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Abstract

This paper uses a multi-factor pricing model with time-varying risk exposures and premia to examine

whether the 2003-2006 period has been characterized, as often claimed by a number of commentators

and policymakers, by a substantial missprcing of publicly traded real estate assets (REITs). The esti-

mation approach relies on Bayesian methods to model the latent process followed by risk exposures and

idiosynchratic volatility. Our application to monthly, 1979-2009 U.S. data for stock, bond, and REIT

returns shows that both market and real consumption growth risks are priced throughout the sample

by the cross-section of asset returns. There is weak evidence at best of structural misspricing of REIT

valuations during the 2003-2006 sample.

Key words: REIT returns, Bayesian estimation, Structural instability, Stochastic volatility, Linear

factor models.

JEL codes: G11, C53.

1. Introduction

Countless researchers, policy-makers, and commentators have recently taken as a fact that the 2003-2006

period would have been marked by massive and systematic over-pricing of U.S. real estate, including public

real estate vehicles, such as REITs.1 The sudden swing in the market to re-absorb such a mispricing would

have been at the root of the “Great Financial Crisis” of 2007-2009 (henceforth, GFC). Yet, despite casual

and growing evidence of excesses and poor practices in the housing and mortgage industries, real estate

finance research has yet to document the existence and magnitude of the mispricing of the (spot) real

estate asset class as a whole, in the period 2003-2006.

∗We thank Peter Schotman (a discussant) and participants to the 2011 Maastricht-NUS-MIT Symposium for comments

and encouragement. Massimo Guidolin acknowledges financial support from the Center for Analysis of Investment Risk at the

University of Manchester. Andrea Donato Tortora acknowledges financial support from the Marie Curie Early Stage Training

Programme. The views expressed in this paper are our own and do not necessarily reflect those of Norges Bank.
†IGIER, Bocconi University and CAIR, Manchester Business School. E-mail: massimo.guidolin@unibocconi.it.
‡Norges Bank, Research Department. E-mail: Francesco.Ravazzolo@Norges-Bank.no.
§Bocconi University, Milan. E-mail: andrea.tortora@phd.unibocconi.it.
1A few commentators have often used the term “bubble” to refer to such a state of large and ever growing over-pricing,

followed by a sudden decline, between 2007 and 2009. See e.g., Shiller (2009). In our paper we will refrain from using the

technical notion of bubble as this would require the adoption of specific testing methodologies and of pricing relationships (see

e.g., Scott, 1990) that appear to be less general than the ones pursued in our paper.



In our paper, we extend the methodologies and results in the literature on multi-factor, ICAPM-style

models (see e.g., Ling and Naranjo, 1997, and Karolyi and Sanders, 1998) to investigate whether there is

any evidence of systematic over-pricing of various categories of REITs in an asset pricing framework that

is simultaneously estimated to price a wide range of equity and bond portfolios. Our extension is based on

a Bayesian style, Gibbs sampling estimation approach that allows us to obtain the joint estimates of (the

posterior distribution of) risk exposures and of risk premia in a single-step, that preserves consistency and

avoids the well-known statistical limitations of the standard, two-step Fama-MacBeth approach.2

When the multi-factor framework is generalized to include a range of standard macroeconomic factors

(the excess return on the value-weighted market portfolio; the default risk premium; the term premium; the

unexpected inflation rate; the rate of growth of industrial production; the rate of growth of real personal

consumption; the 1-month real T-bill rate) that are assumed to drive the stochastic discount factor in

a linear fashion, we find no evidence of the alleged systematic overpricing of the REIT asset class over

the 2003-2006 period. The overpricing of REITs as an asset class would have been stronger and more

persistent in the late 1980s and early 1990s than in the recent years. The major episodes of mispricing

have concerned instead a few equity sectors (such as high tech stocks) and speculative-grade bonds. Yet, we

find some evidence of systematic over-pricing of one sub-class of REITs, the mortgage-based instruments,

that appear to have been grossly and significantly over-priced between 2001 and 2004. On the contrary,

what characterizes the recent years is a growing level of persistent idiosyncratic risk that seems to have

been priced by a range of asset classes, including real estate, consistently with the evidence in Ooi, Wang

and Webb (2009). This evidence is consistent with the notion that persistent mispricing would not really

have been pervasive in the spot real estate market, and that the crisis would have originated more from

the poor quality of lending standards than from the presence of obvious upward biases in prices, what

Hendershott, Hendershott, and Shilling (2010) have recently defined the “mortgage finance bubble”.3

The paper is based on three main building blocks. First, using a novel empirical approach we estimate

a standard multifactor asset pricing model (MFAPM, see e.g., Cochrane, 2005) in which the proposed risk

factors consist of shocks to observable macroeconomic variables that appear to be commonly tracked by

researchers, policy-makers, and the press (e.g., aggregate market returns, the rate of growth of industrial

production, unexpected inflation, the spread between long- and short-term nominal rates, etc.). Going

back to the seminal paper by Chen, Roll and Ross (1986) there is an ever expanding literature that has

worked with such a class of models; Ferson and Harvey (1991) extended the early work on MFAPMs to

incorporate the case of time-varying risk premia and betas. In general terms, a MFAPM has a very simple

structure: the risk premium on any asset or portfolio is decomposed as the sum of a certain number ()

of products between risk exposures (also called betas) to each of the factors and the associated unit price

of the risk factor. The difference at each point in time between actual, realized excess returns and the

risk premium implied by the model is called residual or idiosyncratic risk. Second, our paper uses data on

publicly traded stock, bond, and real estate securities (or traded funds invested in these securities), instead

2See Jacquier and Polson (2010) for a review of applications of Bayesian econometrics in finance.
3Of course, we do not mean to deny the fact that at the micro-economic level, poor lending practices in the U.S. residential

housing sector may have increased the quality of existing mortgage pools during 2003-2006. Our goal is to assess to what

extent such biases have generated empirical evidence of systematic, aggregate misspricing in REIT portfolios that are widely

diversified across properties and types of properties (as our data also include commercial real estate properties).
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of focussing on only one of these asset classes. Therefore our paper relates to a vast literature that has

examined the empirical performance of MFAPMs across asset classes. For instance, Chan, Hendershott

and Sanders (1990) have shown that MFAPMs that include predetermined macroeconomic factors explain

a significant proportion of the variation in equity real estate investment trusts (henceforth REITs) returns.

Karolyi and Sanders (1998) have extended this evidence and allowed for time-varying risk premia and

betas. In a way, our paper contributes both to the real estate literature that has investigated the economic

determinants of securitized real estate returns (see, among the others, Devaney, 2001) and to the body of

work that has examined the linkages and pricing differences between REIT returns and those of stocks and

bonds (e.g., Clayton and MacKinnon, 2001 and 2003, and Hoesli and Serrano, 2007).

Third, we model both factor sensitivities and idiosyncratic volatility as latent stochastic processes

within a Bayesian framework by means of the mixture innovation approach as in Giordani and Kohn (2008).

Furthermore, we estimate the sequence of risk premia following Ouysse and Kohn (2009) to overcome the

problems with generated regressors.4 We show that this approach helps reduce the extent of variations

in estimated risk premia. The estimation strategy adopted in this paper is based on two steps (see also

Guidolin, Ravazzolo, and Tortora, 2010, GRT):

• Time variation in risk exposures and premia is explicitly modelled as a break-point process; the
parameters of interest (s and log-volatilities) are constant unless a break-point variable () takes a

unit value, in which case the parameters are allowed to jump to a new level, as a result of a normally

distributed shock; the break-point variable  takes a value of one, signalling the occurrence of a jump,

with some probability () which is itself estimable; finally, the breaks themselves are latent, so that

data ought to be used also to make inferences on the dates and magnitudes of the breaks.

• The model is estimated using a Bayesian approach that not only is numerically practical, and as usual
allows a researcher to feed her own priors on the quantities of interest in the estimation problem, but

also allows us to naturally overcome the issues with generator regressors described above.

Section 2 outlines the theoretical MFAPM and the Bayesian estimation strategy. The Section also

presents a few standard (variance) ratios used to evaluate the “economic” fit of MFAPMs. Section 3

describes the data. Section 4 reports the main estimation results concerning risk exposures, risk premia,

and idiosyncratic variances. Section 5 gets to the core of our economic question and asks whether, how,

and when there is evidence of mispricing in our asset menu, with particular emphasis on REITs. Section

6 performs robustness checks. The concluding section summarizes our findings.

2. Research Design and Methodology

2.1. The Asset Pricing Framework

A MFAPM posits a linear relationship between asset returns and a set of macroeconomic factors that are

assumed to capture business cycle effects on beliefs and/or preferences (as summarized by a pricing kernel

4Other, frequentist approaches have been pursued in the literature. For instance, Ling and Naranjo (1997) use nonlinear

multivariate techniques to estimate a system of equations with cross-equation and within-equation restrictions. This fixed-

coefficient method eliminates the generated regressors problems, although the risk sensitivities and risk premia are constrained

to be constant over time. In our paper we also remove this restruction by adopting a Bayesian approach. That real estate

abnormal performances may be spuriously due to unspanned time-variation in risk exposure has been known at least since the

seminal paper by Glascock (1991).
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factor with time-varying properties) and hence on risk premia. These macroeconomic factors are typically

the market portfolio (i.e., aggregate wealth) returns, the default spread on corporate bond yields, the term

spread incorporated in the riskless (Treasury) yield curve, and changes in the rate of growth of industrial

production (see Chen, Roll and Ross, 1986, and Liu and Mei, 1992, with specific reference to real estate

applications). If we call the process of the (shocks to) macroeconomic risk factors  ( = 1 ) and

 the period excess return on asset or portfolio  = 1   , then a typical MFAPM can be written as:

 = 0 +

X
=1

 +  (1)

where it is customary to assume that [] = [] = [] = 0 for all  = 1   and  = 1 .

The  are returns in excess of the risk-free rate proxied by the 1-month T-bill. The advantage of

MFAPMs such as (1) consists of the fact that a number of systematic factors    may efficiently

capture relatively large portions of the variability in asset returns. Even though the notation  lets us

understand that the factor loadings are allowed to be time-varying, such patterns of time variation are in

general left unspecified at the theoretical level.

One problem with (1) is the difficulty of interpreting 0 (often called “Jensen’s alphas”) when some

(or all) the risk factors are not traded portfolios. Although some analyses that tend to use (1) to either

understand realized excess returns or to decompose them may still be implemented, unless all the factors

are themselves tradable portfolios, it is impossible to interpret any non-zero 0 as an abnormal return

on asset  “left on the table” after all risks (,  = 1 ) and risk exposures (,  = 1 ) have

been taken into account. If some of the factors are not replicated by traded portfolios, there may be an

important difference between the theoretical alpha that the model uncovers, and the actual alpha that an

investor may achieve by trading assets on the basis of the MFAPM. To eliminate such a possibility, we

follow the literature (see e.g., Ferson and Korajczyk, 1995) and proceed as follows. When an economic risk

factor is measured in the form of an excess return, such as the U.S. market portfolio, real T-bill rates, term

structure spreads, and default spread variables, we use the excess return directly as a mimicking portfolio;

Shanken (1992) has argued that such an approach delivers the most efficient estimate of the risk premiums.

When a factor is not an excess return, such as industrial production growth, unexpected inflation, and real

consumption growth, we construct mimicking portfolios by estimating time-series regressions of individual

portfolio returns on  economic variables and lagged instruments (see Section 3 for details). Using the

residuals of such regressions to form an estimate of the × (conditional) idiosyncratic covariance matrix,

V, we then form in each month of our sample the factor-mimicking portfolios for each of the  0 ≤ 

factors for which these are needed by finding a vector of weights w ( = 1 
0) that solves

min
w

w0Vw s.t. (i) w0B[] = 0; (ii) w
0
1 = 1,

where B[] is the ×(−1) matrix that excludes the th row from the × matrix of slope coefficient

estimates B obtained by regressing returns data on the  portfolios on the  factors and instruments.

The th mimicking portfolio is formed from the individual stocks, using the portfolio weight w.
5

5The conditional beta of the th mimicking portfolio on the th economic factor may change as B and V change over

time. However, such mimicking portfolios are typically adjusted to have constant factor betas by combining them with T-bills
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In the conditional version of Merton’s (1973) ICAPM, the expected excess return (risk premium) on

asset  over the interval [− 1 ] may be related to its “betas” (i.e., factor loadings measuring the exposure
of asset  to each of the priced, systematic risk factors) and the associated unit risk premia (i.e., average

return compensations for unit exposure to risk):

[|Z−1] = 0(Z−1) +
X
=1

(Z−1) (2)

where both the betas and the risk premia are conditional on the information publicly available at time

− 1, here summarized by the  × 1 vector of “instruments” Z−1.

2.2. Standard Estimation Approach

(1)-(2) describe a general conditional pricing framework that is known to hold under a variety of alternative

assumptions.6 However, a range of methodologies have been proposed to perform three related tasks which

affect the empirical performance of (1)-(2): (i) how many factors ought to be selected, i.e., picking an

appropriate value for ; (ii) given  devising a methodology to rank competing factors and selecting

those that are “required” by the data; (iii) estimating the factor loadings {} and the risk premia .
These tasks are logically distinct from the formulation of the asset pricing framework and–albeit their

optimal implementation affects our ability to answer our asset pricing questions–they have an exquisite

statistical nature. In this paper we follow the mainstream empirical finance literature (see e.g., Chen, Roll

and Ross, 1986) as far (i)-(ii) are concerned–which means that we pre-select both  and which specific

macroeconomic risk factors ought to be considered in the light of the existing literature–and introduce a

novel econometric approach with regard to task (iii).

However, it is useful to briefly describe an alternative, benchmark estimation approach. This is the

classical, two-stage procedure ̀ la Fama and MacBeth (1973) also used by Ferson and Harvey (1991). In

the first stage, for each of the assets, the factor betas are estimated using time-series regressions from

historical excess returns on the assets and economic factors. That is, for month , one estimates equation

(1) using the previous sixty months (ranging from  − 60 to  − 1) in order to obtain estimates for the
betas, ̂

60

−1. This time-series regression is updated each month. In the second stage, one estimates a

cross-sectional regression, for each month, using ex-post realized excess returns

 = 0 +

X
=1

̂
60

−1 +   = 1  (3)

(and for each  = 61   − 1). In (3) 0 is the zero-beta (abnormal) excess return and the s are
proxies for the factor risk premiums on each month,  = 1 .

so that the combined portfolio has a beta equal to the time-series average of the betas that are produced by the constrained

optimizations. While in frequentist applications, this procedure is relatively straightforward and applied to simple expanding

windows of data to have maximum power, we shall provide additional details on our Bayesian implementation in Section 2.3.
6For instance, standard arguments in Cochrane (2005) show that (1)- (2) holds when the stochastic discount factor can be

written as an exact linear function of the systematic risk factors 1 2 ...,  .

5



2.3. A New Bayesian Estimation Approach

Although widely used in the applied finance literature, the classical two-stage Fama-MacBeth approach

has a number of obvious drawbacks. First, the second stage multivariate regression in (3) suffers from

obvious generated regressor (error-in-measurement) problems as the estimated first-stage, rolling window

beta estimates ̂
60

−1 are used as regressors on the right-hand side. For instance, Ang and Chen (2007)

have stressed that when the cross-sectional estimates of the betas ̂
60

−1 co-vary with the underlying but

unknown risk premia, (3) may easily yield biased and inconsistent estimates of the risk premia themselves.

Unfortunately, this covariation is extremely likely: for instance, the asset pricing literature seems to contain

a general presumption that during business cycle downturns both the quantity of risk (here the betas) and

the unit risk prices tend to increase, because recessions are characterized by higher systematic uncertainty

as well as by lower “risk appetite” (for instance, in a Campbell and Cochrane’s, 1999, habit-formation

asset pricing framework). Second, the need to perform the necessary estimation to implement (1)-(2) in

two distinct stages that use rolling windows to capture parameter instability is not only ad hoc but also

largely inefficient because the lack of more specific parametric forms makes it testing for time-variation

hard and dependent on hard-to-justify choices of the rolling window length, the updating rules applied to

select whether constant or decaying weights should be applied, etc.

Clearly, both issues are tackled by any full-information estimation method that avoids using estimates

of the first-stage betas as if these were observed variables constant in repeated samples and that would take

into account the existence of time-varying factor loadings and idiosyncratic variance in specific parametric

forms. This is what our Bayesian, time-varying beta, stochastic volatility (henceforth BTVBSV) approach

accomplishes. Stochastic, time-varying betas have been recently found to be crucial ingredients of condi-

tional asset pricing, in the sense that there is growing evidence that careful modelling of the dynamics in

factor exposures may provide a decisive contribution to solve the typical anomalies associated with un-

conditional implementations of multi-factor models. For instance, Jostova and Philipov (2005) find that

in the typical Fama and MacBeth’s style exercise, the CAPM is rejected with rolling OLS beta estimates

while the opposite verdict emerges when they allow for stochastic variation (in the form of a simple AR(1)

process) in the conditional CAPM betas. Similarly, Ang and Chen (2007) show that the persistence in

betas help explain the book-to-market effect in the cross section of stock returns. In practice, we specify

the relationship between excess returns and factors and the time-varying dynamics in factor loadings and

idiosyncratic volatility in the following state-space form

 = 0 +

X
=1

 + 

 = −1 + 1  = 0  (4)

ln(2) = ln(2−1) + 2  = 1   (5)

where ² ≡ (1 2  )
0 ∼ (0 I ), η ≡ (0 1   )

0 ∼ (0Q) with Q a diagonal

matrix characterized by the parameters 20 
2
1  

2
  

2
. Stochastic variations (breaks) in the level of

both the beta coefficients and of the idiosyncratic variance 2 are introduced and modelled through a

mixture innovation approach as in Ravazzolo, Paap, van Dijk and Franses (2007) and Giordani and Kohn

(2008). The latent binary random variables 1 and 2 are used to capture the presence of random
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shifts in betas and/or idiosyncratic variance and–for the sake of simplicity–these are assumed to be

uncorrelated among one another (i.e., across assets as well as factors) and over time.

This specification is very flexible as it allows for both constant and time-varying parameters. When

1 = 2 = 0 for some time  , then (5) reduces to (1) when the factor loadings and the quantity of

idiosyncratic risk are assumed to be constant, as  = −1 and ln2 = ln2−1. However, when

1 = 1 and/or 2 = 1 then a break hits either beta or idiosyncratic variance or both, according to the

random walks  = −1 + and ln(2 ) = ln(
2
−1) +  (or 

2
 = 2−1 exp( )). Note that

because when a break affects the betas and/or variances, the random shift is measured by variables collected

in η, we can also interpret Q not only as a standard, “cold” measure of the covariance matrix of the

random breaks in η, but also of the “size” of such breaks: a large 
2
 means for instance that–whenever

 is hit by a break–such a shift is more likely to be large (in absolute value).

We estimate (5) using a Bayesian approach, which is in fact the only numerically feasible estimation

method for a model with the features of our BTVBSV framework.7 Realistic values for the different

prior distributions obviously depend on the problem at hand. In general, we use weak priors, excluding

the size of the breaks Q and the probabilities Pr(1 = 1) and Pr(2 = 1) for which our priors

are informative. All other priors imply that the posteriors tend to be centered around their maximum

likelihood estimates which eases comparisons with the existing literature.8 Once estimates of the posterior

densities for unknown coefficients are obtained, we also implement a further, built-in estimation pass by

estimating, for each month, the following cross-sectional multivariate regression:

 = 0 +

X
=1

|−1 +   = 1   (6)

where  ∼ (0 2 ) and |−1 measures the expected time  sensitivity of asset  to factor , based on

all information available at time −1. |−1 is carefully constructed for the purposes of our investigation:
it is obtained by taking the lagged value from the updating step of the Kalman filter (see the Appendix

for details) and simulating the occurrence of future breaks and the shock magnitude from the appropriate

posteriors. This is the exact analog of the logic that advised Ferson and Harvey (1991) to estimate (3)

using one-month lagged values of ̂
60

−1: time  excess return on asset  should be determined by investors

with reference only to information available up to time  − 1 but keeping into account all features of the
model (5) known up to time −1. Even though our Bayesian estimation approach is still articulated on two
steps, second pass estimation is performed similarly to Ouysse and Kohn (2010) to overcome the notorious

error-in-variables problem that plagues traditional empirical MFAPMs in small samples. In fact, to avoid

generated regressor problems in the most resolute form, for each time  we avoid collapsing the posterior

density of the factor loadings |−1 to a single value (e.g., their mean or median) and use instead the

entire posterior for the betas (also see Cosemans et al., 2011). In practice, we draw a large number of

7For instance, in classical MLE framework it would be hard to separately identify the stochastic shifts represented by the

variables 1 and 2 from the continuous shocks in  and  without specifying a parametric process for 1 and 2

which is however undesirable. In a Bayesian framework, proposing plausible priors informed by economic principles greatly

helps to deal with these issues.
8These priors are commonly referred to as uninformative or “flat”. However, Section 6.2 reports results obtained using

tighter, more informative priors and show that these have a negligible impact on our qualitative findings.

7



times from such a posterior across all  assets and for each draw we estimate a multivariate cross-sectional

regression to obtain a corresponding (implicit) draw for the risk premia.

A final note goes to issues related with the estimation of factor-mimicking portfolios to replace the three

non-traded factors that are featured in our empirical application (i.e., IP and real consumption growth,

and unexpected inflation). In this case, the time-varying (conditional) idiosyncratic covariance matrix

reflects the possibility of breaks in variances and at the same time it is able to “net out” from idiosyncratic

variances the effects due to breaks in risk exposures (the betas). Moreover, the × matrix of time series

slope coefficients B is obtained as the matrix of posterior medians from (5) so that also these coefficients

take into account the presence of breaks. As a result, the vector of weights defining the mimicking portfolio

of factor  ( = 1 2 3) has a zero time  exposure to median risk represented by the remaining 6 factors,

but such a median exposure also takes into account the chances of instability in exposure occurring, which

is consistent with the set up of (5); additionally, the conditional beta of the th mimicking portfolio on the

th economic factor may change as the matrix of posterior median exposures and of idiosyncratic variances

change over time, according to the process postulated in (5).

2.4. Decomposition Tests

We use the posterior densities of the time series of factor loadings and risk premia to perform a number

of economic tests. (6) decomposes excess asset returns in a component related to risk, represented by

the term
P

=1 |−1 plus a residual 0 + . In principle, a multi-factor model is as good as the

implied percentage of total variation in excess returns explained by its first component,
P

=1 |−1.

However, here we should recall that even though (6) refers to excess returns, it remains a statistical

implementation of the asset pricing framework in (1). This implies that in practice it may be naive to

expect that
P

=1 |−1 be able to explain much of the variability in excess returns. A more sensible

goal seems to be that
P

=1 |−1 ought to at least explain the predictable variation in excess returns.

We therefore follow earlier literature, such as Karolyi and Sanders (1998), and adopt the following approach.

First, the excess return on each asset is regressed onto a set of  instrumental variables that proxy for

available information at time − 1, Z−1,

 = 0 +

X
=1

−1 + , (7)

to compute the sample variance of the resulting fitted values,

 [ (|Z−1)] ≡  

"
̂0 +

X
=1

̂−1

#
 (8)

where the notation  (|Z−1) means “linear projection” of  on a set of instruments, Z−1. Second, for
each asset  = 1   , a time series of fitted (posterior) risk compensations,

P
=1 |−1, is derived

and regressed onto the instrumental variables,

X
=1

|−1 = 00 +
X
=1

0−1 + 0 (9)
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to compute the sample variance of fitted risk compensations:

 

⎡⎣
⎛⎝ X

=1

|−1|Z−1

⎞⎠⎤⎦ ≡  

"
̂
0
0 +

X
=1

̂
0
−1

#
 (10)

The predictable component of excess returns in (7) not captured by the model is then the sample variance

of the fitted values from the regression of the residuals ̂ on the instruments:

 

"


Ã
 − ̂0 −

X
=1

̂−1|Z−1
!#
≡  

h
̂

i


At this point, it is informative to compute and report two variance ratios, commonly called  1 and  2,

after Ferson and Harvey (1991):

 1 ≡
 

h

³P

=1 |−1|Z−1
´i

 [ (|Z−1)]  0 (11)

 2 ≡
 

h

³
 − ̂0 −

P
=1 ̂−1|Z−1

´i
 [ (|Z−1)]  0 (12)

VR1 should be equal to 1 if the multi-factor model is correctly specified, which means that all the predictable

variation in excess returns ought to be captured by variation in risk compensations; at the same time, VR2

should be equal to zero if the multi-factor model is correctly specified.9 Notice that  1 = 1 does not

imply that  2 = 0 and viceversa, because

 [ (|Z−1)] 6=  

⎡⎣
⎛⎝ X

=1

̂̂|−1|Z−1

⎞⎠⎤⎦+  

"


Ã
 − ̂0 −

X
=1

̂−1|Z−1
!#



(13)

Finally, the predictable variation of returns due to the multi-factor model is further decomposed into

the components imputed to each of the individual systematic risk factors, by computing the factoring of

 [ (
P

=1 |−1|Z−1)] as

 

⎡⎣
⎛⎝ X

=1

|−1|Z−1

⎞⎠⎤⎦ =
P
=1

 
h

³
|−1|Z−1

´i
+

+
P
=1

P
=1

[
³
|−1|Z−1

´
 
³
|−1|Z−1

´
](14)

and tabulating  
h

³
|−1|Z−1

´i
for  = 1  as well as the residual factor

P
=1

P
=1[


³
|−1|Z−1

´
 

³
|−1|Z−1

´
] to pick up any interaction terms. Note that because of the

existence of the latter term, the equality

X
=1

 
h

³
|−1|Z−1

´i
 

h

³P

=1 |−1|Z−1
´i = 1 (15)

9When these decomposition tests are implemented using the estimation outputs obtained from our BTVBSV framework,

we preserve consistency with our Bayesian framework: drawing from the joint posterior densities of the factor loadings |−1
and the implied risk premia   = 1   ,  = 1 , and  = 1   , and holding the instruments fixed over time, it is

possible to compute VR1 and VR2 in correspondence to each of such draws.
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fails to hold, i.e., the sum of the  risk compensations should not equal the total predictable variation

from the asset pricing model because of the covariance among individual risk compensations.10

3. Data and Summary Statistics

Our paper is based on a large number of monthly time series (30) sampled over the period 1972:02 -

2010:12 for a total of 467 observations per series. The series belong to three main categories. The first

group, “Portfolio Returns”, includes several asset classes like stocks, bonds and real estate, organized in

portfolios, a procedure that is useful to tame the contribution of non-diversifiable risk.11 The stocks are

publicly traded firms listed on the NYSE, AMEX and Nasdaq (from CRSP) and sorted according to two

criteria. First, we form 10 industry portfolios by sorting firms according to their four-digit SIC code.

Second, we form 10 additional portfolios by sorting (at the end of every year, and recursively updating this

sorting in every year in our sample period) NYSE, AMEX and Nasdaq stocks according to their size, as

measured by aggregate market value of the company’s equity.12 Using industry and size-sorted criteria to

form spread portfolios of stocks to trade-off “spread” and reduction of idiosyncratic risk due to portfolio

formation, is typical in the empirical finance literature (see e.g., Dittmar, 2002). Moreover, industry-

and size-sorting criteria are sufficiently unrelated to make it plausible that industry- and size-sorted equity

portfolios may contain different and non-overlapping information on the underlying factors and risk premia.

Data on long- (10-year) and medium-term (8-year) government bond returns are from Ibbotson and

available from CRSP. Data on 1-month T-bill, 10-year and 5-year government bond yields are from

FREDII
R°
at the Federal Reserve Bank of St. Louis. Data on junk bond returns are approximated

from Moody’s (10-to-20 year maturity) Baa average corporate bond yields and converted into return data

using Shiller’s (1979) approximation formula. Finally, data on REIT total returns come from the North

American Real Estate Investment Trust (NAREIT) Association and consists of data on three major cate-

gories of tax-qualified REITs, i.e. equity, mortgage, and hybrid equity/mortgage REITs using breakdowns

common in the literature. All excess return series are computed as the difference between total returns

and 1-month T-bill returns, as usual.

We use a range of macroeconomic variables as standard proxies for the systematic, economy-wide risk

factors potentially priced in asset returns. Lagged values of these risk factors are also used as “instruments”

when relevant in our methodology, our logic being that all these variables belonged to the information set

of the investors when they made their portfolio decisions. In practice, we employ seven factors (as in Ling

and Naranjo, 1997): the excess return on a wide, value-weighted market portfolio that includes all stocks

traded on the NYSE, AMEX, and Nasdaq (from CRSP); the credit risk premium measured as the difference

between Baa Moody’s yields and yields on 10-year government bonds; the change in the term premium,

10The fact that in (1) the risk factors are assumed to be orthogonal does not imply that their time-varying total risk

compensations (|−1 for  = 1 ) should be orthogonal. For instance, unit risk premia on many factors are well-

known to co-move during the business cycle and very precise counter-balancing moves in risk exposures will be required for

the covariance term in (14) to equal zero.
11An alternative approach to improve the precision of security-specific beta estimates is to use the shrinkage technique

proposed by Vasicek (1973). This method uses the cross-sectional mean and variance of betas as prior information and, as

recently shown by Cosemans et al. (2011), may be profitably extended to time-varying beta frameworks.
12Data on size- and industry-sorted portfolios are available from Ken French’s web site at http://mba.tuck.dartmouth.edu/

pages/faculty/ ken.french/data library.html.
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the difference between 5-year and 1-month Treasury yields; the rate of growth of (seasonally adjusted)

industrial production; the rate of growth of (seasonally adjusted) real personal consumption growth; the

1-month real T-bill rate of return computed as the difference between the 1-month T-bill nominal return

and realized CPI inflation rate (not seasonally adjusted), and the unexpected inflation rate, computed as

the residual of a simple ARIMA(0,1,1) model applied to (seasonally adjusted) CPI inflation.13

Table 1 presents summary statistics for the time series under investigation. Note that the table concerns

the shorter period 1980:01 - 2010:12 (372 observations per time series) although data for the 1972:02 -

1979:12 period were available. There are two reasons for this choice. First, in a portion of our estimation

experiments, we use a 5-year period to compute the priors that investors were likely to hold as of the

beginning of 1980. Second, we benchmark a portion of our results to earlier papers that have used data

for the 1980s and early 1990s, such as Karolyi and Sanders (1998), who have also jointly analyzed the

properties of U.S. stock, bond, and equity portfolios within a MFAPM. In fact, to favor comparisons, Table

1 presents summary statistics for two different sub-samples, 1980:01 - 1992:12 and 1993:01 - 2010:12.14 In

particular, the table reports sample means, medians, standard deviations, and the resulting Sharpe ratios

(computed with reference to 1-month T-bill returns).

None of the summary statistics in Table 1 is surprising. Most industry portfolios and all cap-sorted

portfolios have mean returns between 11 and 14% per year in the overall sample period. Moreover, for

all stock portfolios (but one, energy stocks) median returns are substantially higher than mean returns,

a clear indication of asymmetric return distributions. Volatilities tend to be between 15 and 25 percent

in annualized terms; small stock portfolios are more volatile than large stocks, while the most volatile

industries are high tech and durable goods. As a result, most Sharpe ratios are in the 0.1-0.16 range

(on a monthly basis), with very few outliers such as high tech, durable goods (with ratios below 0.1) and

non-durable goods with a Sharpe ratio of 0.19. There is nothing abnormal to report with reference to

returns on 5- and 10-year government bonds, apart from their stunning Sharpe ratios in excess of most

stock portfolios, due to the fact that our sample is dominated by the disinflation and declining interest

rates of the early 1980s. The summary performance statistics for real estate portfolios contain instead some

unexpected results. While equity REITs are characterized by means (13% per year), volatility (18%), and a

Sharpe ratio (0.14) directly comparable to those of stocks (for instance, the value-weighted CRSP portfolio

has a mean return of 12%, volatility of 16%, and a Sharpe ratio of 0.13), mortgage and hybrid REITs have

produced much lower mean returns (around 5-6% per year) but display volatilities in excess of long-term

bonds, with resulting Sharpe ratios close to zero. However, because for most of our sample the overall

REIT portfolio, NAREIT composite, is dominated by equity REITs, the result is that the corresponding

Sharpe ratios are generally close to those of the stock market indices.

The second group of statistics in Table 2 concerns the shorter 1980-1992 sample. The summary statistics

are indeed rather close to those reported by Karolyi and Sanders’ (1998) with reference to a 1983-1992

13The trailing, 12-month dividend yield on all stocks traded on the NYSE, AMEX, and Nasdaq (computed from CRSP

data) is also used as an instrument in some of the exercises. However, it is not used as priced factor because it seems to only

relate to stock pays out and as a result differs from the REITs’ cap rate.
141993 is also the date of an important tax reform Act that has entitled REITs to look through pension funds and count

the number of participants with the result of favoring institutional investment without jeopardizing the trust’s tax-favored

status. As a result, in the 1990s the REIT market expanded considerably and became much more dominated by institutional

investors (see e.g., Ling, and Ryngaert, 1997).
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period. However, the differences between sub-periods are considerable. For instance, the post-1992 age

has been a rather disappointing period for stocks, and this emerges independently of the portfolio sorting

criterion employed, with the only exception of small and high tech stocks. Even though a few volatilities are

lower in the post-1992 periods than in the earlier sub-sample, the generalized decline in mean stock returns

implies lower Sharpe ratios in the 1993-2010 period (the exceptions are high tech and small stocks). This

is also reflected in the statistics concerning the market portfolio, which has recently yielded lower mean

returns (9.8% vs. 12.5%), imposed higher volatility on investors (16% vs. 14%), with a Sharpe ratio of

0.11 vs. 0.18 in the 1980-1992 period. However, the Sharpe ratio for NAREIT composite has recently

jumped to 0.13 from 0.09 in the earlier period, and a solid contribution is given by mortgage REITs which

had negative Sharpe ratios in the 1980s and switched to positive ratios in the past 20 years. Finally,

some instability characterizes return data for long-term bonds returns: these display significantly more

volatility in the post-1992 period but also higher mean returns. However, their Sharpe ratios decline from

an exceptionally high range of 0.23-0.36 over the 1980-1992 period to 0.17-0.23 in the post-1992 sample.

4. Empirical Results

4.1. Factor Loadings

In Sections 4.1-4.2 we report empirical estimates obtained for the case in which all factors are tradable,

which implies that a few of the assumed factors has been replaced by a corresponding factor-mimicking

portfolio. Figures 1-3 show medians and 90% Bayesian credibility intervals computed from the posterior

densities of the loadings  over time from the BTVBSV model.15 A time , the 90% credibility interval

is characterized by the 5th and 95th percentiles of the posterior density of . Figure 1 is key to

this paper because it shows results for the NAREIT Composite Index (left-most column of plots) and

for the NAREIT portfolio components (right-most column, equity, on the left scale, and mortgage and

hybrid REITs, on the right scale) for each of the seven factors listed in Section 3. While most posterior

medians recursive estimates of the loadings are smooth and with hardly visible changes, a few exceptions

are visible. Similarly, while for many of the factors the 90% intervals often include zero–which may be

loosely interpreted as meaning that the posteriors attach a non-negligible probability to a zero or small

loading on the factor under investigation–notable exceptions may be found in which portfolio appear to

be significantly exposed to risks. Both NAREIT composite and its components appear to be significantly

exposed to market risk, with a beta that has somewhat increased over time (especially during the 1990s),

for instance from approximately 0.6 to 0.8 in the case of the overall REIT index. As one would expect

in the light of the literature, all real estate portfolios have “defensive” market betas that do not exceed 1

(even though by the end of our sample, the upper bound of the confidence bands often includes 1), and

equity REITs show betas that exceeds those of mortgage REITs. Only mortgage REITs show a significant

and relatively high, positive and stable exposure to the credit risk premium factor (around 1.2), which

means that when default risks are increasingly priced in corporate bond yields, the risk premium required

15Note that pinning down the “statistical significance” of coefficients (betas or lambdas) on the basis of 90% credibility

intervals represents a rather stringent criterion because the Bayesian posterior density will reflect not only the uncertainty on

the individual coefficient but also the overall uncertainty on the entire model (e.g., the uncertainty on structural instability of

all the coefficients), see e.g., the discussion in Uno et al. (2005).
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of mortgage REITs increases as well. On the contrary, equity REITs and, as a reflection, the overall

NAREIT index fails to show an economically significant or precisely measured exposure to the credit risk

factor. REITs have instead an economically large negative exposure to changes in the slope of the yield

curve, and this is mostly due to the exposure of mortgage and hybrid REITs (see e.g., Peterson and Hsieh,

1997). The negative sign is expected because when the long-end of the yield curve moves over and above

the short-term segment, this presumably translates into higher mortgage rates and negative excess real

estate returns. Finally, with minor exceptions noted below, the aggregate REIT portfolio does not display

precisely estimates exposures to unexpected inflation, the rate of growth of IP, real consumption growth,

or the real T-bill rate. The only exceptions are the betas on unexpected inflation, IP growth, real personal

consumption growth, and the real short-term rate, which are positive for the two first factors and negative

for the real short rate, and large for equity REITs in manners that may be have economic importance,

although in this case the opposing signs or wide credibility regions of equity vs. mortgage REITs prevent

this exposure to show up uniformly over time for the composite index.

It is interesting to notice that while the BTVBSV model, that allows for explicit modelling of exposure

instability over time, yields essentially flat time series of  posterior medians for most factors (e.g.,

credit default risk, change in the term premium, real consumption growth, and the real T-bill rate), some

important exceptions exist in which structural instability is captured and estimated, which may have first-

order effects for the economic implications of the model. There is evidence of gradual and steep increase in

the market beta exposure of most REIT portfolios between the early 1980s and 2003; the same applies to

the exposure to inflation risk, which grows over time for both equity REITs and the composite portfolio.

All in all, Figure 1 gives evidence that publicly traded real estate portfolios are significantly exposed to

global market, yield curve, real business cycle (especially through IP growth) and real riskless short-term

rate risks with the expected signs.16

Figure 2 presents the same type of information as Figure 1 does, but with reference to 6 selected stock

industry portfolios. To make the plots readable, we have omitted beta posterior densities for 4 residual

industries but results were qualitatively similar to those plotted here and these are available from the

Authors upon request. In this case, we briefly comment across factors. Many (but not all) industries

(including those not plotted in Figure 2) are significantly exposed to market beta risk, and hardly any

significant patterns of time variation emerge. Surprisingly, in the case of industries we find quite a few

portfolios for which the market beta is either positive but imprecisely estimated and modest, or even

negative (but also in this case, imprecisely estimated). As it shall become obvious later on, this depends

on the fact that for the industry portfolios that display such features, it is other real business factors

(-mimicking portfolios, such as the term structure one) that capture the general association with market

portfolio behavior. Very few portfolios have significant exposure to the credit risk factor (durables and

retail shops appear to be the exceptions, probably through an asset-backed securities market linkage), both

in statistical and economic terms. Also stock portfolios load considerably more on changes in the riskless

term structure factor than they do on the default risk factor. Their riskless yield curve loadings are very

stable over time. However, while a few industries imply positive and large beta loadings (e.g., high tech

16However, should we interpret the term premium to be a business cycle indicator–in the sense that a higher (lower) term

premium signals an improvement (deterioration) of business cycle conditions, see e.g. Estrella and Hardouvelis (1991)–then

a negative exposure of REITs to this factor may be puzzling.
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stocks and manufacturing), which is consistent with the slope of the term structure representing a business

cycle indicator, other industries load negatively on this factor with betas that are large in absolute value

(e.g., energy and utilities). This is sensible because the former group collects industries that are cyclical

and the latter industries that are typically anti-cyclical. A similar comment extends to the industry betas

concerning unexpected inflation and short-term rate factors: the posterior densities for the betas yield

credibility intervals that often fail to include zero but the sign of the median posteriors are heterogeneous.

In general, industry portfolios yield small betas on IP and real consumption growth, with posterior densities

that tend to always attach a substantial probability on coefficients close to zero.

Figure 3 reports instead in the first column of plots results on beta posteriors for three size-sorted stock

portfolios that can be taken to span the range of portfolios used in estimation (these are the first, fifth,

and tenth deciles, dubbed small-, medium-, and large-size stocks, respectively), and in the second column

results on beta posteriors for the three fixed income portfolios. As far as the size-sorted portfolios are

concerned, we find evidence consistent with the size premium puzzle in the empirical finance literature:

market betas do not vary much across portfolios and in fact medium- and small-caps have considerably

lower betas than other portfolios have, negative and rather narrow 90% credibility regions in the case of

medium-caps. There is a lot of interesting time variation in the large cap betas with a visible dip (to below

0.8) during the 1998-2000 period, while the market betas of small and medium capitalization stocks are

essentially driftless. The other two factors that seem to explain size-sorted equity returns with precisely

estimated and economically relevant coefficients are the real short-term rate and unexpected inflation (amid

considerable time-variation) and–but only for specific portfolios–term spread changes (for small caps),

and real consumption growth (for both large and small caps). In particular, small and medium caps have

relatively large, positive betas (with posterior 90% credibility bands that do not include zero) on the term

spread risk factor and negative and large betas on the short-term real rate factor. Because a variety

of papers (e.g., Fama and French, 1989, and Stock and Watson, 2003) have argued that a surging term

structure premium is a predictor of economic expansions, this is a sensible finding because less diversified

and smaller companies are likely to be more sensitive to business cycle dynamics (see Perez-Quiros and

Timmermann, 2000). For the same reason, large caps do not seem to have exposure to the term structure

factor and have a positive and precisely estimated exposure to real rate risk. As stressed by many papers

(e.g., see Ang, Piazzesi and Wei, 2006), it may be advisable to use not only the slope of the yield curve

but also some measure of level–for instance as measured by the T-bill rate–to capture the dynamics of

the business cycle. If the real rate changes pro-cyclically and small and medium stocks are more exposed

to the business cycle than large caps are, then the signs of our posterior medians are sensible.

Similarly to other stock industry portfolios, Figure 3 shows that all bond portfolios have a negative

and rather significant exposure to market risk once the six additional macroeconomic factors are controlled

for. The posterior medians for market betas are all rather tight but also include zero, with posterior

medians that over time span the range [-1.5, -0.5], which are rather large betas. All bond portfolios display

positive (and large, in the case of corporate bonds) betas on the default risk factor. It is interesting that

10-year government bond risk premia may increase when the credit risk premium increases, although this

may relate more to using this factor as a business cycle indicator than to the credit quality of the U.S.

government; consistently with this intuition, we notice that the beta of 5-year Treasuries is small. All bond
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risk premia have negative exposures to the slope of the yield curve factor; these betas seem to be large

and with a posterior distribution clearly tilted away from zero especially in the case of 10-year government

bonds, which signals a flight-to-quality effects, in the sense that Treasury would command high prices

and low risk premia exactly when the riskless yield curve is flat or inverted, as typical of the early stages

of economic contractions. For similar reasons–because real rates increase in the expansionary stages of

the business cycle–all bond portfolios are positively and massively exposed to real rate risk, with betas

that are indeed large in the case of long-term Treasuries and long-term corporate bonds. Treasury bonds,

especially the long-term ones, have a negative and precisely estimated exposure to unexpected inflation,

which is sensible because government securities are notoriously exposed to inflationary shocks. Treasury

returns have weak and often imprecisely estimated exposures to IP growth and real consumption growth

factors. Finally, the BTVBSV model allows us to infer considerable instability in the betas of all Treasuries

vs. market, IP growth, and real consumption growth risks, with rather heterogeneous trends.

As already stressed in GRT (2010), an overview of the plots in Figures 1-3 reveals that the Bayesian

estimates of the loadings are often smooth, even though exceptions have been noted. In fact, GRT em-

phasize that even though (5) formally allows the  to be subject to jumps over time, as a result of the

realization of a latent binary random variable, the resulting posterior densities are often smoother than

what one could retrieve using a näıve rolling window scheme, following for instance Karolyi and Sanders

(1998). Interestingly, this smoothness mimics exactly what many earlier papers have imposed by assum-

ing near unit root processes ( = −1 + ) with small variance of the shocks, but is derived

endogenously, as required by the data, which means that occasional large jumps in exposure and/or high

volatility of the corresponding process may be accommodated.

4.2. Idiosyncratic Risk

A growing literature (see e.g., Campbell, Lettau, Malkiel and Xu, 2001, and Zhang, 2010) has stressed that

the idiosyncratic variance of the excess returns of most sets of test portfolios, 2, has undergone interesting

shifts and/or dynamics over the last two decades. Figure 4 displays plots from the posteriors of 2

derived from (5), in particular posterior medians and 90% credibility intervals for annualized idiosyncratic

volatilities, for ease of comparison. In general there are very few neat trends in the posterior medians of

the annualized : even when these may be eye-balled from the plots (e.g., this is the case of equity REITs

and, as a result, of the NAREIT composite portfolio), such trends have an uncertain statistical nature

because the 90% posterior credibility intervals are so wide that any trends is completely “contained”

within such intervals: it is always possible to draw a horizontal line that fits within the 90% confidence

bands. Equivalently, a Bayesian analysis that incorporates the possibility of instability in risk exposures

and risk premia, delivers idiosyncratic volatility estimates that have tails so thick that it is always possible

to notice movements in the median idiosyncratic volatility that may easily confused with sample (as well as

coefficient, given the Bayesian nature of the analysis) random variation. GRT (2010) have stressed that on

the contrary, a classical, two-step rolling window analysis based on Fama-MacBeth method would reveal

the presence of rich dynamics in residual volatilities. Therefore one should be suspicious of the finding of

jumps and steep increases in idiosyncratic variance when this may simply capture otherwise “unspanned”

(by the model) time variation in either exposure coefficients or risk premia.
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4.3. Risk Premia

Table 2 shows results on the posterior densities for the time series of risk premia estimates {̂} ( =
1 ).17 The table reports both summary statistics for the full sample as well as for three sub-samples,

1980-1992 and 1993-2010 for the reasons explained in Section 3, and 2007:07 - 2009:06 identified as the

24 months most affected by the recent GFC (see Guidolin and Tam, 2010, for issues related to the dating

of the GFC in the U.S.). The table shows results that have to be interpreted with great caution. If

one applies standard (but frequentist) statistical inference to the time series of mean posterior estimates

of the risk premia {̂}–which however assumes normality of the resulting posterior distributions–and
computes standard t-tests of the null of zero risk premia, then we have interesting evidence in favor of

two priced risk factors in the cross-section of excess asset returns used in this paper: both market and

real consumption growth risks appear to be priced, in the full as well as in the sub-samples investigated

in this paper. Market risk carries a mean posterior price of 1.20% per month with a classical p-value of

essentially zero; consumption growth risk carries a mean posterior price of 0.64% per month, again with

a p-value of zero. While the finding of a significantly priced market factor may be not surprising, the

result that also typical macroeconomic, real consumption growth risk is priced is consistent with earlier

evidence centered on real estate data (see e.g., Ling and Naranjo, 1997). This result is robust across the

sub-samples, even though with only 24 observations the GFC period assigns a large (2.30%) and precisely

estimated price only to real consumption growth risk, which may be interpreted as the recession being

priced in the assets under examination. In the full sample and the early 1980-1992 sample, we also obtain

evidence of abnormal pricing in the sense that the time series of intercept mean posterior terms {̂0} is
non-negligible in economic terms (e.g., 0.39% return per month that does not seem to come from any of

the assumed risk factors) and precisely estimated. However, the more recent, modern REIT era offers a

slightly more “benign” view on the performance of our model because the mean posteriors of the ̂0 stop

being precisely estimated, while there is also some evidence of inflation and real T-bill risks being priced,

even though the mean posteriors of the unit risk premium are small.

The evidence turns inconclusive if one tries to use (averages over time of) 90% Bayesian credibility

intervals built using posterior densities from the model. The reason is that without any exceptions, all

these densities attach a non-negligible probability to zero or small risk premia on the different factors. For

instance, over the full sample, the 90% interval for the market risk premium goes from -3.36% per month

to 3.76% per month. Although the median of the posterior is a sizeable and sensible 1.45% per month, an

(unreported) density plot reveals that almost 30% of the probability mass goes to zero and negative risk

premia.18 On the one hand, this leads to the puzzling conclusion that–at least under our weak priors–

the data fail to give strong indications in favor of any of the assumed macroeconomic risk factors being

17Plots are available from the Authors upon request. However, risk premia are sufficiently variable over time that in this

case plots were not particularly revealing, especially because the size of the 90% confidence bands is rather volatile. Because

these risk premia estimates are to be used in Section 5.4 to produce measures of portfolio misspricing that do not depend on

our procedure of construction of factor mimicking portfolios, in this Section we report risk premia estimates for the case in

which factors are not replaced by their mimicking portfolios. Risk premia estimates for the case matching Sections 4.1-4.2 are

available upon request from the Authors but these are qualitatively similar to those presented here.
18These different results derived from means vs. quantiles of the posterior densities of the risk premia coefficients are possible

because the posterior densities have a highly-non normal, non-symmetric shape characterized by a number of outliers.
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priced. On the other hand, it is comforting to see that this does not occur through probability mass being

shifted out of the risk factors and into the posterior density of the mispricing indicator ̂0 as also the

90% credibility interval for the intercept is wide (e.g., spanning -3.15% to 3.94% in the full sample).

However, even though our Bayesian design has in principle escaped all issues with spurious measurement

error induced by the fact that the regressors used in the “second step” are generated, a great deal of caution

must be exercised when interpreting these posterior densities for risk premia and the implied summary

statistics.19 For instance, as recently discussed by Lewellen, Nagel and Shanken (2010), factors that are

specified in the MFAPM but that in fact fail to explain the variation in returns (i.e., when the MFAPM is

misspecified because it includes factors that in reality are not priced) may often command very significant

(but misleading) prices of risk. Ang, Liu, and Schwarz (2010) demonstrate that an approach based on

relatively large portfolios such as ours results in large efficiency losses in cross-sectional tests of asset

pricing models. In particular, they show that while creating portfolios reduces estimation error in betas,

standard errors of risk premia estimates are larger due to the smaller spread in betas. This advises us to

rely more on the first step of our estimation program to try and tease out the economic implications of our

MFAPM for our key questions.

5. Economic Implications

So far our discussion has focussed on the statistical performance of the model with emphasis on whether

there was evidence of either the s or the s coefficients being “different from zero”. It is time to

discuss the economic implications of the estimates presented so far. We compute the VR1 and VR2 ratios

in Section 5.1. In Section 5.2 we factor  [ (
P

=1 |−1|Z−1)] as the sum of the contributions

given by each of the factors, leaving the covariance terms as a residual interaction effect. In both Sections,

the information at time  − 1 (Z−1) is proxied by the instrumental variables listed in Section 3. Section
5.3 goes to the core of this paper and asks whether there is any evidence from the MFAPM that publicly

traded real estate may have been systematically mispriced in any portion of our sample by investigating

the posterior densities for the 0s. Section 5.4 asks the same question in a different way and goes on to

compare the in-sample excess returns predicted by the BTVBSV model with the excess return that market

participants would have predicted on the basis of recursively available information, to see whether any

large or persistent divergences may be detected. While Section 5.3 does not rely on our estimates of factor

risk premia, Section 5.4 does.

5.1. Variance Ratios

The first two columns of Table 3 present posterior medians of (normalized)  1 and  2 obtained from

(5) for each of the 27 portfolios. The normalization is performed by dividing the posterior medians by

the variance of the underlying excess return series. Variance ratio results are encouraging. Under a VR1

perspective, we can claim that approximately 43% of the predictable variation in excess returns is captured

by the MFAPM. However such percentages vary considerably across different assets. They are relatively

high, also in relation to what is typically reported in the literature, for real estate portfolios, with several

19We thank Peter Schotman for drawing our attention on these residual issues and concerns.
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indices well in excess of 50%. VR1 also tends to be large for bond portfolios. The explanatory performance

of the model is instead much less impressive when it comes to equity portfolios: although medium- and

large-size portfolio are relatively well explained by the MFAPM (but VR1 for the tenth size decile is an

average 0.4), as one may expect, VR1 tends to be considerably smaller for small caps. There is also

considerable heterogeneity in the case of industry portfolios, with some good VR1 indices close to 50%

(like in the case of high tech and telecommunications), and other more disappointing indices for other

industries (e.g., retail and utilities).20 Because  1 +  2 = 1 does not hold, the finding of good VR1

ratios fails to imply that the VR2 ratios are as close to zero as much as we would want, which is consistent

with the finding in Figure 4 of large time-varying idiosyncratic variances. In 11 portfolios out of 27 we at

least find that VR2 is below 0.5. VR2 is indeed uniformly below 0.5 for all the REIT and fixed income

portfolios. All in all, under both the VR1 and VR2, we find evidence of appreciable performance of the

model, in line with typical results in the literature.

5.2. Decomposing Predictable Variation

Table 3 shows that the predictable variation in excess stock returns is mostly explained by the market risk

factor: with three exceptions (the smallest capitalization portfolio, durable goods and health stocks), all

the ratios  [ (|−1| Z−1)]  [ (
P7

=1 |−1|Z−1)] concerning stocks exceed 0.5
with peaks in excess of 1 for a number of industries as well as large-cap portfolios.21 However, the market

factor explains little or nothing of the predictable variation in excess bond returns. REIT portfolios stand

in between, with a contribution of the market risk factor between 0.43 (for equity REITs) and 0.91 (for

hybrids). As far as stocks are concerned, the next most important factor contributions come from the credit

risk premium (especially for industry portfolios) and to some extent, the real short term rate, although

the heterogeneity across portfolios is pronounced. In the case of bond portfolios, many other factors–e.g.,

default and yield curve slope risks, but to some extent also business cycle factors such as IP growth and

the real short term rate–different from the market give contributions to explain the predictable variation

in excess returns. For instance, the (large) predictable portion of junk corporate excess returns seems to

be mostly driven by default risk (representing a likely flight-to-quality effect during economic downturns),

the IP growth factor, and the real short term rate. Once more, real estate assets fall in between with

important contributions from the credit risk factor as well as the market.

5.3. Where There Any Persistent mispricing?

Figure 5 reports posterior median estimates of 0 for the REIT and bond portfolios and for 7 sample

stock portfolios. As usual, complete results for all stock portfolios are available from the Authors. In an

20Unreported results for the case in which the factors and not their mimicking portfolios are employed reveal much higher

VR1 ratios. For instance, in the case of size-sorted portfolios,  1 always exceeds 70% and it averages close to 87%, which

is impressive. However, for REIT portfolios we obtain VR1 statistics around 50% which are similar to ones reported in Table

2. The additional parameter uncertainty induced by the need to estimate the structure of the mimicking portfolios is likely

responsible for this observed deterioration that however hardly affects the fit of the model in the case of REITs.
21As explained in Section 2.4, these ratios may exceed 100% because  [ (

7

=1
|−1|Z−1)] will also reflect the

contribution of covariance terms between factor terms. In fact, in Table 3 the only two contributions exceeding 100% are

obtained in the presence of sizably negative covariance contributions.
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ICAPM interpretation of (1), when all factors are tradeable, and under the null of correct specification,

the time series {0} gives indications on time-varying mispricing. If  represents returns in excess of
the riskless rate and the  factors have been correctly specified, 0 6= 0 represents evidence of non-zero
excess returns for a portfolio  with zero exposures to the  risk factors, which implies the existence of

an arbitrage opportunity and it is inconsistent with first principles (e.g., non-satiation). In the finance

literature, estimates of quantities like 0 are often named Jensen’s “alphas” and interpreted as measures

of abnormal (excess) returns, where their abnormality refers to the principle that only systematic risk

ought to be priced. Starting with REIT portfolios, which are our main object of interest, the plots show no

evidence of strong or precisely estimated mispricing at the aggregate, composite level: the corresponding

0 has initially a positive mispricing of risk exposures in the early 1980s; subsequently, the mispricing

declines and it is almost completely re-absorbed by 2004 and actually turns negative after 2005. However,

the associated 90% credibility interval includes zero throughout the entire sample period, similarly to the

early findings by Chan et al. (1990). This means that, if anything, over part of the 2003-2006 period,

REITs as an asset class have yielded excess returns that were lower than what they should have given,

when their risk exposures are taken into account; however, the measure of such mispricing is subject to

considerable uncertainty, coming from both the sample and the coefficients of the model. Interestingly, the

right-most panel of Figure 5 shows that most of this mispricing comes not from equity REITs but from

mortgage REITs, with 0 oscillating between -2 and -3 percent per month in the case of mortgage REITs

and 90% credibility bands that are at most as large as to include -1%, but never zero. This mispricing

becomes particularly strong after 2001 and recently in the period 2006-2009, which is not not surprising.22

In the case of mortgage REITs, if there was ever mispricing of these portfolios, this was in the sense of

yielding excess returns inferior to what they should have been, conditioning on their risk exposures and

the estimated prices of risk.

However, it may still remain unclear how these results for the posterior distribution of the REIT

0s may map into our motivating question: were REITs over-priced in the period preceding the GFC?

The answer is that while in general REITs were never over-priced–and this conclusion strongly applies to

equity REITs–mortgage REITs and to some extent hybrid REITs may have been structurally over-priced.

This derives from the fact that when looking at excess realized returns, a negative sequence of 0 over

time implies under-pricing of risk–because historical excess returns have been lower than what their risk

exposures imply–and over-pricing of the asset to which excess returns refer to, because a negative 0

at time  implies a low expected excess returns and hence (for instance, in a simple risk-adjusted present

value model) over-pricing of the asset at time .23 Such an over-pricing of mortgage REITs has become

strong after 2001; it has gotten gradually worse between 2003 and 2007 and only after 2008 it seems to

have stabilized, although our data report no evidence of the mispricing being on its way to be gradually

re-absorbed. To given an idea of the dimension of the mispricing, a mortgage REIT 0 of -3.1% per

month as of December 2010 may correspond to enormous over-pricing of the underlying assets, because it

22Interestingly, for the comparable sample, also Peterson and Hsieh (1997) report large and statistically significant negative

alphas (hence, over-pricing) of mortgage REITs, although in a linear factor model that is based on a 5-factor extension of the

classical Fama-French framework.
23The two perspectives are logically consistent because under-pricing the risk exposures of an asset implies that the asset

will be over-priced and will fail to yield adequate rates of capital gains over time.

19



implies that its cash flows may be discounted at a rate that is almost 40% per year lower than it should

actually be. Yet, the posterior median of the REIT class as a whole marked a -0.5% as of December 2010

that does not point to any massive mispricing, while the 95% upper confidence band of 1.4% may even

cast some doubts on the very notion that any pricing correction ought to be expected, on the basis of our

MFAPM. In fact, as of December 2010, equity REITs as an asset class may have been slightly under-priced.

Figure 5 also reports the dynamics of posterior medians and 90% credibility intervals for a few selected

stock portfolios. Although these plots do not concern REITs, they are crucial to the economic implications

of this paper. The three panels for stock portfolios show that the BTVBSV model is not forced to produce

for all assets the same type of implications concerning the posteriors of 0. For instance, energy stocks

seem to have systematically yielded excess returns that are too high compared to their risk exposure, so

that their 0 has a posterior median that is positive, large, and mildly increasing to reach an enormous

level of 2.5% per month around the end of December 2010; their confidence bands fail to include zero, even

though the lower band is often close to zero. To the contrary, durable stocks imply posterior densities that

are strongly shifted to the left of zero, indicating massive over-pricing of the underlying stocks as even

the 95% upper bound takes values below -0.5% per month for most of our sample. Consistently with the

bulk of the empirical finance literature, small capitalization stocks appear to have been over-priced in the

light of our model, which however implies the opposite of the standard “small size” puzzle: small caps are

actually characterized by 0 with posterior medians that are negative and precisely estimated, indicating

that small caps give excess returns that are below what their risk exposures imply. However, there is no

evidence of mispricing of large caps.24 Finally, all fixed income portfolios under analysis appear not have

been persistently mispriced during our sample period, even though in the case of Baa corporate bonds,

some evidence of over-pricing surfaces after 2000.

5.4. Did Markets Expect Too Low REIT Returns?

As a last exercise aimed at testing whether our MFAPM may shed any light on the commonly held

conjecture that real estate (hence, REITs) may have been massively over-priced during portions of the

1980s and more recently of the period 2003-2006, we have proceeded in the following way. First, using

a projection model identical to (7) we have regressed the excess return on each asset onto a set of 

instrumental variables that proxy for available information at time , Z, to compute a time series of

conditional, time-varying expected excess returns as


→+1 = 0 +

X
=1

,

where the notation 
→+1 stresses that this represents the market expectation at time  for the excess

return between  and +1. The coefficients of this regression are estimated using Bayesian methods, which

means that instead of obtaining only a point estimate of 
→+1 in fact we can compute the posterior

24More generally, out of 20 portfolios, in 5 cases we find 0s with a posterior median that is uniformly positive over our

entire sample period (this occurs for non durables, energy, telecommunication, health, and utility stocks), although there are

other 9 portfolios (durables, high tech, retail, size deciles 1-6 stocks) for which the posterior means of the abnormal returns

are negative. In the remaining 6 cases, the mean 0 changes sign over time.
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density of 
→+1 over time.

25 Second, using the time series of posterior densities for both the portfolio-

specific factor risk exposures, {} for  = 1   and  = 0 , and of the risk premia, {} for
 = 0 , it is possible to compute the posterior density of the analogous, model-specific quantities:


→+1 = 0+1 +

X
=1

+1|

Because this test relies on posterior estimates for the risk premia and also as a way to provide a robustness

check to results reported in Section 5.3, in this case we use the macroeconomic factors directly, instead of

replicating them with mimicking portfolios. At this point our asset pricing framework implies that, given

a riskless rate applicable on the interval [ +1], when 
→+1  

→+1 the market will be discounting

cash flows from any asset or portfolio using a required (expected) rate higher than what our model implies:

as a result, the portfolio will appear to have been under-priced by the market, compared to what the risk

exposures for portfolio  and risk premia imply in our model. To the contrary, when 
→+1  

→+1

then the market will be discounting cash flows from any asset or portfolio using a required rate lower than

what our model implies: as a result, the portfolio will appear to have been over-priced by the market. As

a result, if the conjecture that REITs may have been over-priced by the market over specific periods of

time is correct, during these periods we ought to observe that, at least on average, 
→+1  

→+1 or


→+1 − 

→+1  0.

Figure 6 plots 5-year rolling window averages of the posterior median of the difference 
→+1 −


→+1 for the usual set of portfolios, starting with the 4 REIT portfolios. The rationale for using 5-year

moving averages is that in practice the posterior density of 
→+1 − 

→+1 turns out to be volatile

over time, to the point that although its sub-sample moments do reveal useful information on the issues we

are interested in, such variance interferes with the possibility to adequately visualize the results. To favor

comparisons, all series are plotted with reference to an identical vertical scale. Figure 6 gives results that

are largely consistent with Section 5.3: there is never strong evidence of over-pricing of REITs as an asset

class but to the contrary there are signs of a large and growing under-pricing of REITs as a result of the

steep market declines caused by the GFC between late 2007 and mid-2009 (the shaded period in the plots).

While equity REITs show a similar behavior (also because they dominate the NAREIT composite index),

mortgage REITs seem to have been prone to massive and persistent over-pricing, with peaks in the mid-

1990s and again in 2004-2005. Although such over-pricing seem to deflate already during 2006, the GFC

sweeps away the mispricing and by the end of our sample also mortgage REITs appear to be under-priced.

As far stocks are concerned, most industry portfolios share a similar dynamics, while stocks seem to be

the asset class subject to the most visible swings between over- and under-pricing. Most portfolios have

been largely over-priced in 1985-1986 and between 1997 and 2001, in correspondence to what has been now

dubbed the “dot-com” bubble; on the other hand, stock under-pricing prevailed in the late 1980s and early

1990s and ensues from the GFC, persisting at the end of our sample, in 2010. This oscillations extend

to size-sorted portfolios, although the size of the mispricing in this case is modest, apart from the end of

the sample, when all size-sorted portfolios appear to be under-valued. Finally, there is weaker evidence of

mispricing in bond returns, although 5-year Treasuries have been severely over-priced between 2003 and

2004, when the U.S. yield curve turned downward sloping in the midst of a powerful economic expansion

25Also in this case we employ uninformative priors.
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(the so-called “conundrum”). Interestingly, our portfolio of long-term Baa corporate bonds appears to have

never been severely mispriced.

6. Robustness Checks

We conclude with a few remarks on the main qualitative differences when estimation has been repeated

after changing a few of the choices that have driven our implementation. In general we have found modest

differences and this provides further support to the encouraging results revealed by Section 4 and 5. To save

space, we have not plotted or tabulated complete set of results, that remain available from the Authors.

6.1. Classical Fama-MacBeth Implementation

As explained in Section 2.3, our Bayesian implementation removes all kinds of generated regressor problems

that have plagued applications of Fama-MacBeth’s methods. In spite of the fact that our method appears

to be the only way in which all relevant (estimation) uncertainty may be taken into account, to see whether

our economic insights may be driven by this innovative choice, we have repeated the entire analysis by using

the simpler but traditional two-pass approach described in Section 2.2.26 GRT (2010) report extensively on

results from the Fama-MacBeth’s approach using similar data and samples. They remark that many time

series of rolling window betas turn out to be extremely volatile, almost erratic, and that in many situations

it is hard to provide any intuition for their sign or dynamics. Interestingly, our Bayesian estimates of the

loadings in Section 4.1 are considerably smoother than the classical, rolling window ones: even though (5)

formally allows the  to be subject to jumps over time, as a result of the realization of a latent binary

random variable, the resulting posterior densities are actually smooth.

In this Section we also comment on the results concerning the key question of this paper, i.e., whether

or not REITs may have been persistently mispriced during our sample. An inspection of 5-year rolling

window estimates obtained from Fama-MacBeth first stage regressions reveals a rather odd result: all the

27 portfolios used in our analysis display large and negative estimates of 0. The means over the entire

1980-2010 sample range from -0.5% per month in the case of 5-year government bonds to -4.9% in the

case of high tech stocks. Even taking into account the fact that the estimates are largely overlapping,

all the means appear to have been precisely estimated and negative. The ̂0s start out at very low

values (sometimes close to a stunning -20% per month) during the early 1980s, increase to zero between

the mid-1990s and the 2000s (depending on the portfolio considered), and in some cases (for most equity

portfolios and all the real estate ones) become positive between the late 1990s and 2005. Between 2006 and

2007 all ̂0s decline again and all return negative. The GFC has helped reabsorb only a small fraction

of such mispricing. This set of implications from the standard Fama-MacBeth procedure is implausible:

on average, over a long 30-year period, all the 27 portfolios would have been significantly over-priced,

and as a result their abnormal returns were negative: of course, a state of generalized, persistent and

significant over-pricing of all publicly traded assets in the U.S. is as shocking as implausible, in the light

of a widespread faith in the efficiency of U.S. capital markets. This makes the results in Figures 5 and 6

26For the sake of comparison, the methods described in Section 2.2 are augmented by a GARCH(1,1) model for shocks to

the linear factor model which wants to mimick the fact that our BTVSVM implementation has also exploited a stochastic

volatility component.
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all the more realistic as the adoption of an estimation strategy that explicitly accounts for instability and

breaks delivers stable and sensible estimates of both the priced components and of the mispricing.

6.2. Informative Priors

We have also experimented with an informative prior in the second pass in order to put some structure

(constraints) on the distribution and moments of the risk premia. These are now postulated to be normally

distributed with zero mean and variance such that there is 95% probability that annualized premia are

smaller in absolute value than the maximum return observed in the sample for all the assets. We record a

striking reduction in the variability of the estimated posterior distributions (as well as their medians) for

the risk premia relative to the baseline case. In any event, the qualitative results and insights from Table

2 are intact, and the only important change is that the 90% credibility intervals become now considerably

tighter. In essence, using informative priors on the premia which constraints their variability, we find both

less variable premia (so far the result has been built in the type of prior used) and economic implications

that encompass the second and third panels of Table 2: both real consumption growth and market risks

are important drivers of the cross section of U.S. returns, even though during the initial samples other

factors (term spread, unemployment, and the real short term rate) appear to have been priced.

7. Conclusions

We have used a rich multi-factor asset pricing model with time-varying risk exposures and prices of risk

to ask whether 30 years of monthly data on U.S. financial asset returns contain any evidence of persistent

mispricing of publicly traded real estate vehicles (REITs) during the 2003-2006 period leading up to the

GFC. Following Ouysse and Kohn (2010), we have implemented a novel Bayesian estimation approach in

which both risk exposures and risk premia are explicitly modeled as following a time-varying process and

that overcomes the well-known problems with the classical, two-pass approach advocated by Fama and

MacBeth (1973) and used in a substantive body of applied work in empirical finance.

Using an analysis of the posterior densities of coefficients that ought to capture mispricing in the linear

factor model, we report no evidence of strong or precisely estimated pricing anomalies at the aggregate,

composite REIT portfolios level. Interestingly, most of this mispricing comes not from equity REITs but

from mortgage REITs. In the latter case, it was particularly strong after 2001, which is somewhat consistent

with commonly heard stories of a “bubble” in the mortgage-financed U.S. residential market. This implies

some over-pricing of mortgage REITs that has gradually worsened between 2003 and 2007. As of the end

of our sample (December 2010), mortgage REITs did appear to remain somewhat over-priced while equity

REITs were fairly priced or even slightly under-priced. However, our model points to the existence of much

more severe and persistent mispricing episodes occurring elsewhere in the U.S. market: a number of stock

and bond portfolios seem to be subject to large swings in the mispricing measure. For instance, the risk to

which Baa corporate bonds are exposed seem to have been massively under-priced–as a result, corporate

bonds may have been largely over-priced–exactly over the period leading up to the GFC. In Section 5.4, we

have performed a related experiment: using a regression of excess returns on a set of instrumental variables

that proxy for available information to estimate market risk premia, we have compared such expectations
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with the time-varying risk premia implied by the MFAPM. When we analyze posterior medians for this

difference in risk-adjusted discount rates, we find that there is never strong evidence of over-pricing of

REITs as an asset class but to the contrary there are signs of large and growing under-pricing of REITs as

a result of the steep market declines caused by the GFC. Once more, mortgage REITs seem to have been

prone to massive and persistent over-pricing, with peaks in the mid-1990s and again in 2004-2005. Once

more, such dynamics for REITs is shared by most asset classes we have investigated.

Of course, it must be stressed that all these economic implications rely on an assumption that our

model has been correctly specified. On the one hand, the wide span of macroeconomic factors and of asset

classes used in the analysis and the flexible nature of the model, with explicitly time-varying risk exposures

and premia, do make us hopeful in this sense. On the other hand, it would be interesting both to further

fine-tune the standard, more traditional part of the model–such as the number of factors to be specified

as well as their nature and definition (such as the REIT cap rate, see e.g., Liu and Mei, 1992, or the use of

Fama-French factors in place of the macroeconomic variables employed in this paper, as in Peterson and

Hsieh, 1997)–and at the same time to work on the specific structure and assumptions appearing in (5) to

investigate whether our conclusions are robust to details of the framework. For instance, we have assumed

that idiosyncratic shocks are uncorrelated across assets, as typically MFAPMs do. However, Kleibergen

(2010) has argued that any factor structure that fails to be captured by the MFAPM and that remains

in the time-series residuals may cause spurious effects in cross-sectional regression used to estimate risk

premia. Even though our key tests have not relied on risk premia estimates, it would be interesting to

further fine tune the model to check whether the restrictions imposed hold. Up to this point, all the

available evidence confirms this conjecture.
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Appendix
The assumption of ² ≡ (1 2  )

0 ∼ (0 I) in (5) allows to estimate independently parame-

ters for each asset  = 1   . For the sake of brevity, we rewrite the model in (5) for each  as

 = 0 +

X
=1

 + 

 = −1 +   = 0 

ln(2 ) = ln(2−1) + 2  = 1  ,

where the subscription  has been omitted, ² ∼ (0 1), (η )
0 ∼ (0Q) with Q a diagonal matrix

characterized by the parameters 20 
2
1  

2
  

2
, and κ ≡ (0   2)

0 is a (2( + 2)× 1) vector
of unobserved uncorrelated 0/1 processes with Pr[ = 1] =  for  = 0  +1 and Pr[2 = 1] = 2.

The model parameters are the structural break probabilities π ≡ (0    2)0 and the vector of variances
of the break magnitude q2 ≡ (20 21  2  2). They are collected in a (2(+1)×1) vector θ ≡ (π0 (q2)0)0.

Independent conjugate priors are used to ease posterior simulation. Priors could differ across assets

 = 1   . For the break probability we assume simple Beta distributions,

 ∼ (  ) 2 ∼ (2  2 ) (16)

where the hyperparameters  and  ( = 0  + 1) reflect prior beliefs about the occurrence of breaks.

For the variance parameters the inverted Gamma-2 prior is chosen,

2 ∼ (  ) 2 ∼ ( ), (17)

where  expresses the strength of the prior mean.

For posterior simulation we run the Gibbs sampler in combination with the data augmentation technique

by Tanner and Wong (1987). The latent variables  = {}=1,  =
©
2
ª
=1

 and K = {}=1 are
simulated alongside the model parameters, θ. Define  = {}=1 and  =

n
{}=1

o
=1

= {}=1, the
complete data likelihood function is given by

(K |θ ) =

Y
=1

(|  2 )
Y
=0

(|−1  2 )×

(2 |2−1 2 2)
Y

=0



 (1− )

1−22 (1− 2)
1−2 

Combining the prior and the data likelihood, we obtain the posterior density

(K | ) ∝ ()(K | ) (18)

Defining K = {0  }=1 and K = {2}=1, the sampling scheme consists of the iterative steps:

1. Draw K conditional on Kθ,  and  .

2. Draw  conditional on Kθ,  and  .

3. Draw K conditional on Kθ,  and  .

4. Draw  conditional on Kθ ,  and  .
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5. Draw θ conditional on K,  and  .

The first step applies the efficient sampling algorithm of Gerlach, Carter and Kohn (2000), the main

advantage being drawing  without conditioning on the states , as Carter and Kohn (1994) instead

do. The conditional posterior density for ,  = 1   unconditional on  is:

(|K−K θ ) ∝ (|KK θ)(|K−θ)

∝ (+1 | +1 K θ)(|1−1  1−1 θ )(|K−θ)(19)

Gerlach, Carter and Kohn (2000) show how to evaluate the first two terms while the last one is obtained

from the prior. When K and  are highly dependent, the sampler of Carter and Kohn (1994) breaks

down completely: the higher the correlation (dependence), the bigger the efficiency gain. The latent process

for the betas is estimated by means of the forward-backward algorithm of Carter and Kohn (1994). K

and  are drawn in the same way as K and . To do so we follow Kim, Shepard and Chib (1998) and

approximate the log of a 2(1) distribution by means of a mixture of seven normals. In each iteration

of the Gibbs sampler we simulate a component of the mixture distribution in order to get a conditional

linear state space model for ln(2 ). Finally, θ is easily sampled as we use conjugate priors. We use a

burn-in period of 1,000 and draw 5,000 observations storing every other of them to simulate the posterior

distributions of parameters and latent variables. The resulting autocorrelations of the draws are very low.27

To estimate the cross section in (6) at each time  and for each draw of |−1 = (1|−1  |−1)
where each |−1 is a (( +1)× 1) vector and  is the total number of assets, we use natural conjugate

priors. In particular,

( 2) = (|2)× (2) (20)

where

(|2) ∼ ( 2 ) and (2) ∼ (


2
2
1

2
) (21)

Combining them with the data likelihood we obtain a joint posterior density with convenient analytical

form. The resulting marginal posterior distributions are

(|) ∼ ( 2  ) (2|) ∼ (


2
2
1

2
)

with

(|) =   (|) = 2

 − 2 (2|) = 2

 − 2  (2|) = (2)2

( − 2)2(
2
− 2)

where

 = ( −1 + ((0−1)−1  = ( −1 + ((0−1)−1( −1+ ((0−1̂)

where  =
©
|−1

ª
=2
,  = + and ̂ is the OLS estimate. Results are presented with two different sets

of priors. In the former case we are noninformative ( = 0 and  −1 = 0) and use the well known Jeffreys’
prior while in the latter case we impose some prior information. In more detail, we opted for a small

amount of strength ( = 5) supporting a prior view for premiums with zero mean and standard deviation

equal to a twelfth of the maximum absolute return observed in the sample. Finally, the prior residual

variance is centered at about 10, a value that appeared in the higher range of the maximum likelihood

estimates.

27In order to gain a rough idea of how well the chain mixes in our algorithm we follow Primiceri (2005) and check the

autocorrelation function of the draws.

28
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Table 1 
Summary Statistics for Financial and Macroeconomic Time Series Used in the Paper 

 

Mean Median Std. Dev. Sharpe Ratio Mean Median Std. Dev. Sharpe Ratio Mean Median Std. Dev. Sharpe Ratio

Non Durable Goods 1.206 1.250 4.311 0.194 1.656 1.390 4.686 0.244 0.824 1.115 3.821 0.144

Durable Goods 0.951 1.205 6.884 0.085 1.144 1.045 5.753 0.110 0.824 1.275 7.247 0.076

Manufacturing 1.133 1.485 5.076 0.151 1.325 1.610 4.789 0.170 1.034 1.365 4.983 0.153

Energy 1.203 1.040 5.271 0.159 1.241 1.285 4.567 0.160 1.180 0.990 5.492 0.165

High Tech 0.986 1.310 7.296 0.085 1.034 1.155 5.708 0.092 1.135 1.445 7.902 0.109

Telecommunications 0.941 1.435 5.335 0.108 1.520 1.835 4.393 0.230 0.590 1.155 5.637 0.056

Shops and Retail 1.066 1.315 5.207 0.134 1.329 1.315 5.502 0.149 0.758 1.140 4.712 0.103

Health 1.075 1.220 4.824 0.147 1.485 1.420 5.202 0.187 0.823 1.060 4.424 0.124

Utilities 0.961 1.315 4.044 0.147 1.209 1.145 3.427 0.204 0.757 1.315 4.316 0.112

Other 0.942 1.470 5.277 0.109 1.311 1.830 4.731 0.169 0.738 1.375 5.324 0.087

Decile 1 1.034 1.360 6.129 0.108 0.897 1.170 5.042 0.077 1.180 1.635 6.470 0.140

Decile 2 1.065 1.505 6.342 0.109 1.020 1.650 5.157 0.099 1.102 1.390 6.716 0.123

Decile 3 1.123 1.920 5.947 0.126 1.239 2.350 5.081 0.143 1.060 1.760 6.186 0.127

Decile 4 1.049 1.815 5.778 0.117 1.199 1.920 5.113 0.135 0.951 1.600 5.909 0.115

Decile 5 1.132 1.880 5.676 0.134 1.317 1.995 4.937 0.164 1.009 1.715 5.835 0.126

Decile 6 1.092 1.575 5.193 0.139 1.335 1.615 4.680 0.176 0.949 1.555 5.250 0.129

Decile 7 1.140 1.440 5.110 0.150 1.314 1.240 4.613 0.174 1.034 1.500 5.167 0.147

Decile 8 1.092 1.570 5.132 0.140 1.280 1.730 4.559 0.169 0.956 1.400 5.215 0.131

Decile 9 1.099 1.755 4.723 0.154 1.336 1.740 4.387 0.188 0.944 1.755 4.682 0.143

Decile 10 0.948 1.180 4.430 0.130 1.328 1.485 4.033 0.203 0.716 1.165 4.433 0.100

10‐Year Treasury Notes 0.700 0.726 1.793 0.183 0.806 0.826 1.267 0.234 0.570 0.593 1.730 0.171

5‐Year Treasury Notes 0.538 0.485 0.642 0.260 0.735 0.738 0.823 0.274 0.400 0.375 0.553 0.229

Baa Corporate Bonds (10‐20) 1.020 1.075 2.863 0.227 1.078 1.148 1.582 0.359 0.742 0.928 2.739 0.171

1‐month Treasury Bills 0.376 0.400 0.210 0.000 0.510 0.490 0.171 0.000 0.273 0.310 0.161 0.000

NAREIT ‐ Composite 0.889 1.167 4.906 0.106 0.788 0.655 3.114 0.089 0.983 1.591 5.668 0.125

NAREIT ‐ Equity TR 1.066 1.294 5.121 0.136 1.092 1.033 3.333 0.175 1.043 1.618 5.895 0.131

NAREIT ‐ Mortgage TR 0.530 0.986 5.550 0.029 0.401 0.514 3.744 ‐0.029 0.713 1.652 6.404 0.069

NAREIT ‐ Hybrid TR 0.398 0.907 5.619 0.005 0.690 0.563 3.679 0.049 0.332 1.277 6.387 0.009

Excess Value‐Weigted Market 0.589 1.045 4.566 0.129 0.740 1.030 4.127 0.179 0.520 1.155 4.595 0.113

Default Premium (annualized) 2.226 2.040 0.742 __ 1.984 1.920 0.407 __ 2.326 2.120 0.863 __

Change in Term Spread 0.000 0.000 0.058 __ ‐0.010 ‐0.025 0.728 __ 0.000 ‐0.001 0.045 __

Unexpected Inflation 0.007 0.004 0.316 __ 0.008 0.006 0.224 __ 0.011 0.005 0.353 __

Industrial Production Growth 0.209 0.246 0.631 __ 0.285 0.294 0.536 __ 0.185 0.237 0.668 __

Real Pers. Consumption Growth 0.230 0.238 0.552 __ 0.265 0.243 0.150 __ 0.209 0.220 0.467 __

Real 1‐month T‐Bill Returns 0.134 0.144 0.341 __ 0.219 0.217 0.239 __ 0.071 0.104 0.366 __

5Y Govt. Yield ‐ 1m T‐Bill (annual) 1.521 1.565 1.156 __ 2.028 2.155 1.028 __ 1.282 1.295 1.064 __

Yield Spread Baa ‐ Aaa (annualized) 0.487 0.515 1.163 __ 0.785 0.790 0.456 __ 0.331 0.310 1.130 __

Dividend Yield (annualized) 2.580 2.424 1.016 __ 3.417 3.315 0.640 __ 1.924 1.909 0.481 __

Real Estate Returns (Source: NAREIT and Dow Jones)

Economic Risk Variables (Source: FREDII and CRSP, Ibbotson)

Instrumental Variables (Source: FREDII, CRSP, Ibbotson via CRSP)

1980 ‐ 1992 1993‐2010

10 Industry Portfolios, Value‐Weighted (Source: CRSP, NYSE/AMEX/NASDAQ)

10 Size‐Sorted Portfolios, Value‐Weighted (Source: CRSP, NYSE/AMEX/NASDAQ)

Bond Returns (Source: FREDII, Ibbotson via CRSP)

1980 ‐ 2010
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Table 2 
Summary Statistics for Second-Pass Bayesian Posterior Estimates of Risk Premia Coefficients 

 
Average Std. Error t‐stat p‐value 5% CI Median 95% CI

Intercept (Avg. cross‐sectional abnormal returns) 0.393 2.644 2.866 0.004 ‐3.149 0.338 3.935

Market 1.198 4.974 4.640 0.000 ‐3.359 1.450 3.758

Default (credit) spread 0.045 2.139 0.408 0.683 ‐2.224 0.006 2.311

Term spread riskless yields 0.017 0.235 1.426 0.155 ‐0.290 0.016 0.322

(Unexpected) Inflation 0.072 1.075 1.291 0.197 ‐1.249 0.039 1.391

IP growth ‐0.117 2.402 ‐0.935 0.351 ‐2.965 ‐0.089 2.736

Real consumption growth 0.639 2.781 4.426 0.000 ‐3.141 0.447 4.006

Real Treasury Bill ‐0.056 0.836 ‐1.294 0.196 ‐0.969 ‐0.020 0.859

Intercept (Avg. cross‐sectional abnormal returns) 0.497 2.234 2.873 0.005 ‐2.770 0.484 3.741

Market 1.101 4.736 3.004 0.003 ‐3.152 1.442 3.368

Default (credit) spread 0.009 1.668 0.067 0.945 ‐1.710 0.009 1.727

Term spread riskless yields 0.021 0.234 1.168 0.245 ‐0.232 0.017 0.273

(Unexpected) Inflation ‐0.066 0.854 ‐0.995 0.321 ‐1.296 ‐0.067 1.164

IP growth ‐0.052 2.028 ‐0.330 0.742 ‐2.303 ‐0.060 2.210

Real consumption growth 0.674 2.422 3.595 0.001 ‐1.853 0.649 2.768

Real Treasury Bill 0.037 0.694 0.687 0.493 ‐0.788 0.094 0.861

Intercept (Avg. cross‐sectional abnormal returns) 0.309 2.940 1.501 0.135 ‐3.459 0.146 4.093

Market 1.278 5.170 3.530 0.001 ‐3.528 1.498 4.078

Default (credit) spread 0.075 2.463 0.437 0.662 ‐2.644 ‐0.017 2.790

Term spread riskless yields 0.014 0.237 0.866 0.387 ‐0.337 0.016 0.362

(Unexpected) Inflation 0.185 1.217 2.170 0.031 ‐1.211 0.137 1.577

IP growth ‐0.170 2.674 ‐0.906 0.366 ‐3.506 ‐0.206 3.167

Real consumption growth 0.611 3.049 2.860 0.005 ‐4.195 0.279 5.019

Real Treasury Bill ‐0.132 0.932 ‐2.029 0.044 ‐1.116 ‐0.063 0.856

Intercept (Avg. cross‐sectional abnormal returns) ‐0.814 4.076 ‐0.979 0.338 ‐6.133 ‐0.934 4.550

Market 0.754 5.170 0.715 0.482 ‐5.545 0.412 5.022

Default (credit) spread 0.492 3.068 0.786 0.440 ‐4.254 0.612 5.263

Term spread riskless yields 0.022 0.316 0.344 0.734 ‐0.504 0.049 0.539

(Unexpected) Inflation 0.394 1.743 1.106 0.280 ‐1.984 0.075 2.724

IP growth ‐0.536 4.901 ‐0.536 0.597 ‐6.216 ‐1.046 5.118

Real consumption growth 2.301 5.028 2.242 0.035 ‐7.039 1.636 10.704

Real Treasury Bill ‐0.019 0.819 ‐0.112 0.912 ‐1.679 0.011 1.663

Great Financial Crisis (2007‐2009)

Full Sample (1980‐2010)

1980‐1992

1993‐2010
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Table 3 
Variance Ratio Coefficients and Predictable Variation Decompositions from Bayesian Factor Model with Instability in Risk 

Exposures and Idiosyncratic Variance 
 

VR1 VR2 Market Chg. Credit Risk Prem. Chg. In Yield Curve Slope Unexp. Inflation IP Growth Real Cons. Growth Real T‐Bill Interaction Effects

Non Durable Goods 0.29 0.69 0.97 0.17 0.00 0.05 0.09 0.03 0.02 ‐0.39

Durable Goods 0.22 0.67 0.40 0.12 0.00 0.02 0.07 0.01 0.01 0.33

Manufacturing 0.42 0.58 1.02 0.00 0.01 0.01 0.01 0.02 0.00 ‐0.10

Energy 0.31 0.62 0.79 0.13 0.02 0.10 0.08 0.02 0.03 ‐0.25

High Tech 0.52 0.50 0.81 0.01 0.07 0.19 0.02 0.01 0.37 ‐0.51

Telecommunications 0.50 0.49 0.86 0.18 0.36 0.36 0.02 0.27 1.58 ‐2.78

Shops and Retail 0.21 0.68 0.84 0.28 0.01 0.06 0.02 0.03 0.02 ‐0.33

Health 0.22 0.73 0.45 0.13 0.26 0.09 0.14 0.02 0.48 ‐0.68

Utilities 0.20 0.68 1.31 0.86 0.43 0.03 0.43 0.05 0.04 ‐2.44

Other 0.16 0.70 1.00 0.01 0.02 0.08 0.01 0.02 0.03 ‐0.20

Decile 1 0.14 0.81 0.26 0.07 0.01 0.01 0.04 0.00 0.15 0.43

Decile 2 0.18 0.79 0.50 0.09 0.00 0.01 0.01 0.01 0.13 0.23

Decile 3 0.12 0.84 0.61 0.05 0.00 0.01 0.00 0.01 0.12 0.18

Decile 4 0.14 0.78 0.75 0.06 0.01 0.04 0.01 0.02 0.22 ‐0.15

Decile 5 0.16 0.86 0.86 0.02 0.02 0.02 0.01 0.02 0.11 ‐0.09

Decile 6 0.22 0.77 0.89 0.07 0.02 0.02 0.01 0.02 0.08 ‐0.13

Decile 7 0.96 0.10 0.81 0.02 0.01 0.03 0.01 0.02 0.07 0.02

Decile 8 0.92 0.11 0.94 0.02 0.03 0.04 0.02 0.03 0.09 ‐0.20

Decile 9 0.98 0.07 0.94 0.01 0.01 0.02 0.01 0.01 0.03 ‐0.04

Decile 10 0.40 0.62 1.10 0.01 0.01 0.02 0.01 0.02 0.05 ‐0.26

10‐Year Treasury Notes 0.68 0.35 0.07 0.74 0.24 0.03 0.47 0.07 0.25 ‐0.98

5‐Year Treasury Notes 0.77 0.22 0.06 1.04 0.01 0.19 0.09 0.10 1.26 ‐1.90

Baa Corporate Bonds (10‐20) 0.45 0.51 0.14 1.37 0.13 0.05 0.54 0.08 0.37 ‐1.82

NAREIT ‐ Composite 0.51 0.48 0.86 0.18 0.05 0.02 0.02 0.01 0.04 ‐0.28

NAREIT ‐ Equity TR 0.60 0.41 0.43 0.04 0.00 0.02 0.04 0.04 0.14 0.22

NAREIT ‐ Mortgage TR 0.56 0.46 0.76 0.53 0.08 0.04 0.03 0.03 0.22 ‐0.92

NAREIT ‐ Hybrid TR 0.71 0.37 0.91 0.21 0.19 0.07 0.05 0.03 0.06 ‐0.70

Real Estate Returns

Bond Returns

10 Industry Portfolios, Value‐Weighted

10 Size‐Sorted Portfolios, Value‐Weighted
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Figure 1 
Bayesian Posterior Medians and 90% Credibility Intervals for Beta Exposures:  

REIT Portfolios 
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Figure 1 (continued) 
Bayesian Posterior Medians and 90% Credibility Intervals for Beta Exposures:  

REIT Portfolios 
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Figure 2 
Bayesian Posterior Medians and 90% Credibility Intervals for Beta Exposures: Equity Industry Portfolios 
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Figure 2 (continued) 
Bayesian Posterior Medians and 90% Credibility Intervals for Beta Exposures: Equity Industry Portfolios 
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Figure 3 
Bayesian Posterior Medians and 90% Credibility Intervals for Beta Exposures:  

Size-Sorted Equity and Bond Portfolios 
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Figure 3 (continued) 
Bayesian Posterior Medians and 90% Credibility Intervals for Beta Exposures:  

Size-Sorted Equity and Bond Portfolios 
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Figure 4 
Bayesian Posterior Medians and 90% Credibility Intervals for Idiosyncratic Volatility 
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Figure 5 
Bayesian Posterior Medians and 90% Credibility Intervals for Jensen’s Alphas Estimates 
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Figure 6 
Difference Between Posterior Medians of Market- and Model-Implied Excess Asset Returns 
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