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Abstract

We provide a bridge between Bewley preferences [2] and Uncertainty averse preferences [4].

In doing this, we generalize the �ndings of Gilboa, Maccheroni, Marinacci, and Schmeidler [11].

To exemplify this new framework, we then study a class of preferences that we call Constrained

Multiplier preferences and that was �rst proposed by Wang [19].

1 Introduction

Two of the most successful decision theoretic approaches dealing with Knightian uncertainty consisted

in either remove the Completeness of preferences but retain the Independence assumption à la Bewley

or to maintain Completeness of preferences but to weaken Independence and consider Uncertainty

Aversion à la Gilboa and Schmeidler. The �rst approach was �rst proposed by Bewley [2]. The

second approach instead was followed by many models in the literature and pioneered by Gilboa and

Schmeidler [10]. Recently, Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [4] (henceforth,

CMMM) provided a general representation result for Uncertainty averse preferences (henceforth, also,

UA preferences). This work formally shows what is the link between the two aforementioned ap-

proaches toward Knightian uncertainty.

In a similar context, Gilboa, Maccheroni, Marinacci, and Schmeidler [11] (henceforth, GMMS)

argued that a Decision Maker (henceforth, DM) is characterized by two binary relations: (%�;% ^).1
These binary relations are assumed to capture di¤erent kinds of the DM�s rationality. In particular,

the �rst one is assumed to capture the part of the DM�s rankings that appear to him as uncontroversial

(objective rationality) while the second one is assumed to capture the rankings that the DM express

if he has to make a choice (subjective rationality). More precisely, (%�;% ^) are two binary relations
de�ned in the classic setting of Anscombe and Aumann [1], that is, over F : the set of all simple
�-measurable acts from S to X where S is a state space, � is an event algebra, and X is a convex

set of consequences. In this paper and in [11], the �rst binary relation is assumed to be a Bewley

preference relation, that is,

f %� g ()
Z
u� (f) dp �

Z
u� (g) dp 8p 2 C (1)

where u� is an a¢ ne utility index and C is a closed and convex set of probabilities. %� represents the
rankings that the DM can strongly justify. In fact, whenever f %� g, such a ranking is independent

�I would like to thank Itzhak Gilboa, Peter Klibano¤, Ben Polak, David Schmeidler, Tomasz Strzalecki, and, espe-
cially, Fabio Maccheroni and Massimo Marinacci for very helpful suggestions. Part of this research was done while I
was visiting the Cowles Foundation at Yale University which I thank for its hospitality.

1For a related approach see also Nehring [15].
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of the probabilistic scenario chosen in C. The relation %� might be also thought as capturing the
relevant probabilistic information of the DM.2 Conversely, the second binary relation is assumed to

be an Uncertainty Averse preference relation, that is,

f % ^g () min
p2�

G

�Z
u (f) dp; p

�
� min

p2�
G

�Z
u (g) dp; p

�
(2)

where u is an a¢ ne utility index, � is the set of all probabilities over �, and G is an index of

uncertainty aversion as in [4]. The relation % ^ is assumed to represent the DM�s rankings if he has
to make a choice. The two preferences are considered to represent the same DM�s rankings. In fact,

the second one is also assumed to be a completion of the �rst one, that is,

f %� g =) f % ^g:

Moreover, in order to make this connection sharper, we axiomatically characterize when the two utility

indexes, u� and u, coincide and when the set of probabilities representing the Bewley preference

relation %� is the same one characterizing % ^, that is, when C is also the smallest subset of � over

which the min in (2) can be considered to be over. In other words, the DM can be seen as acting

in the following way. First, he identi�es the set of relevant probabilistic scenarios C and a utility

index u. The set C and the function u characterize %� à la Bewley. Then, he chooses an index of
uncertainty aversion G. This allows him to consider certain probabilistic scenarios more plausible

than others. Finally, he uses these three objects to form consistently his preferences % ^. This is done
according to the cautious rule in (2) and by just considering the probabilities in C. In other words,

the completion procedure considered in this paper still re�ect the same probabilistic information of

%� and is consistent with the utility index u�.
According to this interpretation, GMMS restrict themselves to the case where the index of uncer-

tainty aversion G is the one characterizing the Gilboa and Schmeidler preferences. In this way, they

force the DM to consider each probability in C equally plausible. In this paper, we remove this limi-

tation (see Theorems 4 and 12). We are thus able to provide a bridge between Bewley preferences and

a vast class of UA preferences. We dub this class e¤ectively bounded Uncertainty averse preferences

and we show it to be dense in the class of UA preferences (see Proposition 6).

Particular cases of UA preferences are Gilboa and Schmeidler preferences [10] and Multiplier

preferences, where the latter were introduced by Hansen and Sargent [12] and axiomatized by Strzalecki

[18] as a special class of the Variational preferences of Maccheroni, Marinacci, and Rustichini [14]. In

the �rst case, preferences are represented by VGS : F ! R de�ned by

VGS (f) = min
p2C

Z
u (f) dp 8f 2 F (3)

where u is an a¢ ne utility index and C is a closed and convex subset of �. In the second case, � is

a �-algebra and preferences are represented by V�;HS : F ! R de�ned by

V�;HS (f) = min
p<<q

�Z
u (f) dp+ �R (pjjq)

�
8f 2 F : (4)

Here, � 2 [0;1), q is a countably additive probability measure on �, R (pjjq) is the relative entropy
of p with respect to q,3 and u : X ! R is an a¢ ne function.

2For a similar interpretation, see also Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [6].
3That is,

R (pjjq) =
( R

log
�
dp
dq

�
dp p 2 �� (q)

1 p 62 �� (q)
where �� (q) = fp 2 � : p << q and p is countably additiveg.
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In terms of CMMM� representation (see [14] and [4, Proposition 12]), Gilboa and Schmeidler

preferences correspond to a function GGS such that

GGS (t; p) = t+ �C (p) 8 (t; p) 2 R�� and �C (p) =

(
0 p 2 C
1 p 62 C

:

Similarly, Multiplier preferences correspond to a function G�;HS such that

G�;HS (t; p) = t+ �R (pjjq) 8 (t; p) 2 R��:

To further exemplify the previous procedure we study a preference model that merges the insights of

the Gilboa and Schmeidler model to some of the features characterizing Multiplier preferences. Assume

that the DM is considering the probability measure q to be the reference model but for robustness

arguments he is willing to consider as plausible the following family of perturbed probabilities:

C� = fp 2 �� (q) : R (pjjq) � �g where � > 0:

Given a utility index u, it is compelling for him to declare

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C�:

In fact, if f %� g then, no matter which probability in C� he considers, f is weakly better than g.
Nevertheless, %� is incomplete given that typically C� contains more than one element. Therefore, he
might need a decision criterion that always allows him to compare two acts. Moreover, such a criterion

should re�ect the rankings and the probabilistic information contained in %�. One sensible way to
proceed would be to follow the same reasoning that informed the shaping of the DM�s set of relevant

probability models C�. That is, the DM might want to evaluate the plausibility of a probabilistic

scenario p according to its statistical distance from the reference model q. This leads to the following

preferences % ^

f % ^g () min
p2C�

�Z
u (f) dp+ �R (pjjq)

�
� min
p2C�

�Z
u (g) dp+ �R (pjjq)

�
; (5)

where � > 0. We call preferences represented as in (5) Constrained Multiplier preferences. These

preferences were �rst proposed by Wang [19].

2 Preliminaries

2.1 Decision Theoretic Set Up

We consider a nonempty set S of states of the world, an algebra � of subsets of S called events, and

a set X of consequences. We denote by F the set of all (simple) acts: functions f : S ! X that are

�-measurable and take �nitely many values.

Given any x 2 X, de�ne x 2 F to be the constant act such that x(s) = x for all s 2 S. With the
usual slight abuse of notation, we thus identify X with the subset of constant acts in F .
We assume additionally that X is a convex subset of a vector space. For instance, this is the case

if X is the set of all lotteries on a set of outcomes, as it happens in the classic setting of Anscombe

and Aumann [1]. Using the linear structure of X, we de�ne a mixture operation over F . For each
f; g 2 F and � 2 [0; 1], the act �f + (1 � �)g 2 F is de�ned to be such that (�f + (1� �)g) (s) =
�f(s) + (1� �)g(s) 2 X for all s 2 S.
We model the DM�s preferences on F by two binary relations (%�;% ^). Given a binary relation

% on F , � and � denote respectively the asymmetric and symmetric parts of %. Given f 2 F , an
element xf 2 X is a certainty equivalent for f if and only if f � xf .
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2.2 Mathematical Preliminaries

We denote by B0 (�) the set of all real-valued �-measurable simple functions so that u (f) 2 B0 (�)
whenever u : X ! R is a¢ ne and f 2 F . Given an a¢ ne function u : X ! R, we denote by
B0 (�; u (X)) the set of all real-valued �-measurable simple functions that take values in u (X).

As well known, the dual space of B0 (�) can be identi�ed with the set ba (�) of all bounded

�nitely additive measures on (S;�). The set of probabilities in ba (�) is denoted by � and is a

(weak�) compact and convex subset of ba (�). � is considered to be endowed with the topology

inherited from the weak� topology. R is considered to be endowed with the usual topology. R�� is

considered to be endowed with the product topology. Elements of � are denoted by p and q.

When � is a �-algebra, we denote by �� the set of all countably additive probabilities in �. In

particular, given q 2 ��, we denote by �� (q) the set of all probabilities in �� that are absolutely
continuous with respect to q, that is, �� (q) = fp 2 �� : p� qg.

Functions of the form G : R��! (�1;1] play a key role in the results of CMMM and ours. We

denote

dom�G = fp 2 � : G (t; p) <1 for some t 2 Rg :

Borrowing and modifying the notation of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

[5], we denote by Ln (R��) the class of such functions that satisfy the following requirements:

(i) G is quasiconvex and lower semicontinuous on R��;

(ii) G (�; p) is increasing for all p 2 �;

(iii) minp2�G (t; p) = t for all t 2 R.

Similarly, we say that G 2 Lbd (R��) if and only if G 2 Ln (R��) and G satis�es

(iv) supp2dom�GG (t; p) <1 for all t 2 R.

Given a function c : � ! [0;1], we say that c is grounded if and only if minp2� c (p) = 0. We

denote

dom (c) = fp 2 � : c (p) <1g :

It is immediate to see that if c is a grounded, convex, and lower semicontinuous function then the

map G : R��! (�1;1], de�ned by

G (t; p) = t+ c (p) 8 (t; p) 2 R��; (6)

belongs to Ln (R��) and dom (c) = dom�G. Moreover, in this case, G 2 Lbd (R��) if and only if
there exists k 2 R such that dom (c) = fp 2 � : c (p) � kg, that is, if and only if c is bounded on its
e¤ective domain dom (c).

Finally, a function G : R��! (�1;1] is said to be linearly continuous if and only if the map

' 7! inf
p2�

G

�Z
'dp; p

�
from B0 (�) to [�1;1] is extended-valued continuous. The function G de�ned in (6) is linearly

continuous.
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3 The Axiomatic Framework

3.1 Basic Axioms

In this work, we consider the DM to be endowed with two di¤erent binary relations. We interpret the

�rst one, potentially incomplete, as capturing the rankings that appear to the DM as uncontroversial

while the second one captures the rankings of the DM if he is forced to make a choice or express

a preference. GMMS [11] dub the �rst one Objective Rationality and the second one Subjective

Rationality. Following [11], we denote these two binary relations, respectively, %� and % ^. In this

subsection, we list the assumptions that we impose on these two binary relations. In Subsection 4.2,

we compare these axioms with the ones of [11].

Next, we list a set of axioms that we impose both on %� and % ^. We state them for a generic

binary relation % on F .
Basic Conditions:

Preorder: % is re�exive, transitive, and nontrivial.

Monotonicity: If f; g 2 F and f(s) % g(s) for all s 2 S then f % g.

Mixture Continuity: If f; g; h 2 F then the sets f� 2 [0; 1] : �f + (1� �)g % hg and f� 2 [0; 1] : h %
�f + (1� �)gg are closed in [0; 1].
Unboundedness: For each x and y in X such that x � y there are z; z0 2 X such that

1

2
z +

1

2
y % x � y % 1

2
x+

1

2
z0:

The Basic Conditions are standard assumptions in an Anscombe and Aumann setting. They

are satis�ed by a vast class of decision theoretic models discussed in the literature of choice under

Knightian uncertainty. On the other hand, Unboundedness is a technical assumption which will result

in imposing that there are arbitrarily good and arbitrarily bad consequences. We refer the interested

reader to [11] for a more complete discussion of the Basic Conditions as fundamental tenets of rational

behavior.

Next, we list the assumptions that are peculiar for %�:
C-Completeness: If x; y 2 X either x %� y or y %� x:
Independence: If f; g; h 2 F and � 2 (0; 1)

f %� g () �f + (1� �)h %� �g + (1� �)h:

The last two assumptions matched with the Basic Conditions imply that the DM has complete

preferences over the set of consequences and his preferences on X are further represented by a non-

constant and a¢ ne utility index u : X ! R. In the original Anscombe and Aumann setting, this is
equivalent to say that when the DM faces objective probabilities he is a standard Expected Utility

DM. On the other hand, it follows that, under the Basic Conditions, %� admits a representation à la
Bewley [2].

De�nition 1 Let %� be a binary relation on F . %� is a Bewley preference if and only if it satis�es
the Basic Conditions, C-Completeness, and Independence.

The next three assumptions instead are peculiar to % ^:

5



Completeness: If f; g 2 F either f % ^g or g % ^f:
Risk Independence: If x; y; z 2 X and � 2 (0; 1)

x % ^y () �x+ (1� �) z % ^�y + (1� �) z:

Uncertainty Aversion: If f; g 2 F are such that f �^ g then �f+(1� �) g % ^f for all � 2 (0; 1) .
Given the interpretation we chose for % ^ and since a DM might need a complete ranking, Com-

pleteness seems to be a natural assumption. Di¤erently, in a problem of choice under Knightian

uncertainty, Uncertainty Aversion imposes that the DM responds cautiously to such uncertainty by

exhibiting a preference toward hedging.4 Finally, under the Basic Conditions, Completeness and Risk

Independence force the DM to have complete preferences over constant acts where these preferences

are further represented by a nonconstant and a¢ ne utility index u : X ! R. So even for % ^, we

take the stance that a DM who faces objective probabilities behaves as a standard Expected Utility

DM. Notice that Risk Independence is the assumption of Independence just restricted to constant

acts where Knightian uncertainty has no bite.5

De�nition 2 Let % ^ be a binary relation on F . % ^ is an Uncertainty averse preference if and only
if it satis�es the Basic Conditions, Completeness, Risk Independence, and Uncertainty Aversion.

Theorem 3 (CMMM, Theorems 3 and 5) Let % ^ be a binary relation on F . % ^ is an Un-

certainty averse preference that satis�es Unboundedness if and only if there exist an onto and a¢ ne

function u : X ! R and a linearly continuous G 2 Ln (R��) such that (u;G) represent % ^ as in
(2). Moreover, u is cardinally unique and, given u, G is unique.

The next two assumptions connect to each other the previous two binary relations.

Consistency: If f %� g then f % ^g.
Weak Caution: For each x 2 X there exists y 2 X such that y % ^x and

f 6%� x =) y % ^f:

Consistency is a natural assumption. In fact, if for a DM f is clearly/objectively weakly better

than g then he should declare f weakly better than g, particularly, when he is forced to make a choice.

Weak Caution instead provides the main axiomatic departure of our work from the one of [11]. Notice

that Weak Caution amounts to impose that for given x in X there exists a common bound y in X for

all acts f that are not unambiguously preferred to x. In GMMS�paper, this assumption is trivially

satis�ed. In fact, the bound y, under % ^, is assumed to be x itself. Conversely, Weak Caution

is violated if the DM has a family of acts, say ffngn2N, where each element is not unambiguously
preferred to x. But, despite this, in completing his preferences, % ^ turns out to be such that the DM
can �nd arbitrarily good acts in ffngn2N where arbitrarily good is meant to be with respect to % ^.
In light of these observations, notice that Weak Caution is binding and meaningful just in a context

where Unboundedness (from above) is satis�ed.

4For a similar interpretation see also: Debreu [7], Schmeidler [17], and Cerreia-Vioglio, Maccheroni, Marinacci, and
Montrucchio [4].

5For sake of generality, we could have equivalently chosen a weaker form of Risk Independence, as in [4]. Nevertheless,
the actual formulation allows an easier comparison with the axiom of Independence previously imposed on %�.
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4 Results

4.1 Uncertainty Averse Preferences

In this subsection, we present the �rst main result of our paper. It provides a bridge between Bewley

preferences and UA preferences. We state the following theorem following the format of [11, Theorem

3] in order to facilitate the comparison.

Theorem 4 Let (%�;% ^) be two binary relations on F and let one of them satisfy Unboundedness.

The following are equivalent conditions:

(i) %� satis�es the Basic Conditions, C-Completeness, and Independence; % ^ satis�es the Basic

Conditions, Completeness, Risk Independence, and Uncertainty Aversion; and jointly (%�;% ^)
satisfy Consistency and Weak Caution.

(ii) There exist an onto and a¢ ne function u : X ! R, a linearly continuous function G 2
Lbd (R��), and a closed and convex set C � � such that dom�G = C and for each f and g

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C (7)

and

f % ^g () min
p2C

G

�Z
u (f) dp; p

�
� min

p2C
G

�Z
u (g) dp; p

�
: (8)

Moreover, C is unique, u is cardinally unique, and, given u, G is unique.

First, the DM identi�es the set of relevant probabilities C and a utility index u. These two objects

characterize the rankings, as in (7), that for the DM appear as uncontroversial. For example, in

the classic Ellsberg two colors urn experiment, C could be the convex hull of all the possible urn

compositions of the unknown urn and u a utility index over all the objective urns. Nevertheless, C

and u are not enough for the DM to be able to always rank acts. For this reason, he chooses an index of

uncertainty aversion G that is further bounded on C. This allows him to consider certain probabilistic

scenarios p in C more plausible than others. Finally, he uses these three objects to form consistently

his preferences % ^ according to the cautious rule in (8) and thus just using the probabilities in C.
Mathematically, the above result descends from the following arguments. The axioms on %� deliver

that %� is represented à la Bewley with a set of probabilities C and a utility index u�. The axioms on
% ^ deliver that % ^ is an UA preference relation. Thus, by [4], there exist a nonconstant and a¢ ne
u : X ! R and a linearly continuous G 2 Ln (R��) such that V : F ! R, de�ned by

V (f) = min
p2�

G

�Z
u (f) dp; p

�
8f 2 F ; (9)

represents% ^. Consistency delivers that u� can be chosen to be equal to u while Weak Caution delivers
that G further belongs to Lbd (R��) and themin in (9) can be taken to be over C = dom�G. It is not

hard to show that C is the smallest closed and convex set over which the min in (9) can be restricted

to. This latter fact con�rms that the perceived uncertainty of % ^ is the same characterizing %�.
Moreover, in the appendix, we show that C also characterizes the Unambiguous preference relation of

Ghirardato, Maccheroni, and Marinacci [9].

Finally, given Theorem 3, it should be noticed that the class of functions Lbd (R��) characterizes
a subset of UA preferences that we call e¤ectively bounded UA preferences and that we next de�ne:
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De�nition 5 Let % ^ be a binary relation on F . % ^ is an e¤ectively bounded Uncertainty averse

preference if and only if there exist an onto and a¢ ne function u : X ! R and a linearly continuous
G 2 Lbd (R��) such that (u;G) represent % ^ as in (2).6

In order to better understand this class of preferences, consider the case in which G is as in (6),

that is, the DM�s preferences % ^ are Variational. The condition

sup
p2dom(c)

ft+ c (p)g = sup
p2dom�G

G (t; p) <1 8t 2 R

amounts to say that c is bounded over C. In other words, in completing his preferences %�, the DM
might not be willing to consider all the probabilistic scenarios in C to be equivalent, as in [11]. But, at

the same time, he does not want to penalize these alternative probabilities in an arbitrary unbounded

fashion.

In light of the previous discussion and Theorem 3, it is then natural to ask how big is the class

of e¤ectively bounded UA preferences within the class of UA preferences. The next result shows that

the former is "dense" in the latter.

Proposition 6 Let % be a binary relation on F that satis�es Unboundedness. If % is an Uncertainty
averse preference then there exists a sequence of e¤ectively bounded Uncertainty averse preference

relations f%ngn2N such that
lim
n
Vn (f) = V (f) 8f 2 F ;

where V; Vn : F ! R represent % and %n as in (2) and for all n 2 N.

4.2 Main Departures from GMMS�Work

The departures from GMMS�work are three. Before discussing them, we start by listing two assump-

tions we dispense with but that play a major role in [11]:

C-Independence: If f; g 2 F ; x 2 X; and � 2 (0; 1)

f % ^g () �f + (1� �)x % ^�g + (1� �)x:

Caution: If f 2 F and x 2 X
f 6%� x =) x % ^f:

The �rst departure consists in restricting ourselves to the case in which preferences satisfy Unbound-

edness, that is, the case in which there are arbitrarily good consequences and arbitrarily bad ones.7

For example, this is the case if X = R and the DM satis�es the Basis Conditions as well as C-

Completeness and Risk Independence.8 The second departure consists in weakening C-Independence

to Risk Independence and in explicitly assuming Uncertainty Aversion. This allows us to consider

6 It is also possible, within the single preference framework adopted by [4], to provide an axiomatic foundation for
this class of UA preferences. This can be achieved by requiring the Unambiguous preference relation of [9] to satisfy
Weak Caution.

7An inspection of the proof of Theorem 4 reveals that we could state a slightly stronger version of it. Indeed, we
could impose the assumption of Unboundedness in point (i) instead of making it a premise of the result. Nevertheless,
we opted for this format so to facilitate the comparison with [11]. A similar observation applies for all the other results
in the paper.

8 In this case, the DM can be interpreted as being risk neutral.
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preferences % ^ that are Variational, as in [14], or Uncertainty averse as in [4].9 Finally, we connect
%� and % ^ by using a weaker form of Caution.

In order to justify Weak Caution and the introduction of Uncertainty Aversion, we �rst propose a

stronger version of [11, Theorem 3] (see also [11, Theorem 4]). In comparison to [11, Theorem 3], here

we just weaken C-Independence to Risk Independence in (i) but we still obtain the same functional

characterization in (ii).

De�nition 7 Let % ^ be a binary relation on F . % ^ is a Rational preference if and only if it satis�es
the Basic Conditions, Completeness, and Risk Independence.

Proposition 8 Let (%�;% ^) be two binary relations on F . The following are equivalent conditions:

(i) %� is a Bewley preference; % ^ is a Rational preference; and jointly (%�;% ^) satisfy Consistency
and Caution.

(ii) There exist a nonconstant and a¢ ne function u : X ! R and a closed and convex set C � �
such that for each f and g

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C

and

f % ^g () min
p2C

Z
u (f) dp � min

p2C

Z
u (g) dp:

Moreover, C is unique and u is cardinally unique.

It is worth noticing that, on % ^, no assumption regarding attitudes toward uncertainty or of

independence involving uncertain acts is made. Thus, as it emerges also from the proof of Proposition

8, it is mainly Caution to force the DM to complete his preferences %� according to the worst expected
utility criterion. That is, not just Caution forces the perceived uncertainty revealed by % ^ to coincide
with the one of %� but it also forces the DM to answer to it in the most pessimistic way. In other words,

Caution is not just an assumption on how %� and % ^ are related in terms of perceived uncertainty
but it is also an assumption on how % ^ reacts to Knightian uncertainty.
In our case, this latter feature is captured by Uncertainty Aversion, while the former is arguably

captured by Weak Caution. It is immediate to see that Weak Caution is a mathematical weakening

of Caution. Moreover, given next proposition, it is arguable that Weak Caution provides a common

structure where to study UA completions as well as Gilboa and Schmeidler completions. Indeed,

Proposition 10 clari�es why, under unboundedness, Weak Caution provides a common structure to

study the connection between Bewley preferences and Uncertainty averse ones, as in this paper, as

well as the connection between Bewley preferences and Gilboa and Schmeidler ones as done in [11].

De�nition 9 Let % ^ be a binary relation on F . % ^ is an Invariant biseparable preference if and

only if it satis�es the Basic Conditions, Completeness, and C-Independence.

Proposition 10 Let (%�;% ^) be two binary relations on F and let one of them satisfy Unbounded-

ness. Moreover, let %� be a Bewley preference; % ^ be an Invariant biseparable preference; and jointly
(%�;% ^) satisfy Consistency. The following conditions are equivalent:

9See also Maccheroni, Marinacci, and Rustichini [14, p. 1454] for a positive/normative discussion justy�ng an
axiomatic departure from C-Independence.
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(i) jointly (%�;% ^) satisfy Weak Caution;

(ii) jointly (%�;% ^) satisfy Caution.

Notice that, as a corollary, we could prove again [11, Theorem 3], in this case, by replacing Caution

with Weak Caution and by retaining C-Independence. In other words, in terms of Theorem 4 and its

interpretation, in the GMMS�case, the DM chooses G 2 Lbd (R��) to be such that

G (t; p) = t+ �C (p) 8 (t; p) 2 R��:

In the following subsection, we propose a di¤erent form of Weak Caution which is more natural in

the setting of Variational preferences. This form of Weak Caution, called Weak C(onstant)-Caution,

allows us to carry our exercise with a weaker form of Unboundedness.

4.3 Variational Preferences

An important case of UA preferences are Variational preferences, being Multiplier preferences an

important subcase. In this subsection, we provide a result similar to Theorem 4 for the Variational

preferences case. This result is not just a mere corollary of Theorem 4. In fact, we require a weaker

form of Unboundedness and in order to do so we propose a slightly stronger version of Weak Caution.

One Side Unboundedness: For each x and y in X such that x � y there is z 2 X such that

1

2
z +

1

2
y % x:

Weak C-Caution: For each x 2 X there exists y 2 X such that y % ^x,

f 6%� x =) y % ^f

and
1

2
x+

1

2
z � ^1

2
y +

1

2
z0 for some �xed z; z0 2 X:

In the classic Anscombe and Aumann setting, the �rst weakening allows to consider more risk

attitudes than possible under Unboundedness while Weak C-Caution is obviously a strengthening of

Weak Caution. Indeed, for each x 2 X the upper bound y for x is required to move in a constant

fashion. In other words, since % ^ on X is represented by an a¢ ne function u, the extra condition

required in the axiom of Weak C-Caution amounts to impose that there exist z and z0 in X such that

for each x 2 X there exists y % ^x and

u (y)� u (x) = u (z)� u (z0) : (10)

Condition (10) is in line with the extra assumption that characterizes Variational preferences among

the class of UA preferences, that is,

Weak C-Independence: If f; g 2 F ; x; y 2 X; and � 2 (0; 1)

�f + (1� �)x % ^�g + (1� �)x =) �f + (1� �) y % ^�g + (1� �) y:

This latest assumption coincides with independence relative to mixing with constant acts. In turn,

functionally, this assumption coincides with the invariance of preferences to �translations�.

De�nition 11 Let % ^ be a binary relation on F . % ^ is a Variational preference if and only if it

satis�es the Basic Conditions, Completeness, Weak C-Independence, and Uncertainty Aversion.

10



In this particular case, we have that:

Theorem 12 Let (%�;% ^) be two binary relations on F and let one of them satisfy One Side Un-

boundedness. The following are equivalent conditions:

(i) %� is a Bewley preference; % ^ is a Variational preference; and jointly (%�;% ^) satisfy Consis-
tency and Weak C-Caution.

(ii) There exist an unbounded from above and a¢ ne function u : X ! R, a grounded, convex, and
lower semicontinuous function c : � ! [0;1], and a closed and convex set C � � such that

C = dom (c) = fp 2 � : c (p) � kg where k 2 R and for each f and g

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C (11)

and

f % ^g () min
p2C

�Z
u (f) dp+ c (p)

�
� min

p2C

�Z
u (g) dp+ c (p)

�
: (12)

Moreover, C is unique, u is cardinally unique, and, given u, c is unique.

Remark 13 It should be noticed that this representation follows as an easy corollary of Theorem 4

if One Side Unboundedness is replaced by Unboundedness and Weak C-Caution is replaced by Weak

Caution.

5 Constrained Multiplier Preferences

In their seminal paper [12], Hansen and Sargent compare the Gilboa and Schmeidler criterion as in

(3) to the decision criterion contained in (4). They do this when

C = C� = fp 2 � : R (pjjq) � �g and � > 0: (13)

For �xed � > 0, the aforementioned authors show that the previous two preferences deliver the same

choices in a consumption problem provided � is chosen to be big enough. Nevertheless, these two

classes of preferences represent two very di¤erent approaches toward Knightian uncertainty and they

reveal di¤erent kind of aversion to it. Indeed, in the Gilboa and Schmeidler criterion (3), just the

probabilities p in C are considered to be relevant probabilistic scenarios. On the other hand, in the

Hansen and Sargent criterion (4), all countably additive probabilities that are absolutely continuous

with respect to the reference probability measure q are considered. This di¤erence is particularly

striking in the formulation proposed by Hansen and Sargent where C = C�. Moreover, a DM that

follows the Gilboa and Schmeidler criterion deems, a priori, all the expected utility evaluations induced

by C to be equally plausible while a DM that follows the Hansen and Sargent criterion considers a

probabilistic scenario less plausible the higher is its distance from q. A natural and intermediate

approach would be the one of merging the two previous decision criteria. That is, the DM has a prior

of reference q and considers as relevant probabilistic scenarios the set C� for some � > 0. Nevertheless,

in evaluating an act f , he considers a probability less plausible the higher is its distance from q. In

other words, he ranks acts according to

V�;� (f) = min
p2C�

�Z
u (f) dp+ �R (pjjq)

�
8f 2 F : (14)

11



We dub these preferences Constrained Multiplier preferences. These preferences were �rst proposed

by Wang [19].10

In light of Theorems 4 and 12, it is immediate to see that the preferences represented by (14) can

be seen as arising through a procedure of completion as the ones described and axiomatized in the

previous section. Next, we provide an extra assumption which characterizes these particular prefer-

ences within this framework. We begin by proposing a notion of comparative uncertainty aversion,

due to Ghirardato and Marinacci [8]. Given two preferences %1 and %2 on F , we say that %1 is more
uncertainty averse than %2 if and only if for each f 2 F and x 2 X

f %1 x =) f %2 x:

Given � > 0, we de�ne %�;GS to be a nontrivial Gilboa and Schmeidler preference relation with
C = C�. In particular, as the next remark will clarify, it is irrelevant to specify which forms takes

the index u. Same observation applies for %�;HS where the latter denotes the Hansen and Sargent
preference relation. Similarly, we de�ne G�;GS : R � � ! (�1;1] by (t; p) 7! t + �C� (p) for all

(t; p) 2 R��.
Minimal Maximal Uncertainty Aversion: There exist �; � 2 (0;1) such that for each f 2 F and
x 2 X

f %�;HS x or f %�;GS x =) f % ^x (15)

and given any other uncertainty averse preference %0 that satis�es (15)

f % ^x =) f %0 x:

The �rst part of previous assumption imposes that the preference relation % ^ is less uncertainty

averse than the Hansen and Sargent preference relation with parameter � and the Gilboa and Schmei-

dler preference relation with C = C�. The second part of the assumption states that % ^ is the

more uncertainty averse among the (uncertainty averse) preferences that satisfy the �rst part of the

requirement.

Remark 14 It is not hard to show that (15) implies that %�;GS and %�;HS coincide with % ^ on X.

Theorem 15 Let (%�;% ^) be two binary relations on F , let one of them satisfy Unboundedness, and

let � be a �-algebra. The following conditions are equivalent:

(i) %� is a Bewley preference; % ^ is an Uncertainty averse preference that satis�es Minimal Max-
imal Uncertainty Aversion ; and jointly (%�;% ^) satisfy Consistency and Weak Caution.

(ii) There exist an onto and a¢ ne function u : X ! R and �; � 2 (0;1) such that for each f and g

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C�

and

f % ^g () min
p2C�

�Z
u (f) dp+ �R (pjjq)

�
� min
p2C�

�Z
u (g) dp+ �R (pjjq)

�
:

10Wang considers preferences over triples (f; C; q). Thus, his modeling is very di¤erent from ours. We refer the reader
to [19] for further details.
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We can interpret a DM with Constrained Multiplier preferences as a DM who is sure that the

relevant probabilistic information lies in the set fp 2 � : R (pjjq) � �g. Such information is enough
to form an initial objective ranking %�. The Constrained Multiplier preferences complete the former
ranking and they complete it in a weakly cautious way. In particular, the DM still considers relevant

only the models in fp 2 � : R (pjjq) � �g but he penalizes each model the farther is from q. In terms

of index of uncertainty aversion G = G�;�, Constrained Multiplier preferences are characterized by an

index which is the pointwise supremum of the indexes characterizing Multiplier preferences and the

index characterizing the Gilboa and Schmeidler preferences,11 that is,

G�;� (t; p) = sup fG�;HS (t; p) ; G�;GS (t; p)g 8 (t; p) 2 R��:

It is immediate to see that Constrained Multiplier preferences are characterized by two parameters:

� and �. It is also not hard to show that a DM 1 with Constrained Multiplier preferences given by

(�1; �1) is more uncertainty averse than a DM 2 with Constrained Multiplier preferences given by

(�2; �2) if �1 � �2 and �1 � �2.

A Appendix A

Given a binary relation % ^ on F , we de�ne %� by

f %� g () �f + (1� �)h % ^�g + (1� �)h 8� 2 (0; 1] ;8h 2 F :

Notice that %� is the revealed unambiguous preference relation of Ghirardato, Maccheroni, and Mari-
nacci [9]. In the sequel, with a small abuse of notation, given k 2 R, we will denote by k both the real
number and the constant function on S that takes value k.

In the rest of the paper, we will invoke some of the results of GMMS. Even though all the results in

[11] were derived under the hypothesis that X is the set of all simple lotteries over a generic outcome

space, their extension to the case when X is a generic convex set is straightforward.

Before proving the main results, we need some extra notation and an ancillary proposition. Given

a functional I : B0 (�)! R, we de�ne < to be the binary relation on B0 (�) such that

' <  () I (') � I ( ) :

We de�ne <� to be the binary relation on B0 (�) such that

' <�  () I (�'+ (1� �)�) � I (� + (1� �)�) 8� 2 (0; 1] ;8� 2 B0 (�) : (16)

Given C � �, we de�ne <C to be the binary relation on B0 (�) such that

' <C  ()
Z
'dp �

Z
 dp 8p 2 C:

Finally, given C and I, we say that I is consistent with C if and only if

' <C  =) I (') � I ( ) :

Proposition 16 Let I be a functional from B0 (�) to R and let C be a nonempty, closed, and convex

subset of �. The following conditions are equivalent:

11Maccheroni, Marinacci, and Rustichini [14], as a characterization, suggest the sum of the cost functions, R (�jjq)
and �C� (�), rather than the supremum. Mathematically, in this case, the two operations deliver the same index of
uncertainty aversion. Nevertheless, from an economic point of view, the assumption Minimal Maximal Uncertainty
Aversion suggests that the supremum is the more appropriate operation.
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(i) I is normalized, monotone, continuous, quasiconcave, consistent with C, and such that for each

k 2 R there exists h � k such that

' 6<C k =) h � I (') : (17)

(ii) There exists a unique linearly continuous G 2 Lbd (R��) such that

I (') = min
p2�

G

�Z
'dp; p

�
8' 2 B0 (�)

and dom�G = C:

Proof. (i) implies (ii). We proceed by steps. But, �rst, by construction, observe that <, <C , and
<� are binary relations over acts in an Anscombe and Aumann setting where S is the state space, �
is the algebra, and X = R.

Step 1. < satis�es the Basic Conditions, Completeness, Risk Independence, and Uncertainty

Aversion. Moreover, < restricted to R is represented by the identity.
Proof of the Step.

Since I is normalized, < restricted to R is represented by the identity. By [4, Lemma 57] and since
I is normalized, monotone, continuous, and quasiconcave, the statement follows. �
Step 2. There exists a nonempty, closed, and convex set C� � � such that for each ' and  in

B0 (�)

' <�  ()
Z
'dp �

Z
 dp 8p 2 C� (18)

and

' <�  =) I (') � I ( ) :

Moreover, C� is unique and <�=<C� .

Proof of the Step.

By de�nition of <� and <, we have that

' <�  () �'+ (1� �)� < � + (1� �)� 8� 2 (0; 1] ;8� 2 B0 (�) : (19)

By Step 1 and [3, Proposition 2], the �rst part of the statement follows as well as the uniqueness of

C� and <�=<C� . By taking � = 1 in (19) and by de�nition of <, the second part follows as well. �
Step 3. C� � C.

Proof of the Step.

By the de�nition of <C and <� and Step 2 and since I is consistent with C, we have that

' <C  =) �'+ (1� �)� <C � + (1� �)� 8� 2 (0; 1] ;8� 2 B0 (�)
=) I (�'+ (1� �)�) � I (� + (1� �)�) 8� 2 (0; 1] ;8� 2 B0 (�)
=) ' <�  :

By Step 2 and [9, Proposition A.1.], this implies that C� � C. �
Step 4. There exists a unique linearly continuous G 2 Ln (R��) such that

I (') = min
p2�

G

�Z
'dp; p

�
8' 2 B0 (�) : (20)
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Moreover, for each (t; p) 2 R��

G (t; p) = sup

�
I (') :

Z
'dp � t

�
(21)

and cl (dom�G) = C�.

Proof of the Step.

By [4] (see also [5]) and Step 1 and since I is normalized, monotone, continuous, and quasiconcave,

there exists a unique linearly continuous G 2 Ln (R��) such that (20) and (21) hold. By [4, Theorem
10], we further have that cl (dom�G) = C�.

Step 5. C� = C.

Proof of the Step.

We start by making a de�nition. Given � 2 B0 (�), we de�ne k� = minp2C
R
�dp. By contradic-

tion, suppose that C� 6= C. By Steps 3 and 4, we know that this implies that there exists q 2 CnC�

and q 62 dom�G. By [16, Theorem 3.4] and since C� is closed and convex, there exists  2 B0 (�),

� 2 R, and " > 0 such that

min
p2C

Z
 dp �

Z
 dq � �� " < �+ " � min

p2C�

Z
 dp: (22)

Without loss of generality, we can assume that  is such that k � �" < 0 andminp2C�
R
 dp � " > 0.

By (22), if we de�ne the sequence f'ngn2N � B0 (�) to be such that 'n = n for all n 2 N then it
follows that

k'n < 0 and min
p2C�

Z
'ndp = min

p2C�

Z
n dp = n min

p2C�

Z
 dp � n" > 0 8n 2 N: (23)

Recall that I satis�es (17), that is, for each k 2 R there exists h � k such that

' 6<C k =) h � I (') :

Take k = 0 and h as in (17). By (23), it follows that there exists �n 2 N such that

k'�n < 0 = k and
Z
'�ndp

0 � min
p2C�

Z
'�ndp > h+ 1 8p0 2 C�: (24)

By Step 2, I is consistent with C�. Thus, the �rst part of (24) delivers that '�n 6<C k while the second

part delivers that I ('�n) > h, a contradiction. �
Step 6. supp2dom�GG (t; p) <1 for all t 2 R, that is, G 2 Lbd (R��).
Proof of the Step.

Before starting recall that, by Step 4, G satis�es (21), that is,

G (t; p) = sup

�
I (') :

Z
'dp � t

�
8 (t; p) 2 R��:

By contradiction, suppose that supp2dom�GG (
�t; p) = 1 for some �t in R. By working hypothesis,

there exists a sequence fpngn2N � dom�G such that G (�t; pn) � n for all n 2 N. By (21) and since
C = C� = cl (dom�G), this implies that for each n 2 N there exists 'n 2 B0 (�) such that

min
p2C

Z
'ndp �

Z
'ndpn � �t < �t+ 1 and I ('n) �

n

2
: (25)

Since I satis�es (17), consider k = �t+ 1 and �x h � k to satisfy (17). From the �rst part of (25), we

have that 'n 6<C k for all n 2 N. At the same time, by the second part of (25), it is immediate to see
that there exists �n 2 N such that I ('�n) � �n

2 � h, a contradiction with I satisfying (17). �
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Step 7. cl (dom�G) = dom�G.

Proof of the Step.

It is enough to prove that given a generic net fp�g�2A � dom�G such that p� ! �p then �p 2
dom�G. Fix a generic t 2 R. By Step 6, it follows that G (t; p�) � supp2dom�GG (t; p) < 1 for all

� 2 A. Since G 2 Lbd (R��), we have that

1 > sup
p2dom�G

G (t; p) � lim inf
�

G (t; p�) � G (t; �p) :

Hence, �p 2 dom�G. �
Steps 4 and 6 imply the �rst part of (ii) while Steps 4, 5, and 7 imply that C = C� = cl (dom�G) =

dom�G.

(ii) implies (i). By assumption, we have that there exists a linearly continuous G 2 Lbd (R��)
such that

I (') = min
p2�

G

�Z
'dp; p

�
8' 2 B0 (�) :

By [5], it follows that I is normalized, monotone, and quasiconcave. Since G is linearly continuous, I

is continuous. Next, by de�nition of dom�G, we have that

I (') = min
p2dom�G

G

�Z
'dp; p

�
8' 2 B0 (�) : (26)

Since G is increasing in the �rst component and dom�G = C, it follows that I is consistent with C.

Finally, we show that I satis�es (17). We proceed by arguing by contradiction. Suppose that there

exists k 2 R such that for each h � k in R we can �nd 'h 2 B0 (�) such that 'h 6<C k and I ('h) > h.

It follows that for each n 2 fbkc+ 1; :::; bkc+m; :::g there exists 'n 2 B0 (�) such that 'n 6<C k and

I ('n) > n. Thus, for each n 2 fbkc+ 1; :::; bkc+m; :::g there exists pn 2 C = dom�G such thatR
'ndpn < k. By (26) and since G 2 Lbd (R��), it follows that

sup
p2dom�G

G (k; p) � G (k; pn) � G

�Z
'ndpn; pn

�
� I ('n) > n 8n 2 fbkc+ 1; :::; bkc+m; :::g ;

a contradiction with supp2dom�GG (t; p) <1 for all t 2 R. �

Proof of Theorem 4. (i) implies (ii). We again proceed by steps.

Step 1. % ^ coincide to %� on X.
Proof of the Step.

Notice that %� and % ^ restricted to X satisfy C-Completeness, Mixture Continuity, and Risk

Independence. By [13] and since %� and % ^ satisfy the Basic Conditions, it follows that there exist
two nonconstant and a¢ ne functions, u� and u^, from X to R that represent, respectively, %� and
% ^ on X. Since jointly (%�;% ^) satisfy Consistency, it follows that for each x; y 2 X

u� (x) � u� (y) =) u^ (x) � u^ (y) :

By [9, Corollary B.3.], it follows that u� and u^ are equal up to an a¢ ne and positive transformation,

hence the statement. �
Step 2. There exist an onto and a¢ ne function u� : X ! R and a nonempty, closed, and convex

set C such that

f %� g ()
Z
u� (f) dp �

Z
u� (g) dp 8p 2 C: (27)
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Moreover, C is unique.

Proof of the Step.

By assumption, %� satis�es the Basic Conditions, C-Completeness, and Independence. By [11,
Theorem 1] and since, by Step 1 and the premises of Theorem 4, %� satis�es Unboundedness, the
statement follows. �
Step 3. There exist an onto and a¢ ne function u^ : X ! R and a normalized, monotone,

continuous, and quasiconcave functional I : B0 (�)! R such that

f % ^g () I
�
u^ (f)

�
� I

�
u^ (g)

�
:

Moreover, u^ is cardinally unique and, given u^, I is unique.

Proof of the Step.

By assumption, Step 1, and the premises of Theorem 4, % ^ satis�es the Basic Conditions, Com-
pleteness, Risk Independence, Uncertainty Aversion, and Unboundedness. By [4, Lemma 57 and

Lemma 59], the statement follows. �
Notice that, by Step 1, we can assume without loss of generality that u� = u^ = u.

Step 4. I is consistent with C.

Proof of the Step.

Consider '; 2 B0 (�) and assume that ' <C  . It is immediate to see that there exist f; g 2 F
such that ' = u (f),  = u (g), and f %� g. By Steps 2 and 3 and since jointly (%�;% ^) satisfy
Consistency, we have that

' <C  =) f %� g =) f % ^g =) I (u (f)) � I (u (g)) =) I (') � I ( ) ;

proving the statement. �
Step 5. I satis�es (17).

Proof of the Step.

We need to show that for each k 2 R there exists h � k such that

' 6<C k =) h � I (') :

Fix a generic k 2 R. Since % ^ satis�es Unboundedness, there exists x 2 X such that k = u (x).

De�ne h = u (y) where y 2 X is such that y % ^x and

f 6%� x =) y % ^f:

Next, consider ' 2 B0 (�) such that ' 6<C k. Given (27), it is immediate to see that there exists

f 2 F such that ' = u (f) and f 6%� x. Since jointly (%�;% ^) satisfy Weak Caution, it follows that
y % ^f . By Step 3, this implies that h = u (y) = I (u (y)) � I (u (f)) = I ('), hence the statement. �
Step 6. There exist an onto and a¢ ne function u : X ! R, a linearly continuous function

G 2 Lbd (R��), and a closed and convex set C � � such that dom�G = C and for each f and g

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C: (28)

and

f % ^g () min
p2C

G

�Z
u (f) dp; p

�
� min

p2C
G

�Z
u (g) dp; p

�
: (29)
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Proof of the Step.

De�ne V : F ! R by V (f) = I (u (f)) for all f 2 F where u = u^ and I are as in Step 3. It

is immediate to see that V represents % ^. By Steps 2, 3, 4, and 5 and Proposition 16, it follows

that there exists a linearly continuous G 2 Lbd (R��) such that dom�G = C where C is closed and

convex and

V (f) = min
p2�

G

�Z
u (f) dp; p

�
= min

p2C
G

�Z
u (f) dp; p

�
8f 2 F ;

proving that (29) holds. By Step 2 and since u� = u, (28) holds. �
(ii) implies (i). Consider a nonempty, closed, and convex set C � �, an onto and a¢ ne function

u : X ! R, and a linearly continuous G 2 Lbd (R��) such that C = dom�G. Suppose further that C

and (u;G) satisfy (7) and (8). By [11, Theorem 1], it follows that %� satis�es the Basic Conditions, C-
Completeness, and Independence. By [4, Theorem 3], % ^ satis�es the Basic Conditions, Completeness,
Risk Independence, and Uncertainty Aversion (as well as Unboundedness). De�ne I : B0 (�)! R by

I (') = min
p2�

G

�Z
'dp; p

�
8' 2 B0 (�) :

By Proposition 16, it follows that I is consistent with C and satis�es (17). Since I composed with u

represents % ^, this implies that jointly (%�;% ^) satisfy Consistency and Weak Caution.
The uniqueness part of the statement follows from routine arguments (see [11] and [4]). �

Proof of Proposition 6. Let % be a binary relation on F that satis�es Unboundedness and assume
% is an Uncertainty averse preference. By [4, Lemma 57 and Lemma 59], there exist an onto and

a¢ ne function u : X ! R and a normalized, monotone, continuous, and quasiconcave functional

I : B0 (�)! R such that f % g if and only if V (f) � V (g) where V (f) = I (u (f)) for all f 2 F . For
each n 2 N de�ne Jn : B0 (�)! R by ' 7! mins2S ' (s) + n and In : B0 (�)! R by

In (') = min fI (') ; Jn (')g 8' 2 B0 (�) :

It is immediate to verify that In is a normalized, monotone, continuous, and quasiconcave functional

for all n 2 N. For each n 2 N de�ne <�n as in (16). It follows that there exists a nonempty, closed,
and convex set Cn of � such that

' <�n  () ' <Cn  
and

' <Cn  =) In (') � In ( ) :

We next show that In satis�es (17) for all n 2 N. Fix n 2 N. First, given k 2 R de�ne hk = k + n.

Next, consider ' 2 B0 (�) such that ' 6<Cn k. This implies that mins2S ' (s) < k. It follows that

In (') = min fI (') ; Jn (')g � Jn (') < k + n = hk;

proving that In satis�es (17). By Proposition 16, it follows that for each n 2 N there exists a unique
linearly continuous G 2 Lbd (R��) such that

In (') = min
p2�

Gn

�Z
'dp; p

�
8' 2 B0 (�) :

Moreover, notice that

lim
n
In (') = I (') 8' 2 B0 (�) : (30)
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For each n 2 N de�ne Vn : F ! R and %n to be such that

Vn (f) = min
p2�

Gn

�Z
u (f) dp; p

�
8f 2 F

and

f %n g () Vn (f) � Vn (g) :

It follows that %n is an e¤ectively bounded Uncertainty averse preference relation for all n 2 N. By
(30), we further have that

lim
n
Vn (f) = V (f) 8f 2 F ;

proving the statement. �

Proof of Proposition 8. (i) implies (ii). By [11, Theorem 1] and since %� satis�es the Basic
Conditions, C-Completeness, and Independence, there exist a nonconstant and a¢ ne function u� :

X ! R and a nonempty, closed, and convex set C such that

f %� g ()
Z
u� (f) dp �

Z
u� (g) dp 8p 2 C: (31)

By [3, Proposition 1] and since % ^ satis�es the Basic Conditions, Completeness, and Risk Indepen-
dence, there exist a nonconstant and a¢ ne function u^ : X ! R and a normalized, monotone, and
continuous functional I : B0

�
�; u^ (X)

�
! R such that

f % ^g () I
�
u^ (f)

�
� I

�
u^ (g)

�
:

Moreover, by [3, Proposition 2], it follows that there exists a nonempty, closed, and convex set C�

such that

f %� g ()
Z
u^ (f) dp �

Z
u^ (g) dp 8p 2 C�:

Since (%�;% ^) jointly satisfy Consistency, it follows that for each x; y 2 X

u� (x) � u� (y) =) u^ (x) � u^ (y) :

By [9, Corollary B.3.], it follows that u� is a positive a¢ ne transformation of u^. Wlog, we can assume

that u^ = u� = u. By (31), we have that if f %� g then �f + (1� �)h %� �g + (1� �)h for all
� 2 (0; 1] and all h 2 F . Since (%�;% ^) jointly satisfy Consistency, it follows that

�f + (1� �)h % ^�g + (1� �)h 8� 2 (0; 1] ;8h 2 F

which in turn delivers f %� g. In other words, we have that if f %� g then f %� g. Since

B0 (�; u (X)) = fu (f) : f 2 Fg and by [9, Proposition A.1.], this implies that C� � C. By [3,

Corollary 3], we have that

min
p2C

Z
u (f) dp � min

p2C�

Z
u (f) dp � I (u (f)) 8f 2 F : (32)

Conversely, �x f 2 F and de�ne k = minp2C
R
u (f) dp. Since u is a¢ ne and C � �, we have that

k 2 u (X). Thus, there exists x 2 X such that u (x) = k. We have two cases:

1. x % ^y for all y 2 X. By Monotonicity, this implies that x % ^f , that is,

I (u (f)) � I (u (x)) = u (x) = min
p2C

Z
u (f) dp:
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2. There exists y 2 X such that y � ^x. De�ne x" = "y + (1� ")x for all " 2 (0; 1). Since u is
a¢ ne and represents % ^ on X, we have that

u (x") > u (x) 8" 2 (0; 1) :

This implies that f 6%� x" for all " 2 (0; 1). Since (%�;% ^) jointly satisfy Caution, it follows
that x" % ^f for all " 2 (0; 1), that is,

I (u (f)) � I (u (x")) = u (x") = "u (y) + (1� ")u (x) 8" 2 (0; 1) :

This implies that I (u (f)) � u (x) = minp2C
R
u (f) dp.

In both cases and by (32), we obtain that I (u (f)) = minp2C
R
u (f) dp, proving the statement since

f was chosen to be generic.

(ii) implies (i). It follows from [11, Theorem 3].

The uniqueness part of the statement follows from routine arguments. �

Proof of Proposition 10. (i) implies (ii). By contradiction, suppose that jointly (%�;% ^) do
not satisfy Caution. Therefore, there exist �x 2 X and �f 2 F such that �f 6%� �x and �f � ^�x. By

the premises, [9], and [11, Theorem 1] and since one binary relation between %� and % ^ satis�es

Unboundedness and jointly (%�;% ^) satisfy Consistency, it follows that there exist an a¢ ne and onto
function u : X ! R, a closed and convex set C in �, and a normalized, positively homogeneous

functional I : B0 (�)! R such that: u (�x) = 0,

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C

and

f % ^g () I (u (f)) � I (u (g)) :

Moreover, since jointly (%�;% ^) satisfy Consistency, we have that f %� g implies I (u (f)) � I (u (g)).

De�ne xa; xb 2 X to be such that

u (xa) = I
�
u
�
�f
��
and u (xb) = min

p2C

Z
u
�
�f
�
dp:

Since �f 6%� �x and �f � ^�x, it follows that u (xa) > 0 and u (xb) < 0. De�ne now ffngn2N � F and

fxngn2N � X to be such that for each n 2 N

u (fn) = nu
�
�f
�
and u (xn) = nu (xa) .

This implies that for each n 2 N

min
p2C

Z
u (fn) dp = min

p2C

Z
nu
�
�f
�
dp = nmin

p2C

Z
u
�
�f
�
dp = nu (xb) < 0 = u (�x)

and

I (u (fn)) = I
�
nu
�
�f
��
= nI

�
u
�
�f
��
= nu (xa) = u (xn) :

That is, we have that fn 6%� �x and fn % ^xn for all n 2 N. Finally, observe that jointly (%�;% ^)
satisfy Weak Caution. Therefore, it follows that there exists �y % ^�x such that

f 6%� �x =) �y % ^f:
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Consider then �n 2 N such that u (x�n) = �nu (xa) > u (�y). By construction, it follows that f�n 6%� �x but
f�n % ^x�n � ^�y, a contradiction.
(ii) implies (i). It is trivial. �

Proof of Theorem 12. (i) implies (ii). We again proceed by steps. The �rst two steps can be

proved by using the same arguments deployed for their counterparts in the proof of Theorem 4.

Step 1. % ^ coincide to %� on X.
Step 2. There exist an unbounded from above and a¢ ne function u� : X ! R and a nonempty,

closed, and convex set C such that

f %� g ()
Z
u� (f) dp �

Z
u� (g) dp 8p 2 C:

Moreover, C is unique.

Step 3. There exist an unbounded from above and a¢ ne function u^ : X ! R and a normalized,
monotone, translation invariant, and concave functional I : B0 (�)! R such that

f % ^g () I
�
u^ (f)

�
� I

�
u^ (g)

�
: (33)

Moreover, u^ is cardinally unique and, given u^, I is unique.

Proof of the Step.

By assumption, % ^ satis�es the Basic Conditions, Completeness, Weak C-Independence. By

[14, Lemma 28], there exist a nonconstant a¢ ne function u^ : X ! R and a normalized niveloid

I : B0
�
�; u^ (X)

�
! R such that (33) holds. By Step 1 and the premises of Theorem 12, % ^ satis�es

One Side Unboundedness and so u^ is unbounded from above. It is routine to check that u^ is cardinally

unique and, given u^, I is unique. Without loss of generality, we can assume that 0 2 int
�
u^ (X)

�
.

By the proof of Theorem 3 of [14], [14, Lemma 25], and since % ^ satis�es Uncertainty Aversion, we
have that I is normalized, monotone, translation invariant, and concave. By [14, p. 1476], we have

that I admits a unique extension to B0 (�) with the same properties. �
Notice that, by Step 1, we can assume without loss of generality that u� = u^ = u and that

0 2 int (u (X)).
Step 4. I is consistent with C.

Proof of the Step.

Consider '; 2 B0 (�) and assume that ' <C  . Since u (X) is unbounded from above, there

exists k 2 R such that �' = ' + k and � =  + k belong to B0 (�; u (X)). It is immediate to see

that �' <C � . Since B0 (�; u (X)) = fu (f) : f 2 Fg, there exist f; g 2 F such that �' = u (f) and
� = u (g). It follows that f %� g. By Step 3 and since (%�;% ^) jointly satisfy Consistency, this
implies that

' <C  =) �' <C � =) f %� g =) f % ^g
=) I (u (f)) � I (u (g)) =) I ('+ k) � I ( + k) =) I (') � I ( ) ;

proving the statement. �
Step 5. There exists h0 2 (0;1) for each k 2 R such that

' 6<C k =) k + h0 � I (') : (34)

In particular, I satis�es (17).
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Proof of the Step.

By contradiction, assume that for each h0 2 (0;1) there exists kh0 2 R and 'h0 2 B0 (�) satisfying

'h0 6<C kh0 and I ('h0) > kh0 + h
0:

Consider f'ngn2N. Since 'n 6<C kn for all n 2 N and C � �, we have that for each n 2 N

inf
s2S

'n (s) < kn =) sup

�
� inf
s2S

'n (s) ; 0

�
� � inf

s2S
'n (s) > �kn =) sup

�
� inf
s2S

'n (s) ; 0

�
+ kn > 0:

De�ne f ngn2N by

 n = 'n + sup

�
� inf
s2S

'n (s) ; 0

�
� 0 8n 2 N:

It follows that f ngn2N � B0 (�; u (X)). De�ne fxngn2N ; fzngn2N � X and ffngn2N � F by

u (xn) = sup

�
� inf
s2S

'n (s) ; 0

�
+ kn 8n 2 N

u (zn) = kn + n+ sup

�
� inf
s2S

'n (s) ; 0

�
� 0 8n 2 N

u (fn) =  n 8n 2 N:

By construction and Step 3, we have that fn 6%� xn for all n 2 N and

I ('n) > kn + n =) I ('n) + sup

�
� inf
s2S

'n (s) ; 0

�
> kn + n+ sup

�
� inf
s2S

'n (s) ; 0

�
=) I ( n) > kn + n+ sup

�
� inf
s2S

'n (s) ; 0

�
=) I (u (fn)) > I (u (zn)) =) fn � ^zn 8n 2 N:

On the other hand, since (%�;% ^) jointly satisfy Weak C-Caution, it follows that there exists
fyngn2N � X such that

yn % ^xn, yn % ^fn,
1

2
xn +

1

2
z � ^1

2
yn +

1

2
z0 for some �xed z; z0 2 X and 8n 2 N: (35)

This implies that yn � ^zn, that is, u (yn) > u (zn) for all n 2 N. By (35), we have that for each
n 2 N

1 > u (z)� u (z0) = u (yn)� u (xn) � u (zn)� u (xn)

= n+ kn + sup

�
� inf
s2S

'n (s) ; 0

�
� sup

�
� inf
s2S

'n (s) ; 0

�
� kn

= n;

a contradiction with z; z0 being �xed. �
Step 6. There exist an unbounded from above and a¢ ne function u : X ! R, a grounded, convex,

and lower semicontinuous function c : � ! [0;1], and a closed and convex set C � � such that

C = dom (c) = fp 2 � : c (p) � kg where k 2 R and for each f and g

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C (36)

and

f % ^g () min
p2C

�Z
u (f) dp+ c (p)

�
� min

p2C

�Z
u (g) dp+ c (p)

�
: (37)
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Proof of the Step.

De�ne V : F ! R by V (f) = I (u (f)) for all f 2 F where u = u^ and I are as in Step 3. It is

immediate to see that V represents % ^. By Steps 2, 3, 4, and 5, and Proposition 16, it follows that
there exists a linearly continuous G 2 Lbd (R��) such that dom�G = C and

I (') = min
p2�

G

�Z
'dp; p

�
= min

p2C
G

�Z
'dp; p

�
8' 2 B0 (�)

and

V (f) = min
p2�

G

�Z
u (f) dp; p

�
= min

p2C
G

�Z
u (f) dp; p

�
8f 2 F :

By Step 2 and since u� = u, (36) holds. By [5] and since I is real valued, normalized, and translation

invariant, we have that G (t; p) = t + c (p) for all (t; p) 2 R �� where c : � ! [0;1] is a grounded,
convex, and lower semicontinuous function. This proves that (37) holds. Since it is immediate to

prove that dom�G = dom (c), the fact that supp2dom�GG (t; p) <1 for all t 2 R is equivalent to the
existence of a constant k 2 R such that dom (c) = fp 2 � : c (p) � kg, proving the statement. �
(ii) implies (i). Consider a nonempty, closed, and convex set C � �, an unbounded from above

and a¢ ne function u : X ! R, and a grounded, convex, and lower semicontinuous c : �! [0;1] such
that C = dom (c) = fp 2 � : c (p) � kg for some k 2 R. Suppose further that C and (u; c) satisfy

(11) and (12). By [11, Theorem 1], it follows that %� satis�es the Basic Conditions, C-Completeness,
and Independence. By [14, Theorem 3], % ^ satis�es the Basic Conditions, Completeness, Weak C-

Independence, and Uncertainty Aversion (as well as One Side Unboundedness). De�ne G : R��!
(�1;1] by

G (t; p) = t+ c (p) 8 (t; p) 2 R��:

It follows that G is linearly continuous and belongs to Lbd (R��) as well as C = fp 2 � : c (p) � kg =
dom (c) = dom�G for some k 2 R. By [5], if we de�ne I : B0 (�)! R by

I (') = min
p2�

G

�Z
'dp; p

�
= min

p2C
G

�Z
'dp; p

�
8' 2 B0 (�)

then I is normalized, monotone, continuous, translation invariant, quasiconcave, and consistent with

C. By Proposition 16, it follows that I satis�es (17). In particular, since I is translation invariant,

we have that I satis�es (34). Since I composed with u represents % ^, these facts imply that jointly
(%�;% ^) satisfy Consistency and Weak C-Caution.
The uniqueness part of the statement follows from routine arguments (see [14] and [11]). �

Proof of Theorem 15. (i) implies (ii). By Theorem 4, it follows that there exist an onto and a¢ ne

function u : X ! R, a linearly continuous function G 2 Lbd (R��), and a closed and convex set
C � � such that dom�G = C and for each f and g

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C

and

f % ^g () min
p2C

G

�Z
u (f) dp; p

�
� min

p2C
G

�Z
u (g) dp; p

�
:

By [4, Proposition 6] and since % ^ satis�es the �rst part of Minimal Maximal Uncertainty Aversion,
it follows that there exist �; � 2 (0;1) such that G�;HS ; G�;GS � G. De�ne G�;� : R��! (�1;1]
by

G�;� (t; p) = G�;HS (t; p) _G�;GS (t; p) 8 (t; p) 2 R��:
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It is not hard to check that G�;� � G, dom�G�;� = C�, G�;� 2 Lbd (R��), and

G�;� (t; p) =

(
t+ �R (pjjq) p 2 C�

1 p 62 C�
8 (t; p) 2 R��:

By [4, Proposition 6] and since % ^ satis�es the second part of Minimal Maximal Uncertainty Aversion
and G�;HS ; G�;GS � G�;� 2 Lbd (R��), it follows that G�;� � G. It follows that G�;� = G, proving

the implication.

(ii) implies (i). It is routine. �
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