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Abstract

We examine a model of limited communication in which the seller is selling a single good to

two potential buyers. Limited communication is modeled as follows: in each of the �nite number

of periods the seller asks one of the two buyers a binary question. After the �nal answer, the

allocation and the transfers are executed. The model sheds light on the communication protocols

that arise in welfare maximizing mechanisms.

Among other things, we show that when the total number of questions is bounded the welfare

optimal mechanism requires the seller to start with questioning one of the buyers and conclude

with a single last question to the other buyer.

1 Introduction

"[T]he literature on incentive compatibility is now quite extensive. However, with only a few excep-

tions, it is assumed that agents can transmit messages that are su¢ ciently detailed to describe fully

all their private information." Green and La¤ont (1987)

The above comment applies just as well as it did more than two decades ago. A bulk of the

literature assumes no restrictions on communication, enabling it to apply the revelation principle

and reduce communication to a simple one shot procedure. Observed communication is rarely

costless and almost never instantaneous. It tends to proceed through a sequence of exchanges

which take both time and e¤ort. Rarely is the private information revealed completely, be it

because agents do not want to reveal it, or because they have to carefully choose what they will

convey in the limited time they have at disposal. Milgrom (2009) reports several cases where

reporting buyers�private information would be too complicated, for example in FCC auctions with

many licences.

Our model explores the e¤ects of limited communication in a setup where a seller is selling a

single indivisible good to privately informed buyers. More precisely, we seek for an (ex ante) welfare

�Email: nenad.kos@unibocconi.it. This paper is based on the second chapter of my Ph.D. thesis at Northwestern
University. I am indebted to Alessandro Pavan and Asher Wolinsky for their continuous guidance and support. I
would like to thank Peter Eso and Johannes Hörner for many helpful comments.
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maximizing mechanism in which the seller sells an object to one of the two buyers whose valuations

are independently distributed over [0; 1]. Unlike in the most of mechanism design literature where

buyers can fully communicate private information, we assume that communication proceeds through

a sequence of binary questions the seller can ask. Binary questions are interpreted as: "Does your

valuation belong to a set C?", where C is a Borel measurable set in [0; 1]. We call an uninterrupted

sequence of questioning of one buyer a round.1 Such a model was �rst introduced by Blumrosen,

Nisan and Segal (2007). They showed that welfare maximizing mechanisms use threshold questions.

I.e., questions asking the agent whether his valuation is above or bellow a certain threshold. Due to

results in Fadel and Segal (2009) we know that truthful reporting to threshold questions combined

with allocation rules that award the object to the agent with the highest expected value, given

the revealed information, can be supported with transfers in a Bayesian Nash equilibrium. In the

equilibria we construct all the histories occur with positive probabilities, justifying consideration

of Bayesian Nash equilibria.

Novelty of this paper are characterizations of the welfare maximizing protocols. First we con-

sider a framework in which the seller commits to asking buyer i at most ki questions. In each period

the seller asks one buyer a question, possibly depending on the questions and answers in the past.

However, before the mechanism starts the seller commits to who will be questioned in which period

and what questions will be asked. After the last answer the allocation rule and the transfers are

executed. We start the analysis by assuming that all of the buyers report truthfully. This enables

us to obtain an upper bound on the welfare to be achieved under limited communication. We

show that under truthful reporting, when each buyer has at least two questions, a welfare optimal

mechanism entails three rounds. In the �rst round one of the two buyers is asked all questions

assigned to him, but one. In the second round the other buyer is asked all of the questions intended

for him, and �nally in the last period the �rst buyer is asked one last question.

Next we consider the setup in which the seller only commits to a total number of questions. An

interpretation of such a setup is that questions and answers take time, moreover, they take the same

amount of time regardless of who the seller is talking to. In our main result we show that in any

welfare optimal equilibrium communication proceeds through two rounds. In the �rst round all but

one question are used on one of the buyers, in the second round the remaining buyer is asked one

last question. We characterize questions asked in welfare optimal equilibria, incentives for buyers

to report truthfully are then provided by above mentioned results from Fadel and Segal (2009).

In particular, the optimal mechanism requires the seller to elicit information from one buyer for a

longer period of time and to make a take it or leave it o¤er, depending on the previously obtained

information, to the other buyer in the last period. If the o¤er is refused, the buyer questioned �rst

receives the object.

We do not lay claim to have modeled any particular occurrence of communication in economic

activity, nor do we claim that optimal communication will always have the properties shown to hold
1For example, if buyer 1 is asked a question in periods 1 and 2, and buyer 2 in periods 3 to 5 the protocol has two

rounds.
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in our framework. Our objective was to explore the e¤ects of sequential limited communication in

a well understood model and to contrast them with the results obtained when no limits on com-

munication are imposed. When communication is not limited, the revelation principle applies and

simultaneous communication is without loss of generality. In our model sequential communication

enables one to obtain higher welfare. One might object that numbers are easy to report, and there-

fore limited communication in our model is forced. We would like to point out, however, that all

the words in a language, say English, can be mapped into numbers in the interval [0; 1], as can be

all sequences of these words. In such a way any conversation between agents could be boiled down

to simultaneous announcement of numbers in [0; 1]. Such a �language�would be rather cumbersome

to learn, that is why communication is formed by a sequential exchange of �nite sequences of a

limited number of words. Our model is a step towards recognition of complexity of communication

and formation of optimal communication protocols.

Although we model the bound on communication as exogenously given, the model can be looked

at from a somewhat broader perspective. One could specify a more general problem where the

buyers�or seller�s utility include some cost as a function of the number of questions for each buyer.

Consequently, the welfare function would include these costs. The methodology we developed

enables one to compute such a welfare for every possible combination of the number of questions

for the two buyers. After comparing the welfare over all the combinations one arrives at the optimal

number of questions for each buyer; provided the solution exists.

Finally, it should be noted that our approach extends to the problem of revenue maximiza-

tion. Blumrosen, Nisan and Segal (2007) have shown how a problem of revenue maximization

under simultaneous limited communication can be converted into a problem equivalent to welfare

maximization with simultaneous limited communication with �ctional buyers whose valuations are

virtual valuations of the buyers in the original problem. This result, as extended in Kos (2011),

allows one to solve the problem of revenue maximization when dynamic communication is allowed

by applying the methodology developed in the present paper.

1.1 Related Literature

The importance of limited communication in trading environments was recognized by Green and

La¤ont (1987). They consider a model with an agent and a central resource-allocation unit. The

decision of a central unit is a vector in Rn, parameters relevant to both players�objectives are a
vector in Rm and the message the sender can send is a vector in Rl. Limited communication is
modeled by assuming that l < min fm;ng. The problem with modeling limited communication

this way is that Rm can be bijectively encoded into Rl and the latter can be decoded into Rn. To
prevent such coding and decoding and to get limited communication, the authors had to assume

that the central resource-allocation unit may only use di¤erentiable mechanisms. We, on the other

hand, use a model of limited communication in which message spaces are of smaller cardinality

than the spaces of private information. In this way, limited communication arises without a need
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to impose extraneous assumptions on the allocation rules or transfers.

The closest papers to ours are Blumrosen, Nisan and Segal (2007) and Kos (2011). They study

an auction environment in which buyers can only report one of the �nite number of messages al-

though their private information is in a compact interval in R. Most of their analysis is concerned
with simultaneous communication. Blumrosen, Nisan and Segal (2007), however, provide an exam-

ple showing that with the same amount of communication one can achieve a higher level of welfare

by using sequential communication. Furthermore, they show that restricting communication to si-

multaneous reporting, at most doubles communication complexity in the here studied environment.

Our result implies that their bound is essentially tight.

The problem of how much information (measured in bits) needs to be transmitted between the

agents to perform a task is studied in the computer science �eld of Communication Complexity.

For an excellent survey see Kushilevitz and Nisan (1997). The main di¤erence between our paper

and the literature on communication complexity is that in our model we �x the amount of commu-

nication and solve for the welfare optimal mechanism given the constraint on the communication,

while communication complexity literature mostly considers the dual problem where the objective

is known and one asks what is the smallest number of bits needed to be communicated between the

agents to accomplish the objective. A prominent, and for our paper very relevant, paper on com-

munication complexity in economics is Fadel and Segal (2009). They compute how many bits need

to be exchanged to implement a decision rule in an incentive compatible mechanism. We use their

Proposition 6 to argue that certain mechanisms derived in our environment can be incentivized.

Lately limited (costly) communication started attracting more attention in contract theory, for

example Battigalli and Maggi (2002) and Mookherjee and Tsumagari (2007). For more references

see the latter paper.

Next, we point out the link between our paper and the revelation principle; see Myerson (1979)

and for a more general version Myerson (1986). In the light of our paper the revelation principle

can be seen as stating that when buyers are able to fully communicate their private information in

several periods one loses nothing by letting them simultaneously communicate in one period. The

amount of information one is able to convey does not change. When communication resources are

limited, however, it is of great bene�t to make communication sequential. Sequentiality enables

one to convey the most relevant information given what has been previously disclosed.

Last, our framework is related to the framework of Arrow, Pesotchinsky and Sobel (1981). They

considered a problem of searching for t largest observations in a random sample of size n by asking

binary questions. They considered two di¤erent criteria of optimality: (a) minimizing the expected

number of questions required and (b) maximizing the probability of terminating the search in at

most r questions for speci�ed r. Our model, instead, �xes the number of binary questions and

maximizes the welfare.
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2 Framework

A seller is selling a single good to two buyers, I = f1; 2g, who have independently distributed
valuations over [0; 1]. The corresponding distribution functions Fi are assumed to have positive

density on all of [0; 1]. Each buyer maximizes quasilinear utility function of the form

qivi �mi;

where vi is the privately known valuation, qi the probability of obtaining a good andmi the expected

transfer the buyer pays. While the preceding assumptions are well established and populate most

of the output in mechanism design, and particularly auctions, the following is a stark departure.

Communication proceeds through a sequence of binary questions the seller can ask. The seller

commits to asking each buyer at most ki questions, with K = (k1; k2), speci�es the sequence in

which the buyers are questioned, the actual questions, the allocations and the transfers.

Formally, the horizon is �nite with time indexed by t 2 T = f1; :::; k1 + k2g. The mechanism
speci�es who is asked a question in each period2:

� : T ! f1; 2g ;

with
����1 (i)�� = ki; and the question the buyer is asked given the history:

�t : H
t�1 ! B;

where B is the Borel sigma algebra on [0; 1]. After each history the speci�ed buyer is asked a

question of a type: "Does your valuation belong to a set C?", where C is a Borel set in [0; 1] : Ht�1

is the set of histories at the beginning of period t, with a generic element ht�1 = (h1; h2; :::; ht�1)

and the convention H0 = ;: History in this context is a sequence of answers, thus with our notation
ht 2 f0; 1g. When the �nal history hk1+k2 is realized the allocation rule Q and the transfer rule M
are executed:

Q : Hk1+k2 ! [0; 1]3 ;

M : Hk1+k2 ! R2+;

where Q0 is interpreted as the probability that the seller keeps the object. A mechanism in our

setup is a tuple (K; �; �;Q;M) : Often we will be interested in a set of mechanism with a �xed set

of parameters; f(K) ; (K; �) ; (K; �; �)g covers those of greater importance. For example, we denote
the set of all mechanisms for which communication is fully determined and given by K; � and � by

GK;�;�. These mechanisms di¤er only in allocation and transfer rules. We use the letter g to denote

2We assume that a single person is asked a question in each period. It is easy to see that our characterizations
would remain unaltered if we allowed for simultaneous questioning.
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a particular mechanism.

Buyer i0s pure strategy3
�
�it
�
t2��1(T ) :

�it : H
t�1 � [0; 1]! f0; 1g ;

is to answer 1 or 0, yes or no respectively, when he is asked a question, i.e. for t such that � (t) = i,

given his valuation and the history. History ht describes all the answers up to period t�1, inclusive.
We are assuming that all communication is observed by all the participants in the mechanism. This

is purely for expositional purposes.

Throughout most of the paper the objective will be maximization of ex ante welfare

E

"X
i

Qivi

#
;

i.e. the mechanism should award the object to a buyer with the highest value.

The equilibrium concept we apply is Bayesian Nash equilibrium.4 The analysis will proceed

somewhat unconventionally, though. At �rst we will neglect any kind of incentives on the side of

buyers; i.e. buyers will be assumed to report truthfully whenever called upon:

�it
�
ht�1; vi

�
= 1[vi2�t(ht�1)];

for t such that � (t) = i. We call a mechanism that achieves the highest welfare under truthful

reporting informationally optimal.5 In the second stage of the analysis we will argue that such
a mechanism can be incentivized. The welfare achieved in mechanism g, when bidders always report

truthfully, is denoted

wio (g) :

Furthermore, given the set of parameters P 2 f(K) ; (K; �) ; (K; �; �) ; (K; �;Q)g we denote the high-
est welfare achieved in a mechanism with these parameters under truthful reporting by

wio�P = sup
g2GP

wio (g) :

2.1 Alternative Interpretation

We make an explicit assumption that questions asked are part of a mechanism. Instead of talking

about abstract message spaces spanning through several periods, we have the seller facilitating

communication through directed questioning. This is, in a sense, without loss of generality since

3 In the Discussion section we argue that considering only pure strategies is without loss of generality for our
results.

4Welfare maximizing equilibria we characterize in the paper are such that every history occurs with positive
probability, justifying consideration of Bayesian Nash equilibria in a dynamic game.

5The term was coined by Blumrosen and Feldman (2007).
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any equilibrium of the model with questions can be embedded as a Bayesian equilibrium in the

model without questions (and vice versa) where bidders choose one of the two messages when they

are called upon to report.

Results from the mechanisms with limited simultaneous communication will be of great bene�t

to us here. In such mechanisms buyers report simultaneously, each buyer choosing one of the �nite

number of messages in his message space, although the valuation space is the interval [0; 1]. Upon

reports the allocation and the transfers are executed. We denote optimal welfare achieved in such

a mechanism by

ws�k1;k2 ;

where k1 and k2 stand for cardinalities of buyer 1 and 2�s message space, respectively. As a reminder

we restate Proposition 1 from Kos (2011) showing that in a simultaneous reporting mechanism with

limited communication and 2 buyers welfare cannot be increased by increasing the cardinality of

the buyer with the higher cardinality.

Lemma 1 Let k1 � k2 and k = min fk1; k2 + 1g, then

ws�k1;k2 = w
s�
k;k2 :

The above Lemma shows that the lower of the two cardinalities is crucial for welfare when it

comes to limited communication with simultaneous reporting. For example, suppose (k1; k2) =

(7; 3), so that buyer 1 can choose among 7 messages and buyer 2 among 3. Thus, Lemma states

ws�7;3 = w
s�
4;3. That is, the highest welfare that can be achieved in a mechanism with simultaneous

communication with bounds on communication given by K is equal to the highest welfare that can

be achieved in a simultaneous communication mechanism with bounds given by (4; 3).

On the other hand, if the cardinality of the message space of the buyer with the smaller car-

dinality is increased or if cardinalities of both bidders are raised, strictly higher welfare can be

achieved. The next result follows from the proofs of Proposition 1 and Theorem 2 in Kos (2011).

Lemma 2 Let K = (k1; k2) ; K
0 = (k01; k

0
2), k = min fk1; k2g and k0 = min fk01; k02g. If k > k0 then

ws�k1;k2 > w
s�
k01;k

0
2:

The mechanism with the higher lowest cardinality achieves the higher welfare. For example,

if K = (6; 3) and K 0 = (2; 7) then ws�6;3 > ws�2;7. One applies Lemma 1 to obtain the equalities

ws�6;3 = w
s�
4;3 and w

s�
2;7 = w

s�
2;3, after which it is easy to see that w

s�
4;3 > w

s�
2;3. A somewhat stronger

result than the one stated in Lemma 2 holds; the following example is not covered. Suppose

K = (6; 3) and K 0 = (3; 3), then ws�6;3 = w
s�
4;3 > w

s�
3;3. Yet di¤erently, as soon as cardinality of the

messages space of a buyer with the lowest cardinality is increased a higher welfare can be achieved.
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3 Welfare Maximization

First we show that a mechanism in GK;�;� that uses an allocation rule awarding the object to a buyer

with the highest expected value given the questions and the answers is informationally optimal in

GK;�;�.

Lemma 3 Let g� 2 GK;�;� be a mechanism that allocates the object to a buyer with the highest

expected value given the questions and the answers. Then g� achieves the welfare wio�K;�;�.

We provide a simple example to demonstrate the above Lemma.

Example 1 Suppose buyers 1 and 2 have valuations distributed according to the uniform distribu-

tion on the interval [0; 1]. Furthermore, suppose there are only two periods. In the �rst period buyer

1 is asked whether his valuation is at least 0:5. If he answeres with yes, buyer 2 is asked whether

his valuation is at least 0:75, otherwise whether his valuation is at least 0:25. With our notation

this means K = (1; 1), � = (1; 2) and � = (0:5; 0:75; 0:25). Clearly among all the mechanisms with

these parameters any welfare maximizing mechanim allocates the object to buyer 2 if both of them

answer positively, to buyer 1 if both of them answered negatively and so forth.

We omit a formal proof. By the de�nition of GK;�;�; all the mechanisms in it have the same

sequence of questioning and the same questions. Remember, in each period one of the buyers is

asked whether his valuation belongs to a certain set. At the end of questioning, the seller knows

each buyer�s valuation is in the intersection of the sets the buyer claimed his valuation belongs to.6

On the technical side, the intersection will be nonempty since the buyers are assumed to report

truthfully. To maximize welfare, one is merely left to compute the expected value corresponding

to the deduced set for each of the buyers and awarding the object to a buyer with the highest

expected value. Since buyers are assumed to report truthfully, the design of the mechanism has

no e¤ect on incentives, but solely on welfare. Ties can therefore be broken arbitrarily. Finally, one

can prove a somewhat stronger lemma, stating that a mechanism achieves the welfare wio�K;�;� if and

only if it allocates the object to a bidder with the highest valuation with ex ante probability 1.

Potentially, an ex ante welfare maximizing mechanism could award the object to the buyer with

the lower valuation, as long as that event has probability zero.

We de�ne threshold questions to be questions of the type Ai = [ai; 1] for ai 2 [0; 1]; or Ai =
[0; ai). Threshold strategies, the natural analog to threshold questions, are the crux of the analysis

in Blumrosen, Nisan and Segal (2007) and Kos (2011). The origins of the following lemma can

be traced to Blumrosen, Nisan and Segal (2007); see the Theorem 6.1 on the page 260 and the

discussion preceding it.

6Suppose buyer 1 is asked in the �rst period whether his valuation belongs to the interval [0:5; 0:6) and in the
third whether it belongs to the interval [0:57; 0:62). Furthermore, suppose he answered a¢ rmatively in both periods.
Then it is clear that his valuation is in the interval [0:57; 0:6).
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Lemma 4 There exists a mechanism with threshold questions in GK;�;Q that achieves wio�K;�;Q, and

a mechanism with threshold questions in GK;� that achieves wio�K;�.

Proof. Proof of this and the subsequent results can be found in the Appendix.

In the �rst part of Lemma 4 we �x the number of questions, who is questioned in each period

and the allocation rule, then show that considering only threshold questions is without loss of

generality. This should be rather intuitive since the seller�s objective is to award the object to a

bidder with the highest valuation. The second part shows the same for a more general class of

mechanisms.

We are still left to determine the optimal sequence of questions. That is, we are left to determine

the optimal � given the �xed vector K. Exploitation of simultaneous communication mechanisms

will be of great value here. Before we proceed to the formal analysis we present a simple example.

Example 2 Let, k1 = k2 = 2 and � = (1; 2; 2; 1). In the �rst period, buyer 1 is asked a question

which can be characterized as a threshold. For each of the two answers of buyer 1, there is a

threshold (question) for buyer 2 in period two. By the end of the second period, there are four

possible histories and for each of those there is another threshold (question) for buyer 2 in period

three. Therefore, there are altogether 6 thresholds (corresponding to threshold questions) for buyer

2 (two in the second period and four in the third). Finally, at the beginning of the third period there

are 8 possible histories, thus eight thresholds, which together with the �rst period threshold yields 9

thresholds for buyer 1. The above analysis implies that whatever expected welfare can be achieved in

our sequential mechanism can also be achieved in a mechanism with simultaneous communication

in which buyer 1 uses 9 thresholds and buyer 2 uses 6, i.e. in a simultaneous communication

mechanism in which cardinalities of the message spaces of buyer 1 and 2 are 10 and 7, respectively.

Thus we have wio�(2;2);� � w
s�
(10;7). By Lemma 1 w

s�
(10;7) = w

s�
(8;7), hence w

io�
(2;2);� � w

s�
(8;7). There exists

a pro�le of thresholds c1 =
�
c11; c

1
2; :::; c

1
7

�
, c2 =

�
c21; c

2
2; :::; c

2
6

�
for buyers 1 and 2 respectively that

together with an appropriate allocation rule and the transfers achieves the welfare ws�(8;7):
7�8 These

thresholds can be naturally embedded into the dynamic setup. Let

�1 (;) =
�
c14; 1

�
;

�2 (1) =
�
c22; 1

�
; �2 (0) =

�
c26; 1

�
;

�3 (1; 1) =
�
c21; 1

�
; �3 (1; 0) =

�
c23; 1

�
; �3 (0; 1) =

�
c25; 1

�
; �3 (0; 0) =

�
c27; 1

�
;

�4 (1; 1; 1) =
�
c11; 1

�
; �4 (1; 1; 0) =

�
c12; 1

�
; �4 (1; 0; 1) =

�
c13; 1

�
; �4 (1; 0; 0) =

�
c14; 1

�
;

�4 (0; 1; 1) =
�
c15; 1

�
; �4 (0; 1; 0) =

�
c16; 1

�
; �4 (0; 0; 1) =

�
c17; 1

�
; �4 (0; 0; 0) =

�
c18; 1

�
:

Notice that (�t)t achieves the expected welfare w
s�
(8;7); therefore w

io�
(2;2);� = w

s�
(8;7).

7For details see Kos (2011).
8We adopt the convention cij � cij+1 for each i: ci1 is the highest threshold of buyer i; ci2 the second highest, etc.
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We call an uninterrupted sequence of questioning of one buyer a round.9 For example, if g is

some mechanism with � = (1; 1; 2; 2; 1; 1) ; then the mechanism has three rounds, in each of which

a buyer is asked two questions. The following lemma shows it is ine¢ cient to use more than one

question in the �nal round (if there are at least three rounds).

Lemma 5 Let g be a mechanism in GK with at least three rounds, and more than one question in

the last round. Then there exists an alternative mechanism g0 2 GK , with one question in the last
round, such that wio (g) � wio (g0).

After the penultimate round, the seller holds all necessary information regarding the penultimate

buyer (the buyer questioned in the penultimate round). At that point, the seller could compute

the set the penultimate buyer�s valuation belongs to and the expected value corresponding to it.

Since the objective is welfare maximization, the seller only cares about whether the other buyer�s

valuation is above or below that expected value, a matter that can be settled by a single question.

By redistributing the remaining questions from the last round to earlier rounds one can achieve

higher welfare.10

Next, we show that it is optimal to have three rounds; every additional round decreases welfare.

The optimal sequence of questioning �� is either of the type (1; 1; :::; 1; 2; 2; :::; 2; 1) or with the roles

of buyers 1 and 2 reversed. Furthermore, it is optimal to begin questioning the buyer assigned with

the least number of questions.

Theorem 1 An informationally optimal mechanism in GK exists and entails at most three rounds.
If ki > k�i � 2; for some i 2 f1; 2g, then it is informationally optimal to �rst ask buyer �i,
k�i � 1 questions, then ask buyer i ki questions and �nally ask buyer �i one last question. If
min fk1; k2g = 1; then an informationally optimal mechanism has two rounds, whereby buyer with

min fk1; k2g is questioned in the second round.

The later a question is asked, the more preceding histories it has. Since for each history

a question creates a threshold, more preceding histories translates into more thresholds. More

thresholds, in turn, result in a better idea of the buyer�s valuation, thus the possibility of achieving

a higher welfare. Consequently, one would like to ask questions assigned to the penultimate buyer

as late as possible, meaning in the penultimate round. Optimally, the penultimate buyer will only

be questioned in the penultimate round. Since Lemma 1 implies that the other buyer is asked only

one question in the last round, his remaining questions have to be asked in the �rst round, delivering

three rounds altogether. Turning to the case where each buyer is asked at least two questions and

k1 6= k2, we show that the buyer with the larger number of questions should be questioned in the
second round. Thus, the number of thresholds for the penultimate buyer is maximized. Finally,

9This corresponds to the de�nition of a round in a protocol introduced in Kushilevitz and Nisan (1997); see
De�nition 4.23 on page 49.
10This is formally shown in the following Theorem.
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reducing the number of rounds to two would be ine¢ cient. As we showed in Lemma 5, all the

relevant information for welfare maximization in the last round can be obtained by one question.

The other questions, would therefore be better utilized if asked at the beginning.

We present two examples to clarify the rather abstract analysis above. First, one presents

the welfare maximizing equilibrium of a mechanism with limited communication and simultaneous

reporting. The second shows how strategies from a mechanism with simultaneous communication

can be embedded into the framework with questions.

Example 3 Two buyers have valuations independently and uniformly distributed over the interval
[0; 1]. Buyer 1�s cardinality of the message space k1 is 8 and buyer 2�s, k2, is 7. After buyers

observe their private valuations they simultaneously report one of the messages in their message

space after which the allocation and the transfers are executed. For the details of the mechanism

and the analysis see Blumrosen, Nisan and Segal (2011). Optimal reporting strategies are threshold

strategies, and indeed they are mutually centered. Threshold strategy of the buyer with cardinality

of the message space k can be described by k� 1 thresholds. Buyer 1�s threshold strategy is denoted
c1 =

�
c11; ::; c

1
k1�1

�
with c11 � c12 � ::: � c1k1�1, and buyer 2�s c

2 =
�
c21; c

2
2; :::; c

2
k2�1

�
with c21 � ::: �

c2k2�1: In the welfare optimal equilibrium the inequalities between thresholds are strict. To be more

precise, thresholds are mutually centered:

c1j = E
�
V j c2j�1 � V � c2j

�
; j 2 f1; 2; :::; k1 � 1g ;

c2j = E
�
V j c1j � V � c1j+1

�
; j 2 f1; 2; :::; k2 � 1g ;

with the convention cij = 1 for j � 0 and cij = 0 for j � ki and i = 1; 2: For our case of uniform
distribution and k1 = k2 + 1 = 8 the above system of equations yields a unique solution:

c1k = 1� 2k � 1
14

, k = 1; :::; 7;

c2k = 1� 2k
14
, k = 1; :::; 6:

With simultaneous communication, the above threshold strategies coupled with the allocation rule

that awards the object to a buyer with the highest expected value given the strategies and the reports

yields the informationally optimal mechanism.

Next we show how to deal with the sequential binary questions.

Example 4 Revisiting Example 1, assume two buyers have valuations distributed independently
and uniformly over [0; 1] and k1 = k2 = 2: An informationally optimal mechanism entails � =

(1; 2; 2; 1) and achieves the welfare of ws�8;7. This level of welfare, while assuming that buyers report

truthfully, can be achieved by embedding the thresholds that achieve the highest welfare in the si-

multaneous communication mechanism with k1 = k2 +1 = 8 into the sequential model as was done

in Example 2.
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So far, we were concerned with the question of how to organize communication in order to

maximize welfare when the seller commits to a certain number of questions for each buyer under

the assumption that buyers report truthfully. However, in some instances the real constraint for

the seller will be the total number of questions asked, say if the seller is time constrained and

questioning each buyer is equally time costly. Therefore, the natural next step is to ask what can

be done when the seller is only restricted by the total number of questions. In particular, what are

the welfare optimal mechanisms when the restriction on k1 and k2 is k1 + k2 � k�, for k� � 2, and
k1; k2 � 1.11

Let Gk� be the set of all mechanisms with k1+k2 � k�, and let wio�k� be the lowest upper bound on
welfare achieved by mechanisms in Gk� under truthful reporting, i.e. wio�k� = sup

g2Gk�
wio (g). We call

a mechanism g� informationally optimal in Gk� if it achieves welfare wio�k� under truthful reporting.

That is, if wio (g�) = wio�k� .

Theorem 2 Let k� � 2, k� 2 N. An informationally optimal mechanism in Gk� exists. Moreover,

for any such informationally optimal mechanism g� in Gk� there exists an i 2 f1; 2g such that
ki = k

� � 1, k�i = 1 and � = (i; :::; i;�i).

The above theorem provides existence of an informationally optimal mechanism in Gk� , and

shows that an informationally optimal mechanism has only two rounds. In the �rst round one of

the buyers is asked all the questions but one and in the last period the other buyer is asked one last

question. Using more than two rounds is wasteful, because the more thresholds the penultimate

buyer has, the higher the welfare that can be achieved. The highest number of thresholds he could

possibly have is achieved by allotting him all the questions but the last one.

One of our underlying assumptions is that buyers observe all the previous questions and answers.

This assumption is not necessary for the mechanism constructed in the proof of Theorem 2. Namely,

in each period and at each history, all relevant information for the buyer can be deduced from the

question. Clearly, when we assume truthful reporting, observing what the other buyer reports is

redundant. The same, however, applies under the equilibrium analysis. The questions re�ect all

the relevant information revealed in the past.

Thus far, the analysis was conducted under the assumption that both buyers report truthfully

in all periods. This yields an upper bound on what could possibly be achieved under limited com-

munication. Now we can apply Proposition 6 of Fadel and Segal (2009). Using their terminology,

the allocation rule in the optimal protocol of our Theorem 2 is EPIC-implementable (each agent�s

allocation is nondecreasing in his value) therefore Bayesian incentivizing transfers can be computed

as shown by Fadel and Segal (2009). Even more, there is no extra substance to requiring concept

11The last assumption is for convenience. It is easy to see that it cannot be welfare maximizing to question only
one buyer. Indeed, under our assumptions, it would be welfare optimal to award the object to this buyer without any
questions. But then the welfare could be raised by adding an additional buyer and asking him whether his valuation
is larger than the �rst buyer�s expected valuation.
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like Perfect Bayesian Equilibrium rather than Bayesian Nash Equilibrium since all histories have

positive probabilities.

Through the de�nition of �, we assumed that in each period the same buyer is questioned for all

the possible histories. Here we argue why this assumption is without loss of generality for Theorem

2. Suppose one allows for more general mechanisms in which who is asked a question depends on

the history. It still follows from a result in Blumrosen, Nisan and Segal (2007) that the optimal

welfare is achieved in threshold strategies. Furthermore, in any mechanism with k� questions there

are at most 2k
� � 1 distinct thresholds. I.e., in the �rst period there is one threshold, in the second

two (one for each history), etc. Fix a mechanism g. Let xi be the number of thresholds created by

questions to agent i, clearly xi+x�i = 2k
��1. For the sake of the argument let x1 > x2. At least as

high a welfare as in the sequential mechanism could be achieved by a mechanism with simultaneous

communication in which agent 1 has x1 + 1 messages and agent 2, x2 + 1, or wio (g) � ws�x1+1;x2+1.
By Lemma 1 wio (g) � ws�x2+2;x2+1. One would like to make this upper bound as large as possible,
i.e. one would want x2 as large as possible. This together with xi + x�i = 2k

� � 1 and x2 < x1

yields x2 = 2k
��1 � 1 and the upper bound wio (g) � ws�

2k
��1+1;2k��1

. More generally one obtains

wio (g) � max
n
ws�
2k
��1+1;2k��1

; ws�
2k
��1;2k��1+1

o
. The proof of Theorem 2 constructs a mechanism

which achieves precisely this upper bound and questions only one agent in the �rst k� � 1 periods
(along all the histories) after which the other agent is asked one last question in the last period.

Finally, Blumrosen, Nisan and Segal (2007) show that restriction to simultaneous communica-

tion can at most double communication complexity. More precisely, to achieve the same welfare

as in a sequential mechanism with k� bits of communication in a mechanism with simultaneous

reporting one needs less than 2k� + 1 bits.12 Our proof of Theorem 2 provides the tight bound.

In particular, to achieve the same expected welfare as in an informationally optimal mechanism

provided by Theorem 2 in a mechanism with simultaneous reporting one needs 2k
��1 messages for

agent i and 2k
��1 + 1 messages for agent �i. Di¤erently, if k� bits are transmitted in the infor-

mationally optimal mechanism one needs 2k� � 1 bits to achieve the same welfare in a mechanism
with simultaneous reporting.

4 Discussion

Several assumptions in our model warrant an explanation. The assumption of questions being asked

was commented on in the text above. One could dispense with questions altogether and assume

that buyers report one of two messages in each period.

We assume that questions are binary, for two purposes. First, since we are restricting commu-

nication, the results should be most striking in the most restrictive case, the one in which buyers

can only answer with yes or no. Second, binary questions can be reinterpreted as bits which are

12There is a slight imprecision in the statment of Theorem 6.1 in Blumrosen, Nisan and Segal (2007). The theorem
makes a claim "... [w]ith a communication requirement smaller than nm." Their proof, however, gives a bound
nm� n(n�3)

2
. Thus for n = 2 the statement should read communication requirement smaller than 2m+ 1.
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well established units of information transmission in information theory; see for example Cover and

Thomas (1991) and Kushilevitz and Nisan (1997).

Some of the assumptions we made are there for ease of exposition. They would not change the

main results if we dropped or suitably relaxed them. We assume that a buyer is asked a single

question in each period. We could allow for both buyers to be asked a question in one period, or

even both buyers to be asked several questions simultaneously within a period. It is easy to see

that this would not enable one to achieve higher welfare. Such simultaneous communication would

prevent one from conditioning on the information being reported in the same period. In addition,

we assume that buyers use pure strategies. Again, the more general case would not help to achieve

a higher welfare. For a buyer to mix between two messages for some positive measure of states he

would have to be indi¤erent in all those states, meaning that for those two messages he would win

with the same expected probability and have to pay the same transfer. This would in turn be a

waste of a question.

Finally, we take into account the number of periods, or questions, to which the seller commits.

In e¤ect, this means that the cost of communication originates in the seller committing up front to a

certain amount of questions and therefore time. For example, if the seller commits to �ve questions,

he incurs the cost corresponding to �ve questions even if for some history he knows which of the

two buyers has the highest valuation after two questions. Future research could explore how the

optimal mechanism changes when one takes into account only the actual number of questions used

to achieve the objective along each history.

5 Conclusion

We explore a model of limited communication in a setup where a seller is selling a single indivisible

object to one of two buyers. We show how results from models with simultaneous limited commu-

nication can be used to solve the dynamic problem. In our main result, we show that when the

seller commits to the total number of questions the welfare maximizing protocol requires only two

rounds: in the �rst round one of the buyers is sequentially asked all the questions but one, while

in the second round the other buyer is asked one last question. The welfare maximizing alloca-

tion rule awards the object to the buyer with the highest expected value computed from revealed

information.

Our analysis proceeds by providing a bound on the welfare achieved by a mechanism with ques-

tions by a mechanism with simultaneous limited communication. We show that for any mechanism

with questions, there exists a mechanism with simultaneous limited communication, and an equi-

librium of that mechanism that achieves at least as high a welfare. Furthermore, the bound we

provide is tight. That is, for a welfare maximizing equilibrium of a mechanism with questions there

exists a mechanism with simultaneous limited communication and an equilibrium of the latter,

achieving the same welfare. This can be seen as an analogue of the revelation principle. In the

14



mechanism design without limits on communication the revelation principle implies it is without

loss of generality to use simultaneous reporting. Simultaneous reporting when communication is

limited, however, requires a larger message space to achieve the same welfare, corresponding to the

idea that if one introduced rich enough language, then every story, question, and answer could be

described by a single word. Consequently, simultaneous reporting of messages would be without

loss of generality. How people would manage such a language is a di¤erent question altogether.

Finally, we would like to point out that the analysis in our paper carries over to revenue maxi-

mization. Blumrosen, Nisan and Segal (2007) have shown that the problem of revenue maximization

with simultaneous limited communication can be transformed into the problem akin of welfare max-

imization with simultaneous limited communication. After such a transformation, our approach of

using bounds applies.
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Appendix

Proof of Lemma 4. The �rst part of the claim follows from Blumrosen, Nisan and Segal

(2007); see the discussion preceding Theorem 6.1. For the second part observe that to achieve

informationally optimal welfare in GK;� it is enough to consider deterministic allocation rules, by

Lemma 3. Therefore, given the �xed K and � we only need to consider a �nite number of allocation

rules for each of which the informationally optimal welfare in GK;� can be achieved by threshold

questions.

Proof of Lemma 5. All that is relevant for welfare in the last round is whether the valuation of

the questioned buyer is higher or lower than the expected valuation of the buyer questioned in the

penultimate round. This can be settled by a single question, while the remaining questions can be

dispensed with or moved to earlier rounds to extract more information. More precisely, suppose

that bidder i is questioned in the last round of g. We can construct g0 by replacing the questions in

the last round of g by a single question asking bidder i whether his valuation is above (or below) the

expected value of bidder �i computed from the information gained from his questions and answers.
To have g and g0 of the same length, same number of periods, questions [0; 1] can be added at the

beginning of g0: The allocation rule in g0 should award the object to the bidder with the highest

expected value given the questions and the answers. Clearly wio (g) � wio (g0) :
While the above argument proves the Lemma, clearly the [0; 1] questions at the beginning can

be used more productively.

Proof of Theorem 1. Existence of an informationally optimal mechanism in GK is easy to

establish. By Lemma 4 there exists an informationally optimal mechanism in GK;�. For any �xed

K there are only �nitely many �, therefore there also exists an informationally optimal mechanism

in GK . Moreover, by the same lemma, it is enough to consider only threshold questions.

If there are more than three rounds in a mechanism, one can increase welfare by redistributing

the questions from the earlier rounds to the later. Indeed, let g be a mechanism with at least four

rounds. By Lemma 5 it is enough to consider a mechanism with one question in the last round. Let

the number of rounds be R = 2n for some n 2 N, n � 2 (the case of odd R is handled analogously)
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and let buyer 1 report in the �rst round. The number of questions for buyer 2 in the round 2r is

denoted by mr, while the number of questions for buyer 1 in the round 2r � 1 is denoted by lr.
The restrictions are

P
lr = k1 and

P
mr = k2.

Starting with the �rst round, in the �rst period buyer 1 is asked a question, creating a threshold.

For each of the two answers in the �rst period buyer 1 is asked another question in the second period,

creating two possibly distinct thresholds. At the beginning of l1th period there are 2l1�1 histories,

for each of which a question is asked. This yields at most 1 + 2 + ::: + 2l1�1 = 2l1 � 1 distinct
thresholds for buyer 1 in the �rst round. At the beginning of the third round there are 2l1+m1

histories, hence at most 2l1+m1
�
2l2 � 1

�
distinct thresholds in round three, etc. Altogether there

are at most

x = 2l1 � 1 + 2l1+m1

�
2l2 � 1

�
:::+ 2l1+m1+:::+mn�1

�
2ln � 1

�
thresholds for buyer 1 in the mechanism g. In the last round there are at least x thresholds created

for buyer 2, and in the second at least 2. Lemma 1 then implies that we can bound the welfare

achieved by g by ws�x+1;x+2.

An alternative mechanism, g0, constructed by moving the last question from the round R � 3
to the beginning of the round R� 1 yields at most

x0 = x� 2l1+:::+mn�2
�
2ln�1 � 1

�
+ 2l1+:::+ln�2+mn�2

�
2ln�1�1 � 1

�
� 2l1+m1+:::+mn�1

�
2ln � 1

�
+2l1+m1+:::+ln�1�1+mn�1

�
2ln+1 � 1

�
distinct thresholds for buyer 1. It is easy to verify that x0 > x. The upper bound on the welfare

to be achieved in g0 is then ws�x0+1;x0+2: Also, by Lemma 2 w
s�
x0+1;x0+2 > ws�x+1;x+2. By iterating

the process, one arrives at a three rounds mechanism with a higher upper bound on welfare than

any mechanism with more than three rounds. Next, we show that the last upper bound can be

achieved.

Since we started with a mechanism with one question in the last round, we have a mechanism

with k1�1 questions for buyer 1 in round 1, k2 questions for buyer 2 in round 2 and �nally one ques-
tion for buyer 1 in round three. This results in at most y = 2k1�1

�
2k2 � 1

�
distinct thresholds for

buyer 2 and an upper bound on the welfare of ws�y+2;y+1. Let c
1 =

�
c11; :::; c

1
y+1

�
and c2 =

�
c21; :::; c

2
y

�
be pro�les of thresholds that achieve such welfare in a simultaneous communication mechanism.

From Kos (2011) we know that these thresholds are mutually centered: c11 = E
�
X2 j 1 � X2 � c21

�
,

c21 = E
�
X1 j c11 � X1 � c12

�
; etc. In particular c11 > c21 > c12 > ::: > c1y+1. The construction of

questions proceeds by a bisection on the level of thresholds. One starts with the middle threshold

of buyer 1

�1 =
h
c1
2k1�1�1(2k2�1)+1; 1

i
:

Suppose buyer 1 is asked a question in the second period again; otherwise proceed to the next

step. If he answered positively in the �rst period, 1, then the threshold in period two is the middle
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threshold of the thresholds above and including c1
2k1�1�1(2k2�1)+1

, i.e.

�2 (1) =
h
c1
2k1�1�2(2k2�1)+1; 1

i
:

Similarly

�2 (0) =
h
c1
2k1�1�1(2k2�1)+2k1�1�2(2k2�1)+1; 1

i
:

The rest of the thresholds in the �rst k1 � 1 periods is obtained by the same method. Formally, in
the �rst k1 � 1 periods

�t
�
ht�1

�
=
h
c1st(ht�1); 1

i
;

where

st
�
ht�1

�
= 2k1�2

�
2k2 � 1

�
+ 1 + (1� 2h1) 2k1�3

�
2k2 � 1

�
+ :::+ (1� 2ht�1) 2k1�t�1

�
2k2 � 1

�
;

for ht = (h1;h2; :::; ht).

After the �rst round is over, one knows whether buyer 1�s valuation is in
h
c1
2k2
; 1
i
;
h
c1
2k2+1�1; c

1
2k2

i
,...,

or
�
0; c1

2k1�1(2k2�1)�2k2

�
. In each of these intervals there are 2k2 � 1 thresholds of buyer 2. For

example
n
c21; c

2
2; :::; c

2
2k2�1

o
�
h
c1
2k2
; 1
i
. Now one proceeds by bisection on the set of thresholds for

buyer 2 belonging to the identi�ed interval of buyer 1. Finally, let
�
c2l ; 1

�
be the last question for

buyer 2 in the second round. If he answers with 1; then the question for buyer 1 in the last period

is
�
c1l ; 1

�
, otherwise

�
c1l+1; 1

�
.

We still need to show that k1 > k2 � 2 implies it is optimal to question buyer 1 in the second
round. This is done by a simple computation. If buyer 1 is questioned in rounds 1 and 3 the highest

welfare achievable is ws�
2k1�1(2k2�1)+2;2k1�1(2k2�1)+1

. If, on the other hand, buyer 2 is questioned in

the second round the highest welfare achievable is ws�
2k2�1(2k1�1)+1;2k2�1(2k1�1)+2

: Clearly

2k2�1
�
2k1 � 1

�
+ 1 > 2k1�1

�
2k2 � 1

�
+ 1:

By Lemma 2 it is optimal to question buyer 1 in the second round. It should also be noted that the

constructed three round mechanism achieves higher welfare then any two round mechanism, which

follows the reasoning of Lemma 5. If there are only two rounds, the highest welfare is achieved

by computing the expected value of the buyer questioned in the �rst round from the available

information, and asking the buyer in the second round whether his valuation is above that value.

All other questions for the buyer in the last round can be productively used at the beginning of

questioning, thus creating three rounds.

Finally, if min fk1; k2g = 1, one or both buyers are assigned only one question. By Lemma 5 we
know that a single question su¢ ces for the last round. Therefore it is optimal to question a buyer

who was assigned a single question in the last round.
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Proof of Theorem 2. First, we assume k� � 3: When k� = 2 there can be no more than two
rounds, by de�nition. Fix K such that k1 + k2 = k�. By Theorem 1, an informationally optimal

mechanism for any �xed K never entails more than three rounds. Take any three round mechanism

in which buyer 1 is questioned in the �rst round. It is without loss of generality to assume there

are k1 � 1 questions for buyer 1 in the �rst round followed by k2 questions to buyer 2, while in the
last round buyer 1 is asked a single question. This gives altogether x = 2k1�1

�
2k2 � 1

�
thresholds

for buyer 2 and an upper bound on welfare of ws�x+2;x+1. By �rst using k1 � 1 questions on buyer 2
rather than buyer 1, one could get x0 = 2k1+k2�1 > x thresholds for buyer 2. This yields an upper

bound on welfare of ws�x0+2;x0+1. This upper bound can be achieved by the strategies constructed

similarly as in the proof of Theorem 1. One looks at the threshold strategies that achieve welfare

ws�x0+2;x0+1 in the mechanism with simultaneous communication and embeds them into the asking

questions setup.

We conclude that in every informationally optimal mechanism, either buyer 1 is asked k� � 1
consecutive questions at the beginning followed by a single question to buyer 2, or the roles of the

players are reversed.
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