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Abstract

I review the burgeoning literature on applications of Markov regime switching models in empirical

finance. In particular, distinct attention is devoted to the ability of Markov Switching models to fit the

data, filter unknown regimes and states on the basis of the data, to allow a powerful tool to test hypothe-

ses formulated in the light of financial theories, and to their forecasting performance with reference to

both point and density predictions. The review covers papers concerning a multiplicity of sub-fields in

financial economics, ranging from empirical analyses of stock returns, the term structure of default-free

interest rates, the dynamics of exchange rates, as well as the joint process of stock and bond returns.

JEL Classification Codes: G00, C00.

Keywords: Markov switching, Regimes, Regime shifts, Nonlinearities, Predictability, Autoregressive

Conditional Heteroskedasticity.

1. Introduction

Since the seminal contributions by Hamilton, Nelson, Schwert, Startz, and Turner appeared in Economet-

rica, the Journal of Economic Dynamics and Control, and the Journal of Financial Economics between 1988

and 1989, the literature has witnessed an explosion in the number and the quality of the academic papers

that have applied Markov regime switching econometric methods to model and forecast financial data. To

uncover (filter) from financial data the underlying but unobservable “general state” of the economy or more

specifically of asset markets through regime switching models–in which such latent state would govern

how part or all of the parameters in a time series framework may change over time–has in fact become

one of the leading methods through which applied financial researchers try and recover important and

yet unobservable (missing) data that have turned out to be key to fit and forecast financial phenomena.

What have we learned from more than 20 years of applied research based on Markov Switching models

(henceforth, MSMs)? What are the distinctive contributions of the hundreds of published papers that

have featured MSMs with a prominent role, i.e., what chances have they offered us to better understand

financial markets phenomena when compared to simpler, single-regime methodologies? How can such miss-

ing information–the filtered regime–affect our understanding of the dynamics of financial markets? In

this paper I take stock of the literature, classify a few of the papers that seem to have scored the key
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contributions, and take the opportunity to collect a number of thoughts concerning either the intimate

relationships among different papers and strands of the Markov switching (MS) literature or to suggest

directions for further extension and improvement of the way MSMs are currently applied in empirical

finance, with special emphasis on modeling and forecasting financial time series.

I do not think that it may be sensible to try and preview the “results” of a literature survey. However,

it is useful to list here a number of key questions that I have had in mind when I have approached the task

to write this survey. Even though I cannot rule out that readers will find different answers to the same

questions as well as different questions to ask the same literature reviewed here, the issues that were on my

mind may help better understand the reasons of my choices. Seven questions have driven my approach to

this literature. First, I was curious to assess what fraction of the MS papers had picked MS as a modeling

tool on the basis of a statistical reason–for instance, a careful specification search open to nonlinear models

of the MS class–and what fraction had arrived at MSMs because of economic motivations. Basically, I

had in mind a contrast between papers that use MSMs because “the data ask for them”, and papers that

use them because general knowledge of a phenomenon or a field “makes them plausible”. One interesting

implication is that usually the first type of papers tends to report rich comparisons of the performance (fit,

prediction, relative pricing errors, etc.) of MSMs vs. other models, especially simpler, linear benchmarks;

however, the second type of papers is often more intuitive and deeply grounded in economics. I have

found papers in both groups and a rough count gives 50-50 proportions, especially because the literature

is increasingly moving towards “rooting” MSMs in primitive asset pricing objects (e.g., the stochastic

discount factor, SDF) so that the second approach to MS has become common (see Guidolin, 2011).

Second, given that a paper has elected to rely on MS methods, I have paid attention to whether or

not the author(s) have entertained the possibility that the number of regimes (say, ) may exceed two.

Basically, it is common to come across papers for which MSMs and two-state nonlinear frameworks are

almost equivalent choices, while other papers openly entertain the sensible thought that once a researcher

opens up to the possibility that  ≥ 2 this obviously does not restrict  = 2. Notice that this second

question is partially associated with the first question: many papers that motivate MS on logical grounds,

often impose  = 2 while careful model selection procedures more often than not have led to pick   2.

To my surprise, also in this case the relative fraction of papers has turned out to be approximately 50-50,

i.e., there are many more papers based on -state MSMs with   2 than I was expecting ex-ante; I also

have found cases of empirical papers entertaining as many as 6 or 8 regimes.

Questions three and four are intimately related. I was curious to record the fraction of papers that

had (i) assumed flexible, rich marginal distributions for return innovations (e.g., t-Student shocks) thus

going beyond the standard of MSMs as persistent Gaussian mixtures, and/or (ii) used MSMs in which

the underlying Markov chain is time-heterogeneous, i.e., in which the transition probability matrix is

time-varying, as a function of either endogenous or exogenous state variables. Here I found two different

answers concerning (i) and (ii). As for (ii), I discovered that the fraction of papers that allow the transition

probabilities to change over time has been increasing. This is no random outcome, as modern papers

that root MS in a stochastic discount factor (SDF) have had solid theoretical reasons to assume that (at

least under the objective, physical measure) the transition probabilities may be time-varying (see details in

Guidolin, 2011). Interestingly enough, there is a less overwhelming evidence that time-varying transition

2



probabilities (TVTPs) may actually improve the forecasting performance of MSMs. As for (i), it seems that

most authors are still finding that traditional Gaussian mixture models are generally sufficient to the task

assigned to MSMs. Only in very specific cases, especially because the single-state literature was suggesting

to nest alternative distributional assumptions within single-state benchmarks, I have encountered cases

of non-Gaussian parameterizations. Obviously, questions two through four cannot be asked in isolation:

although the “intrinsic” flexibility of a MSM comes from  ≥ 2 there are other margins that can be

exploited by a researcher–the one on TVTPs remains intrinsic to MS and the one on marginal densities

is shared with all of time series econometrics–but obvious trade-offs exist, also because the perils of

“overfitting” data are always lurking in richly parameterized models.

The fifth concern with which I have approached the task revolved around whether or not papers have

relied on the idea that the key challenge of a MSM lies in correctly inferring and predicting regime shifts

(sometimes called turning points). The alternative consists of thinking of MSMs not only (or mostly) as

devices to anticipate regime switches but as a flexible class of nonlinear tools the usefulness of which cannot

be completely pinned to the fact that the Markov chain characterizing them can be easily predicted. Of

course, this is a very subtle distinction, because it remains odd to entertain the possibility that a regime

switching model may be useful in certain applications (e.g., portfolio choice, risk management) even though

it does not really help that much with forecasting the switching dynamics–and yet this is the case.1

Although most papers I have surveyed remain silent on this aspect, the few that discuss the point seem to

have adopted a pragmatic approach. The papers that are more concerned with producing point forecasts

tend to implicitly discuss the accuracy of regime prediction (see e.g., Guidolin, Hyde, McMillan, and Ono,

2009). However, a number of papers that instead are more biased towards producing good density forecasts

usually tend to downplay the regime prediction aspects (see e.g., van Dijk and Franses, 2003). A recent

paper by Lettau and van Nieuwerburgh (2007) has surprisingly concluded that the real issue with MSMs is

not really locating the switches, but instead precisely estimating the shifts in the conditional mean function,

at least from the perspective of the literature on return predictability.

The sixth question concerned the type of markets/assets with respect to which MS tools have been more

useful or frequently employed. My prior–that MSMs have been popular with equity market students–has

found confirmation, but there have also been a few surprises. In particular, the more interesting, recent

literature on MS in asset pricing has mostly originated within the subfield of fixed income pricing. It was

also interesting to notice the existence of a cluster of papers devoted to modeling the joint distribution

of equity and Treasury bond returns, with special emphasis on measures of their association (e.g., Baele

et al., 2010, Guidolin and Timmermann, 2005, 2006a,b). However, MSMs have also traditionally found

application to currencies, while there are recent papers on MS dynamics in corporate bond, derivative, real

estate returns, and real interest rates. At this point, no asset has been left out.

My final concern was with data frequency: I repeatedly asked whether there was a frequency be-

low/above which it was obvious that MSMs would stop being useful, to be replaced by other dynamic

econometric frameworks (such as ARCH or copulas, to name two). In the light of the fact that routinely

great efforts are spent to interpret regime shifts in the light of or to predict recession/expansion dates–and

1If MSMs are interpreted as tools to optimally recover information on missing regimes, this may appear less surprising

because errors in timing the dynamics of the states may still lead to good quality -step ahead density predictions.
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of the fact that MSMs originated in the empirical macroeconomics literature–the outcome of my survey

has been surprising: there is very little literature using MSMs at annual or quarterly frequencies (Engel

and Hamilton, 1990, or Liu, 2011, are exceptions). The dominant frequency at which MSMs seem to be

most effective is the monthly one, which is adopted by approximately 60% of the papers. However, there

is also a substantial body of research that has applied MSMs to daily data. Although it is difficult to

net these percentages from the baseline percentages of papers using monthly vs. daily frequencies in all of

empirical finance, it seems fair to say that MS tools seem in the end to work well at all possible frequencies,

including quarterly ones–even though these are less popular among financial economists.

Let me add the usual caveats and disclaimers. This is just one survey of a (small, alas) portion of

existing papers that have used MSMs in applied financial economics. There is no pretense or suggestion

that my review may be complete in terms of discussing or citing all the relevant papers. Other, probably

better balanced surveys exist, e.g., Ang and Timmermann (2011). Although I have struggled to avoid that,

there is probably a visible bias towards topics or issues of personal interest, which is probably visible in the

space I have devoted to density forecasting and risk management. However, this is also where I have found

the most obvious examples of new, exciting advances in this subfield of applied time series econometrics.

It is also important to openly state that my paper does not aim at becoming a statistical reference on

MSMs. My goal is to provide a primer to what MSMs are and to quickly move to review papers that can

be taken as examples of what MS tools may yield when applied to finance research questions. Any reader

interested in acquiring the basic tools to specify and estimate MSMs is invited to consult the excellent

textbooks by–among many others–Franses and van Dijk (2000), Frühwirth-Schnatter (2006), Kim and

Nelson (1999), Krolzig (1997), and McLachlan and Peel (2000).

In this survey, I shall keep separate the task of building dynamic asset pricing models in which beliefs

are informed by some MSM framework from the (simpler) goal of fitting MSMs to the data and “loosely”

using their implications to test one or more hypotheses of interest. Technically, the difference may be seen

as stemming from the fact that while in simple fitting exercises, a researcher only cares about modeling

(often, predicting) the physical (conditional) density of the data, P, when MSMs are used to build dynamic

asset pricing models, she usually cares for the role of regime shifts both under P as well as under Q, the

risk neutral measure. Guidolin (2011) is a companion survey paper devoted to the role of MSMs in asset

pricing and portfolio choice research that focuses more on the relationship between MSMs in P vs. Q and

their implications (see e.g., Bertholon, Monfort and Pegoraro, 2008, and Dai Singleton, and Yang, 2007).

The paper is structured as follows. Section 2 provides a short primer to MSMs in their alternative

functional forms. I briefly deal with estimation, forecasting, model selection, and diagnostic checks. The

goal of this section is not to cover details of the econometrics of MSMs (Hamilton, 1990, 1993, 1994,

remain references against which my review cannot compete), but simply to provide a set of definitions and

concepts to be referenced later on. Section 3 starts my survey by devoting attention to a heterogeneous set

of papers that have simply modeled financial data using MSMs. This section concerns the most traditional

literature that has used MSMs with the objective to show that financial returns contain evidence of multiple,

recurring regimes or even–which is somewhat questionable given the structure of a MSM–generic breaks

in empirical relationships. Section 3 also mostly focuses on univariate applications. Section 4 describes a

few genuinely multivariate applications and introduces a powerful set of tools that in my view is destined to
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play a key role in future developments, MS dynamic factor models (DFMs). Section 5 relates a number of

ideas and problems that emerge in sections 3 and 4 to the debate on the predictability of financial returns.

Section 6 examines whether and how we may need to supplement ARCH-type models for variances and

covariances with MS components (or vice versa, whether there is a need to augment MSMs with ARCH

effects). Section 7 tackles the choice between homogeneous and time-heterogeneous Markov chains in

the practice of MSMs. Section 8 asks whether MSMs can forecast financial data. Besides point and

density forecasts, financial economists will find in this section elements of risk management addressed in

the perspective of MSMs. Section 9 concludes.

2. A Primer on Markov Switching Models

Suppose that the  × 1 random vector y follows a -regime Markov switching VAR() (MSVAR) het-

eroskedastic process, compactly MSIAH( ):

y = μ +

X
=1

Ay− +Σ² (1)

with ² ∼ (0 I ).
2  = 1 2  is a latent state variable driving all the matrices of parameters in

(1): μ is a  × 1 vector that collects  regime-dependent intercepts; the  × matrix Σ represents

the state  factor in a regime-dependent Choleski factorization of the covariance matrix, Ω = ΣΣ
0

.3

A non-diagonal Σ captures simultaneous co-movements between asset returns and macro factors, while

dynamic (lagged) linkages across different variables may be captured by the VAR(). For instance, in

Guidolin and Ono (2006),  is broken down in 1 asset returns and 2 macroeconomic predictors, with

1 +2 =  . It is typical to assume the absence of roots outside the unit circle, thus making the process

stationary.4 In fact, conditionally on the unobservable state  (1) defines a standard Gaussian reduced

form VAR() model. On the other hand, when   1, alternative hidden states are possible and they

will influence both the conditional mean and the volatility/correlation structure characterizing (1). These

unobservable states are generated by a discrete, irreducible, and ergodic first-order Markov chain:5

Pr( = |{}−1=1 {y}−1=1) = Pr ( = |−1 = F) = 

where  is the generic [ ] element of the  ×  transition matrix P. When P is constant over

time, I speak of a homogeneous Markov chain. For simplicity, in the rest of this Section, I focus on the

case of constant transition probabilities, although Section 7 will present frequent examples of economically

motivated time-heterogeneous Markov chain models. Ergodicity implies the existence of a stationary vector

2NID stands for “normal and identically distributed”.
3It is immaterial whether regimes are labeled starting from 0 and going up to  − 1 or from 1 to  Most two-state MS

papers prefer the convention  = 0 1 when  plays a direct role in writing down the econometric model. The reason is that

for  ≥ 3,  cannot, in general, be interpreted as a dummy variable, although it is possible to interpret it as such in special
cases.

4Formally, it is just sufficient for such a condition to be verified in at least one of the  alternative regimes, for covariance

stationarity to hold.
5The assumption of a first-order Markov process is not restrictive, since a higher order Markov chain can always be

reparameterized as a higher dimensional first-order Markov chain, i.e., substitutability exists between the order of the Markov

chain driving  and the number of regimes .
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of probabilities ξ̄ satisfying ξ̄ = P
0
ξ̄ Irreducibility implies that ξ̄  0 meaning that all unobservable states

are possible. In practice, P is unknown and hence ξ̄ can be at most estimated given knowledge on P

extracted from the information set F = {y}=1.6
When  is large, (1) implies the estimation of a large number of parameters, [ + 2 + ( +

1)2+ ( − 1)] For instance, for  = 2  = 8 and  = 1 (the parameters characterizing the application

in Guidolin and Ono, 2006), this implies the estimation of 218 parameters! MSMs are known (see Timmer-

mann, 2000) to capture central statistical features of asset returns. For instance, differences in conditional

means across regimes enter the higher moments such as variance, skewness, and kurtosis. In particular, the

variance is not simply the average of the variances across the two regimes: the difference in means also im-

parts an effect because the switch to a new regime contributes to volatility; this difference in regime means

also generates non-zero conditional skewness. Finally, differences in means in addition to differences in

variances can generate persistence in levels as well as squared values akin to volatility persistence observed

in many return series. Again differences in means play an important role in generating autocorrelation in

first moments: without such differences, the autocorrelation will be zero. In contrast, volatility persistence

can be induced either by differences in means or by differences in variances across regimes. In both cases,

the persistence tends to be greater, the stronger the combined persistence, as measured by the diagonal

transition probabilities collected in P.7

Equation (1) nests a number of simpler models in which either some of the parameter matrices are not

needed or some of these matrices are independent of the regime. These simpler models may greatly reduce

the number of parameters to be estimated. Among them, the financial econometrics literature (see e.g.,

Ang and Bekaert, 2002a) has devoted special attention to MSIH() and MSI() models,

y = μ +Σ²

in which  = 0, to MSIA( ) homoskedastic models,

y = μ +

X
=1

Ay− +Σ²

in which the covariance matrix is constant, and to MSIH()-VAR() models (see Guidolin and Ono, 2006),

y = μ +

X
=1

Ay− +Σ² (2)

which are a special case of (1) in which intercepts and covariance matrices are regime-dependent, and the

6An alternative to the assumption of recurring regimes is change point processes, as considered by Chib (1998) and applied

in empirical finance by Pastor and Stambaugh (2001) and Pettenuzzo and Timmermann (2010). In this model, the set of

regimes expands over time, each regime is unique, and previous regimes are not visited again. This type of model is likely to

be a good representation of regime shifts related to technological change and certain types of legislative or political changes

that are irreversible. Of course, a combination of recurrent regimes and new regimes is possible. In this survey we will mostly

be concerned with recurrent regime models only.
7This is the sense in which Marron and Wand (1992) emphasize that mixtures of normal distributions provide a flexible

family that can be used to approximate many distributions. Mixtures of normals can also be viewed as a nonparametric

approach to modeling the return distribution if the number of states, , is allowed to grow with sample size.
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VAR() coefficients are not.8 For instance, model (2) implies “only” [ +( +1)2+ ( − 1)] + 2

parameters. For the same configuration mentioned above, this means 154 parameters. Of course, a limit

case of (1) is obtained when  = 1, which yields a multivariate Gaussian VAR(), a benchmark of a large

portion of the empirical finance literature. Certain applications (e.g., the seminal paper by Hamilton, 1989)

have also entertained the following variation on (1), a MSMAH():

(y − ν) =
X

=1

A(y− − ν− ) +Σ² (3)

Krolzig (1997) shows that the dynamic implications of (1) and (3) are markedly different. For instance,

the definition of (3) implies that the conditional mean function is governed by a (+ 1)-th order Markov

chain as the terms (y− − ν− ) render the entire sequence {− −+1 ..., −1 } relevant. With
very few exceptions, in the finance literature the more straightforward specification in (1) dominates.

2.1. Estimation and Inference

The first step towards estimation and prediction of a MSIAH model is to put the model in state-space form.

Collect the information on the time  realization of the Markov chain in a random vector ξ = [( = 1)

( = 2) ... ( = )]0, where ( = ) is a standard indicator variable. In practice the sample

realizations of ξ will always consist of unit “versors” e characterized by a 1 in the th position and by

zeros everywhere else, assuming ( = ) = 1. An important property is then [ξ|ξ−1] = P0ξ−1 (see

Hamilton, 1994). Exploiting this property, the state-space form is composed of two equations:

y = YΨ (ξ ⊗ ι) +Σ∗ (ξ ⊗ I) ² (measurement equation)

ξ+1 = P0ξ + u+1 (transition equation) (4)

where Y is a  × (+ 1) vector of predetermined variables with structure [1 y0−1y
0
−]⊗ ι  Ψ is a

(+1)× matrix collecting VAR parameters, both matrices of means and autoregressive coefficients,

Ψ =

⎡⎢⎢⎢⎢⎢⎣
μ
0
1 · · · μ

0


A11 · · · A1
...

. . .
...

A1 · · · A

⎤⎥⎥⎥⎥⎥⎦ 

Σ∗ is a  ×  matrix collecting all the possible  Choleski factors [Σ1 Σ2 ... Σ] such that ∀,
Σ∗ (ξ ⊗ I) (ξ ⊗ I )0 (Σ∗)0 = Ω  the -regime covariance matrix of the innovations ². Moreover,

² ∼ (0 I) and in the transition equation u+1 is a zero-mean discrete martingale difference sequence

vector. Also, the elements of u+1 are uncorrelated with ²+1 as well as ξ−  ²−  y−  and Y− ∀ ≥ 0
To make the system in (4) operational, assume that the process in (1) started with a random draw from

the unconditional probability distribution defined by the vector of state probabilities ξ̄. The dynamic

8MSH() models in which  = 0 and intercepts (often interpreted as expected return vectors) are constant over time–so

that only the covariance matrix depends on –have been popular in theoretical asset pricing research, where interesting

effects may derive simply from MS in second moments.
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state-space model in (4) is neither linear (as the state vector ξ also influences the covariance matrix of the

process) nor Gaussian, as the innovations driving the transition equation are Gaussian mixtures.

The state-space representation of (3) is quite different. As already observed, the conditional mean is

now governed by a ( + 1)-th order Markov chain, so that it is useful to collect the information on the

realization of the Markov chain in a +1 × 1 random vector

ξ
(+1)
 = ξ ⊗ ξ−1 ⊗ ⊗ ξ− =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

( = 1 −1 = 1  − = 1)

( = 1 −1 = 1  − = 2)
...

( = 1 −1 =   − = )

( =  −1 =   − = )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
so that [ξ

(+1)
 |ξ(+1)−1 ] = P0

(+1)
ξ
(+1)
−1 where P(+1) =  ⊗  ⊗  ⊗  is the +1 × +1 transition

matrix for the transformed set of regimes.9 Therefore the transition equation will be characterized by a

matrix that corresponds to P0
(+1)

ξ
(+1)
+1 = P0(+1)ξ

(+1)
 + η+1 or ξ

(+1)
+1 − ξ̄ = P0(+1)(ξ(+1) − ξ̄) + η+1

from the ergodic property that P0
(+1)

ξ̄ = ξ̄ while the measurement equation becomes:

y = YBξ
(+1)
 +Σ∗

³
ξ
(1)
 ⊗ I

´
u = YBξ

(+1)
 +Σ∗

³
((I ⊗ ι0)ξ

(+1)
 )⊗ I

´
u

where ξ
(1)
 is the standard  × 1 vector collecting state information for period  such that ξ

(1)
 = (I ⊗

ι0)ξ
(+1)
 , and the (+ 1)×+1 coefficient matrix B has structure:

B = Ψ(I⊗ι0⊗ι )−

⎡⎢⎣
P

=1A
(1)


ν 0

(1)
−

...
P

=1A
0


(+1−1)


ν0

(+1−1)
−

P
=1A

0


(+1)


ν 0

(+1)
−

O
((−1)+1)×+1

⎤⎥⎦ 
Multivariate MSMs are estimated by maximum likelihood, although (E)GMM estimation strategies

have recently been proposed (see, e.g., Bansal and Zhou, 2002). Parameter constraints (for instance, on

the transition probabilities) are usually imposed using the re-parameterizations illustrated in Kim and

Nelson (1999, pp. 14-17), who also show how the standard errors need to be adjusted as a function

of the transformations selected. Estimation and inference are usually based on the EM (Expectation-

Maximization) algorithm proposed by Dempster et al. (1977) and Hamilton (1989), a filter that allows

the iterative calculation of the one-step ahead forecast of ξ+1| given the information set F and the

consequent construction of the log-likelihood function.10 Additional details on the EM algorithm can be

found in Hamilton (1993, 1994) or Krolzig (1997). Maximization of the log-likelihood function within the

M-step is made faster by the fact that the first-order conditions defining the MLE may often be written

down in closed form (see e.g., Hamilton , 1990). In particular, such first-order conditions can be shown

9Krolzig (1997, pp. 38-39) shows that P(+1) has structure: P(+1) =

P0 ⊗ −10+1

 ¯ ( ⊗ I ⊗ 0)
10Some assumptions have to be imposed to guarantee the (local) identifiability of the parameters under estimation. One

possibility relies on the results in Leroux (1992) to show that under the assumption of multivariate Gaussian shocks to the

measurement equation, MSIAH models are identifiable up to any arbitrary re-labeling of unobservable states.

8



to depend on the smoothed probabilities ξ̂| ≡ Pr (ξ|F ;θ) (i.e., the state probabilities estimated on

the basis of the full sample of data) and therefore they all present a high degree of non-linearity in the

parameters, collected in the vector θ (that includes the estimable elements of the transition matrix P). As

a result, these first-order conditions have to be solved numerically, although convenient iterative methods

exist. In fact, the expectation and maximization steps can be used in iterative fashion. Starting with

arbitrary initial values θ̃
0
, the expectation step is applied first, thus obtaining a sequence of smoothed

probability distributions {ξ̂1|}=1 Given these smoothed probabilities, appropriate first-order conditions
are used to derive θ̃

1
. Based on θ̃

1
, the expectation step can be applied again to find a new sequence

of smoothed probability distributions {ξ̂2|}=1. This starts the second iteration of the algorithm. The
algorithm keeps being iterated until convergence, i.e. until θ̃

 ' θ̃
−1
. The likelihood function increases

at each step and reaches an approximate maximum in correspondence to convergence (see Baum, Petrie,

Soules, and Weiss, 1970).

As for the properties of the resulting ML estimators, under standard regularity conditions (such as iden-

tifiability, stability and the fact that the true parameter vector does not fall on the boundaries) Hamilton

(1989, 1993) and Leroux (1993) have proven consistency and asymptotic normality of the ML estimator θ̃:

√

³
θ̃ − θ

´
→ 

¡
0 I(θ)−1

¢


where I(γ) is the asymptotic information matrix,

I(θ) ≡ lim
→∞

− −1

"
2 ln

Q
=1 (y|θ)

θθ0

#


Although other choices exist–i.e., the conditional scores or a numerical evaluation of the second partial

derivative of the log-likelihood function with respect to θ̃–in applied work it is typical to employ a White-

style “sandwich” estimator of I(θ) which yields the estimate

g (θ̃) = −1
∙
I2(θ̃)

³
I1(θ̃)

´−1
I2(θ̃)

¸


where

I1(θ̃) = −1
X
=1

h
h(θ̃)

i h
h(θ̃)

i0
h(θ̃) =

 ln (y|F−1; θ̃)
θ

I2(θ̃) = −−1
X
=1

"
2 ln (y|F−1; θ̃)

θθ0

#


As a consequence, and with one important exception, standard inferential procedures are available to test

statistical hypotheses. In particular, call  : R → R a (smooth) function that imposes − restrictions on
the -dimensional parameter vector θ. Suppose we want to test 0 : (θ) = 0 vs. 1 : (θ) 6= 0 under the
assumption that under both hypotheses the number of regimes  is identical.11 Define θ̃ as the restricted

estimator, obtained under the null hypothesis. Lagrange Multiplier (LM) tests tend to be the preferred

tests as they only require the estimation of the restricted model. While the scores of an unrestricted model,

s(θ̃) ≡
X

=1

h (θ̃) =

X
=1

∙
diag(η ((θ))P (θ)

θ0

¯̄̄̄
=̃

¸0
ξ̂ |,

11Notice though that some hypotheses involving elements of P set to zero cannot be entertained as they fall on the boundaries

of the parameter space and may imply a change in the number of actual regimes. However, other hypotheses involving P can be

tested without restrictions, for instance the important statistical hypothesis of independent MS, when Pr ( = |−1 = ) =

Pr ( = ) ∀ = 1... (i.e., P has rank one).
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have zero mean vector by construction,12 the scores of the restricted model obtained by MLE, imposing

(θ) = 0, can be used to obtain the standard test statistic:

 ≡ s (θ̃)0
hg (θ̃)i−1 s (θ̃) → 2

where  = rank
³
()

0

´
and θ̃ denotes the restricted estimator. For instance, a test of the hypothesis of

homoskedasticity (0 : (Σ) = (Σ)  = 1 2 ) implies  = ( − 1)(+1)2
restrictions and

can be formulated as a linear restriction on the matrix Σ∗. As an alternative, the Likelihood Ratio test

(LRT) may be employed:

 ≡ 2
h
ln(θ̃)− ln(θ̃)

i
→ 2

Although very simple, this test requires the estimation of both the restricted and the unrestricted models,

which for  high enough may be quite cumbersome in the unrestricted case and require a host of diagnostic

checks on the performance of the EM algorithm in locating a truly global maximum for the likelihood

function. However, my review will show that in practice, the LRT is employed more and more often in

applied work, which may be a sign of either cheap computation power being available, or of improving

confidence of researchers in their control over the performance of the EM algorithm, or both.

Finally, standard  and  statistics can be calculated in the form of a Wald test. Under asymptotic

normality of the unrestricted ML estimator θ̃ it follows that

√

h
(θ̃)− (θ)

i
→ 

µ
0

(θ)

θ0

¯̄̄̄
=̃

g (θ̃) 0(θ)
θ0

¯̄̄̄
=̃

¶
and

Wald ≡ 0(θ̃)
∙
(θ)

θ0

¯̄̄̄
=̃

g (θ̃) 0(θ)
θ0

¯̄̄̄
=̃

¸−1
(θ̃)

→ 2

The exception to standard inferential procedures mentioned above concerns the number of non-zero

rows of the transition matrix P, i.e. the number of regimes, . In this case, even under the assumption of

asymptotic normality of the estimator θ̃, standard testing procedures suffer from non-standard asymptotic

distributions of the LRT statistic due to the existence of nuisance parameters under the null hypothesis. I

specifically discuss this problem in Section 2.3.

Although in most applications data are observed only in discrete time, in a variety of problems it is

convenient to use continuous-time models because they allow the derivation of closed-form solutions (see

Guidolin, 2011, for a number of such examples). Hahn, Frühwirth-Schnatter, and Sass (2009, HFSS) have

recently re-examined a few issues related to the estimation of continuous time MSMs and emphasized the

considerable advantages of a Bayesian approach based on Monte Carlo Markov chain (MCMC) methods.

Assume, for instance, that the dynamics of a price process P = {P}∈[0 ] of  stocks are described as

P = (P)(μ+ΣZ)

where Z = {z}∈[0 ] is an  -dimensional Brownian motion, μ = {μ}∈[0 ] is the drift process, Σ =

{Σ}∈[0 ] is the volatility process, and   0 is the time horizon. Suppose that μ and Σ can take

 possible values and that switching between these values is governed by a state process  which is a

12This is because s (̃) ≡


=1 h(̃) =


=1


diag( (()) ()

0


=̃

0
̂| = 0

0, from the MLE first-order conditions.
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continuous-time Markov chain with state space {1 } and rate matrix Λ.13 The Markov chain is again
assumed to be time homogeneous, irreducible, and independent of Z. Then the corresponding return

process r = {r}∈[0 ], defined by r = [(P)]
−1P satisfies

r = μ+ΣZ

and represents a multivariate continuous time MSM. When μ = μ and Σ = Σ, the model simplifies to

a standard  -dimensional geometric Brownian motion. Although since Hamilton (1993) the standard of

ML estimation of MSMs is represented by the EM approach, HFSS stress that even though EM algorithms

for continuous time Markov chain models have been described by, e.g., James et al. (1996) and Jacquier,

Johannes, and Polson (2007), they require constant and known volatility Σ: even for constant but unknown

Σ, it is impossible to employ the EM algorithm to estimate the volatility jointly with the other parameters,

since the change of measure involved in deriving the filters used in the EM algorithm requires known Σ.

Furthermore, for a general continuous-time MS model given discrete observations, no finite-dimensional

filters are known and, hence, the conditional expectations used in the EM algorithm cannot be computed.

HFSS discuss instead the advantages of MCMC methods. In particular, they construct a sampler tailored

to a multivariate continuous time MSMs. Furthermore, they adapt a discrete-time sampler to serve as an

approximation for the continuous-time model. They compare the proposed discrete and continuous-time

methods with simulated data and find that MCMC outperforms ML estimation for difficult cases like high

rates of regime switching and considerable noise, the typical situation one faces in financial applications.

2.2. Forecasting

Under a mean squared forecast error (MSFE) criterion, the algorithms required to implement standard

forecasting are relatively simple in spite of the nonlinearity of the MSIAH class and naturally derive from

(4). Ignoring the issue of parameter uncertainty, i.e. the fact that the parameters of a multivariate MSM

must be estimated, the function minimizing the MSFE is the standard conditional expectation function.

For instance, for a one-step ahead forecast we have:

[y+1|F] = Y+1Ψ
³
ξ̂+1| ⊗ ι

´
where Y+1 = [1 y

0
y

0
−+1]⊗ ι , Ψ collects the estimated conditional mean parameters, and ξ̂+1| is the

one-step ahead, predicted latent state vector filtered out of the information set F according to transition
equation ξ̂+1| = P0ξ̂|. It follows that

[y+1|F] = Y+1Ψ
³
P0ξ̂| ⊗ ι

´
 (5)

For   1-step ahead forecasts the task is much more challenging as: (i) Y+ is unknown and must be

predicted; (ii) [Y+|F] involves sequences of predictions {[y+1|F]  [y+−1|F+−2]} and as such
{ξ̂+1|  ξ̂+−1|} which is likely to impress cross-correlation patterns to the predictions used, because
13The state process  is characterized by the rate matrix Λ ∈ R× as follows: setting  = − =



=16= , in

state  the waiting time for the next jump is -exponentially distributed and Pr( = |− =   = −), the probability of

jumping to state  6=  when leaving , is given by  .
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of the presence of MS. For instance, for  = 2  = 1 and ignoring the presence of an intercept term, we

have

[y+2|=] = 
£¡
y0+1 ⊗ ι

¢
Ψ
¡
ξ+2 ⊗ ι

¢ |F

¤
= 

£¡¡
y0 ⊗ ι

¢
Ψ
¡
ξ+1 ⊗ ι

¢⊗ ι0¢Ψ ¡ξ+2 ⊗ ι¢ |F

¤
which is not the product of the conditional expectations of

¡
(y0 ⊗ ι)Ψ

¡
ξ+1 ⊗ ι

¢⊗ ι0¢ andΨ ¡ξ+2 ⊗ ι¢
as the future state vectors ξ+1 and ξ+2 are correlated, from ξ+2 = P

0ξ+1 + η+2. However, in applied

work it is customary to follow the suggestion of Doan, Littermann, and Sims (1984) and substitute the

sequence of predicted values of {y+1 y+2  y+−1} (as of time ), i.e., {̂[y+1|F]  ̂[y+−1|F]}
for {[y+1|F]  [y+−1|F+−2]}. In this case (5) generalizes to generic   2-step ahead predictions:

[y+|F] = [Y+|F]Ψ
h¡
P0
¢
ξ̂| ⊗ ι

i


which gives a recursive formula since [Y+|F] forces one to forecast a sequence of future y+ values,
 = 1 2  − 1. Similar problems apply to multi-step forecasts from the MSMVARH model (3).

2.3. Model Selection and Diagnostic Checks

In the absence of MS dynamics in the matrices of autoregressive coefficients and in the covariance matrix of

a vector process–i.e., for MSI(,0) and MSI()-VAR()–it is possible to show that general multivariate

MSMs possess a standard VARMA representation that helps define a somewhat precise mapping between

nonlinear MS processes and their linear counterparts. In particular, under a few regularity conditions,

equation (1) possesses a VARMA( + − 1 − 1) representation, where  + − 1 is the autoregressive
order and  − 1 is the moving average order. On the other hand, the MSMVAR() process in (3) has
a VARMA( +  − 1 +  − 2) representation. In both cases, notice that their VARMA( )

representation implies  ≥ . These results give a useful starting point in a simple-to-general specification

approach:

1. A researcher may start out by conducting a standard Box-Jenkins’ style selection applied to the

class of VARMA models. The reason is that given the existence of VARMA( ) representations

for MSMs, it is possible to solve a simple bivariate system of linear equations to recover  and 

from the values for  and . Because in multivariate contexts, VARMA-style model selection remains

quite difficult, noting that  + − 1 ≥  and  +− 1 ≥ , this suggests that the autoregressive

order in the VARMA is never lower than the autoregressive order in the MSM. Thus a standard VAR

lag-selection procedure provides an upper bound to the correct value of ∗ in the MSM.

2. Given such a ∗, the focus shifts on the number of regimes . Krolzig (1997) has suggested the

analysis of each component of the vector y in isolation to detect the appropriate number of regimes,

say  for   = 1 2   In this case the (V)ARMA equivalence results can be fully exploited.

For each time series, the best fitting ARMA model could be selected using Box-Jenkins or any other

ARMA specification criteria. Taking into account that the AR order ∗ has been pre-selected, the

optimal number of regimes ∗
 will correspond to the MA order plus one (plus two minus 

∗ in (3)).

Call {∗
 }=1 the sequence of number of states for each univariate variable under study.
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3. Given {∗
 }=1 the total number of regimes characterizing the multivariate process might be in

principle as high as
Q

=1
∗
 if the regimes are not simultaneously perfectly correlated with each

other, i.e. if it does not occur that at least a subset of variables are governed by the same hidden

Markov chain (see Section 3 for additional comments). This latter hypothesis is usually testable using

standard inferential procedures.

4. Once the number of MSIAH (MSMAH) regimes ∗ has been selected, it is useful to test for the

presence of regime-dependent heteroskedasticity and/or for the presence of regimes in the autoregres-

sive component of the MSM. For instance, an LM test might be employed. Or the MSM might be

estimated with and without heteroskedastic component and an LRT used.

As illustrated in a number of papers to be reviewed in Section 3, an alternative set of methods to

perform data-driven model selection relies on information criteria, such the Schwartz, Hannan-Quinn, and

Akaike criteria (see e.g., Sin and White, 1996, for evidence on information criteria performance in non-

linear models). Interestingly, few papers have addressed the issue of the small-sample and asymptotic

performance of these information criteria specifically for the case of MSMs. Because these measures rely

on the same conditions employed in the asymptotic theory of the LRT, their small and large sample

properties are, likewise, largely unknown. However, the literature on mixtures provides some encouraging

evidence in the context of unconditional models, suggesting that the BIC may provide a reasonably good

indication for the number of components (see e.g., McLachlan and Peel, 2000, chapter 6, for a survey and

references). As Granger, King, and White (1995) have pointed out, rankings based on information criteria

are arguably more appropriate for model selection than procedures based on formal hypothesis testing,

partly because, unlike testing, they do not favor unfairly the model chosen to be the null hypothesis. For

instance, Psaradakis and Spagnolo (2003) discuss the effectiveness of procedures based on the AIC as a

means of selecting the number of regimes in MSVAR models.

Once a restricted set of MSMs has been estimated, the need of further improvements could arise as the

result of diagnostic checks.14 Although the EM algorithm naturally delivers estimates of the parameters θ̃

and ξ̃
1

1|0, besides the smoothed sequence of probability distributions {ξ̂|}=1, it would lead to define the
(smoothed) residuals as

ũ ≡ y −YB̂ξ̂| 

that are not well suited for diagnostic checks as they are full-sample statistics and hence they structurally

overestimate the explanatory power of a MSM. On the contrary the one-step prediction errors

ẽ|−1 ≡ y −YB̂Pξ̂−1|−1

are limited information statistics (being based on filtered probabilities) and uncorrelated with the infor-

mation set F−1 because [y|F−1] = YB̂Pξ̂−1|−1 and therefore form a martingale difference sequence

[ẽ|−1|F−1] = 0. Therefore standard tests of this hypothesis (such as Portmanteau tests of no serial

14In what follows we focus for simplicity on MSMAHmodels because they are logically and computationally more complicated

than MSIAH models. However, all of our remarks apply once one replaces ũ ≡ y −YB̂̂| with ũ ≡ y −YΨ̂̂| .
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correlation) can be used.15 In the absence of MS heteroskedastic components (i.e., the covariance matrices

of shocks fail to depend on regimes), researchers in empirical finance (e.g., Kim and Nelson, 1999) have

also suggested to check whether the smoothed, standardized residuals contain any residual ARCH effects.

Standard LM-type as well as Ljung-Box tests can be applied. This is a way to check whether MS variances

and covariances may be sufficient to capture most of the dynamics in volatility, else explicit ARCH-type

modeling (even of a MS nature, see Section 6) may be required. It is also possible to apply White-style

tests that examine the null hypothesis that the score statistics are serially uncorrelated. Hamilton (1996)

has shown how White’s results may be used to construct tests for possible alternatives to MSM.16 For

instance, by considering the score with respect to the regime-dependent mean coefficients, a White test for

autocorrelation can be constructed; an ARCH test can be implemented by examining the serial correlation

properties of the scores with respect to regime-dependent variances; the first-order Markov assumption can

be tested against the alternatives that it depends on the state at earlier times or that it depends on the

realizations of the data by checking whether the scores of transition probabilities can be predicted by the

corresponding lagged score or the score of the mean; etc.

Another important type of diagnostic check concerns the number of regimes, . The problem is that

under any number of regimes smaller than  there are a few structural parameters of the unrestricted

model–the elements of the transition probability matrix associated with the rows that correspond to

“disappearing states”–that can take any values without influencing the resulting likelihood function. We

say that these parameters become a nuisance to the estimation. The result is that the presence of these

nuisance parameters gives the likelihood surface so many degrees of freedom that computationally one can

never reject the null that the nonnegative values of those parameters are due to sampling variation. Different

alternative ways have been proposed to develop sound inferential procedures concerning the number of

regimes in MSMs. Hansen (1992) proposes to see the likelihood as a function of the unknown and non-

estimable nuisance parameters so that the asymptotic distribution is generated in each case numerically

from a grid of transition and regime-dependent nuisance parameters. The test statistic becomes

 ≤ sup


 (ρ),

where ρ ≡ (P) and the right-hand side converges in distribution to a function of a Brownian bridge.

In most of the cases, a closed-form expression cannot be found and the bound must be calculated by

simulation and becomes data dependent. Also Davies (1977) bounds the LRT but avoids the problem of

estimating the nuisance parameters and derives instead an upper bound for the significance level of the

LRT under nuisance parameters:

Pr (  ) ≤ Pr ¡21  
¢
+
√
2 exp

³
−
2

´ ∙
Γ

µ
1

2

¶¸−1


The bound holds if the likelihood has a single peak. A related test is based on another corrected LRT that

seems to have been used first by Turner, Startz and Nelson (1989) but is credited to Wolfe,

 = − 2

( − 3)

h
ln(θ̃)− ln(θ̃)

i
→ 2

15With the caveat that that the one-step prediction errors do not have a Gaussian distribution and hence the approximate

validity of standard tests can only be guessed. For instance, Turner et al. (1989) devise tests in which the filtered probabilities

are used as predictors of future variance and test the absence of serial correlation in the resulting regression residuals.
16Hamilton (1990) has also noted that in small samples the size of these tests may be significantly under-stated.
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where θ̃ is obtained under the null of single-state multivariate normality and  = (−1) because in the
absence of regime switching there are ( − 1) elements of P that cannot be estimated. Davidson and

MacKinnon’s (1981)  test for non-nested models can be also applied, because MSMs with  and  − 1
regimes are logically nested but cannot be treated as such on a statistical basis. To implement a  test

one has to estimate the model with  and  − 1 states and calculate their full information fitted values,
ỹ
()
 = YB̂

()ξ̂
()

| ; then estimate the (multivariate) regression

y = (I −∆)YB̂ξ̂
(−1)
 +∆ỹ

()
 + η

The p-value of an F-test for the matrix of coefficients ∆ gives the p-value for the null of  regimes.

Finally, common sense suggests that correct specification of a MSM should give smoothed probabilities

{ξ̂|}=1 that consistently signal switching among states with only limited periods in which the associated
distribution is flatly spread out over the entire support so that uncertainty dominates. Regime Classification

Measures (RCMs) have been popularized as a way to assess whether the number of regimes  is adequate.

In simple two-regime frameworks, the early work by Hamilton (1988) offered a rather intuitive regime

classification measure:

1 = 100
2



X
=1

Y
=1

̂


| 

where ̂


| ≡ Pr
³
 = |y1y2 y ; θ̃

´
 i.e., the sample average of the products of the smoothed state

probabilities. Clearly, when a MSM offers precise indications on the nature of the regime at each time 

the implication is that for at least one value of  = 1  ̂


| ' 1 so that
P

=1 ̂


| ' 0 because most
other smoothed probabilities are zero. Therefore a good MSM will imply 1 ' 017 However, when

applied to models with   2 1 has one obvious disadvantage: a model can imply an enormous

degree of uncertainty on the current regime, but still have
P

=1 ̂


| ' 0 for most values of . For instance,
when  = 3 it is easy to see that if ̂

1

| = ̂
2

| = 12 and ̂
3

| = 0 ∀ then 1 = 0 even though

this remains a rather uninformative switching model to use in practice. As a result, it is common that as

 exceeds 2, almost all switching models (good and bad) will automatically imply values of 1 that

decline towards 0. Guidolin (2009) proposes a number of alternative measures that may shield against this

type of problems, for instance

2 = 100

(
1− 2

( − 1)2
1



X
=1

Y
=1

∙
| −

1



¸2)


Ang and Bekaert (2002b) have also proposed one alternative RCM that has found widespread use:

() ≡ 1002 1



X

=1

Q
=1 


| 

3. Univariate Applications

A first, traditional application of MSMs in financial economics has consisted in using them as flexible

tools to fit the time series dynamics–initially mainly at the univariate level, but more recently also at the

17On the opposite, the worst possible MSM has ̂
1

| =  = ̂


| = 1 so that


=1 ̂


| = 12 and 1 = 100

Therefore 1 ∈ [0 100] and lower values are to be preferred to higher ones.
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multivariate level–of financial data. While historically the 1980s and a portion of the 1990s have been

characterized by scores of papers that have shown by examples that MSMs could provide a good fit to

popular series, yielding reasonable outcomes in terms of parameter estimates and regime characterizations,

starting from the late 1990s MSMs have found increasing application to testing implications and hypotheses

derived from finance theories. The “game” in these papers is traditionally simple: given one or more

financial time series, the researcher resorts to one or more types of MSMs (more generally, regime switching

models) to show that the data contain evidence of different regimes, which often plays an important role in

understanding or interpreting the underlying phenomenon. More often than not, it is typical to compare

the fitting performance–either using statistical criteria (such as the maximized log-likelihood function

and information criteria, see e.g., Guidolin and Timmermann, 2006a, or Driffill and Sola, 1998) or using

the implications for some quantities of interest (e.g., correlations in excess of a Gaussian benchmark, as

in Ang and Chen, 2002)–of MSMs with other dynamic time series models that are regarded as close

competitors, such as GARCH models. For instance, Guidolin and Nicodano (2009) is an international

equity portfolio application of MSMs in which substantial energies are devoted to compare the in-sample

fit and the implications for the dynamics of higher-order (co)moments (i.e., co-skewness and co-kurtosis)

of a few multivariate MSMs to be compared to DCC-GARCH (see also Maheu and McCurdy, 2000b).

This literature is too vast for any attempt at summarizing it.18 Therefore I will review a few examples

of this line of work, noting that these should only be interpreted as examples, and being reminiscent

that hundreds of similar papers have been written and published between the late 1980s and today, with

additional, related research–especially applications to sub-fields of financial economics and types of data

that were initially left at the margin of this strand of empirical research–still in the process of appearing.

Engel and Hamilton (1990) may be taken as a case study of the first wave of applications of MSMs. It

is also interesting that this paper contains an application of MSMs to an asset class–foreign exchange

rates–different from equities and Treasury bonds, that instead will play a dominant role in the following.

Engel and Hamilton were motivated by a headline policy question: whether one could find a rational

framework to explain why the U.S. dollar had risen (vis-a-vis the Deutsche mark, the French franc, and

the British pound) so dramatically in the early 1980s and then fell afterward. They use a simple two-state,

time homogeneous MSIH framework to formalize the concept of long swings in the exchange rate:

∆

 = 




+ 






 


 ∼ (0 1),

where 

 is the log-exchange rate,  and  denote the countries/currencies to which the exchange rate refers

to, and 

 = 1 2. This means that in regime 1, the trend in the exchange rate is 1 and in regime 2, it

is 2. Within the single-regime empirical macroeconomics literature of the period, Engel and Hamilton’s

quest was well-received because the macroeconomic explanations advanced in the 1980s that had focused

on effects of U.S. monetary and fiscal policies on real interest rates, on lower capital taxes in the U.S. than

abroad, and on a “safe haven” effects benefiting the U.S. dollar, had not managed to reconcile existing

models with empirical facts. Quarterly 1973-1988 data revealed that the U.S. dollar had actually gone

18An incomplete set of early references that contain univariate MS work, includes Flood and Garber (1983), Driffill (1992),

Hamilton (1988), Kaminsky (1993), Kandel and Stambaugh (1990), Schaller and van Norden (1997), Pagan and Schwert

(1990), Schwert (1989), and Tucker and Pond (1988).
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through periods of persistent depreciation, followed by appreciation, and then again depreciations–three

“long swings”. Engel and Hamilton find clean evidence of two regimes: In regime 1 the mark is rising

4 percent per quarter against the dollar, the franc 3.3 percent, and the pound 2.6 percent; regime 2 is

associated with quarterly declines in the foreign currencies of - 1.2 percent, -2.7 percent, and -3.8 percent,

respectively. The point estimates of 11 ≡ Pr(+1 = 1| = 1) range from 0.82 to 0.93, while the estimates
of 22 ≡ Pr(+1 = 2| = 2) from 0.91 to 0.93. Therefore a given regime is likely to persist for several

years, and Engel and Hamilton’s inferred turning points that matched the historical record. The expected

duration of state 1 is seven quarters for Germany, six for France, and fourteen for the U.K.; on average

state 2 lasts fourteen quarters for the mark, eleven for the franc, and twelve for the pound. States 1 and

2 are differentiated not only by their means but also by their conditional variances: the exchange rate

would be much more variable when the dollar is appreciating. Formal tests of the null hypothesis that

exchange rates follow a martingale reject the null in two cases out of three.19 In terms of in-sample fit, the

MSM reduces the mean forecast error by 9-14 percent at horizons from two quarters to a year for all three

currencies, relative to a random walk (RW).20

Engel and Hamilton were among the first researchers who felt the awkwardness of modeling a phenom-

enon that involves three exchange rates by performing three univariate estimations. They extended their

exercise to a joint, trivariate estimation but had little success in using this model when it was assumed

to be driven by a common, unique Markov state. Although in their article they speculate that treating

the three exchange rates as a group may be inappropriate because country-specific developments played

an important role in the evolution of exchange rates in the 1970s, of course we now understand that this

result may have come from the data suggesting a need for more than two regimes (or, which is even more

complex, from a need to model correlated but country-specific Markov states, see Section 4). In any event,

Engel and Hamilton (1990) represents one of the first and highly successful applications of MS methods in

empirical finance and, in spite of its relative simplicity in terms of models estimated and statistical tests

applied, it showed how MSMs could concretely help financial economists to formulate and tests hypotheses

that would have been impossible to formulate within either regression or single-state ARIMA frameworks.

Garcia and Perron (1996) is another paper that has represented an important benchmark in the devel-

opment of MS applications in finance (and macroeconomics). Garcia and Perron is one of the few examples

I could find of MSMAH() models used in finance. They estimate a MSMH(3)-AR(2),

( − ) = 1(−1 − −1) + 2(−2 − −2) + ,

for the (ex-post, realized) U.S. real interest rate computed by subtracting the CPI inflation rate from

3-month nominal T-bill rates. Single-state models are overwhelmingly rejected (even when the nuisance

19The nuisance parameter problems discussed in Section 2.3 prevented Engel and Hamilton to test their two-state MSIH

against a single-state random walk model. Therefore, they entertained the null hypothesis of an IID Gaussian mixture (i.e.,

11 = 1 − 22) in which transition probabilities are independent of the current regime. Under this assumption, changes in

log-exchange rates are martingale difference sequences.
20Engel and Hamilton also proceed to test whether markets perceived these swings in real time and therefore investigate

the hypothesis of uncovered interest parity, by which the nominal interest differential between two countries forecasts future

exchange rate changes or, equivalently, that the three-month forward exchange rate is a rational forecast of the future spot

exchange rate. They find no evidence to support this hypothesis in the data.
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parameter problems are taken into due account), while a three-state model proposes regimes with very

high persistence. Garcia and Perron find evidence that while a misspecified single-state (that ignores the

presence of regime shifts in mean and variance) forces the sum of estimated coefficients ̂1 + ̂2 to be

approximately 1–which implies that the real rate contains a unit root–the MSM reveals that ̂1 + ̂2 is

actually close to zero, so that the process simplifies to  =  + i.e., a simple, covariance stationary

MSIH(2). A battery of specification tests suggests that there is no evidence that the U.S. real rate may

contain a unit root; instead, shocks to real interest rates are temporary in nature with a tendency to revert

to some mean value, which is however subject to infrequent shifts.

Another lucid contribution to an exact understanding of the importance of MS (more generally, of

Gaussian mixtures) in modeling univariate asset returns came from a paper by Ryden, Terasvirta and

Asbrink (1998, henceforth RTA), who returned to investigate early evidence of nonlinear dynamics in

financial returns offered by Granger and Ding (1995).21 In particular, RTA marks a step forward in the

awareness by mainstream financial empiricists that simple, single-regime ARMA models cannot cope with

(fit) a wide range of properties commonly found in asset (stock, bond, and currency) returns. Granger and

Ding considered long daily stock return series and established a few properties which seem to hold for a

large number of such series:

(A) Returns are not autocorrelated in levels (except, possibly, at lag one);

(B) The autocorrelation functions of || and 2 decay slowly starting from the first autocorrelation and

(|| |−|)  (|| |−|−1)  0 for large  and  6= 1 (the Taylor effect);

(C) The decay in the autocorrelation functions of squares and absolute values of returns is much slower

than the exponential rate of a stationary AR(l) or ARMA( ) model;

(D) The autocorrelations of () are insignificant; moreover, || and () are independent, ̂() 'b() and the marginal distribution of || is exponential (after dropping extreme outliers).
Granger and Ding (1995) and Ding and Granger (1993) proposed to capture these properties of asset

returns by assuming they are doubly exponentially distributed with  =  and  following an ARCH()

process in which the volatility  depends on |−1|  |−|. RTA present an alternative to the distribution
proposed by Granger and Ding based instead on the assumption that the marginal distribution of returns

is a mixture of normal distributions. Using daily S&P 500 returns for a long 1928-1991 sample, they

show that such a mixture allows DGPs capable of closely reproducing the properties (A)-(D) in the list

above. Moreover, RTA stress that postulating a hidden MSM will also generate higher-order temporal

dependence in the process.22 RTA split their long, 63-year long sample in 10 equal consecutive samples,

each containing 1,700 observations and perform MS estimation and testing (to find the most appropriate

21Although the points in RTA were originally put forth with explicit reference to high-frequency (daily) returns–more

generally in cases when modeling and forecasting of conditional means cannot be the only or main goal of the empirical

researcher–their validity is considerably more general.
22A hidden Markov chain model (HMCM) is a restricted MSM in which all columns of the transition matrix P contain

identical values for the transition probabilities, such that the probability of switching to a state  at time +1 fails to depend

on the state occupied by the system at time .
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number of regimes, using a parametric bootstrap to pin down the small-sample corrected p-values for their

LRTs, and to assess the presence of misspecifications) on each of the 10 sub-series. Their bootstrapped

LRTs indicate that  = 2 is always appropriate against  = 1 but that in as many as 7 sub-samples out

of 10,  = 2 is rejected in favor of  = 3 which casts some doubts on the widespread habit in parts of the

literature to naively identify MSMs with two-state models. In fact, most estimated two-state MSMs in RTA

turn out to be unstable over time, even though some regularities between adjacent models can be singled

out. Such instability of parameter estimates in MSMs represents an obvious sign of misspecification.

Interestingly, RTA find considerably higher stability in their 10 daily S&P 500 return sub-samples when

the series are “cleaned” of outliers (winsorized), where outliers are defined as all returns falling outside an

interval of ±4 sample standard deviations, to be replaced by the limit of the interval. It remains a bit
disconcerting that Gaussian mixtures–which are models proposed in the statistics literature as tools to

detect and manage data “contamination” from different regimes–may perform best when they fail to fit

the entire empirical distribution of the data. Here the suspicion is that through parameter instability of

the MSM, the data may be trying to signal some other type of misspecification. However, although MSMs

capture the ratio between implied means and standard deviations of absolute returns, the implied skewness

and kurtosis of absolute returns, and the Taylor effect in autocorrelations well, they gave mixed indications

with reference to autocorrelations. While the empirical autocorrelation functions of absolute returns decay

very slowly, MS autocorrelation functions show a somewhat faster decay.

A recent paper that in no way can be listed among the early applications of MSMs to empirical fi-

nance research but that retains the fresh forward push that has characterized the seminal work by Engel,

Hamilton, and Schwert is Acharya, Amihud, and Bharath (2010, AAB), who have applied MSMs to inves-

tigate the regime switching nature of the exposure of U.S. corporate bond returns to liquidity shocks of

stocks and Treasury bonds. The reason why this simple paper retains the innovative impact of the papers

mentioned above is due to the fact that AAB simply estimate a number of MS regressions (as opposed

to the MS ARMA models examined above; see also Guidolin, Hyde, McMillan, and Ono, 2009): because

regressions play such a key role in the definition and estimation of linear asset pricing models in finance,

AAB is an important but recent example of the intuitive (almost naive) idea that in a regression model

the slope and intercept coefficients may follow a MS dynamics with important implications in the light

of the 2008-2009 Great Financial Crisis. It is well known that liquidity shocks affect asset prices because

asset liquidity affects expected returns of both stocks and bonds (Amihud and Mendelson, 1986). Because

asset illiquidity is persistent, an unexpected rise in illiquidity raises expected illiquidity. Consequently,

investors require higher expected returns, which leads asset prices to fall if the rise in illiquidity does not

have an substantive positive effect on assets’ cash flows. This generates a negative liquidity beta of assets,

i.e., a negative relationship between illiquidity shocks and asset realized returns. However, most exist-

ing papers in the literature have simply examined the unconditional–econometricians would say, under a

false restriction that  = 1–effect of liquidity risk not paying enough attention to the casual observation

(see e.g., Acharya and Pedersen, 2005) that the impact of liquidity shocks on asset prices is significantly

stronger in bad times. AAB show instead that the response of corporate bond prices to liquidity shocks

of stocks and Treasury bonds varies over time in a systematic way, switching between two regimes which

they call normal and stress states. In the case of “junk” bonds, the betas of the two illiquidity factors are
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statistically insignificant in normal times, but they become highly negative and significant in the stress

regime. Moreover, the two regimes can be predicted by macroeconomic and financial variables: periods

of stress are associated with adverse macroeconomic conditions, such as recessions and adverse financial

market conditions. To uncover these properties, AAB regress the probability of being in the stress regime

on lagged macroeconomic and financial market variables. AAB provide out-of-sample (OOS) predictions

of corporate bond returns for the years 2008-2009: regressions of monthly realized returns on predicted

returns produce 2s of 74% and 77% for junk and investment grade bonds, respectively. The coefficients on

predicted returns are close to one and the intercepts are close to zero (differences are statistically insignif-

icant); the predicted return does a reasonable job at predicting the returns of March 2008 (Bear Stearns’

collapse) and September to December 2008 (Lehman Brothers’ collapse and the post-Lehman phase). As

we shall see in Section 7, the intuition that regime probabilities could be predictable using macroeconomic

factors had already been developed in the nonlinear econometrics literature since the mid-1990s and has

recently found considerable play in financial applications.

A similar application of MS regression methods to an important financial question is Alexander and

Kaeck (2008) who study the time-varying empirical influence of a wide set of theoretical determinants

of daily spread changes in the iTraxx Europe, an equally weighted index that contains 125 single firm

investment grade credit default swaps (CDSs), for the period June 2004 - June 2007. They find that

most theoretical variables that we would expect to affect spreads (interest rates, stock returns and implied

volatility) indeed contribute to the explanation of CDS spread changes but that their influence depends on

the prevailing market regime. MS regressions reveal that during the volatile CDS regime, credit spreads are

highly sensitive to equity markets; interest rates are instead more significant determinants of credit spreads

during the (predominant) regime when CDSs are less volatile; interestingly, their model displays higher

explanatory power in the volatile regime. The two market volatility regimes are quite persistent: e.g., in

the main iTraxx Europe series the probability of remaining in the volatile regime is 0.94; the persistence is

even higher for the tranquil regime, with a “stayer” probability of 0.99. Therefore for efficient hedging of

CDS exposures traders should adjust equity hedge ratios to the relevant regime. Interestingly, the level of

interest rates can influence the probability of entering the turbulent regime–this is captured by a simple

logit model applied to filtered regime probabilities and not by a structural modification of the MSM to

capture time-varying transitions as it would be possible (see Section 7)–but, once that regime is accessed,

interest rates have little effect on CDS spreads.

Recently, the literature has returned to a number of issues that the early papers had raised, such as the

importance (or at least, the advantages) of adopting a multivariate approach in MSMs, the opportunity to

push the modeling efforts beyond that standard two-state MS case, and the payoff of investigating whether

and how Markov chains used to fit the dynamics of individual series may relate to an encompassing,

multivariate MSM. Although a number of papers have followed a similar path in recent years, Guidolin

and Timmermann (2006a, GT) represents a good example of such efforts. They study a variety of MSMs

for the joint distribution of U.S. stock and bond returns, using models in equation (1). One of the problems

of applications of MSMs to empirical finance is that there are no clear guidelines useful to structure the

generalization of univariate nonlinear models to the multivariate case. Naive approaches are known to yield

overwhelmingly large models. To see this, suppose that each of  univariate return series is governed by

20



a simple MSIH process, and that the innovations are simultaneously correlated but with zero serial and

cross-serial correlations. Under no further restrictions on the relationship between the individual regimes

1, 2, ..., , the states 
∗
 for the joint process of the  return series can be obtained from the

(Cartesian) product of the individual states: ∗ ≡ 1×2× ...× . This gives a total of  =
Q

=1

possible states and ( − 1) state transition probabilities. Even assuming  = 2 for  = 1 2 ...,  for

a sufficiently realistic  (such as = 8 in Guidolin and Ono, 2006), this easily would deliver  as large

as a few hundred, which clearly turns out to be impossible to handle.23

The key empirical finding in GT’s (2006a) analysis of monthly data for returns on portfolios of U.S.

large and small capitalization stocks and 10-year Treasury bonds is that even though there are well-defined

regimes in the marginal distributions of both stock and bond returns, there is very little coherence among

them. This complicates the structure of MSMs for the joint dynamics of stock and bond returns and

suggests that a richer model with several states is required. Specifically, for all the portfolios they examine,

information criteria point to a two-state specification for both stock market portfolios and a three-state

specification for bonds (see Kim, Nelson, and Startz, 1998, for further evidence of the fit provided by

 = 3). Each of the two regimes identified in the two stock return series has a clear bull and bear-type

economic interpretation. However, while there are strong similarities between the smoothed probabilities

extracted from large and small stocks, this is not the case for stock and bond returns. GT’s specification

search on multivariate MSMs including stock and bond data–based on sequential LRTs and on information

criteria for the models defined by  = 1 2 3 4 5 and VAR lag orders  = 1 2–confirms that in all cases

linearity is strongly rejected no matter how many states and lags are present in the MSM. A Hannan—Quinn

information criterion supports four states that display an appealing economic interpretation: Regime 1 is

a ‘crash’ state characterized by large, negative mean excess returns and high volatility; regime 2 is a

low growth regime characterized by low volatility and small positive mean excess returns on all assets;

regime 3 is a sustained bull state in which stock prices–especially small stocks–grow rapidly on average

but interest rates surge and excess returns on long-term bonds are negative; regime 4 is a “bounce-back”

regime with strong market rallies and high volatility. Correlations between returns also vary substantially

across regimes.24 Interestingly, the transition probability matrix has a very peculiar form. Exits from the

crash state are almost always to the recovery state and occur with close to 50% chance suggesting that,

during volatile markets, months with large, negative mean returns cluster with months that have high

positive returns. The slow growth state is far more persistent with an average duration of seven months.

The bull state is the most persistent state with a “stayer” probability of 0.88. On average the market

spends eight successive months in this state. Finally, the recovery state is again not very persistent and the

market is expected to stay just over three months in this state. The steady state probabilities, reflecting

the average time spent in the various regimes are 9% (state 1), 40% (state 2), 28% (state 3) and 23% (state

4). Hence, although the crash state is clearly not visited as often as the other states, it is by no means an

23Only if a researcher is ready to assume independence between the individual states, the transition probability matrix

defined on the joint outcome space would simply be the Kronecker product of the individual transition matrices and  =

=1( − 1), which can be considerably smaller than (


=1)(


=1 − 1).
24The correlation between large and small firms varies from a high of 0.82 in the crash state to a low of 0.50 in the recovery

state. The correlation between large cap and bond returns even changes signs across different regimes and varies from -0.37

to 0.40. The correlation between small stock and bond returns goes from 0.26 to 0.12.
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“outlier” state.

These results are typical of the literature but trigger more questions than the answers they provide. For

instance, with four regimes, it becomes obvious that even when the individual states are not excessively

persistent, these may have non-negligible ergodic probabilities and therefore give an important contribution

to characterize the unconditional joint density of the data.25 It is also interesting that GT end up setting

 = 0 in spite of the presence of bond returns in their sample, which are notoriously serially correlated. Once

again, this derives from the flexibility (and the ability to generate serial correlation from the persistence

of the Markov chain) of a four-state MSM. However, this poses additional issues as to whether VAR

components in fixed income returns are as strong as commonly thought, net of regime switching non-linear

effects (see e.g., Äıt-Sahalia, 1996).26 Finally, it may be surprising that GT systematically find that regimes

that imply high mean returns tend to display low volatility, and vice versa. However, it should be noted

that these are not ex-ante expected returns and ex-ante volatility estimates, since they do not account

for the probability of switching across regimes or learning in real time about the regime. Guidolin (2011)

discusses the asset pricing literature that has successfully tackled this puzzling evidence using MS.

GT also try an interpretative exercise that is quite common in the literature and that resembles Acharya,

Amihud, and Bharath’s (2010): they compute correlations between the smoothed state probabilities from

their four-state MSIH and NBER recession dates, finding estimates of 0.32 (state 1), 0.13 (state 2), 0.21

(state 3) and 0.18 (state 4). Notice that since the state probabilities sum to one, by construction if some

correlations are positive, others must be negative. This suggests that indeed, the high volatility states–

states 1 and 4–occur around official recession periods. Interestingly, and consistent with the idea that the

state probabilities backed out from movements in financial asset returns should lead economic recession

months (see Ozoguz, 2009), the correlation between the state 1 probability lagged six months and the

NBER recession indicator rises to 0.40. Finally, when additional predictor variables are incorporated in

the MSM–in this case a typical financial ratio that plays a key role in the recent literature (see Section

5), the dividend yield–GT find that all information criteria as well as sequential LTRs favor a MSVAR(1)

model. This is not surprising given the strong persistence of the dividend yield which itself contains

multiple regimes. Moreover, although the model is extended by an autoregressive term, a four-state model

continues to provide the best trade-off between fit and parsimony. While in a simple single-state VAR

model the dividend yield predicts returns on small stocks but does not appear to be significant in the

equations for large stocks and bonds, estimates of the four-state MS VAR matrices suggest that the effect

of changes in the dividend yield on asset returns is stronger, although regime specific. Inclusion of the

dividend yield therefore does not weaken the evidence of multiple states, nor does the presence of such

states in a framework that allows for heteroskedasticity remove the predictive power of the dividend yield.

This may be interpreted as evidence that MS dynamics is not only (or mostly) a short-cut approach to

capture complex predictability patterns in financial data. To the contrary, MS would represent a separate

and additional channel of predictability that may be important to exploit in portfolio decisions (see e.g.,

25This is obviously impossible in two-state models, unless all regimes are weakly persistent, which would cast strong doubts

on the appropriateness of the MS framework.
26Lanne and Saikkonen (2003) show that a mixture of autoregressions with two regimes improves forecasts of weekly U.S.

three-month Treasury bill rates relative to standard AR models.
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Guidolin and Timmermann, 2005, 2007) or risk-management (see Haas et al. 2004). However, so far in the

literature, we have had few attempts to clearly disentangle the strength and economic value of nonlinear

predictability from standard, VAR-type predictability.

Maheu, McCurdy and Song (2011, henceforth MaMCS) focus instead on modeling the component states

of bull and bear market regimes in order to identify and forecast bull, bull correction, bear and bear rally

states, i.e., on identifying market phases that relate to investors’ perceptions of primary and secondary

trends in stock returns. Basically, MaMCS’s is a four-state MSM for weekly S&P 500 stock returns in

which the bear and bear rally states govern the bear regime; the bull correction and bull states govern

the bull regime. Therefore each regime consists of two primitive states. Their model can accommodate

short-term reversals (secondary trends) within each main market regime. For example, in the bull regime

it is possible to have a series of persistent negative returns (a bull correction), despite the fact that the

expected long-run return (primary trend) is positive. Analogously, bear markets may exhibit persistent

rallies to be subsequently reversed as investors take the opportunity to sell with the result that the average

return in that regime is anyway negative. Because of this structure, MaMCS allow for both intra- and

inter-regime transitions: for instance, a bear rally is allowed to switch back to a bear regime or to exit the

bear state by moving to a bull one; likewise, a bull correction can move back to the bull state or exit the

bull regime by switching to a bear state.

MaMCS adopt a Bayesian estimation approach that accounts for parameter and regime uncertainty

and provides probability statements regarding future regimes and returns. An application to 125 years of

weekly U.S. stock returns data reveals that bull regimes have an average duration of just under 5 years,

while the duration of a bull correction is 4 months on average and a bear rally is just over half a year.

The cumulative return mean of the bull market state is 7.88% but bull corrections offset this by 2.13% on

average. Average cumulative return in the bear market state is -12.4% but bear market rallies counteract

that steep decline by yielding a cumulative return of 7.1% on average. They also find asymmetries in

intra-regime dynamics, for example, a bull market correction returns to the bull market state more often

than a bear market rally reverts to the bear state. Their paper is great interest because it signals the

possibility to gain forecasting power for regime switching asset returns from a deeper understanding of

the fine structure of the regime sequencing over time. It would be interesting to further investigate the

economic value of models that capture such structure in the components of Markov states.

A related effort has instead focussed the issue of phase shifts in MS dynamics. Because the literature

on multivariate MSMs naturally lends itself to study issues of synchronization, for instance of bull and

bear phases in financial markets, as we have seen much attention in this research area has focused on the

extreme cases of independence vs. perfect synchronization of phases/cycles. In the first case, the regimes

in different variables are purely idiosyncratic, while in the second case the variables are driven by a single

common state and regime shifts occur contemporaneously. Perhaps not surprisingly, it is often found that

neither independence nor perfect synchronization are adequate representations of the dynamics in financial

markets. For instance, Cakmakli, Paap and van Dijk (2010, henceforth CPvD) have generalized the

business cycle MSVAR modelling strategy in Hamilton and Perez-Quiros (1996) to capture the possibility

of imperfect synchronization due to different phase shifts of a single common cycle governing bull and bear
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regimes in the U.S. stock market. For instance, in the bivariate MSIH case, CPvD model is:

1 = 11 + 1 2 = 22 + 2

where  = {1 },  = 1 2, [1 2]0 ∼ (0Ω), and 1 2 are first-order -state homogenous

Markov processes with constant transition probabilities that are asset-specific. Without loss of generality,

assume that 1 is the “reference series” and define the properties of 2 relative to 1. Different specifi-

cations of the relation between these two Markov processes imply different types of relations between the

regimes in the two variables. Two extreme cases can be isolated. First, we may assume that 1 and 2 are

independent, that is, each variable has its own idiosyncratic regime structure. Second, we can assume that

1 and 2 are identical, that is, 1 = 2 or, put differently, there is a single Markov regime is governing

both return series and hence there is only one transition probability specification for  = 1 = 2, as

in much earlier multivariate work, such as Guidolin and Timmermann (2006a). A natural and elegant

alternative is to assume that the cycle in 1 leads/lags the regime in 2 by  periods, as in Hamilton and

Perez-Quiros (1996). In other words, there is a common cycle but it affects the different variables with a

certain phase shift of length : 2 = 1−. This is the case of imperfect synchronization with symmetric

phase shifts, where symmetry refers to the fact that all possible regime transitions in the two variables

differ by the same number of time periods . However, this specification may still be too restrictive, in the

sense that the phase shift of the cycle may not be the same for all possible regime transitions.

CPvD go beyond these extreme cases by assuming a specific lead/lag structure for every possible

transition from regime  to regime . For a model with  regimes, this results in ( − 1) phase shift
parameters  ,   = 1   6= . Additionally, CPvD assume that the regime indicator 1 itself is

shifted but allowing the amount of phase shift to be different across regimes, i.e., 2−1 = 1, which is

a generalization to the case of imperfect synchronization with asymmetric phase shifts where the subscript

1 to  indicates that the regime indicator is shifted by a possibly different number of time periods for each

regime. The advantage of this specification is that it provides a parsimonious approach (as the number of

phase shift parameters grows linearly with the number of states), while at the same time it is flexible and

allows for considerable heterogeneity in phase shifts. However, one problem remains: this specification is

not “complete”, in the sense that it may lead to situations where for some time periods 2 is assigned

multiple values or is not defined at all.27 CPvD suggest to use a rule by which the regime with the

larger amount of phase shift is assigned to such conflicting periods.28 To facilitate the specification of a

regime-dependent covariance matrix CPvD decompose it into volatilities vs. correlations, Ω = DRD

27To illustrate this problem, suppose the reference series 1 is in regime 1 up to period  − 1 and switches to regime 2 in
period  , where it remains in subsequent periods. Using the asymmetric regime shift formulation for determining the regime

of the second series implies a phase shift of 1 periods until  =  − 1 and 2 periods from  =  onwards. In particular,

for  =  − 1 and  we have 2−1−1 = 1−1 and 2−2 = 1 . If 2  1, the shift at  − 1 is greater than the shift
at  . Hence, by applying this dating procedure one would not assign any of the regimes to the second variable for periods

[ −1  −1−2]. In the opposite case, one would assign both regimes 1 and 2 simultaneously for periods [ −2  −1−1].
28Hence, in the example above, this rule implies assigning regime 1 to the second variable in case 1  2 for time periods

that are left undetermined by 2−1 = 1, that is, setting 2 = 1 for  ∈ [ − 1  − 1 − 2], and 2 = 2 for

 ∈ [ − 2  − 1 − 1] in the opposite case when 2  1. The main advantage of the proposed decision rule to assign the

regime with the larger amount of phase shift to conflicting periods is that it implies that the phase shift is equal to  when

entering regime . Possible alternatives would not achieve this.
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where D is a diagonal matrix with standard deviations of the error terms as diagonal elements and R

is a matrix with ones on the diagonal and the correlations in its the off-diagonal element. In case of

perfect synchronization, it is straightforward to specify a regime-dependent covariance matrix. The values

of the variances and correlations just depend on the value of 1. Imperfect synchronization (either with

symmetric or asymmetric phase shifts) allows for the possibility that the different series are in different

regimes in a given period. Consequently, there are several ways of relating the variances and correlations to

the regimes. Here the easiest solution is to impose the same assumption as in the perfect synchronization

case, namely that the variance and correlation regimes are only determined by the regime of the first series.

CPvD adopt a Bayesian estimation approach because in their model phase shifts are represented by

discretely-valued parameters that make frequentist estimation unfeasible. Model selection is performed

using predictive likelihood based Bayes factors.29 CPvD illustrate the potential of their framework using

an application to size-sorted US stock portfolios, similarly to Guidolin and Timmermann (2006a) and Hou

(2007), who had shown that there is evidence that returns on (portfolios of) large stocks lead returns

on (portfolios of) small stocks. Using monthly US large-cap and small-cap portfolio returns over the

period 1963-2007, CPvD find that a three-regime model with regime-dependent covariances captures the

dynamics of the portfolio returns most adequately. Independently of the number of states, in the case of

models that allow for regime-specific lead-lag times they find that the marginal likelihood and predictive

likelihood values for the specifications with imperfect synchronization due to asymmetric phase shifts are

(substantially) higher than those that do not. While the differences in likelihood values are relatively

small for the two-regime models, they become substantial when multiple regimes are considered. The

model with three regimes offers the best performance in terms of predictive likelihood. The regimes can be

characterized as “boom” (high average returns with moderate volatility and low correlation), “moderate”

(mean returns close to zero, low volatility and high correlations), and “bear/crash” (negative mean return,

high volatility and high correlation) states. CPvD report the presence of considerable heterogeneity in the

phase shifts across different regimes, in the sense that the large-cap portfolio leads the small-cap portfolio

for switches to the moderate regime by a single month, while the two portfolios switch contemporaneously

into the boom and crash regimes. This suggests that during turmoil periods, with either good or bad news,

information diffusion occurs rapidly and lead-lag effects are not present. However, news “travels slowly”

during moderation regimes, as it is incorporated only gradually into small stocks, such that their prices

adjust with a delay compared to large caps. The transition probability estimates reveal an interesting

pattern in the relative duration of the different regimes and the cyclical dynamics in the portfolio returns.

For instance, boom regimes typically does not end with a crash, but are followed by a period with moderate

returns.

4. Multivariate MSMs and Dynamic Factor Models

A renewed and increased attention to multivariate applications is natural in areas of empirical finance–

such as international finance–where phenomena such as dynamic correlations and contagion represent

29Interestingly, also in a Bayesian framework, selecting the best model is not an easy task when the competing alternatives

may reflect differential regime switching dynamics, as standard testing procedures–e.g., marginal likelihood based compar-

isons, such as Bayes factors–apply only when the number of regimes is the same in the models being compared.
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key research questions. Although seemingly straightforward to implement, calculating return correlations

during crisis periods is not a trivial statistical exercise: calculating correlations conditional on high (low)

returns, or on high (low) volatility, induces a conditional bias in the correlation estimate.30 Two method-

ologies have become dominant to net out these biases from estimated correlations: extreme value theory

methods (as in Longin and Solnik, 2001) and, indeed, MSMs.31 Although, the MS literature has been

increasingly focussed on these issues as of recently, one leading case study is Baele (2005) who has used

MS techniques to investigate to what extent globalization and regional integration may lead to increasing

equity market interdependence. The paper by Baele reveals a number of open issues on the best fitting

structure of MSMs when the goal of the exercise is to provide a description of the dynamics of the data

that is useful to test competing hypotheses. However, this is a literature in which MSMs are destined

to become a central econometric tool of empirical investigation. In fact, as it is known since Forbes and

Rigobon (2002), what has become known as a shock spillover model–when extended to incorporate regime

switching dynamics–may lead to more powerful tests of contagion effects: By allowing interdependence

among markets to vary with the degree of integration, a gradual increase in market interdependence can-

not be mistaken for contagion, a potential pitfall in all single-regime factor model-based tests of contagion.

Previous studies had typically used dummy variables to test whether important events had a significant

impact on shock spillover intensities. This approach fails in situations where these events are anticipated

or need time before having a full impact. On the contrary the MS shock spillover model developed in Baele

(2005) has the advantage that the spillover intensities switch endogenously rather than exogenously from

one regime to the other, so that probability statements can be formulated about the relative likelihood of

the spillovers.

Even though the typical issues with MS GARCH models will be discussed in Section 6, let me stress

that Baele uses a general framework for a range of bivariate processes for U.S. and individual national

index returns which nest constant correlation, BEKK GARCH, MSMs, as well as MS GARCH models:32

r = μ +Ar−1 + ² ² ∼ (0Ω)

When μ and Ω are simply switching following a two-state first-order Markov chain, μ = μ and

Ω = Ω , we are facing a simple MSIH(2)-VAR(1) model; Ω+1 is otherwise allowed to follow a two-state

multivariate MS GARCH(1,1) dynamics:

Ω = C
0

C +M²²

0
M +BΩ−1B 

These alternative frameworks are estimated to quantify the magnitude and time-varying nature of volatil-

ity spillovers from the aggregate E.U. and U.S. markets to 13 local European equity markets, some of

30To correct for the conditional bias, Forbes and Rigobon (2002) propose a bias correction methodology based on the

assumption of independent and identically distributed (i.i.d.) returns. However, Pericoli, and Sbracia (2003) show that if the

returns are not i.i.d. (e.g., if variances increase during crisis periods), the bias correction errs in the direction of not finding

contagion.
31Of course, EVT methods are attractive in that we do not need to specify a joint distribution function nor define a crisis

period. Instead, we rely strictly on the tail distribution that converges to a generalized Pareto distribution regardless of the

data generating process. Thus, the results are robust to nonnormal and non-i.i.d. returns.
32Sola, Spagnolo, and Spagnolo (2002) have considered spillover effects in international equity markets by estimating MSMs

to compare effects during tranquil and turbulent periods. Their tests are based on restrictions imposed on a MS constant

transition matrix.
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which have followed a path of integration culminated in the introduction of the euro in 1999 and others

that–even though they belong to a highly homogeneous area–have opted out of the European Monetary

Union. Weekly data reveal evidence of regime switches to be both statistically and economically impor-

tant. Statistically, the best fit is provided by the two-state MS GARCH(1,1) and this model outperforms

the competing bivariate BEKK GARCH, similarly to the evidence in Guidolin and Nicodano (2009) for a

larger set of international stock index returns (and in comparison to DCC GARCH models). Both E.U.

and U.S. shock spillover intensities increased considerably over the 1980s and 1990s, though the rise was

stronger for the E.U. While in the early 1980s common European shocks explained on average about 8%

of local variance, this proportion increased to 23% by the end of the 1990s. Similarly. the importance of

U.S. shocks has increased from 15 to 27%. Finally, Baele uncovers evidence of contagion from the U.S. to

a number of local European markets during periods of high world volatility. There is instead only weak

evidence of contagion from the E.U. to the German equity market.

In a critical perspective, a number of features of Baele’s research design deserve attention. Even

though the use of weekly data suggests a need to integrate some ARCH effects in the MS framework, it is

noteworthy that Baele’s models feature rich bivariate MS GARCH effects and yet entertain the presence

of only one and two regimes. Equivalently, even though Baele carefully compares the performance of two-

state MSIH(2)-VAR(1) and MS GARCH models, a chance exist that an equally informative comparison

would have instead involved MSIH()-VAR(1) models, with  ≥ 3. It would be interesting to check with
simulations whether there is a chance that data generated from multi-state processes (e.g.,  = 4 as in

Guidolin and Timmermann, 2006a) may lead to a spurious conclusion in favor of two-state MS GARCH

models, although the existing evidence for univariate process to be surveyed in Section 6 suggests these

substitution effects are likely to manifest themselves. Additionally, Baele draws his economic implications

from 26 (13 times two possible sources of contagion, the U.S. and the E.U.) different bivariate MS GARCH

models, in which the underlying Markov chain has to be re-estimated for every pair, which implies that the

regime switching process for the U.S. and the E.U. are in principle made depend on the data on the other

country included in each pair. Although, even exploiting modern computational resources, it remains

doubtful whether MSMs for a system with  = 15 can be actually estimated using the classical (EM)

methods employed by Baele, novel MCMC-based Bayesian frameworks seem to be currently available that

may lead to U.S. and E.U. stock returns being characterized by a unique Markov chain process (see e.g.,

Kim, Morley and Nelson, 2005). Finally, it would also be interesting to try and use the structure of the

Markov chain process underlying MSMs to test spillover and/or contagion propositions, which seems to be

an approach only partially explored in the literature (but see Sola et al., 2002).

In an effort to explain the cross-sectional and time series variation of the shock spillover intensities,

Baele has also used equity market development, trade integration, and price stability in a logit model that

explains the filtered probabilities of the spillover regime (transformed into a 0/1 dummy on the basis of

whether the filtered probability exceeds 0.5), finding that these factors increase the probability of switching

from a low to a high sensitivity to common European shocks. Although the idea of using (transformed)

regime probabilities in probit/logit-type regressions is not new and has appeared often in applied work in

spite of its obvious limitations, this approach seems to naively mimic the idea of making regime probabilities

a function of some exogenous (as in this case) or endogenous but predetermined variables, that we are about
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to deal with in a systematic fashion in Section 7.

A paper that has pushed further the frontier by proposing and estimating multivariate MSMs of rel-

atively large dimensions is Ang and Bekaert (2002b), who apply MSVAR techniques to investigate the

joint dynamics of short-term interest rates across the U.S., the U.K., and Germany. Although details are

provided in Section 7, let us notice here that similarly to the logic explained with reference to Guidolin

and Timmermann (2006a), Ang and Bekaert assume the existence of a two-state MS variable driving the

term structure in every country. These country-specific regimes are assumed to be independent across

countries. This means that even if 
 follows a simple two-state process ( =  ),  will in fact

follow an eight-state Markov chain, with  = 
 × 

 × 
 . However, because it is conceivable

that there is a world business cycle driving interest rates in many countries simultaneously, in some of

their models they allow for interdependence of various forms across countries to reduce the number of

regimes. Another noteworthy feature of Ang and Bekaert’s paper is their widespread use of carefully built

residual diagnostic tests and statistical tests of sample moment matching adapted to their multivariate MS

framework. For instance, they investigate the fit of competing–specifically, VARs vs. MSVAR–models

to the unconditional moments of the data, including higher-order moments which have often been stressed

as an important implication of non-linear dynamics in short-term rates (see e.g., Ahn and Gao, 2000). To

enable comparison across several models, they introduce the statistic  ≡ (ĝ− ḡ)0Σ−1 (ĝ− ḡ), where ḡ is a
vector collecting the sample estimates of the unconditional moments of interest, ĝ is a vector of collecting

the unconditional moments implied by the estimated model, and Σ is the covariance matrix of the sample

estimates of the unconditional moments, estimated by GMM using a Newey-West estimator.33

Using monthly observations on 3-month short rates and 5-year rates on zero-coupon government bonds

from the U.S., the U.K., and Germany over a 1972-1996 sample, Ang and Bekaert implement the residual

diagnostic tests in the form of a GMM test of the moment conditions on the mean of the scaled residuals,

[

−] = 0 ( = 1  6), which they refer to as “mean” residual tests, and a GMM test of the moments of

the variance of the scaled residuals, [(−1)2(−−1)2] = 0 ( = 1  6) which they refer to as “variance”
residual tests. They also test moment-matching of the first four central moments, the autocorrelogram,

and cross-correlations. Their evidence is mixed because it strongly depends on the country taken into

consideration. The single-state VARs generally outperform the MSVAR models at matching unconditional

moments. This warns against the belief that in small samples it may be easy to fit multivariate MSMs

deriving precise parameter estimates. In fact, Ang and Bekaert also perform a simulation experiment

in which 1,000 short samples (of the same size employed in their paper) are generated from a complex

MSVAR(1) with logistic, time-varying transition probabilities (TVTPs), fitted to short-term rate and term

spread data. The competing models they entertain are VAR(1) and an MSVAR(1) with constant transition

probabilities.34 They find that in a striking proportion of the simulations (in excess of 50%), the best fit

to population moments as measured by  is given by simple single-state models, even though the true

model is a complex MSVAR. They also examine the empirical distribution of the moments produced by the

models in small samples to find that MSVAR models tend to overestimate the mean and underestimate

33This GMM-style statistic assigns weights to the deviations between sample vs. model-implied unconditional moments

which are inversely proportional to the error with which sample moments are estimated.
34The true model with TVTPs cannot be used because of numerical problems that prevent estimation on short samples.
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the variance of the short rate; on the opposite, VAR models produce close to unbiased estimates of the

mean and variance. It would be important to benefit for more extensive simulation experiments to verify

how widespread the problems with estimating MSVARs may be in empirical finance applications.

Of course, all multivariate MSMs face one common challenge: unless the available time series are long

(which usually means that one is to use daily data) and/or computational resource unlimited, it is difficult

to seriously entertain the idea of estimating MSMs for large vectors of endogenous variables (think of the

example of  = 15 given above). Baele, Bekaert, and Inghelbrecht (2010, BBI) have recently proposed a

smart set of innovative–at least within the MS literature–tools to handle exactly such a challenge: factor

models. BBI study the economic sources of U.S. stock-bond return co-movements and their time variation.

Even though Baele (2005) has been taken as a key example of work on MS dynamic correlations and

contagion in international equity markets, the same logic can find application to modeling the correlation

between pairs of asset classes or portfolios within a country, such as the wildly gyrating stock-bond return

correlation coefficient: for instance, during the mid-1990s, the (rolling window) stock-bond correlation was

as high as 0.6, to drop to levels as low as -0.6 by the early 2000s. BBI develop a DFM that imposes

structural restrictions inspired by recent New-Keynesian models and that incorporates MS:

r+1 = [r+1] +B
0
+1f+1 + ²+1 ²+1 ∼ (0 (σ2 ))

x+1 = +1 +Ψ+1[x+1] +A+1x + Γ+1f+1

where [r+1] represents the expected excess return vector, B+1 ≡ [β+1 β+1] is a×2 matrix of stock
and bond return factor loadings, f+1 is an×1 vector containing the structural factors, innovations to a set
of MS state variables x+1 such that f+1 ∼ (0 (φ+1)), and ²+1 ≡ [+1 +1]0 represents return
shocks not explained by the factors. The MSM is used to accommodate changes in monetary policy and to

model heteroskedasticity in the shocks. The time variation in the betas is modeled as B+1 = (F +1)

where +1 is a discrete variable following an observable (to the investor) homogeneous Markov chain with

 = 2. While a benchmark model forces the betas to be constant, BBI also experiment with a short list of

parsimonious models investigating the most likely sources of time variation in betas, e.g., with betas that

depend on instruments measured at time  − 1, and with betas that depend on a subset of the MS state
variables. In the latter case, BBI preserve the structural interpretation of the implied stock-bond return

correlation dynamics by using regime variables exogenously extracted from monetary and business cycle

variables without using stock and bond returns.35 The time variation in the diagonal matrix (φ+1) is

also modeled as depending on a Markov chain, (φ+1) = (φ+1
). Under this model, the conditional

correlation between stocks and bonds is:36

[+1 +1] =

P
=1 


+1|β

0
+1(φ+1

)β+1qP
=1 


+1|β

0
+1(φ+1

)β+1

qP
=1 


+1|β

0
+1(φ+1

)β+1

35BBI also estimate a structural model for the subset of x+1 (composed of macroeconomic variables) that extends a

standard New-Keynesian three-equation model (e.g., Bekaert, Cho, and Moreno 2010). The monetary policy rule is the typical

forward-looking Taylor rule with a positive interest rate smoothing parameter.
36When betas vary through time, they can also generate sign changes over time. When they are constant, however, the sole

driver of time variation in the covariance between stock and bond returns is the heteroskedasticity in the structural factors.

The betas simply determine the sign of the covariance.
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This decomposition shows the standard effects of a linear factor model: Factors with higher variances have

the largest effect on co-movement and if bond and stock betas have the same (opposite) sign, increased

factor variances lead to increased (decreased) co-movement. Consequently, to generate substantial variation

in correlations, the volatility of the fundamentals must display substantial time variation. Additionally, to

generate negative covariances, there must be at least one factor to which bonds and stocks have opposite

exposures, and this factor needs to display substantial variability compared to other factors.

Using quarterly data 1968-2007, BBI employ a large number of potential economic state variables in

their investigation–not only short- and long-term interest rates, inflation, the output gap, and cash flow

growth but also a “fundamental” risk aversion measure derived from consumption growth data based on

Campbell and Cochrane’s (1999) habit formation model and macroeconomic uncertainty measures derived

from survey data on inflation and GDP growth expectations, liquidity proxies and the variance premium,

a risk-premium proxy representing the difference between the (square of the) VIX (the option-based risk

neutral expected conditional variance) and the conditional variance of stock returns. Given their model,

BBI decompose the performance of the factor model in the contributions of the various factors. The key

result is that macroeconomic fundamentals contribute little to explaining stock and bond return correlations

but that other factors, especially liquidity proxies, play a more prominent role. The macro factors are still

important in fitting bond return volatility, whereas the variance premium plays a key role in explaining

stock return volatility. Interestingly, in spite of the rich factor structure, BBI report that all models show

significant MS in residual volatility. For both inflation and output volatilities, there is a near-permanent

switch to the low-volatility regime during the 1990s, which is consistent with the idea of a Great Moderation.

The complexity of BBI’s model–characterized by multiple Markov state variables unobservable to the

econometrician and by complex latent dynamic processes for state variables and betas–is such that its

methodology suffers from a number of limitations. First, BBI follow a two-stage (quasi) ML procedure to

estimate their model: In a first stage, they estimate the state variable model; then they estimate the factor

model conditional on the economic factor shocks identified in the first step. From an econometric point

of view, it would be more efficient to jointly estimate the factor and state variable models. However, an

important risk of a one-step estimation procedure is that the parameters of the state variable model may

be estimated to help accommodate the conditional stock-bond return correlation, which would make the

economic interpretation of the factors problematic. Second, BBI’s model is obviously characterized by a

problem of parameter proliferation. As a reaction BBI work with “paired-down” versions in which only

parameters with t-statistics over 1 are retained. Although this is sensible in the light of a few findings in the

forecasting literature (but for simple regression models), more adequate approaches to model simplification

may be needed. Third, the baseline specification of BBI’s DFM involves 5 different, two-state first-order

Markov state variables, a few of them directly affecting risk exposures and/or risk-factors and others

affecting the dynamic process of the factors. However, 25 = 32 and one may argue that–albeit in a highly

nonlinear and economically-motivated fashion–BBI eventually work with a MSM with 32 regimes! Here

one clearly feels a need of a more systematic treatment (not only within the structure of DFMs) of the

issue of how to sensibly go from  MS -state processes to an encompassing MS process without assuming

independence.
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5. MS and the Predictability Debate

In a number of papers reviewed in Section 3, the issue of whether MS dynamics may “interfere” with the

classical finding (see e.g., Fama and French, 1989) that simple business-cycle sensitive instruments (such

as the dividend yield, the term spread, the default spread, and short-term interest rates) may predict

returns or with the result in the exchange rate literature that no time series models can beat a RW in

out-of-sample prediction tests, had already surfaced. For instance, while Engel and Hamilton (1990) had

suggested that a RW benchmark may be outperformed by MSMs, a number of papers leading up to Guidolin

and Timmermann (2006a) had found that MSVAR models imply that the power of standard predictors

to forecast subsequent returns may be magnified when compared to simple linear models, although such

power may become regime-specific. Moreover, the inclusion of predictors in simple MSMs would not weaken

the evidence of multiple states, nor would the presence of such states deny the power of the predictors.

This has been interpreted as evidence that MS dynamics is not a short-cut approach to capture complex

predictability patterns. Moreover, as recently discussed by Lettau and van Nieuwerburgh (2007, LvN),

MS dynamics (more generally, regimes and/or breaks in the underlying return process) in standard, linear

predictive relationships involving financial ratios–such as the price-dividend ratio (PDR) or the earnings-

price ratio–may easily rationalize the seemingly incompatible result that linear regressions can accurately

forecast returns in-sample, but that they miserably fail in OOS tests (see e.g., Bossaerts and Hillion, 1999,

and Goyal and Welch, 2008).37 In their equity sample, LvN find strong empirical evidence in support

of breaks in steady-state relationships and/or of regimes. They then ask how such changes affect the

forecasting relationship between returns and lagged price ratios. Standard econometric techniques that

assume that the regressor is stationary will lead to biased estimates and incorrect inference. However,

since deviations of price ratios from their steady-state values are stationary, it is straightforward to correct

for the nonstationarity if the timing and magnitudes of shifts in steady states can be estimated. LvN

conduct tests that incorporate such adjustments from the perspective of an econometrician with access to

the entire historical sample (in-sample tests), as well as from the perspective of an investor who forecasts

returns in real time (OOS tests). For instance, while the raw DPR series is very persistent with the first-

and second-order autocorrelations of 0.91 and 0.81–so that the null hypothesis of a unit root cannot be

rejected, according to an augmented Dickey Fuller test–the adjusted DPR is much less persistent with

the first-order autocorrelation drops of 0.77 and 0.61, respectively; the null of a unit root in the adjusted

series is thus rejected at the 4% and 1% levels. In-sample results indicate that “adjusted” price ratios have

favorable properties compared to unadjusted price ratios. For instance, the slope coefficient in a regression

of annual log returns on the lagged log-DPR increases from 0.094 for the unadjusted ratio to 0.455 for the

adjusted ratio computed assuming two steady-state shifts; while the statistical significance of the coefficient

on the unadjusted DPR is marginal, coefficients on the adjusted DPRs are strongly significant.

In real-time pseudo-OOS experiments, however, the changes in the steady state are not only difficult

to detect but also estimated with significant uncertainty, making the in-sample return forecastability hard

to exploit. Results from OOS tests in LvN reflect this difficulty. While adjusted price ratios have superior

37A number of papers (e.g., Nelson and Kim, 1993) have also stressed that correct inferences for regression models based on

financial ratios are often problematic because financial ratios are extremely persistent.
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forecasting power relative to their unadjusted counterparts, they do not always outperform the benchmark

RW. This is easy to understand because, in real time, an investor faces two challenges: first, she has to

estimate the timing of a regime shift; second, if she detects a new regime, she has to estimate the new mean

after the shift occurs. Interestingly, LvN report that the estimation of the regime shift dates in real time

is not crucial and the resulting prediction errors are smaller than under a RW; however, the estimation

of the magnitude of the regime-induced change in the mean DPR entails substantial uncertainty, and is

ultimately responsible for the failure of real-time OOS predictions to beat the RW. In particular, using a

MSM, LvN show that if the investor did not have to estimate regime-specific means in real time, but only

the switching dates, her OOS forecast would improve substantially, and beat the RW. The issues raised by

LvN’s paper are naturally central to the development of the MS literature. For instance, while the empirical

macroeconomics literature has focused on the inability (see e.g., Clements and Krolzig, 1998, Stock and

Watson, 2001) of MSMs to accurately forecast business cycle turning points, LvN surprisingly point out

that the biggest obstacle to using MSMs to accurately predict asset returns may lie in the difficulty of

estimating shifts in conditional means, and not turning points.38 Additionally, it remains unclear the exact

link between LvN’s concept of “adjusting” regressors to take into account regime shifts and the sharper

idea that if a parametric model of such shifts–as an MSM is–can be estimated, it should be used in

practice to produce such forecasts.

While Lettau and van Nieuwerburgh (2007) clearly illustrates the role that MS may have in reconciling

the predictability “puzzle”–i.e., strong in-sample forecastability of asset returns along with low OOS

power–a number of other papers have offered examples of how MS may change the common perception

that it is very hard to forecast asset returns using the very fundamental variables that in principle should

underlie the valuation of assets (see e.g., James, Koreisha, and Partch, 1985, and Rapach and Wohar,

2005). An example of this type of work performed at a multivariate level is Guidolin and Ono (2006)

who have investigated the hypothesis of time-varying dynamic linkages across financial markets and the

U.S. macroeconomy in a flexible multivariate heteroskedastic MSVAR. Guidolin and Ono’s seems to be

one of the most ambitious multivariate applications to date, as the MSVAR captures the dynamics of an

eight-variable vector that includes stock and bond returns in excess of the T-bill rate, the T-bill yield,

typical predictors (such as the default spread between low- and high-grade bond yields and the dividend

yield), and three genuine macroeconomic variables, the inflation rate, industrial production growth, and a

measure of real money growth. Given their ambitious goal, they use a long monthly data set for the U.S.,

1926-2004. They find overwhelming evidence of four regimes and of time-varying covariances. The four

regimes carry a sensible interpretation as a moderately persistent bull-rebound state, a highly persistent

low-volatility state, an expansion high growth state, and a recession-bear state. The last two regimes have

low persistence and hence durations limited to 4-5 months. Also in this case, it is possible that a need

of four regimes may come from the spurious “amalgamation” of eight variables that may have their own

simpler “bull & bear“ (or “expansion & recession”) regimes. Interestingly, the best in-sample fit to the

joint density of the data is provided by a four-state MSIH-VAR(1) model in which the VAR coefficients are

38Guidolin (2011) links this insight to research on MS-based optimal asset allocation strategies. He notes that in many

financial applications it may be more crucial to accurately estimate the parameters that enter the conditional mean and

variance functions than to predict future regimes.

32



restricted to be regime-independent. They interpret this as evidence that the dynamic linkages between

financial markets and the macroeconomy have been stable over time, which counters a prior of evolving

predictability patterns. However, because the intercepts of all the variables in their models are allowed

to shift over time, this result is perfectly consistent with LvN’s: steady-state relationships are subject to

regime shifts, even though this does not directly affect any of the predictive regression coefficients.

6. Markov Switching ARCH

In Section 4, I have used Baele’s (2005) paper to tease the reader into the notion that within the popular

family of (G)ARCH models there may be space to model MS dynamics in all or portions of the GARCH

coefficients. While in Baele’s paper such MS GARCH effects were important to detect potential shifts in

dynamic correlation patters, MS GARCH has always been an important general area of research. Although

GARCH models driven by normally distributed innovations and their numerous extensions can account

for a substantial portion of both the volatility clustering and excess kurtosis found in financial returns, a

GARCH-type model has yet to be constructed for which the filtered residuals consistently fail to exhibit

clear-cut signs of non-normality. On the contrary, it appears that the vast majority of GARCH models,

when fitted to returns over weekly and shorter horizons, imply heavy-tailed conditional residual distrib-

utions. A natural solution has consisted of developing GARCH frameworks that incorporate the original

assumption of normal innovations but in which the conditional distribution is a mixture of normals.39

As with most good questions, should we ask whether or not MS GARCH models are useful, the most

appropriate answer would be that “it depends”. Besides the obvious dependence of the usefulness of regime

components in ARCH on the specific series under examination, the contribution of MS to the ability of

GARCH to fit and forecast the data hinges on two dimensions: First, the frequency of the data and,

second, the size  of the data vector. As for the first dimension, it is typical to observe that the higher

the frequency, the higher the chances that MS GARCH is needed, with little peril of overfitting the data.

As a rule of thumb, all the papers that I have reviewed and that have estimated MSMs on daily data, have

specified some form of MS GARCH process, and most papers that have used weekly data have done the

same. At a monthly frequency, there is much more uncertainty as to what the right choice may be. For

instance, using U.K. equity and bond data, Guidolin and Timmermann (2005) have formally tested for

ARCH effects in the residuals of a three-state MSIH model and found that the null of no ARCH cannot be

rejected. On U.S. monthly equity data, Guidolin and Timmermann (2007) have reported similar evidence

in a four-state model. Their results remind us of our earlier discussion of a potential substitutability

between the number of regimes in a MSM and the need of GARCH.

MS GARCH models also have a rich technical dimension that has long attracted the interest of econo-

metricians. Reviewing some of the key papers that have developed this class of MSMs will help me to

develop a perspective on these technical issues. Cai (1994) and Hamilton and Susmel (1994) are two con-

temporaneous papers that have proposed related versions of a simple but already powerful MS ARCH.

39Of course, other competing approaches exist such as the specification of GARCH structures driven by IID innovations

from a fat-tailed and, possibly, asymmetric distribution as in Hansen (1994). Harvey and Siddique (1999) and Rockinger and

Jondeau (2002) employ autoregressive structures to allow for time variation in skewness and kurtosis. Implicitly, the duration

dependence MS framework in Maheu and McCurdy (2000) also provides an alternative to the MS ARCH models.
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Cai (1994) develops a MS ARCH model to examine the issue of volatility persistence in monthly excess

returns of 3-month U.S. T-bills. Cai was concerned that such a high volatility persistence may have been

spuriously inflated by the presence of a small number of regimes.40 He proposed to model occasional shifts

in the asymptotic, long-run variance of a MS ARCH process. In this case, the conditional variance is no

longer determined by an exact linear combination of past squared shocks, as in a standard ARCH. The

intercept in the conditional variance is allowed to change in response to occasional discrete shifts. Thus the

model is able to retain the volatility-clustering feature of ARCH and, in addition, to capture the discrete

shifts in the intercept in the conditional variance that may cause spurious persistence in the process. In

the simplest of the two-regime cases explored by Cai (1994), his MS AR(1) ARCH process is:

 = 0 + 1 + (−1 − 0 − 1−1) +   =
p
  ∼ (0 1)

 = 0 + 1 +

X
=1


2
− 0 1  ≥ 0

where  = 0 1 follows a first-order, homogeneous and irreducible two-state Markov chain. The model

implies that  = 1 identifies a high variance state because 1 ≥ 0. Cai identifies two regime shifts in his
1964-1991 sample, the 1974:2-1974:8 period associated with the oil shocks and the 1979:9-1982:8 period

associated with the Federal Reserve’s “monetarist” experiment. The variance approached asymptotically

in these two episodes is more than 10 times higher than the asymptotic variance of the remainder of the

sample. The probability of staying in the low-variance state is 0.99 and the probability of staying in

the high-variance state is 0.94; the unconditional probabilities of being in the low-variance and the high-

variance states are 0.83 and 0.17. Cai concludes that regime shifts have a great impact on the properties

of the data so that earlier empirical results that had adopted an ARCH approach in modeling monthly or

low frequency interest rate data may contain severe biases.

A related paper is Hamilton and Susmel (1994) who have proposed a switching-regime ARCH (SWARCH)

model in which changes in regimes are captured as changes in the scale of the process

 = +
p
0 + 1  =

p
  ∼ (0 1)

 =  +

X
=1


2
−  ≥ 0,  = 0 1 2,

so that  follows a standard ARCH() process and the MS component concerns the scaling factor
√
0 + 1.

This is obviously different (and in some sense more powerful) than Cai’s MS ARCH where a shift to

the volatile regime only affects the unconditional (long-run) variance, while in Hamilton and Susmel’s

SWARCH also the dynamic process of conditional variance is affected. Hamilton and Susmel’s motivation

was not directly related to their application but instead more linked to the fact that conventional GARCH

models–in spite of their excellent in-sample fit–often provide worse multiperiod volatility forecasts than

40The idea that ignoring either regimes or breaks in the conditional volatility process may spuriously inflate ARCH persistence

had already been popularized by Lamoureux and Lastrapes (1990) and Diebold (1986). Lamoureux and Lastrapes (1990) found

that allowing for the presence of deterministic shifts in the conditional variance intercept in GARCH produces substantially

lowered estimates of the persistence parameters for 30 randomly selected stocks. Diebold (1986) also indicated that although

interest rate equations appear to have integrated-variance disturbances, this may be due to the failure to include a monetary

regime dummy in the variance intercept. Kim and Kon (1999) have recently returned on this issue.
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constant variance models do. As we have seen, this is a motivation similar to recent work by Lettau

and van Nieuwenberg (2007) on predictability in regression models, but transposed to explain a differen-

tial between in-sample fit and OOS predictive accuracy for variances: in particular, multiperiod GARCH

forecasts of volatility tend to be too high (low) just after periods of above (below) normal volatility (see

e.g., Lamoureux and Lastrapes, 1993). With reference to weekly returns of a NYSE value-weighted index,

Hamilton and Susmel find that a three-state SWARCH specification offers a better in-sample fit to the

data, better forecasts, and a superior description of the October 1987 crash. Their estimates attribute most

of the persistence in stock volatility to the persistence of the low-, moderate-, and high-volatility regimes,

which typically have durations of several years. The high-volatility regime is associated with economic

recessions. In addition, they find that the persistence measure of the ARCH process is much lower that

what one would otherwise estimate, similarly to Cai (1994). This contradicts the finding, especially in the

aftermath of the October 1987 crash, that the parameter estimates of GARCH models would imply that

the conditional variance process were not covariance-stationary.41 Interestingly, Hamilton and Susmel find

that in their ARCH(2) short-term component, ̂1 + ̂2 = 048 which implies that (because 048
4 = 005)

volatility shocks die out almost completely after only one month, suggesting–as later found by a number

of papers–that no ARCH term may be necessary in modelling monthly stock returns.

The reader may have noticed that both Cai (1994) and Hamilton and Susmel (1994) had focused on

MS ARCH models. In a way, this is natural because the point of both papers is that the high persistence

of volatility often reported in the GARCH literature may have been spuriously inflated by the presence of

regimes or breaks. In fact, the reason why Bollerslev (1986) had proposed the GARCH generalization of

ARCH was exactly to increase the persistence of the conditional heteroskedastic family within a parsimo-

nious parameterization. However, one may still wonder how we should go about specifying and estimating

MS GARCH models. Unfortunately, combining MS with GARCH induces tremendous complications in es-

timation. As a result of the particular lag structure of a GARCH model–by which all past lags of squared

shocks affect conditional variance–the standard equations characterizing the EM algorithm would depend

on the entire history of the Markov states through the smoothed probabilities Pr(  −1  1|F ).

Because each of the ’s may take  values, this implies a total of  probabilities to be computed and

stored. Cai, Hamilton and Susmel concluded that for any data series with a sample size larger than 50, a

MS GARCH model would be extremely difficult to estimate. Direct maximum likelihood estimation via a

nonlinear filter also turned out to be practically infeasible. Therefore both Cai, Hamilton and Susmel had

originally restricted their dynamic lag structure to ARCH models.

A first, important “stab” at the problem of estimating MS GARCH came from Gray (1996), who

developed a two-state generalized MS ARCH of the U.S. short-term riskless nominal interest rate (1-month

T-bill) that nests many existing interest rate models as special cases. Gray entertains two leading models.

The first model is ( = 0 1)

∆ = (0 + 1) + (0 + 1)−1 + (0 + 1)
p
−1  ∼ (0 1), (6)

which has finite memory because  −1[∆|] = (0 + 1)
2−1 depends only on one lag of the short

41Frequently, statistical tests have been unable to reject the hypothesis that the conditional variance of the short rate follows

an integrated GARCH (IGARCH) process (i.e., the null of +  = 1 cannot be rejected at standard significance levels). For

instance, Engle, Ng, and Rothschild (1990) report a sum of the GARCH coefficients of 1.01 for a portfolio of U.S. Treasuries.
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rate. Equation (6) is a MS version of a standard square root process, see Chan, Karolyi, Longstaff, and

Sanders (1992). The second model is a MS GARCH(1,1) in which all GARCH parameters (rather than

just an additive or multiplicative scaling parameter) are regime-dependent:

∆ = (0 + 1) + (0 + 1)−1 +
p
()  ∼ (0 1)

() = (0 + 1) + (0 + 1)
2
−1 + (0 + 1)−1(−1) (7)

( = 0 1) which implies an infinite memory because  −1[∆|] = (0 + 1) + (0 + 1)
2
−1+

(0+1) −2[∆−1|−1] and this can be solved backwards to show that conditional variance depends
on the entire history of shocks to the short-term rate, 0 1  −1. Gray tackles the problem of path

dependence in MS GARCH adopting an approach that preserves the essential nature of GARCH and

yet allows tractable estimation. Under conditional normality, and defining (−1 = |F−2) to be the

conditional mean, the variance of changes in the short rate at time − 1 is given by

̄−1 = −2[(∆−1)2]− {−2[∆−1]}2 = Pr(−1 = 1|F−2)[(−1 = 1|F−2)2+

+−1(−1 = 1|F−2)] + [1− Pr(−1 = 1|F−2)][(−1 = 0|F−2)2 + −1(−1 = 0|F−2)]+

−{Pr(−1 = 1|F−2)(−1 = 1|F−2)− [1− Pr(−1 = 1|F−2)](−1 = 0|F−2)}2

which is not path-dependent and corresponds to a difference of averages across regimes (with probabilities

given by filtered probabilities) of the the first and second moments. This value of ̄−1 can be used in the

MS GARCH (1,1) specification in (7) to replace −1(−1).

Using a 1970-1994 weekly sample, Gray shows that his MS GARCH model delivers sensible results,

capturing the features of short-term interest rate data better than existing models in terms of both in-

sample fit and OOS forecasting performance. Interestingly, a considerable improvement in the statistical

fit to the data is already obtained from a simple two-state MSIH with constant variance within regime

(i.e., under the restriction that
√
−1 does not enter the diffusion coefficient in (6)) or equivalently setting

0 = 1 = 0 = 1 = 0 in the GARCH specification. Both states are persistent and the regimes tend to

be separated by differential variances, with regime 1 volatility being more than four times the volatility

of regime 2. However the conditional mean parameters are all insignificantly different from zero. In this

respect, the short rate essentially follows a random walk in all regimes. Yet, the Ljung-Box statistics of

the squared standardized residuals are reduced dramatically vs. the raw interest rate data: even a simple

MSIH can capture much of the time-varying volatility in short-term yields. When a standard, single-state

GARCH(1,1) model is estimated, conditional mean parameters remain insignificant and the conditional

variance parameters are similar to those typical in the literature, with ̂+̂ exceeding one and a LRT unable

to reject the hypothesis that the conditional variance follows an IGARCH process. Another LRT rejects

the single-regime, constant-variance model in favor of the single-regime GARCH model. The single-state

GARCH model, however, does a poor job at modeling the stochastic volatility in short-term rates, with the

Ljung-Box statistics for the squared standardized residuals indicating to the presence of significant serial

correlation, and the Jarque-Bera test showing that the standardized residuals are not normally distributed

(contrary to model assumptions).

When a MS GARCH(1,1) model is estimated, while none of the conditional mean parameters reaches

statistical significance, Gray gets confirmation of the asymmetry across regimes evident in the MSIH. The
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high-volatility regime is characterized by a higher sensitivity to recent shocks (̂0  ̂0) and less persistence

(̂0+ ̂0  ̂1+ ̂1) than the low-volatility regime. The effect of individual shocks dies out quickly during

periods of very high volatility but has a longer-lasting effect during periods of low volatility. It is this

important difference that a single-regime GARCH model is unable to capture. Within each regime, the

GARCH processes are stationary (̂ + ̂  1  = 0 1) and much less persistent than in the single-

regime GARCH model. An LRT is constructed to compare the MSIH model with the MS GARCH. The

LR statistic is significant at any usual level, indicating that the GARCH effects are important. One final

group of models combine both GARCH and square root effects. In such a MS GARCH/square root model,

volatility clustering can be caused by three factors. First, the GARCH process in each regime is capable of

capturing volatility clustering. Second, if the unconditional variance is higher in one state than the other,

and if regimes are persistent, then periods of high volatility will tend to cluster together. Third, since

volatility depends on the level of interest rates, volatility clustering can emerge in periods of high interest

rates, if rates are persistent. Gray finds in this case some reversion to a relatively high long-run mean

during periods of high interest rates and high volatility, whereas the short rate follows a low variance RW

during periods of low and stable rates. This separation across regimes of the conditional mean dynamics

is similar to Ang and Bekaert’s (2002b). The conditional variances appear to separate into a GARCH

regime and a “square root” (CIR) regime. In regime 1, both GARCH parameters fail to reach significance,

while the CIR (square root) parameter is highly significant. In regime 2, both GARCH parameters are

significant and although the CIR parameter is statistically significant its small value renders it economically

insignificant. The persistence of an individual shock is much less than is suggested by the single-regime

model, with ̂ + ̂  04 in both regimes.

Dahlquist and Gray (2000) have estimated MS-GARCH models of the same type as in Gray (1996) for

weekly short-term interest rates of six countries in the European Monetary System (EMS). Under the rules

of the Exchange Rate Mechanism (ERM), when the market believed that a realignment is likely in the near

future, the short-term interest rate on bonds denominated in the weak currency may become extremely

high and volatile (see Engel and Hakkio, 1996); when it appears to be unlikely that a realignment will occur

in the near future, however, we expect the conditional distribution of the short rate to be different. These

different types of economic regimes are likely to be reflected in the statistical properties of short-term rates

for countries in the EMS/ERM. Dahlquist and Gray find that the “non-credible” regime is characterized

by periods of extremely high and volatile interest rates; in this regime the mean-reversion of interest rates

is stronger, quickly attracting interest rates back to their long-run means. In the low-volatility regime, the

target zone appears to be credible and in this state short rates display weaker mean-reversion, bordering

in many cases a unit-root like behavior.

Dueker (1997) has proposed a different approach to address the issues with the estimation of MS

GARCH processes that follows earlier work by Kim (1994) and stresses the importance of allowing the

shocks in MS GARCH to follow marginal distributions that are more general than a (0 1), in particular

t-Student shocks. Dueker’s work is also important because it investigates the existence of a trade-off

between the flexibility allowed by TVTPs taken to be a function of lagged values of the variable(s) of

interest in conditionally Gaussian environments, and fat-tailed distributions for the shocks retaining the
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standard assumption of constant transition probabilities. Dueker’s model can be written as

 = (0 + 1) +
p
()  ∼ IID (0 1 )

( −1) = (0 + 1) + (0 + 1−1)2−1 + (0 + 1−1)−1(−1) (8)

where   2 is the number of t-Student degrees of freedom (an estimable parameter), the GARCH intercept

depends on  = 0 1 while  and  depend on −1 = 0 1. Kim (1994) had addressed the problem that

the th observation in a -regime model implies  components of the likelihood function by introducing

a collapsing procedure that greatly facilitates computations at the cost of introducing a degree of approxi-

mation that–at least based on Dueker’s results–does not distort the estimates. The collapsing procedure,

when applied to a GARCH process, calls for treating the conditional dispersion, , as a function of the

most recent  values of the state variable . For the filtering to be accurate, Kim noted that, when  is

-order autoregressive, then  should be at least +1. In the GARCH(1, 1) case,  = 1, so we would have

to keep track of 2 (because the model involves both  and −1) or 4 cases, based on the two most recent

values of a binary state. Thus,  is treated as a function of only  and −1:


()
 ≡ ( =  −1 = ) = (0 + 1{=1}) + (0 + 1{−1=1})

2
−1 + (0 + 1{−1=1})×

×[Pr(−1 = 1| = F−1)
(1)
 + (1− Pr(−1 = 1| = F−1)

(1)
 )

(0)
 ]

At this point, 
()
−1 simply replaces −1(−1) in (8). In fact, Dueker also entertains an extension of

Hansen’s (1994) model in which the Student t degrees-of-freedom parameter, , is allowed to vary over

time as a probit-type function of variables dated up to time  − 1. However, differently from Hansen,

Dueker’s specification makes  follow a first-order, two-state MS process,  = 0 + 1.
42

Using daily S&P 500 returns for the period 1982-1991, Dueker reports that a MS GARCH in which

 follows a MS process produces  switching between the values of 2.6 and 8.3. As a result, the fourth

moment does not exist in one state, whereas conditional kurtosis is 4.4 in the other state. The weight

given to lagged squared residuals in the GARCH process shifts with the state variable between .009 and

.027. In this way, shocks drawn from the low degree-of-freedom state do not affect the persistent GARCH

dispersion process proportionately. Most importantly, shifts in the degrees-of freedom parameter lead to

large discrete shifts in variance; a switch of regime out of the low degree-of-freedom state causes the variance

to decrease by about 68%, holding the dispersion constant. The unconditional probability of being in the

low degree-of freedom state is about 10% with a half-life of five trading days. This MS t-GARCH model

also suggests that stock returns are negatively skewed because the mean stock return is below normal in the

high-volatility state when  = 0. When a Vlaar-Palm density specification test (see Section 8) is applied,

only the MS t-GARCH with switching degrees of freedom is not rejected on an in-sample basis, with a

0.57 p-value; however, it is rejected out of sample. This anticipates to some extent the work on density

prediction properties of MSMs that will be reviewed in Section 8.1. As an economic test of MS GARCH

models, Dueker uses them to predict the next day’s opening level of the VIX volatility index compiled by

the CBOE, over the period 1986-1992. In a MSFE metric, he finds that only a MS GARCH in which also

42Haas et al. (2004) also show how their mixture component GARCH( ) model may be generalized to different parametric

distributions for their innovations, for instance,  t-densities with degrees-of-freedom parameters that may differ across

regimes.

38



 follows a MS process predicts the VIX substantially better than a conventional GARCH model, with a

notable 14% reduction in MSFE.

Dueker’s application to daily stock return data poses a number of interesting questions for subsequent

research: the trade-offs between the flexibility in the marginal distribution of return innovations vs. the

standard flexibility through the selection of  offered by MS mixtures; the choice of optimal approxima-

tion/truncation schemes to be applied to the Markov chain dynamics when MS GARCH makes it unfeasible

to compute the exact log-likelihood; a desire to push the assessment of OOS performance beyond RMSFE

calculations to encompass precise (but necessarily specific) notions of economic value in the perspective of

traders and portfolio managers.

Starting in the late 1990s, the debate in the MS GARCH literature has evolved to include a competing

family of volatility models, stochastic volatility (SV). Given their inherent complexity and the substantial

payoffs of writing these models in state-space form, which makes them amenable to the application of

simulation-based estimation methods, this literature has naturally extended the set of available inferential

tools from the classical (ML and EM-based) camp to the Bayesian one. The work of So, Lam, and Li (1998,

SLL) is one of the first papers based on Bayesian Monte Carlo Markov Chain (MCMC) methods (see, e.g.,

Jacquier, Polson, and Rossi, 1994) applied to a MS SV model. Starting from the standard, single-state

case (asset returns are assumed to have been demeaned already),

 =
p
 ln+1 = +  ln + 

with ||  1, where  and  are IID normal random variables with zero mean and variances 1 and

2, respectively,  is the product of two independent variables,
√
 and . Asymmetric volatility can be

captured by allowing contemporaneous correlation between  and . In terms of state-space representation,

the process for ln+1 is the transition equation in which ln+1 is the state variable, while the measurement

equation is simply ln 2 = ln+ where  ≡ ln 2 . Similarly to Hamilton and Susmel’s (1994) SWARCH,
the parameter determining the level of the logarithm of volatility is allowed occasional discrete shifts among

 discrete states:

 =
p
 ln+1 =

−1X
=0

{+1≥} +  ln +  ||  1,   0 ( = 1  − 1),

which is SLL’s MS SV() model. Notice that the indicator variable used in the definition of the regime

switching intercept has a cumulative nature: for instance, in the case of three regimes ( = 0 1 2) we

have ln+1 = (0 + 1 + 2) +  ln +  in regime 0, ln+1 = (0 + 1) +  ln +  in regime 1, and

ln+1 = 0 +  ln +  in regime 2. Because   0 for  ≥ 1, the higher the index of the state, the
lower the value of the intercept in the SV process. The switching dynamics is governed by a first-order MS

process with constant transition probabilities.

SLL is also one of the first papers to show how a rich MSM could be estimated using MCMC. Under a

MCMC approach, samples from the joint posterior density of the parameters are obtained through Gibbs

sampling. In the MS SV() model, let θ be the parameter vector, ̈ be the information up to time ,

̈ ≡ [1, 2, ..., ]
0, and h = [1... ]

0, S = [1... ]
0 be the latent variable vectors. As shown by

Jacquier et al. (1994), if we augment the parameter vector θ by the latent vectors h and S where  is
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sample size, the parameter space is enlarged to [θ h S ]. The decomposition of the joint posterior density

according to Bayes’s theorem is

(θh S |̈ ) ∝ (̈ |h )(h |S θ)(S |θ)(θ)

where

(̈ |h ) ∝
Q
=1

(1
p
) exp

µ
−1
2

2


¶


(h |S θ) ∝ 1

()

p
1− 2

µ
Q
=1

−1

¶
exp

⎧⎨⎩− 1

22

⎡⎣ X
=1

Ã
ln+1 −

−1X
=0

{+1≥} −  ln

!2
+

+(1− 2)

Ã
ln1 − 1

1− 

−1X
=0

{1≥}

!#)

(S |θ) =
Q
=2

Pr(|−1) Pr(1 = )  = 0 1 ... − 1

and (θ) is a prior density, assumed to be the product of ( + 1)( − 1) +  + 2 independent priors

(i.e., 2 for  and ,  for the  coefficients, ( − 1) for P, and  − 1 for the initial state probability,
Pr(1 = )). SLL simulate from (S |θ) using the muliti-move sampler of Carter and Kohn (1994).

Using weekly S&P 500 returns for the sample 1961-1987, SLL find that when  = 1, the posterior

mean of  is close to 1 so that the half-life of a shock to volatility has a posterior mean of about 21 weeks;

this is the typical conclusion of the GARCH literature. When a three-state MS SV model is considered, the

posterior intervals of 1 and 2 indicate that the two parameters differ from 0. The persistence parameter

 has a posterior mean equal to 0.47, similar to the estimated 0.48 in Hamilton and Susmel (1994). The

persistence in volatility is once more considerably lower vs. the single-regime model by allowing sudden

discrete shifts in the intercept. SLL also uncover an interesting structure for the estimated transition

matrix that in some ways echoes the effects later uncovered by other papers on monthly U.S. financial

returns. The two diagonal entries 11 and 22 of the transition matrix display posterior means close to

unity, implying that states 1 and 2 tend to be persistent. On average, state 1 and state 2 would last for

about 49 and 65 weeks, respectively. Once the high-volatility state is accessed, it has about a 13% chance

to switch to the medium-volatility state. Persistence in the high-volatility regime is low, the mean duration

being less than 18 weeks. Moreover, the posterior means of 12 and 20 are relatively small. This implies

that there is little chance for switches from state 1 to state 2 and from state 2 to state 0.

A number of empirical researchers (see e.g., Haas et al., 2004) have argued that in spite of the advantages

of Bayesian inference via MCMCmethods such as the Metropolis-Hastings algorithm, given the large sample

sizes typically used in high-frequency financial applications and the lack of strong prior information, (quasi)

ML estimation may normally be expected to yield results that are very similar to the Bayesian ones.

Therefore, we still lack precise information on how much, if anything, MCMC methods based on weak

priors may change our understanding of the regime switching dynamics in commonly used series such as

S&P 500 daily returns, even though the practical benefits of MCMC in many practical circumstances are

hardly debatable (see Hahn et al., 2010). Moreover, in spite of SLL’s compelling application, there are still

no papers on multivariate extensions of MS SV methods that could prove very interesting for the debate

(see Section 4) on international financial contagion or on dynamic time-varying correlations.
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A similar effort, but in a classical estimation framework (quasi-maximum likelihood estimation using

the Kalman filter), is illustrated by Hwang, Satchell, and Valls-Pereira (2007, HSVP) who propose a

family of generalized SV models with MS state equations. HSVP is an interesting paper because it allows

us to ask whether and how MS SV may be needed over and beyond more traditional SWARCH and

MS GARCH models. HSVP start once more by noting that popular volatility models such as GARCH

or SV show extremely high levels of persistence and smooth dynamics in volatility. When volatility is

persistent and smooth, estimating or forecasting it becomes easy and estimation errors are small. Such

properties of volatility have been assumed in many financial studies, for instance with the implication that

a considerable portion of the applied portfolio management literature has focused more on minimizing the

estimation errors in expected return than in variances. As already discussed, the possibility remains that

high persistence in volatility may actually arise from MS in volatility. Therefore HSVP generalize So, Lam,

and Li’s (1998) model by allowing regime changes in the level of volatility, the persistence of volatility, and

the volatility of volatility. Their key economic insight is that whilst it is an old adage that economists can

forecast volatility but not expected returns, their results suggest that economists can forecast neither.

Using S&P500 daily index returns for the period 1994-2004, HSVP show that squared stock returns are

better specified with a generalized four-regime MS SV model:

ln 2 = ln 2 + ln
2 +   ∼ (0 1)

 − ∗ = ∗ (−1 − ∗ ) +   ∼ (0 2∗
) (9)

where  ≡ +[ln 2 ]+ ln
2 = +, so that the AR(1) process for the demeaned state  is equivalent

to  = −1 + . Moreover, because of the structure of (9), 
∗
 is defined as a first-order, four-state

Markov chain that captures the dynamics of a two-state, second-order Markov chain:43

∗ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if  = 1 and −1 = 1

2 if  = 1 and −1 = 2

3 if  = 2 and −1 = 1

4 if  = 2 and −1 = 2



Interestingly, this four-state MS SV nests a number of other models already reviewed. If 21 = 22 = 0,

the model becomes a standard MS GARCH; if 1 = 2, 1 = 1, and 21 = 22 then it is a standard

SV; if 1 = 2, 1 = 1, and 21 = 22 = 0 then it is a Gaussian homoskedastic AR(1) model. If either

21 or 
2
2 are zeros, and the other coefficient is not, then the unobserved variance process consists of a

mixture of a SV and GARCH. Finally, when 1 = 1, and 21 = 22 we have So et al.’s (1998) model.

HSVP confirm that because of the presence of regime shifts in the level of volatility, the latter becomes

far less persistent than previously suggested by SV models. More interestingly, the persistence level of

volatility also changes over time with high persistence characterizing short spells only. Persistent regimes

are more likely to occur when volatility is low, while far less persistence is likely to be observed in high

volatility regimes. An LRT comparing SV to MS SV with regime-switching ∗ gives a statistic of 127,

43As typical of MSMIA models (see Section 2.1), this derives from the fact that the process  − 1 = 1(−1 − 1) + 

( ∼ (0 21)) differs from  − 1 = 1(−1 − 2) +  ( ∼ (0 21)), etc. Because the four-state chain derives from

expanding the state space for a second-order two-state chain, this implies restrictions on the transition matrix.
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which is highly significant under a 2
(3)
. When persistence is allowed to follow a MS process, one regime

shows a low level of persistence whilst the other shows high persistence: they report AR parameters of

0.126 with an unconditional probability of 0.93, and 0.70 with an unconditional probability of 0.07. An

LRT comparing a MS SV with regimes in both  and  is 119.54, which is again highly significant. The

properties of standardized residuals show that allowing for MS in the level of persistence can give a better

fit to the data than the SV model does. Finally, HSVP report that changes in regimes do not have memory:

regime changes are far more frequent under the generalized MS SV model than those reported by previous

studies such as So et al. (1998). So, HSVP’s answer to my question on whether or not MS SV may be

needed in practice is positive and implies that such MS component may appear not only in the intercept,

but also in the persistence and the variance of the SV process, exactly in the same way in which this occurs

for the level (mean) of asset returns.

Haas, Mittnik, Paolella (2004, HMP) have recently returned to the issue of the most efficient approx-

imation to be used in the implementation of univariate MS GARCH. They propose a way to write MS

GARCH models that is different from Gray’s (1996) and that better fits the standard intuition of volatility

persistence in a GARCH framework. Similarly to previous papers, HMP assume that +1 = [+1] +

+1 where +1 follows a -component mixture of normals, +1 ∼ (1 2   ; 1 2   ;

21+1 
2
2+1  

2
+1), with zero unconditional mean,

[+1] =

X
=1

 = 0

and GARCH(1,1) variances that can be written as44

σ
(2)
+1 = ω +

X
=1

α
2
 +

X
=1

Bσ
(2)
 

where σ
(2)
+1 ≡ [21+1 22+1 ... 2+1]

0, ω is a  × 1 vector of constants, α is a  × 1 vector of coefficients
that load the lagged shock 2 onto the  regime-specific variances σ

(2)
+1, and B is a  ×  matrix

that loads past variances in each of the  regimes onto the predicted  regime-specific variances σ
(2)
+1.

[+1] may simply correspond–especially for daily financial return data–to regime-independent ARMA

structures, provided that there is single-state mean dynamics in the mixture components.45 Differently

from the MS GARCH model in Gray (1996), the parameters have a clear interpretation, namely, 

measures the magnitude of a shock’s immediate impact on the next period’s 2+1 and the th row of B

reflects the memory in component ’s variance in response to the shocks in each of the  components of

the mixture. This model is easily generalized to its persistent, Markov chain counterpart in which at each

point of time one of the  mixture components generates observation +1, where the process that selects

the actual component is a (first-order) hidden Markov chain with -dimensional state space. In this case,

44Vlaar and Palm (1993) have proposed a restricted version of this model in which there are only two regimes, 22+1 =

21+1 +∆ and 21+1 follows a standard Gaussian GARCH(1,1).
45Mixture autoregressive models with different AR structures in each component have also been employed in the literature

(e.g., see Guidolin and Timmermann, 2006a, Lanne and Saikkonen, 2003, and Wong and Li, 2000). However, theoretical

results on the mixture autoregressive model with GARCH errors are not available and their dynamic properties need to be

evaluated by simulation, as in Lanne and Saikkonen (2003).
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the conditional variance of +1 is:

 [+1] =

X
=1

Pr(+1|F)(
2
+1 + 2+1)−

Ã
X
=1

Pr(+1|F)+1
!2



where also the conditional mean has been generalized to follow a MS process.46 For the empirically

relevant GARCH(1,1) case, HMP provide conditions for existence of arbitrary integer moments and analytic

expressions of the unconditional skewness, kurtosis, and autocorrelations of the squared process. HMP also

entertain the special case of diagonal mixture GARCH models, in which B is diagonal for  = 1 ..., 

indicating that dynamic conditional variance in each regime only depends on the past of variance within

that regime, and partial mixture GARCH models, in which for some  − regimes out of the  initially

specified, all the corresponding elements of α ( = 1  ) and the corresponding rows of B ( = 1 ..., )

are made of zeroes, indicating that such components of the mixture fail to contain a GARCH component.

In this simple case, the conditions for stationarity have standard form but do not apply within each regime

but rather to a weighted sum, with the th weight given by a function of the (ergodic) state probabilities.47

HMP use daily NASDAQ returns over a 1972-2001 sample to compare both the in-sample fit and the

OOS forecasting performance of mixture GARCH vs. simpler MS and MS-GARCH models. On this

daily series, they show that even with just two regimes, their mixture GARCH can generate a plausible

disaggregation of the conditional variance process in which the regime-specific volatility dynamics have a

clearly distinct behavior, which is, for example, compatible with the well-known Black’s (1976) leverage

effect or that generates plausible levels of excess kurtosis and of time-varying skewness without requiring

explicit specification of the conditional process for skewness or kurtosis (e.g., as in Rockinger and Jondeau,

2002). In particular, within the normal mixture GARCH class, for a given number of regimes, , it turns

out that the diagonal model is always preferred over the full model when using the BIC criterion. The

worst performer is the one-component normal-GARCH model and this result is robust to extending the

single-state GARCH model to include unconditional innovations drawn from either a t-Student or GED.

More interestingly, a three-state mixture GARCH(1,1) model with time-varying means minimizes the BIC

and passes a wide range of in-sample tests based on density fit.

Alexander and Lazar (2009) have extend HMP both theoretically–by proposing a range of mixture

asymmetric GARCH models with leverage–and empirically, through an analysis of daily returns data

from four key European stock indices (Paris CAC, Frankfurt DAX, London FTSE, and the aggregate

Eurostoxx 50). They report that a number of different criteria such as Bayesian information criteria,

46With reference to daily data, HMP argue in favor of using simpler, multi-state normal independent mixtures over MS

processes because by allowing for skewness in MS-GARCH models through different regimes, dependent means are inevitably

associated with autocorrelation in the raw returns (see Timmermann, 2000). Therefore the zero autocorrelation in daily

raw returns paired with dependencies in higher moments–which is one of the most pronounced theoretical properties of

GARCH–would be lost under MS-GARCH. Of course, such superiority of simple mixtures over MS-GARCH may be lost at

lower frequencies (such as monthly), when returns may be predictable and in fact portions of systematic conditional skewness

may even be priced (see Guidolin and Timmermann, 2008).
47Consequently, and similarly to Francq, Roussignol, and Zakoian’s (2001) results for Hamilton and Susmel’s SWARCH, the

process can display finite variance even though some components are not covariance stationary, as long as the corresponding

component weights are sufficiently small. This may help to isolate regimes and sample periods over which the persistence in

volatility may produce properties consistent with IGARCH, even within the variance process that is globally stationary.
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moment specification tests, unconditional density tests, autocorrelation function analysis, and VaR all

point to favor two-state mixture GARCH models with asymmetric effects, such as

σ
(2)
+1 = ω +

X
=1

α
2
 +

X
=1

δ{0}
2
 +

X
=1

Bσ
(2)
 

Empirical estimates across the four data sets turn out results which are strikingly homogeneous and that

all suggest that during the least volatile regime, the indices have more or less similar volatility and exhibit

similar characteristics. However, during a crash regime the behaviour of these indices differs with French

index returns displaying most extreme crash behaviour and returning very high negative (annual) returns

and a significantly high crash volatility. Consistently with earlier literature, the persistence of volatility

in the crash regime is found to be low, indicating that the volatility returns quickly to normal levels,

although in this regime all the  coefficients tends to be large, implying a strong sensitivity to extreme

(negative) returns; however, when they are precisely estimated, leverage effects tend to be similar across

different indices. Even though in mixture of Gaussian GARCH models the state-dependent expected return

may already capture non-zero skewness (but only in the unconditional returns distribution), the addition

of dynamic asymmetry, via the state-dependent leverage effect appears to be very important, because it

dramatically improves the time-series fit of the mixture GARCH models.

Pelletier (2006) has recently proposed an extension of Bollerslev’s (1990) constant conditional correla-

tion (CCC) multivariate framework to incorporate MS dynamics in the conditional variance and covariance

functions. This has also confirmed at a technical level that no opposition exists between multivariate ARCH

and MS modelling strategies, while considerable benefits may available upon their integration in a unified

framework. As it is well known, applied econometricians face considerable identification and numerical

problems when they try to write truly multivariate models of volatility and correlations. This is because

not only must the variances be positive, the variance matrix must also be positive semi-definite (PSD)

at every point in time. Another important problem is the curse of dimensionality; because applied re-

searchers need models that can be applied to more than a few time series, it is problematic to directly

generalize the plain vanilla univariate GARCH models, and even relatively parsimonious and carefully

constructed multivariate variations such as the BEKK model of Engle and Kroner (1995), do suffer from

over-parameterization issues. Similarly to a standard DCC model, Pelletier’s (2006) regime switching dy-

namic correlation (RSDC) model decomposes the covariances into standard deviations and correlations,

but these correlations are allowed to change over time as they follow a MSM,

r = H
12
 ² ² IID (0 I ) H = ΥΓΥ

where Υ is a diagonal matrix composed of the dynamic standard deviations of  return series and the

regime-dependent matrix Γ contains the correlations that are assumed to be constant within a regime but

different across regimes. Therefore, this model is not as rich Haas, Mittnik, Paolella’s (2004) univariate MS

GARCH because it is the level and not the process followed by the conditional correlations that are assumed

to be regime switching. However, it represents a first and important step, in the spirit of Bollerslev’s CCC,

in the direction of multivariate MS GARCH process. In fact, this feature implies that in the evaluation of

the likelihood, the correlation matrix can only take  possible values so we only have to invert  times
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a  × matrix, which is a computational advantage over models such as Engle’s (2002) DCC, where a

different correlation matrix has to be inverted for every observation. Pelletier shows that the RSDC model

has many interesting properties: (i) it is easy to impose that the variance matrices are PSD; (ii) it does

not suffer from a curse of dimensionality because it can be estimated with a two-step procedure; (iii) when

combined with a ARMACH model for standard deviations, i.e.,48

 =  + |−1|+ −1

(in its simplest (1,1) version, where  =
p
), this correlation framework allows analytic computation

of multi-step ahead conditional expectations of the whole variance matrix.49 Finally, by modelling time

variation in correlations as a MS, the variances and covariances are not bounded which would otherwise be

the case when they are assumed to follow a simple MS framework themselves. Estimation is made simpler

by adopting a two-step quasi-ML estimation procedure as in Engle (2002): in a first step, one estimates

the univariate volatility models and in a second step, one infers the parameters in the correlation matrix

conditional on the first step estimates.50

In an empirical application to exchange rate data, Pelletier shows that a simple two-state RSDCM can

produce a better fit than the celebrated dynamic conditional correlation (DCC) model.51 The magnitude of

all the correlations in regime two is smaller than in regime one. The increase in the likelihood by going from

one regime (which is the Bollerslev’s CCC) to two regimes is so high that it may not be very important to

perform a formal test to reject the model with one regime. There is also a substantial difference in the level

of the log-likelihood between the RSDC and DCC models, where the “cost” consists of seven additional

parameters only. Because the regime switching model and the DCC are not nested, using a test by Rivers

and Vuong (2002), Pelletier rejects at the 10% level the hypothesis that the DCC is as close to the true

model as the RSDC model is. If one compares the smoothed correlations from the RSDC model with those

from the DCC, the RSDC correlations are generally smoother, which is realistic in economic terms. In

recursive out-of-sample tests for conditional covariances based on a cross-products of daily returns over

the forecast horizon, Pelletier reports that the forecasts from the ARMACH is performing better than the

GARCH model. As for the correlations, a four-state RSDC outperforms a DCC. These are of course very

promising results, although remarkable technical challenges are likely to persist on the path of a genuine

integration of DCC and MSM tools in a (Q)MLE estimation framework.

48A volatility model based on absolute values instead of squared innovations could work well: as argued by Davidian and

Carroll (1987), the model could be more robust; Granger and Ding (1993) suggest that the absolute return may be a better

measure of risk than the squared return is. Pelletier (2006) shows that his results are anyway robust to replacing ARMACH(1,1)

models with GARCH(1,1).
49Although it may seem natural (as, e.g., in Engle, 2002) to adopt a GARCH(1,1) to model the process of univariate

conditional variances, because the covariance is the product of a correlation and the square-root of the product of two variances,

the square-root introduces non-linearities that prevent analytic computation of conditional expectations of correlations.
50Pelletier performs Monte Carlo simulations to assess the loss of efficiency of the two-step estimation procedure relative to

the one-step estimation. As expected the biggest loss of efficiency involves the ARMACH parameters because for these the

two-step estimation is equivalent to applying OLS instead of GLS.
51Engle’s DCC (2002) is based on the same decomposition of the variance matrix as in Bollerslev (1990), but instead of

assuming constant correlations, these are modelled as following a GARCH-type dynamics. Because a correlation must lie

between 1 and 1, DCC includes a rescaling that introduces non-linearities. As a result of these non-linearities, one cannot

analytically compute multi-step ahead conditional expectations of the correlation and variance matrices.
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7. Homogeneous vs. Time-Varying Markov Chain Models. Duration Dependent Models

Another issue that has increasingly appeared in the practice of MSMs in empirical finance concerns the

modeling of Markov chain transition probabilities as depending on (endogenous or exogenous) state vari-

ables/factors. On logical grounds, this is no minor enrichment of the baseline MSM presented in Section

2: a time-varying transition matrix implies that not only the MSM will capture and potentially predict

the instability (regime shifts) in the data, but it will also contain an element of instability, in the form of

such regime shifts occurring themselves with probabilities that change as a function of the history of the

process (see e.g., Diebold, Lee, and Weinbach, 1994, and Filardo, 1994). Here my reading of the literature

is that while MSMs have been originally proposed in their simplest, plain vanilla form in which the tran-

sition matrix P is constant over time, starting in the mid-1990s it has become increasingly clear that in

terms of in-sample fit, the very data may often suggest the opportunity of letting P itself be a function of

predetermined variables, to capture the idea that the very steady-state of the markets may be subject to

shifts (see e.g., Maheu and McCurdy, 2000, and Pagan and Schwert, 1990). However, to the best of my

knowledge, I have been unable to find any systematic comparisons of the predictive (especially, in terms of

density forecasts) performance of time homogeneous vs. TVTP models. As a matter of fact, it may even

sound naive to be surprised by the fact that the data may suggest making P itself a time-varying matrix:

because the resulting mapping from the history of returns (and/or other state variables) and the density

of the data is by construction highly nonlinear, this offers vast opportunities to fit the data. However, this

means in no way that the perils of overfitting have been avoided. This is the sense in which systematic

OOS tests of predictive power (or better, of economic value) of MSMs with and without TVTPs may be

welcome.52

As discussed by Guidolin (2011), in many asset pricing applications of MSMs assuming that transition

probabilities are time-varying is not only or so much an empirical matter (or a matter of taste in terms of

trading off improved in-sample fit for a possible worse OOS performance), but on the contrary this choice

has first-order asset pricing implications. It is not clear whether this fact may have created in applied

finance researchers an (so far, unfounded) impression that the practice of MSMs implies that transition

probabilities must be specified as time-varying as a matter of routine. To try and explain how TVTPs

may enter the very fabric of empirical asset pricing research that employs MSMs, let’s draw one simple

example from Gray (1996). Gray assumes that the switching probabilities may depend on the level of the

short rate, for instance, to capture the fact that a switch to the high-volatility regime may be more likely

when interest rates are high. Formally:

Pr( = |F−1) = Φ( + −1)  = 0 1,

where  and  are unknown parameters and Φ(·) is the Normal CDF which ensures that 0  Pr( =

|F−1)  1. Interestingly, both mean reversion and leptokurtosis in interest rates may then be caused by

the switches between regimes, if the TVTPs are correlated with −1. To see this, suppose for simplicity

that changes in short-term interest rates are parameterized as being ( 
2
) in regime  = 0 1. Mean

52Ang and Bekaert (2002b) report results that suggest that TVTPs are useful in forecasting. However, their application is

sufficiently complex and rich of important caveats that it is difficult to assess how general this finding may be.
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reversion exists if [∆ −1]  0, or

[∆ −1] = [Pr(=1|F−1)1+(1-Pr(=1|F−1))0 −1] = (1−0)[Pr(=1|F−1) −1]  0

Hence, if the regime probability is correlated with the level of interest rates, then switches between regimes

may drive the observed mean reversion in the short rate, which is a key asset pricing phenomenon. A

similar argument applies to conditional heteroskedasticity. In his empirical estimates, Gray indeed finds

that the probability of staying in the low-variance, near-RW regime decreases as the level of interest rates

increases. Conversely, the probability of staying in the high-variance/high mean-reversion regime decreases

as the level of interest rates declines. Therefore, when interest rates increase, the probability of staying in

or shifting into the mean-reverting regime increases. This helps to prevent the interest rate process from

wandering off into unreasonable regions, another important benefit of assuming TVTPs: Starting from the

random walk regime, interest rates are unbounded; however, as interest rates increase, the process is more

likely to switch to the regime in which interest rates tend to revert to a long-run mean.

Gray’s paper was one of the first contributions to stress that choosing to model transition probabilities

as time-varying was not only a statistical choice, but it would and could affect the key financial implications

of the exercise. Maheu and McCurdy (2000a) have extended Gray’s intuition on the importance of the

nonlinearities induced by time-varying regime durations to an empirical analysis of high-frequency stock

returns and put their emphasis on the fact that MSMs with TVTPs may allow researchers to capture

the existence of important non-linear dynamics in the conditional mean. For example, as a bull market

persists, investors could become more optimistic about the future and hence wish to invest more in stocks.

This positive feedback means that the probability of switching out of the bull market decreases with its

duration, a sort of momentum effect.53 In addition to duration-dependent hazards, Maheu and McCurdy

also use durations as a conditioning variable in both the mean and variance functions; as a result, given

persistence in a particular state, the conditional moments change with duration:

 = (0 + 1) + (0 + 1)() +

X
=1

[− − 0 − 1−1 − (0 + 1)()] + 

 =
p
  ∼ (0 1)  = (0 + 1) + (0 + 1)() +

X
=1


2
− (10)

where  ≥ 0,  = 0 1. Conditional on {−1 −2... 1 0... −+1}, where  is the memory of the
duration dependence process,  is assumed to be independent of {−1 −2... 1}. While in plain-vanilla
MSMs the evolution of  is governed by a first-order Markov chain, introducing duration dependence in

the model results in a higher-order Markov chain. Define duration as

() ≡
(

(−1) + 1 +1 = 

1 +1 6= 


In words, duration is the length of a run of consecutive states. Theoretically, () could grow very large.

To make estimation feasible, Maheu and McCurdy keep track of duration up to and including  , which

53Duration dependence has also been related to stochastic, rational bubbles, see e.g. McQueen and Thorley (1994) who have

formally proven that a testable implication of rational bubbles is that high returns will exhibit negative duration dependence.
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becomes an estimable parameter subject to  ≥ max{} + 1. At this point, the TVTPs driving the
two-state Markov chain are parameterized using a logistic function to ensure that the probabilities are

in (0 1). Using  and  to index realizations of states and duration, the transition probabilities are, for

 = 0 1 and parameters 1, 2:
54

Pr( = |−1 = (−1) = ) =

⎧⎨⎩
exp(1+2)

1+exp(1+2)
 ≤ 

exp(1+2)

1+exp(1+2)
  

.

That is, duration is allowed to affect the transition probabilities up to  periods, after which the transition

probabilities are constant. Given state , 2  0 ( 0) implies that Pr( = |−1 = (−1) = )

declines (increases) or, equivalently, that the hazard function 1 − Pr( = |−1 = (−1) = )–the

conditional probability of switching off state  = 0 1 given the duration –increases (decreases): the

longer the market stays in state , the lower (higher) is the probability of an additional period of stay

in that regime. 2 = 0 implies no duration dependence, i.e., the hazard function is independent of past

duration. One key payoff is then that one is allowed to investigate the dynamic behavior of conditional

mean and variance within each state and not only as determined by switching among states. This may be

taken as an appealing alternative to the need to specify and work with multi-state models in which  often

needs to be set to equal 3 or even 4 (see e.g., Guidolin and Timmermann, 2006a,b, Ryden et al., 1998, and

Kim, Nelson, and Startz, 1998). This also implies that there is a clear trade-off between specifying simple

first-order Markov chain dynamics but resorting to a relatively large value of  and modeling duration

dependence for simpler, two-state Markov processes.55 Because in (10) duration effects in the conditional

mean and variance are measured by the coefficients (0+1) and (0+ 1), this model is also capable

of capturing complicated correlation patterns between the conditional mean and variance.

Another important result in Maheu and McCurdy’s paper–that at least to some extent echoes the

intuition of some insights in Dueker (1997)–is that their model captures ARCH effects, in the sense

that their specification tests reveal that any conditional heteroskedasticity left by a baseline Durland and

McCurdy’s (1994) logistic parameterization of the duration model is fully explained by the endogenous

duration variable in the conditional variance function. Obviously, this further complicates the complex

task of selecting the appropriate components to be appended to a simple, plain vanilla two-state MSM–

basically, among MS ARCH or GARCH, specifying a relatively large number of regimes, selecting a non-

normal, fat-tailed parametric density for return innovations, and a TVTP matrix, possibly with complex

duration-dependence effects–in order to forecast the data, because it shows that a sufficiently flexible

TVTP model that interacts with the conditional variance function may relieve the modeler of a need to

54Maheu and McCurdy have also investigated a few alternative specifications of these functional forms mapping durations

into transition probabilities, for instance

(1 + 2)
2

1 + (1 + 2)
2


exp(1 + 2 ln)

1 + exp(1 + 2 ln )
 sin(1 + 2)

2


In most cases the logistic function gave the best log likelihood value. Moreover, all functional forms suggest negative duration

dependence in the transition matrix.
55Interestingly, filtering and smoothing can be performed by conveniently re-writing the duration dependent MSM as a

standard MSM driven by a first-order Markov chain, and expanding the number of regimes as required, see the Appendix in

Maheu and McCurdy (2000). This shows that what matters in fitting and forecasting the data is the structure imposed on

the regimes, not only (or even primarily) their number.
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worry about MS GARCH effects altogether. In fact, Maheu and McCurdy (2000b) have applied similar

MS duration dependence frameworks to show that they may actually improve also the fit to the volatility

process for high frequency (weekly, exchange rate) data. As in the standard first-order MSMs that involve

second moments, this structure is useful for capturing shifts and turning points in volatility that are difficult

to accommodate with the simply ARMA structure typical of plain vanilla GARCH. However, unlike the

standard model, a duration-dependent Markov switching (DDMS) is particularly suited to capture the

persistence associated with volatility clustering because the duration variable provides a parsimonious

parameterization of potential high-order dependence. Moreover, persistence in volatility levels is time-

varying in a DDMS model. In practice, even though Maheu and McCurdy (2000b) simply consider a

two-state model, it acts like a large -state stochastic volatility model in that it can capture a broad

range of volatility levels through conditioning on duration in the conditional variance.56 An application

to a 1974-1998 sample of weekly log-exchange rate changes reveals that duration-dependent mixing adds

significantly to the in-sample fit of the volatility functions for all currencies under examination.57 Maheu

and McCurdy (2002) have further extended the evidence in favor of DDMS by applying to model to the

time series dynamics of realized (foreign exchange) volatility to investigate the importance of time-varying

parameters and time-varying persistence. They find strong statistical evidence of regime changes in both

the conditional mean and conditional variance of realized volatility, estimated from five-minute spaced

mid-bid/ask quotes. In particular, one of the states captures periods of high volatility in exchange rates:

switches from the normal state to that state are characterized by an abrupt increase in the level of realized

volatility combined with a large increase in the variance of realized volatility; this state is not initially

persistent unless the high levels of volatility continue for several periods, in which case the state becomes

persistent. Moreover, Maheu and McCurdy’s DDMS model provides superior out-of-sample forecasts.

Estimates of Maheu and McCurdy’s (2000a) two-state duration-dependent models on monthly, 1834-

1995 U.S. stock returns classify the states into bull and bear markets. The bull market displays high

returns coupled with low volatility, but the bear market has a low return and high volatility. The memory

parameter,  , of the Markov chain is estimated between 12 and 20, depending on the specific version of (10)

(e.g., with duration effects in the conditional mean only, and with ARCH effects included or not). That

is, duration is significant in affecting the transition probabilities for just over a year. The empirical hazard

functions are decreasing (which implies a negative duration dependence) in both the bull and bear market

states. For example, when the economy is in a bull market, the probability of staying in the bull state

actually increases with duration. Although the probability of staying in the bear state also increases with

duration, the probability of staying in this state is less than 1/2 until after four consecutive occurrences of

the bear regime. That is, the low return, high-volatility state is not persistent until after we have stayed

in it for several months. On average, the stock market spends 90% of the time in a bull market and only

56Technically, DDMSMs are examples of semi-Markov processes because the times at which transitions occur are governed

by a separate probability distribution, in this case the duration function. The hazard function defined by the duration

parameterization implicitly characterizes the holding time (and waiting time) distributions.
57Although MS ARCH and DDMS are not nested, the difference in the log-likelihood values suggests that the DDMS model

dominates the a simple first-order MS-ARCH model; furthermore, duration effects in the state-specific conditional variances

are highly significant. Using density forecast tests (see Section 8.1 for details), they obtain that while the MS ARCH model

is rejected, the DDMS model is not as strongly rejected in the case of British pound data.
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10% in a bear market. Conditional mean estimates stress that the best market gains come at the start of

a bull market. That is, returns in the bull market state are a decreasing function of duration. Volatility in

the bear market state, however, is an increasing function of duration. For instance, during the first period

in the high-return state, the conditional return is 2.8%, but if the bull state persists for 16 periods, the

conditional return drops to 0.7%. Thus, the bull market delivers decreasing positive returns.58

A paper that has extended Gray’s (1996) seminal work on MS GARCH time-heterogeneous models for

short-term interest rates to a multivariate dimension is Ang and Bekaert (2002b). They provide an analysis

of the econometric properties of MSVAR(1) models, both with constant and TVTPs, for short-term interest

rates in the U.S., Germany, and the U.K. For instance, in the special case in which only short-term rates

are modeled, their baseline (restricted) MSVAR(1) is:

y+1 = μ+1
+A+1y +Σ+1²+1 ²+1 ∼ (0 I3), Σ+1Σ
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where y ≡ [   ]0 and  is the short-term rate for country . When +1 = +1
= +1 = 0,

the model becomes homoskedastic within regime, otherwise this is a version of a square root interest rate

process with regime shifts, that extends Gray’s model.59 The process  follows a Markov chain with 

regimes and with transition probabilities that may be logistic functions of lagged endogenous variables,

Pr(+1 = | =  ÿ) =
exp(0 + γ0y)

1 + exp(0 + γ0y)


with ÿ ≡ [y0 y1, ..., y]
0. As already seen, Ang and Bekaert assume the existence of a two-state MS

variable in every country driving the entire term structure. Using monthly observations on 3-month short

rates and 5-year rates over a 1972-1996 sample, Ang and Bekaert find that the MSMs all produce one

regime with a unit root and lower conditional volatility and a second regime that is stationary with higher

conditional volatility. This type of estimation is found in univariate, multi-country, and term spread models.

Economically, the first regime corresponds to normal periods where monetary policy smoothing makes

interest rates behave like a RW (see Mankiw and Miron, 1986). When extraordinary shocks occur, interest

rates are driven up, volatility becomes higher, and interest rates become “more mean reverting”, which

is captured by the second regime. For some of their models, the null hypothesis of constant probabilities

cannot be rejected, which casts some doubts on the true need to specify TVTPs in rich MSMs that also

include conditional heteroskedasticity components. In the normal RW regime, U.S. shocks propagate to

58Maheu and McCurdy have also estimated a duration-dependent MSM in which the latent process for the conditional mean

is decoupled from the latent process for the variance, i.e., in which there are two independent Markov chains, one for the

conditional mean and the other for the conditional variance. Both Markov chains allow for duration dependence. They find

a similar negative duration-dependence structure in the conditional variance and its associated transition matrix. Differently

from earlier papers (McQueen and Thorley, 1994), Maheu and MacCurdy’s findings do not support a bubble explanation for

duration dependence, because there is a negative relationship between duration and conditional mean in the bull market.
59When the multivariate model is expanded to fit data on both short-term rates and terms spreads, then y ≡ [ 

    ]0 where  ≡ 
5
 −  is the long-short rate spread for country .
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Germany and the U.K., whereas in the second regime U.S. short rates Granger-cause only U.K. short

rates. The regime classification implied by the MSVAR models turns out to be closely related to economic

business cycles and the filtered regime probabilities are good short-horizon predictors of the business cycle

in the United States. Ang and Bekaert also use their RCM presented in Section 2.3 to find that multi-

country models produce sharper regime classification for the U.K. and Germany at the expense of the U.S.,

for which the RCM declines vs. the univariate exercise. This means that a multivariate MSM in some way

“sacrifices” its power to fit U.S. data to instrumentally use such U.S. data to improve the fit of British and

German interest rates. In particular, there is a large improvement in regime classification for the U.K. by

adding U.S. information. Including term spread information leads to lower RCM statistics for all countries.

8. Can MSMs Forecast Financial Time Series?

In applied work, all dynamic time series models are as good as their forecasting performance is. This is

especially true in the case of nonlinear models, such as MSMs. In many financial applications, such as the

pricing and hedging of complex portfolios of securities and risk management, what matters the most is the

evolution of asset prices in the future, not in the past. In general, there is no guarantee that a model that

fits historical data well will also perform well OOS due to at least three reasons. First, the extensive search

for more complicated models using the same (or similar) data set(s) may suffer from a so-called “data-

snooping bias”, as pointed out by Lo and MacKinlay (1989) and White (2000). A more complicated model

can always fit a given data set better than simpler models, but it may ove-rfit some idiosyncratic features

of the data without capturing the true DGP. OOS evaluation will alleviate, if not eliminate completely,

such data-snooping bias. Second, large, possibly over-parameterized models contain an excessive number

of parameters and inevitably exhibit excessive sampling variation in parameter estimates, which in turn

may adversely affect their OOS performance. Third, a model that fits a historical data set well may not

forecast the future well because of unforeseen structural changes in the DGP (e.g., Boero and Marrocu,

2002, and Dacco and Satchell, 1999). In the case of MSMs, this may derive from the number of regimes

being misspecified.60 Therefore, from both a practical and a theoretical standpoint, in-sample analysis

alone is not adequate, and it is necessary to examine the OOS predictive ability of nonlinear models.

As a matter of fact, the OOS predictive performance–in several dimensions, as we shall see below–

of MSMs has been the subject of intense scrutiny. Unfortunately, and especially in financial economics,

there does not seem to exist a clear consensus on whether or not–and in the negative, why–MSMs

may produce satisfactory in-sample fits and at the same time poor OOS forecasts. It has sometimes

been reported that nonlinear models provide a richer understanding of the in-sample dynamics, but that

they could also be much less useful for prediction purposes (see, e.g., Brooks, 1997, and Clements and

Hendry, 1998). Yet, the literature abounds of cases in which MSMs outperform single-state benchmarks

in OOS tests. For instance, Engel and Hamilton (1990) report a strong OOS forecasting performance

(in terms of MSFE) for their MSIH models, even when compared with RWs that have traditionally held

their ground in the empirical exchange rate literature. Kanas (2003) evaluates the relative forecasting

60Clements, Franses, and Swanson (2004) evaluate these arguments against and in favor of nonlinear models and conclude

that, even though the evidence in favor of forecasting using nonlinear models is sparse, there is reason to be optimistic.
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performance of parametric (regime switching models in which the probability of collapse of a bubble

depends on the size of the bubble so that switches in regimes will be predictable and MSMs) and non-

parametric (nearest-neighbour and artificial neural network techniques) non-linear models–implemented

as empirical extensions of standard present value models–in predicting out-of-sample stock returns. Using

annual US real stock returns, he finds that all models perform in roughly comparable terms, but that the

MSM encompasses all its competitors. Another paper that reports encouraging results for MSMs–in a

much more complex multivariate framework–is Ang and Bekaert (2002b) who stress that when it comes

to MSVAR models, performing extensive forecasting exercises is very important because the estimation

may suffer from a peso problem, in that the fraction of observations drawn from one particular regime in

a sample may not correspond to the population frequency of that regime. In that case, the estimation is

biased. In fact, simple VARMA models may generally constitute good approximations to any covariance

stationary process and hence may outperform MSVAR models in small samples if the parameter estimates

of the MS models are severely biased and inefficient. In this sense, even if an MSVAR were to correctly

capture the unknown DGP, peso problems always make it possible for simpler and misspecified VARMA

models to forecast more accurately than MSVARs over short samples, as in Ang and Bekaert (2002b). As

we have seen, to overcome these problems, Ang and Bekaert extend their effective sample size through two

channels. First, they investigate multi-country systems of interest rates, including U.S., U.K., and German

interest rates in their MSVAR and therefore allowing the possibility that short rates in the U.S. Granger-

cause rates in other countries (or vice versa) and that Granger causality may be regime dependent. Second,

they exploit the information in the term structure by adding term spreads to their models.61 Ang and

Bekaert’s discussion of MSVARs is also important because they entertain the idea that multivariate MS

modeling exercises may provide more accurate predictions univariate ones. However, as I have illustrated

above, deploying multivariate MSMs does open a range of problems on its own, so that the net benefit

from such a modeling strategy remains not obvious, at least in general.

Using monthly data on 3-month and 5-year rates of zero-coupon bonds from the U.S., the U.K., and

Germany, Ang and Bekaert find that whereas MSMs do not always outperform single-regime models in

terms of in-sample diagnostics, they forecast very well OOS. Moreover, multivariate MSMs perform sys-

tematically better than univariate models in terms of both RCMs and forecasting: the best forecasting

model is invariably a multivariate MS model, incorporating information from the term structure in other

countries. This is an important aspect that also explains the relatively disappointing univariate results

in Gray (1996). Ang and Bekaert’s forecast methodology consists of estimating only using the in-sample

period and forecasting without updating the parameters in the OOS. They employ two point statistics

for comparison of unconditional forecast errors, the root MSFE, and the mean absolute deviation (MAD).

The predicted moments are the level of interest rates, their squares (to mimic volatility forecasting), and

the cross-moments involving short-term rates and spreads. Interestingly, MSMs under TVTPs forecast

better than constant probability counterparts, even though they perform very poorly at matching sample

61Under the null of the expectations hypothesis (EH), spreads should forecast future short rates, so the potential for improved

estimation and prediction is obvious. Moreover, the spread may be informative about the underlying regimes because it is

well known that the spread increases during expansions and correlations between the spread and the short rate are generally

higher (less negative) during recessions than in expansions (see e.g., Estrella and Mishkin, 1997).
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moments. Unfortunately, Ang and Bekaert’s simulations stop short from clarifying the sources of the supe-

rior forecasting performance from TVTPs. Finally, their finding that better RCMs tend to correlate with

superior OOS accuracy is also interesting as it would seem to imply that better forecasting scores may

come from superior ability to predict turning points (regime shifts), even though it must be noted that a

low RCM does not necessarily imply that the switches are correctly predicted–only that they are sharp,

with a small frequency of periods of uncertainty on the nature of regimes.

Also Guidolin and Ono (2006) have performed systematic multivariate comparisons of single-state VARs

vs. MSVARs with reference to U.S. equity and bond returns, when standard macroeconomic aggregates are

admitted as predictors.62 They report that a relatively parsimonious four-state MSIH-VAR(1) model can

be helpful in forecasting, in the sense that for many relevant variables (especially equity-related ones, stock

returns and dividend yields) its recursive OOS performance is superior to a simpler (and nested) VAR(1),

as well as competing MSMs and simpler benchmarks, such as a multivariate RW with drift. Interestingly,

the performance differential is statistically significant when formal tests of superior predictive accuracy

are applied, especially at intermediate and long horizons. This is important because many papers have

warned that while in-sample tests generally show that a large number of macroeconomic variables appear

to predict future stock returns in linear models, OOS tests of return predictability that protect against

data mining typically return disappointing results, see e.g., Rapach and Wohar (2005).

A related paper is Henkel, Martin and Nardari (2011, HMN) who use Bayesian MSVAR methods to

capture time-variation in stock market return predictability from the dividend yield and commonly used

term structure variables (the short rate, the slope of the term structure, and the default premium) in the

G7 countries. Their key finding is that standard predictors in the finance literature are effective almost

exclusively during recessions. For instance, the cumulative proportion of recession months in the U.S.

data and the adjusted 2 from one-month-ahead predictive OLS regression using the contemporaneously

available sample, reveal that the adjusted 2 rises and falls with the proportion of recession months in the

sample that had been available to investors in real time. In the U.S., over the 1953-2007 period, the average

2 is about 15% during recessions and less than 1% in expansions; in the G7 no country has 2 significantly

different from zero during expansions, and no individual predictor is more important in expansions than

in recessions. The underlying economic mechanism is that risk premia are countercyclical, and that the

time series behavior of risk premia lets some structure sip into realized excess return predictability. If

investors demand higher risk premia in bad times, and volatility is higher in bad times as well, then overall

adjustments to discount rates per unit of change in economic state are larger in bad times. HMN also draw

intriguing (but ex-post) implications of the cumulative fraction of recessions characterizing the data and

the development of the predictability debate in the literature, in which researchers would have discovered

and argued in favor of predictability after recession periods and would vice versa emphasized the validity

of the RW theory of efficient prices after protracted economic expansions.

Guidolin, Hyde, McMillan, and Ono (2009, GHMO) have recently returned to these issues, but in

62Using linear regression models, numerous studies have found that selected macroeconomic variables can predict US asset

returns, although only in-sample: see e.g., Balvers, Cosimano, and Mcdonald (1990, industrial production and real GNP for

stock returns), Campbell (1987, term structure variables for excess stock and bond returns), Cutler, Poterba, and Summers

(1989, industrial production for stock returns), Fama and French (1989, 1993, term structure, dividend yield and default

spread for stock and bond returns), Fama and Schwert (1977, inflation for real stock returns).
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a simpler, univariate predictive regression framework. They report mixed results for the performance

of (simple) MSMs, which depend on the data used in their experiment. GHMO perform a systematic

evaluation of whether, when, and where a wide class of nonlinear econometric models that also includes

a few plain-vanilla MSMs may provide accurate forecasts of monthly financial returns, in particular stock

and bond returns in G7 countries.63 Although their framework is based on predictive regressions (as in

Acharya et al., 2010, as opposed to VARs in which all variables are endogenous and forecastable), similarly

to Guidolin and Ono (2006) they also employ as predictors a standard set of macroeconomic variables:

changes in short-term interest rates, the term spread, the dividend yield, the inflation rate, the rate of

growth of industrial production, the change in the unemployment rate, the rate of growth in oil prices, and

the change in a weighted log-effective exchange rate vs. the dollar. First, GHMO report that U.S. and U.K.

(and, to a lesser extent, Canadian) asset returns appear to be “special” in the sense that good predictive

performances for returns in these markets can be obtained only from nonlinear models, especially (but

not exclusively) MSMs. Although occasionally also prediction of stock and bond returns from other G7

countries are improved by nonlinear effects (but not of the MSM type), data from France, Germany, and

Italy tend to yield good predictions based on simple linear benchmarks, including a homoskedastic RW.

Second, the U.S. and the U.K. are the only two countries for which GHMO detect support of statistically

significant differences in the recursive OOS performance of different models.64 Third, although a few

patterns could be found, the role of nonlinear models does not depend on any particular part of their

sample (1979-2006). Of course, it is tempting to observe that it would be interesting to re-check their

empirical findings using data from the 2008-2009 Great Financial Crisis.

GHMO’s intuition for the country-specific nature of their findings lies in the heterogeneous pricing

frameworks that may generate international stock and bond returns in the presence of international market

segmentation: If a researcher estimates simple two-state MSMs, their forecasting performance is likely to

get worse as one moves away from the prediction of returns on portfolios that are mostly driven by global

factors and towards portfolios that are driven by both global and multiple local factors. The intuition

is that a nonlinear model helps forecasting asset returns if it helps identifying and predicting turning

points and regime shifts in the process followed by the factors that are compounded into realized asset

returns. However, when many alternative factors are priced and most factors are characterized by a

different dynamics of regime shifts, if a nonlinear framework is too simple in the sense of falsely imposing

 = 2, then the performance of such model will get increasingly poor as the number of independent,

priced factors grows. In GHMO’s case, the presumption is that while U.S. returns are driven by one global

latent factor, in many other countries a number of regional or local factors are at work that quickly weaken

the forecasting performance of a simple two-regime model.65 To verify their intuition, GHMO perform a

63Besides MS regressions, GHMO consider threshold predictive regressions, smooth transition predictive regressions, and

GARCH-in-mean predictive regressions.
64This is done using a variety of methods, from naive Diebold and Mariano (1995) tests to more sophisticated van Dijk

and Franses (2003) tests that overweight the importance of accurately predicting in the tails, to the new conditional testing

framework proposed by Giacomini and White (2006). For most of all these tests, they find that many non-linear models–

among them MS predicting regressions–outperform most other models in OOS experiments.
65For instance, German, French, and Italian asset returns may be influenced by European (e.g., driven by common monetary

policy influences) factors, besides global ones. In the case of Japan, one may think of a geo-political, regional Asian factor.
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small-scale simulation experiment in which three asset markets are described by a factor model. The first

market is exclusively driven by a global factor  which follows a two-state model in which both mean and

variance are regime-dependent and driven by the Markov state 
 . A second market is not only driven by

 but also by a regional factor  ; also 

 follows a two-state MS process with regime-dependent mean

and variance; the corresponding Markov chain variable is 
 . Finally, the third market is affected both

by global and regional factors, and also by a local factor  driven by another two-state variable, 

 . The

three Markov state variables 
  

  and 

 are assumed to be independent. Using U.S., U.K., and Italian

stock return data to estimate parameters, worldwide and regional bear and bull states are identified; Italian

returns are instead mostly driven by a local factor. GHMO simulate 1,000 336-observation long times series

of returns from the estimated model and in correspondence to each simulation, they recursively estimate

and predict subsequent simulated returns using a two-state MSIH to be compared to the RW and to an

AR model. The implied distribution over the 1,000 simulation trials of ratios of forecasting performance

measures (e.g., RMSFE) of the RW and the AR model over the MSIH measure, reveal that results for

simulated U.S. returns are overwhelmingly favorable to the two-state MSIH, they are mixed in the case

of simulated U.K. returns, and they reject the usefulness of the MS in the case of the simulated Italian

returns. This perfectly fits the overall intuition: Italian stock returns are generated by a very complicated

nonlinear model in which in principle eight different regimes ought to be specified and estimated; as a result

a basic two-regime model ends up losing to even the naivest of the prediction benchmarks. Although their

intuition may be valuable, GHMO’s results would imply a larger scope for MS factor models in applied

forecasting in finance, which–as we have seen–has been recently pursued by Baele et al. (2010). More

generally, the fact remains that for important stock and bond markets such as the U.S., the British, and to

some extent the Canadian one, GHMO overturn a number of presumptions and conjectures in the applied

finance literature, showing that nonlinear time series models can produce accurate OOS performances.

Kole and van Dijk (2011) is another recent, interesting contribution because it performs a systematic

comparison between rule-based and parametric MSM method to identify and predict bull and bear states

in financial markets.66 The rule-based methods purely reflect the direction of the market–for instance, the

algorithmic methods of Pagan and Sossounov (2003) and Lunde and Timmermann (2004)–while MSMs

take both signs and volatility of returns into account.67 Kole and van Dijk find that for a weekly 1980-2009

sample of US index returns data, a comparison of the identification resulting from the different methods

shows that the two rules-based approaches are largely similar with integrated absolute difference close to

zero. When it comes to predicting bullish and bearish periods, differences between the methods are larger.

They evaluate several investment strategies (e.g., binary ones in which if a model predicts a bull market,

the investor goes long one futures contract; if it is a bear market, she goes short one futures contract). The

66Kole and van Dijk’s MSMs are based on shifted lognormal distributions that impose ex-ante a meaning on the regimes

based on the imposition of upper and lower bounds: this ensures that a crash regime can only imply mean losses and a boom

regime only implies gains.
67The rule-based methods are non-parametric methods that first determine local peaks and troughs in a time series of asset

prices, and then apply given rules to select those peaks and troughs that constitute genuine turning points between bull and

bear markets. The main rule in the approach of Pagan and Sossounov (2003) is the requirement of a minimum length of bull

and bear periods. By contrast, Lunde and Timmermann (2004) impose a minimum on the price change since the last peak or

trough for a new trough or peak to qualify as a turning point.
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performance of the Lunde-Timmermann method stands out, whereas the differences between the others

methods are smaller. Interestingly, these results emphasize that quickly picking up bull-bear changes is

crucial for successfully predicting bull and bear markets: bull and bear periods are highly persistent, so the

sooner a switch is identified, the larger the gains; all methods detect switches with some delay, but MSMs

are the fastest. However, they occasionally do not provide any warnings against small negative returns,

which is why they do not always outperform the benchmarks. In fact, while the rule-based approach

tends to produce relatively long periods of bull and bear markets, MSMs exhibit periods when bull (bear)

markets dominate with short interruptions of bear (bull) markets. Moreover, because Kole and van Dijk’s

link the identification of the regimes to both trends and volatility in prices while rule-based rules only

reflect trends, the results imply that focussing purely on the recent tendency leads to better results than

combining it with the volatility of returns. Clearly, it would be then important to test the robustness of

these results to the implementation of MSMs that either link regimes only to conditional mean parameters

or–even better–to MSMs in which separate Markov state drive conditional mean vs. variance parameters

(for instance, as in Lettau, Ludvigson, and Wachter, 2008).

A different but equally interesting strand of the literature has instead examined the performance of

MSMs at predicting volatilities, which are key inputs in a number of risk management and derivative

pricing applications. Although its general findings are not easy to summarize as they seem to strongly

depend on the specific asset or sample period under examination, many of the papers reviewed above on MS

GARCH generally report OOS prediction results that tend to be favorable to MSMs. For instance, Haas,

Mittnik and Paolella (2004) have re-examined the forecasting performance of their MS-GARCH(1,1) model

against a range of alternative benchmarks popular in the literature, including both standard GARCH(1,1)

models as well as GARCH models with non-standard innovations. On their daily NASDAQ return data,

and similarly to Klaassen (2002), HMP report that the OOS performance of the mixture GARCH is

superior to both simpler MSMs (like a plain MSIH) and MS-GARCH models. The worst performer is

the standard (one-component) normal-GARCH model and this result is robust to extending this model to

display unconditional innovations drawn from a t-Student.

Also Hwang, Satchell, and Valls-Pereira (2007) test forecast accuracy of their MS SV models, after

approximating actual variance with alternative nonparametric models. One commonly used method to

test the performance of a volatility predictor is to regress realized volatility (RZV) computed using high-

frequency (30-minute) squared returns on the daily volatility prediction function that is being tested,

+1 = 0 + 1+1 + ,

where +1 is the volatility forecast. As explained in the realized volatility literature, the choice of 

as the dependent variable is justified as it provides a robust estimator of latent volatility. If a volatility

predictor is unbiased, we expect 0 = 0 and 1 = 1. HSVP report that none of the volatility predictions

tested–which include SV, several forms of MS SV, a simple GARCH(1,1), and S&P 500 index option

implied volatilities– satisfy these restrictions, in the sense that chi-square tests of the restrictions lead

to rejections. However, the MS SV model yields the smallest 2 statistic while SV and GARCH yield

the lowest estimates of 1 and their 
2 coefficients are smaller than those of other models. Moreover, a

nonparametric sign test shows that MS SV volatilities are not significantly different from the  , while
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all other volatility predictions are significantly different from RZV in both sign and the Wilcoxon signed

rank tests. Unfortunately, HSVP refrain from conducting genuine OOS tests of the ability of MS SV models

to forecast subsequent realized volatility.

A topic that has recently drawn the interest of applied researchers is the interaction between forecasting

with MSMs and optimal combination schemes of different forecasts. An expanding literature on forecast

combinations has found empirically that combining forecasts from different models tends to improve upon

the performance of the best individual models (see e.g., the review in Timmermann, 2006). It is simple to

understand why this may occur: In most applications, forecasting models provide at best simple approxi-

mations to DGPs that are likely to be far more complicated than assumed by the econometric specification

at hand. In this context it is unlikely that an individual model forecast encompasses all other models at all

points in time. One type of misspecification that is likely to be particularly relevant empirically is related

to time-variations in the conditional relationship between the target variable and the underlying predictor

variables. It is quite possible that models that on average (i.e., unconditionally) generate superior predic-

tions in some states of the world may be slower to adapt than other models that generate higher expected

loss on average. Similarly, if the parameters of the underlying DGP are subject to transitory shifts, it is

natural to expect that there can be gains from combining forecasts from different econometric specifica-

tions and that the optimal weights may be both horizon-specific and time-varying as the underlying state

changes. Elliott and Timmermann (2004) have argued that a combination scheme that puts more weight

on adaptive (e.g., MSMs) models around “breaks” and loads more heavily on stable models away from

periods of instability may be expected to give better results than either of the two alone. For instance,

Altavilla and De Grauwe (2005) use a three-state MSVAR-VECM model to capture regime shifts in the

relationship between the euro-dollar exchange rate and its underlying fundamentals (relative GDP, rela-

tive inflation rate, and interest rate differential), and compare the performance of the RW, VAR, and the

MSVAR-VECM at producing out-of-sample forecasts. They find that MS yields more accurate forecasts

when the exchange rate falls in the non-fundamental regime whereas the RW is more effective when the

exchange rate falls in the regime dominated by the effect of fundamentals. This means that the existence

of structural shifts of unknown form/timing makes it likely not that some nonlinear framework able to

capture such features would manage to produce the best OOS performance, but that on the contrary pool-

ing forecasts may be the winning strategy. For instance, Deutsch, Granger and Terasvirta (1994) consider

switching regressions where the regime is determined by some function of lagged forecast errors. They use

rolling regressions to estimate the parameters underlying the combination equations and find that using

time-varying combinations leads to MSFE reductions. Elliott and Timmermann (2005) have used a MSM

framework where the predicted variable is driven by factors that also affect the prediction signals observed

by the decision maker. Both the mean and variance of the factors can vary across different regimes. They

find evidence of time-variations in the optimal forecast combination weights under the most common loss

functions adopted in the literature, namely quadratic (symmetric), linex and linlin loss. Guidolin and Na

(2008) have shown that in a large multivariate forecasting problem similar to Guidolin and Ono’s (2006),

modeling MS dynamics may lead to superior forecasting performance through forecast combinations and

that these gains in prediction accuracy are statistically significant.

With reference to monthly U.S. short-term yields, Guidolin and Timmermann (2009) use MSMs to
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capture the existence of common, latent factors driving both the stochastic process of a variable of interest

(the 1-month T-bill spot rate) and of a related market variable (the 1-month forward rate implied by

the term structure of T-bills) that can be construed as a predictor of the target variable. Even though

they admit that a MSM only provides a reduced form for the underlying joint process, its flexibility

allows a researcher to capture the two features most likely to explain the success of forecast combinations:

the presence of time-variations in the underlying model parameters and the potential difference between

the conditional (short-term) and unconditional (long-term) process driving the variables of interest. In

particular, in finance it is well known that the EH, when coupled with the standard assumption that

markets form rational expectations (RE), imposes tight restrictions on the relationship between spot and

forward interest rate in the sense that the forward ought to represent the optimal forecast for future spot

rates (apart from terms reflecting a risk premium). In forecasting language, this is a strikingly stringent

condition: EH and RE implies that no feasible forecast combination ought to systematically outperform

forward rates as predictors of future spot rates. Guidolin and Timmermann examine whether imposing

theory-driven restrictions may improve the forecasting performance, when such restrictions are allowed to

hold in a time-varying fashion.

Using data on 1-month U.S. interest rates over the period 1950-2003, GT find that four regimes are

required to provide an adequate description of the joint density of spot and forward rates. The regimes

can be interpreted in terms of a low stable interest rate state, one intermediate-rate stable state, one state

with high interest rates, and a turbulent regime of high volatility. The choice of the optimal combination

weights solves a problem where both the presence of regime shifts and the difference between conditional

and unconditional distributions plays a major role. Under a few alternative loss functions, GT report

evidence that the optimal combination weights should strongly depend on the underlying regime. The

expected loss decline from taking advantage of the opportunity to combine forecasts is high across regimes

and reaches levels in excess of 50% (of the highest expected loss) for long forecast horizons, which is

a remarkable finding. Moreover, because in their framework the combination weights are time-varying

and the optimality of forward rates as predictors of future spot rates implies they should receive a unit

weight (with zero weights attached to other variables in the current information set), they conclude that

the EH appears to hold only in certain periods (regimes), when forecasts should be entirely based on

this benchmark. However, most of the time, deviations from the EH appear and these are exploitable in

order to build better forecasts. Interestingly, this type of findings seems to contradict the classical result

that simple averaging outperforms estimated combination weights that reflect the covariance structure of

forecast errors and hence efficiently incorporate the available information.

8.1. Density Forecasts and Risk Management Applications

As discussed by van Dijk and Franses (2003), most nonlinear models–among them, certainly MSMs–

are sufficiently stylized to offer a clean, easy-to-understand trade-off: they are often good frameworks to

forecast the predictive density from which future observations will be drawn; however, unless the nonlinear

model is unusually good at pinning down the exact (functional) “shape” of the nonlinearity–in the case

of MSMs, at filtering and predicting regime shifts–it is often naive to expect much accuracy in point
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predictions. Because MSMs are simply (Gaussian) mixture distributions with finite memory (as captured

by the Markov chain), most of their power may actually reside in the ability to forecast the shape and the

dynamics of the tails of the predictive densities, not really the location (mean or median) of such density.

In fact, van Dijk and Franses conjecture that as researchers move their focus away from point forecasts and

towards emphasizing the importance of accurately predicting the tails, nonlinear models are bound to offer

increasingly appreciable performances. This fairly intuitive point has had two implications in the applied

finance literature. First, starting from the late 1990s, the focus on testing the predictive performance of

MSMs has moved away from point forecasts and towards density forecasts. Second, because most economic-

based loss functions depend on a range of features (e.g., moments) of the predictive density–usually not

only on its mean (think of simple mean-variance portfolio choice problems to visualize this claim)–the

literature has increasingly translated the assessment of the performance of MSMs from a purely statistical

domain to an economic one, in which specific (yet, stylized and manageable) decision problems are solved

both under single-state and MSMs, to compare in OOS experiments their average payoffs (realized loss).

In this subsection I survey some of the work on forecasting density functions. Guidolin (2011) is instead

dedicated to understanding the performance of MSMs in asset allocation problems.

In recent developments of time series econometrics, there is a growing interest in OOS probability

distribution forecasts and their evaluation, motivated in the context of decision-making under uncertainty.

Density forecasts are important not only for statistical evaluation, but also directly relevant to many

financial applications. For example, the booming industry of financial risk management is dedicated to

providing density forecasts of portfolio returns, and to tracking certain aspects of distributions, such as

value at risk (VaR), that quantify the risk exposure of a portfolio. One of the most important issues in

density forecasting is how to evaluate the quality of a forecast: Suboptimal density forecasts will have

real adverse impact in practice. For example, an excessive forecast of VaR would force risk managers

and financial institutions to hold too much capital, imposing an unnecessary cost. Among many others,

Granger and Pesaran (2000) have shown that accurate density forecasts are essential for decision making

under uncertainty when the forecaster’s objective function is asymmetric and the underlying process is

non-Gaussian. In particular, if a density forecast coincides with the true conditional density of the DGP,

then it will be preferred by all forecast users regardless of their loss functions (e.g., risk preferences).

Thus testing the optimality of a forecast boils down to checking whether the density forecast model can

capture the true DGP. To my knowledge, one of first papers to provide a comprehensive empirical analysis

of the OOS density prediction performance of MSMs in finance is Hong, Li, and Zhao (2004, HLZ). HLZ

consider a wide variety of popular short-term (spot) interest rate models–including single-factor diffusions,

GARCH, MSMs, and jump-diffusion models–whose density forecast performance was previously largely

unknown. Importantly, although some existing studies (e.g., Gray, 1996, Bali and Wu, 2006, Duffee, 2002)

have conducted OOS analysis of interest rate models, what distinguishes HLZ’s contribution is that they

focus on forecasting the conditional density of future interest rates, rather than just their conditional mean.

Evaluating density forecasts, however, is nontrivial because the density function is not observable, even

ex post. Relative to point forecasts, there are fewer statistical tools for evaluating density predictions. In

a pioneering contribution, Diebold, Gunther, and Tay (1998) have shown how to evaluate density forecasts

by examining the probability integral transforms of the residuals with respect to the empirical conditional
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density, defined below. Such a transformed series is often called the “generalized residuals” of the forecast

model. Diebold et al. (1998) prove that these generalized residuals ought to be IID  [0 1] if the density

forecast model correctly captures the dynamics of the process: Any departure from IID  [0 1] is evidence of

misspecification.68 Intuitively, the  [0 1] property characterizes the correct specification of the stationary

distribution of the data implied by a given model, and the IID property characterizes correct dynamic

specification. When these tests are applied to MSMs, the problem is compounded by the fact that, as

we have already discussed in Section 2.3, in a MS framework it is impossible to directly evaluate the

distributional properties of the residuals because, even if the MSM were correctly specified, standardized

residuals would not be identically distributed. To circumvent this, it is common (see e.g., Guidolin and

Ono, 2006, and Haas et al., 2004) to transform the residuals by computing the corresponding value of the

empirical conditional CDF, that is, ̂+1 ≡  (û+1|F), where û+1 ≡ [1+1 2+1 ... +1]
0 collects the 

regime-specific residuals from a MSM. To test the IID uniform properties that should hold under the null

of a correctly specified model, it has been common to follow Vlaar and Palm (1997) and use the Pearson

goodness-of-fit test statistic,

2 =

X
=1

( − ∗ )
2

∗

→ 2−1,

where  is the number of (equally spaced) intervals (or bins) into which the researcher groups the trans-

formed residuals,  is the number of observations in interval , and ∗ is the expected number of ob-

servations under the null hypothesis of uniformity.69 A drawback of this test is the arbitrariness of the

choice of the number of classes, . In addition, one may wish to test whether the specified distribution

captures some specific characteristics of the data such as (conditional) skewness and kurtosis. This can be

accomplished by a further transformation of the generalized residuals, namely

+1 = Φ
−1(̂+1)

where Φ is the standard normal CDF, such that IID uniform ̂’s should imply that the ’s are IID

(0 1). Berkowitz (2001) and Vlaar and Palm (1997) show that inaccuracies in the specified density

will be preserved by the transformed z-scores. Thus this transformation allows the use of moment-based

normality tests for checking features such as correct specification of conditional skewness and kurtosis.

Berkowitz (2001) also uses the z-scores to test the dynamic properties of the conditional distribution. For

instance, a Lagrange multiplier test can be used to test whether the conditional volatility is successfully

captured by a MSM (see e.g., Haas et al., 2004): the relevant test statistic,  = 2 is ap-

proximately 2 distributed, with 2 denoting the coefficient of determination obtained for a regression

2+1 = 0 +
P

=1 
2
+1− + +1. Rather naturally, also LRTs have been employed.

HLZ go beyond the methods in Diebold et al. (1998) and Berkowitz (2001) and use instead Hong’s

(1999) omnibus evaluation procedure for density forecasts by measuring the departure of the generalized

68Diebold et al. (1998) used an intuitive graphical method to separately examine the IID and uniform properties of

generalized residuals: the autocorrelations of the generalized residuals to check the IID property and their histograms to check

the  [0 1] property. This method is simple and informative about possible sources of suboptimality in density forecasts.

Unfortunately, to test the joint hypothesis of IID  [0 1] on the generalized residuals is nontrivial.
69If the statistic is used to test the in-sample fit, that is, the same observations are used both to estimate the parameter vector

and to test the goodness-of-fit, the asymptotic distribution is actually unknown, but is bounded between the 2−dim()−1 and

2−1 distributions, where dim() is the number of estimated parameters.
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residuals from IID  [0 1]. The evaluation statistic provides a metric of the distance between the density

forecast model and the true DGP and explicitly addresses the impact of parameter estimation uncertainty.

Specifically, Hong’s generalized spectral density function becomes a known “flat” function under the null

hypothesis of IID  [0 1], whereas if the generalized residuals depend on their past (in any possible form)

or they are not  [0 1], the modified generalized spectrum will be nonflat. The evaluation statistic for OOS

density forecasts compares a kernel estimator of the modified generalized spectrum with the flat spectrum.

HLZ find that although previous studies have shown that simpler models, such as RW, tend to provide

better forecasts for the conditional mean of many financial time series, including interest rates (e.g., Duffee,

2002), more sophisticated spot rate models that capture volatility clustering, excess kurtosis, and heavy

tails of interest rates yield superior density forecasts. For instance, even a simple GARCH improves the

modeling of the dynamics of the conditional variance and kurtosis of the generalized residuals, whereas

MS and jumps significantly improve the modeling of the marginal density of interest rates. In particular,

using daily 1-month T-bill rates for the period 1961-2000, HLZ report that a two-state first-order MSM

with TVTP in which the constant elasticity of variance (CEV) coefficient  is
70

∆ =
0
−1

+ 1 + 2−1 + 3
2
−1 + 


−1
p
  ∼ (0 1) (12)

depends on the latent Markov state, provides a remarkably good in-sample fit. The parameter estimates of

the various MSMs show that the spot rate behaves quite differently between the two regimes. As typical,

in models with a linear drift (i.e., 0 = 2 = 0 for  = 1 2), in the first regime the spot rate has a high

long-run mean (about 10%) and exhibits strong mean reversion. The spot rate in the second regime behaves

almost like a RW, because most drift parameter estimates are close to 0 and insignificant. For models with

a nonlinear drift, all drift parameters are insignificant. Volatility in the first regime is much higher, about

three times than in the second regime. The estimates also show that level effect, although significant in

both regimes, is much stronger in the second regime in the absence of GARCH. After including GARCH,

the elasticity parameter  estimate becomes insignificant in the second regime, but remains unchanged

in the first state. Moreover, MS helps capture volatility clustering, as the sum of GARCH parameters

measuring persistence strongly declines in MS models vs. pure GARCH models, a finding that we have

seen to be ubiquitous in the MS GARCH literature. The estimated TVTPs show that the low-volatility

regime is much more persistent than the high-volatility regime.

In OOS density tests, HLZ find that their omnibus evaluation statistic overwhelmingly rejects all single-

factor diffusion models. Moreover, models that include a drift term (either linear or nonlinear) have much

worse OOS performance than those without a drift; this in spite of the finding that Chan, Karolyi, Longstaff,

and Sanders (1992) and Ait-Sahalia’s (1996) nonlinear drift models have the highest in-sample likelihood

values. This seems to suggest that for the purpose of density prediction, it is more important to model the

diffusion function than the drift function. Similar to single-factor diffusion models, GARCH models with

a zero drift have much better density forecasts than models with a linear or nonlinear drift. However MS

models have better density forecasts than single-factor diffusions and GARCH models. Although modeling

70The MS model in (12) contains a MS non-linearity term in the conditional mean, through the terms 0−1 and

3
2
−1; moreover,  is allowed to follow a standard GARCH(1,1) process in which dependence on lagged variance is

established only with reference to unconditional variance, as in Gray (1996). For identification purposes, one needs to set the

diffusion constant  = 1 in all regimes when  follows a GARCH process.
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the drift does not improve density forecasts for diffusions and GARCH, the best MSMs contain a linear

drift in each regime. Even though a MS GARCH model with a linear drift in each regime provides the best

OOS forecasts among all of the MSMs, the advantages of MSMs seem to come from better modeling of

the marginal density, rather than from the dynamics of generalized residuals. Overall, HLZ OOS analysis

demonstrates that more complicated models that incorporate conditional heteroskedasticity and heavy

tails of interest rates tend to yield better density forecast. These results are simple to rationalize: As

widely documented in the literature, the predictable component in the conditional mean of the interest

rate appears insignificant. As a result, RW models tend to outperform more sophisticated models in terms

of mean forecast. However, density forecasts include all conditional moments, and as a result, those models

that can capture the dynamics of higher-order moments tend to perform better. MSMs appear at the

forefront of the wide class of nonlinear models that can produce accurate density predictions. It would be

of course interesting to generalize these results beyond short-term interest rates, although my conjecture

is that these will likely extend to many asset classes.

A few papers–among others, Guidolin and Timmermann (2006b) and Haas et al. (2004)–have investi-

gated the forecasting performance of MSMs with respect to value-at-risk (VaR). The VaR for period  with

shortfall probability , denoted by VaR(), associated with model M is defined by ̂M+1(VaR()) = ,

where ̂M+1(·) is the return distribution function at time +1 predicted by modelM using information up

to time . For a correctly specified model, we expect 100% of the observed return values not to exceed

the respective VaR forecast. Thus, it is typical to report and examine the quantity  = 100 × ̂, where

̂ ≡  is the empirical shortfall probability,  denotes the number of forecasts evaluated, and  is the

observed shortfall frequency. If ̂ is less (higher) than , then modelM tends to overestimate (underesti-

mate) the risk of the position. To formally test whether a model correctly estimates the risk inherent in

a given financial position, that is, whether the empirical shortfall probability coincides with the specified

shortfall probability, , one can use the LRT statistic proposed by Kupiec (1995):

  = −2(ln[(1− )−]− ln[̂(1− ̂)−]) ∼ 21.

Guidolin and Timmermann (2006b) is one example of VaR assessment of MSMs. They consider the term

structures–i.e., the measures as a function of the forecast horizon–of commonly used risk measures under

a range of econometric specifications including multivariate MS, multivariate GARCH-in-mean models

with fat tails, a nonparametric historical simulation method, and a component GARCH model fitted to

univariate portfolio return series. Because these are all highly nonlinear dynamic specifications that account

for time-varying mean, variance and higher order moments, they use simulation methods to compute VaR.

GT apply their research design to a strategic asset allocation (SAA) problem, portfolios composed of broad

asset classes such as U.S. T-bills, bonds, and stocks. They find evidence of large variations both in levels and

shapes of term structures of risk measures across econometric specifications. In a recursive, OOS experiment

in which model parameters are re-estimated at monthly intervals, they report that the GARCH(1,1)-in-

mean model overestimates VaR for bond portfolios. The GARCH component model is much better at

short horizons but suffers from the opposite problem at longer horizons where it underestimates the risk of

bond portfolios. An IID Gaussian model tends to underestimate tail risk especially at the longer horizons

and for stock portfolios. VaR estimates from a four-state MSM similar to Guidolin and Timmermann’s
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(2006a) are generally good for  = 1% but are too low when  = 5%, particularly at the longest horizons.

There is strong evidence of predictability in the hit sequence generated by the component GARCH models,

for all horizons and portfolios. At the 1% VaR level, the MSM does not produce any significant rejections

of the null of no predictability of the hit indicator, while both the IID Gaussian and bootstrap methods

do so in a number of cases.

9. Conclusions

What have we learned from this trip through 20 years of advances of applications of MSMs in empirical

finance? There are two lessons that one may take away. First, I have accumulated evidence based on

several dozen papers that modeling MS dynamics in asset returns makes a difference for our understanding

of key financial phenomena, for our ability to forecast them, and for the accuracy of our work in risk

management applications. Second, although I have surveyed too many papers to summarize here all of

their economic implications, there are a few empirical findings that tend to emerge repeatedly and that

represent now a new body of generally available knowledge that all empiricists in finance ought to take into

account. For instance, MSMs of short-term interest rates typically isolate one regime in which rates are

high, volatile, but quickly mean-reverting towards some unconditional mean level, and a second regime in

which rates are instead low, stable, but highly persistent–so that it is occasionally impossible to reject the

null of a within-regime unit root. This makes short-term rates very persistent, even though the existence

of a stationary regime is often sufficient for them to be globally stationary. Another widespread finding

concerns stock returns that are generally found to display one regime in which their risk premia are high

but volatility is low, and another regime in which the opposite occurs.71 Another important lesson is that

although a number of empirical studies have found that simpler models, such as RW, tend to provide better

forecasts for the conditional mean of many financial time series, more-sophisticated models–among them

MSMs–that capture volatility clustering, excess kurtosis, and heavy tails of interest rates yield superior

density forecasts. Therefore, and even in a pure forecasting perspective, the selection of the econometric

model to be used should also depend on the specific objective (loss function) of the empiricist, as we now

understand that heterogeneous objective functions may require methods of different statistical complexity.
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