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Abstract

Several recent papers have proposed recursive Lagrangian-based methods for solv-

ing dynamic contracting problems. These methods give rise to Bellman operators that

incorporate either a dual inf-sup or a saddle point operation. We give conditions that

ensure the Bellman operator implied by a dual recursive formulation is contractive.

JEL codes: C61, C73, D82, E61.

Keywords: Dynamic Contracts, Duality, Dynamic Programming, Contraction Mapping

Theorem.

1 Introduction

Dynamic incentive models have received widespread application in recent research. Cen-

tral to these models are constraints that ensure uncommitted or privately informed play-

ers are motivated to take prescribed courses of actions. The forward-looking nature of

these incentive constraints disrupts the principle of optimality and complicates the task

of finding an optimal plan or contract. Two approaches have been proposed for resolving

this difficulty and obtaining a recursive formulation. One augments the problem with

additional promise-keeping constraints; the other perturbs the objective with dual state

variables introduced via the Lagrangian. Both approaches lead to Bellman operators that

are, potentially, the bases of constructive value iteration procedures. However, the devel-

opment of these procedures presents challenges. This paper is concerned with the second
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(dual) approach. It gives conditions that ensure the associated Bellman operator is a con-

traction on a suitable space of functions. The contraction mapping theorem then ensures

convergent value iteration and provides rates of convergence.

Messner, Pavoni, and Sleet (2011a) and (2011b) develop dual recursive methods for

dynamic incentive problems. These methods lead to a dynamic programming formula-

tion in which Lagrange multipliers from current incentive constraints act as controls and

accumulated multipliers from past periods act as state variables.1 The associated dual

Bellman operator updates candidate value functions via a family of "inf-sup" operations

over Lagrange multipliers and choice variables. Specifically, at each dual state and current

constraint Lagrange multiplier, "inner" supremum operations are performed over current

choices. The resulting current (indirect) objective is combined with a value function over

future dual states and a law of motion for such states to give an objective over current

dual states and multipliers. At each current dual state, an outer infimum operation over

multipliers gives the updated value function.

Under appropriate concavity conditions, it is relatively straightforward to show that

the optimal (dual) value function satisfies a dual Bellman equation, i.e. is a fixed point of

a dual Bellman operator. However, relative to the more standard problems described in

Stokey, Lucas, and Prescott (1989), there are several difficulties in recovering the optimal

value function from the dual Bellman operator. First, the optimal dual value function

may be infinite-valued at some dual states. As an initial step, it is necessary to identify

the (endogenous) state space on which the value function is finite. In this paper, we fo-

cus on problems in which the optimal dual value function is everywhere real-valued. This

covers many incentive problems with bounded agent payoffs. Further discussion of prob-

lems with a more restricted, but known state space is relegated to an appendix. Second,

even on this state space, the value function is unbounded (in the usual sup-norm sense).

To apply the contraction mapping approach, it is necessary to identify a complete metric

space of functions containing the optimal value function and on which the dual Bellman

is a contractive self-map. Following Wessels (1977), a common procedure is to obtain a

set of functions F containing the optimal value function, closed and bounded with re-

spect to a weighted sup norm2 and on which the Bellman is contractive. However, the

use of weighted sup-norms requires that the continuation state variables and, hence, the

continuation value function cannot grow "too much" on the graph of the constraint corre-

1In many applications, the dual state variables are shadow prices on primal promise-keeping constraints
and can be interpreted as agent Pareto weights.

2A weighted sup norm on a set of functions F with common domain X is a function ‖ · ‖w : F → R of

the form ‖ f‖w = supX

∣∣∣ f (x)
w(x)

∣∣∣ for some w : X → R++.
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spondence. Since the basic dual Bellman operator permits the choice of any non-negative

multiplier, this requirement is not usually met. Cole and Kubler (2010) make progress

by obtaining additional non-binding constraints on multipliers and, hence, continuation

states, that enable the weighted norm approach to be applied. The restrictions on primi-

tives for these additional constraints to be non-binding appear strong. We proceed quite

differently. Following an idea of Rincon-Zapatero and Rodriguez-Palermo (2003), we ex-

ploit the concavity of the Bellman operator to establish contractivity.3 Key to the approach

is the derivation of bounding value functions with desired properties. We show through

examples that such bounding functions are often available. A final difficulty is that the

unboundedness and, hence, non-compactness of the set of feasible multipliers disrupts

the application of the Theorem of the Maximum. However, it is easy to show that the op-

timal value function is concave. When it is everywhere real-valued as well, appeals can be

made to the continuity properties of concave functions to establish continuity of the opti-

mal value function. When the optimal value function is not everywhere real-valued, then

convexity does not ensure continuity. In an appendix, we show how level-boundedness

of the objective and constraints can be used to establish lower semicontinuity of value

functions in this case.

Under standard conditions for the equivalence of primal and dual values, dual dy-

namic programming problems provide necessary, but not sufficient conditions for op-

timal plans (i.e. for solutions to an original incentive problem). Despite this, in many

applications the law of motion for cumulative multipliers is constrained to be a martin-

gale, sub-martingale or iterated function system. Long run properties of these processes

can be derived and, hence, long run properties of optimal plans inferred.

The paper proceeds as follows. After a brief review of related literature, Section 3 out-

lines the family of incentive constrained problems we consider. Section 4 applies the dual

recursive method to this family and derives the associated Bellman equation. Sufficient

conditions for the associated Bellman operator to be contractive are given in Section 5.

Applications to private information and limited commitment problems are provided in

Examples 1 and 2. Implications for policies are discussed in Section 7.

1.1 Related literature

The idea of using a recursive decomposition of the Lagrangian to solve an optimal con-

trol problem originates with Marcet and Marimon (1999) (revised: Marcet and Marimon

(2011)). Their approach is distinct from ours in that they decompose a saddle point

3As opposed to verifying discounting.
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rather than a dual problem. Messner, Pavoni, and Sleet (2011a) develops a recursive

dual approach in both time additive and non-additive settings; Messner, Pavoni, and

Sleet (2011b) relates the promise-keeping and recursive dual approaches in infinite hori-

zon concave settings. It exploits the monotonicity of these operators to obtain iterative

procedures for computing value functions. Cole and Kubler (2010) provide a clever ex-

tension of dual recursive-type methods that allows them to recover optimal policies in

wide range of concave settings, including ones concavified by the use of lotteries.

There has been much focus in the dynamic programming literature on developing

techniques applicable to sup-unbounded problems. Approaches based on the use of sup

weight-norms were developed by Wessels (1977) and applied to economic problems by

Boyd (1990) and Duran (2000).4 Rincon-Zapatero and Rodriguez-Palermo (2003) pro-

posed a localized approach to building a complete metric space and verifying the con-

tractive properties of the Bellman operator.5 These authors also show how the concavity

property of the Bellman operator can be used to establish contractivity.

Several previous attempts have been made to establish the contractivity of related

Bellman operators. Marcet and Marimon (1999) and Mele (2010) pursue a version of the

weighted contraction mapping approach for homogenous problems described in Stokey,

Lucas, and Prescott (1989). This involves verifying that the Bellman operator satisfies

Blackwell’s conditions on an enlarged space of functions bounded with respect to a weighted

sup norm. Unfortunately, as mentioned, the combination of an unbounded candidate

value function and an unbounded constraint set make this difficult and the proofs pro-

vided by, say, Mele (2010) contain errors. Cole and Kubler (2010) does contain a successful

proof in this direction, but under quite restrictive conditions6.

2 A Simple Example

To make the subsequent analysis concrete, we briefly outline a simple one sided lim-

ited commitment example. A committed principal shares risk with an uncommitted

agent. Both live for an infinite number of periods t ∈ N. Let {st}∞
t=1 be a shock pro-

cess taking values in a finite set S = {1, . . . , S} and evolving according to a Markov

transition Q from s0 ∈ S. Let the endowment of goods in each current state be given by

ω : S → R++. A consumption process for the agent {ct}∞
t=1, ct : St → R+, is resource-

4For a textbook treatment, see Hernandez-Lerma and Laserre (1999).
5This paper has been influential, with variations (and a correction) contained in Matkowski and Nowak

(2011), Rincon-Zapatero and Rodriguez-Palermo (2009) and da Rocha and Vailakis (2010).
6In fairness, establishing such a result is not the focus of Cole and Kubler (2010)
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feasible if for all t ∈ N, st ∈ St, ct(s
t) ∈ [0, ω(st)]. Given c∞, the principal receives the

residual process, ∀t, st ∈ St, ω(st) − ct(st). Conditional on the first period shock, the

agent and the principal value resource-feasible consumption processes c∞ according to:

Uc(s′, c∞) = ∑
∞
t=1 βt−1E[v(ct(st))|s1 = s′] and ∑

∞
t=1 βt−1E[v(ωt(st)− ct(st))|s1 = s′], re-

spectively, where β ∈ (0, 1) and v : R+ → R is increasing. We impose the following

assumption.

Assumption 1. v : R+ → R is continuous, increasing and strictly concave.

c∞ is incentive-feasible if it is resource feasible and it provides the agent with utility in

excess of her outside option B:

∀t, st, v(ct(s
t)) + β ∑

s′∈SUc(s′, c∞
t+1(s

t))Q(st, s′) ≥ B(st),

where c∞
t+1(s

t) = {ct+j(s
t, ·)}∞

j=1 and B : S→ R satisfies: B(s) = b(s)+ β ∑s′∈S B(s′)Q(s, s′),

b : S→ R.

Assumption 2. ∀s, b(s) ∈ [v(0), v(ω(s))].

It is convenient to re-express the problem in terms of agent utility net of the outside

option. Given c∞ the associated net utility plan y∞ = {yt}
∞
t=1 is defined as for all t, st,

yt(st) = v(ct(st)) − b(st). Let κ = v−1 and C(s) = {y : ω(s) − κ(y + b(s)) ≥ 0}. By

Assumptions 1 and 2, C is non-empty and compact-valued. Ω0 = {y∞|∀t, yt(·, st) ∈

C(st)} gives the set of resource-feasible net utility plans. A plan y∞ ∈ Ω0 is valued

according to:

U(s′, y∞) =
∞

∑
t=1

βt−1E[yt(s
t)|s1 = s′]

by the agent (conditional on period 1 shock s′ and net of the outside option) and according

to:

F(s, y∞) =
∞

∑
t=1

βt−1E[ f (st, yt(s
t))|s0 = s], f (s, y) = v(ω(s) − κ(y + b(s))),

by the principal (conditional on the period 0 shock s). A net utility plan in Ω0 is incentive-

feasible if it delivers a non-negative net utility to the agent for all t, st−1 and s,

yt(s
t−1, s) + β ∑

s′∈SU(s′, y∞
t+1(s

t−1, s))Q(s, s′) ≥ 0. (1)

Now, M = S is the number of per period constraints. Let Ω1 denote the set of incentive-
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feasible (net utility) plans. The principal’s problem is:

sup
Ω1

F(s, y∞). (2)

We associate with this a family of perturbed problems, ∀µ ∈ R,

V∗(s, µ) = sup
Ω1

F(s, y∞) + µ ∑
s′∈SU(s′, y∞)Q(s, s′). (3)

where V∗ : R→ R∪ {∞} and the principal’s original problem (2) is recovered by setting

µ = 0. Next absorb the first period incentive constraints into a Lagrangian:

Ls(y
∞, η; µ) = F(s,y∞) + µ ∑S U(s′, y∞)Q(s, s′)

+ ∑
s′

ηs′Q(s, s′)
{

y1(s
′) + δ ∑

s′′∈SU(s′′, y∞
2 (s′))Q(s′ , s′′)

}
,

where ηs′Q(s, s′) is the multiplier on the s′-th first period constraint. The optimization in

(3) may be rewritten in primal sup-inf form as:

V∗(s, µ) = sup
Ω2

infRM
+

Ls(y
∞, η; µ), (4)

where constraints for periods after the first remain within the constraint set Ω2. A dual

problem is obtained by interchanging the supremum and infimum operations in (4). In

general the optimal value from the dual need not equal that from the primal. However,

in this case, under Assumptions 1 and 2, these values are equal and:

V∗(s, µ) = infRM
+

sup
Ω2

L (y∞, η; µ). (5)

Grouping terms involving y1(s) together gives:

V∗(s, µ) = infRM
+

sup
Ω2

∑S { f (s′, y1(s
′)) +

(
µ + ηs′

)
y1(s)

+ β
(

F(s′′ , y∞
2 (s′)) +

(
µ + ηs′

)
U(s′′, y∞

2 (s′))
)}

Q(s, s′).

6



Thus, using the definition of f and V∗:

V∗(s, µ) = infRM
+

∑
S

[
νs′(µ, η) + βV∗

(
s′, µ′

s′(µ, η)
)]

Q(s, s′),

with νs′(µ, η) = supy∈C(s′)(µ + ηs′)y + f (s′, y) and weight updating formula µ′
s′(µ, η) =

µ + ηs′ . It follows that V∗ satisfies the Bellman equation V∗ = D(V∗), where for V :S×R→ R ∪ {∞} and (s, µ) ∈ S×R:

D(V)(s, µ) = infRM
+

∑
S

[
νs′(µ, η) + βV

(
s′, µ′

s′(µ, η)
)]

Q(s, s′).

We seek to show the contractivity of D on a suitable space of functions for this and other

related problems.

3 Incentive-constrained problems

We outline a framework that accommodates many incentive-constrained problems. LetI = {1, . . . , I} denote a finite set of agents and S = {1, . . . , S} a finite set of shocks.

A shock s may include components that affect all agents and/or components that are

idiosyncratic to specific agents. In the latter case, these components may be common

knowledge or privately observed by the affected agents. Identify time with the natural

numbers t ∈ N. Let st be an S-valued random variable describing the shock in period

t and st = (s1, . . . , st) an St-valued random variable describing shock histories up to t.

Let Q denote a Markov transition for shocks, which, given our finiteness assumption, we

identify with a S × S-matrix of transition probabilities {Q(s, s′)}, and E[·|s] the condi-

tional expectation operator induced by Q and a current shock s.

Let Y(i), i ∈ I, denote a set of actions for the i-th agent, Y = ∏i∈I Y(i) a set for the

population and C : S → 2Y\∅ a non-empty valued correspondence mapping shocks to

action sets. An action plan is a sequence y∞ = {yt} with yt : St → Y and yt(st) ∈ C(st).

Let ui : Graph C → R, i ∈ I, give the i-th agent’s per period payoff as a function of the

current shock and action and let δ ∈ [0, 1) denote the agent’s discount factor. Given an

initial shock s and action plan y∞ = {yt}, the i-th agent’s lifetime payoff is:

Ui(s, y∞) := liminf
T→∞

T

∑
t=1

δt−1E[ui(st, yt(s
t))|s1 = s].
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Let:

Ω0 =



y∞

∣∣∣∣∣∣
∀t, yt(st) ∈ C(st),

∀i ∈ I, s ∈ S, Ui(s, y∞) = lim
T→∞

∑
T
t=1 δt−1E[ui(st, yt(zt))|s] ∈ R 


 .

We restrict attention to plans in Ω0. Let y∞
t (st−1) denote the continuation of plan y∞

following the shock history st−1.

The restrictions in Ω0 are supplemented with forward-looking incentive constraints.

These constraints guarantee that a given plan is optimal for an agent relative to some set

of feasible deviations. A key piece of constraint structure common to many examples,

including the one sided commitment example of Section 2 and others considered later, is

linearity of incentive constraints in continuation payoffs. In other dimensions incentive

constraints are problem specific: in limited commitment problems they are state specific,

while in hidden information problems they run across states. This leads us to write down

a constraint structure that is additive across time and states and linear in agent continu-

ation payoffs, but is otherwise general. The functions defining incentive constraints are

constructed from three elements: a set of labels M, a payoff function um and a family of

continuation payoff weights {qm,i
s,s′}. The labels m ∈ M := {1, . . . , M} identify the con-

straints and encode the identity of a prescribed action and a deviation from this action.

The current payoff function um : Graph C → R describes how the action(s) taken by

agents in each current shock state enter the m-th constraint. Agent continuation payoffs

enter the incentive constraints linearly. The terms q = {qm,i
s,s′} weight them: qm,i

s,s′ describes

how the continuation payoff of the i-th agent following the s-th action today and the s′-

th shock tomorrow is weighted in the m-th constraint. Collecting elements together, the

following definition is obtained.

Definition 1. A plan y∞ = {yt}∞
t=1 ∈ Ω0 is incentive-compatible if for each t ∈ N, st−1 ∈St−1, G(y∞

t (st−1)) ≥ 0, where G : Ω0 → RM and

G(y∞) = {Gm(y
∞)}m∈M =

{

∑S [um(s, y1(s)) + δ ∑I ∑S Ui(s′, y∞
2 (s))qm,i

s,s′

]}

m∈M ≥ 0.

(6)

Let Ω1 denote the set of incentive-compatible plans. Let Ω2 denote the set of plans whose

continuations are incentive compatible, i.e. y∞ such that each y∞
2 (s) ∈ Ω1.

It is easy to see that the one sided limited commitment example in Section 2 has (and

indeed many other examples have) incentive constraints satisfying (6). For example, the

constraints in the limited commitment problem (1) may be obtained from (6) by setting,
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for each current shock m ∈ S,

um(s, y) =





y if s = m

0 if s 6= m
and qm

s,s′ =





Q(s, s′) if s = m

0 if s 6= m.
(7)

Thus, actions and payoffs not associated with the m-th shock are zeroed out of the m-th

constraint.

An important special case of (6) occurs when the weights qm,i
s,s′ can be decomposed as:

qm,i
s,s′ = qm,i

s Q(s, s′) (s, s′) ∈ S2, (8)

for some {qm,i
s }. In this case, the incentive function G can be re-expressed as:

G(y∞) =

{

∑S [um(s, y1(s)) + δ ∑
I

qm,i
s ∑S Ui(s′, y∞

2 (s))Q(s, s′)

]}

m∈M . (9)

with the qm,i
s terms factored through the summation over s′ values. Thus, the continua-

tion plan y∞
2 (s) affects the constraint functions only insofar as it affects the conditional

expected payoff ∑SUi(s′, y∞
2 (s))Q(s, s′). This constraint structure affords a considerable

simplification of the analysis and is quite common in applications. For example, in the

one sided commitment problem, the weights qm
s,s′ may be factored as qm

s Q(s, s′), where

qm
s = 1 if s = m and 0 otherwise.

Let f : Graph C → R denote the principal’s per period payoff as a function of the cur-

rent shock and action. Together f , a discount factor β ∈ [δ, 1) and Q give the principal’s

lifetime payoff, F : S× Ω1 → R, where:

F(s, y∞) := liminf
T→∞

T

∑
t=1

βt−1E
[

f (st, yt)
∣∣∣s0 = s

]
.

Note that this objective is conditional on the date 0 not the date 1 shock. The basic dy-

namic incentive problem is then:

sup
Ω1

F(s, y∞). (10)

Assumptions 3 and 4 collect basic conditions imposed on the primitives of this problem.

Here and throughout the paper if a function g : S× Rn → R is such that each g(s, ·)

satisfies a property (e.g. convexity or continuity), then we will simply say that g possesses

the property.

Assumption 3 (Constraints). The following conditions are imposed on constraints.
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(i) C : S→ 2Y\∅ is convex-valued.

(ii) Each ui : Graph C → R and um : Graph C → R is concave and continuous.

(iii) For each m and s, ∑I ∑SUi(s′, ·)qm,i
s,s′ is concave.

(iv) Ω1 is non-empty.

(v) (Slater) ∃y∞ ∈ Ω2 with G(y∞) > 0.

Assumption 3 (ii) and (iii) ensure that G is a concave function. Assumption 3 (iii) holds

if, in addition to Assumption 3 (ii), each qm,i
s,s′ is non-negative (as is typically the case in

limited commitment problems) or each ui is affine (as is the case in hidden information

problems when agent’s have separable preferences and utilities are made the choice vari-

able). These conditions coupled with the non-emptiness condition (iv) and the Slater

condition (v) ensure that standard duality results can be invoked. They are easy to check,

but stronger than needed. Assumption 4 restricts the objective function in (10).

Assumption 4 (Objective). The following conditions are imposed on the objective.

(i) Each f : C → R is concave, continuous and bounded above.

(ii) f , β, Q and Ω1 are such that for all s ∈ S and y∞ ∈ Ω1,

F(s, y∞) = lim
T→∞

T

∑
t=1

βt−1E
[

f (st, yt)
∣∣∣s0 = s

]
∈ R.

Condition Assumption 4 may sometimes require that Ω0 (and, hence, Ω1) is further re-

stricted to ensure the principal’s objective is real-valued (and not −∞-valued).

4 The Dual Recursive method

Actions associated with a given period appear in the incentive constraints of preceding

periods. Consequently, the family of choice problems (10) is time inconsistent and the

principle of optimality is disrupted.7 The Dual Recursive method resolves this difficulty

by augmenting the objectives from the problems in (10) with additional terms that capture

the impact of past incentive provision. Lagrangians that incorporate current incentive

7A continuation plan provides incentives in past periods. When it is time for the plan to be implemented,
these incentive benefits are sunk.
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constraints are constructed for these augmented problems. Multipliers from these con-

straints are used to update the continuation objective and, hence, enforce consistency of

this objective with past incentive provision. Time consistency is restored.

4.1 Generalized problem

Agents are partitioned into two groups: I1 and I2. I1 consists of those agents for whom

each qm,i satisfies (8); I2 contains the remaining agents. The perturbed incentive problem is:

V∗(s, µ) = sup
Ω1

F(s, y∞) + ∑I1

µi ∑S Ui(s′, y∞)Q(s, s′) + ∑I2

∑S µi
s′U

i(s′, y∞)Q(s, s′). (11)

We refer to the µi terms as weights and collect them into µ := {{µi}I1
, {µi

s′}I2×S} ∈ RN,

where N = |I1| + S|I2|. The perturbed incentive problem (11) augments the objective

from the original problem (10) with weighted sums of private evaluations Ui(s′, y∞). For

agents i ∈ I2, these weights are allowed to depend on the current shock s′. Assumptions 3

and 4 ensure that Ω1 is non-empty and that the objective in (11) is well defined and real-

valued on this set. Hence, V∗ : S×RN → R ∪ {∞} is also well defined, though possibly

infinite-valued. Let Dom V∗ = {(s, µ) ∈ S× RN | V∗(s, µ) < ∞} denote the effective

domain of V∗ on which V∗ is finite. Anticipating our subsequent recursive formulation,

we call S×RN the state space.8

Proposition 1 gives properties of V∗ that are easily found without recourse to recursive

methods. We need the following definition. A function g : S×RN → R is inf-proper if

for each s ∈ S, g(s, ·) is everywhere greater than −∞ and somewhere less than ∞.

Proposition 1. Let Assumptions 3 and 4 hold. i) V∗ is inf-proper. ii) V∗ is convex and, hence,

each V∗(s) is continuous and sub-differentiable on int Dom V∗(s), where Dom V∗(s) = {µ ∈RN|V∗(s, µ) < ∞}.

Proof. See Appendix A.

In particular, if Dom V∗ = S×RN , then V∗ is continuous.

8In some problems, such as Example 2, the optimal value is unaffected by the prior shock s and this
argument may be dropped. Then V∗ : RN → R∪ {∞} and Dom V∗ ⊂ RN.
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4.2 Deriving the functional equation

The first step in the application of the dual recursive approach is the formation of a La-

grangian:

Ls(y
∞, η; µ) = F(s, y∞) +∑I1

µi ∑S Ui(s′, y∞)Q(s, s′)

+ ∑I2

∑S µi
s′U

i(s′, y∞)Q(s, s′) +∑M ηmGm(y
∞), (12)

where η = {ηm} ∈ RM
+ is a non-negative multiplier. The Lagrangian incorporates only the

current (date 1) incentive constraints. The perturbed incentive problem can be rewritten

in primal sup-inf form as:

V∗(s, µ) = sup
Ω2

infRM
+

Ls(y
∞, η; µ). (13)

Associated with the primal problem (13) is the dual problem:

VD(s, µ) = infRM
+

sup
Ω2

Ls(y
∞, η; µ). (14)

The dual (14) permits a very convenient decomposition of the inner supremum operation

into a family of current and continuation problems linked by multipliers. Let F denote

the set of inf-proper functions with domain S× RN. The (dual) Bellman operator D is

defined next.

Definition 2. The Bellman operator D is defined on F as, for V ∈ F and each (s, µ) ∈S×RN,

D(V)(s, µ) = infRM
+

∑S [νs,s′(µ, η) + βV
(

s′, µ′
s,s′(µ, η)

)]
Q(s, s′), (15)

with, for each s′ ∈ S,

νs,s′(µ, η) = sup
C(s′)

f (s′, y) +∑M ηm

Q(s, s′)
um(s′, y) +∑I1

µiui(s′, y) +∑I2

µi
s′u

i(s′, y), (16)
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and µ′
s,s′ = {µi′

s,s′}i∈I with

µi′
s,s′(µ, η) =

δ

β

[
µi +∑

M

ηmqm,i
s′

Q(s, s′)

]
, i ∈ I1, (17a)

µi′
s,s′(µ, η) =

{
δ

β

[
µi

s′ + ∑
M

ηmqm,i
s′,s′′

Q(s, s′)Q(s′, s′′)

]}

s′′∈S , i ∈ I2. (17b)

Proposition 2. VD satisfies: VD = D(V∗).

Proof. See Appendix A.

For V∗ to be a fixed point of D , it is necessary that V∗ = VD. Standard weak duality

results imply that VD ≥ V∗. However, under Assumptions 3 and 4 equality of value

functions occurs and the minimum in D(V∗)(s, µ) is attained whenever V∗(s, µ) is finite.

Combining this (well known) result with Proposition 2 gives the following.

Proposition 3. If Assumptions 3 and 4 hold and either Dom V∗ ⊆ RN
+ or each function ui(s, ·)

is affine, then V∗ satisfies the Bellman equation:

V∗ = D(V∗). (18)

In addition, if V∗(s, µ) < ∞, then:

Γ(s, µ) := argminRM
+

∑S [νs,s′(µ, η) + βV∗
(

s′, µ′
s,s′(µ, η)

)]
Q(s, s′),

is non-empty and coincides with the set of minimizers for (14).

Proof. See Appendix.

In some problems, there is a set A ⊆ RN
+ such that for all η ∈ RM

+ , s, s′ ∈ S, µ′
s,s′(·, η) :

A → A. For example, in the one sided limited commitment problem all constraint

weights satisfy qm
s,s′ = qm

s Q(s, s′) ≥ 0, with qm
s equal to 1 if m = s and 0 otherwise.

Hence, for all η ∈ RM
+ , s, s′ ∈ S, µ′

s,s′(·, η) : RN
+ → RN

+ . For problems of this sort, under

Assumptions 3 and 4, ∀(s, µ) ∈ A, V∗(s, µ) = D(V∗)(s, µ).

5 Contraction

This section contains the main result of the paper: it establishes sufficient conditions for

D to be contractive on an appropriate space of functions. It adapts an argument of Rin-

13



con-Zapatero and Rodriguez-Palermo (2003). We restrict attention to problems in which

Dom V∗ = S×RN . This restriction includes many, though not all, examples (see Sec-

tion 6) and, in particular, includes the one sided limited commitment problem. For a

generalization of the arguments given below that covers other cases, see Appendix B. We

make use of the following result from Messner, Pavoni, and Sleet (2011b).

Proposition 4. Assume V : S×RN → R is convex, then D(V) is also convex. In addition,

if there exists a pair of functions V, V : S×RN → R such that V ≤ D(V) ≤ V, then V is

real-valued and, hence, continuous.

Proof. Follows from the proof of Lemma 4 in Messner, Pavoni, and Sleet (2011b).

The key additional assumption needed to ensure contractivity is the following.

Assumption 5. There exists a triple of functions: V : S×RN → R, V : S×RN → R and

V : S×RN → R such that: (i) V < V ≤ V∗ ≤ V, (ii)

infS×RN

V(s, µ)− V(s, µ) > 0 (19a)

supS×RN

V(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)
= 1 + supS×RN

V(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)
< ∞, (19b)

(iii) D(V) ≤ V and (iv) V ≤ D(V), V ≤ D(V).

Notice that if V : S×RN → R and V : S×RN → R satisfy V ≤ V, then defining

V = −1 + 2V − V ensures the bounds in (19) hold since in this case:

infS×RN

V(s, µ)− V(s, µ) = infS×RN

1 + V(s, µ)− V(s, µ) > 0

1 + supS×RN

V(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)
= 1 + supS×RN

V(s, µ)− V(s, µ)

1 + V(s, µ)− V(s, µ)
< ∞.

Hence, for Assumption 5 to hold, it is sufficient that the following condition holds.

Assumption 6. There exists a pair of functions V : S×RN → R and V : S×RN → R such

that: (i) V ≤ V∗ ≤ V, (ii) D(V) ≤ V and (iii) for all functions V : S×RN → R with V ≤ V,

V ≤ D(V).

Given a pair of functions V and V satisfying Assumption 5 (or Assumption 6), define

the interval of functions:

V = {V : S×RN → R|V is convex (and, hence, continuous) and V ≤ V ≤ V}.

14



Define d : V × V → R+ according to:

d(V1, V2) = supS×RN

∣∣∣∣∣ln
(

V1(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)

)
− ln

(
V2(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)

)∣∣∣∣∣

≤ supS×RN

ln

(
V(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)

)
< ∞,

where the finiteness stems from Assumption 5.

Lemma 1. (V , d) is a complete metric space.

Proof. See Appendix A.

Proposition 5 verifies that D is contraction on V .

Proposition 5. Let Assumption 5 hold. There is an α ∈ [0, 1) such that for all V1, V2 ∈ V ,

d(D(V1), D(V2)) ≤ αd(V1, V2).

Proof. Let V1, V2 ∈ V and let λ ∈ [0, 1]. Then, it is easily shown that: D(λV1 + (1 −

λ)V2) ≥ λD(V1) + (1 − λ)D(V2), i.e. D is concave on V . By definition of d,

ln

(
V2 − V

V − V

)
≤ ln

(
V1 − V

V − V

)
+ d(V1, V2).

Taking the exponential of each side at each (s, µ) and rearranging gives:

exp{−d(V1, V2)}

(
V2 − V

V − V

)
≤

(
V1 − V

V − V

)
.

But V − V > 0 and so: exp{−d(V1, V2)}(V2 − V) ≤ (V1 − V). Rearranging gives:

V1 ≥ exp{−d(V1, V2)}V2 + (1 − exp{−d(V1, V2)})V . (20)

By monotonicity and concavity of D :

D(V1) ≥ D(exp{−d(V1, V2)}V2 + (1 − exp{−d(V1, V2)})V)

≥ exp{−d(V1, V2)}D(V2) + (1 − exp{−d(V1, V2)})D(V). (21)

Equation (20) applied to D(V) and D(V2) gives:

D(V) ≥ exp{−d(D(V2), D(V))}D(V2) + (1 − exp{−d(D(V2), D(V))})V . (22)
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Combining (21) with (22) gives:

D(V1) ≥ exp{−d(V1, V2)}D(V2) + (1 − exp{−d(V1, V2)})

× [exp{−d(D(V2), D(V))}D(V2) + (1 − exp{−d(D(V2), D(V))})V ].

Letting µ = exp{−d(V1, V2)}+(1− exp{−d(V1, V2)}) exp{−d(D(V2), D(V))}, then gives:

D(V1)− V

V − V
≥µ

D(V2)− V

V − V
.

Taking logs gives:

ln

(
D(V1)− V

V − V

)
≥ ln µ + ln

(
D(V2)− V

V − V

)
.

By the definition of µ and Jensen’s inequality:

ln µ ≥ (1 − exp{−d(D(V2), D(V))}) ln exp{−d(V1, V2)}+ exp{−d(D(V2), D(V))}) ln 1

= −(1 − exp{−d(D(V2), D(V))})d(V1 , V2).

Since V ≤ D(V) ≤ D(V) ≤ D(V2) ≤ V, it follows that d(D(V2), D(V)) ≤ d(V, V) < ∞.

Hence, (1 − exp{−d(D(V2), D(V))}) := α ≤ (1 − exp{−d(V, V)}) < 1. Thus,

αd(V1, V2) ≥ − ln µ ≥ ln

(
D(V2)− V

V − V

)
− ln

(
D(V1)− V

V − V

)
. (23)

The same bound clearly holds with V1 and V2 on the right hand side of (23) interchanged.

Hence, αd(V1, V2) ≥ d(D(V1), D(V2)).

Application of the contraction mapping theorem then immediately yields Theorem 1,

the main result of the paper.

Theorem 1. Let Assumptions 3 to 5 hold. V∗ is the unique fixed point of D in V . Also, there

is an α ∈ [0, 1) such that for any V ∈ V , Dn(V)
d
→ V∗ with d(Dn(V), V∗) ≤ αnd(V, V∗) ≤

αnd(V, V).

Discussion of assumptions Assumptions 3 and 4 are basic assumptions that allow the

application of duality results and are used to establish V∗ = D(V∗). Assumption 5 is

used to establish contractivity. The key difficulty in applying Theorem 1 involves finding
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bounding functions such that Assumption 5 holds. The construction of these will often

be problem specific.

6 Applications

In this section we give various applications of Theorem 1.

Example 1 (One Sided Limited Commitment). We first revisit the one sided limited com-

mitment example from Section 2. First note that the earlier Assumptions 1 and 2 ensure

that Assumptions 3 and 4 hold in this problem. Hence, Proposition 3 confirms that the

principal’s value function satisfies the Bellman equation:

V∗(s, µ) = D(V∗)(s, µ) = infRM
+

∑
S

[
νs′(µ, η) + βV∗

(
s′, µ′

s′(µ, η)
)]

Q(s, s′), (24)

where, from (7) and Definition 2 or as derived previously in Section 2, νs′(µ, η) = supy∈C(s′)

(µ + ηs′)y + f (s′, y) and µ′
s′(µ, η) = µ + ηs′ , with C(s) = {y : ω(s) − κ(y + b(s)) ≥ 0},

f (s, y) = v(ω(s)− κ(y + b(s))) and κ = v−1.

Note that Assumptions 1 and 2, by ensuring the non-empty and compact-valuedness

of C and the continuity of f , guarantee that Dom V∗ = S×R. A lower value function

may be constructed from the more constrained problem in which y∞ is restricted to equal

0, i.e. ∀t, st, yt(s
t) = 0 ∈ C(st). Then:

V(s, µ) = F(s, 0).

Evidently, V : S×R → R. In addition, V is convex and continuous (in fact constant) in

µ. Define the less constrained problem by:

V(s, µ) = sup
Ω0

F(s, y∞) + µ ∑S U(s′, y∞)Q(s, s′).

It is easily checked that each V is convex, continuous and real-valued. In addition, it is

easily verified that V, V and any V : S×R→ R with V ≤ V satisfy: V ≤ D(V) ≤ V∗ ≤

D(V) ≤ V and V ≤ D(V). Hence, Assumption 6 holds and Theorem 1 is applicable.

Proposition 6. Let Assumption 1 hold and let V denote the interval of convex (and continuous)

functions bounded below by V and above by V. V∗ is the unique fixed point of D in V . Also, there

is an α ∈ [0, 1) such that for any V ∈ V , Dn(V) → V∗ with d(Dn(V), V∗) ≤ αnd(V, V∗) ≤

αnd(V, V).
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Proof. Follows directly from Theorem 1.

This example is easily extended to one with a committed principal and multiple un-

committed agents or, following the treatment in Messner, Pavoni, and Sleet (2011b), one

with no committed principal and only uncommitted agents.

Example 2 (Hidden information: IID shocks). A principal insures an agent against pri-

vately observed taste shocks. The agent’s taste shocks {st}∞
t=1 take values in the finite

set S = {1, . . . , S} and are i.i.d. with per period distribution Q ∈ RS. The agent values

lifetime consumption plans c∞ = {ct}∞
t=1, ct : St → R+, according to:

∞

∑
t=1

δt−1E[stv(ct(s
t))], (25)

where δ ∈ (0, 1) and v : R+ → Y satisfies the following condition.

Assumption 7. v : R+ → Y is increasing, strictly concave and bounded: Y = [y, y), −∞ <

y < y < ∞.

Given a consumption plan c∞, the agent’s corresponding utility plan is y∞ = {yt}, where

yt(st) = v(ct(st)). It is convenient to re-express the analysis in terms of utility plans. Let

U(s, y∞) =
∞

∑
t=1

δt−1E[styt(s
t)|s1 = s′] (26)

denote the agent’s lifetime payoff from utility plan y∞ conditional on the first period

shock s′. The principal’s per period objective is f (s, y) = sy − ψκ(y), where ψ ∈ R++

is the shadow price of resources and κ : Y → R+ is the inverse of v. The principal uses

a discount factor β ∈ [0, 1) and has lifetime payoff is: F(y∞) = ∑
∞
t=1 βt−1E[ f (st , yt(st))].

Since f is bounded above, F is well defined. Atkeson and Lucas (1992) assume δ = β < 1;

Farhi and Werning (2007) assume δ < β < 1. Let Ω0 = {y∞|∀t, yt : St → Y and F(y∞) >

−∞} denote the set of plans with finite planner payoffs.

Without loss of generality attention may be restricted to utility plans that induce

the agent to truthfully report the shocks she receives. Such plans satisfy the incentive-

compatibility conditions, for all t, st−1, s′ 6= ŝ,

s′yt(s
t−1, s′)+δ ∑

s′∈SU(s′′, y∞
t+1(s

t−1, s′))Q(s′′) ≥

s′yt(s
t−1, ŝ) + δ ∑

s′′∈SU(s′′, y∞
t+1(s

t−1, ŝ))Q(s′′), (27)
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where s′ denotes a true shock, ŝ a lie and y∞
t+1(s

t) is the continuation of y∞ after st. Let Ω1

and Ω2 denote the set of plans in Ω0 satisfying these constraints from the first and second

periods onwards respectively. Let C(s) = Y for all s, I = {1} and u1(s, y) = sy. Index

constraints by true-lie shock pairs (s′, ŝ) and (after comparing (27) to the general form (6))

define:

us,ŝ(s̄, y) =





sy if s̄ = s

−sy if s̄ = ŝ

0 otherwise

and qs,ŝ
s̄,s′ =





Q(s′) if s̄ = s

−Q(s′) if s̄ = ŝ

0 otherwise.

(28)

It is then easy to verify that Assumptions 3 and 4 follow from Assumption 7.

The principal’s problem is: supΩ1
F(y∞). To solve this problem we embed it into the

family of "perturbed" problems:

V∗(µ) = sup
Ω1

F(y∞) + µ ∑S U(s, y∞)Q(s), (29)

where V∗ : R → R, and the original problem is recovered by setting µ = 0. Using (28),

Definition 2 and Proposition 3, we have for all µ ∈ R,

V∗(µ) = D(V∗)(µ) = infRM
+

∑S {νs′(µ, η) + βV∗(µ′
s′(µ, η))}Q(s′), (30)

with

νs′(µ, η) = sup
[y,y)

(
1 + µ +

1

Q(s′)

[

∑
ŝ 6=s′

ηs′,ŝ − ∑
ŝ 6=s′

ŝ

s′
ηŝ,s′

])
s′y − ψκ(y), (31a)

and

µ′
s′(µ, η) =

δ

β

(
1 + µ +

1

Q(s′)

[

∑
ŝ 6=s′

ηs′,ŝ − ∑
ŝ 6=s′

ηŝ,s′

])
. (31b)

νs′ can be re-expressed as νs′(µ, η) = ν(ρs′(µ, η)), where:

ν(ρ) = sup
Y

ρy − κ̃(y), κ̃(y) =





ψκ(y) if y ∈ Y

∞ otherwise,

and ρs(µ, η) = (1 + µ + 1
Q(s)

[∑ŝ 6=s ηs,ŝ − ∑ŝ 6=s
ŝ
s ηŝ,s])s. A function f ⋆ : Rn → R is said
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to be the conjugate of f : Rn → R if for all x⋆ ∈ Rn, f ⋆(x⋆) = supRn〈x, x⋆〉 − f (x),

where 〈·, ·〉 : Rn × Rn → R gives the dot product of two elements of Rn. Thus, ν is

the conjugate of κ̃. Properties of ν follow from those of κ and well known properties of

conjugate functions, see Rockafellar (1970). For example, ν is real-valued, convex and,

hence, continuous. The continuity of each νs′ follows.

We define the following more and less constrained problems. The first is the no insur-

ance problem:

V(µ) = sup
y∞∈Ω

F(y∞) + µ ∑
s′∈SU(s′, y∞)Q(s′), (32)

with Ω = {y∞|∃y ∈ Y, ∀t, st,yt(st) = y}; the second is the full insurance problem:

V(µ) = sup
y∞∈Ω

F(y∞) + µ ∑
s′∈SU(s′, y∞)Q(s′), (33)

with Ω = Ω0. It is easy to verify that the functions V and V, satisfy:

V(µ) =
∞

∑
t=1

βt−1ν
((

1 +
( δ

β

)t−1
µ
)

E[s′]
)

and V(µ) =
∞

∑
t=1

βt−1E
[

ν
((

1 +
( δ

β

)t−1
µ
)

s′
)]

.

Of course, V ≤ V∗ ≤ V and V, V : S× RN → R. It is easy to see that V ≤ D(V) ≤

V∗ ≤ D(V) ≤ V. In addition, if V ≤ V, then V ≤ D(V), thus, Assumption 6 holds. It

also follows from the properties of ν that V and V are convex (and continuous). Thus, As-

sumption 6 is verified. The following result is then an immediate corollary of Theorem 1.

Proposition 7. Let Assumption 7 hold and let V denote the interval of convex (and continuous)

functions bounded below by V and above by V. V∗ is the unique fixed point of D in V . Also, there

is a α ∈ [0, 1) such that for any V ∈ V , Dn(V) → V∗ with d(Dn(V), V∗) ≤ αnd(V, V∗) ≤

αnd(V, V).

Example 3 (Hidden information: Markov shocks). Let everything be as before except that

now shocks evolve according to a Markov process with transition Q from a seed s0 = s.

The planner’s problem is supΩ1
F(s, y∞), where F(s, y∞) = ∑

∞
t=1 βt−1E[ f (st , y∞

t (s
t))|s0 =

s] and Ω1 is modified to include Markov shocks:

s′yt(s
t−1, s′)+δ ∑

s′′∈SU(s′′, y∞
t+1(s

t−1, s′))Q(s′ , s′′) ≥

s′yt(s
t−1, ŝ) + δ ∑

s′′∈SU(s′′, y∞
t+1(s

t−1, ŝ))Q(s′ , s′′). (34)

Once again Assumption 7 ensures Assumptions 3 and 4 hold. To derive a recursive for-
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mulation of the principal’s problem it is necessary to expand the dimension of the weight

state variable and use an ex post weight µ = {µs′}s′∈S ∈ RS. The perturbed problem

becomes, ∀(s, µ) ∈ S×RS,

V∗(s, µ) = sup
Ω1

F(s, y∞) +∑S µs′U(s′, y∞)Q(s, s′), (35)

Using

us,ŝ(s̄, y) =





sy if s̄ = s

−sy if s̄ = ŝ

0 otherwise

and qs,ŝ
s̄,s′ =





Q(s, s′) if s̄ = s

−Q(s, s′) if s̄ = ŝ

0 otherwise,

(36)

and Definition 2 and Proposition 3, we have for all (s, µ) ∈ S×RS,

D
∗(V)(s, µ) = infRM

+

∑
S

[
νs,s′(µ, η) + βV∗

(
s′, µ′

s,s′(µ, η)
)]

Q(s, s′),

and

νs,s′(µ, η) = sup
y∈Y

(
1 + µs′ + ∑

ŝ 6=s′
ηs′,ŝ − ∑

ŝ 6=s′
ηŝ,s′

ŝ

s′
Q(s, ŝ)

Q(s, s′)

)
s′y − ψκ(y).

Weights are now updated according to µs,s′ = {µs,s′,s′′}s′′∈S,

µ′
s,s′,s′′(µ, η) =

δ

β

(
µs′ + ∑

ŝ 6=s′
ηs′,ŝ − ∑

ŝ 6=s′
ηŝ,s′

Q(ŝ, s′′)

Q(s′, s′′)

Q(s, ŝ)

Q(s, s′)

)
.

No and full insurance bounding value functions V, V : S × RS → R can be defined

analogously to the i.i.d. case and Assumption 6 verified. The following result is then an

immediate corollary of Theorem 1.

Proposition 8. Let Assumption 7 hold and let V denote the interval of convex (and continuous)

functions bounded below by V and above by V. V∗ is the unique fixed point of D in V . Also, there

is a α ∈ [0, 1) such that for any V ∈ V , Dn(V) → V∗ with d(Dn(V), V∗) ≤ αnd(V, V∗) ≤

αnd(V, V).
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7 Policies

The application of D to the function V∗ induces a policy correspondence Ψ where:

Ψ(s, µ) = {(η, µ′)|η ∈ Γ(s, µ) and µ′ = {µs,s′(µ, η)}s′}.

We say that {ηt, µt+1}, ηt : St−1 → RM
+ and µt+1 : St → RM, is generated by Ψ from

(s0, µ1) if (η1, µ2) ∈ Ψ(s0, µ1) and for each st−1 = (st−2, st−1), (ηt(st−1), µt+1(s
t−1)) ∈

Ψ(st−1, µt(st−1)). Let:

Ξ(s, µ, η) =

{
y ∈ ∏

s′∈SC(s′)

∣∣∣∣∣
∀s′, ys′ ∈ argmaxC(s′) f (s′, y) + ∑M ηm

Q(s,s′)
um(s′, y)

+ ∑I1
µiui(s′, y) + ∑I2

µi
s′u

i(s′, y)

}
.

We say that a plan {yt} is generated by (Ψ, Ξ) from (s0, µ1) if there is a sequence {ηt, µt+1}

generated by Ψ such that each yt(st−1) ∈ Ξ(st−1, µt(st−1), ηt(st−1)). Messner, Pavoni, and

Sleet (2011b), Proposition 7, shows that if {y∗t } solves the generalized incentive prob-

lem (11) at (s0, µ1) and if the Lagrangians Ls(·, ·; µ) admit saddle points at all (s, µ) ∈

Dom V∗, then {y∗t } solves the recursive dual problem in the sense that is generated by

(Ψ, Ξ) from (s0, µ1). However, even under these conditions (Ψ, Ξ) may generate extrane-

ous action-plans that are not optimal for (11). Thus, the recursive dual gives necessary,

but not sufficient conditions for a primal optimum.9 This difficulty is resolved if (11) ad-

mits a solution and (Ψ, Ξ) generates a unique plan (from some (s0, µ1)). Consequently,

the imposition of additional strict concavity conditions ensures that the recursive dual

gives sufficient conditions for a primal optimum, see Messner, Pavoni, and Sleet (2011b),

Proposition 8. 10

7.1 Feasible weight processes and the long run behavior of plans

Even if the recursive dual problem gives only necessary conditions for an optimum some

useful characterization of the optimum may be available. We conclude this paper with

some brief remarks in this direction. The set of all non-negative valued multiplier pro-

cesses (not necessarily optimal ones) and the updating functions (17a) and (17b) define a

family of feasible weight processes.11 The structure of the updating functions in a given

9As was pointed out by Messner and Pavoni (2004), the same issue arises in the context of Marcet and
Marimon (2011)’s recursive saddle point method.

10Marcet and Marimon (2011) provide a related result for their recursive saddle point method. Cole and
Kubler (2010) provide an extended recursive saddle point method that resolves the problem in weakly
concave settings.

11i.e. for each {ηt}, ηt : St−1 → RM
+ , s0 ∈ S, µ1 ∈ Dom V∗ and µt+1(s

t) = µ′
st,st+1

(µt(st−1), ηt(st−1)).
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problem often places useful restrictions on all such processes. In certain applications,

these functions directly imply that all feasible weight processes (including the optimal

one) are martingales, sub-martingales or a particular type of Markov process called an

iterated function system.12 Establishing these results plays a key role in characterizing

the long run properties of the action plan induced by a feasible (and, hence, an optimal)

process

For simplicity, consider the updating formula (17a) with decomposable weights and

a single agent i ∈ I1. Dropping the agent index i from the notation, note that for any

η ∈ RM
+ ,

∑
s′∈Sµ′

s,s′(µ, η)Q(s, s′) =
δ

β

[
µ + ∑

m∈M ηm ∑
s′∈S qm

s′

]
. (37)

In the models of Atkeson and Lucas (1992) and Farhi and Werning (2007) and many other

hidden information models with i.i.d. shocks, the terms ∑s′∈S qm
s′ equal 0. Thus, for these

models, (37) reduces to:

∑
s′∈Sµ′

s′(µ, η)Q(s′) =
δ

β
µ. (38)

In particular, if the principal and agent discount at the same rate, β = δ, then the weight

process is constrained to be a martingale. If, in addition, there is a set A ⊆ Dom V∗ ∩R+

such that at each µ ∈ A there is an optimal choice of η with µ′
s(µ, η) ∈ A, then the

associated optimal weight process is an L1-bounded martingale and the martingale con-

vergence theorem implies that it almost surely converges. If the correspondence Ξ(s, µ, η)

is single-valued (on Dom V∗ and for such processes), then any action plan that is optimal

given the multipliers must converges as well.13 If δ < β, as in Farhi-Werning, weight

processes are constrained to belong to a class of Markov processes induced by an iterated

function system. Limit theorems for such Markov processes can be used to show that, un-

der certain circumstances, all weight processes (and, hence, the any optimal action plan)

is ergodic.14

12An iterated function system is defined by a finite shock set S, a probability distribution Q on S, a
state space X and a function g : S× X → X. This tuple is used to defines a stochastic process satisfying:
xt+1 = g(st, xt). Often each g(s, ·) is assumed to be Lipschitz and ∑S g(s, ·)Q(s) contractive.

13If an optimal multiplier function η∗ can be shown to be non-zero at each interior point of Dom V∗, then
convergence must occur to the boundary of Dom V∗. This is the basis of various “immiseration” results in
the literature which assert almost sure convergence of µ to 0 and, hence, of agent utility to its lowest bound.

14We do not pursue these issues further here. See Sleet and Yeltekin (2009) for analysis of an optimal
contracting problem that exploits this feature of the optimal weight process.
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For the one-sided commitment model ∑s′ qm
s′ = 1 and

∑
s′∈Sµ′

s,s′(µ, η)Q(s, s′) =
δ

β

[
µ + ∑

m∈M ηm
]
≥

δ

β
µi. (39)

In this case all scaled weight processes {(β/δ)tµi
t} are constrained to be sub-martingales.

For the Atkeson-Lucas or Farhi-Werning model with persistent shocks, ∑s′,s′′ qm
s′,s′′ = 0.

In these cases, the updating functions imply:

∑
s′∈S ∑

s′′∈S µi′
s,s′,s′′(µ, η)Q(s′ , s′′)Q(s, s′) =

δ

β ∑
s′∈S µi

s′Q(s, s′). (40)

Consequently, when β = δ, the conditional expectation of the weight process Et−1[µt+1]

is constrained to be a martingale. When δ < β, it is an iterated function system.

Appendices

A Proofs

Proof of Proposition 1. By Assumptions 3 and 4, for each s ∈ S, Ω1 contains a plan such
that F(s, ·) and each Ui(s′, ·) are real-valued. Hence, V∗(s, µ) > −∞. Also, V∗(s, 0) =
supΩ1

F(s, y∞) < ∞ since f is bounded above. Thus, V∗ is inf-proper. For s ∈ S, let

〈µ, U〉 = ∑I1
µi ∑SUi(s′, y∞)Q(s, s′) + ∑I2

∑S µi
s′U

i(s′, y∞)Q(s, s′). For µ(j) ∈ RN , j =
1, 2 and θ ∈ [0, 1], let µ(θ) = θµ(1) + (1 − θ)µ(2). We have:

V∗(s, µ(θ)) = sup
Ω1

F(s, y∞) + 〈µ(θ), U〉

= sup
Ω1

F(s, y∞) + θ〈µ(1), U〉 + (1 − θ)〈µ(2), U〉

≤ θ sup
Ω1

{F(s, y∞) + 〈µ(1), U〉} + (1 − θ) sup
Ω1

{F(s, y∞) + 〈µ(2), U〉}

= θV∗(s, µ(1)) + (1 − θ)V∗(s, µ(2)). �

Hence, V∗ is convex. �

Proof of Proposition 2. Rearranging the terms in the Lagrangian yields the following
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specification of the dual:

VD(s, µ) = infRM
+

sup
Ω2

∑S { f (s′, y(s′)) +∑M ηm

Q(s, s′)
um(s′, y(s′)) + ∑

I1

µiui(s′, y(s′)) + ∑
I2

µi
s′u

i(s′, y(s′))

+ β
(

F(s′ , y∞
2 (s′)) +

δ

β ∑I1

{
µi +∑M ηmqm,i

s′

Q(s, s′)

}
∑S Ui(s′′, y∞

2 (s′))Q(s′ , s′′)

+
[ δ

β ∑I2

∑
S

{
µi

s′ +∑M ηmqm,i
s′,s′′

Q(s, s′)Q(s′, s′′)

}
Ui(s′′, y∞

2 (s′))
]

Q(s′, s′′)
)}

Q(s, s′).

(41)

The inner supremum operation of (41) can be decomposed into S current and S continu-

ation maximizations. Using the definition of µ′
s,s′ (with µi′

s,s′,s′′ denoting the s′′ element of

µi′

s,s′ , i ∈ I2) we have:

VD(s, µ) = infRM
+

∑S [sup
C(s′)

{
f (s′, y) +∑M ηm

Q(s, s′)
um(s, y) + ∑I1

µiui(s′, y) + ∑I2

µi
s′u

i(s′, y)
}

+β sup
Ω1

{
F(s′ , y∞) +∑I1

µi′
s,s′(µ, η)∑S Ui(s′′, y∞)Q(s′, s′′)

+ ∑I2,S µi′
s,s′,s′′(µ, η)Ui(s′′, y∞)Q(s′, s′′)

}]
Q(s, s′),

The result then follows from the definitions of V∗ and D . �

Proof of Proposition 3. Given (s, µ), let H(y∞) = F(s, y∞)+∑I1
µi ∑SUi(s′, y∞)Q(s, s′)+

∑I2 ∑S µi
s′U

i(s′, y∞)Q(s, s′). If V∗(s, µ) = ∞, then for every v ∈ R, there is a y∞,v ∈ Ω1

such that H(y∞,v) ≥ v and so, for all η ∈ RM
+ , Ls(y∞,v, η; µ) = H(y∞,v) + ∑M ηmGm(y∞,v)

≥ v. Thus, for all such v,

VD(s, µ) = infRM
+

sup
Ω1

Ls(y
∞, η; µ) ≥ infRM

+

Ls(y
∞,v, η; µ) ≥ v.

It follows that D(V∗)(s, µ) = VD(s, µ) = ∞ = V∗(s, µ). Next suppose that V∗(s, µ) ∈ R
(i.e. (s, µ) ∈ Dom V∗). By Assumptions 3 and 4 and the condition in the proposition,
H is real-valued, concave, G is real-valued, concave and Ω2 is convex. In addition, by
Assumption 3, a Slater condition is satisfied. Thus, by Luenberger (1969), Theorem 1, p.
224, and Proposition 2, V∗(s, µ) = VD(s, µ) = D(V∗)(s, µ) and Γ(s, µ) = argminRM

+
supΩ2

Ls(y∞, η; µ) 6= ∅. �

Proof of Lemma 1. Evidently, (V , d) is a metric space. Let {Vn} be a Cauchy sequence in
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V . Thus, as n, m → ∞,

d(Vn, Vm) = supS×RN

∣∣∣∣∣ln
(

Vn(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)

)
− ln

(
Vm(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)

)∣∣∣∣∣→ 0.

For each n ∈ N, define gn : S× RN → R according to: gn(s, µ) = ln
(

Vn(s,µ)−V(s,µ)

V(s,µ)−V(s,µ)

)
,

(s, µ) ∈ S × RN . It follows that {gn} is Cauchy with respect to the sup-norm. Let

G =
{

g : S× RN → R|∃V ∈ V with ∀(s, µ), g(s, µ) = ln
(

V(s,µ)−V(s,µ)

V(s,µ)−V(s,µ)

)}
. This is a

closed subset of the Banach space of continuous, (sup-norm) bounded functions with do-
main S × RN. Each gn belongs to G and since G is complete with respect to the sup
norm, gn converges with respect to the metric ρ(g′, g′′) = supS×RN |g′(s, µ) − g′′(s, µ)|
to a continuous, sup-norm bounded function g. Members of G are bounded below by 0

and above by ln

(
V−V

V−V

)
Let V = V + exp{g}(V − V). Evidently, Vn

d
→ V and, given the

properties of g, V ∈ V . �

B An Extension

In this appendix the analysis is extended to the case in which Dom V∗ is known a priori,
but is a strict subset of S×RN. In this case, convexity of V∗ does not ensure continuity.
The following definitions will be used. A function g : S×RN → R∪ {∞} is (lower) level
bounded if for each s ∈ S and b ∈ R, the lower level set {y|g(s, y) ≤ b} is bounded. A
function g : S× RN1 × RN2 → R ∪ {∞} is (lower) level bounded locally in its second
argument if for each s ∈ S, µ ∈ RN1 and b ∈ R, there is a neighborhood N of µ and a
bounded set B ⊂ R such that for each µ′ ∈ N , {y|g(s, µ′ , y) ≤ b} ⊂ B.

Assumption 5 is modified slightly to give Assumption 5′ and supplemented with As-
sumption 8 below.

Assumption 5′. There exists a triple of functions: V : S → R, V : S×RN → R and V :S×RN → R such that: V < V ≤ V∗ ≤ V,

0 < inf
Dom V∗

V(s, µ)− V(s, µ) (42a)

∞ > sup
Dom V∗

V(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)
= 1 + sup

Dom V∗

V(s, µ)− V(s, µ)

V(s, µ)− V(s, µ)
, (42b)

V ≤ D(V), V ≤ D(V) and D(V) ≤ V.

Assumption 8. (i) Dom V∗ is closed subset of S × RN . (ii) V and V are convex and lower
semicontinuous on S×RN . (iii) V is level bounded. (iv) Dom V = Dom V∗ and for each s ∈ S,
(s, 0) ∈ Dom V.
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Modify the definition of V :

V = {V : S×RN → R ∪ {∞}|V is convex and lower semicontinuous and V ≤ V ≤ V}.
(43)

By Assumption 8 (iii) all functions in V are level bounded and by Assumption 8 (iv) all
have Dom V = Dom V∗ with for each s ∈ S, V(s, 0) < ∞. Define T (V)(s, µ, η) =
∑S[νs,s′(µ, η) + βV(s′, µ′

s,s′(µ, η))]Q(s, s′) and assume the following.

Assumption 9. Let B : S×RN ×RM
+ → R ∪ {∞}, B(s, µ, η) := ∑s′ νs,s′(µ, η)Q(s, s′), be

bounded below. If V ∈ V , then T (V) is lower level bounded locally in µ.

We have the following result.

Proposition 9. Assume V ∈ V and that Assumptions 3, 4, 5′, 8 and 9 hold. Then D(V) is
inf-proper and lower semicontinuous.

Proof. By Assumption 9 and the definition of V , both B(s, µ, η) and V ∈ V are bounded
below. Thus, T (V) is bounded below. Since for each s ∈ S, B(s, 0, 0) = supy∈C(s) f (s, y) <

∞ and V(s, 0) < ∞, we have for all s ∈ S, T (V)(s, 0) < ∞. Hence, T (V) is inf-proper.
By Aliprantis and Border (1999), p. 538, and Assumptions 3 and 4, ν is lower semicontin-
uous and so, since V is lower semicontinuous, T (V) is lower semicontinuous. Since V
is level bounded, Assumption 9 implies that T (V) is level bounded locally in µ. Then,
from Rockafellar and Wets (1998), Theorem 1.17, p. 16 and Theorem 3.31, p. 93, D(V) is
inf-proper and lower semicontinuous.

The following is an immediate implication of Proposition 9 and assumptions.

Lemma 2. Let Assumptions 3, 4, 5′, 8 and 9 hold. If V ∈ V , then D(V ) ∈ V .

Proof. D is easily shown to be monotone. Thus, if V ≤ V ≤ V, then, using Assumption 5′,
V ≤ D(V) ≤ D(V) ≤ D(V) ≤ V. D preserves convexity and lower semicontinuity by
the assumptions and Proposition 9. Hence, D(V) ∈ V .

As before V is a complete metric space and Proposition 5 holds. Consequently, the
following modified version of Theorem 1 obtains.

Theorem 1′. Let Assumptions 3, 4, 5′, 8 and 9 hold and V be defined as in (43). V∗ is the unique

fixed point of D in V . Also, there is an α ∈ [0, 1) such that for any V ∈ V , Dn(V)
d
→ V∗ with

d(Dn(V), V∗) ≤ αnd(V, V∗) ≤ αnd(V, V).

In many instances the main difficulty in applying Theorem 1′ is the verification of As-
sumption 9. For the hidden information problem with i.i.d. shocks and utility unbounded
below, Dom V∗ = R+ (and notR). Defining V and V equal to the value functions from no
insurance and full insurance problems and V as before, it is easy to verify Assumptions 5′

and 8. Letting y > 0 (after possible renormalization of the agent’s utility function), the
first part of Assumption 9 is assured, since then 0 ∈ Y and B(s, µ, η) ≥ f (s, 0) > −∞. The
second part of Assumption 9 is verified by checking that if V ∈ V and, hence, is bounded
below and level bounded, at any (s, µ), allowing ‖η‖ to become arbitrarily large causes
B(s, µ, η) or V(s′, µ′

s,s′(µ, η)) to become arbitrarily large. Thus, Theorem 1′ is applicable.
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