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Abstract 

We examine whether the dynamics of the implied volatility surface of individual equity options contains 

exploitable predictability patterns. Predictability in implied volatilities is expected due to the learning 

behavior of agents in option markets. In particular, we explore the possibility that the dynamics of the 

implied volatility surface of individual equity options may be associated with movements in the volatility 

surface of S&P 500 index options. We present evidence of strong predictable features in the cross-section 

of equity options and of dynamic linkages between the implied volatility surfaces of equity options and 

S&P 500 index options. Moreover, time-variations in stock option volatility surfaces are best predicted by 

incorporating information from the dynamics in the implied volatility surface of S&P 500 index options. 

We analyze the economic value of such dynamic patterns using strategies that trade straddle and delta-

hedged portfolios, and we find that before transaction costs such strategies produce abnormal risk-

adjusted returns. 
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1. Introduction 

Contrary to the constant volatility assumption of the Black and Scholes’ (1973) model 

(henceforth BS model), the volatilities implicit in option contracts written on the same underlying 

asset differ across strike prices and time-to-maturities. This phenomenon is known as the implied 

volatility surface (henceforth, IVS).1

There are both strong academic and practical reasons to pursue a systematic investigation of 

the IVS dynamics in individual equity options. From an academic perspective, Gonçalves and 

Guidolin (2006) have analyzed how predictable the S&P 500 IVS has been over a 1992-1998 

sample. They find that predictability of the S&P 500 IVS is strong, but fail to find compelling 

evidence that such predictable movements may easily translate in positive risk-adjusted profits 

net of sensible trading costs. Therefore, they conclude that their findings fail to represent first-

order evidence that contradicts the efficient market hypothesis. On the one hand, this result 

provides a motivation to investigate whether alternative segments of the equity options market 

can be isolated in which IVS predictability may not only hold as a statistical fact, but also signal 

the existence of important pockets of market inefficiency. In fact, we would expect that such 

pockets of inefficiency may exist exactly with reference to options that are less liquid than S&P 

 In addition, there is abundant empirical evidence of 

predictable movements of the IVS (e.g., Dumas et al., 1998, Cont and Fonseca, 2002, Gonçalves 

and Guidolin, 2006, and Fengler et al., 2007). These studies show that the shape of the IVS in its 

two key dimensions, moneyness and time-to-maturity, would evolve over time in ways that can 

be forecasted using simple models. However, the financial literature has focused its attention 

mainly on the predictability of the IVS of index options, such as S&P 500 index options. As a 

result, the existence of similar dynamics involving the IVS of individual equity options has 

remained relatively under-researched. Moreover, the existence of potential dynamic relationships 

between the IVS of options written on equities and the IVS of index options has not been 

investigated, even though it may be of great practical importance. For instance, the dynamics in 

the IVS of index options could help traders and hedgers anticipate movements in the IVS of 

individual equity options, which may be highly valuable for the design of either speculative or 

hedging positions. The objective of this paper is therefore to fill these gaps by studying firstly the 

unexplored predictable dynamics in the IVS of equity options, and secondly, their relationships 

with movements in the volatility surface implicit in index options. 

                                                 
1 See, e.g., Rubinstein (1985), Campa and Chang (1995), and Das and Sundaram (1999). 
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500 index options. On the other hand, especially if the efficient market hypothesis is imposed so 

that any IVS predictability is traced back to either micro-structural imperfections or to unobserved 

and hard-to-estimate time-varying risk premia; then financial economists might have a lot to learn 

from a careful study of the cross-sectional distribution of predictability and/or economic value 

“scores” caused by IVS predictability.2

Understanding the IVS dynamics of equity options is not only crucial to participants in option 

markets such as market makers, option traders, or investors who aim at hedging equity option 

positions. Knowledge of the dynamic process of the IVS is also relevant for investment decisions 

in other markets, since option securities have been commonly used to obtain forward-looking 

market information. Forward-looking analyses based on option market information rely on the 

assumption that option prices should reveal agents’ expectations about prospective economic 

scenarios, where the horizons of investors’ forecasts correspond to the expiry dates of traded 

option contracts.

 

3

                                                 
2 Examples of predictability “scores” are the root mean-squared prediction error or the mean absolute prediction error 

for h-step ahead BS implied volatilities. Examples of economic value “scores” are average trading profits or realized 

Sharpe ratios from trading strategies built on a given IVS dynamic model. Section 4 provides details on all the 

criteria used in our paper to measure predictability and its economic value. 

 In practice, trading desks are often interested in estimating the dynamic process 

followed by the IVS of individual equity options, with the objective of taking strategic positions 

to hedge existing portfolios or other over-the-counter exotic derivatives offered to institutional 

customers. However, because trading volume may often be lumpy in individual equity option 

markets, it is at least doubtful that real-time updates of the entire equity option IVS may be 

feasible in practice. In fact, a non-negligible portion of all existing equity option contracts may be 

classified as infrequently traded securities. Therefore, given that investors are eager to learn any 

new information relevant to predict equity option IVS in real time, they are likely to be ready to 

avail themselves also of information revealed by transactions involving more liquid and related 

3 Option prices have been recently used in many occasions to capture forward-looking information on the dynamic 

process of asset returns (e.g., Xing et al., 2010, and Bakshi et al., 2011), their realized volatilities (e.g., Christensen 

and Prabhala, 1998, and Busch et al., 2011), risk premiums (e.g., Duan and Zhang, 2010), betas (e.g., Siegel, 1995, 

and Chang et al., 2009), correlation coefficients (e.g., Driessen et al., 2009), and to solve forward-looking asset 

allocation problems (e.g., Kostakis et al., 2011). 
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option contracts, such as those typically written on major market indices.4 Consequently, in this 

paper we also endeavour to test whether there is any forecasting power in movements in the S&P 

500 index options IVS for subsequent dynamics in the IVS of individual equity options. In this 

context, it is surprising that empirical research on derivatives has remained scarce when it comes 

to investigating similar relationships between the IVS of equity options and the IVS of market 

index options.5 This may also be seen as an additional, novel academic contribution of our paper: 

in the same way that all students of finance apply the simple CAPM in their analyses in which the 

individual stock volatility moves proportionally with market volatility (e.g., as represented by the 

S&P 500 index), in our paper we test whether such relationship may also hold for the IV surfaces 

of equity options and index options.6

In our paper, we use daily data from individual equity and S&P 500 index options traded on 

the U.S. markets over the period 1996-2006. The choice of a sample that stops at the end of 2006 

is also intended to provide evidence on the cross-sectional predictability dynamics in equity 

option IVS that is free from the effects of the recent U.S. financial turmoil of 2007-2009. Our 

modelling strategy is simple (one may argue, so simple that many trading desks may actually 

consider adopting it) and based on a two-stage econometric approach. First, we characterize the 

IVS of equity options and the IVS of S&P 500 index options by fitting on daily basis a 

straightforward deterministic IVS model. In this deterministic IVS model the dependent variable 

is the implied volatility (henceforth, also shortened as IV), and the explanatory variables are 

factors related to basic observable option contract features such as strike prices and time-to-

maturities. Second, for each equity option we estimate a second-stage VARX predictive model in 

 

                                                 
4 In Section 2 we report market statistics concerning the trading activity levels on equity and index options. These 

statistics confirm, as one would expect, that index options are much more actively traded than even the most liquid 

individual equity options. 
5 Regarding the relationship of the IVS of equity options and the IVS of index options, it is important to mention the 

contributions of Dennis and Mayhew (2002) and Dennis et al. (2006), even though they do not explore directly the 

association of the shape characteristics between the equity option IVS and the market index option IVS as in our 

study. Dennis and Mayhew (2002) find that the skew of the risk neutral-neutral density implied in equity options is 

more negative when there is a high at-the-money implied volatility of S&P 500 index options. In addition, Dennis et 

al. (2006) use a similar relationship to the CAPM model with the implied volatilities (using at-the-money short-term 

option contracts) of equity option and the implied volatilities of S&P 500 index options; and thus to find the ‘implied 

idiosyncratic volatility’ present in equity options.  
6 Equity options and S&P 500 index options are also known as stock options and SPX options, respectively. In what 

follows, we will use any of these expressions/acronyms interchangeably, without any special or technical meaning. 
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which the endogenous variables are the time series coefficients estimated from the deterministic 

IVS models concerning each stock option from the first stage; while the exogenous variables are 

the time series coefficients estimated from deterministic IVS models for S&P 500 index options. 

In the following, we often refer to such VARX model as our ‘dynamic equity-SPX IVS model’. 

Finally, the dynamic equity-SPX IVS model is used to recursively compute daily one-day-ahead 

forecasts for the IVS of individual equity options. The goal of our paper consists of assessing 

whether such a recursive, two-stage approach yields implied volatilities and option price forecasts 

that display any statistical accuracy (relative to benchmarks) and/or that may support valuable 

trading strategies.  

We find evidence of strong cross-sectional relationships between the implied volatility 

surfaces of individual equity and S&P 500 index options. Moreover, we show that a remarkable 

amount of the variation in the IVS of stock options can be predicted using past dynamics in the 

IVS of S&P 500 index options. Firstly, we compare our VARX-type model (the dynamic equity-

SPX IVS model) with a simpler VAR-type dynamic equity IVS model. This VAR-type dynamic 

equity IVS model follows a similar two-stage procedure as the dynamic equity-SPX IVS model 

describe above, but this benchmark model does not take into account the information from the 

IVS of S&P 500 index options. In particular, when we compare both models we find that the 

predictable dynamics in the IVS of stock options are better characterised by the VARX model that 

use the information in recent movements in the S&P 500 index IVS. The dynamic equity-SPX 

IVS model yields a superior one-day-ahead forecasting performance in comparison to the VAR-

type framework that only includes information from past movements of the IVS of stock options. 

The intuition for this result comes from the slow updating process of the equity option IVS caused 

by the often modest trading frequency of a large fraction of stock option contracts. As a result, 

when such an updating is allowed to include information revealed by recent movements in the 

S&P 500 index IVS, the resulting forecasts out-perform the VAR-type model and other 

benchmarks, such as an ad-hoc ‘strawman’ random walk model for the first-stage deterministic 

IVS equity option coefficients (which is also used in Dumas et al., 1998, and Christoffersen and 

Jacobs, 2004) and an option-GARCH model for American-style option contracts (see Duan and 

Simonato, 2001). 

Furthermore, we also investigate the economic value of the predictable dynamics uncovered 

in the cross-section of the stock option IVS. We build a number of trading strategies that exploit 

the one-day-ahead forecasts of implied volatilities computed from the dynamic equity-SPX IVS 
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model, and we compare their profits to those obtained by the benchmarks models discussed 

above. Of course, the idea of evaluating models under realistic economic loss functions typical of 

market traders—such as the profits derived from simple trading strategies—is not new in option 

markets (see, e.g., Day and Lewis, 1992, Harvey and Whaley, 1992, Bollen et al., 2000, 

Gonçalves and Guidolin, 2006, and Goyal and Saretto, 2009). However, such an effort becomes 

particularly crucial in the presence of complex back-testing exercises in which a relatively high 

number of parameters need to be recursively estimated, and hence an economic evaluation 

represents a natural and also interpretable way to guard against the dangers of over-fitting. 

Moreover, as already discussed, such trading strategies will allow us to ask whether any 

statistical evidence of predictable dynamics may represent a violation of the classical efficient 

market hypothesis. In this paper, we use straddle and delta-hedged strategies, which are free of 

risks caused by changes in the prices of the underlying stocks. We simulate daily $1,000 fixed-

investment strategies that buy and sell straddles and delta-hedged option portfolios based on a 

simple principle: an option contract is purchased (sold) when a given model anticipates that the 

implied volatility for that option contract will increase (decrease) between 𝑡 and 𝑡 + 1.7 We find 

evidence of significant alphas using an asset pricing factor model that takes into account specific 

factors related to option securities, as in Coval and Shumway (2001).8

Our findings suggest that richer economic models such as those incorporating structural 

frameworks describing the investors’ learning process might explain the predictable dynamic 

process on the equity option IVS. 

 However, most of this 

risk-adjusted profitability disappears when transaction costs are incorporated into the analysis, 

which is consistent with the efficiency of option markets, similarly to the results in Gonçalves 

and Guidolin (2006).  

9

                                                 
7 This trading rule rests on the fact that option prices are positively related to implied volatilities.  

 For instance, in relation to GARCH type models commonly 

used to predict stock return volatilities (probably the most popular dynamic model used in 

financial economics), Engle (2001) writes that: “Such an updating rule is a simple description of 

8 Goyal and Saretto (2009) use the same factor model to evaluate abnormal returns of option trading strategies based 

on differences between realized volatilities and at-the-money one-month implied volatilities.  
9 For instance, Timmermann (2001) shows in the stock market that the predictability patterns in stock returns can be 

explained by the learning process followed by investors. Although the literature regarding learning models that 

explain the predictable dynamics of option prices is limited, Ederington and Lee (1996) and Beber and Brandt (2006, 

2009) present intuitive studies about the connection between learning and prices in option markets. 
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adaptive or learning behavior and can be thought of as Bayesian updating” (p. 160). In a similar 

way, our two-stage VARX-type models of the IVS dynamics may simply be stylized and yet 

powerful descriptive models hiding the way information is processed and spreads throughout a 

range of option markets. 

The recent literature contains a number of studies about the IVS dynamics of index options; 

however the studies that have examined possible predictability patterns in the IVS of individual 

equity options are limited. Moreover, we currently have no knowledge of any links (simultaneous 

or predictive) between the IVS of stock options and the index (market) IVS. Nevertheless, a 

number of papers are related to our current efforts. Gonçalves and Guidolin (2006) find 

predictable dynamics in the IVS of S&P 500 index options using a two-stage approach in a 

similar fashion to our paper. In addition, a number of papers have explored the index IVS 

movements using principal component analysis (e.g., Skiadopoulos et al., 1999, Cont and 

Fonseca, 2002, and Fengler et al., 2003), semiparametric models (e.g., Fengler et al., 2007), 

stochastic volatility models (e.g., Christoffersen et al., 2009), and using a Kalman filter approach 

(e.g., Bedendo and Hodges, 2009).10 Furthermore, recent contributions have examined the 

dynamics of higher order risk-neutral moments, but also in this case of index options (e.g., 

Panigirtzoglou and Skiadopoulos, 2004, and Neumann and Skiadopoulos, 2011). Finally, there 

are some studies that have explored a number of interesting features of individual equity options, 

although their focus is never on the IVS dynamics. For instance, Goyal and Saretto (2009) detect 

predictability patterns of equity options based on differences between historical realized 

volatilities and implied volatilities of at-the-money one-month option contracts. They report 

abnormal risk-adjusted returns from trading strategies. Additionally, Dennis and Mayhew (2000, 

2002) analyze different factors that may explain the volatility smile and risk-neutral skewness for 

short-term equity option contracts, but their possible predictability is ignored.11

The paper is organized as follows. Section 2 describes the data. Section 3 introduces the 

deterministic IVS model used to characterise the IVS as well as the cross-sectional IVS 

 

                                                 
10 In addition, some papers have investigated the predictability of the implied volatility of particular index option 

contracts, typically at-the-money short-term contracts (e.g., Harvey and Whaley, 1992, and Konstantinidi et al., 

2008). 
11 Moreover, recently Chalamandaris and Tsekrekos (2010) find predictable dynamics in the IVS of over-the-counter 

(OTC) currency options, which shows that predictability patterns are not unique to index options in accordance with 

the evidence presented in this paper. 
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relationships between equity and market index options. Section 4 presents the approach for 

modelling the joint dynamics of the IVSs of equity and index options; additionally this section 

reports the key results of statistical and economic measures to evaluate the predictability patterns 

in the IVS of equity options. Section 5 concludes. 

 

2. The Data 

We use data on daily equity and S&P 500 index option prices (American and European 

styles, respectively), spanning all calls and puts traded on the full set of option trading venues in 

the United States. This information is extracted from the OptionMetrics database covering the 

period between January 4, 1996 and December 29, 2006. The data include daily closing bid and 

ask quotes, volume, strike prices, expiration dates, underlying asset prices, dividends paid on 

each underlying asset, and the yield curve of riskless interest rates.12 Reported option prices are 

bid-ask quote midpoints. We assume that dividend cash flows are perfectly anticipated by market 

participants as in Bakshi et al. (1997) and Dumas et al. (1998). In addition, we calculate the 

implied volatilities for American options using a binomial tree model under Cox et al.’s (1979) 

approach; while we numerically invert BS model to obtain implied volatilities in the case of 

European-style contracts.13

We apply four exclusionary criteria to filter out observations that are not likely to represent 

traded prices in well-functioning and liquid option markets. First, we eliminate all observations 

that violate basic no-arbitrage bounds, such as upper and lower bounds for call and put prices and 

call-put parity relationships (i.e., equalities in the case of European options and weaker bounds in 

the case of American options). Second, as argued in Dumas et al. (1998), we drop all option 

 

                                                 
12 Battalio and Schultz (2006) have reported that the OptionMetrics database records option quotes and underlying 

stock prices with some minor time differences, which may represent a potential source of biases when arbitrage 

conditions are the main subject of investigation (e.g., the put-call parity). Using similar arguments to Goyal and 

Saretto (2009) about the irrelevance of this problem for their objectives, this feature of the data does not pose a 

problem for our research design because any residual non-synchronicity between option and stock prices would 

merely create spurious in-sample evidence of predictability, which is most likely to be punished by genuine recursive 

out-of sample strategies that are appropriately back-tested in recursive experiments, as we do in this paper. 
13 Of course, other approaches to extract implied volatilities from American options might have been used; however 

we consistently use the same model for all options and thus the small errors generated by Cox et al.’s (1979) 

approach should average out to zero.  
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contracts with less than six trading days or with more than one year to their expiration date, as 

their prices usually contain little information regarding the IVS. Third, similarly to Dumas et al. 

(1998) and Heston and Nandi (2000), we exclude contracts whose moneyness is either less than 

0.9 or in excess of 1.1 because their prices are usually rather noisy, especially in the case of 

individual equity options of American style.14 Fourth, following Bakshi et al. (1997) and 

Gonçalves and Guidolin (2006), we exclude contracts with price lower than $0.30 for equity 

options and $3/8 for S&P 500 index options, to avoid the effects of price discreteness on the IVS 

shape.15

We select the 150 equity options with the highest average daily trading volume over our 

sample period. Table 1 shows summary statistics for implied volatilities for these 150 equity 

options (Panel A, where we present averages across different individual equity contracts) and for 

S&P 500 index options (Panel B). This table presents statistics for data classified into a number 

of categories across moneyness and time-to-maturity. The moneyness categories are five (with 

break-points given by 0.94, 0.98, 1.02, and 1.06) and the maturity categories are three (short term 

options have a time to expiration between 7 and 120 days; medium term options have a time to 

expiration between 121 and 240 days; and long term options exceed 241 days to expiration). 

Besides reporting sample means and standard deviations for implied volatilities, we include a 

measure of trading frequency which is defined as the percentage of trading days in which we 

observe a non-zero trading volume for any of the option contracts in each of the categories 

defined in the table. Table 1 emphasizes the existence of remarkable differences in implied 

volatilities across moneyness and time-to-maturity for both individual equity options and S&P 

500 index options. Therefore, this table shows the existence of an IVS for both types of options. 

In addition, even though in this paper we mostly focus on the sub-set of equity options with the 

highest trading volume, Table 1 reveals substantial differences in the average trading frequency 

of equity options vs. S&P 500 index options: the trading index for S&P 500 index options across 

all moneyness and maturity categories is at least 200% higher than it is for individual stock 

options. For instance, the mean trading frequencies for at-the-money equity options are 47.23% 

(short-term contracts), 38.48% (medium-term), and 8.52% (long-term). On the opposite, the 

 

                                                 
14 We define the moneyness ratio as 𝑀𝑜𝑛 ≡ 𝐾

𝑆
, where 𝐾 and 𝑆 are the strike price and the underlying asset price, 

respectively. 
15 This is due to the proximity of these prices to the minimum tick size: for equity options the minimum tick is $0.05 

while for index options the minimum tick is $1/16. 
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trading frequency for S&P 500 index options are 100%, 97.69%, and 86.65%, respectively. The 

difference in mean trading frequency between the average long term stock option and SPX is 

indeed massive. In spite of these differences, following Goyal and Saretto (2009), we do not 

impose any constraints restricting option contracts to be traded for it to be included in our sample. 

This is because bid-ask quotes recorded on days without transactions still provide useful 

information that we want to capture through our modelling approach. For instance, it is true that 

investors will observe bid and ask prices in the market that are not supported by actual available 

transactions; however trading desk can use the information from bid and ask prices to forecast the 

IVS in following periods. Moreover, any usage in forecasting of stale information not supported 

by actual trades ought to be punished in subsequent, recursive out-of-sample trading experiments, 

which do represents the core of our research design. 

[Insert Table 1 here] 

The differences in trading activity reported in Table 1 suggest that changes in the IVS shape 

of S&P 500 (“market portfolio”) index options might be more quickly incorporated into prices 

than they do for equity options. Therefore, if the IV surfaces of equity and of S&P 500 index 

options were dynamically related, investors could use the information obtained from the index 

IVS to predict changes in each individual equity IVS. The hypothesis by which the IV surfaces of 

equity options and that of the market portfolio are related, with the latter potentially predicting 

the former, is explored in depth in Section 4. However, Figure 1 provides preliminary suggestive 

evidence that such a link may actually be strong. Figure 1 displays the IVS of S&P 500 index 

options and the IVS of General Electric Co. options on two consecutive trading days (October 3, 

2005 and October 4, 2005). For both the S&P 500 and General Electric Co., Figure 1 shows a 

pronounced smile shape in the IVS of short-term option contracts on October 3, 2005, which 

progressively weakens (i.e., the IVS “flattens”) as time-to-maturity increase. Interestingly, on the 

next day (October 4, 2005) both IVSs fail to present a smile shape across moneyness; instead they 

take up a shape that is commonly called a “skew” (asymmetric smile). Figure 1 therefore shows 

one example supporting the hypothesis that the IVS of individual equity options and the IVS of 

S&P 500 index options could be related in the cross-section, moving over time in similar ways. 

In the following sections, we perform statistical and economic tests to document any significance 

of these dynamic relationships.  

[Insert Figure 1 here] 
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3. Modelling the Implied Volatility Surface 

A convenient and simple way to capture the key features of the shape of the IVS is by fitting a 

simple deterministic IVS model. This model consists of a linear regression in which the 

dependent variable is the implied volatility of each contract and the explanatory variables are 

variables related to moneyness and time-to-maturity. This type of representation is often called 

“deterministic” because all the explanatory variables are fully observable and correspond to 

simple transformations of basic contract parameters. Dumas et al. (1998), Peña et al. (1999), and 

Gonçalves and Guidolin (2006) present competing specifications within the general class of 

polynomial/spline deterministic IVS models. We adopt the functional form proposed and 

successfully applied by Gonçalves and Guidolin (2006), because in their empirical study they 

estimate a range of alternative model specifications and find that other competing representations 

yield a worse fit to option data.16

Suppose that the number of option contracts written on the same underlying asset observed on 

a given day is 𝑁 and thus {𝜎𝑖}𝑖=1𝑁  is the full set of implied volatilities on the option contracts 

indexed by 𝑖. Then at one point in time, the deterministic linear function used in our paper can be 

written as: 

  

 ln𝜎𝑖 = 𝛽0 + 𝛽1𝑀𝑖 + 𝛽2𝑀𝑖
2 + 𝛽3𝜏𝑖 + 𝛽4(𝑀𝑖 ⋅ 𝜏𝑖) + 𝜀𝑖, (1) 

where the random error term (simply assumed to be a white noise) is represented by 𝜀𝑖, 𝜏𝑖 is time-

to-maturity, and 𝑀𝑖 is time-adjusted moneyness (see, e.g., Tompkins, 2001, and Tompkins and 

D’Ecclesia, 2006), which is defined as:  

 𝑀𝑖 ≡
ln � 𝐾𝑖

exp(𝑟𝑖𝜏𝑖)𝑆−𝐹𝑉𝐷𝑖
�

�𝜏𝑖
. (2) 

Here 𝐾𝑖 is the strike price, 𝑆 is the underlying asset price, 𝑟𝑖 is the riskless nominal interest 

rate that depends on the option contract 𝑖 through its time-to-maturity, and 𝐹𝑉𝐷𝑖 is the forward 

                                                 
16 In addition, and similarly to Gonçalves and Guidolin (2006), in unreported analyses, we experiment with 

alternative functional forms. We find that the strength of the IVS predictability captured by these alternative 

specifications is weaker and tends to yield lower economic value (trading profits). Detailed results are available upon 

request. 
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value until expiration date of all future dividends to be paid by the underlying asset (assumed to 

be perfectly anticipated by market participants). 

In equation (1), 𝛽0 is the intercept/level coefficient which in a Black and Scholes’ (1973) 

world, where volatility is constant, should be equal to the common log-volatility implicit in all 

option contracts (i.e., 𝛽0 = ln𝜎1 = ⋯ = ln𝜎𝑁 while 𝛽𝑗 = 0 for 𝑗 = 1, . . . ,4). The moneyness 

(smile/skew) slope of the IVS is characterised by the coefficient 𝛽1. 𝛽2 captures the curvature of 

the IVS in the moneyness dimension, 𝛽3 reflects the maturity (term-structure) slope, and 𝛽4 

describes possible interactions between the moneyness and the time-to-maturity dimensions. The 

coefficients in equation (1) are recursively estimated at daily frequency for each group of option 

contracts written on the same underlying asset, a procedure that is performed by generalized least 

squares (GLS), as recommended by Hentschel (2003).17

As a result of application of these methods, we obtain 151 daily sets of coefficients for the 

deterministic IVS model in equation (1), because in our sample we have a total of 150 “sets” of 

equity options (characterized by their underlying name) and one single set of S&P 500 index 

options. Table 2 reports summary statistics for the GLS coefficient estimates, the R2, and the root 

mean squared error (RMSE) of the deterministic IVS model using equity options (Panel A) and 

S&P 500 index options (Panel B), obtained over time.

 

18

                                                 
17 Hentschel (2003) shows that linear models of option implicit volatilities cannot be estimated by simple ordinary 

least squares (OLS) because of the presence of pervasive measurement errors in implied volatilities (e.g., due to bid-

ask spread bounce and/or minimum tick size rules) that may introduce heteroskedasticity and autocorrelation in 

standard OLS residuals. As a result, standard OLS estimates need to be presumed to be rather inefficient. For a 

detailed description of the implementation of the GLS method suggested by Hentschel (2003) to deterministic IVS 

models, see appendix B in Gonçalves and Guidolin (2006). 

 Table 2 shows that on average, the 

values of the R2 and the F-statistics for equity options are 0.69 and 20.17, respectively; while for 

S&P index options we obtain an average R2 of 0.78 and an average F-statistic of 382.85. 

Therefore, there is a sense in which, at least on average, our deterministic IVS model fits index 

options data better than it fits individual equity options, although the difference is far from 

massive. Although, in the daily time series for individual stock options not all estimated 

coefficients in equation (1) are individually significant, Table 2 emphasizes that the qualitative 

features of the IVS are common across index and stock options, with implied volatility declining 

18 In appendix A, we present the same summary statistics as in Table 2 but using ordinary least squares (OLS) as 

robustness check. 
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in moneyness, increasing in the square of moneyness, and decreasing as a function of the 

interaction between moneyness and time-to-maturity. This finding of implied volatilities 

declining in the level of moneyness and increasing in the square of moneyness yields an 

asymmetric smile shape that is what the literature has typically reported (see among the others 

Dumas et al., 1998, Neumann, and Skiadopoulos, 2011, and Xing et al., 2010). The only 

coefficient that carries a different estimated sign for individual equity options vs. the S&P 500 

market index, is β3: this implies that while the SPX IVS tends to be upward sloping as a function 

of maturity, on average the IVS of stock options slightly declines. Table 2 also presents prima-

facie evidence of predictability patterns in the IV surfaces of equity options and S&P 500 index 

options: All the coefficients of the deterministic IVS model estimated with both option groups 

present on average significant serial correlation detected using the Ljung-Box test with one and 

three lags, LB(1) and LB(3), respectively.  

[Insert Table 2 here] 

[Insert Figure 2 here] 

Additionally, as previously stated, one of the objectives of our paper is to explore possible 

relationships between the IV surfaces of equity and market index options. Consequently, Figure 2 

shows the evolution of daily cross-sectional averages (over different underlying stocks) of the 

coefficients of the deterministic IVS model estimated with equity options, along with the 

coefficients for the IVS of S&P 500 options. Figure 2 shows some evidence of co-movements 

between each pair of coefficient time series, particularly visible with little effort in the case of the 

coefficients β0 and β3. In fact, we find significant linear correlation between the IVS coefficients 

characterizing individual equity options and the IVS of index options: Table 3 presents a 

correlation analysis applied to the individual IVS coefficients extracted from stock options data as 

well as from S&P 500 options. Table 3 shows that on average there are many significant 

correlations between the two sets of IVSs. In fact, some of the pair-wise correlations originate 

significant estimates in more than 90% of the cross-section of equity options. Therefore, the 

results presented in Table 3 provide some preliminary support to the hypothesis that the IVS of 

equity options may be related to the market index IVS. 

[Insert Table 3 here] 
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4. Modelling the Joint Dynamics of Equity and Market Implied Volatility Surfaces 

In this section we examine the time series as well as the cross-dynamics of the IV surfaces of 

both equity and index options. On the one hand, in Section 3 we have reported high levels of 

predictability as measured by the autocorrelations of the deterministic IVS model coefficients of 

equity options (see Table 2); these are also observable for the IVS of S&P 500 index options, 

consistently with the findings in Gonçalves and Guidolin (2006). On the other hand, we have 

shown evidence of cross-sectional linkages between individual equity options IVS coefficients 

and those for the market portfolio (see Figure 2 and Table 3). These findings suggest that the IVS 

of equity options could be characterised through a dynamic multivariate model that includes 

historical equity IVS movements—as measured by the time series of daily IVS coefficients 

obtained with equation (1)— as well as the dynamics of the SPX IVS. Therefore, the objective of 

this section is to investigate whether the predictability of implied volatilities of individual equities 

may benefit, both in a purely statistical perspective and through economic value tests, from the 

incorporation of information on historical dynamics in the S&P 500 IVS. To pursue this goal, we 

propose a simple vector time series model of VARX(𝑝, 𝑞) type to be fitted to the time series of 

daily coefficients of the deterministic IVS models of equity and market S&P 500 index options: 

                𝛃�𝑡
𝐸𝑞 = 𝛄 + �𝚽𝑗𝛃�𝑡−𝑗

𝐸𝑞
𝑝

𝑗=1

+ �𝚿𝑘𝛃�𝑡−𝑘𝑆𝑃𝑋

q

𝑘=1

+ 𝐮𝑡          𝐮𝑡~𝐼𝐼𝐷  𝑁(0,𝛀), (3) 

where 𝛃�𝑡
𝐸𝑞 ≡ [𝛽0𝑡

𝐸𝑞 𝛽1𝑡
𝐸𝑞 𝛽2𝑡

𝐸𝑞 𝛽3𝑡
𝐸𝑞 𝛽4𝑡

𝐸𝑞]′ is the 5 × 1 vector time series of the first-stage estimated 

coefficients specific to individual equity options obtained on a recursive daily basis from GLS 

estimations of the simple regression model in equation (1), and 𝛃�𝑡𝑆𝑃𝑋 is a similar 5 × 1 vector 

time series of estimated coefficients characterising the IVS of S&P 500 index options. We select 

the number of lags to be used in the model (𝑝 and 𝑞), via minimization of the Bayes-Schwarz 

criterion, after setting an arbitrary maximum value of three for both sets of parameters.19

                                                 
19 The arbitrary choice of 3 as the maximum value for 𝑝 and 𝑞 is based on the analysis presented in Gonçalves and 

Guidolin (2006), where they show that parsimonious models with few lags tend to outperform richer models. 

Moreover, in preliminary analyses, we obtained worse statistical and economic measures of predictability with 

models using longer lag structures. 

 

Consequently, the model introduced in equation (3) is a simple vector time series model, which 
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we use to forecast the IVS of equity options using recent co-movements in the IVSs from the 

equity options themselves and from market S&P 500 index options.20

For both testing and comparative purposes, besides the dynamic equity-SPX IVS model in 

equation (3) we also estimate and back-test three benchmark models. The first benchmark model 

nests equation (3) because it is derived by imposing the restrictions that 𝚿𝑘 ≡ 𝐎 for 𝑘 = 1, ..., 𝑞, 

where 𝐎 is a matrix of zeros. Therefore, the first benchmark model is a simple VAR(p) model 

where the information on past dynamics in the index IVS is disregarded:  

  

                    𝛃�𝑡
𝐸𝑞 = 𝛅 + �𝚯𝛃�𝑡−𝑗

𝐸𝑞
𝑝

𝑗=1

+ 𝐯𝑡          𝐯𝑡~𝐼𝐼𝐷  𝑁(0,𝚵). (4) 

Also in this case, we select 𝑝 by minimizing the Bayes-Schwarz criterion with a pre-selected 

maximum number of lags equal to three. The comparison of the model in equation (4) with the 

dynamic equity-SPX IVS model in equation (3) allows us to ask whether the index IVS dynamics 

may contain any useful and additional information regarding predictable movements in the cross-

section of equity IVSs. 

As a second benchmark, we entertain an ad-hoc ‘strawman’ model which has been used by 

Dumas et al. (1998) and Christoffersen and Jacobs (2004). This ad-hoc model is a simple random 

walk process for each of the coefficients of the deterministic IVS model for equity options. Under 

this naive benchmark, the best prediction for tomorrow's coefficients (hence, the forecast of the 

shape of the IVS) is simply given by today's values (i.e., 𝛃�𝑡
𝐸𝑞 = 𝛃�𝑡−1

𝐸𝑞 ).  

The third benchmark model is Duan and Simonato’s (2001) American option GARCH model, 

which posits the following stochastic process for the underlying stock returns:21

         𝑟𝑡+1 = 𝑟𝑓 − (1/2)ℎ𝑡+1 + �ℎ𝑡+1𝑧𝑡+1
∗             ℎ𝑡+1 = 𝜔 + 𝛽ℎ𝑡 + 𝛾ℎ𝑡(𝑧𝑡∗ − 𝛿 − 𝜓)2          (5) 

 

                                                 
20 The VARX model can be understood as a reduced form characterising the time variation in the equity option IVS, 

which may result from learning dynamics characterizing the behaviour of investors in option markets, (see e.g., 

Guidolin and Timmerman, 2003, or David and Veronesi, 2002). 
21 Notice that in American-style options such as stock options, volatility affects early exercise decisions because 

volatility enters in the calculation of the future value of the option. Therefore, it is important to consider all possible 

paths that the conditional volatility can follow in American-style options when GARCH-type models are used in 

option valuation. Duan and Simonato (2001) develop a numerical pricing method using Markov chains to deal with 

this issue which takes future volatility dynamics into account.  
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In recent years, a number of discrete-time single-factor GARCH models have been proposed 

in the applied econometrics literature, which when are applied to option pricing have shown 

performances often comparable to more complex frameworks, such as multi-factor structural 

models. For instance, using S&P 500 index options, Heston and Nandi (2000) report the superior 

performance of their NGARCH(1,1) model for European-style options over the ad-hoc 

‘strawman’ model (our second benchmark model). The choice of our third American option 

GARCH benchmark aims at comparing the performance of the model in equation (3) with a 

different dynamic model in which the evolution of the quantity of interest—here volatility—is 

explicitly parameterized and estimated in one single step from option prices, instead of resorting 

to two steps, as in our baseline strategy. Implicitly, a Reader may consider the GARCH option 

pricing benchmark as an attempt to tease out from the data (especially in terms of economic value 

performances) whether and how our two-step estimation approach may capture any additional 

source of predictability in option prices, when standard time series models may have difficulty to 

take into account such dynamics. In practice, we use nonlinear least square (NLS) methods to 

recursively estimate on a daily basis the parameters of Duan and Simonato’s (2001) American 

option GARCH model. In our NLS estimation program, we minimize the sum of the squared 

differences between the observed volatilities implicit in option contracts and the implied 

volatilities obtained by inverting the Duan and Simonato (2001) American option GARCH 

model. The main purpose of using estimators that are based on minimizing differences between 

market and implied quantities in the volatility space is to preserve full consistency with our 

dynamic equity-SPX IVS model, which is also estimated with reference to the implied volatility 

space.22,23

 

  

                                                 
22 For an illustration of the use of NLS estimation in the implied volatility space, see Jackwerth (2000). 
23 We are grateful to Jin-Chuan Duan for sharing his codes implementing Duan and Simonato’s (2001) American 

option GARCH model. To provide an idea of the type of estimates that a GARCH option pricing model yields, we 

obtain the following average estimates from our recursive exercise: ℎ𝑡+1 = 1.14 ∙ 10−6 + 0.87ℎ𝑡 + 0.06ℎ𝑡(𝑧𝑡∗ −

0.01−0.44)2. This implies that on average there is a high persistence which is common for this kind of models (i.e., 

0.87 + 0.06(1 + (0.01 + 0.44)2) = 0.94). In addition, Duan and Simonato’s (2001) American option GARCH 

model leads to an average predictive RMSE of 0.045, which is indeed rather impressive predictive performance, 

given that this model has only five parameters. 
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4.1. Statistical Measures of Predictability 

We use a recursive back-testing exercise to systematically evaluate the out-of-sample (one-

day-ahead) performance of all models using three main statistical measures. We report the root 

mean squared forecast error (RMSE) and the mean absolute forecast error (MAE), calculated 

both in the implied volatility and in the option price spaces. In addition, we compute the mean 

correct prediction of direction of change (MCPDC). The MCPDC is defined as the percentage of 

predictions for which changes of the predicted variables have the same direction/sign as the 

realized movements followed by the same variable over the prediction horizon. Also in this case, 

we calculate MCPDC for both implied volatilities and option prices. 

The recursive, out-of-sample nature of the exercise is structured in the following way. First, 

we estimate on a recursive daily basis all dynamic models, in which estimation is performed 

using six-month rolling windows of data (i.e., between day 𝑡 − (252/2) and day 𝑡). Second, we 

compute from all models one-day-ahead predictions of implied volatilities; and then we calculate 

prices for each option contract using the binomial tree method of Cox et al.’s (1979) approach. In 

the case of the dynamic equity-SPX IVS and VAR(p) models, we forecast one-day-ahead 

coefficients of the deterministic IVS function for equity options using equations (3) and (4), 

respectively. In addition, in the case of the benchmark ad-hoc ‘strawman’ model, the IVS 

coefficient forecasts are simply obtained from the random walk law of motion 𝛃�𝑡
𝐸𝑞 = 𝛃�𝑡−1

𝐸𝑞 . For 

these three models, we then obtain implied volatility predictions for all equity option contracts 

using equation (1) (i.e., plugging into the deterministic IVS function the predicted coefficients 

derived from any of the three dynamic frameworks). In the case of Duan and Simonato’s (2001) 

American option GARCH model, implied volatilities are directly obtained from iterating the 

model one day forward. Nevertheless, we do not have predictions for one-day ahead stock prices 

and interest rates to calculate option price forecasts. Therefore, following Gonçalves and 

Guidolin (2006), we assume that the best one-day-ahead predictions for stock prices and interest 

rates are today’s prices and rates, which seems to be consistent with the bulk of the literature on 

the efficient market hypothesis. The expected impact of this martingale assumption for stock 

prices and interest rates in terms of measurement error is to induce biases in the coefficients of 

the econometric tests which may make them drift away from significance; as a result, there is no 

reason to suspect that our findings can be mostly driven by these measurement errors. Moreover, 

any potential effect deriving from this assumption is mitigated by our use of trading strategies 
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that are completely hedges against the effects of changes in the prices of the underlying stock, 

such as straddle and delta-hedged positions.24

We report in Table 4 our out-of-sample statistical indicators of predictive accuracy to assess 

the performance of the dynamic equity-SPX IVS model vs. the benchmark models. We also 

include in this table a ‘pure’ random walk model for implied volatilities, in which the best 

prediction of tomorrow's implied volatility for an option contract is today’s level, similarly to 

Harvey and Whaley (1992). Table 4 shows that the dynamic equity-SPX IVS model outperforms 

all benchmark models in both the implied volatility and the option price spaces. It is interesting to 

observe that the dynamic equity-SPX IVS VARX model has a superior performance vs. the VAR 

model (i.e., a model does not take into account the dynamics of the market index IVS). This result 

starts providing some validation of our conjecture that the IV surfaces of equity and market index 

options are not only related in the cross-section, as reported in Table 3, but also dynamically. 

Therefore, movements in the S&P 500 index IVS provide additional and valuable information to 

anticipate the equity option IVS dynamics. In addition, it is important to emphasize the good out-

of-sample results for the dynamic equity-SPX IVS model in relation to the measure evaluating the 

forecasting power for the direction of change (i.e., the MCPDC measure). Table 4 shows that the 

average MCPDC using the dynamic equity-SPX IVS model is 59.63% (54.03%) in the space of 

implied volatilities (options prices). This statistic is intrinsically related to the economic measures 

of predictability based on trading strategies which will be analyzed in the next section, because 

signals to buy or sell entirely depend on the direction of change of forecasts on implied 

volatilities.

 

25

                                                 
24 It is also easy to appreciate that the opposite assumption that tomorrow’s stock prices and interest rates were 

known in advance would create a dangerous mixture between the predictive power of a model for the IVS and the 

assumed perfect foresight for stock prices and interest rates. Finally, assuming additional forecast models for stock 

prices and/or interest rates would make it difficult to distinguish between such models and IVS models as the main 

drivers on any realized out-of-sample results. 

 

25 In unreported in-sample statistical analysis we find that the dynamic equity-SPX IVS model yields the best in-

sample fit among all models. For instance, the dynamic equity-SPX IVS model leads on average to an in-sample 

RMSE of 0.034 and 0.431 for implied volatilities and option prices, respectively; the VAR(p) model that includes 

only past information on IVS dynamics for equity options implies on average RMSEs of 0.041 and 0.584, 

respectively. The random walk IVS ‘strawman' model and the ‘pure’ random walk implied volatility model yield in 

the in-sample analysis the same performance as the out-of-sample analysis presented in Table 4, because they do not 

require (by construction) additional parameter estimation or filtering. Therefore, the random walk IVS ‘Strawman' 
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In Table 4, it is important to emphasize that the values of the MCPDC measure exceed 50% 

for all the models. In a no-predictability environment, we should expect values for the MCPDC 

measure around 50% for all modelling approaches; however the results of Table 4 suggest that 

we can forecast that the IVS of equity option even using simple models. 

[Insert Table 4 here] 

Table 5 shows the results of equal predictive accuracy tests for each of the four benchmark 

models against the dynamic equity-SPX IVS model, in which we use the methodology proposed 

by Diebold and Mariano (1995) applied to the one-day-ahead forecasts presented in Table 4. As a 

loss function to construct the test statistic, we use the differences between the squared forecast 

errors from the dynamic equity-SPX IVS model and the squared error from each of the 

benchmark models. A Newey and West (1987) heteroskedasticity and autocorrelation consistent 

(HAC) variance estimator is used to calculate the Diebold and Mariano (1995) test statistic. Table 

5 shows that the average test statistic in the cross-section of stock options is negative and 

significant, which indicates that a VARX framework outperforms the simpler VAR model. 

Moreover, the out-of-sample performance of the dynamic equity-SPX IVS model is significantly 

superior in the vast majority of the pair-wise comparisons. Moreover, Table 5 shows that the null 

hypothesis of equal predictive accuracy for the dynamic equity-SPX IVS model and benchmark 

models is rejected for at least 73% of equity options in either the implied volatility space or the 

option price space. Such a 73% may be interpreted as a measure of how large is the fraction of 

the U.S. option markets containing pockets of illiquidity or other microstructural noise leading to 

evidence of statistically significant predictability in IVs. 

[Insert Table 5 here] 

In unreported results, we repeat the same analyses presented in Table 4 and Table 5 using 

forecast horizons of three and five days. Also in this case, we find a superior performance of our 

dynamic equity-SPX IVS model over the benchmark models. Therefore, the results of Table 4 

and Table 5 have led to two key provisional conclusions concerning the IVS of equity options 

                                                                                                                                                              
model yields in-sample RMSEs of 0.059 and 0.739 using implied volatilities and option prices, respectively. The 

‘pure’ random walk implied volatility model leads to average RMSEs 0.049 and 0.641, respectively. Finally, Duan 

and Simonato’s (2001) American option GARCH model leads to average in-sample RMSEs of 0.045 for implied 

volatilities and 0.674 for option prices. Complete results on recursively estimated coefficients and in-sample fit are 

available from the Authors upon request. 
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which we next proceed to check with further economic analyses: first, there is evidence of 

predictable dynamics in the IVS of equity options; and second, the movements of the IVS of index 

options provides useful information to forecast the IVS dynamics of equity option contracts. 

 

4.2. The Economic Value of Predictability 

The results from the statistical analysis in Subsection 4.1 show the existence of widespread 

predictability in the dynamics of the IVS of equity options; moreover, such predictability is 

greatly increased when we allow past movements in the S&P 500 IVS to predict subsequent 

shapes in the cross-section of stock option IV surfaces. However, it is reasonable to object that—

although this may be encouraging—such empirical findings tell us little about whether any of 

such predictability might be actually exploited by investors in the option markets. Consequently, 

we evaluate the existence of any abnormal returns using two different and simple trading 

strategies, which exploit the one-day-ahead predictions generated by the dynamic equity-SPX 

IVS model and benchmark models in very intuitive ways. In fact, the trading strategies follow a 

straightforward rule: when a dynamic model forecasts that the implied volatility of a given option 

contact will increase (decrease) between (trading) day 𝑡 and 𝑡 + 1, that option contract is 

purchased (sold) on day 𝑡 to profit from potential option price movements. For this reason we 

have already emphasized how the previously reported MCPDC statistics may be crucial because 

they are highly correlated to the trading profits of our trading strategies. Notice that because of 

their extreme simplicity, the trading strategies pursued in this paper have to be interpreted as 

providing at best a lower bound on the actual trading profits that a sophisticated, real-world 

trading desk may eventually achieve using models such as ours. 

We generate trading portfolios based on straddle and delta-hedged option strategies, because 

both are free of risks caused by changes in the prices of the underlying stocks. The first trading 

strategy consists of a portfolio composed of plain-vanilla straddle positions. A straddle strategy 

involves trading a combination of a call and a put option contracts with the same strike prices and 

expiration dates. A long straddle (in which options are purchased) is equivalent to a pure bet on a 

high(er) future volatility. A short straddle (in which options are sold) is equivalent to a pure bet 

on a low(er) future volatility. The second trading strategy consists of an even simpler portfolio 

that only contains delta-hedged positions. Delta-hedged positions are established by trading 
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adequate volumes of the underlying stock on the basis of the option delta.26

More specifically, in the case of a straddle portfolio, let 𝑄𝑡 be the number of option contracts 

written on the same underlying stock that should be traded following the trading rule introduced 

above. In addition, let 𝑉𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 be the total value of all straddle positions in the portfolio on day 

𝑡, which depends on 𝑄𝑡. Given that the straddle portfolio involves buying and selling multiple 

calls and puts, we can write 𝑉𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 as: 

 In practice, on every 

day in our back-testing period, we invest a fixed amount of $1,000 net in each straddle portfolio 

and an amount of $1,000 net in each delta-hedged portfolio. Both types of portfolios are re-

balanced every day so that the initial $1,000 investment remains constant over time. Profits and 

losses are then recorded and used in the analyses that follow. 

 𝑉𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 = � �𝐶𝑚,𝑡 + 𝑃𝑚,𝑡�
𝑚∈𝑄𝑡,+

− � �𝐶𝑚,𝑡 + 𝑃𝑚,𝑡�
𝑚∈𝑄𝑡,−

 (6) 

where 𝑄𝑡,+ (𝑄𝑡,−) is the sub-set of call and put contracts that should be purchased (sold), and 𝐶𝑚,𝑡 

(𝑃𝑚,𝑡) denotes the call (put) price of the option contracts in each sub-set. In the scenario that the 

net cost of the portfolio is positive (i.e., 𝑉𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 > 0), we purchase the quantity 𝑋𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 =

$1,000/𝑉𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 in units of the straddle portfolio, for a total cost of $1,000. As a result, the one-

day net gain, 𝐺𝑡+1𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 , is: 

 

𝐺𝑡+1𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 = 𝑋𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 � � ��𝐶𝑚,𝑡+1 + 𝑃𝑚,𝑡+1� − �𝐶𝑚,𝑡 + 𝑃𝑚,𝑡��
𝑚∈𝑄𝑡,+

�

+ 𝑋𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 � � �−�𝐶𝑚,𝑡+1 + 𝑃𝑚,𝑡+1� + �𝐶𝑚,𝑡 + 𝑃𝑚,𝑡��
𝑚∈𝑄𝑡,−

�. 

(7) 

However, under a scenario in which the net cost of the straddle portfolio is negative (i.e., 

𝑉𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 < 0), we sell the quantity 𝑋𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 = $1,000/|𝑉𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒| in units of the straddle 

portfolio, which yields a cash inflow of $1,000, and we invest the $1,000 generated in this way 

plus the $1,000 initially on hand at the riskless interest rate over one day. Therefore, in this 

scenario the net gain is 𝐺𝑡+1𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 + $2,000 ⋅ (exp(𝑟𝑡/252) − 1), where 𝐺𝑡+1𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒 is calculated 

using equation (7). 

                                                 
26 In the case of delta-hedged positions, implied deltas of equity option contracts are calculated using a binomial tree 

model following Cox et al.’s (1979) approach that accommodates the American style of individual options. 



21 
 

The same course of action is applied to delta-hedged portfolios. Let 𝑉𝑡𝐷−𝐻 be the total value 

of all delta-hedged positions on day 𝑡 in a delta-hedged portfolio which also depends on 𝑄𝑡; 

therefore we can write 𝑉𝑡𝐷−𝐻 as: 

 

𝑉𝑡𝐷−𝐻 = � �𝐶𝑚,𝑡 − 𝑆𝑡Δ𝑚,𝑡
𝐶 �

𝑚∈𝑄𝑡,+
𝑐𝑎𝑙𝑙

+ � �𝑃𝑚,𝑡 + 𝑆𝑡Δ𝑚,𝑡
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where 𝑄𝑡,+
𝑐𝑎𝑙𝑙(𝑄𝑡,−

𝑐𝑎𝑙𝑙) is the sub-set of call contracts that have to be purchased (sold), while 

𝑄𝑡,+
𝑝𝑢𝑡(𝑄𝑡,−

𝑝𝑢𝑡) is the sub-set of put contracts that should also be purchased (sold), 𝑆𝑡 is the price of 

the underlying stock, and Δ𝑚,𝑡
𝐶  (Δ𝑚,𝑡

𝑃 ) is the absolute value of the call (put) option delta. Similarly 

to straddle portfolios, in the case that the net value of the delta-hedged portfolio is positive (i.e., 

𝑉𝑡𝐷−𝐻 >  0), we purchase the quantity 𝑋𝑡𝐷−𝐻 = $1,000/𝑉𝑡𝐷−𝐻 in units of the delta-hedged 

portfolio, for a total cost of $1,000. Consequently, the one-day net gain (𝐺𝑡+1𝐷−𝐻) is: 
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(9) 

However, when the net cost of the portfolio is negative (i.e., 𝑉𝑡𝐷−𝐻< 0), we sell the quantity 

𝑋𝑡𝐷−𝐻 = $1,000/|𝑉𝑡𝐷−𝐻| in units of the delta-hedged portfolio, which generates a cash inflow of 

$1,000, and we invest the $1,000 so generated together with the $1,000 initially available at the 
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riskless interest rate over one day. In this case, the net gain is 𝐺𝑡+1𝐷−𝐻 + $2,000 ⋅ (exp(𝑟𝑡/252) −

1), where 𝐺𝑡+1𝐷−𝐻 is obtained from equation (9).27

Table 6 presents summary statistics for the average profits—over time and across equity 

options in the cross-section—obtained from trading straddle portfolios (Panel A) and delta-

hedged portfolios (Panel B). Table 6 gives evidence on the economic value of the IVS 

predictability generated by the dynamic equity-SPX IVS model vs. the benchmark models. In 

addition, we include two further passive strategies (Panel C): the first passive benchmark follows 

a simple ‘S&P 500 Buy and Hold’ strategy (i.e., a daily investment of $1,000 in the S&P 500 

index); and the second passive benchmark consists of an effortless investment of $1,000 at the 

riskless interest rate rolled over time, which only yields the time value of money (at least as a first 

approximation). Table 6 shows the superiority of the dynamic equity-SPX IVS model over all 

benchmark models under both the straddle-based and the delta-hedged strategies. The dynamic 

equity-SPX IVS model produces significant profits in more thanr80% (59%) of the straddle 

(delta-hedged) portfolios with an average Sharpe ratio of 15.20% (5.67%). Of course, such daily 

Sharpe ratios are simply stunning, but we need to be reminded at this point that Table 6 does not 

take into account transaction costs and other frictions.

 

28

                                                 
27 We invest only the $1,000 originally available at the riskless interest rate for one day in the (unlikely) case in 

which 𝑉𝑡𝑆𝑡𝑟𝑎𝑑𝑑𝑙𝑒  = 0 or 𝑉𝑡𝐷−𝐻 = 0. 

 Because our trading strategies imply a 

need to potentially trade hundreds of options every day, this may be overly costly and expose an 

investor to massive risks (even under delta-hedging) that the Sharpe ratio may not fully take into 

account. Table 6 reports that delta-hedged portfolios are less profitable than straddle portfolios 

which is due to a one key reason: while straddle strategies take full advantage of predictability 

patterns in implied volatilities because they trade only equity option contracts, delta-hedged 

positions involve the need to invest in (or borrow) underlying shares stock, for which none of the 

models estimated in this paper is specifically designed to forecast. Although this may represent a 

reason to attach more weight to the straddle-based economic values than to delta-hedge based 

strategies, in our view it remains valuable to also report results for the latter as they truly 

represent a lower bound for the obtainable trading profits. In any event, the resulting Sharpe 

ratios are high and average mean profits statistically significant also in the case of simple, delta-

hedged strategies. 

28 However the Sharpe ratios in Table 6 are reported in percentage terms. For instance, a 15.2% a day translates 

(using a simple square-root conversion) into a 0.152 x (252)1/2 = 2.41 annualized Sharpe ratio. 
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[Insert Table 6 here] 

Many Readers may object that the brilliant daily performances reported in Table 6 are the 

consequence of an exposition to high risks that the simple Sharpe ratio fails to control for. 

Therefore, in Table 7 we supplement the Sharpe ratios in Table 6 with abnormal return 

calculations, which are obtained through an asset pricing model that includes specific factors that 

the literature has shown to capture risk exposures for option portfolios (see, e.g., Coval and 

Shumway, 2001). The factor model adopted in our analysis has the traditional functional form: 

 𝑅𝑝𝑜𝑟𝑡 = 𝛼𝑝𝑜𝑟𝑡 + 𝐁𝑝𝑜𝑟𝑡′ 𝐅𝑡 + 𝑒𝑝𝑜𝑟𝑡, (10) 

where 𝑅𝑝𝑜𝑟𝑡 is the excess return on either the straddle or delta-hedged trading strategies described 

above, 𝐅𝑡 is a vector of risk factors, and 𝑒𝑝𝑜𝑟𝑡 is a random error term that captures any 

idiosyncratic or unexplained risk. Therefore, a significant positive value of 𝛼𝑝𝑜𝑟𝑡 can be 

interpreted as an abnormal return relative to the factor model in equation (10). In relation to the 

risk factors, we use the three Fama-French (1993) factors, the Carhart’s (1997) momentum factor, 

and an option volatility factor as in Coval and Shumway (2001). The Coval and Shumway (2001) 

option volatility factor is based on the returns on one at-the-money short-term position on S&P 

500 index options. In particular, in the case of straddle portfolios, the option volatility factor is 

the excess return of a straddle position which is zero-beta (ZbStrad − rf), while in the case of 

delta-hedged portfolios this factor is calculated using the excess return of a delta-hedged position 

on a call option contract (DhCall − rf). 

Table 7 reports the average parameter estimates for the asset pricing factor model in 

equation (10) using the returns of straddle portfolios (Panel A) and the returns of delta-hedged 

portfolios (Panel B). Table 7 shows that the dynamic equity-SPX IVS model yields the highest 

average alpha amongst all the models, under both the straddle and the delta-hedged strategy. 

Such an alpha is 5% a day on average, and the alphas are statistically significant in almost 80% of 

the cross-section of stock options. This figure is indeed consistent with the idea that, at least 

before any frictions are taken into account, there may be pockets of unexploited value in the large 

majority of the U.S. stock options market. It is interesting to notice that on average, both portfolio 

strategies based on the equity-SPX IVS model imply a positive average loading on the option 

volatility factor. This means that abnormal returns are still present after a positive exposure to the 

Coval and Shumway (2001) option factor. The percentage of equity options with significant 

loadings on the market factor is also remarkable, which is higher for delta-hedged portfolios than 
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for straddle portfolios. This is likely due to the fact that delta-hedged strategies have one of their 

component positions coming from trading shares of the underlying stocks.  

[Insert Table 7 here] 

In Table 8 we ask instead whether it may be that the exceptionally high trading profits 

reported in Table 6, and the positive abnormal performances listed in Table 7 may simply depend 

on the fact that up to this point in this paper we have failed to take transaction costs into account. 

Dynamic transaction costs are incorporated using the effective bid-ask spreads that are available 

in our data set, in which we buy (sell) option contracts and stocks at the ask (bid) price over time. 

However, the effective bid-ask spreads could be different from the quoted spreads. For instance, 

Battalio et al. (2004) show that the effective spread in equity options is around 0.8 times the 

quoted spread. Therefore, Table 8 presents the profits generated by the trading strategies after 

netting transaction costs out using a conservative effective bid-ask spread equal to 0.5 times the 

quoted spread. Table 8 shows that straddle and delta-hedged trading strategies built on the IVS 

forecasts derived from all models under consideration imply large negative average profits and 

Sharpe ratios in the cross-section. Furthermore, although at least 80% (even in the best case) of 

the equity options imply statistically significant negative returns in the cross-section, it must be 

emphasized that we obtain negative profits from both strategies for all equity options (which is 

not directly reported in Table 8).29

[Insert Table 8 here] 

 In addition, Table 8 highlights that delta-hedged portfolios 

give less negative returns than straddle portfolios. These differences are explained by the low 

level of transaction costs for stocks in relation to options (i.e., stocks tend to display on average 

narrower relative bid-ask spreads than option contracts).  

Nevertheless, in spite of the impact of transaction costs on the economic profits of our trading 

strategies, we emphasize that we have anyway reported the existence of clear predictability 

patterns in the IVS of equity options, and this holds both in a statistical and in an economic value 

perspective. Moreover, these results support our conjecture that the information captured in the 

movements of the IVS of index options can help forecast subsequent dynamics in the IVS of 

equity options. These predictable features of the equity option IVS are obviously relevant to 

                                                 
29 We have also experimented with a different level for the effective bid-ask spread in unreported results. In this case, 

we assume that the effective bid-ask spread is equal to 1.0 times the quoted spread. As one would expect, the results 

show even more negative profits than those presented in Table 8. 
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operators in derivatives markets, as well as to all investors that may want to use option prices and 

implied volatility to extract forward-looking information on the state of the economy.  

Similarly to Goncalves and Guidolin (2006), these findings by which trading strategies have a 

hard time producing positive returns after transaction costs induce two key implications.30

 

 First, 

although dynamic predictability in the IVS is statistically strong, only investors (trading desks) 

that can economize on transaction costs by trading inside the bid-ask spread may actually turn 

such predictability into effective, realized profits. Second, our earlier evidence of predictability in 

the IVS does not necessarily imply that option markets may fail to be efficient, at least in a weak-

form sense. However, one must be careful before concluding that as a result of market efficiency, 

the past dynamics of the IVS carries no useful information for market operators interested in 

estimating the dynamic process followed by the IVS of individual equity options: because trading 

volume may often be lumpy in individual equity option markets, trading desks are likely to be 

ready to avail themselves of information revealed by transactions involving more liquid index 

option contracts also for their hedging and general forecasting goals related to portfolio 

management, for instance connecting the shape and dynamics of individual equity IVS to 

prediction of expected stock returns (see e.g., Xing et al., 2010). 

4.3. Additional Trading Strategies 

In unreported results we have examined two additional trading rules that are applied to 

straddle and delta-hedged portfolios to mitigate the large negative effects of transaction costs on 

profits. Nevertheless, these trading rules also produce negative profits on straddle and delta-

hedged portfolios, under forecasts produced by all the IVS models pursued in our paper. First, we 

select only one option contract for the straddle strategy and one option contract for the delta-

hedged strategy per each of the 150 sets of option contracts written on the same underlying stock. 

One contract is picked daily per each option set which produces the highest expected (ex-ante) 

trading profit after transaction costs using straddle positions, and the other contract is selected in 

the same way according to ex-ante expected utility profit maximization under the delta-hedged 

strategy. The expected transaction costs are calculated according to a round-trip logic as today’s 

transaction costs—as measured by 0.5 times bid-ask spread—multiplied by two. Subsequently, 

                                                 
30 This remark applies also to the additional results in Section 4.3, when the trading strategies are set up to limit the 

amount of contracts effectively traded. 
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we invest $1,000 daily in the straddle position and $1,000 in the delta-hedged position following 

the rules set out in Section 4.2. The key intuition for this trading rule is to decrease transaction 

costs caused by the need of trading multiple contracts under the strategies used so far in our 

study.  

Second, following Harvey and Whaley (1992), we use strategies that are constrained to only 

purchase/sell contracts that are at-the-money and short-term; and so we generate a single straddle 

position and a single delta-hedged position on a daily basis. Obviously, this is a neat way to 

reduce the overall amount of transaction costs charged on the trading investor. However, also 

these constrained trading system ends up producing negative returns after netting transaction 

costs out under all IVS forecast models. 

 

5. Conclusion 

In this paper we have studied the predictability patterns in the IVS of individual equity 

options. In addition, we explored the existence of dynamic linkages between the IV surfaces of 

equity and S&P 500 index options. We use a simple two-stage modelling approach. In the first 

stage, we characterise the daily shape of the IVS of equity and index options by fitting a simple 

deterministic IVS model. In the second stage, we estimate a VARX-type model to forecast the 

equity option IVS. This VARX model uses the historical coefficients of the deterministic IVS 

model estimated in the first stage, which describe the recent dynamics of the IVSs of equity and 

index options. 

We find that there are strong cross-sectional and dynamic relationships between the IVS of 

equity options and the IVS of index options. In addition, we show that the two-stage procedure 

not only generates an accurate forecasting that outperforms in a statistical sense the predictions 

produced by competing models of common use in the literature; it also produces abnormal 

returns when trading strategies are back-tested in a recursive out-of-sample exercise. However, 

the trading profits disappear when we take into account transaction costs, which is consistent with 

the hypothesis of efficient option markets. In spite of the effects of transaction cost on the profits 

of our trading strategies, it is important to indicate that in any case we show evidence that there 

are predictability pattern in the IVS of equity options; and thus these predictability features of 

equity option can be used by diverse agents in option markets and other markets given that option 

contracts are usually used to obtain forward-looking information. 
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Finally, the two stage modelling approach presented is simple and intuitive; nevertheless the 

results motivate the exploration of future research endeavours. For example, a complete 

economic learning model to explain the sources and structure of the predictability patterns in the 

implied volatility surface is beyond the scope of this study. Although the mapping between our 

two-stage approach and the optimizing behaviour of a representative investor who learns the 

process of the underlying asset is not straightforward, our results suggest the presence of a strong 

Markov structure in the IVS. Additionally, a learning process followed by option market 

participants could provide an explanation for the existence of a precisely estimable dynamic 

relationship between the IVS of equity options and the IVS of market index options. These 

relationships could be understood by using models of agents’ cognitive mechanisms after 

changes of global fundamental variables or economic news which affect option pricing and the 

IVSs for all option securities. Moreover, it would be interesting to analyze a possible relationship 

between the IVS shape dynamics of equity options and equity features (e.g. leverage, liquidity, 

betas, among others), while it may also prove useful to study the dynamic relationships among 

the IV surfaces of options written on different equities which are in the same industry or in other 

economically relevant sub-groups. 

 

Appendix A 

In this appendix we report summary statistics for the deterministic IVS model (equation (1)) 

recursively estimated by OLS. This represents a robustness check of the GLS estimates for the 

same model presented in Table 2. Table A.1 shows the OLS coefficients, the R2 coefficients, and 

the RMSE statistics of the deterministic IVS model estimated using equity options (Panel A) and 

index S&P 500 index options (Panel B). Table A.1 shows that on average in the cross-section of 

stock options, OLS coefficients are similar to those estimated by GLS as in Table 2. The 

goodness of fit measures show that GLS estimation yields R2 and RMSE statistics that are 

marginally lower than OLS estimates. In addition, the similar values of the LB(1) and LB(3) 

statistics in Table A.1 and Table 2 suggest that predictability patterns of the IVSs discussed in the 

main text are independent of the estimation approach.  

[Insert Table A.1 here] 



28 
 

References 

Bakshi G., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pricing models. Journal of Finance 
52, 2003-2049. 

Bakshi, G., Panayotov, G., Skoulakis, G., 2011. Improving the predictability of real economic activity and asset 
returns with forward variances inferred from option portfolios. Journal of Financial Economics 100, 475-495. 

Battalio, R., Hatch, B., Jennings, R., 2004. Toward a national market system for U.S. exchange-listed equity options. 
Journal of Finance 59, 933-962. 

Battalio, R., Schultz, P., 2006. Options and the bubble. Journal of Finance 61, 2071-2102. 

Beber, A., Brandt, M. W., 2006. The effect of macroeconomic news on beliefs and preferences: Evidence from the 
options market. Journal of Monetary Economics 53, 1997-2039. 

Beber, A., Brandt, M. W., 2009. Resolving macroeconomic uncertainty in stock and bond markets. Review of 
Finance 13, 1-45. 

Bedendo, M., Hodges, S., 2009. The dynamics of the volatility skew: A Kalman filter approach. Journal of Banking 
and Finance 33, 1156-1165. 

Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637-
654. 

Bollen, N., Gray, S., Whaley, R., 2000. Regime-switching in foreign exchange rates: Evidence from currency option 
prices. Journal of Econometrics 94, 239-276. 

Busch ,T., Christensen, B. J., Nielsen, M. Ø., 2011. The role of implied volatility in forecasting future realized 
volatility and jumps in foreign exchange, stock, and bond markets. Journal of Econometrics 160, 48-57. 

Campa, J., Chang, K., 1995. Testing the expectations hypothesis on the term structure of volatilities. Journal of 
Finance 50, 529-547. 

Carhart, M., 1997. On persistence in mutual fund performance. Journal of Finance 52, 57–82. 

Chalamandaris, G., Tsekrekos, A. E., 2010. Predictable dynamics in implied volatility surfaces from OTC currency 
options. Journal of Banking and Finance 34, 1175-1188. 

Chang, B. Y., Christoffersen, P., Jacobs, K., Vainberg, G., 2009. Option-implied measures of equity risk. Working 
paper, McGill University. 

Christensen, B. J., Prabhala, N., 1998. The Relation Between Implied and Realized Volatility. Journal of Financial 
Economics 50, 125-150. 

Christoffersen, P., Jacobs, C., 2004. The importance of the loss function in option valuation. Journal of Financial 
Economics 72, 291-318. 

Christoffersen, P.F., Heston, S., Jacobs, K., 2009. The shape and term structure of the index option smirk: Why 
multifactor stochastic volatility models work so well. Management Science 55, 1914-1932. 

Cont, R., Fonseca, J., 2002. Dynamics of implied volatility surfaces. Quantitative Finance 2, 45-60. 

Coval, J., Shumway, T., 2001. Expected option returns. Journal of Finance 56, 983-1009. 

Cox, J., Ross, S., Rubinstein, M., 1979, Option pricing: A simplified approach, Journal of Financial Economics 7, 
229-263. 



29 
 

Das, S., Sundaram, R., 1999. Of smiles and smirks: A term structure perspective. Journal of Financial and 
Quantitative Analysis 34, 211-239. 

David, A.,Veronesi, P., 2002. Option prices with uncertain fundamentals. Working paper, University of Chicago. 

Day, T., Lewis, C., 1992. Stock market volatility and the information content of stock index options. Journal of 
Econometrics 52, 267-287. 

Dennis, P., Mayhew, S., 2000. Implied volatility smiles: Evidence from options on individual equities. Working 
paper, University of Virginia. 

Dennis, P., Mayhew, S., 2002. Risk-neutral skewness: Evidence from stock options. Journal of Financial and 
Quantitative Analysis 37, 471-493. 

Dennis, P., Mayhew, S., Stivers, C., 2006. Stock returns, implied volatility innovations, and the asymmetric volatility 
phenomenon. Journal of Financial and Quantitative Analysis 41, 381-406. 

Diebold, F., Mariano, R., 1995. Comparing predictive accuracy. Journal of Business and Economic Statistics 13, 
253-263. 

Driessen, J., Maenhout, P. J., Vilkov, G., 2009. The price of correlation risk: Evidence from equity options. Journal 
of Finance 64, 1377-1406. 

Duan, J., Simonato, J., 2001. American option pricing under GARCH by a Markov chain approximation. Journal of 
Economic Dynamics and Control 25, 1689-1718. 

Duan, J. C., Zhang, W., 2010. Forward-looking market risk premium. Working paper, National University of 
Singapore. 

Dumas, B., Fleming, J., Whaley, R., 1998. Implied volatility functions: Empirical tests. Journal of Finance 53, 2059-
2106. 

Ederington, L., Lee, J. H., 1996. The creation and resolution of market uncertainty: The impact of information 
releases on implied volatility. Journal of Financial and Quantitative Analysis 31, 513-539. 

Engle, R.F., 2001. GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic 
Perspectives 15, 157-168. 

Fama, E., French, K., 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 
33, 3-56. 

Fengler, M.R., Härdle, W.K., Villa, C., 2003. The dynamics of implied volatilities: A common principal components 
approach. Review of Derivatives Research 6, 179-202. 

Fengler, M., Hardle, W., Mammen, E., 2007. A semiparametric factor model for implied volatility surface dynamics. 
Journal of Financial Econometrics 5, 189-218. 

Gonçalves, S., Guidolin, M., 2006. Predictable dynamics in the S&P 500 index options implied volatility surface. 
Journal of Business 79, 1591-1636. 

Goyal, A., Saretto, A., 2009. Cross-section of option returns and volatility. Journal of Financial Economics 94, 310-
326. 

Guidolin, M., Timmermann, A., 2003. Option prices under Bayesian learning: Implied volatility dynamics and 
predictive densities. Journal of Economic Dynamics and Control 27, 717-769. 



30 
 

Harvey, C., Whaley, R., 1992. Market volatility prediction and the efficiency of the S&P 100 index options market. 
Journal of Financial Economics 31, 43-73. 

Hentschel, L., 2003. Errors in implied volatility estimation, Journal of Financial and Quantitative Analysis 38, 779-
810. 

Heston, S., Nandi, S., 2000. A closed-form GARCH option valuation model. Review of Financial Studies 13, 585-
625. 

Jackwerth, J., 2000. Recovering risk aversion from option prices and realized Returns. Review of Financial Studies 
13, 433-451.  

Konstantinidi, E., Skiadopoulos, G., Tzagkaraki, E., 2008. Can the evolution of implied volatility be forecasted? 
Evidence from European and US implied volatility indices. Journal of Banking and Finance 32, 2401-2411. 

Kostakis, A., Panigirtzoglou, N., Skiadopoulos, G., 2011. Market timing with option-implied distributions: A 
forward-looking approach. Management Science, forthcoming. 

Neumann, M., Skiadopoulos, G., 2011. Predictable dynamics in higher order risk-neutral moments: Evidence from 
the S&P 500 options. Journal of Financial and Quantitative Analysis, forthcoming. 

Newey, W., West, K., 1987. A simple positive semi-definite, heteroskedastic and autocorrelation consistent 
covariance matrix. Econometrica 55, 703-708. 

Panigirtzoglou, N., Skiadopoulos, G., 2004. A new approach to modeling the dynamics of implied distributions: 
Theory and evidence from the S&P 500 options. Journal of Banking and Finance 28, 1499-1520. 

Peña, I., Rubio, G,. Serna, G., 1999. Why do we smile? On the determinants of the implied volatility function. 
Journal of Banking and Finance 23, 1151-1179. 

Rubinstein, M., 1985. Nonparametric tests of alternative option pricing models using all reported trades and quotes 
on the 30 most active CBOE option classes from August 23, 1976 through August 31, 1978. Journal of Finance 40, 
455-480. 

Siegel, A. F., 1995. Measuring systematic risk using implicit beta. Management Science 41,124-128. 

Skiadopoulos, G., Hodges, S., Clewlow, L., 1999. The dynamics of the S&P 500 implied volatility surface. Review 
of Derivatives Research 3, 263-282. 

Timmermann, A., 2001. Structural breaks, incomplete information, and stock prices. Journal of Business and 
Economic Statistics 19, 299-314. 

Tompkins, R. G., 2001. Stock index futures markets: stochastic volatility models and smiles. Journal of Futures 
Market 21, 43-78. 

Tompkins, R. G., D’Ecclesia, R. L., 2006. Unconditional return disturbances: A non-parametric simulation approach. 
Journal of Banking and Finance 30, 287-314. 

Xing, Y., Zhang, X., Zhao, R., 2010. What does individual option volatility smirk tell us about future equity returns? 
Journal of Financial and Quantitative Analysis 45, 641-662. 

  



31 
 

Figures 

 
Figure 1. Changes in the implied volatility surface between two consecutive trading days for 
S&P 500 index options and for General Electric Co. options. The figure shows the IVS of S&P 
500 index options (two upper windows) and the IVS of General Electric Co. options (two lower 
windows) on two consecutive trading days: October 3, 2005 and October 4, 2005.  
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Figure 2. Evolution of coefficients of the deterministic implied volatility surface model estimated 
by GLS for equity options and for S&P 500 index options. The figure shows the time variation of 
daily cross-sectional averages of the coefficients of the deterministic IVS model in equation (1) 
estimated with equity options along with the estimated coefficients that describe the IVS of S&P 
500 index options using the same model. The data cover the period between January 4, 1996 and 
December 29, 2006. 
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Tables 
 

Table 1 
Summary Statistics of Implied Volatilities across Moneyness and Time-to-Maturity for Equity 
Options and for S&P 500 Index Options.  

 
Notes: The table contains summary statistics for implied volatilities across moneyness (𝐾/𝑆) and time-to-maturity 
(calendar days to the expiration). Panel A (Panel B) reports statistics for equity options (market S&P 500 index 
options). IV is the implied volatility, 𝐾 is the strike price, and 𝑆 is the underlying asset price. The table presents 
trading frequencies, means, and standard deviations. The trading frequency is defined as the percentage of trading 
days in which we observe at least one trade for an option contract with specific characteristics (given by the 
moneyness and the time-to-maturity). The data cover the period between January 4, 1996 and December 29, 2006. 
  

Average
Trading 

Freq.

Mean
IV

Std. Dev.
IV

Average
Trading 

Freq.

Mean
IV

Std. Dev.
IV

Average
Trading 

Freq.

Mean
IV

Std. Dev.
IV

K /S ≤0.94 45.94% 42.27% 17.34% 35.20% 37.63% 14.87% 8.07% 36.56% 14.10%
0.94<K /S ≤0.98 46.87% 39.33% 17.11% 36.63% 36.48% 14.77% 8.36% 35.72% 14.14%
0.98<K /S ≤1.02 47.23% 37.84% 17.23% 38.48% 35.67% 14.88% 8.52% 35.32% 14.30%
1.02<K /S ≤1.06 46.11% 37.70% 17.11% 38.53% 35.28% 14.81% 8.53% 34.92% 14.48%

1.06<K /S 42.86% 39.23% 17.28% 36.66% 35.20% 15.03% 8.20% 34.46% 14.30%

K /S ≤0.94 100.00% 23.45% 6.73% 92.55% 20.86% 5.08% 68.35% 20.38% 4.89%
0.94<K /S ≤0.98 100.00% 19.47% 6.06% 95.30% 19.37% 5.01% 75.66% 19.16% 4.78%
0.98<K /S ≤1.02 100.00% 16.57% 5.85% 97.69% 18.00% 4.95% 86.65% 18.21% 4.76%
1.02<K /S ≤1.06 100.00% 15.83% 5.92% 93.49% 17.19% 5.03% 72.22% 17.85% 4.90%

1.06<K /S 99.10% 17.47% 6.49% 88.07% 16.66% 5.05% 66.33% 16.87% 4.88%

Short-Term 
(6<Calend. Days≤120)

Medium-Term
(120<Calend. Days≤240)

Long Term
(240<Calend. Days)

Panel A: Equity Options

Panel B: S&P 500 Options
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Table 2 
Summary Statistics of Deterministic IVS Model Coefficients Estimated by GLS for Equity 
Options and for Market S&P 500 Index Options 

 
Notes: The table shows average summary statistics for daily GLS coefficient estimates, the R2, and the root mean 
squared error (RMSE) of the model introduced in equation (1). Panel A concerns average estimates and regression 
statistics across days in the sample and in the cross-section of stock options; panel B concerns average estimates 
across days for S&P 500 index options. LB(1) and LB(3) are the values of the Ljung-Box test statistics using one and 
three lags, respectively. The data cover the period between January 4, 1996 and December 29, 2006. The percentage 
of statistics with a significant value (using a standard 10% size) for each of the diagnostic tests is reported in 
parentheses The values in parentheses for the LB(1) and LB(3) statistics are percentages of significant values (at 
10%) based on time series computed on each set of individual option contracts. 
  

Coefficients 
Statistics Mean

Std. 
Dev. Skew

Exc. 
Kurt. Min. Max. t-test F-test LB(1) LB(3)

β 0 -1.01 0.30 0.28 0.69 -1.78 -0.03 -51.49 779.23 3022.05
(97.33) (100.00) (100.00)

β 1 -0.22 1.03 0.79 260.71 -15.45 16.03 -2.01 21.80 30.12
(48.75) (51.33) (71.33)

β 2 0.41 9.94 0.76 372.00 -151.97 172.70 0.63 17.03 50.41
(29.11) (42.66) (70.66)

β 3 -0.05 0.21 -0.59 40.80 -1.80 1.58 -1.37 206.36 985.35
(60.78) (97.33) (98.66)

β 4 -0.23 1.93 -1.49 237.12 -30.76 26.65 -0.61 20.48 86.81
(20.83) (74.00) (80.00)

R2 0.69 0.02 -1.60 2.85 0.03 0.96 20.75 35.65 133.52
(79.93) (92.66) (95.33)

RMSE 0.01 0.01 8.38 148.47 0.00 0.33 28.07 58.68
(83.33) (94.00)

β 0 -1.73 0.32 -0.03 -0.56 -2.43 -0.87 -320.88 980.62 6858.89
(100.00) (100.00) (100.00)

β 1 -0.89 0.36 -0.72 0.52 -2.30 0.49 -16.22 95.99 273.88
(93.92) (100.00) (100.00)

β 2 0.37 0.66 0.45 1.23 -2.12 3.97 2.42 59.23 247.25
(71.08) (100.00) (100.00)

β 3 0.08 0.17 -0.28 -0.03 -0.60 0.56 4.93 309.26 1786.68
(85.49) (100.00) (100.00)

β 4 -0.60 0.43 -1.56 18.37 -6.95 1.31 -3.09 27.52 106.58
(65.34) (100.00) (100.00)

R2 0.78 0.20 -1.85 3.46 0.16 0.98 382.85 39.60 129.31
(100.00) (100.00) (100.00)

RMSE 0.01 0.01 22.67 661.59 0.00 0.25 13.70 26.55
(100.00) (100.00)

Panel A: Equity Options

Panel B: S&P 500 Options
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Table 3 
Cross-Sectional Relationships of IVS Features Characterised by the Deterministic IVS Model 
Estimated on Equity Options and on S&P 500 Index Options  

 
Notes: The table contains the average value of a correlation analysis of time series coefficients of the deterministic 
IVS model for market S&P 500 index options and for each individual set of equity options written on the same 
underlying stock. Daily coefficients from the deterministic IVS model are estimated by GLS. The data cover the 
period between January 4, 1996 and December 29, 2006. The percentage of correlations with significant estimated 
correlations is reported in parentheses (using a 10% test size); therefore the values in parentheses report percentages 
across the number of individual equity option time series (i.e., in total 150 different time series, each correlated with 
the coefficients characterizing the S&P 500 IVS).  
 
 
Table 4 
Statistical Measures of Predictability to Evaluate the Forecasting Performance of the Dynamic 
Equity-SPX IVS Model vs. Benchmark Models 

 
Notes: The table contains average out-of-sample statistical measures of predictability to evaluate the forecasting 
properties of the dynamic equity-SPX IVS model (equation 3) and benchmark models. The statistical measures are 
calculated in the implied volatility and in the option price spaces. The four benchmark models are: (i) a VAR(p) 
model that takes into account only the past dynamics in the IVS of individual equity options written on the same 
underlying stock (equation (4)); (ii) a simple random walk model for the coefficients of the deterministic IVS 
function; (iii) the Duan and Simonato’s (2001) American option GARCH model; and (iv) a ‘pure’ random walk 
model for implied volatilities. In the table, RMSE is the root mean squared forecast error, MAE is the mean absolute 
forecast error, and MCPDC is the mean correct prediction of direction of change statistic. The MCPDC cannot be 
computed for the ‘pure’ random walk model because this model, by construction, forecasts no change in implied 
volatilities between time t and any future date. 

β 0,Equities β 1,Equities β 2,Equities β 3,Equities β 4,Equities β 0,SPX β 1,SPX β 2,SPX β 3,SPX β 4,SPX

β 0,Equities 1.00
(100.00)

β 1,Equities -0.17 1.00
(91.33) (100.00)

β 2,Equities -0.09 -0.21 1.00
(74.00) (90.66) (100.00)

β 3,Equities -0.54 -0.13 0.07 1.00
(99.33) (86.66) (82.66) (100.00)

β 4,Equities 0.01 -0.66 0.02 0.15 1.00
(77.33) (98.66) (88.66) (78.00) (100.00)

β 0,SPX 0.68 -0.04 -0.03 -0.28 0.06 1.00
(98.00) (52.66) (49.33) (96.00) (62.00) (100.00)

β 1,SPX -0.29 0.02 -0.02 -0.14 0.03 -0.34 1.00
(97.33) (52.00) (44.00) (84.66) (48.66) (100.00) (100.00)

β 2,SPX -0.19 -0.04 0.05 0.05 -0.02 -0.25 -0.19 1.00
(95.33) (46.00) (54.00) (67.33) (41.33) (100.00) (100.00) (100.00)

β 3,SPX -0.49 -0.02 0.01 0.31 -0.05 -0.75 -0.59 0.06 1.00
(96.00) (38.00) (46.66) (92.00) (57.33) (100.00) (100.00) (100.00) (100.00)

β 4,SPX 0.08 0.02 0.02 0.03 0.03 0.11 -0.37 -0.48 -0.01 1.00
(84.00) (32.66) (29.33) (59.33) (42.00) (100.00) (100.00) (100.00) (100.00) (100.00)

Correlations

RMSE MAE MCPDC
(%)

RMSE MAE MCPDC
(%)

VARX (Equity and SPX IVS Dynamics) 0.039 0.028 59.63% 0.483 0.392 54.03%
VAR (only Equity IVS Dynamics) 0.046 0.037 56.68% 0.619 0.484 52.90%
Random Walk IVS  ('Strawman') 0.059 0.049 53.23% 0.739 0.649 51.08%
Option GARCH(1,1) 0.053 0.044 54.79% 0.712 0.569 52.45%
Random Walk IV 0.049 0.041 NA 0.641 0.503 NA

Implied Volatilities  Option Prices
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Table 5 
Equal Predictive Accuracy Tests of the Dynamic Equity-SPX IVS Model against Benchmark 
Models  

 
Notes: The table shows average cross-sectional Diebold and Mariano’s (1995) test statistics computed from a 
function based on the difference between the RMSEs from the dynamic equity-SPX IVS model (equation (3)) and 
benchmark models. The test statistics are computed both with reference to the implied volatility (Panel A) and the 
option price (Panel B) spaces. Benchmark models are described in Table 4. The Newey and West (1987) 
heteroskedasticity and autocorrelation consistent (HAC) variance estimator is used to calculate the Diebold and 
Mariano (1995) test. The percentages of test statistics that in the cross-section of stock options lead to rejection of the 
null hypothesis in tests at a 10% size are reported in the parentheses. 
 
 

Table 6 
Economic Value of IVS Predictability-Based Trading Strategies (before Transaction Costs) 

 
Notes: The table shows summary statistics for recursive out-of-sample daily measures of economic value to evaluate 
the forecasting power of the dynamic equity-SPX IVS model (equation (3)) and of benchmark models. Benchmark 
models are described in Table 4. The economic measures of predictability are based on profits from straddle 
portfolios (Panel A) and delta-hedged portfolios (Panel B), before transaction costs. We invest $1,000 net on straddle 
portfolios and $1,000 net on delta-hedged portfolios on each day in the sample. We re-balance every day so that the 
$1,000 investment remains constant over time. Straddle portfolios include only straddle positions following the rule 
in equation (6); while delta-hedged portfolios follow the rule described in equation (8). The percentage of 
profitability measures that in the cross-section of options are significant using a test size of 10% are in parentheses.  

VAR 
Only Equity IVS Dynamics

Random Walk IVS 
'Strawman'

Option GARCH(1,1) Random Walk IV

Comparative Accuracy Test -4.89 -11.34 -7.39 -5.98
(73.33) (88.00) (81.33) (78.66)

Comparative Accuracy Test -5.04 -12.81 -8.93 -6.17
(75.33) (89.33) (83.33) (77.33)

Panle A: Implied Volatilities 

Panel B: Option Prices

Mean 
Profit (%)

Std. Dev. 
Profit (%)

t-test Sharpe 
Ratio (%)

VARX (Equity and SPX IVS Dynamics) 5.07% 32.89% 7.91 15.20%
(80.66)

VAR (only Equity IVS Dynamics) 4.27% 34.04% 6.53 12.64%
(75.33)

Random Walk IVS  ('Strawman') 2.37% 33.30% 3.49 6.62%
(60.00)

Option GARCH(1,1) 3.36% 39.00% 4.43 8.71%
(65.33)

VARX (Equity and SPX IVS Dynamics) 1.82% 30.17% 2.89 5.67%
(59.33)

VAR (only Equity IVS Dynamics) 1.44% 28.41% 2.46 4.88%
(56.00)

Random Walk IVS  ('Strawman') 0.71% 32.97% 1.09 2.02%
(19.33)

Option GARCH(1,1) 1.06% 40.43% 1.33 2.49%
(35.33)

S&P Buy and Hold 0.04% 1.11% 1.27 2.22%
(0.00)

T-Bill Portfolio 0.02% 0.01% 73.62 0.00%
(100.00)

Panel A: Straddle Portfolios

Panel B: Delta-Hedged Portfolios

Panel C: Benchmark Portfolios
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Table 7 
Risk-Adjusted Returns from Option Trading Strategies (before Transaction Costs) 

 
Notes: The table contains average parameter estimates for the asset pricing factor model in equation (10) estimated 
on excess returns of straddle portfolios (Panel A) and delta-hedged portfolios (Panel B). Straddle and delta-hedged 
portfolios are formed as in Table 6 and they are based on forecasts of the dynamic equity-SPX IVS model (equation 
(3)) and of benchmark models. The asset pricing factor model includes the Fama and French (1993) three factors 
(i.e., excess market returns, size-sorted returns, and HML returns), the Carhart’s (1997) momentum factor (MOM), 
and the Coval and Shumway’s (2001) option volatility factor built from one at-the-money short-term position on 
S&P 500 index option contracts. The option volatility factor in the case of straddle portfolios is the excess return of a 
straddle position which is zero-beta (ZbStrad-rf); while the option volatility factor in the case of delta-hedged 
portfolios is calculated using the excess return of a delta-hedged position on a call option contract (DhCall-rf). The 
percentage of the cross-section of the 150 equity options with significant parameters using a 10% test size is reported 
in parentheses; while the percentage of asset pricing models across the equity options with a significant F-statistic 
using a 10% test size is also reported in parentheses below the R2. 
  

VARX 
Equity and SPX IVS Dynam.

VAR 
Only Equity IVS Dynam.

Random Walk IVS 
'Strawman' Option GARCH(1,1)

Alpha 0.05 0.04 0.02 0.03
(79.33) (71.33) (53.33) (59.33)

MKT–rf -0.80 -0.52 -0.62 0.59
(35.33) (27.33) (26.00) (30.66)

SMB -0.42 -0.44 -0.55 -0.49
(9.33) (12.66) (17.33) (14.00)

HML -0.92 -0.79 -0.82 -0.63
(13.33) (16.00) (19.33) (11.33)

MOM 0.35 0.39 0.42 0.34
(12.00) (8.67) (7.33) (13.33)

ZbSTrad–rf 0.12 0.13 0.10 0.12
(40.66) (35.33) (36.00) (43.33)

R2 0.09 0.07 0.09 0.08
(20.00) (19.33) (16.66) (17.33)

Alpha 0.02 0.01 0.01 0.01
(55.33) (47.33) (15.33) (32.00)

MKT–rf 1.90 1.47 2.33 1.52
(63.33) (59.33) (68.00) (62.66)

SMB 0.08 0.06 0.03 0.06
(14.66) (11.33) (7.33) (8.66)

HML -0.32 -0.24 -0.18 -0.28
(12.00) (10.66) (14.66) (13.33)

MOM 0.09 0.08 0.07 0.08
(14.66) (13.33) (9.33) (10.66)

DhCall–rf 0.25 0.23 0.279 0.383
(38.00) (34.66) (30.66) (39.33)

R2 0.06 0.04 0.04 0.05
(24.66) (21.33) (19.33) (22.66)

Panel A: Straddle Portfolios

Panel B: Delta-Hedged Portfolios
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Table 8 
Economic Value of IVS Predictability-Based Trading Strategies (after Transaction Costs) 

 
Notes: The table shows out-of-sample economic measures of predictability of the dynamic equity-SPX IVS model 
(equation (3)) and of benchmark models. Benchmark models are described in Table 4. The measures of profitability 
are based on the profits from straddle (Panel A) and delta-hedged portfolios (Panel B) after transaction costs. 
Straddle and delta-hedged portfolios are formed as in Table 6. Transaction costs are incorporated by setting them to 
equal the effective bid-ask spread. We use a conservative effective bid-ask spread that is 0.5 times the quoted spread. 
The percentage of t-test statistics across the 150 sets of equity option contracts that lead to a rejection of the null 
hypothesis of zero mean profits using a 10% size test is reported in parenthesis.  
  

Mean 
Profit (%)

Std. Dev. 
Profit (%)

t-test Sharpe 
Ratio (%)

VARX (Equity and SPX IVS Dynamics) -9.88% 45.03% -11.05 -22.17%
(91.33)

VAR (only Equity IVS Dynamics) -11.64% 48.13% -12.96 -25.99%
(92.66)

Random Walk IVS  ('Strawman') -13.79% 46.83% -15.09 -30.15%
(96.66)

Option GARCH(1,1) -12.79% 52.84% -12.82 -24.31%
(94.00)

VARX (Equity and SPX IVS Dynamics) -5.73% 38.30% -7.74 -15.45%
(81.33)

VAR (only Equity IVS Dynamics) -6.52% 39.76% -8.87 -16.32%
(84.66)

Random Walk IVS  ('Strawman') -7.42% 46.12% -8.42 -16.73%
(87.33)

Option GARCH(1,1) -7.08% 42.43% -9.18 -17.07%
(88.66)

Panel A: Straddle Portfolios

Panel B: Delta-Hedged Portfolios
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Table A.1 
Summary Statistics of Deterministic IVS Model Coefficients Estimated by OLS for Equity 
Options and for Market S&P 500 Index Options 

 
Notes: The table shows average summary statistics for daily OLS coefficient estimates, the R2, and the root mean 
squared error (RMSE) of the model introduced in equation (1). Panel A concerns average estimates and regression 
statistics across days in the sample and stock options in the cross-section; panel B concerns average estimates across 
days for S&P 500 index options. LB(1) and LB(3) are the values of the Ljung-Box test statistics using one and three 
lags, respectively. The data cover the period between January 4, 1996 and December 29, 2006. The percentage of 
statistics with a significant value (using a standard 10% size) for each of the diagnostic tests is reported in 
parentheses The values in parentheses for the LB(1) and LB(3) statistics are percentages of significant values (at 
10%) based on time series computed on each set of individual option contracts. 

Coefficients 
Statistics Mean

Std. 
Dev. Skew

Exc. 
Kurt. Min. Max. t-test F-test LB(1) LB(3)

β 0 -1.01 0.30 0.26 0.61 -1.81 -0.01 -54.43 867.26 3971.06
(99.26) (100.00) (100.00)

β 1 -0.19 1.06 0.36 257.28 -15.68 16.40 -2.04 23.27 34.83
(50.04) (52.66) (74.00)

β 2 0.33 9.30 1.27 373.44 -144.64 160.84 0.84 19.81 51.79
(38.90) (44.66) (72.00)

β 3 -0.05 0.23 -0.40 35.82 -1.81 1.63 -1.11 238.56 1147.01
(57.21) (99.33) (99.33)

β 4 -0.30 2.06 -1.43 215.50 -31.55 27.01 -0.65 27.49 99.69
(22.32) (75.33) (80.66)

R2 0.75 0.21 -1.20 1.10 0.04 0.99 28.68 39.61 150.87
(84.88) (100.00) (100.00)

RMSE 0.00 0.01 11.85 283.21 0.00 0.31 31.21 60.19
(85.33) (88.00)

β 0 -1.75 0.32 0.01 -0.53 -2.44 -0.85 -263.25 1064.92 7786.29
(100.00) (100.00) (100.00)

β 1 -0.80 0.41 -0.39 0.23 -2.17 0.48 -17.18 107.97 333.21
(96.16) (100.00) (100.00)

β 2 0.72 0.85 1.53 3.84 -1.21 6.07 3.90 65.45 263.62
(72.27) (100.00) (100.00)

β 3 0.11 0.20 -0.28 -0.10 -0.60 0.81 5.38 323.40 2416.80
(87.33) (100.00) (100.00)

β 4 -0.89 0.83 -1.51 4.72 -6.94 1.30 -3.22 30.89 108.68
(69.99) (100.00) (100.00)

R2 0.85 0.14 -1.73 3.22 0.17 0.99 518.54 43.04 136.56
(100.00) (100.00) (100.00)

RMSE 0.00 0.01 22.20 814.67 0.00 0.18 43.81 54.34
(100.00) (100.00)

Panel A: Equity Options

Panel B: S&P 500 Options
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