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On the Dual Approach to Recursive Optimization

Matthias Messner∗ Nicola Pavoni† Christopher Sleet‡

October 26, 2011

Abstract

We bring together the theories of duality and dynamic programming. We show

that the dual of an additively separable dynamic optimization problem can be recur-

sively decomposed using summaries of past Lagrange multipliers as state variables.

Analogous to the Bellman decomposition of the primal problem, we prove equality

of values and solution sets for recursive and sequential dual problems. In non-

additively separable settings, the equivalence of the recursive and sequential dual is

not guaranteed.

We relate recursive dual and recursive primal problems. If the Lagrangian asso-

ciated with a constrained optimization problem admits a saddle then, even in non-

additively separable settings, the values of the recursive dual and recursive primal

problems are equal. Additionally, the recursive dual method delivers necessary con-

ditions for a primal optimum. If the problem is strictly concave, the recursive dual

method delivers necessary and sufficient conditions for a primal optimum. When a

saddle exists, states on the optimal dual path are subdifferentials of the primal value

function evaluated at states on the optimal primal path and vice versa.

1 Introduction

Many dynamic economic optimization problems have a recursive structure and may be
solved via the application of dynamic programming techniques. The use of these tech-
niques has, consequently, become very widespread in economics. Dynamic incentive
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problems, an important class that includes optimal risk sharing, Ramsey taxation and
dynamic principal-agent problems, present special challenges for the dynamic program-
ming approach. First, although these problems often admit a recursive formulation it
is typically implicit. The elements of such a formulation, in particular, the state space
and constraint correspondence, must be recovered from the primitives of the problem.
Second, some candidate states may not be feasible. The "effective" state space of feasible
states is endogenous and must be derived as part of the solution to the problem. Third,
constraints often run across current shock realizations or involve expectations of future
variables. This complicates the recursive decomposition by raising the dimensionality of
state and/or choice variables.

The difficulties described above have prompted economists to adopt recursive meth-
ods that replace or supplement standard "primal" state variables with "dual" ones. Exam-
ples include, inter alia, Kydland and Prescott (1980), Kehoe and Perri (2002), Marimon
and Quadrini (2006), Acemoğlu, Golosov, and Tsyvinski (2010), Chien, Cole, and Lustig
(2011) and Aiyagari, Marcet, Sargent, and Seppälä (2002). Despite their widespread use,
thorough analysis of these methods is limited and their application has often been ad
hoc. In this paper, we systematically develop a new recursive dual approach to dynamic
optimization. This approach blends elements of the theories of duality and dynamic
programming. Recall that a dynamic or sequential (primal) optimization may be for-
mulated in terms of a Lagrangian as sup

a
inf

λ
L (a; λ), where a stands for a sequence of

control variables and λ for a sequence of Lagrange multipliers attached to constraints.
The order of the supremum and infimum operations is important. By interchanging
them the dual problem inf

λ
sup

a
L (a; λ) is obtained. Our dual recursive method (DRM)

pairs a primal problem with its dual and then seeks a recursive formulation of the latter.
Our approach is in certain respects simpler than the well known recursive saddle point
method of Marcet and Marimon (1999) (revised: Marcet and Marimon (2011)) and im-
proves upon it by giving optimal primal values and necessary conditions for optimal
primal solutions in a larger class of problems.

Three main sets of results underpin our approach. The first relates recursive dual
to sequential dual problems; the second relates sequential dual to sequential primal
problems. In combination these results tie recursive dual to sequential primal problems.
Our method uses the former to solve the latter. The third set of results elaborates the
connections between recursive primal and dual problems and gives perspective on the
value of the recursive dual approach.

1. Recursive decomposition of the sequential dual. Recall that appropriate separability
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assumptions on the objective and constraint functions of a sequential (primal) op-
timization allow it to be recursively decomposed and, hence, solved via the appli-
cation of dynamic programming techniques. Under these assumptions, the opti-
mal values from the sequential and recursive problems coincide and the solutions
generated by the recursive problem’s policy functions solve the sequential prob-
lem. The most common form of separability found in economic applications is
(intertemporal and interstate) additive separability. However, the approach can be
extended to accommodate other, weaker forms of separability.

We show that sequential dual problems also admit recursive decompositions and
can be solved with dynamic programming whenever the underlying objective and
constraint functions are additively separable. Thus, recursive and sequential dual
problems with the same optimal values and solution sets are available in many
standard economic settings.1 However, outside of the additive case, equivalence
between sequential and recursive dual problems breaks down. The reason is sub-
tle. In moving from the sequential to the recursive dual, a conditional infimum and
a supremum operation must be interchanged. The former involves a future multi-
plier, the latter a current primal variable. If the objective, in this case a "conditional"
Lagrangian, allows the infimum and supremum operations to be decoupled, then
optimal values and solutions are preserved by the interchange. Additive separabil-
ity is sufficient for this decoupling, weaker separability assumptions are not. The
inf-sup interchange preserves optimal values in non-additively separable problems
if the conditional Lagrangian objective admits a saddle point.2 In this case, the
recursive and sequential dual problems give the same optimal value and the latter
gives necessary conditions for the solutions of the former.

2. Relationship between the sequential problems. The relationship between the sequential
dual and primal also involves an interchange of infimum and supremum opera-
tions. In this case, all inf-sup operations associated with the sequential problem’s
Lagrangian are involved in the interchange (and not just a component of them).
If the sequential Lagrangian admits a saddle point, then the optimal values from
the sequential dual and primal coincide and the sequential dual gives necessary,
but not sufficient, conditions for an optimal primal solution. Combining results,
the recursive dual also gives the optimal primal value and necessary conditions for
an optimal primal solution. We emphasize that this relation between the recursive

1For example, many settings considered in Stokey, Lucas, and Prescott (1989).
2If the sequential dual problem admits a solution, then additive separability ensures the existence of

such conditional saddle points.
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dual and the primal problem requires the existence of a saddle only in the sequen-
tial problem and not in all sub-problems and after all histories. The latter condition
is used in other analyses and is much stronger. Existence of a saddle point does
not guarantee that the dual problem delivers sufficient conditions for optimality.3

Sufficiency can be obtained by imposing stronger concavity assumptions on the
optimization problem.

3. Duality between recursive problems. Our third set of results identifies additional rela-
tions between primal and dual value functions and state variables. We show that
if the sequential Lagrangian admits a saddle, then along the optimal path, dual
(resp. primal) state variables are sub-differentials of the primal (resp. dual) value
function. In addition, under the same assumption, modulo sign changes and again
on the optimal path, the dual value function equals the conjugate of the primal
value function.4 To the best of our knowledge no comparable results have been
shown in the existing literature. The duality relations that we prove, are useful for
understanding the practical merits of the recursive dual and primal approaches.
The two approaches place the problem on different state spaces. In many dynamic
contracting settings, the natural primal state space is an awkward endogenous set,
but the dual state space (the set of primal sub-differentials) is a simple set that is
easily predetermined.

In addition, we note a further duality between primal and dual state variables. It is
often useful to classify state variables as "backward-looking" or "forward-looking",
where the former are given as functions of an initial state and past controls and
the latter are given as functions of a terminal state and future controls. We show
that the dual counterparts of backward-looking primal state variables are forward-
looking and vice versa.

We pursue our main ideas in an abstract, but simple two period setting that encom-
passes many concrete economic applications. The restriction to two periods allows us to
express our key duality results in a transparent way, while avoiding technicalities and
the more complicated notation that arises in infinite horizon settings.5

3 Messner and Pavoni (2004) show that also the recursive saddle point method proposed by Marcet and
Marimon (1999) suffers from the same lack of sufficiency even when the sequential Lagrangian admits a
saddle. For a more detailed discussion of the relationship between our method and the recursive saddle
point method please see Section 7

4The conjugate of a function f : Rn → R is given by f ? : Rn → R, where f ?(x?) = sup
Rn〈x, x∗〉 − f (x).

5The technicalities relate to the choice of dual and candidate value function spaces. See Messner,
Pavoni, and Sleet (2011) for further analysis of infinite period problems.
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The paper proceeds as follows. After a brief review of the literature, Section 2 sum-
marizes basic notions of duality and dynamic programming. Section 3 is the core of the
paper. In Subsection 3.1, a two period additive framework is laid out that accommodates
many economic problems. In this context, a primal sequential optimization is defined.
Subsection 3.2 shows how primal states are determined, provides a recursive primal
formulation and establishes a primal Bellman-type principle of optimality. Sequential
and recursive dual problems are introduced in Subsection 3.3 and a dual version of Bell-
man’s optimality principle is given that relates them. The relation between the sequential
primal and sequential dual problems and, hence, between the sequential primal and re-
cursive dual problems is developed in Subsections 3.3 and 3.4. Section 4 extends the
analysis to cover families of problems parameterized by initial and terminal conditions
for states, while Section 5 gives applications to economic growth and contracting with
limited commitment. Section 6 turns to non-additively separable problems and does so
in the context of a concrete dynamic moral hazard application. Section 7 gives a detailed
comparison of our approach with that of Marcet and Marimon (1999).

Literature In a seminal contribution, Marcet and Marimon (1999) (revised: Marcet and
Marimon (2011)) proposed solving dynamic optimizations by recursively decomposing
the saddle operation: saddle(a|λ) L (a, λ) = L (a∗, λ∗), with a∗ = argmaxa L (a, λ∗) and
λ∗ = argminλ L (a∗, λ). Under this operation, the minimization and maximization steps
are done in parallel rather than in sequence making the decomposition of the saddle
less direct and more delicate than the decomposition of the dual. As a consequence,
Marcet and Marimon (1999) need to impose stronger assumptions in order to derive
their central results, than we have to under our approach. More specifically, the main
differences between our paper and theirs can be summarized as follows:

i) In order for the recursive saddle point method to be well posed, the optimization
problem has to admit a saddle point after every history. The recursive dual problem
is well defined independently of any saddle point considerations. Moreover, none
of our results require more than the existence of a saddle at the initial history.

ii) We obtain necessity (every solution of the underlying optimization problem can
be generated by the policy of the recursive dual problem) without imposing any
assumptions beyond existence of an initial saddle. On top of the stronger saddle
requirements, Marcet and Marimon (2011) also assume that the underlying opti-
mization problem has a unique solution in order to prove necessity.6

6See Corollary 3.1 of Marcet and Marimon (2011).
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iii) They use a mixture of primal and dual state variables, whereas we use one or the
other. The use of mixed state variables allows them to handle some non-additive
separabilities. We analyze dynamic moral hazard problems, an important class of
non-additively separable contracting problem not considered by Marcet and Mari-
mon (1999), and show how they can be handled via the recursive dual approach.7

Section 7 further elaborates the distinctions between the recursive saddle and dual ap-
proaches.

Messner, Pavoni, and Sleet (2011) develop a recursive approach related to that con-
sidered here. In contrast to this paper, in which the primal problem is first "dualized"
and then "recursivized", in Messner, Pavoni, and Sleet (2011) these roles are reversed.
A recursive primal problem is paired with a recursive dual problem. Messner, Pavoni,
and Sleet (2011) focus on infinite horizon problems and establish a duality between pri-
mal and dual value iteration. Cole and Kubler (2010) show how dual variables may be
used to summarize histories in a recursive primal problem (in which "sup-inf" opera-
tions are performed at each step). They show how such a method may be extended to
give sufficient conditions for an optimal primal solution without making strict concavity
assumptions as are needed here and in Marcet and Marimon (1999).

2 Background Theory

This section collects basic results from the theories of duality and dynamic program-
ming. These results underpin the subsequent analysis. Our account draws mainly on
Rockafellar (1970) and Borwein and Lewis (2006).

2.1 Duality

The Lagrangian and the primal problem. Consider the optimization:

sup f (a) (1a)

s.t. a ∈ A and g(a) ≥ 0, (1b)

where A ⊂ Rn, f : A → R and g : A → R
m. Let V∗ denote the optimal value from

problem (1) and A∗ its solution set. We associate the Lagrangian L : A×Λ → R, with

7However, see Mele (2010) for an heuristic attempt to extend the recursive saddle point method to
dynamic moral hazard settings.
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the problem, where Λ := Rm
+,

L (a, λ) := f (a) + λ · g(a), (2)

and λ · g(a) is the dot product of λ and g(a). Since

inf
Λ

L (a, λ) =

 f (a) if g(a) ≥ 0

−∞ otherwise,

it follows that (1) is equivalent to the following ‘infinite penalization’ problem:

sup
A

inf
Λ

L (a, λ). (3)

Specifically, A∗ = ASI := argmaxA infΛ L (a, λ) (SI=‘sup inf’) and V∗ = supA infΛ L (a, λ).

The Lagrangian and the dual problem. The ‘dual’ problem to (3) is defined by inter-
changing the supremum and infimum operations:

inf
Λ

sup
A

L (a, λ). (4)

Denote the optimal value of the dual by W∗ and its solution set by ΛIS := argmin Λ supA

L (a, λ) (IS=‘inf sup’). In addition, for each λ ∈ Λ, let AIS (λ) := argmaxA L (a, λ) be
the set of conditional maximizers and let AIS := ∪λ∈ΛIS AIS(λ).

The ordering of the sup and inf operations matters. By classical weak duality, the
dual value W∗ weakly exceeds the primal value V∗.8 However, it may strictly exceed it
in which case there is said to be a duality gap. In such situations, the dual problem is of
limited use in characterizing the primal; the dual solution set AIS may even be disjoint
from A∗(= ASI). Existence of a saddle point for the Lagrangian provides a sufficient
condition for the absence of a duality gap.

Definition 1 (Saddle Point). A point (â, λ̂) ∈ A×Λ is a saddle point of the Lagrangian
L : A×Λ→ R if:

L (a, λ̂) ≤ L (â, λ̂) ≤ L (â, λ) for all a ∈ A, λ ∈ Λ. (5)

Proposition 1. A pair (â, λ̂) is a saddle point of L if and only if â ∈ ASI , λ̂ ∈ ΛIS, and

8See, for example, Rockafellar (1970).
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V∗ = W∗ = L (â, λ̂). Also, if L admits a saddle point, then A∗ = ASI ⊂ AIS(λ̂) for each
λ̂ ∈ ΛIS.

Proof. See, for example, Rockafellar (1970).

Proposition 1 implies that if a saddle exists, then the dual and primal problems have
the same optimal value and the dual problem gives necessary conditions for the primal
solution set A∗. Specifically, in this case, for any multiplier λ̂ that attains the minimum
in the dual, all primal solutions â ∈ A∗ belong to AIS(λ̂) and solve the maximization
maxA L (a, λ̂). However, absent furher assumptions we cannot rule out that the inclusion
A∗ ⊂ AIS(λ̂) is strict and that AIS(λ̂) contains elements that do not solve (and may not
even be feasible for) the primal problem. Thus, even if a saddle exists, the dual problem
(4) may not give sufficient conditions for a primal solution.
Optimization and Conjugate Duality. Relations between primal and dual optimizations
can be expressed in terms of conjugate functions. The (Fenchel) conjugate of f : Rn →
[−∞, ∞] is given by f ? : Rn → [−∞, ∞], where:

f ? (λ) := sup
Rn
{λ · x− f (x)} . (6)

The function f ?? = ( f ?)? is called the biconjugate of f . The sub-differential of a function
f : Rn → R at the point x̄ is given by:

∂ f (x̄) = {λ ∈ Rn|∀x ∈ Rn, f (x) ≥ f (x̄) + λ · (x− x̄)}.

In the paper, we make use of the following duality between the sub-differentials of
functions and their conjugates.

Proposition 2. Let f : Rn → [−∞, ∞]. If λ̄ ∈ ∂ f (x̄) then x̄ ∈ ∂ f ?(λ̄).

Proof. See Rockafellar (1970).

Consider the parametrized problem,

sup
A

f (a) s.t. g(a) ≥ b,

where b ∈ Rm. Let −P(b) denote the optimal value for this problem so that V∗ = −P (0) .
In addition, let D(λ) = supA L (a, λ).
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Proposition 3. The conjugate of the function P satisfies:

P? (λ) =

{
D (λ) if λ ∈ Λ;
+∞ otherwise.

Also, −W∗ = P?? (0). Hence, W∗ = V∗ and there is no duality gap if and only if P(0) =

P??(0).

Proof. See Rockafellar (1970).

Notice that Proposition 3 does not use convexity. Since the biconjugate of a function
is its convex, lower semicontinuous regularization, conditions that ensure the convexity
and lower semicontinuity of P globally are sufficient, but not necessary for primal and
dual values to coincide. Our final result links the existence of saddle points to the sub-
differentiability of the value function P.

Proposition 4. Suppose the optimization problem (1) has a solution and, hence, a finite value V∗.
Then the Lagrangian L admits a saddle point if and only if ∂P(0) is non-empty. In particular,
for any given â ∈ A∗, λ̂ ∈ Λ solves infλ L (â, λ) if and only if λ̂ ∈ ∂P(0).

Proof. See Rockafellar (1970).

Again Proposition 4 does not require explicit convexity assumptions.

2.2 Pre-Bellman Principle of Optimality

Duality theory handles mixed combinations of supremum and infimum operations. It
implies that only under specific conditions are optimal values and solutions preserved
by the interchange of these operations. On the other hand, as the following result shows,
optimal values and solutions are unaffected by the interchange and recombination of the
same type of operation.9

Proposition 5 (Pre-Bellman Optimality Principle). Let f : B → R, where B ⊂ A1 × A2,
then:

sup
(a1,a2)∈B

f (a1, a2) = sup
a1∈B1

{
sup

a2∈B2(a1)

f (a1, a2)

}
= sup

a2∈B2

{
sup

a1∈B1(a2)

f (a1, a2)

}
,

9We give the supremum version, evidently an infimum version is available.
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where B1 = {a1 ∈ A1|∃a2 with (a1, a2) ∈ B} and B1(a2) = {a1 ∈ A1|(a1, a2) ∈ B} and
similarly for B2 and B2(a1). If (a∗1 , a∗) attains the supremum (or suprema) in any one of the
above problems, then it does in the other two.

Given the elementary nature of the result, we omit the proof. Note that Proposition 5
does not assume and makes no use of any separability in the objective and constraints.
More refined versions of the result that do are given later in the paper.

3 The Recursive Dual Approach in Additive Settings

This section introduces the recursive dual approach to optimization. It does so in an
additively separable setting that accommodates many economic applications. Extensions
of our method to environments featuring weaker forms of separability are considered
later in Section 6. The main conceptual ideas underpinning the recursive dual method
are fully captured in a two period framework. To make the analysis and exposition as
transparent as possible we adopt such a framework.10

3.1 The Additive Model

We impose an additive structure on the problem:

sup{ f (a)|a ∈ A and g(a) ≥ 0}. (7)

First, assume that A is a non-empty product set with A = A1× A2 and At ⊂ Rnt , t = 1, 2.
We interpret t as a time index and problem (7) as dynamic. Second, let the objective
function be given by f : A → R, where f (a1, a2) = f1(a1) + f2(a2) and ft : At → R. Let
the constraint function g : A→ R

k1+k2 satisfy:

g (a) =

[
g1 (a1) + c1 ·m (a2)

c2 · l (a1) + g2 (a2)

]
, (8)

10We also do not make stochastic elements of the model explicit. Insofar as there is separability of
functions defining the model across shock realizations, additional opportunities for decomposition and
the recursive dual method are created.
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with gt : At → R
kt , m : A2 → R

r1 and l : A1 → R
r2 . The range indices are assumed to

satisfy rt < min(kt, nt) with ct a matrix of dimension kt× rt, t = 1, 2. Problem (7) is then:

V∗ = sup
A1×A2

f1 (a1) + f2 (a2) (9)

s.t.
g1 (a1) + c1 ·m (a2) ≥ 0

c2 · l (a1) + g2 (a2) ≥ 0.

Henceforth, we refer to (9) as the sequential primal problem. We assume throughout that
(9) has a non-empty constraint set and associate with it the Lagrangian L : A×Λ→ R,
Λ = Rk1

+ ×R
k2
+ , where:

L (a, λ) := f1 (a1) + f2 (a2) + λ1 · [g1 (a1) + c1 ·m (a2)] + λ2 · [c2 · l (a1) + g2 (a2)] . (10)

From the discussion in Subsection 2.1, the sequential primal problem (9) is equivalent
to:

V∗ = sup
A

inf
Λ

L (a, λ). (11)

3.2 The recursive primal problem.

We present the recursive primal approach in a form that brings out its symmetry with
the recursive dual approach. The former approach decomposes the sequential problem
(9) into first and second period sub-problems. The decomposition involves breaking the
constraints in (8) into components that are expressed in terms of and linked by state
variables. Component constraints are allocated to periods and used to define the sub-
problems. For practical computational reasons, it is useful to choose a decomposition
that minimizes the dimension of the state variables. Since elements of Y := m(A2) have
lower dimension than elements of g1(A1) or A2 and elements of X := l(A1) have lower
dimension than elements of g2(A2) or A1, X and Y are natural candidate state spaces.

Using the state spaces X and Y, the sequential problem (9) can be decomposed as:

V1 := sup
A1×X×Y

f1 (a1) + V2 (x, y) (12)

s.t. g1 (a1) + c1 · y ≥ 0; x = l (a1) ,

11



where

V2 (x, y) := sup
A2

f2 (a2) (13)

s.t. g2 (a2) + c2 · x ≥ 0; y = m (a2) ,

and the convention sup ∅ = −∞ is used.

Remark 1. The terms "backward" and "forward-looking" state variable are often used
informally in economics. We define a state variable as backward-looking if it is given as
a function of past choices and forward-looking if it is given as a function of future ones.
Thus, x is backward-looking and y forward-looking. In economic contexts, if capital is
given as a function of past investments we would label it backward-looking, if a utility
promise from a principal to an agent is a function of future rewards to the agent, we
would label it forward-looking.11 �

For the purposes of comparison with the recursive dual method, it is useful to give a
restatement of the recursive primal problem in terms of sup-inf operations:

V1 = sup
A1×X×Y

inf
Λ1

f1 (a1) + λ1 · (g1 (a1) + c1 · y) + V2 (x, y) (14)

s.t. x = l (a1)

and:

V2 (x, y) = sup
A2

inf
Λ2

f2 (a2) + λ2 · (c2 · x + g2 (a2))

s.t. y = m (a2) ,

where Λt := Rkt
+, t = 1, 2. Let Γ1 ⊂ A1 × X×Y×Λ1, with

Γ1 :=

{
(a∗1 , x∗, y∗, λ∗1) ∈ A1 × X×Y×Λ1 : V1 = f1 (a∗1) + V2 (x∗, y∗) , x∗ = l (a∗1) ,
and λ∗1 ∈ argminΛ1

f1 (a∗1) + λ1 · [g1 (a∗1) + c1 · y∗] + V2 (x∗, y∗)

}
,

11However, the labels should be used with care. In some settings a variable could be classified as both
forward and backward; in others, the classification of the same economic concept might depend on the
exact specification of the problem. In these situations the nomenclature of backwards and forwards may
not be very helpful. However, when it is we use it.
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and Γ2 : X×Y → 2A2×Λ2 , with

Γ2 (x, y) :=

{
(a∗2 , λ∗2) ∈ A2 ×Λ2 : V2 (x, y) = f2 (a∗2) , y = m (a∗2) ,
and λ∗2 ∈ argminΛ2

f2 (a∗2) + λ2 · [c2 · x + g2 (a∗2)]

}
,

denote the optimal policy set and correspondence associated with (14). Note that our
definition of optimal policies includes the minimizing Lagrange multipliers λ∗1 and λ∗2 .
Their inclusion again emphasizes the symmetry between the recursive primal and dual
approaches and, as we show below, is essential for the latter. The equivalence of the
recursive and sequential primal problems is proved next. Recall that we denote the solu-
tion set of the sequential primal problem (11) by ASI and the set of Lagrange multipliers
that solve minΛ L (a∗, λ), a∗ ∈ ASI , by ΛSI(a∗).

Proposition 6 (Bellman (1957)). 1. V1 = V∗.

2. If (a∗1 , a∗2) ∈ ASI and λ∗ ∈ ΛSI(a∗), then there exist x∗ ∈ X and y∗ ∈ Y such that
(a∗1 , x∗, y∗, λ∗1) ∈ Γ1 and (a∗2 , λ∗2) ∈ Γ2(x∗, y∗). Conversely, if (a∗1 , x∗, y∗, λ∗1) ∈ Γ1 and
(a∗2 , λ∗2) ∈ Γ2(x∗, y∗), then (a∗1 , a∗2) ∈ ASI and (λ∗1 , λ∗2) ∈ ΛSI(a∗1 , a∗2).

Proof. See Appendix.

The proposition asserts that the sequential and recursive primal values coincide, that
any selection from the recursive policy correspondence solves the sequential problem
and that any solution to the sequential problem corresponds to a selection from the
recursive policy correspondence.

3.3 The recursive dual approach

The sequential dual problem associated with (9) interchanges the sup and inf operations.
It is:

W∗ := inf
Λ

sup
A

L (a, λ)

= inf
Λ

sup
A

f1(a1) + f2(a2) + λ1[g1(a1) + c1 ·m(a2)] + λ2[c2 · l(a1) + g2(a2)]. (15)
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By rearranging the Lagrangian terms involving first period choices a1 can be separated
from those involving future choices a2:12

W∗ = inf
Λ

sup
A

f1 (a1)+λ1 · g1 (a1)+λ2 · c2 · l (a1)+ [ f2 (a2) + λ1 · c1 ·m (a2) + λ2 · g2 (a2)] .

To proceed with the recursive decomposition of (15), we introduce a pair of dual state
variables, µ ∈ M := {λ1 · c1|λ1 ∈ Λ1} ⊂ Rr1 and φ ∈ F := {λ2 · c2|λ2 ∈ Λ2} ⊂ Rr2 .
µ summarizes aspects of the first period multiplier λ1 that are relevant for the second
period problem (i.e. the weight λ1 · c1 on m(a2)), while φ summarizes aspects of the
second period multiplier λ2 that are relevant for the first period problem (i.e. the weight
λ2 · c2 on l(a1)). Since µ summarizes the multiplier history and φ the future multiplier
path, we refer to them as backward and forward-looking respectively.

Using these states the sequential dual problem (15) can be decomposed as follows.

Proposition 7. Let:

W1 := inf
Λ1×M×F

sup
A1

f1 (a1) + λ1 · g1 (a1) + φ · l (a1) + W2 (µ, φ) (16)

s.t. µ = λ1 · c1.

where W2 : M× F → R is given by:

W2 (µ, φ) := inf
Λ2

sup
A2

f2 (a2) + µ ·m (a2) + λ2 · g2 (a2) (17)

s.t. φ = λ2 · c2.

Then W∗ = W1.

Proof. Define Gr M = {(λ1, µ)|λ1 ∈ Λ1, µ = λ1 · c1} and Λ2(φ) = {λ2 ∈ Λ2 : φ = λ2 · c2}.
12This rearrangement is innocuous in the present finite dimensional setting. In infinite dimensional

settings additional ‘regularity’ conditions are required.
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Then:

W∗ = inf
Λ

sup
A
{ f1 (a1) + λ1 · g1 (a1) + λ2 · c2 · l (a1) + [ f2 (a2) + λ1 · c1 ·m (a2) + λ2 · g2 (a2)]}

= inf
Gr M×F

inf
Λ2(φ)

sup
A
{ f1 (a1) + λ1 · g1 (a1) + φ · l (a1) + f2 (a2) + µ ·m (a2) + λ2 · g2 (a2)}

= inf
Gr M×F

inf
Λ2(φ)

sup
A1

{
f1 (a1) + λ1 · g1 (a1) + φ · l (a1)

+ sup
A2

{ f2 (a2) + µ ·m (a2) + λ2 · g2 (a2)}
}

= inf
Gr M×F

sup
A1

{
f1 (a1) + λ1 · g1 (a1) + φ · l (a1)

+ inf
Λ2(φ)

sup
A2

{ f2 (a2) + µ ·m (a2) + λ2 · g2 (a2)}
}

= inf
Gr M×F

sup
A1

{ f1 (a1) + λ1 · g1 (a1) + λ2 · l (a1) + W2 (µ, φ)} = W1.

The first equality follows from the definition of W∗, the second from the definitions of
Gr M, µ, φ and the decomposition properties of the infimum operation and the third
from the decomposition properties of the supremum operation (see Proposition 5). The
fourth row interchanges the infimum operation over λ2 conditional on φ with the supre-
mum operation over a1. The fourth equality stems from the fact that the choice of a1 is
independent of λ2 given φ. The fifth equality follows from the definition of W2 and the
sixth from the definition of W1.

Remark 2. Proposition 7 is the dual analogue of the first part of Proposition 6. Notice
that in the fourth of the sequence of equalities in the proof, a conditional infimum op-
eration over λ2 is interchanged with a supremum operation over a1. Defining for all
(a1, λ2) ∈ A1 × Λ2, H(a1) := f1 (a1) + λ1 · g1 (a1) + φ · l (a1), Q(λ2) := supA2

{ f2 (a2) +

µ · m (a2) + λ2 · g2 (a2)} and M (a1, λ2) = H(a1) + Q(λ2) and inspecting the proof, we
see that this interchange replaces: infΛ2(φ)

supA1
M (a1, λ2) with supA1

infΛ2(φ)
M (a1, λ2).

This is permissible because the conditional objective M is additively separable in a1 and
λ2 enabling the infimum and supremum operations to be fully decoupled:

inf
Λ2(φ)

sup
A1

M (a1, λ2) = sup
A1

H(a1) + inf
Λ2(φ)

Q(λ2) = sup
A1

inf
Λ2(φ)

M (a1, λ2).

Of course, if a∗1 ∈ argmaxA1
H(a1) and λ∗2 ∈ argminΛ2(φ)

Q(λ2), then (a∗1 , λ∗2) is a saddle
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point of M on A1×Λ2(φ). In fact, a∗1 ∈ argmaxA1
M (a1, λ2) for all λ2 ∈ Λ2(φ) (and not

just for λ∗2) and λ∗2 ∈ argminΛ2(φ)
M (a1, λ2) for all a1 ∈ A1 (and not just for a∗1). We do

not need an explicit saddle point assumption or convexity conditions on the functions
used to construct M to undertake the inf-sup interchange. �

We define the dual policy correspondences as follows:

Γ̂1 :=



(λ̂1,µ̂, φ̂, â1) ∈ Λ1 ×M× F× A1|
W1 = f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + W2

(
µ̂, φ̂

)
,

µ̂ = λ̂1 · c1

â1 ∈ argmax
A1

f1 (a1) + λ̂1 · g1 (a1) + φ̂ · l (a1) + W2
(
µ̂, φ̂

)


and

Γ̂2 (µ, φ) :=


(
λ̂2, â2

)
∈ Λ2 × A2|

W2 (µ, φ) = f2 (â2) + µ ·m (â2) + λ̂2 · g2 (â2) , φ = λ̂2 · c2,

â2 ∈ argmax
A2

f2 (a2) + µ ·m (a2) + λ̂2 · g2 (a2)

 .

Recall that ΛIS is the solution set of the sequential dual problem. For every λ ∈ ΛIS,
let AIS(λ) denote the set of controls that solve the problem supA L (a, λ). The next result
is the dual analogue of the second part of Proposition 6.

Proposition 8. If λ̂ = (λ̂1, λ̂2) ∈ ΛIS and (â1, â2) ∈ AIS(λ̂) then there are values µ̂ and φ̂

such that (λ̂1, µ̂, φ̂, â1) ∈ Γ̂1 and (λ̂2, â2) ∈ Γ̂2(µ̂, φ̂). Conversely, if (λ̂1, µ̂, φ̂, â1) ∈ Γ̂1 and
(λ̂2, â2) ∈ Γ̂2(µ̂, φ̂), then λ̂ ∈ ΛIS and â ∈ AIS(λ̂).

Proof. Suppose that λ̂ = (λ̂1, λ̂2) ∈ ΛIS and â = (â1, â2) ∈ AIS(λ̂). Let µ̂ = λ̂1 · c1 and
φ̂ = λ̂2 · c2. Since â ∈ AIS, we have that:

â ∈ argmax
A

{
f1 (a1) + λ̂1 · g1 (a1) + λ̂2 · c2 · l (a1) + f2 (a2) + λ̂1 · c1 ·m (a2) + λ̂2 · g2 (a2)

}
= argmax

A

{
f1 (a1) + λ̂1 · g1 (a1) + φ̂ · l (a1) + f2 (a2) + µ̂ ·m (a2) + λ̂2 · g2 (a2)

}
.

Since the objective is additively separable in a1 and a2, we have, using the definition of
W2,

â1 ∈ argmax
A1

f1(a1) + λ̂1 · g1(a1) + φ̂ · l(a1) + W2(µ̂, φ̂)
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and,

â2 ∈ argmax
A2

f2(a2) + µ̂ ·m(a2) + λ̂2 · g2(a2).

Also,

W1 = W∗

= f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + f2 (â2) + µ̂ ·m (â2) + λ̂2 · g2 (â2)

= f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + sup
A2

{
f2 (a2) + µ̂ ·m (a2) + λ̂2 · g2 (a2)

}
≥ f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + inf

Λ(φ̂)

sup
A2

{ f2 (a2) + µ̂ ·m (a2) + λ2 · g2 (a2)}

= f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + W2(µ̂, φ̂)

= sup
A1

f1 (a1) + λ̂1 · g1 (a1) + φ̂ · l (a1) + W2(µ̂, φ̂)

≥ inf
Gr M×F

sup
A1

f1 (a1) + λ̂1 · g1 (a1) + φ̂ · l (a1) + W2(µ̂, φ̂) = W1,

where the first line is from Proposition 7, the second from the definitions of W∗, λ̂ and
â, the third from the previously proved property of â2, the fourth from λ̂2 ∈ Λ2(φ̂),
the fifth from the definition of W2, the sixth from the previously proved property of
â1, the seventh from (λ̂1, µ̂, φ̂) ∈ GrM × F and the the definition of W1. Hence, W1 =

f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + W2(µ̂, φ̂) and (λ̂1, φ̂, µ̂, â1) ∈ Γ̂1. Also,

W∗ = f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + f2 (â2) + µ̂ ·m (â2) + λ̂2 · g2 (â2)

= f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + inf
Λ(φ̂)

sup
A2

{ f2 (a2) + µ̂ ·m (a2) + λ2 · g2 (a2)} .

Subtracting the first from the second line and using the definition of W2 gives:

W2(µ̂, φ̂) = f2 (â2) + µ̂ ·m (â2) + λ̂2 · g2 (â2) .

Hence, (λ̂2, â2) ∈ Γ̂2(µ̂, φ̂). It remains to show the converse.
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Let
(
â, λ̂
)

be a selection from the recursive policy correspondence. Then:

W∗ = W1

= f1 (â1) + λ̂1 · g1 (â1) + φ̂ · l (â1) + f2 (â2) + µ̂ ·m (â2) + λ̂2 · g2 (â2)

= sup
A1

f1 (a1) + λ̂1 · g1 (a1) + φ̂ · l (a1) + sup
A2

{
f2 (a2) + µ̂ ·m (a2) + λ̂2 · g2 (a2)

}
= sup

A
f1 (a1) + λ̂1 · g1 (a1) + φ̂ · l (a1) + f2 (a2) + µ̂ ·m (a2) + λ̂2 · g2 (a2)

≥ inf
Λ

sup
A

f1 (a1) + λ1 · g1 (a1) + λ2 · c1 · l (a1) + f2 (a2) + λ1 · c2 ·m (a2) + λ2 · g2 (a2)

= W∗,

where the first equality is from Proposition 7, the second and third from the definitions
of â and λ̂ and the policy correspondences, the fourth from Proposition 5, the fifth from
the infimum operation and the sixth from the definition of W∗. It follows that â ∈ AIS(λ̂)

and λ̂ ∈ ΛIS.

Together Propositions 7 and 8 provide a dual version of Bellman’s optimality prin-
ciple for additively separable problems. Combining them with Proposition 1, which
relates the sequential dual and primal problems, the following result obtains.

Proposition 9. (Necessity) If the Lagrangian L for the sequential (additively separable) problem
9 admits a saddle point, then W1 = V∗, i.e. the recursive dual problem delivers the correct
value for the sequential primal problem. In addition, if L admits a saddle and â solves the
sequential (primal) problem, then there are values (λ̂1, λ̂2, µ̂, φ̂) such that

(
λ̂1, µ̂, φ̂, â1

)
∈ Γ̂1 and(

λ̂2, â2
)
∈ Γ̂2

(
µ̂, φ̂

)
.

Proof. The first part of the proposition is immediate consequence of the two equalities
W1 = W∗ and W∗ = V∗, where the first has been shown in Proposition 7 and the
second follows from Proposition 1. The second part of the proposition is an immediate
consequence of Propositions 1 and 8.

Remark 3. The conditions in the previous proposition are weaker than those assumed
elsewhere in the literature. In particular, a detailed discussion how our necessity results
compared to the one of Marcet and Marimon (1999) is provided in Section 7. �

To illustrate the role of the assumptions and the scope of the results, we give two
examples. In the first, there is no saddle and a duality gap emerges: W∗ 6= V∗. However,
since the example is an additively separable one, the recursive and sequential duals
remain equivalent.
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Example 1. [Lack of Necessity] Consider the following two period problem:

V∗ = max
(a1,a2)∈[0,1]2

−a1 − a2 (18)

s.t. a2
1 + a2

2 ≥ b2 and a2
2 ≥ c2, (19)

where c < b < 1. This problem admits a unique solution, (a∗1 , a∗2) = (0, b), which
generates the value V∗ = −b.

The dual problem associated with (18) is given by:

W∗ = inf
λ1,λ2≥0

sup
a1,a2∈[0,1]

−a1 − a2 + λ1(a2
1 + a2

2 − b2) + λ2(a2
2 − c2). (20)

It is easy to verify that the unique solution for the multipliers is λ̂ = (λ̂1, λ̂2) = (1, 0)
and that AIS(λ̂) = {(0, 0), (1, 0), (0, 1), (1, 1)}. The optimal dual value is W∗ = −b2 >

V∗ = −b. Hence, there is a duality gap and AIS and A∗ are disjoint.
We now verify equivalence of the recursive and sequential duals in this example.

Consider the recursive problem:13

W1 = inf
λ1∈R+

sup
a1∈[0,1]

−a1 + λ1(a2
1 − b2) + W2(λ1), where (21)

W2(λ1) = inf
λ2∈R+

sup
a2∈[0,1]

−a2 + λ1a2
2 + λ2(a2

2 − c2).

It is easily shown that the second period solution is: λ̂2(λ1) = 1− λ1 and â2 ∈ {0, 1}.
These choices imply:

W2(λ1) =

−(1− λ1)c2 if λ1 < 1

−(1− λ1) otherwise.

Now consider the first period. The slope of the objective function is negative in λ1 if
λ1 < 1 (in which case a1 = 0) and positive for λ1 > 1 (in which case a1 = 1). Hence,
λ̂1 = 1 and â1 ∈ {0, 1}. Consequently, the recursive dual approach delivers exactly the
same result as the sequential one. �

Proposition 9 shows that if a sequential saddle exists, then the recursive dual method
gives necessary conditions for an optimal solution. Our second example shows that
even if a saddle exists, the recursive dual method may not give sufficient conditions for

13Note in this case c1 = 1, λ1 = µ and φ is superfluous.
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a solution.

Example 2. [Lack of Sufficiency] Consider the following two period problem:

V∗ = max
(a1,a2)∈[0,1]2

−a1 − a2 (22)

s.t. a1 + a2 ≥ b and a2 ≥ c, (23)

where c < b < 1. It is easily seen that the solution set of this problem, A∗, is given by
all pairs of non-negative controls (a1, a2) which do not violate the second constraint (i.e.
a2 ≥ c) and satisfy the first constraint with equality (i.e. a1 + a2 = b). The value of the
problem is V∗ = −b.

Consider the dual problem:

W∗ = inf
λ1,λ2≥0

sup
a1,a2∈[0,1]

−a1 − a2 + λ1(a1 + a2 − b) + λ2(a2 − c). (24)

The unique solution of this problem is (λ̂1, λ̂2) = (1, 0). For every multiplier pair such
that λ1 + λ2 > 1 the optimal value of a2 is 1 which means that in this range the objective
function is strictly increasing in both multipliers. On the other hand, if λ1 + λ2 < 1,
then the optimal value of a2 is 0 implying an objective function that is strictly decreasing
in λ2. Hence, the optimal pairs of multipliers must sum to one. For any such pair the
problem reduces to:

inf
λ1∈[0,1]

sup
a1∈[0,1]

−a1 − c + λ1(a1 + c− b).

Since for any λ1 < 1 the maximizing value of a1 is 0 it follows that the objective is strictly
decreasing in λ1 (recall that b > c) and thus its unique optimal value is λ̂1 = 1. By our
previous observations this implies λ̂2 = 0. Finally, notice that for this pair of multipliers
every pair (a1, a2) solves the maximization in (24). Thus, W∗ = V∗, but A∗ is a strict
subset of AIS = [0, 1]2.

The recursive dual problem is:

W1 = inf
λ1∈R+

sup
a1∈[0,1]

−a1 + λ1(a1 − b) + W2(λ1), where (25)

W2(λ1) = inf
λ2∈R+

sup
a2∈[0,1]

−a2 + λ1a2 + λ2(a2 − c).

We now show that the solutions from this problem coincide with AIS. In the second
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period problem the optimal choice for the multiplier is λ̂2(λ1) = max{0, 1− λ1}. But
then any a2 ∈ [0, 1] is a maximizer and

W2(λ1) =

−(1− λ1)c if λ1 < 1

−(1− λ1) otherwise.

In the first period problem, if λ1 ∈ [0, 1), then a1 is optimally zero and the slope of the
objective function with respect to λ1 is c− b < 0. If λ1 > 1, then a1 is optimally 1 and the
slope is 2− b > 0. Consequently, the unique optimal value for the multiplier is λ̂1 = 1.
For this multiplier value the objective function is constant in a1 and equal to −b.

Combining the results for the first and second period we thus find that the recursive
method generates the same pair of Lagrange multipliers and the same solution set for
the controls, namely AIS = [0, 1]2. �

A sufficiency result: As Example 2 shows, the recursive dual policy correspondences
may introduce extraneous solutions (i.e. they may have selections whose primal com-
ponents do not maximize the sequential primal problem). On the other hand, if a sad-
dle exists, there is a selection from these correspondences whose primal component
solves the primal problem. Consequently, if there is a saddle and the recursive dual
correspondences admit a unique primal selection, then this selection is a primal max-
imizer. Proposition 10 assumes a solution to the primal problem, the Slater condition
and strictly concave objective and constraint functions. Primal existence, the Slater con-
dition and concavity of the functions are classical conditions for the existence of a saddle
point; strict concavity ensures a unique primal component to the recursive dual solution.
Thus, the proposition guarantees that the recursive dual problem gives necessary and
sufficient conditions for a sequential primal solution.

Remark 4. As discussed in Messner and Pavoni (2004), the recursive saddle point method
of Marcet and Marimon (1999) fails to give sufficient conditions for a primal optimum.
Marcet and Marimon (2011) also observe that this drawback can be overcome by im-
posing strict concavity assumptions on the functions that define the objective and the
constraints. Cole and Kubler (2010) use dual state variables in a recursive formulation of
the primal problem (they solve "sup-inf" not "inf-sup" problems at each step). To resolve
sufficiency concerns in this context, Cole and Kubler (2010) augment the basic formula-
tion with an expanded state space that includes end of period lottery realizations.

Assumption 1. The sets A1 and A2 are convex and the functions f1, g1,m, l f2, and g2 are
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concave. Moreover, there exists an ā ∈ A such that

g1(ā1) + c1 ·m(ā2) > 0

c2 · l(ā1) + g2(ā2) > 0.

Proposition 10. (Sufficiency) Suppose that Assumption 1 is satisfied and that A∗ is non-empty.
Then: (i) The Lagrangian admits a saddle point and the value of the recursive dual problem
coincides with the value of the optimization problem, i.e. W1 = V∗. (ii) If, in addition, f1 and f2

are strictly concave, then A∗ contains only one element and:

[
(λ̂1, φ̂, µ̂, â1) ∈ Γ̂1 and (λ̂2, â2) ∈ Γ̂2(φ̂, µ̂)

]
⇒ {(â1, â2)} = A∗.

.

Proof. See Appendix.

Remark 5. For α ∈ R, the α-upper (resp. lower) level set of a function h : Rn → R is
given by {x : h(x) ≥ α} (resp. {x : h(x) ≤ α}). Primal attainment (the non-emptiness
of A∗ = ASI) is ensured if the objective function f and constraint function g are upper
semi-continuous and one or the other has a non-empty compact α-upper level set. More
generally, the compact level set requirement on the functions f and g can be replaced
by the requirement that for fixed λ̄, the sequential Lagrangian L (·, λ̄) has a non-empty
compact α-upper level set in a. The Slater condition ensures that for the fixed value
ā, the sequential Lagrangian L (ā, ·) has compact lower level sets. Together with the
concavity assumptions and the finiteness of the optimal primal value, this condition
guarantees that the value function P defined for this problem as in Subsection 2.1 has a
sub-differential (and is convex and lower semicontinuous) at 0. Thus, by Proposition 4,
dual attainment (the non-emptiness of ΛSI) is ensured. Saddle point existence then
follows from Proposition 1.

3.4 Duality Between Recursive Problems

In this section we derive additional duality relationships between primal and dual states
and value functions. Since in our simple two-period setting states and value functions
are defined only for the second period, we compare values and states only in this period.
In the next section, we embed the problem into a framework that incorporates initial and
terminal conditions. This allows us to define and derive relationships between first as
well as second period value functions.
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Recall the definitions of the second period value functions V2 : X × Y → R and
W2 : M× F → R from the recursive primal and dual problems:

V2 (x, y) := sup
A2

inf
Λ2

f2 (a2) + λ2 · (c2 · x + g2 (a2))

s.t. y = m (a2) ; (26)

and

W2 (µ, φ) := inf
Λ2

sup
A2

f2 (a2) + µ ·m (a2) + λ2 · g2 (a2)

s.t. φ = λ2 · c2. (27)

To relate these two problems we absorb their constraints y = m(a2) and φ = λ2 · c2 into
Lagrangians and assume that these Lagrangians admit saddles. Formally, let γ ∈ Rr1

be the multiplier for the constraint y = m(a2) in (26) and ζ ∈ Rr2 the multiplier for the
constraint φ = λ2 · c2 in (27).

Definition 2 (Second period saddle points). We say that the primal problem (26) admits
a saddle at (x, y) if there exists a triple (a∗2 ; λ∗2 , γ∗) ∈ A2 × Λ2 ×Rr1 such that for all
(a2; λ2, γ) ∈ A2 ×Λ2 ×Rr1 :

−γ∗ · y + f2(a2) + λ∗2 · c2 · x + λ∗2 · g2(a2) + γ∗ ·m(a2)

≤ −γ∗ · y + f2(a∗2) + λ∗2 · c2 · x + λ∗2 · g2(a∗2) + γ∗ ·m(a∗2)

≤ −γ · y + f2(a∗2) + λ2 · c2 · x + λ2 · g2(a∗2) + γ ·m(a∗2). (28)

We say that the dual problem (27) admits a saddle at (φ, µ) if there exists a triple
(λ∗2 ; a∗2 , ζ∗) ∈ Λ2 × A2 ×Rr2 such that for all (λ2, a2, ζ) ∈ Λ2 × A2 ×Rr2 :

−φ · ζ + f2 (a2) + µ ·m (a2) + λ∗2 · g2 (a2) + λ∗2 · c2 · ζ
≤ −φ · ζ∗ + f2 (a∗2) + µ ·m (a∗2) + λ∗2 · g2 (a∗2) + λ∗2 · c2 · ζ∗

≤ −φ · ζ∗ + f2 (a∗2) + µ ·m (a∗2) + λ2 · g2 (a∗2) + λ2 · c2 · ζ∗. (29)

The next result uses conjugate duality to relate the value functions from the contin-
uation problems: modulo sign changes, the conjugate of one is a lower bound for the
other. The value function of one equals the conjugate of the other whenever the first
problem admits a saddle point.
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Proposition 11. (i) For all (x, y) ∈ X×Y and (µ, φ) ∈ M× F the following inequalities hold:

W2(µ, φ) ≥ (−V2)
?(µ,−φ) (30)

−V2(x, y) ≥ (W2)
?(−x, y). (31)

(ii) the inequality in (30) (resp. (31)) holds with equality whenever the dual second period problem
(27) admits a saddle at (µ, φ) (resp. whenever the primal second period problem (26) admits a
saddle at (x, y)).

Proof. See Appendix.

The next proposition shows that if the underlying sequential optimization problem
admits a saddle, then both the primal (26) and dual (27) continuation problems admit
saddles at the states induced by the sequential saddle.

Proposition 12. Assume that the underlying sequential optimization problem admits a saddle
(a∗, λ∗) and let (µ∗, φ∗) = (λ∗1 · c1, λ∗2 · c2) and (y∗, x∗) = (m(a∗2), l(a∗1)). Then: (i) the dual
continuation problem (27) admits a saddle at (µ∗, φ∗), and the primal continuation problem (26)
admits a saddle at (x∗, y∗); (ii) W2 (resp. −V2) is sub-differentiable at (µ∗, φ∗) (resp. (x∗, y∗))
and: [

−φ∗

µ∗

]
∈ ∂ [−V2 (x∗, y∗)] and

[
y∗

−x∗

]
∈ ∂W2 (µ

∗, φ∗) .

Proof. See Appendix.

The second part of Proposition 12 implies that, modulo sign changes, optimal sec-
ond period dual states (µ∗, φ∗) are sub-differentials of the second period primal value
function at the optimal primal states (x∗, y∗) and vice versa.14 In applications, this rela-
tionship allows an economic interpretation to be placed upon optimal dual states: they
are shadow prices of optimal primal states.

Further remarks on state spaces Note that the second period primal problem is well
posed and has a non-empty constraint set if and only if (x, y) belongs to:

S := {(x, y) ∈ X×Y|∃a2 ∈ A2, y = m(a2), c2 · x + g2(a2) ≥ 0} ⊂ X×Y ⊂ Rr1+r2 .

Outside of S, V2 equals −∞. From the perspective of practical computation, non-finite
valued functions are awkward and it is natural to treat S as the (endogenous) second

14In the proof we also show that the second period sequential saddle variables, (a∗2 , λ∗2) are saddles of
the second period problems.
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period state space. S may, however, be difficult to characterize. In particular, this is often
the case when m and g2 are bounded functions ensuring that S is a more restricted set.

The dual analogue of S is:

R := {(µ, φ) ∈ M× F|W2(µ, φ) < ∞}.

If f2 and g2 are bounded above and m is bounded, then R = M× F. Since M and F are
the images of the positive cones Rk1

+ and Rk2
+ under the linear maps c1 and c2, in this case

R is easy to determine. This is a significant practical advantage of the recursive dual
approach.

As a final remark, we note that Proposition 12 indicates an interesting duality in
the ‘direction’ (forward or backward) of states. Optimal forward primal states are sub-
differentials of optimal backward dual states and vice versa.

4 Initial and Terminal Conditions for States

In this section, we embed our simple two-period problem into a family of problems
parameterized by initial and terminal conditions for state variables. This extension clar-
ifies how the recursive dual approach is applied in general multi-period settings. It also
makes transparent an issue concealed by our simple model. Since forward-looking state
variables capture the relevant aspects of continuation paths of controls or multipliers in
a sequential problem, they may have a natural terminal condition, but they do not have
a natural initial condition. Thus, the initial values of forward-looking states are deter-
mined endogenously. We show how this is done and what it implies for the recursive
approaches.

The Primal Problem. We augment the constraints of the sequential primal problem
(9) with parameters x1 ∈ Rr1 and y3 ∈ Rr2 to give the family of perturbed problems:

P(x1, y3) = sup
a∈A

f1(a1) + f2(a2) (32)

s.t. g1(a1) + c1 · (m(a2) + y3) ≥ 0

c2 · (l(a1) + x1) + g2(a2) ≥ 0.

In addition, to save on notation and without loss of generality, we assume that for t =

1, 2, At = A ⊂ Rn and gt : A → Y = R
k. The parameter x1 belongs to the range of the
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function l and has a natural interpretation as an initial value for the backwards-looking
primal state variable. Similarly, y3 belongs to the range of the function m and has a
natural interpretation as a terminal value for the forwards-looking primal state variable.

In what follows we focus on problems in which y3 = 0. However, for the purposes
of symmetry and generality, we explicitly include y3 in the notation. Clearly, by setting
x1 as well as y3 to 0, we recover our original primal problem (9). We explicitly define
backwards and forwards-looking primal state variables for the other dates by writing,
for t = 1, 2,

xt+1 = xt + l(at) and yt = m(at) + yt+1

with x1 and y3 given. Thus, xt = x1 +∑t
τ=1 l(aτ), t = 2, 3, gives the accumulation of l(aτ)

terms at t starting from x1 and yt = ∑2
τ=t m(aτ) + y3, t = 1, 2, gives the accumulation of

m(aτ) terms at t starting from y3.
The primal recursive approach to solving (32) involves two steps.15 In the first a pair,

t = 1, 2, (more generally a sequence) of recursive problems is solved:

Vt(xt, yt) = sup
A×X×Y

inf
Λ

ft (at) + λt · (b1,txt + gt (at) + b2,t · yt+1) + Vt+1 (xt+1, yt+1)

(33)

s.t. xt+1 = xt + l (at) , yt = m(at) + yt+1 and xt, yt given,

where b1,1 = 0, b1,2 = c2, b2,1 = c1, b2,2 = 0, V3(x3, y3) = 0 if y3 = 0 and V3(x3, y3) = −∞
otherwise and Λ = Rk

+. In the second step, the optimal value of y1 is found:

P(x1, 0) = sup
Y

V1(x1, y1).

In particular, the optimal value from the unperturbed problem considered in earlier
sections is given by V∗ = P(0, 0) = supY V1(0, y). It is clear that this procedure can be
extended to any finite horizon choice problem with initial and terminal conditions, a fact
which is proved using an elaboration of the argument underpinning Proposition 6.16, 17

15This may be formally shown along the lines of Proposition 6.
16In our current formulation constraints involving only forwards-looking state variables are applied

in the first period, while constraints involving only backwards-looking state variables are applied in the
second. More generally, both types of constraint or constraints involving both types of state variable may
be applied in the same period. A small extension of our formulation handles such problems.

17For a treatment of the infinite horizon problem, see Messner, Pavoni, and Sleet (2011).
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The Dual Problem. We now consider a dual problem with dual initial and terminal
conditions. First, recall the dual problem without such conditions:

W∗ = inf
Λ2

sup
A

f1(a1) + f2(a2) + λ1 [g1(a1) + c1 ·m(a2)] (34)

+ λ2 [c2 · l(a1) + g2(a2)] .

The recursive version of this problem used the state variables (and laws of motion for
state variables) µ2 = λ1 · c1 and φ2 = λ2 · c2. Inserting this notation into (34) gives:

W∗ = inf
Λ2×M×F

sup
A

f1(a1) + f2(a2) + λ1 · g1(a1) + µ2 ·m(a2) (35)

+ φ2 · l(a1) + λ2 · g2(a2)

subject to: µ2 = λ1 · c1 and φ2 = λ2 · c2. The variables µ2 and φ2 can be interpreted
as the shadow prices of y2 = m(a2) + y3 and x2 = x1 + l(a1) in a setting in which y3

and x1 equal 0. The dual analogue of (32) augments (35) with dual state variables µ1

and φ3. These can be viewed as initial backward-looking and terminal forward-looking
dual states, respectively, or, equivalently, shadow prices for y1 = m(a1) + m(a2) + y3 and
x3 = x1 + l(a1) + l(a2) where, once again, y3 and x1 are set to zero. The dual analogue
of (32) is:

Q(µ1, φ3) = inf
Λ2×M×F

sup
A

f1(a1) + f2(a2) + λ1 · g1(a1) + µ1m(a1) + µ2 ·m(a2) (36)

+ φ2 · l(a1) + λ2 · g2(a2) + φ3 · l(a2)

subject to: µ2 = µ1 + λ1 · c1 and φ2 = λ2 · c2 + φ3. Of course, W∗ = Q(0, 0).
A two step procedure similar to the primal case may be used to solve for Q(·, 0) and,

hence, W∗. First the recursive dual problems, for t = 1, 2, are solved:

Wt(µt, φt) = inf
Λ×M×F

sup
A

ft(at) + µt ·m(at) + λt · gt(at) + φt+1 · l(at) + Wt+1(µt+1, φt+1)

s.t. φt = λt · b1,t + φt+1, µt+1 = µt + λt · b2,t and µt, φt given, (37)

where W3(µ3, φ3) = 0 if φ3 = 0 and W3(µ3, φ3) = ∞ otherwise. Second, the optimal
value of φ1 is found:

Q(µ1, 0) = inf
F

W1(µ1, φ1), (38)

where the equality (38) may be formally proved using an elaboration of the argument
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underpinning Proposition 7. In particular, the optimal value from the unperturbed dual
problem (34) is given by: W∗ = infF W1(0, φ). As in the primal case, this two step
procedure can be extended to any finite horizon problem. In addition, along similar
lines to Proposition 8, it may be shown that solutions so obtained solve (34). If the
underlying sequential problem admits a saddle point, then this procedure also yields an
optimal primal value and necessary conditions for optimal primal solutions.

We conclude this section with a conjugacy result for the first period value functions
V1 and W1. It is analogous to the result for V2 and W2 stated in Proposition 11. As
a precursor we define Lagrangians L P and L D for the sequential counterparts of the
recursive primal (33) and dual (37) problems:18

L P(a, λ, γ; x̄1, y1) = H(a, λ) +
( 2

∑
τ=1

λτb1,τ

)
· x̄1 + γ ·

[ 2

∑
τ=1

m(aτ)− y1

]
, (39)

L D(a, λ, z; µ̄1, φ1) = H(a, λ) + µ̄1 ·
( 2

∑
τ=1

m(aτ)
)
+ z ·

[ 2

∑
τ=1

λτ · b1,τ − φ1

]
, (40)

where

H(a, λ) = f1(a1) + f2(a2) + λ1 · [g1(a1) + b2,1 ·m(a2)] + λ2 · [b1,2 · l(a1) + g2(a2)].

Since the multipliers γ and z are associated with the equality constraints y1 = m(a1) +

m(a2) and φ1 = ∑2
τ=1 λτ · b1,τ they are not restricted to be positive.

Proposition 13. Let x̄1 and µ̄1 be given,

V̂∗(µ̄1, x̄1) := sup
Y

V1(x̄1, y1) + µ̄1 · y1, (41)

Ŵ∗(µ̄1, x̄1) := inf
F

W1(µ̄1, φ1) + φ1 · x̄1, (42)

y∗1 solve (41) and φ∗1 solve (42). Moreover, let a∗ and λ∗ be solutions of, respectively,

max
A

inf
Λ,Γ

L P(a, λ, γ; x̄1, y∗1) and min
Λ

sup
A,Z

L D(a, λ, z; µ̄1, φ∗1).

(i) V̂∗(µ̄1, x̄1) ≤ Ŵ∗(µ̄1, x̄1).
(ii) V̂∗(µ̄1, x̄1) = Ŵ∗(µ̄1, x̄1) if and only if (a, λ, γ) = (a∗, λ∗, µ̄1) is a saddle of L P(a, λ, γ; x̄1, y∗1)

18Using our insights from the preceding sections it is straightforward to show that for all
(x1, y1) we have V1(x1, y1) = supA infΛ,Γ L P(a, λ, γ; x1, y1); similarly, for all (µ1, φ1), W1(µ1, φ1) =

infΛ supA,Z L D(a, λ, z; µ1, φ1)
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and (a, λ, z) = (a∗, λ∗, x̄1) is a saddle of L D(a, λ, z; µ̄1, φ∗1).
(iii) If V̂∗(µ̄1, x̄1) = Ŵ∗(µ̄1, x̄1), then W1(µ̄1, φ∗1) = (−V1)

?(µ̄1, φ∗1), and −V1(x̄1, y∗1) =

(W1)
?(−x̄1, y∗1). Moreover, under the same conditions, W1 and V1 are sub-differentiable at

(µ̄1, φ∗1) and (x̄1, y∗1), respectively, with:[
−φ∗1

µ̄1

]
∈ ∂ [−V1 (x̄1, y∗1)] and

[
y∗1
−x̄1

]
∈ ∂W1 (µ̄1, φ∗1) .

Proof. See Appendix.

Evidently, V∗ = V̂∗(0, 0) and W∗ = Ŵ∗(0, 0). More generally, Proposition 13 shows
how initial values for the forward state variables y1 or φ1 may be determined given
arbitrary initial conditions for the backward states (µ̄1, x̄1). In addition, Proposition 13
combined with Proposition 12 implies that dual relationships hold along the saddle path
whenever a saddle exists for the primal problem with initial condition x̄1.

5 Additive applications

We have developed the dual recursive method in a two period setting. It is easily ex-
tended to multiple, but finite numbers of periods. We now give two multi-period eco-
nomic applications.

5.1 An AK-growth model

Our first example is a standard, finite horizon AK-growth model. A T-period lived agent
has preferences over a consumption stream {ct}T

t=1 ∈ RT
+ given by ∑T

t=1 ut(ct). She al-
locates current output to consumption ct and investment it; she has a linear technology
with parameter A > 0 for converting capital (accumulated undepreciated past invest-
ment) into output. We place her choice problem directly into the form (9), writing it
as:

V∗ = sup
{ct,it}T

t=1∈R2T
+

T

∑
t=1

ut(ct) (43)

s.t. x1 = x̄1 and t = 1, · · · , T, ct + it ≤ A

(
(1− δ)t−1x1 +

t−1

∑
τ=1

(1− δ)τ−1iτ

)
,
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where δ ∈ [0, 1) is depreciation. To economize on notation, assume that δ = 0 and A = 1.
Problem (43) may then be re-expressed in sup-inf form as:

V∗ = sup
R2T

+

inf
Λ

T

∑
t=1

ut(ct) + λt

[(
x̄1 +

t−1

∑
τ=1

iτ

)
− ct − it

]
, (44)

where Λ := RT
+. Defining capital as the sum of past investments, xt = x1 + ∑t−1

τ=1 iτ, the
constraints can be re-expressed as, for all t, ct + it ≤ xt, xt+1 = xt + it with x1 given. This
is the form they are usually given in (i.e. in most growth problems, the state variable
capital is given explicitly as a primitive of the problem). In our nomenclature, capital
is a backwards primal state variable. The associated recursive primal formulation then
generates the sequence of functional equations:

Vt(xt) = sup
R

3
+

inf
R+

ut(ct) + λt(xt − ct − it) + Vt+1(xt+1)

s.t. xt+1 = xt + it, and xt given,

with VT+1 ≡ 0. The optimal value of the original problem, V∗, is obtained by evaluating
V1 at the initial value of the capital stock, x1 = x̄1. That is, V1(x̄1) = V∗.

The associated dual problem is:

W∗ = inf
Λ

sup
R2T

+

T

∑
t=1

ut(ct) + λt

[(
x̄1 +

t−1

∑
τ=1

iτ

)
− ct − it

]
. (45)

Defining φt = ∑T
τ=t λτ, so that φt = φt+1 + λt with φT+1 = 0, problem (45) can be

re-expressed as:

W∗ = inf
R2T

+

sup
R2T

+

T

∑
t=1

[ut(ct) + φt+1it − λt(ct + it)] + φ1x̄1 (46)

s.t. t = 1, · · · , T, φt = λt + φt+1, φT+1 = 0.

Notice that the variables φt are forward-looking summaries of future multipliers. Prob-
lem (46) may be solved in two steps. In the first, it is recursively decomposed and the
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following sequence of problems, t = 1, · · · , T, is solved:

Wt(φt) = inf
(λt,φt+1)∈R2

+

sup
(ct,it)∈R2

+

ut(ct) + φt+1it − λt (ct + it) + Wt+1(φt+1) (47)

s.t. φt = λt + φt+1,

with WT+1(φ) = 0 if φ = 0 and WT+1(φ) = ∞ otherwise. Notice that in passing from
Problem (46) to Problem (47), the term φ1x̄1, is omitted.

Since, the forward-looking dual state variables {φt} are not subject to an initial con-
dition, the optimal φ1 value is solved for in a second step by calculating:

inf
φ1∈R+

W1(φ1) + φ1x̄1.

5.2 Limited Commitment

Our primal formulation of the AK-model featured a backward-looking state variable and
our dual formulation a forward-looking one. We now consider a limited commitment
model in which these directions are reversed.

Let {at}T
t=1 ∈ AT denote a sequence of actions taken by an agent, let ut : A→ D ⊂ R

denote the agent’s period t utility function and rt : A → R a principal’s period t return
function. Let bt denote a period t outside utility option for the agent. The principal’s
problem is:

V∗ = max
AT

T

∑
t=1

rt(at) (48)

s.t.
T

∑
τ=t

uτ(aτ) ≥ bt t = 1, . . . T.

This problem can be written in sup-inf form as:

V∗ = sup
AT

inf
Λ

T

∑
t=1

[
rt(at) + λt

(
T

∑
τ=t

uτ(aτ)− bt

)]
, (49)

where Λ = R
T
+. Defining yt to be the utility attached by the agent to a future action

stream, i.e. yt = ∑T
τ=t uτ(aτ) for some {aτ}T

τ=t, the constraints in (48) can be re-expressed
as, for t ≤ T, u(at) + yt+1 ≥ bt with yT+1 = 0 given. In our terminology yt is a forwards-
looking primal state variable (with a terminal condition).

Problem (49) can be solved using the two step procedure applied to the dual AK
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problem. First, (49) is recursively decomposed using the value functions Vt : R→ R as:

Vt(yt) = sup
A×R

inf
R+

rt(at) + λt(ut(at) + yt+1 − bt) + Vt+1(yt+1) (50)

s.t. ut(at) + yt+1 = yt,

where VT+1(y) = 0 if y = 0 and VT+1(y) = −∞ otherwise. Notice that at each date
t there is a set of utilities Yt such that Vt is finite-valued. Specifically, Vt(yt) is finite
if and only if yt ≥ bt and yt is in the range of ∑T

τ=t uτ(aτ). Yt represents the effective
(endogenous) state space of the t-th period problem. Since non-finite value functions are
problematic from a practical computational point of view, it is useful to jointly compute
Vt and Yt when solving (50). This is not difficult in the simple current setting, but often
is in more elaborate settings.

Solving the problems (50) gives the period 1 value function, V1. Since there is no
parameter y1 constraining the principal’s choice in (48), the optimal value of y1 must be
solved for in a second step. This is done by calculating:

max
y1∈R

V1(y1). (51)

The dual problem associated with (49) is:

W∗ = inf
Λ

sup
AT

T

∑
t=1

[
rt(at) + λt

(
T

∑
τ=t

uτ(aτ)− bt

)]
. (52)

Problem (52) can be formulated recursively using summaries of past Lagrange multipli-
ers as state variables. Unlike the primal state variable (continuation utility), these dual
states are backward looking. Defining µt = ∑t−1

τ=1 λτ, problem (52) can be re-expressed
as:

W∗ = inf
R2T

+

sup
AT

T

∑
t=1

[rt(at) + λt(ut(at)− bt) + µtut(at)] (53)

s.t. µ1 = 0 and t = 1, · · · , T, µt+1 = µt + λt.
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Problem (53) can be recursively decomposed as:

Wt(µt) = inf
R2

+

sup
A

rt(at) + µtut(at) + λt(ut(at)− bt) + Wt+1(µt+1) (54)

s.t. µt+1 = µt + λt, µt given,

with WT+1 ≡ 0. The optimal value W∗ is obtained by evaluating W1 at the initial condi-
tion µ1 = 0.

6 Non-additively separability: Dynamic Moral Hazard

So far we have restricted attention to problems with an additively separable structure.
Although this encompasses a large set of economic applications, it omits many others. In
particular, it omits many dynamic moral hazard problems that have a recursive primal
formulation. In this section we use a standard dynamic moral hazard model to illus-
trate the additional issues that arise in the application of the recursive dual approach to
non-additively separable problems. In contrast to the additively separable case, the inter-
change of conditional inf and sup operations that is needed to pass from the sequential
to the recursive dual is no longer guaranteed to preserve the optimal dual value or the
optimal sequential dual solution set. Values are preserved if a sequential saddle exists in
which case the optimal recursive dual value is also the optimal sequential primal value.

6.1 A simple moral hazard problem

In each of two periods an agent chooses an effort level from a finite set E = {ek}K
k=1.

The effort of the agent induces a probability distribution over a set of outputs with N
elements. The principal offers a contract that specifies the agent’s effort and wage in each
period. Formally, a contract is a tuple {e1, {wi

1}, {ei
2}, {w

ij
2 }}, where e1 ∈ E is first period

effort, wi
1 ∈ R+ is the first period wage following the i-th first period output realization,

ei
2 ∈ E is the second period effort following this output realization and wij

2 ∈ RN
+ is the

second period wage given the i-th first and j-th second period output realizations. Let
A1 = Ã = E×RN

+ denote the set of first period contracts, A2 = ÃN the set of second
period contracts and A = A1 × A2 the set of lifetime contracts. Elements of these sets
are denoted a1, a2 = {ai

2} and a respectively. The probability distribution over outcomes
induced by effort e is denoted π(e) = (π1(e), . . . , πN(e)). ri(w) is the per period payoff
of the principal when outcome i is realized and the wage payment w is made. If the
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agent exerts effort e ∈ E and receives wage w ∈ R+ then his (per period) payoff is
u(w, e). If the agent does not accept the contract proposed by the principal he receives a
payoff of ū.

To compare this moral hazard model with the optimization problem considered in
the preceding sections, define the following functions for a, a′ ∈ Ã and ê ∈ E:

f (a) :=
N

∑
i=1

πi(e)ri(wi) and m(a) :=
N

∑
i=1

πi(e)u(wi, e),

ḡi
1(a, m(a′)) := u(wi, e) + m(a′)− ū,

gê,i
1 (a, m(a′)) := u(wi, e) + m(a′)− πi(ê)

πi(e)

[
u(wi, ê) + m(a′)

]
,

gê
2(a) :=

N

∑
i=1

πi(e)u(wi, e)−
N

∑
i=1

πi(ê)u(wi, ê).

Using this notation the principal’s primal optimization problem is:

V∗ = max
a∈A

f (a1) +
N

∑
i=1

πi(e1) f (ai
2) (55)

s.t.
N

∑
i=1

πi(e1)ḡi
1(a1, m(ai

2)) ≥ 0

N

∑
i=1

πi(e1)gê,i
1 (a1, m(ai

2)) ≥ 0 for all ê ∈ E,

gê
2(ai

2) ≥ 0, for all ê ∈ E and all i = 1, . . . , N.

The first constraint is an individual rationality condition; the second and third are incen-
tive compatibility conditions for first and second period effort.

The key difference between the problems considered in previous sections and the
moral hazard problem (55) is that in the latter neither the objective function nor the con-
straints are additively separable in a1 and a2. Since the contract offered by the principal
conditions on the outcome history it follows that the continuation payoffs of the prin-
cipal and of the agent depend on past effort levels multiplicatively via the distribution
over past outcomes. The Lagrangian associated with (55) is:

L (a, λ) := f (a1) +
N

∑
i=1

πi(e1)

[
f (ai

2) + λ̄1 ḡi
1(a1, m(ai

2)) + ∑̂
e∈E

λê
1gê,i

1 (a1, m(ai
2)) + ∑̂

e∈E
λê,i

2 g2(ai
2)

]
.

(56)
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The primal problem can be re-expressed as:

V∗ := sup
A

inf
Λ

L (a, λ)

and recursively decomposed using the agent’s continuation utilities yi = m(ai
2) as (forward-

looking) states. Letting Y = m(Ã), Λ1 = R
K+1
+ and Λ2 = R

K
+, we obtain the recursive

primal problem:

V1 := sup
A1×YN

inf
Λ1

f (a1) + ∑
i

πi(e1)

[
V2(yi) + λ̄1 ḡi

1(a1, yi) + ∑̂
e∈E

λê
1gê,i

1 (a1, yi)

]
,

where:

V2(yi) := sup
Ã

inf
Λ2

f (ai
2) + ∑̂

e∈E
λê,i

2 gê
2(ai

2) s.t. yi = m(ai
2). (57)

A variation of the argument underpinning Proposition 6 establishes that V1 = V∗ and
that the set of solutions generated by the recursive primal problem coincides with the
set of solutions from the sequential primal.

We next consider the problem of decomposing the dual problem:

W∗ := inf
Λ

sup
A

L (a, λ).

To do so it is convenient to rewrite the Lagrangian in the form:

L (a, λ) = f (a1)+
N

∑
i=1

πi(e1)

{
λ̄1(u(wi

1, e1)− ū) + ∑̂
e

λê
1

(
u(wi

1, e1)−
πi(ê)
πi(e1)

u(wi
1, ê)

)

+ f (ai
2) + ∑

j
πN

j=1(e
i
2)

[(
λ̄1 + ∑̂

e
λê

1
πi(e1)− πi(ê)

πi(e1)

)
u(wij

2 , ei
2)

+ ∑̂
e

λê,i
2

(
u(wij

2 , ei
2)−

πj(ê)

πj(ei
2)

u(wij
2 , ê)

)]}

A ‘natural’ way to formulate this problem recursively is to use (backward looking) state
variables µi to represent λ̄1 + ∑ê λê

1(πi(e1)− πi(ê))/πi(e1). The latter term carries rel-
evant information about first period choices into the second period. Using the state
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variable µ = {µi}, we can write:

W1 := inf
Λ1

sup
A1

f (a1) +
N

∑
i=1

πi(e1)

[
λ̄1(u(wi, e1)− ū) (58)

+ ∑̂
e∈E

λê
1

(
u(wi

1, e1)−
πi(ê)
πi(e1)

u(wi
1, ê)

)
+ W2(µ

i(λ1, e1))

]
,

where µi(λ1, e1) = λ̄1 + ∑ê∈E λê
1

πi(e1)−πi(ê)
πi(e1)

and:

W2(µ
i) := inf

Λ2

sup
Ã

f (ai
2) +

N

∑
j=1

πj(e2)

[
µiu2

(
wij

2 , e2

)
+ ∑̂

e∈E
λê,i

2

(
u(wi,j

2 , ei
2)−

πj(ê)

πj(ei
2)

u(wi,j
2 , ê)

)]
. (59)

Dual policy correspondences Γ̂1 and Γ̂2 are then defined analogously to before.

Remark 6. In the additively separable case, recursive dual state variables depend only
upon multipliers. In the moral hazard model, and more generally in non-additive prob-
lems, recursive dual state variables depend on and summarize information about both
dual and primal variables. Note that we continue to refer to (58) as a recursive dual
problem because it involves sequences of inf-sup not sup-inf variables and because state
variables perturb the objective not the constraints.

Recall that in establishing the equivalence of the sequential and recursive dual prob-
lems in the additive case, we interchanged a conditional inf and a sup operation (see
Remark 2). While this was immediately possible in the additively separable case, it is
not in the non-additive case.19 It is possible if the Lagrangian admits a sequential saddle.

Proposition 14. If the sequential Lagrangian (56) admits a saddle (a∗, λ∗), then i) W1 = W∗

and ii) (λ∗1 , a∗1) ∈ Γ̂1 and (λ∗2 , a∗2) ∈ Γ̂2(µ
∗), where µ∗i = λ̄∗1 + ∑ê λê∗

1 [πi(e∗1)− πi(ê)]/πi(e∗1).

Proof. See Appendix.

In combination Propositions 9 and 14 imply that if the sequential Lagrangian admits a
saddle, then the recursive dual approach delivers the optimal primal value and necessary
conditions for optimal primal solutions.

19The derivation of the recursive primal involves a similar interchange of a conditional sup and an inf
operation. This is immediately possible in the current setting.
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We conclude with a duality result that parallels Proposition 12. We say that the dual
continuation problem (59) admits a saddle at µi if its objective:

G(ai
2, λi

2; µi) = f (ai
2) +

N

∑
j=1

πj(e2)

[
µiu

(
wij

2 , e2

)
+ ∑̂

e∈E
λê,i

2

(
u(wij

2 , ei
2)−

πj(ê)

πj(ei
2)

u(wij
2 , ê)

)]

has a saddle point on Ã × Λ2. The definition of a saddle for the primal continuation
problem (57) at yi is analogous to before. Following the steps in the proofs of Propo-
sitions 11 and 12 for the special case in which φ and x are absent gives the following
result.

Proposition 15. Suppose (a∗, λ∗) is a saddle point of the sequential Lagrangian (56) and let
µ∗i = λ̄∗1 + ∑ê λê∗

1 [πi(e∗1)− πi(ê)]/πi(e∗1) and y∗i = m(a∗i2 ).

i) Both the primal continuation problem (57) at y∗i and the dual continuation problem (59)
at µ∗i admit a saddle.

ii) The value functions of the primal and dual continuation problems satisfy:

W2(µ
∗i) = sup

Y
V2(yi) + µ∗i · yi = (−V2)

?(µ∗i) (60)

−V2(y∗i) = sup
M

µi · y∗i −W2(µ
i) = (W2)

?(y∗i). (61)

iii) W2 and −V2 are sub-differentiable at µ∗i and y∗i, respectively with: µ∗i ∈ ∂[−V2(y∗i)]
and y∗i ∈ ∂W2(µ

∗i).

Proof. See Appendix.

The results of this section rely on one central insight: if the underlying sequential
optimization problem admits a saddle then the order in which inf and sup operations
are applied is immaterial for the value. Moreover, the saddle is a solution of the problem
for any order of these operations. Aside from saddle point existence, the only feature
of the moral hazard framework that we have exploited in this section is the ability to
meaningful rearrange the Lagrangian. Consequently, our results extend to any non-
additively separable framework with this feature.
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7 Comparison with the Recursive Saddle Point Method

Marcet and Marimon (1999) propose a different method from ours. Instead of recursively
decomposing sup-inf or inf-sup operations, they recursively calculate the saddle points
of a Lagrangian. In addition, instead of using only primal or only dual states as we
do, they use only backwards-looking states. Thus, while we mix the direction of state
variables, they mix primal and dual states.

An advantage of our approach is that the derivation of the recursive dual requires
much weaker conditions than that of the recursive saddle point problem. Section 3.3
shows that an equivalence holds between the sequential and recursive dual problems
in additively separable frameworks. This equivalence is independent of any explicit
saddle assumptions. In particular, it does not require that the sequential Lagrangian
admits a saddle. Such an assumption is only required to link the value and solutions
of the (recursive) dual to the sequential primal. In contrast for the recursive saddle
point method (RSPM) to be well defined, it is necessary not only that the sequential
optimization method admits a saddle, but also that every continuation problem starting
from an arbitrarily chosen vector of (primal and dual) states admits a saddle as well.
We illustrate this important difference between our approach and the RSPM with the
following example.

Example 3 (Recursive Saddle Points). Consider the two period problem:

max
(a1,a2)∈[0,2]2

−a1 − a2 (62)

s.t. u(a1) + u(a2) ≥ 2 and u(a2) ≥ 1/4, (63)

where

u(a) =

a2 if a ≤ 1
√

a else.

Notice that u is strictly convex for a < 1 and strictly concave for a > 1. It is not
difficult to verify that this problem’s optimal value is V∗ = −2 and its unique solution
is: a∗ = (a∗1 , a∗2) = (1, 1). Substituting a∗ into the sequential Lagrangian,

L (a, λ) = −a1 + a2 + λ1(u(a1) + u(a2)− 2) + λ2(u(a2)− 1/4),

gives an expression that is constant in λ1 and strictly increasing in λ2. Thus λ∗ =
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(λ∗1 , λ∗2) = (1, 0) minimizes L (a∗, λ). On the other hand, it is easy to verify that a∗

maximizes L (a, λ∗). Thus (a∗, λ∗) is a saddle point of L .
Now, for g : C × D → R, let saddleC|D g(c, d) denote the saddle value operation:

saddleC|D g(c, d) = g(c∗, d∗), c∗ ∈ argmaxC g(c, d∗), d∗ ∈ argminD g(c∗, d). The recursive
version of saddleA|Λ L (a, λ) is given by:

W̃1 := saddle
A1|Λ1

− a1 + λ1(u(a1)− 2) + W̃2(µ2) (64)

s.t. µ2 = λ1,

where:

W̃2(µ2) := saddle
A2|Λ2

− a2 + µ2u(a2) + λ2(u(a2)− 1/4). (65)

Observe that the first period problem (64) is well defined only if the value of the second
period problem (65), W̃2, is specified for every µ2 ≥ 0. But it is not difficult to see that
(65) does not admit a solution when µ2 < 1. Consider for instance the case µ2 = 0. If
a2 < 1/2, then the objective function of the second period problem is strictly decreasing
in λ2 and thus no finite minimizer can exist. If instead a2 > 1/2, then the objective is
strictly increasing in λ2, meaning that λ2 = 0 is the unique minimizer. But for λ2 = 0 the
maximizing value of a2 is 0. Finally, observe that for every λ2 > 0 and every a2 < 1 the
objective function is strictly convex in a2. Thus, there can be no λ2 such that the objective
is maximized at an a2 in the interior of [0, 1].

So this example is an instance where the RSPM cannot be applied, because it violates
the condition that the continuation problem admits a saddle for each value of the state
variable.20 On the other hand, there are no problems in applying the dual recursive
method (DRM) to this example. Since the sequential Lagrangian admits a saddle we
know that the dual recursive approach delivers the correct value and that it also yields
necessary conditions for the optimal solutions.

A second difference between our approach and the RSPM proposed by Marcet and
Marimon (2011), lies in the fact that we obtain necessity under far weaker assumptions.
In particular, Marcet and Marimon (2011) prove that the policy of the RSPM generates
every solution of the underlying optimization problem under the assumption that there
is only one such solution. Our necessity result requires no uniqueness assumptions

20This fact does not hinge on the exact functional form of the agent’s utility. The crucial feature of u is
that it is not concave everywhere but instead is convex over parts of its domain.
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whatsoever.
Marcet and Marimon (2011) show that their method yields necessary and sufficient

conditions for an optimum if the functions that define the per period returns and con-
straints satisfy (strict) concavity. The concavity assumptions that we have imposed in
Section 3.3 in order to prove our sufficiency result are the exact analogue of their as-
sumptions for our framework.21 So while we get necessity under weaker assumptions
than Marcet and Marimon (2011), we do not need to impose stronger assumptions in
order to obtain sufficiency.

21See Assumptions A6-A6s in Marcet and Marimon (2011).
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Appendix A: Proofs

Proof of Proposition 6. Let Gr X = {(a1, x)|a1 ∈ A1, x = l(a1)} and A2(y) := {a2 ∈ A2 :
m(a2) = y}. Then:

V∗ = sup
A

inf
Λ
{ f1(a1) + f2(a2) + λ1[g1(a1) + c1 ·m(a2)] + λ2[c2 · l(a1) + g2(a2)]}

= sup
Gr X×Y

sup
A2(y)

inf
Λ
{ f1(a1) + f2(a2) + λ1[g1(a1) + c1 · y] + λ2[c2 · x + g2(a2)]}

= sup
Gr X×Y

sup
A2(y)

inf
Λ1

{
f1(a1) + λ1[g1(a1) + c1 · y] + inf

Λ2
{ f2(a2) + λ2[c2 · x + g2(a2)]}

}

= sup
Gr X×Y

inf
Λ1

{
f1(a1) + λ1[g1(a1) + c1 · y] + sup

A2(y)
inf
Λ2

{ f2(a2) + λ2[c2 · x + g2(a2)]}
}

= sup
Gr X×Y

inf
Λ1

{ f1(a1) + λ1[g1(a1) + c1 · y] + V2(x, y)} = V1,

where the first line follows from the definition of V∗, the second from the definitions of
Gr X, x and y and the third from the decomposition properties of the infimum operation.
The fourth interchanges the conditional supremum operation over a2 with the infimum
operation over λ1. It is admissible because the choice of λ1 is independent of a2 given y.
The fifth and sixth equalities stem from the definitions of V2 and V1 respectively.

Let a∗ = (a∗1 , a∗2) and λ∗ = (λ∗1 , λ∗2) be as in the statement of the proposition and let
x∗ = l(a∗1) and y∗ = m(a∗2). Then:

λ∗ ∈ argmin
Λ

f1(a∗1) + f2(a∗2) + λ1[g1(a∗1) + c1 · y∗] + λ2[c2 · x∗ + g2(a∗2)].

Decomposing this and adding the constant term V2(x∗, y∗) gives:

λ∗1 ∈ argmin
Λ1

f1(a∗1) + λ1[g1(a∗1) + c1 · y∗] + V2(x∗, y∗)

λ∗2 ∈ argmin
Λ2

f2(a∗2) + λ2[c2 · x∗ + g2(a∗2)].

In particular, since a∗ is feasible and g(a∗) ≥ 0, λ∗1 [g1(a∗1) + c1 · y∗] = 0 and λ∗2 [c2 · x∗ +
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g2(a∗2)] = 0. Also,

V1 = V∗

= f1(a∗1) + f2(a∗2) + λ∗1 [g1(a∗1) + c1 · y∗] + λ∗2 [c2 · x∗ + g2(a∗2)]

= f1(a∗1) + λ∗1 [g1(a∗1) + c1 · y∗] + f (a∗2) + λ∗2 [c2 · x∗ + g2(a∗2)]

= f1(a∗1) + λ∗1 [g1(a∗1) + c1 · y∗] + inf
Λ2
{ f (a∗2) + λ2[c2 · x∗ + g2(a∗2)]}

≤ f1(a∗1) + λ∗1 [g1(a∗1) + c1 · y∗] + sup
A2(y∗)

inf
Λ2

{ f (a2) + λ2[c2 · x∗ + g2(a2)]}

= f1(a∗1) + λ∗1 [g1(a∗1) + c1 · y∗] + V2(x∗, y∗)

= inf
Λ1

f1(a∗1) + λ1[g1(a∗1) + c1 · y∗] + V2(x∗, y∗)

≤ sup
Gr X×Y

inf
Λ1

f1(a1) + λ1[g1(a1) + c1 · y] + V2(x, y) = V1,

where the first line is from the first part of the proposition, the second is from the
definitions of V∗, a∗ and λ∗, the third is a simple rearrangement, the fourth from the
previously proved property of λ∗2 , the fifth from the fact that a∗2 ∈ A2(y∗), the sixth
from the definition of V2, the seventh from the previously proved property of λ∗1 , the
eighth from the fact that (a∗1 , x∗, y∗) ∈ GrX × Y and the definition of V1. Thus, we have
(using the sixth line above): V1 = f1(a∗1) + λ∗1 [g1(a∗1) + c1 · y∗] + V2(x∗, y∗). Combining
this with the previously proved first period complementary slackness condition gives
V∗1 = f1(a∗1) + V2(x∗, y∗). Similarly, we have (using the third and sixth lines above)
V2(x∗, y∗) = f2(a∗2) + λ∗2 [c2 · x∗ + g2(a∗1)]. Combining this with the previously proved
second period complementary slackness condition gives V2(x∗, y∗) = f2(a∗2). Putting
the pieces together, we conclude that (a∗1 , x∗, y∗, λ∗1) ∈ Γ1 and (a∗2 , λ∗2) ∈ Γ2(x∗, y∗). The
converse is proved in a similar fashion.

Proof of Proposition 10. (i) Follows from Borwein and Lewis (2006), Theorem 3.2.8, p.
44. (ii) There is at most one solution to the sequential primal problem since the constraint
set is convex (g1 + c1 ·m and c2 · l + g2 are both concave and thus also quasi-concave) and
the objective f1 + f2 is strictly quasi-concave (strict concavity of f1 and f2 implies strict
quasi-concavity of f1 + f2). Since A∗ is non-empty by assumption, it follows that A∗ =
{a∗} for some a∗ ∈ A. By Proposition 7, W1 = W∗, and by Proposition 8, AIS coincides
with the set of control sequences generated by the recursive dual policy correspondences.
It remains to show that AIS = A∗.
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By Proposition 1 and part i) of this proposition, there is a λ∗ ∈ ΛIS such that (a∗, λ∗) is
a saddle point. But then, from the definition of a saddle point, a∗ ∈ AIS and A∗ ⊂ AIS.
Suppose that there is an ã ∈ AIS\A∗. Since ã ∈ AIS, there is a λ̃ ∈ ΛIS such that ã
maximizes L (·, λ̃). In fact since L (·, λ̃) is strictly concave, ã is the unique maximizer of
L (·, λ̃). On the other hand, since the set of saddle points of the Lagrangian coincides
with A∗×ΛIS, (a∗, λ̃) is a saddle point and a∗ a maximizer of L (·, λ̃). This contradiction
implies that AIS\A∗ = ∅ and so a∗ is the only element of AIS.

Proof of Proposition 11. (i) The conjugate of −V2 is given by:

(−V2)
?(µ,−φ) := sup

X×Y
−φ · x + µ · y + V2 (x, y)

= sup
X×Y

−φ · x + µ · y + sup
A2

inf
Λ2

inf
∆

f2 (a2) + λ2 · [g2 (a2) + c2 · x] + δ [y−m (a2)]

= sup
X×Y

sup
A2

inf
Λ2

inf
∆
−φ · x + µ · y + f2 (a2) + λ2 · [g2 (a2) + c2 · x] + δ [y−m (a2)] .

Obviously, y and a2 will be chosen so that y = m (a2), and so:

(−V2)
? (µ,−φ) = sup

X×A2

inf
Λ2

−φ · x + µ ·m (a2) + f2 (a2) + λ2 · g2 (a2) + λ2 · c2 · x. (66)

On the other hand:

W2 (µ, φ) := inf
Λ2

sup
A2

sup
Z

f2 (a2) + µ ·m (a2) + λ2 · g2 (a2) + z [φ− λ2 · c2]

≥ inf
Λ2

sup
A2×X

f2 (a2) + µ ·m (a2) + λ2 · g2 (a2) + λ2 · c2 · x− φ · x, (67)

where in the second line the change of variable z = −x is made. The inequality sign
follows from the fact that the set from which x is chosen X is a subset of −Z. Hence, (66),
(67) and weak duality imply that W2 ≥ (−V2)

?. The second inequality (31) in Proposi-
tion 11 (i) is proved analogously by comparing W?

2 to −V2. Part (ii) of the proposition is
immediate from the definition of a saddle point and Proposition 1.

Proof of Proposition 12. (i) We first show that the dual continuation problem (27) ad-
mits a saddle point at (µ∗, φ∗) = (λ∗1 · c1, λ∗2 · c2). Since (a∗, λ∗) is a saddle of L (a, λ), it
follows that for all a2 ∈ A2 and λ2 ∈ Λ2:

L (a∗, λ∗1 , λ2) ≥ L (a∗, λ∗) ≥ L (a∗1 , a2, λ∗).
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Thus, (a∗2 , λ∗2) is a saddle of f2(a2) + µ∗ ·m(a2) + λ2 · g2(a2) + (λ2 · c2 − φ∗) · x∗. Hence,
for all (λ2; a2, z) ∈ Λ2 × A2 ×Rr2 ,

f2(a2) + µ∗m(a2) + λ∗2 · g2(a2) + (λ∗2 · c2 − φ∗) · z
≤ f2(a∗2)+µ∗m(a2) + λ∗2 · g2(a2) + (λ∗2 · c2 − φ∗) · x∗

≤ f2(a∗2) + µ∗m(a2) + λ2 · g2(a2) + (λ2 · c2 − φ∗) · x∗,

where the first inequality uses the fact that a∗2 is maximal for f2(a2) + µ∗m(a2) + λ∗2 ·
g2(a2) given the saddle property of (a∗2 , λ∗2) and the fact that λ∗2 · c2 − φ∗ = 0 and the
second uses the minimality of λ∗2 given the saddle property of (a∗2 , λ∗2). Hence, (λ∗2 ; a∗2 , x∗)
is a saddle for the continuation dual problem at (µ∗, φ∗). The proof that the continuation
primal problem admits a saddle at (x∗, y∗) is analogous.

(ii) The proof is done in two steps. First, we show the following double implication:[
−φ∗

µ∗

]
∈ ∂ [−V2 (x∗, y∗)]⇔

[
y∗

−x∗

]
∈ ∂W2 (µ

∗, φ∗) (68)

assuming sub-differentiability of the functions. Then we show that−V2 is sub-differentiable
at (x∗, y∗), with (−φ∗, µ∗) a sub-gradient.
Step 1: [⇐ of (68)] Let (y∗,−x∗) ∈ ∂W2(µ

∗, φ∗). By Proposition 2, we have (µ∗, φ∗) ∈
∂W?

2 (y
∗,−x∗). From the definition of a sub-differential, Proposition 11 and (i) of this

proposition:

−V2(x, y) ≥W?
2 (y,−x) ≥ W?

2 (x∗, y∗)− φ∗ · [x− x∗] + µ∗ · [y− y∗]

= −V2(x∗, y∗)− φ∗ · [x− x∗] + µ∗ · [y− y∗].

So that (−φ∗, µ∗) ∈ ∂[−V2(x∗, y∗)] as desired.
[⇒ of (68)] Let (−φ∗, µ∗) ∈ ∂[−V2(x∗, y∗)]. Again using Proposition 2, we have

(x∗, y∗) ∈ ∂(−V2)
?(−φ∗, µ∗). This together with the definition of a sub-differential,

Proposition 11 and (i) of this proposition gives:

W2(µ, φ) ≥ (−V2)
?(µ,−φ) ≥W2(µ

∗, φ∗) + y∗ · (µ− µ∗)− x∗ · (φ− φ∗)

which implies that (y∗,−x∗) ∈ ∂W2(µ
∗, φ∗) as desired.

Step 2: From Proposition 11,

−V2(x∗, y∗) = W?
2 (−x∗, y∗) := sup

F×M
−W2(µ, φ) + µ · y∗ − φ · x∗. (69)
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We now show that (φ∗, µ∗) solves the previous maximization problem. We have:

−V2(x∗, y∗) ≥ −W2(µ
∗, φ∗) + µ∗ · y∗ − φ · x∗

= − inf
Λ2

sup
A2×Rr2

[ f (a2) + µ∗ ·m(a2) + λ2 · g(a2) + x · (φ∗ − λ2 · c2)] + µ∗ · y∗ − φ∗ · x∗

≥ − sup
A2×Rr2

[ f (a2) + µ∗ ·m(a2) + λ∗2 · g(a2) + x · (φ∗ − λ∗2 · c2)] + µ∗ · y∗ − φ∗ · x∗

= − f (a∗2)− µ∗ ·m(a∗2)− λ∗2 · g(a∗2) + µ∗ · y∗ − φ∗ · x∗

= − f (a∗2)− λ∗2 · g(a∗2)− λ∗2 · c2 · x∗ = −V2(x∗, y∗),

where the first line uses (69), the second the definition of W2, the third the fact that λ∗2
need not be maximal, the fourth the equality φ∗ = λ∗2 · c2 and the saddle point property
of a∗2 , the fifth y∗ = m(a∗2) and the definition of V2. We hence have shown that:

−W2(µ
∗, φ∗) + µ∗ · y∗ − φ∗ · x∗ ≥ −W2(µ, φ) + µ · y∗ − φ · x∗.

A simple rearrangement of terms implies that:

W2(µ, φ) ≥W2(µ
∗, φ∗) + (µ− µ∗) · y∗ − (φ− φ∗) · x∗.

which is the definition of a sub-gradient. So, (−x∗, y∗) ∈ ∂W2(φ
∗, µ∗), and we are fin-

ished.

Proof of Proposition 13. Part (i): Observe that the following sequence of (in-)equalities
holds

Ŵ∗(µ̄1, x̄1)
(1)
= W1(µ̄1, φ∗1) + φ∗1 x̄1

(2)
= inf

Λ
sup
A,Z

L D(a, λ, z; µ̄1, φ∗1) + φ∗1 x̄1

(3)
≥ inf

Λ
sup

A
L D(a, λ, x̄1; µ̄1, φ∗1) + φ∗1 x̄1

(4)
= inf

Λ
sup

A
H(a, λ) + µ̄1 ·

( 2

∑
τ=1

m(aτ)
)
+
( 2

∑
τ=1

λτb1,τ

)
· x̄1

(5)
≥ sup

A
inf

Λ
H(a, λ) + µ̄1 ·

( 2

∑
τ=1

m(aτ)
)
+
( 2

∑
τ=1

λτb1,τ

)
· x̄1
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(6)
= sup

A
inf

Λ
H(a, λ) + µ̄1 ·

( 2

∑
τ=1

m(aτ)− y∗
)
+ µ̄1 · y∗1 +

( 2

∑
τ=1

λτb1,τ

)
· x̄1

(7)
= sup

A
inf

Λ
L P(a, λ, µ̄1; x̄1, y∗1) + µ̄1 · y∗1

(8)
≥ sup

A
inf
Λ,Γ

L P(a, λ, γ; x̄1, y∗1) + µ̄1 · y∗1

(9)
= V1(x̄1, y∗1) + µ̄1 · y∗1
(10)
= V̂∗(µ̄1, x̄1).

The first equality sign is definitional. The second follows from the fact that W1(µ̄1, φ∗)

is equal to the value of the sequential dual starting at (µ̄1, φ∗1) (i.e. W1(µ̄1, φ∗) equals
infΛ supA,Z L D(a, z, λ; µ̄1, φ∗1)). The inequality in line three is implied by the fact that
instead of calculating the supremum with respect to z we evaluate L D at z = x̄1. The
next equality follows immediately from the definition of L D. The inversion of the supre-
mum and infimum operators implies the inequality sign in line five. Line six is obtained
by adding and subtracting µ̄1 · y∗1 to the previous line. The equality in line 7 follows
from the definition of L P. The inequality in the next line is implied by the fact that
we introduce an infimum operation with respect to a variable that was held constant in
line 7. Line nine follows from the fact that supA infΛ,Γ L P(a, λ, γ; x̄1, y∗1) and V1(x̄1, y∗1)
coincide. The equality in the last line is again definitional.

Part (ii): Assume first that Ŵ∗(µ̄1, x̄1) = V̂∗(µ̄1, x̄1). From this equation it follows that
all inequality signs in the above expression must hold as equalities. Moreover, it is also
straightforward to see that if λ∗ solves the problem in line 2 above then it must be a
solution of the problem in line 3 as well. Specifically,

sup
A

L D(a, λ∗, x̄1; µ̄1, φ∗1) + φ∗1 x̄1
(i)
≥ inf

Λ
sup

A
L D(a, λ, x̄1; µ̄1, φ∗1) + φ∗1 x̄1

(ii)
= inf

Λ
sup
A,Z

L D(a, λ, z; µ̄1, φ∗1) + φ∗1 x̄1

(iii)
= sup

A,Z
L D(a, λ∗, z; µ̄1, φ∗1) + φ∗1 x̄1

(iv)
≥ sup

A
L D(a, λ∗, x̄1; µ̄1, φ∗1) + φ∗1 x̄1,
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where (i) follows from the fact that λ∗ need not attain the infimum on the right hand
side, (ii) follows from the equality of lines 2 and 3 above, (iii) is implied by the fact λ∗

attains the minimum in the second line and (iv) follows from the fact that x̄1 need not
attain the supremum in the Lagrangian. Hence, (i) must hold with equality and λ∗ is
minimal in line 3 above. An analogous argument applies to the problems in line 7 and
8. That is, a∗, which solves the problem in line 8, is also a solution to the problem in line
7.

Now observe that the objective functions in lines four and five coincide and that both
problems have a solution (respectively, λ∗ and a∗). But this means that (a∗, λ∗) must be
a saddle of

G(a, λ; µ̄1, x̄1) := H(a, λ) + µ̄1 ·
( 2

∑
τ=1

m(aτ)
)
+
( 2

∑
τ=1

λτb1,τ

)
· x̄1.

We now verify that (a∗, λ∗, µ̄1) is a saddle point of L P(a, λ, γ; x̄1, y∗1). Recall that a∗

solves the problem in line 8 above. Infinite penalization implies that ∑2
τ=1 m(aτ) = y∗1 .

Thus, L P(a∗, λ, γ; x̄1, y∗1) is constant in γ and so it is minimized by γ = µ̄1. Moreover,
L P(a∗, λ, µ̄1; x̄1, y∗1) varies with λ in the same way as G(a∗, λ; µ̄1, x̄1) (the two functions
differ only by an additive term that does not depend on λ). Since (a∗, λ∗) is a saddle
of G(a, λ; µ̄1, x̄1) we can conclude that λ∗ must be a minimizer of L P(a∗, λ, µ̄1; x̄1, y∗1).
Conversely, fix (λ, γ) = (λ∗, µ̄1). The resulting function L P(a, λ∗, µ̄1; x̄1, y∗1) differs from
G(a, λ∗; µ̄1, x̄1) only by a constant. Thus, since the latter function is maximized by a∗, so
must L P(a, λ∗, µ̄1; x̄1, y∗1).

The arguments required to show that (a∗, λ∗, x̄1) is a saddle point of L D(a, λ, z; µ̄1, φ∗1)

are analogous to those just employed for the primal Lagrangian case. We therefore omit
the details.

For the converse, notice that if (a∗, λ∗, µ̄1) and (a∗, λ∗, x̄1) are saddle points of L P(·; x̄1, y∗1)
and L D(·; µ̄1, φ∗1), respectively, then the inequalities in lines (3), (5) and (8) hold as equal-
ities. This immediately gives the desired result, V̂∗(µ̄1, x̄1) = Ŵ∗(µ̄1, x̄1). iii) The proof
is analogous to Propositions 11 and 12 and is omitted.

Proof of Proposition 14. (i) Notice that:

W∗ = inf
Λ1×Λ2

sup
A1×A2

L (a1, a2, λ1, λ2)
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and

W1 = inf
Λ1

sup
A1

inf
Λ2

sup
A2

L (a1, a2, λ1, λ2).

Since:
inf
Λ2

sup
A1

sup
A2

L (a1, a2, λ1, λ2) ≥ sup
A1

inf
Λ2

sup
A2

L (a1, a2, λ1, λ2),

it follows that W∗ ≥W1. But the same argument also implies that:

W1 ≥ inf
Λ1

sup
A1

sup
A2

inf
Λ2

L (a1, a2, λ1, λ2) ≥ sup
A1

sup
A2

inf
Λ1

inf
Λ2

L (a1, a2, λ1, λ2) = V∗.

If a saddle exists, then W∗ ≥W1 ≥ V∗ = W∗ and so W∗ = W1.
(ii) If (a∗, λ∗) is a sequential saddle, then (a∗2 , λ∗2) is a saddle of L (a∗1 , a2, λ∗1 , λ2).

Hence, by Proposition 1, (λ∗2 , a∗2) ∈ Γ̂2(µ
∗), where µ∗ is the value of the state implied

by (a∗1 , λ∗1). Since there exists a saddle the order of the inf and sup operations does not
matter. In particular,

inf
Λ1

sup
A1

[
inf
Λ2

sup
A2

L (a1, a2, λ1, λ2)

]
= sup

A1

inf
Λ1

[
inf
Λ2

sup
A2

L (a1, a2, λ1, λ2)

]
= L (a∗1 , a∗2 , λ∗1 , λ∗2).

But then, by Proposition 1, (λ∗1 , a∗1) must belong to Γ̂1.

Proof of Proposition 15. The first statement follows from the proof of Proposition 12 (i).
When µ∗ is given and the state φ is absent, the lines of proof in Propositions 11 (ii) and
12 (ii) can be used, step by step, to show results (ii) and (iii) above.
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