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Abstract

We find that Epstein (2010)’s Ellsberg-style thought experiments pose, contrary to

his claims, no paradox or diffi culty for the smooth ambiguity model of decision making

under uncertainty developed by Klibanoff, Marinacci and Mukerji (2005). Not only are

the thought experiments naturally handled by the smooth ambiguity model, but our

reanalysis shows that they highlight some of its strengths compared to models such

as the maxmin expected utility model (Gilboa and Schmeidler (1989)). In particular,

these examples pose no challenge to the model’s foundations, interpretation of the

model as affording a separation of ambiguity and ambiguity attitude or the potential

for calibrating ambiguity attitude in the model.

1 Introduction

Epstein (2010) describes two Ellsberg (1961)-style thought experiments and argues that

they pose diffi culties for the smooth ambiguity model of decision making under uncertainty

developed by Klibanoff, Marinacci and Mukerji (2005) (henceforth KMM). We revisit these

thought experiments and argue that they lend no support to the critical conclusions he draws

from them. We demonstrate that the first thought experiment and all its suggested variations

∗We thank Robin Cubitt, Fabio Maccheroni, Bob Nau, Ben Polak, Peter Wakker, the co-editor Wolf-
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are handled quite naturally and completely by the smooth ambiguity model if one takes care

to formally model the information the decision maker has available. Regarding the second

experiment, we elaborate on the behavioral distinction that it provides between the smooth

ambiguity model and models such as the maxmin expected utility (MEU) model (Gilboa and

Schmeidler (1989)) and explain why the behavior predicted by the smooth ambiguity model is

intuitive. Our discussion of these examples highlights and reinforces the relative strengths of

the smooth ambiguity model, including the degree of separation between ambiguity attitude

and belief it affords and the range of ambiguity attitudes it accommodates.

To fix ideas and remind the reader of the model’s functional form, consider in an Anscombe-

Aumann setting1 a state space Ω endowed with an event σ-algebra Σ, a space X of simple

lotteries over a set of real outcomes containing [−1, 1], and a set∆ of all probability measures

π : Σ → [0, 1] on Ω. Let σ (∆) be the smallest σ-algebra on ∆ that makes the functions

π 7→ π (E) measurable for all E ∈ Σ. The smooth ambiguity model represents preferences

% over Σ-measurable simple acts f : Ω→ X using the following functional:

V (f) =

∫
∆

φ

(∫
Ω

u (f (ω)) dπ (ω)

)
dµ(π), (1.1)

where u : X → R is nonconstant affi ne, φ : u(X) → R is strictly increasing, and µ :

σ (∆)→ [0, 1] is a probability measure on ∆.

The model also represents preferences %2 over suitably σ (∆)-measurable second order

acts f : ∆→ X using the functional

V 2(f) =

∫
∆

φ (u (f (π))) dµ(π).

Notice that % and %2 agree when restricted to lotteries X (i.e., to constant acts and constant

second order acts respectively). Moreover, for ease of exposition we will call Ω the first order

state space and ∆ the second order state space.

As it will also be useful in what follows, recall that the α-MEU model represents prefer-

ences over acts according to

U(f) = αmin
π∈C

∫
Ω

u (f (ω)) dπ (ω) + (1− α) max
π∈C

∫
Ω

u (f (ω)) dπ (ω) , (1.2)

where α ∈ [0, 1] is a weight and C ⊆ ∆ is a w∗-compact set of probabilities. When α = 1 we

get the MEU model.

1Here, as in Epstein (2010), we use an Anscombe-Aumann version of the original KMM model.
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2 Thought Experiment 1: State spaces and incorpo-

rating information

The experiment takes Ellsberg’s (1961) 3-color urn (an urn with 3 balls divided among red

(R), blue (B) and green (G)) and adds a construction urn,2 containing 3 balls each of which

has a label r, b or g. The individual is told that exactly one of the balls in the construction

urn is labeled r. A draw from this construction urn will determine the composition of the

Ellsberg 3-color urn. Specifically, if r is drawn from the construction urn, the Ellsberg

urn will contain one ball of each color, denoted (1R, 1B, 1G), and, similarly, draws of b

or g result in compositions (1R, 2B, 0G) and (1R, 0B, 2G) respectively in the Ellsberg urn.

Apart from the usual bets on the color of a ball drawn from the Ellsberg urn, Epstein

(2010) also considers bets on the composition of the Ellsberg urn (equivalently, bets on the

type of ball drawn from the construction urn). He argues that the standard ambiguity averse

choices over bets about the color drawn from the Ellsberg urn should imply ambiguity averse

choices over bets about the color of the ball drawn from the construction urn. He claims

that this behavior is incompatible with the smooth ambiguity model. All of his criticisms of

the smooth ambiguity model stem from this alleged incompatibility. Below, we show that

there is no incompatibility and that this behavior follows from the smooth ambiguity model

quite naturally once one adopts, which Epstein (2010) does not, a state space adequate to

incorporate the information provided to the individual in the experiment.

2.1 Modeling of the first thought experiment

The only change we make to the description of the thought experiment is to have the con-

struction urn contain six balls rather than three (and thus exactly two balls labeled r rather

than one). We do this so as to treat both the basic thought experiment and Epstein’s

elaborations on it using the same set-up.

In Epstein’s interpretation, the first order state space is the set of possible draws from the

Ellsberg urn, {R,B,G}. Thus, his set of second order states must be the set of probability
distributions over this first order state space.3 This state space can incorporate some of

the information given to the individual in the experiment — specifically, the information

about the possible compositions of the Ellsberg urn. This information rules out all but three

such second order states, πr, πb and πg, each corresponding to a possible draw from the

2Epstein (2010) calls this the “second-order urn”. A referee suggested the term “construction urn”
instead. We adopt the latter terminology.

3Recall that a second order state space, by definition, is isomorphic to the set of probability distributions
over the first order states.
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construction urn, r, b or g. These are represented by the columns in Table I, while the rows

represent Epstein’s first order states. The numbers give the probabilities of the first order

states conditional on a given second order state.

[Insert Table I about here.]

Notice, however, that Epstein’s state space is too sparse to incorporate the given infor-

mation about the composition of the construction urn (such as the information that exactly

two of the six balls are labeled r). This information does not correspond to an event in

Epstein’s state space, and therefore beliefs cannot be conditioned on it. This is worrisome,

since conditioning behavior on this information is key to the thought experiment.

We now present a state space that is rich enough to incorporate all the given information

as events.4 The first order state space is the set of possible pairs of draws from both the

construction urn and the Ellsberg urn, {r, b, g} × {R,B,G}. The set of second order states
is then the set of probability distributions over this first order state space. This state space

can incorporate both types of information given to the individual in the experiment: (1)

how the distribution over draws from both urns is determined by the composition of the

construction urn, and (2) that exactly two of the six balls in the construction urn are labeled

r.5 In particular, this information rules out all but the five second order states π1, . . . , π5

described in the five columns of Table II, each corresponding to a possible composition of

the construction urn. The rows in the table represent first order states. As in the previous

table, the numbers give the probabilities of the first order states conditional on a given

second order state. They are derived by considering the color compositions consistent with

the information in (2) and then using (1) to translate those into probabilities of the draws.

Notice that the conditional probabilities are all multiples of 1
18
since there are 6 × 3 = 18

possible pairs of drawn balls from the two urns. For example, the probability of observing

(b, R) given π1 is 4
6
× 1

3
= 4

18
.

[Insert Table II about here.]

To see that with this fuller state space, ambiguity aversion in the smooth ambiguity model

implies the behavior posited by Epstein in this thought experiment, take φ strictly concave,

4Such a construction was not given as much prominence in an earlier version of this reply. We thank
an anonymous referee, Bob Nau (see Nau (2010)) and Ben Polak for emphasizing the importance of a more
detailed treatment (and working out many of the details).

5This explains why, for example, considering the first order state space {R,G,B} together with a putative
second order state space {composition of construction urn× {r, g, b}} would not be an adequate state space.
In terms of the probability of the first order states, this putative second order space collapses to Epstein’s
second order space, {r, g, b}, and therefore suffers from the same inability to handle the information that two
of the six balls in the construction urn are labeled r.
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let µ be any strictly positive probability distribution over π1, . . . , π5 and normalize u so that

u(100) = 1 and u(0) = 0. Consider bets with stakes 100 if win and 0 if lose. Suppose, as

seems reasonable given symmetry of the situation, that betting on π1 (i.e., betting that the

construction urn has composition (2r, 4b, 0g)) is indifferent to betting on π5, and, similarly,

that betting on π2 is indifferent to betting on π4. These indifferences imply µ(π1) = µ(π5)

and µ(π2) = µ(π4). Then, according to the smooth ambiguity model, betting on R is strictly

preferred to betting on B while betting on B ∪ G is strictly preferred to betting on R ∪ G
(i.e., f1 � f2 and f4 � f3 in Epstein’s (2010, pp. 2088-89) notation) and, betting on r is

strictly preferred to betting on b while betting on b ∪ g is strictly preferred to betting on
r ∪ g (i.e., F1 � F2 and F4 � F3 in Epstein’s notation). Furthermore, again as Epstein

suggests is intuitive, the preferences are stronger in the case of bets on the color drawn from

the construction urn compared to those on the Ellsberg urn since less is known about the

composition of the construction urn.6

The larger lesson is that in decision models with a state space (whether Savage (1954)

or others) properly incorporating information requires that the information be modeled as

an event in the state space, i.e., a subset of states. Marschak and Radner (1972), in their

classic book, which shaped the way information is modeled in economics, write:

“... an information signal represents a subset of the states of the environment;

in the formulation of a decision problem, the states of the environment must be

described in suffi cient detail to cover not only those aspects relevant to the payoff

function, but also those aspects relevant to the type of information on which the

decisions may be based.”(p. 48)

Often, in practice, this is done implicitly, with the “full state space”in the background and

reduced form updating used in calculating the change in beliefs. This is perfectly fine as

a shortcut as long as it leads to the same conclusions as an analysis using the full model.

Epstein’s analysis is an illustration of how this shortcut can lead one astray —with his chosen

reduced form modeling, one obtains different results than when one uses the full model.

With a full state space, the information in the thought experiment about the composition

of the construction urn must correspond exactly to ruling out some states. Notice that

with Epstein’s choice of first and second order state spaces, this fails to hold: the fact that

exactly two of the six balls in the construction urn are labelled r is consistent with all possible

outcomes of draws from the construction urn and Ellsberg urn.

6For the calculations behind the claims in this paragraph as well as the ones in the next subsection see
Section 5.1 in the Appendix.
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2.2 Variations on the first thought experiment

Next, consider Epstein’s (2010, Section 2.4) extension of the first thought experiment (Sce-

nario I) to consider a new scenario (Scenario II) in which the subject is additionally told that

there is at least one b and at least one g ball in the construction urn. This extra information

is easily captured in our state space: second order states π1 and π5 become null events. How

does behavior compare across the two scenarios according to the smooth ambiguity model?

Take uI = uII = u and again normalize so that u(100) = 1 and u(0) = 0. Take φI = φII = φ

strictly concave. Let µI be any strictly positive probability distribution over π1, . . . , π5. Let

µII be the Bayesian update of µI reflecting the new information (so π1 and π5 are given zero

weight and the rest maintain the same relative weights as in Scenario I). Epstein asks for

the following intuitive rankings to be satisfied: (1) a bet on b is indifferent to a bet on g in

each scenario; (2) a bet on r has the same certainty equivalent in each scenario; (3) a bet

on R is strictly preferred to a bet on B in each scenario; and (4) the certainty equivalent

of a bet on B is higher in Scenario II than in Scenario I. One can calculate that given our

assumptions above, all of these rankings follow. This shows that to accommodate the differ-

ence in behavior between the two scenarios, all that needs to change is µ, and furthermore,

the required change is a natural reflection of exactly the information difference between the

two situations. Therefore, this example reinforces our interpretation that in the smooth

ambiguity model there is a separation of beliefs and attitudes (towards ambiguity and to-

wards risk), and that µ reflects information/belief. Epstein used these scenarios to argue

that the change in information required changing φ to get plausible behavior, as that was

true using Epstein’s state space, which, as noted, cannot incorporate information of the kind

given. On this basis, he challenges the interpretation of φ as reflecting ambiguity attitude

and µ as reflecting beliefs or information. This leads him to claim that efforts to calibrate

an individual’s φ in a context of interest (e.g., financial markets), by examining the behavior

of that individual in another environment (e.g., real or hypothetical Ellsberg experiments),

have no justification. Our discussion demonstrates that this, and similar examples, provide

no such basis.

Epstein (2010, Section 2.5) uses a final variation on the first thought experiment to

argue that nonreduction of objective compound lotteries is implicit in the smooth ambiguity

model. To support this, he compares Scenario I above to a scenario (call it Scenario III) in

which complete information about the composition of the construction urn is given to the

individual. If this change in information were modeled (as Epstein suggests) by leaving µ

unchanged but informally interpreting it as objective, then the individual would be facing an

objective two-stage lottery and, Epstein argues, would be forced by the smooth ambiguity

model to treat it just as he did when it was ambiguous and therefore differently than the
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corresponding reduced lottery. We find this analysis is flawed in the same way as Epstein’s

analysis of the comparison between Scenarios I and II above. Specifically, he carries out his

analysis in a setting too sparse to incorporate the change in information (i.e., going from

partial to full information about the composition of the construction urn). Given the state

space we use above, such a change is seen to correspond to µ going from a non-degenerate

to a degenerate distribution — there is no longer any uncertainty about the composition

of the construction urn. In such a scenario, the smooth ambiguity model treats all events

as unambiguous, reduces all uncertainty to risk, and becomes a standard expected utility

preference. Thus, no nonreduction of objective probabilities is implied.7

2.3 Testability

Epstein (2010, Section 2.3) partially anticipates our resolution of the first thought experi-

ment and claims that such a reformulation of the state space would render our assumption

of expected utility over second order acts (KMM, Assumption 2) unfalsifiable when the con-

struction urn exists only “in the mind of the decision-maker”. We have several responses to

this. First, it seems to us that there is no reason to dismiss a model simply because some

of its implications might not be testable in a particular environment. It is clear that there

are environments, such as the first thought experiment with two physical urns, where impli-

cations regarding second order acts are testable. Furthermore, implications regarding (first

order) acts are testable even in situations where implications for second order acts might not

be.

Second, when the construction urn exists only in the mind, if one were to take observabil-

ity seriously, the informational assumptions in Epstein’s own analysis become unfalsifiable.

To see this, recall that some of the informational assumptions used to describe the thought

experiment (e.g., that the construction urn contains exactly two r balls) exactly correspond

to the kind of events (our second order events) that Epstein complains would be unobservable

in this case.

Relatedly, one might worry that there is too much freedom if one is allowed to choose the

state space after seeing the results of an experiment designed to test the model. However,

our guiding principle in choosing the state space does not rely on the results and is the

7As Epstein (2010, p. 2094) suggests, “Think of the corresponding exercise for a subjective expected
utility agent in an abstract state space setting.” Suppose we do think in this way. The only formal sense
in which one may learn that some distribution is “true” is through the process of updating beliefs over a
full state space that includes all possible observations. This is the standard Bayesian model where the state
space is the Cartesian product of parameters and signals. Learning in such a setting corresponds to updating
by eliminating states including signals that did not occur. Thus, as more and more observations accumulate,
the prior may become concentrated on the “true” parameter. Exactly as we suggest here, the standard
modeling of learning the truth corresponds to a prior becoming degenerate.
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one prescribed by Marschak and Radner (1972): that it should incorporate any relevant

information available to the decision maker. In addition, recall that once the (first order)

state space is fixed there is no further freedom, as the second order state space must be

isomorphic to the set of probability distributions over the first order states.

2.4 Ambiguity of and ambiguity attitude toward second order

events

Having shown that the first thought experiment is readily handled by the smooth ambiguity

model, we turn to a more general question raised by the spirit of the example: Given that the

smooth ambiguity model allows the individual to view some (first order) events as ambiguous

(as evidenced by Ellsberg-type behavior), shouldn’t such Ellsberg-type behavior toward (the

intuitively more amorphous) second order events also be allowed? Not only is such behavior

allowed, but, using a definition of ambiguous event that we proposed in KMM based on

Ellsberg’s two-color thought experiment, we show that it occurs precisely when one would

expect it to.

Specifically, whenever, and only when, an event is ambiguous, the naturally associated

second order events are also ambiguous. In Proposition 5.1, stated and proved in Section 5.2

of the Appendix, we show that ambiguity of a first order event E implies that non-null and

non-universal second order events concerning the probability of E are treated as ambiguous.

This emphasizes the point that the smooth ambiguity model property of expected utility

evaluation of second order acts does not mean that the decision maker treats these acts as

based on unambiguous events.

Moreover, ambiguity aversion for acts and second order acts is tied together: φ strictly

concave implies strict ambiguity aversion in both domains. In particular, this tells us that

behavior reflecting, for example, strict ambiguity aversion over (first order) acts and am-

biguity neutrality or seeking over second order acts is ruled out by the smooth ambiguity

model.8

8For a formal statement and proof of the result on ambiguity aversion see Section 5.3 of the Appendix.
We also note that the smooth ambiguity model satisfies a recently proposed notion of two-stage probabilistic
sophistication, see Amarante, Halevy and Ozdenoren (2011). This sophistication is perfectly compatible
with Ellsberg-type behavior.
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3 Thought Experiment 2: Hedging across sources of

ambiguity

Consider the second thought experiment proposed by Epstein (2010, Section 3). There are

two urns, each containing 50 balls divided among red (R) and blue (B). An individual is told

that the relative proportions of red and blue in each urn are determined independently. One

ball is drawn from each urn. The individual considers bets on the colors of the drawn balls

with outcomes c∗ > c and the 50-50 lottery
(
c∗, 1

2
; c, 1

2

)
. Assume that lotteries are evaluated

according to an expected utility function u, normalized so that u(c∗) = 1 and u(c) = 0.

We can then write the acts that Epstein considers with utility payoffs as given in Table III

(where R1B2 is the event that a red ball is drawn from the first urn while a blue ball is

drawn from the second urn, etc.).

[Insert Table III about here.]

Epstein argues that 1
2
f1 + 1

2
f2 ∼ f1 ∼ f2 and g1 � g2 are natural for a strictly ambiguity

averse individual, and shows that these preferences are incompatible with any smooth am-

biguity model with a concave φ. We agree with the intuition for g1 � g2, but disagree that
1
2
f1 + 1

2
f2 ∼ f1 ∼ f2 is natural for an ambiguity averse individual and think there is good

reason to expect 1
2
f1 + 1

2
f2 � f1 ∼ f2. The evaluation of f1 depends on the ratio of red to

blue in urn 1 but not on the composition of urn 2. Similarly, the evaluation of f2 depends

on only the ratio of red to blue in urn 2 and not on the composition of urn 1. In contrast,

the evaluation of 1
2
f1 + 1

2
f2 depends on the color compositions of both urns, but has half

the exposure to the uncertainty about the ratio in each urn compared to f1 and f2. Recall

that the determination of the two urn compositions are viewed as independent. The act
1
2
f1 + 1

2
f2 thus diversifies the individual’s exposure across the urns: it provides a hedging of

the two independent ambiguities in the same sense as diversifying across bets on independent

risks provides a hedging of the risks. To an individual who is averse to ambiguity (i.e., to

subjective uncertainty about relative likelihoods), such diversification is naturally valuable.

This value is reflected in the smooth ambiguity model with concave φ through the fact

that mean-preserving spreads in the subjective distribution of expected utilities generated

by an act are disliked.9 However, preferences such as α-MEU that ignore all except (a

9Epstein (2010, p. 2096) remarks that our intuition does not rely on ambiguity and claims it would
equally apply to cases where there was an objective distribution over expected utilities (i.e., an “objective
µ”). His reasoning ignores the fact that the individual’s dislike of variation in expected utility is only when
the variation comes from an ambiguous source —this is why it is ambiguity aversion. Just as we discussed
near the end of Section 2.1, what happens when µ becomes “objective”is that, properly modeled, learning
eliminates the ambiguity (µ becomes degenerate) and thus the variation in expected utility coming from an
ambiguous source disappears.
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fixed weighting of) the minimum and maximum possible expected utilities will miss the

diversification aspect of this situation. This is extreme behavior, similar to an infinitely

risk averse expected utility individual not valuing diversification across independent risks.

The smooth ambiguity model delivers more moderate and, to us, reasonable behavior, as it

implies that such diversification is valued by ambiguity averse individuals, while this value

may vary in size as ambiguity aversion varies.10

The next result formally verifies this difference in behavior between the models. Let Ω =

{R1, B1} × {R2, B2} be the (first order) state space. Consider a set C ⊆ ∆ of probabilities

on Ω. Think of C as the set of probabilities in an α-MEU model or the support of µ in

a smooth ambiguity model. Denote the set of probabilities of drawing red from urn i by

Γi = {p (Ri) : p ∈ C}.11 Consider the following properties on C:

(1) Γ1 = Γ2;

(2) Γi nonsingleton; and

(3) if q ∈ Γ1 and q′ ∈ Γ2, there is p ∈ C such that p (R1) = q and p (R2) = q′.

Property (1) reflects symmetry across the urns as it says that the same set of compositions

are considered for each urn. Without it, there is no reason to expect f1 ∼ f2. Note that

(1) corresponds to the concept of the urns being indistinguishable (as proposed by Walley

(1991) and used e.g., in Epstein and Schneider (2003)) but not necessarily identical, which

would require p ∈ C implies p(R1) = p(R2). Property (2) says there is ambiguity about the

color composition of the urns. Without it, all of the acts in the example are unambiguous.

Property (3) seems a necessary condition for independence of the urn compositions as it says

that any color composition of urn 1 could be combined with any composition of urn 2.

We can now state the following result, which is proved in the Appendix. Part (i) of the

result references the condition

µ (p ∈ C : p (R1) ∈ D) = µ (p ∈ C : p (R2) ∈ D) for all Borel sets D ⊆ [0, 1] , (3.1)

10The smooth ambiguity model (and its close relatives Nau (2006), Ergin and Gul (2009), Seo (2009) and
Neilson (2010)) is not the only model capturing these intuitive choices. Many other models in the ambiguity
aversion literature —e.g., invariant biseparable preferences (Ghirardato, Maccheroni and Marinacci (2004)
and Amarante (2009)), variational preferences (Maccheroni, Marinacci and Rustichini (2006)), and vector
expected utility preferences (Siniscalchi (2009)) —have cases compatible with the choices that we claim are
intuitive.
11For convenience, we use p and q for probabilities here rather than π. Note the use of p(Ri) in place of

the more formal p (Ri × {Rj 6=i, Bj 6=i}).
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which is meant to further reflect, in the smooth ambiguity model, the perceived symmetry

across urns.12

Proposition 3.1 Suppose C ⊆ ∆ is nonempty, closed, and satisfies properties (1)-(3).

Then,

(i) Any smooth ambiguity preference with φ strictly concave and µ with support C and

such that condition (3.1) holds,13 will have

1

2
f1 +

1

2
f2 � f1 ∼ f2 and g1 � g2.

(ii) Any α-MEU preference with set of probabilities C will have

1

2
f1 +

1

2
f2 ∼ f1 ∼ f2,

while g1 � g2 if and only if α > 1/2.

In the above result, properties (1)-(3) ensure that there is some ambiguity that 1
2
f1 + 1

2
f2

hedges against. Suppose, for example, unlike in this thought experiment, the two urns are

known to have identical color compositions. Then the events R1B2 and B1R2 would have

unambiguously equal likelihoods, meaning that, however ambiguity resolves (i.e., whichever

p ∈ C governs the draws), it resolves the same way for each (i.e., p(R1B2) = p(B1R2)).

In this case, 1
2
f1 + 1

2
f2 would not be expected to provide a valuable hedge as it diversifies

only across these two events when compared to f1 and f2. Proposition 3.1 does not apply

to this iid case, since the restriction to identical color compositions violates the conjunction

of properties (2) and (3). It may be shown that the smooth ambiguity model (as well as

α-MEU) indeed delivers 1
2
f1 + 1

2
f2 ∼ f1 ∼ f2 in the iid case.

To summarize our respective arguments regarding this interesting thought experiment

and its implications for the smooth ambiguity model: Epstein argues that 1
2
f1 + 1

2
f2 ∼

f1 ∼ f2 and g1 � g2 are natural for a strictly ambiguity averse individual, leading to

a seeming inconsistency in the modelling of ambiguity attitude in the smooth ambiguity

model through φ. We argue that under strict ambiguity aversion, 1
2
f1 + 1

2
f2 � f1 ∼ f2

is the more natural behavior. In this case, there is no conflict at all with g1 � g2, since

both strict preferences are generated by a strictly concave φ in the smooth ambiguity model.

Hence, we conclude, contrary to Epstein (2010), that the intuitive ambiguity averse choices

12The sets {p ∈ C : p (Ri × {Rj 6=i, Bj 6=i}) ∈ D} belong, for all Borel sets D ⊆ [0, 1], to the Borel σ-algebra
of ∆ (see, e.g., Aliprantis and Border (2006, Theorem 15.13)).
13Here the support of µ is defined as suppµ =

⋂
{D closed : µ (D) = 1}.
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in thought experiment 2 are indeed captured by the smooth ambiguity model, whereas they

are not captured by the MEU (or α-MEU) model. Beyond the specific issue of compatibility

with the smooth ambiguity model, this discussion and thought experiment highlights a point

we feel is fundamental in thinking about ambiguity aversion —hedging across independent

but possibly non-identical sources of ambiguity makes a lot of sense. Recently, moreover,

Cubitt, van de Kuilen and Mukerji (2011) have investigated experimentally whether strict

ambiguity aversion is associated with preference for the act 1
2
f1 + 1

2
f2 over its components,

finding evidence that it is.

4 Concluding Remarks

Our analysis of Epstein’s first thought experiment shows that his results are due to the failure

to use a state space allowing the incorporation of the key information defining the experiment.

When one analyzes the thought experiment and the suggested variations using a full state

space, the “paradox”, the counter intuitive results claimed in Epstein’s analyses, all go away.

The criticisms Epstein draws from his results (about foundations, interpretation, separation

and calibration) similarly disappear. A significant way in which the smooth ambiguity model

adds to older frameworks is the ability to do meaningful comparative statics in ambiguity

and ambiguity aversion while allowing great flexibility in the ambiguity of (first order) events

and in ambiguity attitude and also a quite tractable functional form. This ability stems in

part from the degree of separation of beliefs and taste attributes in the representation; a

separation that is, as was demonstrated in our analysis, not challenged by Epstein’s (2010)

first thought experiment.

In analyzing the second thought experiment, we clarify the differences in behavior across

models that the experiment illustrates and tie these differences to the intuitive idea that

an ambiguity averse individual would want to hedge across separate sources of ambiguity

unless their ambiguity attitude were extreme or the sources were guaranteed to have identical

realizations of the ambiguity. The smooth ambiguity model delivers this behavior while α-

MEUmodels cannot. In the latter, ambiguity aversion is modeled entirely through preference

kinks. The smooth ambiguity model allows us to explore implications of ambiguity aversion

that do not have their source in preference kinks. Kinks are not implied by ambiguity averse

or Ellsbergian behavior (and, indeed, may be present without such behavior, see e.g. Segal

and Spivak (1990)), yet they are what drive behavior in many applications of models like

MEU or Choquet expected utility (Schmeidler (1989)) to economics and finance. Such kinks

may indeed be important, but are a conceptually separate phenomenon from ambiguity

attitude per se, and it is valuable to have models that separate the two.

12



All models have strengths and weaknesses, and the smooth ambiguity model is no excep-

tion. However, this reply has shown that the thought experiments at the heart of Epstein

(2010) justify none of the criticisms he offers of the model.

5 Appendix

5.1 Calculations supporting Sections 2.1 and 2.2

Acts are real valued functions defined on Ω = {r, b, g} × {R,B,G}. For example, bet f1 on

R is given by

f1 (ω) =

{
100 if ω ∈ {(r, R) , (g,R) , (b, R)}
0 else

To see that f1 � f2, f4 � f3, F1 � F2 and F4 � F3 observe that

f1 � f2 ⇔ φ

(
1

3

)
> µ (π1)φ

(
5

9

)
+ µ (π2)φ

(
4

9

)
+ µ (π3)φ

(
1

3

)
+ µ (π4)φ

(
2

9

)
+ µ (π5)φ

(
1

9

)
f4 � f3 ⇔ φ

(
2

3

)
> µ (π1)φ

(
4

9

)
+ µ (π2)φ

(
5

9

)
+ µ (π3)φ

(
2

3

)
+ µ (π4)φ

(
7

9

)
+ µ (π5)φ

(
8

9

)
F1 � F2 ⇔ φ

(
1

3

)
> µ (π1)φ

(
2

3

)
+ µ (π2)φ

(
1

2

)
+ µ (π3)φ

(
1

3

)
+ µ (π4)φ

(
1

6

)
+ µ (π5)φ (0)

F4 � F3 ⇔ φ

(
2

3

)
> µ (π1)φ

(
1

3

)
+ µ (π2)φ

(
1

2

)
+ µ (π3)φ

(
2

3

)
+ µ (π4)φ

(
5

6

)
+ µ (π5)φ (1) .

Since µ (π1) = µ (π5) and µ (π2) = µ (π4), each of the four inequalities hold because the

subjective distribution of expected utilities on the right-hand side is a mean-preserving spread

of the (degenerate) distribution of expected utilities on the left-hand side and φ is strictly

concave.

That the differences in evaluations are larger for the bets on the draws from the con-

struction urn follows from strict concavity and the fact that the subjective distributions

of expected utilities from F2 and F3 are mean-preserving spreads of those from f2 and f3

respectively given that µ (π1) = µ (π5) and µ (π2) = µ (π4).

The four behaviors Epstein suggests as desirable in the two scenarios may be verified

as follows: The symmetry of µI is inherited by µII through Bayes’rule and together they

assure (1); uI = uII = u ensures (2); strict concavity of φ plus symmetry of µI and µII
(which ensures that the induced distribution of expected utilities from betting on B is a

mean-preserving spread of the distribution of expected utilities from betting on R in each

scenario) implies (3); and (4) follows from the fact that the induced distribution of expected

utilities from betting on B in Scenario I is a mean-preserving spread of that in Scenario II

13



together with strict concavity of φ.

5.2 Results supporting Section 2.4

Here we show formally that ambiguity/unambiguity of first order events results in ambigu-

ity/unambiguity of naturally associated second order events. To discuss ambiguity of second

order events, recall from KMM that (adapted here to the Anscombe-Aumann setting) a

second order act f 2 associated with an act f is defined as

f 2(π) = lf (π) ∀π ∈ ∆

where lf (π) ∈ X is the reduced lottery generated by f together with π. We now use this

notion to define associated second order events:

Definition 5.1 Given any E ∈ Σ, let IE be the second order act associated with the act

1E.14 The collection of associated second order events is the sub σ-algebra σ (IE) of σ(∆)

generated by IE.

Observe that for any π ∈ ∆, IE (π) is the lottery assigning probability π (E) to the

outcome 1 and the remaining probability to the outcome 0. Therefore, givenE, the associated

second order events are events like {π : π(E) ∈ D} where D is a Borel subset of [0, 1]. We

next write down the immediate adaptation to events in σ(∆) of our (KMM, Definition 7)

definition of unambiguous events in Ω.

Definition 5.2 An event A ∈ σ(∆) is unambiguous if, for each p ∈ [0, 1] and each x, y ∈ X
such that x � y, either [xAy �2 px+(1−p)y and py+(1−p)x �2 yAx], [xAy ≺2 px+(1−p)y
and py + (1− p)x ≺2 yAx] or [xAy ∼2 px + (1− p)y and py + (1− p)x ∼2 yAx]. An event

is ambiguous if it is not unambiguous.

Notice that this definition declares an event to be ambiguous if it is impossible to cal-

ibrate the likelihood of the event against lotteries. The following results relate formally,

within the smooth ambiguity model, the ambiguity/unambiguity of events in Ω with the

ambiguity/unambiguity of their associated second order events.

Proposition 5.1 Fix a smooth ambiguity model with φ that has some open interval of utility
values over which it is strictly concave or strictly convex. An event E ∈ Σ is unambiguous

if and only if all the associated second order events are unambiguous.

141E is the indicator function for E. In this regard, note that throughout this section we adopt the
normalization u (0) = 0 and u (1) = 1.
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The proof makes use of the following two lemmas.

Lemma 5.1 Let (S,S, P ) be any probability space. A S-measurable function ξ : S → R is
constant P -a.e. if and only if P (A) ∈ {0, 1} for all A ∈ σ (ξ).

Proof Suppose ξ : S → R is constant P -a.e., i.e., there is t̄ ∈ R such that P (ξ = t̄) = 1.

Set Et = (ξ ≤ t) for t ∈ R. The σ-algebra σ (ξ) is generated by the chain {Et} of all lower
contour sets. Since P (ξ = t̄) = 1, we have P (Et) ∈ {0, 1} for t ∈ R. Moreover, the collection
Λ = {A ∈ S : P (A) ∈ {0, 1}} is a λ-class. By the Dynkin Lemma, σ (ξ) ⊆ Λ.

As to the converse, suppose P (A) ∈ {0, 1} for all A ∈ σ (ξ). Define F : R→ R by F (t) =

P (Et). The cumulative density function F is increasing and right continuous. Consider

the interval I = {t ∈ R : F (t) = 1}. Set α = inf I. The right continuity of F implies

α ∈ I. Then, P (ξ = α) = 1. For, P (ξ ≤ α) = 1 and P (ξ < α) = P

(⋃
n

(ξ ≤ α− 1/n)

)
=

limn P (ξ ≤ α− 1/n) = 0. �

Lemma 5.2 Fix a smooth ambiguity model with φ strictly concave or strictly convex over
some open interval of utility values. An event A ∈ σ(∆) is ambiguous if and only if it is

such that 0 < µ (A) < 1.

Proof Let A ∈ σ(∆) be such that 0 < µ(A) < 1. Without loss of generality, assume

µ(A) ≥ 1/2 (if it is not, simply swap the roles of A and Ac). Let J be an open interval of

utility values over which φ is strictly concave or strictly convex. For p ∈ [0, 1] and x, y ∈ X
such that x � y and u(x), u(y) ∈ J , xAy is evaluated as µ(A)φ (u(x)) + (1− µ(A))φ (u(y)),

while px + (1− p)y is evaluated as φ(pu(x) + (1− p)u(y)). By continuity of φ and the fact

that 0 < µ(A) < 1, there exists a p̂ ∈ (0, 1) such that

µ(A)φ(u(x)) + (1− µ(A))φ(u(y)) = φ(p̂u(x) + (1− p̂)u(y)).

If φ is strictly concave on J , this equality implies µ(A) > p̂. Similarly, strict convexity on J

implies µ(A) < p̂.

Similarly, there exists a q̂ ∈ (0, 1) such that

µ(A)φ(u(y)) + (1− µ(A))φ(u(x)) = φ(q̂u(y) + (1− q̂)u(x)).

If φ is strictly concave on J , this equality implies 1− µ(A) > 1− q̂, and so µ(A) < q̂. Strict

convexity on J similarly implies µ(A) > q̂. Therefore, either q̂ > p̂ and yAx ∼2 q̂y + (1 −
q̂)x ≺2 p̂y+(1−p̂)x (under strict concavity) or q̂ < p̂ and yAx ∼2 q̂y+(1−q̂)x �2 p̂y+(1−p̂)x
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(under strict convexity). This shows that A is ambiguous since xAy ∼2 p̂x + (1 − p̂)y and
yAx �2 p̂y + (1− p̂)x.
For the other direction, it is enough to observe that µ (A) ∈ {0, 1} implies that A is

unambiguous. �

Proof of Proposition 5.1 Observe that, denoting any lottery between the outcomes 0

and 1 by the probability assigned to 1, we can view IE as a real-valued function given by

IE (π) = π (E) for all π ∈ ∆. Since φ is strictly concave or strictly convex on some open

interval of utility values, by Theorem 3 of KMM an event E ∈ Σ is unambiguous if and

only if IE is constant µ-a.e. By Lemma 5.1, this happens if and only if µ (A) ∈ {0, 1}
for all A ∈ σ (IE). By Lemma 5.2, this is equivalent to requiring that all A ∈ σ (IE) are

unambiguous. We conclude that E ∈ Σ is unambiguous if and only if all A ∈ σ (IE) are

unambiguous, as desired. �

5.3 Linking ambiguity aversion over acts and second order acts

Observe from the definition of unambiguous event and continuity that for an event E to be

ambiguous, there must be some p ∈ [0, 1] and x, y ∈ X with x � y such that the lottery

px + (1− p)y is either strictly better than both xEy and yEx, strictly worse than both, or
indifferent to one and strictly ranked relative to the other. Note that in any model where

preference for the lottery px+ (1− p)y is increasing and continuous in p, we can ignore the
cases involving indifference, as when they exist one of the strict cases occurs as well. As xEy

and yEx involve ambiguity but the lottery does not, it is natural to call strictly ambiguity

averse the case where the lottery is strictly better than both, and strictly ambiguity seeking

the case where the lottery is strictly worse than both. In this vein, let us call a preference

%̂ strictly ambiguity averse if, given any ambiguous event E and x, y ∈ X such that x�̂y,
there exists a p ∈ (0, 1) such that

xEy≺̂px+ (1− p)y and yEx≺̂py + (1− p)x (5.1)

and for no p ∈ [0, 1] is it true that

xEy�̂px+ (1− p)y and yEx�̂py + (1− p)x. (5.2)

The result below implies what we claimed regarding ambiguity aversion in Section 2.4

— φ strictly concave implies preferences over acts and over second order acts are strictly

ambiguity averse. An analogous proposition holds for strict ambiguity seeking when φ is

convex rather than concave.
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Proposition 5.2 Fix a smooth ambiguity model with φ concave. The following are equiva-
lent:

(i) % is strictly ambiguity averse;

(ii) %2 is strictly ambiguity averse;

(iii) φ is strictly concave.

Proof We prove separately the equivalence of (i) and (iii) and of (ii) and (iii).
(iii) implies (i): Suppose φ is strictly concave. We want to show that % is strictly

ambiguity averse. Let x, y ∈ X, with y ≺ x, and E ∈ Σ be an ambiguous event. By setting

p =
∫
π (E) dµ (π) it is easy to see that

xEy ≺ px+ (1− p)y and yEx ≺ py + (1− p)x

It remains to show that there is no p ∈ [0, 1] such that

xEy � px+ (1− p)y and yEx � py + (1− p)x.

Suppose per contra there is such a p. Since y ≺ x, by the continuity of φ there is 1 ≥ p′ > p

such that ∫
φ (π (E)u (x) + (1− π (E)u (y))) dµ (π) = φ(p′u(x) + (1− p′)u(y)).

Since φ is strictly concave, this equality implies
∫
π (E) dµ (π) > p′ > p.

Similarly, there is 0 < p′′ < p such that∫
φ (π (E)u (y) + (1− π (E)u (x))) dµ (π) = φ(p′′u(y) + (1− p′′)u(x)).

Since φ is strictly concave, this equality implies
∫
π (E) dµ (π) < p′′ < p, a contradiction.

(i) implies (iii): Suppose % is strictly ambiguity averse. Suppose per contra that φ is not
strictly concave. Then there exist u (x) > u (y) such that, for all α ∈ [0, 1],

φ (αu (x) + (1− α)u (y)) = αφ (u (x)) + (1− α)φ (u (y)) . (5.3)

Let E ∈ Σ be ambiguous. For each π ∈ suppµ it holds that

φ (π (E)u (x) + (1− π (E))u (y)) = π (E)φ (u (x)) + (1− π (E))φ (u (y)) , and

φ ((1− π (E))u (x) + π (E)u (y)) = (1− π (E))φ (u (x)) + π (E)φ (u (y)) ,
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and so, by setting p =
∫
π (E) dµ (π),∫

φ (π (E)u (x) + (1− π (E))u (y)) dµ (π) = pφ (u (x)) + (1− p)φ (u (y))

= φ (pu (x) + (1− p)u (y))

and ∫
φ ((1− π (E))u (x) + π (E)u (y)) dµ (π) = (1− p)φ (u (x)) + pφ (u (y))

= φ ((1− p)u (x) + pu (y)) .

Hence, both xEy ∼ px + (1 − p)y and yEx ∼ py + (1 − p)x. Since % is strictly ambiguity
averse, there is a q ∈ (0, 1) such that

px+ (1− p)y ∼ xEy ≺ qx+ (1− q)y and py + (1− p)x ∼ yEx ≺ qy + (1− q)x.

In turn, this implies pu (x)+(1− p)u (y) < qu (x)+(1− q)u (y) and pu (y)+(1− p)u (x) <

qu (y) + (1− q)u (x), that is,

u (y) + u (x) = p (u (x) + u (y)) + (1− p) (u (y) + u (x))

< q (u (x) + u (y)) + (1− q) (u (y) + u (x)) = u (x) + u (y) ,

a contradiction. We conclude that φ is strictly concave.

(iii) implies (ii) Suppose φ is strictly concave. We want to show that %2 is strictly

ambiguity averse. Let x, y ∈ X, with y ≺2 x, and A ∈ σ(∆) be an ambiguous event, i.e.,

0 < µ(A) < 1. By setting p = µ (A) it is easy to see that

xAy ≺2 px+ (1− p)y and yAx ≺2 py + (1− p)x.

It remains to show that there is no p ∈ [0, 1] such that

xAy �2 px+ (1− p)y and yAx �2 py + (1− p)x.

Suppose per contra there is such a p. Since y ≺2 x, by the continuity of φ there is 1 ≥ p′ > p

such that

µ(A)φ(u(x)) + (1− µ(A))φ(u(y)) = φ(p′u(x) + (1− p′)u(y)).

Since φ is strictly concave, this equality implies µ(A) > p′ > p.
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Similarly, there is 0 < p′′ < p such that

µ(A)φ(u(y)) + (1− µ(A))φ(u(x)) = φ(p′′u(y) + (1− p′′)u(x)).

Since φ is strictly concave, this equality implies µ(A) < p′′ < p, a contradiction.

(ii) implies (iii) Suppose %2 is strictly ambiguity averse. Suppose per contra that φ is

not strictly concave. Then there exist u (x) > u (y) such that (5.3) holds for all α ∈ [0, 1].

Let A ∈ σ(∆) be an ambiguous event. It holds that

φ (µ (A)u (x) + (1− µ (A))u (y)) = µ (A)φ (u (x)) + (1− µ (A))φ (u (y)) , and

φ ((1− µ (A))u (x) + µ (A)u (y)) = (1− µ (A))φ (u (x)) + µ (A)φ (u (y))

and so, by setting p = µ (A),

px+ (1− p) y ∼2 xAy and py + (1− p)x ∼2 yAx.

Since %2 is strictly ambiguity averse, there is a q ∈ (0, 1) such that

qx+ (1− q)y �2 xAy ∼2 px+ (1− p)y and qy + (1− q)x �2 yAx ∼2 py + (1− p)x.

In turn, this implies pu (x)+(1− p)u (y) < qu (x)+(1− q)u (y) and pu (y)+(1− p)u (x) <

qu (y) + (1− q)u (x), which, as seen before, leads to a contradiction. We conclude that φ is

strictly concave. �

5.4 Proof of Proposition 3.1

Abbreviate p(R1×{R2, B2}) by p(R1) and so on. Observe that properties (2) and (3) imply

that there exist p ∈ C such that p (R1) 6= p (R2).

(i) Suppose suppµ = C and µ (p ∈ C : p (R1) ∈ D) = µ (p ∈ C : p (R2) ∈ D) for all Borel

sets D in [0, 1]. Since φ is strictly increasing, by (1) we have {(φ ◦ p) (R1) : p ∈ C} =

{(φ ◦ p) (R2) : p ∈ C}, and so
∫

∆
(φ ◦ p) (R1) dµ (p) =

∫
∆

(φ ◦ p) (R2) dµ (p) because of the

assumption on µ. Hence, f1 ∼ f2. On the other hand,

φ

(
1

2
p (R1) +

1

2
p (R2)

)
≥ 1

2
(φ ◦ p) (R1) +

1

2
(φ ◦ p) (R2) , ∀p ∈ suppµ,

with strict inequality if p (R1) 6= p (R2).

Claim There is a Borel set A ⊆ suppµ, with µ (A) > 0, such that p (R1) 6= p (R2) for all
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p ∈ A.

Proof of the Claim As shown at the start of the proof, there is p ∈ suppµ such that

p (R1) 6= p (R2). Suppose first that p is an isolated point in suppµ. Then, µ (p) > 0

and the claim trivially holds. Suppose that p is not an isolated point in suppµ. Then,

Bε (p) ∩ suppµ 6= ∅ for every neighborhood Bε (p) of p. Since p (R1) 6= p (R2), by taking

ε small enough there is Bε (p) such that p (R1) 6= p (R2) for all p ∈ Bε (p). By setting

A = Bε (p)∩ suppµ, this proves the claim since µ (A) > 0 because Bε (p)∩ suppµ 6= ∅. For,
if µ (A) = 0, then µ (Bε (p)) = µ (A) + µ (Bε (p) ∩ (suppµ)c) = 0, and so suppµ ⊆ Bε (p)c, a

contradiction (see Aliprantis and Border (2006, p. 442)). 4

The Claim implies∫
φ

(
1

2
p (R1) +

1

2
p (R2)

)
dµ (p) >

1

2

∫
(φ ◦ p) (R1) dµ (p) +

1

2

∫
(φ ◦ p) (R2) dµ (p) ,

that is, 1
2
f1 + 1

2
f2 � f1 ∼ f2.

Act g1 is evaluated as φ(1/2). Act g2 is evaluated as
∫
φ (1/2 + (p(B1R2)− p (R1B2))/2) dµ (p).

Define γ : ∆ → R by γ (p) = 1/2 + (p(B1R2)− p (R1B2)) /2. Since p(B1R2) − p (R1B2) =

p(R2) − p(R1), the Claim implies γ (p) 6= 1/2 for all p ∈ A. Therefore, by the Jensen

inequality and the assumption on µ, we have∫
(φ ◦ γ) (p) dµ (p) < φ

(∫
γ (p) dµ (p)

)
= φ

(∫ (
1

2
+

1

2
(p (R2)− p (R1))

)
dµ (p)

)
= φ

(
1

2

)
,

that is, g1 � g2.

(ii) By properties (1) and (3), maxp∈C p (R1) = maxp∈C p (R2) and minp∈C p (R1) =

minp∈C p (R2), as well as

max
p∈C

(
1

2
p (R1) +

1

2
p (R2)

)
=

1

2
max
p∈C

p (R1) +
1

2
max
p∈C

p (R2)

min
p∈C

(
1

2
p (R1) +

1

2
p (R2)

)
=

1

2
min
p∈C

p (R1) +
1

2
min
p∈C

p (R2)

Hence, 1
2
f1 + 1

2
f2 ∼ f1 ∼ f2. From minp∈C (p (R2)− p (R1)) = −maxp∈C (p (R2)− p (R1)),

αmin
p∈C

(
1

2
+

1

2
(p (R2)− p (R1))

)
+ (1− α) max

p∈C

(
1

2
+

1

2
(p (R2)− p (R1))

)
=

1

2
+

1− 2α

2
max
p∈C

(p (R2)− p (R1)) ,
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and so g1 � g2 if and only if 1/2 > 1/2 + (1/2− α) maxp∈C (p (R2)− p (R1)). By properties

(2) and (3), maxp∈C (p (R2)− p (R1)) > 0, so that g1 � g2 if and only if α > 1/2. �
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Table I

Epstein's state space

2nd order states

πr πb πg
Draws from the

construction urn

1
st

o
rd
e
r
st
a
te
s

Draws from Ellsberg urn↓ r b g
R 1

3
1
3

1
3

B 1
3

2
3 0

G 1
3 0 2

3

Table II

A full state space

2nd order states

π1 π2 π3 π4 π5
Composition of the construction urn

Draws↓ (2r, 4b, 0g) (2r, 3b, 1g) (2r, 2b, 2g) (2r, 1b, 3g) (2r, 0b, 4g)

1
st

o
rd
er

st
a
te
s

(r, R) 2
18

2
18

2
18

2
18

2
18

(r, B) 2
18

2
18

2
18

2
18

2
18

(r,G) 2
18

2
18

2
18

2
18

2
18

(b, R) 4
18

3
18

2
18

1
18 0

(b, B) 8
18

6
18

4
18

2
18 0

(b,G) 0 0 0 0 0

(g,R) 0 1
18

2
18

3
18

4
18

(g,B) 0 0 0 0 0

(g,G) 0 2
18

4
18

6
18

8
18
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Table III

Acts with utility payo�s for Experiment 2

R1R2 R1B2 B1R2 B1B2

f1 1 1 0 0

f2 1 0 1 0
1
2
f1 +

1
2
f2 1 1

2
1
2 0

g1 1
2

1
2

1
2

1
2

g2 1
2 0 1 1

2
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