P.2, the Sure Thing Principle, %E is well de�ned.
In particular, an event E 2 � is null if, for each f; g 2 F , we have f �E g (see Savage [33, p. 24]).

The conditional preference %E satis�es P.1-P.6 if the primitive preference does (see, e.g., Kreps
[22, Chapter 10]). Hence, Savage�s Theorem can be stated in conditional form by saying that %
satis�es P.1-P.6 if and only if there is a utility function u : X ! R and a convex-ranged �nitely
additive probability P : �! [0; 1] such that, for each nonnull events E,

VE (f) =

Z
S
u (f (s)) dP (s j E) (4)

represents %E . Here P (� j E) : �! [0; 1] is the conditional probability

P (F j E) =

8<:
P (F\E)
P (E) if P (E) > 0

0 else

2.2 Mathematics

We denote by � the collection of all (countably additive) probability measures on �. Unless

otherwise stated, in the paper all probability measures are countably additive.

In the sequel we will often consider subsets M of �. Given M � �, we consider M endowed

with the �-algebra

M = � fm 7! m (E) : E 2 �g ;

that is, with the smallest �-algebra that makes the real valued and bounded functions on M , of

the form m 7! m (E), measurable for all E 2 �.
In the important special case M = � we write D in place ofM. If M � � thenM =M \ D.

Throughout the paper we assume that the �-algebra D contains all singletons. This is the case if

either � is countably generated or if for each ~m 2M there exists ~E 2 � such that ~m
�
~E
�
6= m

�
~E
�

for all other m 2M . This property of D implies that all �nite or countable sets M belong to D.
Probability measures � : D ! [0; 1] will be interpreted as prior probabilities. If M is �nite or

countable, each � induces a posterior probability measure � (� j E) : D ! [0; 1] given by

� (m j E) =

8<:
m(E)�(m)P

m2supp�m(E)�(m)
if m (E) > 0 for some m 2 supp�

0 else

for all m 2M .

A subset M of � is said to be measure independent if, given any bounded measure  :M! R,Z
M
m (E) d (m) = 0 8E 2 � =)  = 0.

IfM is �nite, measure independence reduces to usual notion of linear independence. In other words,

by setting M = fm1; :::;mng, given any collection of scalars f�igni=1,
nX
i=1

�imi (E) = 0 8E 2 � =) �1 = � � � = �n = 0.
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When the state space S is �nite, this condition further reduces to: given any collection of scalars

f�igni=1,
nX
i=1

�imi (s) = 0 8s 2 S =) �1 = � � � = �n = 0.

This is a condition of linearly independence of the jM j vectors (m (s) : s 2 S) 2 RjSj, which amounts
to require that the rank of the associated jSj � jM j matrix is full.

Two measures m and ~m in � are orthogonal (or singular), written m ? ~m, if there exists E 2 �
such that m (E) = 0 = ~m (Ec). A collection of models M � � is (pairwise) orthogonal if all its

elements are pairwise orthogonal.

If m (E) = 0 implies ~m (E) = 0 for each E 2 �, then we say that ~m is absolutely continuous

with respect tom and we write ~m� m. In this case d ~m=dm denotes the Radon-Nikodym derivative

of ~m with respect to m. If we have both ~m� m and m� ~m, we write m � ~m and we say that m

and ~m are equivalent.

In applications, probability models are often assumed to have a density. In our setting this

means that there is a probability � 2 � such that m� � for all m 2M .7 In this case we say that
M is dominated. Finite collections of models are trivially dominated, as well as countable ones:

for, it is enough to set � =
P1
k=1 2

�kmk. Using a result of Halmos and Savage [14], next we show

that for orthogonal subsets this is the only case.

Lemma 1 An orthogonal subset M of � is dominated if and only if it is �nite or countable.

Finally, a measure m 2 � is nonatomic if, for each E 2 � such that m (E) > 0, there exists

F � E such that 0 < m (F ) < m (E). We denote by �na (S) the collection of all nonatomic

probability measures. The main property of nonatomic measures is the classic Lyapunov Theorem

that says that the range f(m1 (E) ; :::;mn (E)) : E 2 �g of a �nite collection fmigni=1 of nonatomic
measures is a convex subset of Rn. In particular, a single probability measure is nonatomic if and
only if it is convex-ranged.

3 Finite representation

3.1 Basic result

The �rst issue to consider in our normative approach is how decision makers�behavior should re�ect

the fact that they regard M as a datum of the decision problem. To this end, given a subset M of

� say that an event E is unanimous if 0 < m (E) = m0 (E) < 1 for all m;m0 2M . In other words,
all probability models in M assign the same probability to event E.

De�nition 2 A preference % is consistent with a subset M of � if, for some outcomes x � y,

m (F ) = m (E) 8m 2M =) xFy � xEy (5)

7The apparently weaker requirement that � be �-�nite is actually equivalent to � be a probability, as Halmos and

Savage [14, p. 322] observed.

6



for all F 2 � and all unanimous E 2 �.

Consistency requires that the decision maker is indi¤erent among bets on events that all prob-

ability models in M classify as equally likely. The next stronger consistency property requires that

decision makers prefer to bet on events that are more likely according to all models.

De�nition 3 A preference % is order consistent with a subsetM of � if, for some outcomes x � y,

m (F ) � m (E) 8m 2M =) xFy % xEy (6)

for all F 2 � and all unanimous E 2 �.

Both these notions are minimal consistency requirements among information and preference

that behaviorally reveal that decision makers consider M as a datum of the decision problem. To

an outside observer, aware of datum M , these consistency notions are the behavioral markers that

reveal that the decision makers actually regard M as datum of the decision problem.

We can now state our basic representation results, which considers �nite sets M of nonatomic

models.

Proposition 4 Let M be a �nite subset of �na (S) and % a binary relation on F . The following
conditions are equivalent:

(i) % satis�es P.1-P.6 and it is order consistent with M ;

(ii) there exist a non-constant utility function u : X ! R and a prior � : D ! [0; 1], with

supp� �M , such that

V (f) =

Z
�

�Z
S
u (f (s)) dm (s)

�
d� (m) (7)

represents %.

Moreover, u is cardinally unique, while � is unique for each such % if and only if M is linearly

independent.

Uniqueness of the prior � is an important feature of this result. In fact, it pins down � even

though its domain is made of unobservable probability models. Because of the structure of �, it is

the linear independence of M �not just its a¢ ne independence �that turns out to be equivalent

to this uniqueness property. This simple, but useful, fact is well known (see, e.g., Teicher [35]).

Each prior � : D ! [0; 1] induces a predictive probability �� : � ! [0; 1] on the sample space

through reduction:

�� (E) =

Z
�
m (E) d� (m) 8E 2 �: (8)
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The reduction map � 7! �� relates subjective probabilities on the sample space to subjective prob-

abilities on space of models, that is, prior and predictive probabilities.8 Clearly, (7) implies that

V (f) =

Z
S
u (f (s)) d�� (s) 8f 2 F ; (9)

which is the reduced form of V , its Savage�s SEU form. As observed in the Introduction, this is

the criterion that an outside observer, unaware of datum M , would be able to elicit from decision

maker�s behavior. It is a much weaker representation than the �structural�one (7), which can be

equivalently written as

V (f) =

Z
M

�Z
S
u (f (s)) dm (s)

�
d� (m)

since supp� �M and M 2 D. This is the criterion that, instead, an outside observer aware of M
would be able to elicit. For, denote by �(M) the collection of all priors � such that supp� �M .
The informed observer would be able to focus on the restriction �M : � (M)! � of the reduction

map on �(M). If M is linear independent, the restriction �M is one-to-one and thus allows prior

identi�cation from a behaviorally elicited Savagean probability P 2 � through the inverse ��1M (P ),

at least in principle.9

The structural representation (7) is a version of Savage�s representation that may be called

Classical Subjective Expected Utility since it takes into account Waldean information, with its

classical �avor.10 In place of the usual SEU pair (u; P ) the representation is now characterized by

a triple (u;M; �), with supp� � M . According to the Bayesian paradigm, the prior � quanti�es
probabilistically the decision maker�s uncertainty about which model in M is the true one. This

kind of uncertainty is sometimes called (probabilistic) model uncertainty or parametric uncertainty.

In the Introduction we observed that when datum M is a singleton fmg the Classical SEU
criterion (7) reduces to

V (f) =

Z
S
u (f (s)) dm (s) (10)

In this case it trivially holds �� = m and so subjective beliefs do not play any role. For this reason

(10) is a von Neumann-Morgenstern Expected Utility criterion, which is thus the special case of

Classical SEU that corresponds to singleton data.

In contrast, whenM is nonsingleton but the support of some prior � is a singleton, say supp� =

f ~mg with ~m 2 M , then it is the decision maker�s personal information that prior � re�ects that
leads him to the Dirac predictive probability � = � ~m. In this case,

V (f) =

Z
�

�Z
S
u (f (s)) dm (s)

�
d� ~m (m) =

Z
S
u (f (s)) d ~m (s)

is a Savage�s SEU criterion.

8Notice that probability measures on S can play two conceptually altogether di¤erent roles: predictive probabilities

and probability models.
9 In fact, computing inverses can be highly nontrivial, as the trapdoor functions of Di¢ e and Hellman [9] famously

show.
10Diaconis and Freedman [7] call �classical Bayesianism�the Bayesian approach that considers as a datum of the

statistical problem the collection of all possibe data generating mechanisms.

8



3.2 Support

In Proposition 4 the support of the prior is included in M , i.e., supp� � M . For, because of

consistency models are assigned positive probability only if they belong to datum M . But, the

decision maker may well disregard some models in M because of some personal information that

his subjective belief � may re�ect.11 In this case the inclusion is strict and � (m) = 0 for some

m 2M .
Next we behaviorally characterize �through a consistency condition �the models in M that

belong to the prior�s support. These are the models that the decision maker believes to carry

signi�cant probabilistic information for his decision problem. We consider linearly independent

data M in view of the uniqueness result in Proposition 4.12

Proposition 5 LetM be linearly independent. In Proposition 4, a model m 2M belongs to supp�

if and only if, for all E � F ,

m (E) < m (F ) =) xEy � xFy (11)

for some x � y.

The signi�cance of a model m is thus revealed by the rankings of nested events E � F . Since
they are nested, all models agree that m (E) � m (F ). This agreement is what turns out to make
it possible the behavioral identi�cation, through (11), of the pivotal role of a model m, and so of

whether it belongs to the support of the prior.

3.3 Variations

We close by establishing the conditional and orthogonal versions of Proposition 4. We begin with the

conditional version, that is, with the counterpart of representation (4) under Waldean information.

Proposition 6 Let M be a �nite subset of �na (S) and % a binary relation on F . The following
conditions are equivalent:

(i) % satis�es P.1-P.6 and it is order consistent with M ;

(ii) there exist a non-constant utility function u : X ! R and a prior � : D ! [0; 1], with

supp� �M , such that, for all nonnull events E,

VE (f) =

Z
�

�Z
S
u (f (s)) dm (s j E)

�
d� (m j E) (12)

represents %E.

Moreover, u is cardinally unique, while � is unique for each such % if and only if M is linearly

independent.

11 In fact, the interpretation of � is purely subjective, not at all logical/objective a la Carnap and Keynes.
12The �only if�part actually holds even without linear independence.
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The representation of the conditional preference %E thus depends on the conditional model

m (� j E) : � ! [0; 1] and on the posterior probability � (� j E) : D ! [0; 1] that, respectively,

update in light of E the model m and prior �. Criterion (12) shows how decision makers currently

plan to use the information they may gather through observations to update their inference on the

actual model that generates data.13

The conditional predictive probability �� (� j E) : �! [0; 1] is given by

�� (F j E) =
Z
�
m (F j E) d� (m j E) 8F 2 �: (13)

The reduced form of (12) is thus given by

VE (f) =

Z
S
u (f (s)) d�� (s j E) (14)

The conditional representations (12) and (14) are, respectively, induced by the primitive represen-

tations (7) and (9) via conditioning.

Orthogonality is a simple, but important, su¢ cient condition for linear independence.

Lemma 7 Orthogonal subsets M are linearly independent.

Section 5 will show that some fundamental classes of models satisfy this convenient condition.

Because of its importance, the following result shows what form the Classical SEU representation

of Proposition 4 takes in this case.

Proposition 8 Let M be a �nite and orthogonal subset of �na (S) and % a binary relation on F .
The following conditions are equivalent:

(i) % satis�es P.1-P.6 and it is consistent with M ;

(ii) there exist a non-constant utility function u : X ! R and a prior � : D ! [0; 1], with

supp� �M , such that

V (f) =

Z
�

�Z
S
u (f (s)) dm (s)

�
d� (m)

represents %.

Moreover, � is unique and u is cardinally unique.

Notice that here consistency su¢ ces and that the prior � is automatically unique because of

the orthogonality of M .

13As Marschak [27, p. 109] remarked �to be an �economic man�implies being a �statistical man��
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4 In�nite representation

We now consider in�nite data, that is, collectionsM that may have an in�nite number of elements.

The extension of the previous representations to the in�nite case is nontrivial because the Lyapunov

Theorem, which plays a key role in these Savagean results, in general fails for in�nite collections of

nonatomic measures.14 However, for the fundamental orthogonal case this classical theorem holds

and we are thus able to establish an in�nite version of Proposition 8. To this end, we need the

following stronger version of consistency.

De�nition 9 A preference % is strongly consistent with a subset M of � if there are outcomes

x � y such that
m (F ) = m (E) 8m 2M =) xFy � xEy (15)

for all E;F 2 �.

In other words, decision makers are indi¤erent among bets on events that, model by model,

have the same probability. It is no longer enough to consider only unanimous events. Though

stronger than consistency, condition (15) is still a natural consistency condition.

We can now state our main representation result, the in�nite version of Proposition 8. Recall

that, by Lemma 1, dominated orthogonal subsets are �nite or countable.

Proposition 10 Let M be a dominated orthogonal subset of �na (S) and % a binary relation on

F . The following conditions are equivalent:

(i) % satis�es P.1-P.6 and is strongly consistent with M ;

(ii) there exist a non-constant utility function u : X ! R and a prior � : D ! [0; 1], with

supp� �M , such that

V (f) =

Z
�

�Z
S
u (f (s)) dm (s)

�
d� (m) (16)

represents %.

Moreover, � is unique and u is cardinally unique.

Since �nite collectionsM are trivially dominated, this result generalizes Proposition 8 to in�nite

M , modulo the stronger version of consistency assumed. More importantly, the examples considered

in the intertemporal setting show that orthogonal sets M of models are often used in applications.

The reduction map �M between prior and predictive probabilities is easily seen to preserve

convexity: for all � 2 [0; 1] it holds �� + (1� �)�0 7! ��� + (1� �) ��, and viceversa. More

interestingly, in the orthogonal case it also preserves both orthogonality and equivalence, as next

we show.
14As well known, Savage-type results critically rely on the range convexity of the involved subjective probabilities.

The importance of the Lyapunov Theorem in our setting is an example of this well know methodological feature of

Savage�s approach.
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Proposition 11 Under the hypotheses of Proposition 10, two priors � and �0 are orthogonal (resp.,
equivalent) if and only if their predictive probabilities �� and ��0 are orthogonal (resp., equivalent).

Notice that the �if�part for orthogonality and the �only if�part for equivalence hold in general,

even if M is not orthogonal.

5 Intertemporal illustration

We illustrate the previous results through a standard intertemporal decision problem where obser-

vations are generated over time. We �rst introduce the intertemporal setting and we then give a

few important examples of orthogonal collections of probability models.

5.1 Setting

Consider an intertemporal decision problem where information builds up through observations

generated by a sequence of random variables fZtg de�ned on some (possibly unveri�able, except
to Laplace�s demon) underlying space and taking values on observation spaces Zt that, for ease of
exposition, we assume to be at most countable (all results in this section actually hold in Polish

spaces). For example, the sequence fZtg can model subsequent draws of balls from a sequence

of (possibly identical) urns; in this case Zt consists of the possible colors of the balls that can be
drawn in urn t.

Suppose, for convenience, that all observation spaces are identical � each denoted by Z and

endowed with the �-algebra B = 2Z �and that the relevant state space S for the decision problem
is the overall sample space Z1 =

Q1
t=1Z. Its points z = (z1; :::; zt; :::) are the possible observation

paths generated by the sequence fZtg. Without loss of generality, we identify fZtg with the
coordinate process such that Zt (z) = zt.

Endow Z1 with the product �-algebra B1 generated by the elementary cylinder sets

zt = fz1; :::; ztg = fz1g � � � � � fztg � Z � � � �

The elementary cylinder sets are the observables in this intertemporal setting. In particular, the

�ltration fBtg, where B0 � fS; ;g and Bt is the algebra generated by the cylinders fz1; :::; ztg,
records the building up of observations. Clearly, B1 is the �-algebra generated by the �ltration

fBtg, that is, B1 = �

 [
t

Bt

!
.

Since elementary cylinder sets zt are observable, conditioning relative to them is especially

important. In particular,15 the probability measure m
�
� j zt

�
: �! [0; 1] given by

m
�
E j zt

�
=

8<:
m(E\zt)
m(zt) if m

�
zt
�
> 0

0 else

15To ease notation we write m (z1; :::; zn) in place of m (fz1; :::; zng).
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is the conditional distribution of model m given observations zt = fz1; :::; ztg, while the probability
measure � : D ! [0; 1] given by

�
�
A j zt

�
=

8><>:
R
Am(z

t)d�R
�m(z

t)d�
if
R
�m

�
zt
�
d� > 0

0 else

is the posterior distribution of prior � given observations zt = fz1; :::; ztg.

In this intertemporal setting the pair (S;�) is thus given by (Z1;B1). The space of models
� consists of all probability measures m : B1 ! [0; 1]. Acts are adapted outcome processes

f = fftg : Z1 ! X, which we often call plans. The outcome space X has also a product structure

X = C1, where C is a common instant outcome space. We consider Classical SEU representations

V (f) =

Z
�

�Z
Z1

u (f (z)) dm (z)

�
d� (m) (17)

Its conditional version relative to cylinder sets zt is:

Vzt (f) =

Z
�

�Z
Z1

u (f (z)) dm
�
z j zt

��
d�
�
m j zt

�
(18)

The function u : C1 ! R in (17) and (18) is an intertemporal utility u (c) = u (c1; :::; ct; :::) that,
under standard additional conditions, has a classic discounted form

u (c1; :::; ct; :::) =

1X
t=1

�t�1� (ct) (19)

with subjective discount factor � 2 [0; 1] and instantaneous utility function � : C ! R. For instance,
the discounted version of (18) is:

Vzt (f) =

Z
�

 Z
Z1

1X
�=1

���1� (f� (z)) dm
�
z j zt

�!
d�
�
m j zt

�
(20)

Throughout the section we assume that utility is bounded, that is, supc2C1 ju (c)j < 1. For
example, in the discounting case (19) this condition holds provided instantaneous utility functions

are bounded, that is, supc2C j� (c)j <1.

5.2 A general singularity condition

A general characterization of the orthogonality of two measures in a �ltration setting is due to

Kabanov, Liptser, and Shiryaev [17], who generalized an earlier classic results of Kakutani [18]. To

present it, denote by mt the restriction on Bt of a model m 2 �. Given two models m; ~m 2 � such

that mt � ~mt for each t, let �t : Z1 ! R be their likelihood ratio given by

�t
�
zt
�
=
dmt

d ~mt

�
zt
�
=

8<:
m(zt)
~m(zt) if ~m

�
zt
�
> 0

0 else
(21)
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Given the two models m and ~m, the likelihood ratio process f�tg can be constructed from obser-

vations; we will say more about it in Section 6. Here de�ne the conditional likelihood lt : Z1 ! R
by

lt
�
zt
�
=

8<:
�t(zt)

�t�1(zt�1)
if �t�1

�
zt�1

�
> 0

0 else

for each t � 2.
The next fundamental lemma of Kabanov et al [17] characterizes orthogonal measures in a

general �ltration setup f�tg1t=0 through a predictive property of the conditional likelihood lt.

Lemma 12 Two probability measures m; ~m 2 �, with mt � ~mt for each t, are orthogonal if and

only if
1X
t=1

h
1� E ~m

�p
lt j �t�1

�i
=1 m-a.e. (22)

The series in (22) has positive terms. For, as observed by [17, p. 213], it holds

E ~m

�p
lt j �t�1

�
� 1 m-a.e.

In particular, a simple su¢ cient condition for (22) is

lim sup
t
E ~m

�p
lt j �t�1

�
< 1 m-a.e.

Condition (22) can be easily stated for collections M of probabilities. For later reference, next

we state this version of Lemma 12.

Proposition 13 A collection M of models, with equivalent restrictions on each Bt, is orthogonal
provided condition (22) holds for all m; ~m 2M .

In view of all this, to ease the derivation in the rest of the paper we will often consider models

m that are strictly positive on each Bt, that is, mt

�
zt
�
> 0 for each elementary cylinder

�
zt
	
.

Clearly, any two such models have equivalent restrictions on Bt. We denote by �+ the set of all
models m : B1 ! [0; 1] that are strictly positive on each Bt.

5.3 Independence

An important special case of Proposition 13 is the i.i.d. case originally studied by Kakutani [18].

Consider a model m 2 � that makes the coordinate process fZtg i.i.d., with marginal distribution
� : B ! [0; 1]. In this case, m is a product probability on B1 uniquely determined by the marginal

�. In particular, it holds m
�
zt
�
=
Qt
i=1 � (zi) on each elementary cylinder z

t = fz1; :::; ztg.

Proposition 14 A collection M � �+ of models that make the coordinate process fZtg i.i.d. is
orthogonal.
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For example, in the i.i.d. binomial case, with Z = f0; 1g and Em (Z1) 2 (0; 1), we can para-
metrize M with the open unit interval (0; 1). By Proposition 14, the set M = fm�g�2(0;1) is
orthogonal. As observed by Kakutani [18, p. 223], this would also follow from the strong law of

large numbers, which implies m
�
lim t�1

Pt
i=1 Zi = Em (Z1)

�
= 1 for each m 2 M . Kakutani�s

remark is easily generalized, via the Pointwise Ergodic Theorem, to show that models that make

the coordinate process fZtg stationary and ergodic are orthogonal. Proposition 14 thus holds more
generally for them.

By Proposition 4, if % satis�es P.1-P.6 and is strongly consistent with a countable collection

M of i.i.d. models, then there is a cardinally unique utility function u and a unique prior �, with

supp� �M , such that
V (f) =

Z
�

�Z
Z1

u (f (z)) dm (z)

�
d� (m) (23)

represents %. As already observed, the reduced form

V (f) =

Z
Z1

u (f (z)) d�� (z) ,

is what can be elicited from behavior without the knowledge of M . The predictive probability ��

is exchangeable. In the purely subjective approach a la de Finetti that Savage adopted, from this

reduced exchangeable form �via de Finetti Theorem-type arguments � it is inferred a candidate

collection M of models, a �subjective datum,� for which the structural form (23) holds. Here we

follow an opposite Waldean path where M is an �objective datum�of the problem. The relations

with the de Finetti subjective approach will be further discussed in the Concluding Remarks.

5.4 Gaussian and Markov cases

Consider a model m that makes the coordinate process fZtg a Markov chain with transition

functions �t : Z � B ! [0; 1] for t � 1, where �t (zt; �) : B ! [0; 1] is strictly positive16 for each

zt 2 Z, and �t (�; zt+1) : Z ! [0; 1] is a function for each zt+1 2 B. Given an initial probability
distribution �0 on B, the model m is uniquely determined by � as follows:

m
�
zt
�
= �0 (z1)

t�1Y
i=1

�i (zi; zi+1)

for each cylinder set zt = fz1; :::; ztg. Denote by k�k the Euclidean norm of RjZj.

Proposition 15 A collection M � �+ of models that make the coordinate process fZtg a Markov
chain is orthogonal if

lim inf
t

p~�t (zt; �)�p�t (zt; �) > 0 m-a.e. (24)

for all m; ~m 2M .
16That is, �n (zn; zn+1) > 0 for all zn+1 2 Z.
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In the homogeneous case, when there is a transition function � such that �t = � for all t, it

is easy to see that condition (24) is always satis�ed. We thus have the following generalization of

Proposition 14.

Corollary 16 A collection M � �+ of models that make the coordinate process fZtg a homoge-
neous Markov chain is orthogonal.

We close the study of the Markov case by observing that 2�1
p~�t (zt; �)�p�t (zt; �) is the

Hellinger distance between the probability measures ~�t (zt; �) and �t (zt; �) on B. Condition (24)
can thus be stated in terms of this distance.

For ease of exposition so far we considered at most countable Z, though the results of this
section hold for Polish spaces. In this �nal part of this section we relax this assumption and

suppose that Z = R endowed with its Borel �-algebra. Consider a model m 2 � that makes

the coordinate process fZtg independent with Gaussian marginal distribution �t : B ! [0; 1] with

parameters
�
at; �

2
t

�
. The next result shows that a collection of independent Gaussian models is

orthogonal under mild conditions on the parameters.

Proposition 17 A collection M of models that make the coordinate process fZtg independent,
with equivalent Gaussian marginals, is orthogonal if, for all m; ~m 2 M , either limt ~�2t =�2t 6= 1 or

limt at 6= limt ~at and lim supt ~�2t <1.

6 Learning

6.1 Beliefs

In intertemporal decision problems, where conditional preferences are contingent upon more and

more observations, it is important to see if decision makers eventually learn from observations the

true model among those in the support of their prior probabilities (that is, among those that ex

ante they regarded as possible data generating processes). Decision makers�long run behavior is

consistent with observations, which asymptotically determine their behavior by �swamping� any

subjective beliefs they may have.

The likelihood ratio process f�tg plays a central role in the study of this issue. As well known, it
is a martingale with respect to the �ltration fBtg and so, by the Martingale Convergence Theorem,
it converges. If it converges to zero ~m-a.e., it means that asymptotically the data will reveal that

~m is the true model. The next known result17 shows that orthogonality is necessary and su¢ cient

for this key limit behavior of the likelihood ratio.

Lemma 18 Given any two probability measures m; ~m 2 �, with mt � ~mt for each t, it holds

�t
�
zt
�
! 0 ~m-a.e. (25)

if and only if m and ~m are orthogonal.
17See, e.g., Billingsley [4, p. 494], and Stroock, [34, p. 287] (who credits Borge Jessen). Since we could not �nd a

complete proof of this result, in the Appendix we give a simple proof.
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We can thus distinguish asymptotically a true model ~m relative to all orthogonal alternative

models, and only relative to them. Without orthogonality, there can be only imperfect distin-

guishability among alternative models (i.e., among alternative simple hypotheses in the Statistics

terminology).

The orthogonality condition (22) is thus equivalent to the limit condition (25) of Lemma 18.

In particular, the important examples studied earlier in this section all satisfy condition (25). This

is the case for collections of i.i.d. models (Proposition 14), as well as collections of Markov chains

under some mild conditions (Proposition 15). Remarkably, the models that are most widely used

in applications are thus within the scope of Lemma 18.

When M is �nite and orthogonal, Lemma 18 ensures that asymptotically the true model in

M will be detected almost surely. This key asymptotic property of the likelihood ratio easily

translates in a consistency property of the prior �. For, suppose ~m 2 supp� and let �mt
�
zt
�
=

m
�
zt
�
= ~m
�
zt
�
be the likelihood ratio of m with respect to ~m. Then

� ( ~m j z1; :::; zt) =
� ( ~m) ~m

�
zt
�P

m2supp� � (m)m (z
t)
=

� ( ~m)

� ( ~m) +
P

~m6=m2supp� � (m)�
m
t (z

t)

and so

� ( ~m j z1; :::; zt)! 1 ~m-a.e. (26)

if and only if, for each m 2 supp� distinct from ~m it holds

�mt (z1; :::zt)! 0 ~m-a.e. (27)

that is, if and only if (25) holds for each such m. The prior thus asymptotically concentrates on the

true model if and only if the likelihood ratios of each alternative model with respect to the true one

vanish asymptotically (under the true model). The next lemma builds on this simple observation.18

Lemma 19 Let M � �+ be a �nite collection of models and � : D ! [0; 1] a prior with supp� �
M . If ~m 2 supp� is the true model, then

� (m j z1; :::; zt)! � ~m ~m-a.e.

if and only if ~m is orthogonal with respect to all other models m 2 supp�.

The orthogonality of the true model with respect to all its possible alternative models is thus a

necessary and su¢ cient condition for full learning, that is, for data to �swamp�the prior. Without

this condition, there exist priors that, though they contain the true model in their support, will

never learn the true model regardless of the available amount of data.

Propositions 14 and 15 show that this apparently strong orthogonality requirement is satis�ed

in some fundamental cases that are widely used in applications. For them, Lemma 19 ensures full

learning.

18 In the statement we have to require that the restrictions on each Bn are equivalent if, instead of M � �+ (Z1),

we only assume that M � �(Z1).
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Finally, in terms of predictive probabilities it is easy to see that, for all E 2 �, it holds

j�� (E j z1; :::; zt)� ~m (E j z1; :::; zt)j ! 1 ~m-a.e. (28)

under the hypotheses of the previous lemma. The predictive probability thus converges to the true

model.

6.2 Dynamic Choices

The previous lemmas lead to a decision theoretic learning result that shows that Classical SEU

decision makers will eventually learn the true model and behave accordingly. To establish this

learning result we need to introduce a dynamic version of our representation. To this end, consider

the nodes zt = fz1; :::; ztg identi�ed by histories of observations zt up to t. In the dynamic setting
they are decision nodes and, for this reason, at each of them there is a preference �zt over contin-
uation plans from this node onwards, so that the family f�ztg characterizes a decision maker at
all possible nodes that he can reach. In particular, %=�;. That is, the primitive static preference
studied so far may be regarded as the empty history preference in the family �zt .19

The domain of each preference �zt is the set F of plans. However, to capture the idea that

only continuation plans matter we require Consequentialism, that is,

f
�
zt; zt+1; :::

�
= g

�
zt; zt+1; :::

�
8 (zt+1; :::) 2 Z1 =) f �zt g

for all f; g 2 F . Another classical property of the family f�ztg of preferences is Dynamic Consis-
tency, that is, given any two plans f and g that are identical up to node zt, it holds

f %zt g =) f �zt g

That is, the original ranking of plans at node zn is not reversed once the node is reached.

A Classical SEU preference representation for �zt that satis�es Consequentialism and Dynamic
Consistency is the preference functional Wzt : F ! R given by

Wzt (f) =

Z
�

�Z
Z1

ut (ft (z) ; :::) dm
�
z j zt

��
d�
�
m j zt

�
(29)

where supp� is included in some set M � � of models, m
�
z j zt

�
is the conditional distribution

of future observations given the past ones zt, and ut : C1 ! R are recursive intertemporal utilities
that satisfy equations

ut (ct; :::) = � (ct; ut+1 (ct+1; :::))

for some suitable aggregator � : C � R! R (cf. Marinacci and Montrucchio [26, p. 1790]).
19Notice that �zn and %zn denote altogether di¤erent notions: the former is a primitive preference at node zn, the

latter is the conditional preference of the primitive static preference % in light of evidence zn. It is also important to
observe that Z1 = �k>nZ and C1 = �k>nC, that is, the possible future observations at node zn are identical as at
the initial node.
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We call the family fWztg given by (29) a recursive Classical SEU representation. It is sum-

marized by the triple (futg ;M; �), with supp� � M .20 In particular, W; is the Classical SEU

criterion (17).

For example, if � (c; y) = � (c) + �y , we have the discounted form

Wzt (f) =

Z
�

 Z
Z1

1X
�=t

���t� (f� (z)) dm
�
z j zt

�!
d�
�
m j zt

�
(30)

whose recursive form is21

Wzt (f) = u (ft (z)) + �

Z
�

�Z
Z
Wfzt;zt+1g (f) dm

�
zt+1 j zt

��
d�
�
m j zt

�
(31)

6.3 Long run empiricists

We can now state our learning result.

Proposition 20 Suppose (futg ;M; �) is a recursive Classical SEU decision maker, with �nite and
orthogonal M . If ~m 2 supp� is the true model, then����Wzt (f)�

Z
Z1

ut (ft (z) ; :::) d ~m
�
z j zt

�����! 1 ~m-a.e. (32)

for all plans f 2 F .

The focus on orthogonal sets M is natural in view of the previous two lemmas. As observations

build up, a Classical SEU decision maker will thus behave more and more like a decision maker

that knows the true model. That is, like a SEU decision makerZ
Z1

ut (ft (z) ; :::) d ~m
�
z j zt

�
that uses the correct conditional distribution of future observations. Classical SEU decision makers

are thus long run empiricists.

The reduced form of (29) is given by

Wzt (f) =

Z
Z1

ut (ft (z) ; :::) d��
�
z j zt

�
where ��

�
z j zt

�
is the conditional predictive distribution of future observations given history zt.

From (28) it follows that, under the hypotheses of Proposition 20, it holds:����Z
Z1

ut (ft (z) ; :::) d��
�
z j zt

�
�
Z
Z1

ut (ft (z) ; :::) d ~m
�
z j zt

�����! 1 ~m-a.e.

The reduced form thus converges to the correct Expected Utility model.

20An axiomatic derivation, along the lines of Johnsen and Donaldson [16], of the recursive criterion (29) is beyond

the scope of the present paper.
21See the Appendix for a short derivation.

19



7 Concluding remarks

Perspectives Our �classical�approach is very di¤erent, in a sense opposite, to the purely sub-

jective derivations � through de Finetti Theorem-type arguments � of priors � over collections

M of models. In a nutshell, while in our approach datum M is a primitive notion upon which

the analysis relies, in the de Finetti approach it is a subjective construct, a �subjective da-

tum/parameterization�, inferred from the large sample betting behavior peculiar to the de Finetti

Theorem. As we remarked in Section 5.3, these arguments �widely discussed in the Bayesian liter-

ature �show when subjective predictive probabilities can be viewed as derived within a subjective

parametric setup (see Al-Najjar and De Castro [1], Epstein and Seo [11], Klibano¤, Mukerji, and

Seo [21], and Cerreia-Vioglio et al [5] for recent decision theoretic analyses of parametric models

along these lines).

In contrast, here the class M is an element, a datum, of the problem and our purpose is to

investigate how to embed it in an otherwise subjective setting. In applications where it is natural

to assume the existence of a datum M , a de Finettian perspective would be a straitjacket. This is

why here we take a di¤erent approach, in which classical and subjective features coexist.

Relatedly, a version of the orthogonal representations of Propositions 8 and 11 (but not of our

basic result, Proposition 4) can be derived in an Ascombe-Aumann setting using the techniques of

[5].22 However, the original motivation of [5] is in a de Finetti perspective that, as just noticed, is

di¤erent from our Waldean one. As a result, our paper is set in a Savage setting (with consistency

notions purely based on betting behavior) and, more generally, its analysis develops along altogether

di¤erent lines than that of [5], both conceptually and mathematically.

Marschak Some works of Jacob Marschak have been a source of inspiration of our exercise, in

particular his [27] and [28] articles. The former paper discusses a version of criterion (1), nicely

summarized by the sentence �to be an �economic man�implies being a �statistical man��that we

mentioned after Proposition 6.

More importantly, our work addresses the issue that he raised in the latter paper, in which he

asked how to pin down subjective beliefs on models from observables. In so doing, our analysis also

shows that to study general dataM , possibly linearly dependent, it is necessary to go beyond betting

behavior on observables. For example, the study of second order acts in Klibano¤, Marinacci, and

Mukerji [20] goes in that direction, though the classic work of Marschak and Radner [29] already

considered acts �and so bets �on models in a Savage framework.23

22 In [5] we would need the following lemma (we use its terminology): LetM be a �nite subset of � and fEngn2N be
a partition such that mn (En) = 1 and mn (Ek) = 0 if k 6= n; then both (S;�;M) and (S;�; coM) are Dynkin spaces
with respect to � (En : n 2 N) and the regular conditional probability p : S ! � given by p (!) = mn if ! 2 En.
23See, for example, Table 2.1 on page 48, which in our setup corresponds to a state space S �M (see also Radner

[31] for a similar state space). In the same page they write �... in the formulation of a decision problem, the states of

the environment must be described in su¢ cient detail to cover not only those aspects relevant to the payo¤ function,

but also those aspects relevant to the type of information on which the decisions may be based.�
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Experimentation In our Savagean setting uncertainty is exogenous in that it is not a¤ected by

decision makers�choices. As a result, there is no room for experimentation, that is, choices whose

purpose is to acquire information on how uncertainty may resolve. The extension of Classical SEU

to include endogenous uncertainty is a natural next step in our analysis. This would allow to relate

our decision theoretic framework to control models a la Easley and Kiefer [10], which used versions

of the functional form (1) to study learning with endogenous uncertainty.

Model uncertainty Throughout the paper the datum M was supposed to be known to the

decision maker, there is no uncertainty about it. In other words, the decision maker has enough

information to identify the collection of all models that can generate the observations. If this is not

the case we have a further source of uncertainty, which is often called statistical model uncertainty

(see, e.g., Claeskens and Hjort, [6]). This would add a further layer in the representation (7) with

a �meta-prior�over 2M .

Principal Principle By our consistency conditions, for each � 2 [0; 1] it holds

m (E) = � 8m 2M =) �� (E) = �

for all priors � with supp� � M . In other words, if all models in M agree that the probability of

some event E is �, then its predictive probability is also �, regardless of any personal information

that a prior � might re�ect.

Mutatis mutandis, this property can be seen as a form of the Principal Principle of Lewis

[23], an important notion in the Philosophy of Probability that requires that degrees of beliefs be

consistent with objective chances, and only with them (any other possible information on events

becomes irrelevant once objective chances are available).

Axiom P.6 Since M � �na (S), it is easy to see that axiom P.6 is no longer needed in the �rst

part of the proof of Savage�s Representation Theorem that derives the subjective probability P .

However, it is still needed later in the proof of Savage�s Theorem (see his Theorem 5.2.2) and this

is why it appears in our Proposition 4.

8 Appendix: proofs and related analysis

Denote by �(M) the collection of all probability measures � :M ! [0; 1]. Given a set M � �,

among priors and predictive distributions there is a two ways relation. For example, given a

predictive probability P denote by �M (P ) the (possibly empty) set of priors � 2 �(M) that

induce P , that is, �M (P ) = f� 2 �(M) : P = ��g. On the other hand, each prior � induces a
predictive probability ��.

It is easy to see that the correspondence �M : � ! 2�(M) is convex valued and with disjoint

images, i.e., �M (P ) \ �M (P 0) = ; if P 6= P 0. Given �M , the e¤ective domain of �M is de�ned to

be

dom�M = fP 2 � : �M (P ) 6= ;g
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In general dom�M , is the collection, f�� : � 2 �(M)g, of all predictive probabilities that are induced
by priors in �(M). If M is �nite then dom�M = co (M). We say that P is M -representable if

�M (P ) 6= ; and if, in addition, �M (P ) is a singleton, we say that P is M -identi�able.24

Lemma 21 Given M � �, each predictive probability P 2 dom�M is M -identi�able if and only

if M consists of measure independent models.

Proof We �rst prove su¢ ciency. Consider P 2 dom�M . Assume that M consists of measure

independent models. Since P 2 dom�M , there exists � 2 �(M) such that P = ��. Next, consider
�1; �2 2 �(M) such that ��1 = ��2 = P . De�ne  = �1��2. We have that  is a bounded measure
onM. It follows that for each A 2 FZ

M
m (A) d (m) =

Z
M
m (A) d�1 (m)�

Z
M
m (A) d�2 (m) = P (A)� P (A) = 0:

Since M consists of measure independent models, it follows that �1��2 =  = 0, that is, �1 = �2.
This proves the uniqueness of � and the M -identi�ability of P . As to the converse, assume that

each P 2 dom�M is M -identi�able. By contradiction, assume that M does not consist of measure

independent models. Thus, there exists a bounded measure  :M! R such that

 6= 0 and
Z
M
m (A) d (m) = 0 8A 2 F : (33)

Since  is a bounded signed measure,  admits a decomposition in terms of two �nite measures, in

other words,  = + � � where + and � are, respectively,the positive and negative part of .
By (33), we have that

0 =

Z
M
m (S) d (m) =

Z
M
1Md =  (M) = 

+ (M)� � (M) :

Since  6= 0, this implies that + (M) = � (M) > 0. Set

�1 =
+

+ (M)
; �2 =

�

� (M)
; and � = =+ (M) :

It follows that �1; �2 2 �(M), �1 6= �2, and � = �1 � �2. By (33), we have that for each A 2 �

0 =
1

+ (S)

�Z
M
m (A) d (m)

�
=

Z
M
m (A) d� (m)

=

Z
M
m (A) d�1 (m)�

Z
M
m (A) d�2 (m) = ��1 (A)� ��2 (A) :

If we de�ne P by ��1 = P = ��2 then we have that P 2 dom�M but �1 6= �2, a contradiction with
each P 2 dom�M being M -identi�able. �

Proof of Lemma 1 By Lemma 7 of Halmos and Savage [14], there is a countable subset ~M =

fm1; :::;mn; :::g �M such that

m (E) = 0 8m 2 ~M =) m (E) = 0 8m 2M (34)

24The notion of identi�ability is based on Teicher [35].
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It holds ~M = M . Suppose there is m0 2 M such that m0 =2 ~M . Consider the countable family
~M [ fm0g of pairwise orthogonal probability measures. By Lemma 23-(i), there is a partition
fEngn�0 such that, for each n � 0, mn (En) = 1 and mn (Ek) = 0 if k 6= n. This contradicts (34)
since m0 (E0) = 1 and m (E0) = 0 for all m 2 ~M . �

Proof of Proposition 4 (i) implies (ii) By Savage�s Theorem, there exist a non-constant function
u : X ! R and a unique convex-ranged P : �! [0; 1] such that for each f and g in F

V (f) =

Z
S
u (f (s)) dP (s) and V (f) � V (g), f % g:

By order consistency, there exists a unanimous event E 2 � such that for each F 2 �

m (F ) = m (E) 8m 2M =) P (F ) = P (E)

and

m (F ) � m (E) 8m 2M =) P (F ) � P (E) :

By assumption, each m is convex-ranged. By Theorem 20 of Marinacci and Montrucchio [25] and

since it is immediate to check that E is a radial set, we have that P 2 coneM . Since P 2 �,
it follows that P 2 coM . In turn, this implies that P is countably additive and that there is a

probability � : 2M ! [0; 1] such that P (E) =
P
m2M m (E)� (m) for all E 2 �. Hence, we can

conclude that

V (f) =

Z
S
u (f (s)) dP (s) =

Z
M

�Z
S
u (f (s)) dm (s)

�
d� (m) 8f 2 F :

Since the support of � is a subset ofM , it is immediate to see that it consists of nonatomic elements.

(ii) implies (i) De�ne P = ��. Since each m 2 M is a nonatomic probability measure, we next

show that P is a nonatomic probability measure as well. Indeed, it is enough to prove that P is

convex ranged. Consider E 2 � such that P (E) > 0 and � 2 (0; 1). Since the collection fmigni=1
is a collection of nonatomic probability measures, by the Lyapunov Theorem there exists F� 2 �
such that m (F�) = �m (E) for all m 2 M . This implies that �� (F�) =

P
m2M m (F�)� (m) =P

m2M �m (E)� (m) = ��� (E). We can conclude that V : F ! R de�ned by

V (f) =

Z
S
u (f (s)) dP (s) =

Z
M

�Z
S
u (f (s)) dm (s)

�
d� (m) 8f 2 F ;

represents % where P is nonatomic. By Savage�s Theorem, it follows that % satis�es P.1-P.6.
At last, we show that % is order consistent with M . Let E be an unanimous event and let

x � y. Without loss of generality assume that u (x) = 1 and u (0) = 0. If F 2 � is such that

m (F ) � m (E) (resp., m (F ) = m (E)) for each m 2M then V (xFy) = �� (F ) � �� (E) = V (xEy)
(resp., V (xFy) = �� (F ) = �� (E) = V (xEy)), and so xFy % xEy (resp., xFy � xEy).

Finally, the cardinal uniqueness of u is obvious. The uniqueness of � follows from Lemma 21

and the uniqueness of the predictive probability P derived in (i) implies (ii). �
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Proof of Proposition 5 Set M = fm1; :::;mng. By Proposition 4,

P (E) =
nX
i=1

�imi (E) 8E 2 � (35)

with each �i � 0 and
Pn
i=1 �i = 1. To prove the �only if�part, wlog suppose that m1 2 supp�,

so that �1 > 0. Let E � F . Suppose m1 (E) < m1 (F ). Then, P (E) =
Pn
i=1 �imi (E) <Pn

i=1 �imi (F ) = P (F ) since �1 > 0.

As to the converse, suppose ~m 2 M is such that (11) holds for all E � F . We want to show

that ~m 2 supp�. Set ~M = fm 2M : m 6= ~mg. Let

� =

�
E : m (E) =

1

2
for all m 2M

�
and ~� =

�
E : m (E) =

1

2
for all m 2 ~M

�
:

Clearly, � � ~�. We want to show that � 6= ~�. Suppose, per contra, that � = ~�. This implies that,

for all E,

m (E) =
1

2
8m 2 ~M =) ~m (E) =

1

2

Since each m 2 M is convex-ranged, from Marinacci and Montrucchio [25, Theorem 20] it follows

that ~m 2 span ~M , which contradicts the linear independence of M . We conclude that � 6= ~�.

Let ~E 2 ~� and ~E =2 �. Then, 1=2 = m
�
~E
�
6= ~m

�
~E
�
for all m 2 ~M . If P = ~m, we trivially

have ~m 2 supp�. If P 6= ~m, there is somem 2 ~M such that � (m) > 0. Sincem
�
~E
�
= 1=2, by (35)

this implies P
�
~E
�
> 0. By the Lyapunov Theorem, there is F � ~E such that P (F ) = 2�1P

�
~E
�

and m (F ) = 2�1m
�
~E
�
for all m 2M . Then,

P (F ) =
X
m2M

m (F )� (m) =
1

4
(1� � ( ~m)) + 1

2
~m
�
~E
�
� ( ~m)

< P
�
~E
�
=
X
m2M

m
�
~E
�
� (m) =

1

2
(1� � ( ~m)) + ~m

�
~E
�
� ( ~m)

and so � ( ~m) > 0. We conclude that ~m 2 supp�. �

Proof of Proposition 6 Let P (E) > 0. By (4),

VE (f) =

Z
S
u (f (s)) d�� (s j E)

Set suppE � = fm 2 supp� : m (E) > 0g. Moreover,Z
�
m (F j E) d� (m j E) =

X
m2suppE �

m (F j E)� (m j E) =
X

m2suppE �

m (F \ E)
m (E)

m (E)� (m)P
m2suppE �m (E)� (m)

=
1P

m2suppE �m (E)� (m)

0@ X
m2suppE �

m (F \ E)
m (E)

m (E)� (m)

1A
=

P
m2suppE �m (F \ E)� (m)P
m2suppE �m (E)� (m)

=
�� (F \ E)
�� (E)

= �� (F j E) .
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Hence,

VE (f) =

Z
S
u (f (s)) d�� (s j E) =

Z
�

�Z
S
u (f (s)) dm (s j E)

�
d� (m j E)

as desired. �

Proof of Proposition 8 By Savage�s Theorem, there exist a non-constant function u : X ! R
and a unique convex-ranged P : �! [0; 1] such that

V (f) =

Z
S
u (f (s)) dP (s)

By (5),

m (F ) = m (E) 8m 2M =) P (F ) = P (E) (36)

for all F 2 �. Since each m is convex-ranged, from Theorem 20 of Marinacci and Montrucchio

[25] it follows that P 2 spanM , i.e., there is a collection f�igni=1 of scalars such that P (E) =Pn
i=1 �imi (E) for each E 2 �. From P (S) =

Pn
i=1 �imi (S) it follows that

Pn
i=1 �i = 1. By

Lemma 7, there exists a partition fEigni=1 such that mi (Ei) = 1 for each i = 1; :::; n. Hence, for

each i it holds P (Ei) = �i, and so �i � 0. We conclude that P 2 coM . The rest of the proof is
similar to that of Proposition 4. �

Proof of Lemma 7 See Lemma 23. �

Proof of Proposition 11 By Lemma 1, M is countable. We �rst consider orthogonality and then

equivalence. (i) Suppose � ? �0, i.e., there is A 2 D such that � (A) = 1 = �0 (Ac). By Lemma

23-(i), there exists a countable partition fEmg such that m (Em) = 1 and m0 (Em) = 0 if m0 6= m.
Set E =

[
fEm : m 2 Ag. Clearly, E 2 �. Moreover, m (E) = 1 for all m 2 A and m (E) = 0 for

all m 2 Ac. Then,

�� (E) =
X
m2M

m (E)� (m) =
X
m2A

m (E)� (m) =
X
m2A

� (m) = � (A) = 1

and

�� (E) =
X
m2M

m (E)�0 (m) =
X
m2Ac

m (E)�0 (m) = 0,

which implies �� ? ��0.
As to the converse, suppose �� ? ��0. There exists E 2 � such that �� (E) = 1 = ��0 (Ec). Set

A = fm 2M : m (E) > 0g. We have A 2 D since A is countable. It holds

1 = �� (E) =
X
m2M

m (E)� (m) =
X
m2A

m (E)� (m) �
X
m2A

� (m) = � (A) � 1

and so � (A) = 1. Moreover,

0 = ��0 (E) =
X
m2M

m (E)�0 (m) =
X
m2A

m (E)�0 (m) : (37)

If �0 ( ~m) > 0 for some ~m 2 A, then
P
m2Am (E)�

0 (m) � ~m (E)�0 ( ~m) > 0, which contradicts

(37). Hence, �0 (m) = 0 for all m 2 A, and so �0 (A) = 0. We conclude that � ? �0.
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(ii) Suppose � � �0. Let �� (E) = 0, so that �� (E) =
P
m2M m (E)� (m) = 0. Then,

� (fm : m (E) > 0g) = 0, and so �0 (fm : m (E) > 0g) = 0. In turn this implies ��0 (E) =
P
m2M m (E)�

0 (m) =

0. Hence, ��0 � ��. A similar argument shows that ��� ��0.

Conversely, suppose �� � ��0. Let A 2 D be such that � (A) = 0. By proceeding as in the proof

of Lemma 24, we can construct pairwise disjoint events fEmgm2A such that m (Em) = 1=2 and

m0 (Em) = 0 for all m0 2 A distinct from m. Set E =
[
m2A

Em. Then, m (E) = 1=2 and m0 (E) = 0

for all m0 =2 A, so that
�� (E) =

X
m2M

m (E)� (m) =
1

2
� (A) = 0.

This implies

0 = ��0 (E) =
X
m2M

m (E)�0 (m) =
1

2
�0 (A)

and so �0 (A) = 0. We conclude that �0 � �. A similar argument shows that �� �0. �

Proof of Proposition 14 Given any two such models m and ~m, if they are equivalent it holds

ln = d�=d~�. Hence, condition (22) becomes

Em

�p
ln j �n�1

�
=

Z
Z

r
d�

d~�
d~� (38)

and so X
n

h
1� E ~m

�p
ln j �n�1

�i
=
X
n

"
1�

Z
Z

r
d�

d~�
d~�

#
=1()

Z
Z

r
d�

d~�
d~� 6= 1:

Since d�=d~� � 0, by the Jensen inequality it holds 0 �
R
Z
p
d�=d~�d~� �

qR
Z (d�=d~�) d� = 1.

Hence, Z
Z

r
d�

d~�
d~� = 1() d�

d~�
= 1 �-a.e.

that is, if and only if � = ~�. We conclude that condition (38) holds if and only if m and ~m are

distinct. Hence, M consists of pairwise orthogonal probability measure. �

The next result implies, as a special case, Proposition 17.

Proposition 22 Two probability measuresm; ~m 2 � that make the coordinate process fZng independent,
with equivalent Gaussian marginals, are orthogonal provided

1X
n=1

"�
~�2n
�2n
� 1
�
+

�
an � ~an
�n

�2#
=1 (39)

Proof It follows from Kabanov et al [17] and Lemma 7. �

Proof of Proposition 15 Let ~m;m 2M . It holds

dmn

d ~mn
(z1; :::; zn) =

�0 (z1)

~�0 (z1)

Qn�1
i=1 �i (zi; zi+1)Qn�1
i=1 ~�i (zi; zi+1)
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and so

ln (z1; :::; zn) =

�0(z1)
~�0(z1)

Qn�1
i=1 �i(zi;zi+1)Qn�1
i=1 ~�i(zi;zi+1)

�0(z1)
~�0(z1)

Qn�2
i=1 �i(zi;zi+1)Qn�2
i=1 ~�i(zi;zi+1)

=
�n�1 (zn�1; zn)

~�n�1 (zn�1; zn)

Hence,

E ~m

�p
ln j �n�1

�
=
X
�2Z

s
�n�1 (zn�1; �)

~�n�1 (zn�1; �)
~�n�1 (zn�1; �) =

X
�2Z

p
�n�1 (zn�1; �)

p
~�n�1 (zn�1; �)

Since
P
�2Z �n�1 (zn�1; �) =

P
�2Z ~�n�1 (zn�1; �) = 1, it holdsX

�2Z

�p
�n�1 (zn�1; �)�

p
~�n�1 (zn�1; �)

�2
= 2� 2

X
�2Z

p
�n�1 (zn�1; �)

p
~�n�1 (zn�1; �)

and so

1� E ~m

�p
ln j �n�1

�
=
1

2

X
�2Z

�p
�n�1 (zn�1; �)�

p
~�n�1 (zn�1; �)

�2
By Lemma 12, the probability measures ~m and m are orthogonal if and only if

X
n

p�n (zn; �)�p~�n (zn; �) =X
n

24X
�2Z

�p
�n�1 (zn�1; �)�

p
~�n�1 (zn�1; �)

�235 =1 m-a.e.

In particular, this is the case if (24) holds. �

Proof of Corollary 16 Let ~m andm be two distinct elements ofM , so that � 6= ~�. Then, there are
�; � 0 2 Z such that �

�
�; � 0

�
6= ~�

�
�; � 0

�
. Hence,

p~� (zn; �)�p� (zn; �) � �q� ��; � 0��q~� ��; � 0��2 >
0, and so (24) holds. �

Proof of Lemma 18 Set p = 2�1 (m+ ~m). By Lemma 5 of Kabanov et al [17], the process f�ng
converges ~m-a.e., with

~m

�
lim
n
�n =

dm=dp

d ~m=dp

�
= 1

Since ~m (d ~m=dp = 0) = 0, it holds

~m

�
dm=dp

d ~m=dp
= 0

�
= 1() ~m (dm=dp = 0) = 1:

It remains to show that ~m (dm=dp = 0) = 1 if and only if m ? ~m. The �only if�is obvious since

m

�
dm

dp
= 0

�
=

Z
n
dm
dp
=0
o dm
dp
dp = 0

that implies m ? ~m. As to the converse, suppose there is E 2 B1 such that m (E) = 0 and

~m (E) = 1. Then,

0 = m (E) =

Z
E

dm

dp
dp =) p

�
E \

�
dm

dp
> 0

��
= 0 =) ~m

�
E \

�
dm

dp
> 0

��
= 0.
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But, ~m (E) = 1 implies ~m (E \ (dm=dp > 0)) = ~m (dm=dp > 0), and so ~m (dm=dp > 0) = 0. This

completes the proof. �

Proof of Lemma 19 �If�Let m 2 M . Since ~m ? m for each ~m 6= m 2 supp�, by Lemma 18
it holds (27), and so (26) holds. As to the converse, from (26) it follows that (27) holds for each

~m 6= m 2 supp�. By Lemma 18, ~m ? m for each ~m 6= m 2 supp�. �

Derivation of (31) Using (13) and, via the reduced form, the recursive form of expected utility

we can write

Wzt (f) =

Z
�

 Z
Z1

1X
�=t

���t� (f� (z)) dm
�
z j zt

�!
d�
�
m j zt

�
=

Z
Z1

1X
�=t

���t� (f� (z)) d��
�
z j zt

�
= � (ft (z)) + �

Z
�

�Z
Z
Wfzt;zt+1g (f) d��

�
zt; zt+1 j zt

��
= � (ft (z)) + �

Z
�

�Z
Z
Wfzt;zt+1g (f) dmt+1

�
zt+1 j zt

��
d�
�
m j zt

�
as desired. �

Proof of Proposition 20 Let f 2 F and " > 0. By Lemma 19, there is n" such that, ~m-a.e.,

� ( ~m j z1; :::; zn) � 1� " and � (m j z1; :::; zn) � " 8 ~m 6= m 2 supp�

Then, ~m-a.e., it holds����Wzn (f)�
Z
Z1

u (fn (z) ; :::) dm (z j zn)
����

=

�����
Z
�(Z1)

�Z
Z1

u (fn (z) ; :::) dm (z j z1; :::; zn)
�
d (� (m j z1; :::; zn)� � ~m)

�����
� " sup

z2Z1
ju (z)j

and so (32) holds. �

8.1 Proof of Proposition 10

The proof of this proposition relies on few lemmas.

Lemma 23 LetM = fm1; :::;mn; :::g be a countable subset of �. If the elements ofM are pairwise

orthogonal, then:

(i) there exists a countable partition fEng such that mn (En) = 1 and mn (Ek) = 0 if k 6= n;

(ii) M is measure independent.

Proof of Lemma 23 (i) Suppose that M = fm1; :::;mn; :::g consists of pairwise orthogonal el-
ements. Consider m1. For each i 6= 1 there is E1i 2 � such that m1 (E1i) = 1 = mi (E

c
1i). By
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setting E1 =
\
i6=1
E1i we then have m1 (E1) = 1 and mi (E1) = 0 for each i 6= 1. Consider m2. Since

m2 (E
c
1) = 1, for each i > 2 there is an event E2i � Ec1 such that m2 (E2i) = 1 = mi (E

c
2i). By

setting E2 =
\
i6=1
E2i we then have m2 (E2) = 1 and mi (E2) = 0 for each i > 2. By proceeding in

this way we can construct the desired partition.

(ii) Given any collection f�ng of scalars, from �nmn (En) +
P
k 6=n �kmk (E) = 0 it follows

�n = 0 for each n. Hence, M is measure independent. �

The next lemma could be proved through the notion of thin set due to Kingman and Robertson

[19], but we prefer a simpler direct approach.

Lemma 24 Let M = fm1; :::;mn; :::g be a countable subset of nonatomic measures in �. If the
elements of M are pairwise orthogonal, except at most a �nite number of them, then

f(m1 (E) ; :::;mn (E) ; :::) : E 2 �g

is a convex subset of R1.

Proof Suppose that all elements ofM , except one, are pairwise orthogonal. To ease notation, let us
write M as fp;m1; :::;mn; :::g, where p is the unique element not pairwise orthogonal. We want to
show that RM = f(p (E) ;m1 (E) ; :::;mn (E) ; :::) : E 2 �g is a convex subset of R1. Let x; y 2 RM
and � 2 [0; 1]. By de�nition, there are events A and B such that x = (p (A) ;m1 (A) ; :::;mn (A) ; :::)

and y = (p (B) ;m1 (B) ; :::;mn (B) ; :::). By Lemma 23-(i), there exists a countable partition fEng
such that mn (En) = 1 and mn (Ek) = 0 if k 6= n. Hence,

x = (p (A) ;m1 (A \ E1) ; :::;mn (A \ En) ; :::) and y = (p (B) ;m1 (B \ E1) ; :::;mn (B \ En) ; :::) :

Fix n. Since p and each mn are nonatomic, the Lyapunov Theorem implies that for each of pair

(mn; p) there is an event E�n � En such that

mn (E
�
n ) = �mn (A \ En)+(1� �)mn (B \ En) and p (E�n ) = �p (A \ En)+(1� �) p (B \ En) :

Let E� =
[
n

E�n be the union of the pairwise disjoint events fE�ng that we just found. It holds

mn (E
�) = m (E�n ) for each n, and

p (E�) =
X
n

p (E�n ) = �
X
n

p (A \ En) + (1� �)
X
n

p (B \ En) = �p (A) + (1� �) p (B)

Hence

�x+ (1� �) y
= � (p (A) ;m1 (A \ E1) ; :::;mn (A \ En) ; :::) + (1� �) (p (B) ;m1 (B \ E1) ; :::;mn (B \ En) ; :::)
= (p (E�) ;m1 (E

�) ; :::;mn (E
�) ; :::)

and so �x+ (1� �) y 2 RM . This completes the proof when there is a unique element of M that

is not pairwise orthogonal. If there is a �nite number of them, say fp1; :::; pkg, we can proceed as
before by applying the Lyapunov Theorem on each (mn; p1; :::; pk). �
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Lemma 25 Let M be a subset of � such that, for some p 2 �,

m (E) = 0 8m 2M =) p (E) = 0

Then, for every " > 0 there is � > 0 such that

m (E) < � 8m 2M =) p (E) < "

Proof We generalize the argument in Bhasakara Rao and Bhasakara Rao [3, p. 161] for singleton
M . Suppose per contra that there is " > 0 such for every k � 1 there is an event Ek such that

m (Ek) < 2
�k for all m 2M and p (Ek) � ". Then

m

0@\
k

[
s�k

Es

1A = lim
k
m

0@[
s�k

Es

1A � lim
k

X
s�k

m (Ek) � lim
k

X
s�k

1

2k
! 0 8m 2M

and

p

0@\
k

[
s�k

Es

1A = lim
k
p

0@[
s�k

Es

1A � lim sup
k
p (Ek) � "

which contradicts

m

0@\
k

[
s�k

Es

1A = 0 8m 2M =) p

0@\
k

[
s�k

Es

1A = 0

as desired. �

Proof of Proposition 10 Let l1 be the Banach space of bounded sequences, that is, l1 =

fx 2 R1 : kxk1 <1g where kxk1 = supn jxnj. By Lemma 23,

f(m1 (E) ; :::;mn (E) ; :::) : E 2 �g = [0; 1]1

We can then de�ne F : [0; 1]1 ! [0; 1] by

F (m1 (E) ; :::;mn (E) ; :::) = P (E) 8E 2 �.

Let � 2 [0; 1],

x = (m1 (A) ; :::;mn (A) ; :::) 2 [0; 1]1 and y = (m1 (B) ; :::;mn (B) ; :::) 2 [0; 1]1 .

By Lemma 24, there is E� 2 � such that P (E�) = �P (A) + (1� �)P (B) and

mn (E
�) = �mn (A) + (1� �)mn (B) 8n � 1.

Hence,

F (�x+ (1� �) y) = F (m1 (E
�) ; :::;mn (E

�) ; :::) = P (E�)

= �P (A) + (1� �)P (B) = �F (x) + (1� �)F (y)
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Therefore, F is a a¢ ne on [0; 1]1. A routine argument shows that there is a linear functional

L : l1 ! R such that L (x) = F (x) for all x 2 [0; 1]1. This functional is bounded. For, let x 2 l1
such that kxk1 � 1. Then, x = x+ � x�, with x+; x� 2 [0; 1]1.25 Hence,

jL (x)j =
��L �x+ � x���� = ��F �x+�� F �x���� � ��F �x+���+ ��F �x���� � 2

since F (x) 2 [0; 1] for all x 2 [0; 1]1. We conclude that kLk = sup fjL (x)j : kxk1 � 1g � 2.

Claim Let fxsg � l1 be uniformly bounded (i.e., kxsk � K for all s and some K > 0) and such

that xsn ! xn for each n. Then, L (xs)! L (x).

Proof of the claim It is enough to show that, if fxsg � [0; 1]1 is such that xsn ! 0 for each n,

then F (xs)! 0. Let fEsg be such that

xs = (m1 (Es) ; :::;mn (Es) ; :::) 8s � 1

Hence m (Es)! 0 for all m 2M . By Lemma 25, this implies P (Es)! 0, and so F (xs)! 0. �

Since, by the Claim, the bounded linear functional L : l1 ! R is bounded pointwise continuous,
there exists � 2 l1 such that L (x) =

P
n �nxn for each x 2 l1. In particular, this implies

P (E) =
X
n

�nmn (E) 8E 2 �.

Since P (S) =
P
n �nmn (S) it follows

P
n �n = 1. By Lemma 23, there is a partition fEng such

that mn (En) = 1 for each n. Then, P (En) = �nmn (E) = �n for each n and so �n � 0 for each n,
as desired. �
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