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Optimal Life-cycle Capital Taxation under Self-Control Problems∗

Nicola Pavoni†and Hakki Yazici‡

September 17, 2012

Abstract

We study optimal taxation of savings in an economy where agents face self-control problems and are allowed to be

partially naive. We assume that the severity of self-control problems changes over the life-cycle. We focus on quasi-

hyperbolic discounting with constant elasticity of intertemporal substitution utility functions and linear Markov equilib-

ria. We derive explicit formulas for optimal taxes that implement the efficient allocation. We show that if agents’ ability

to self-control increases concavely with age, then savings should be subsidized and the subsidy should decrease with

age. We also show that allowing for age-dependent self-control problems creates large effects on the level of optimal

subsidies, while optimal taxes are not very sensitive to the level of sophistication.

JEL classification: E21, E62, D03.

Keywords: Self-control problems, Linear Markov equilibrium, Life cycle taxation of savings.

1 Introduction

Economists traditionally assume that people discount streams of utility over time exponentially. An important impli-

cation of exponential discounting is that under this assumption people have time-consistent intertemporal preferences:

How an individual feels about a given intertemporal tradeoff is independent of when he is asked. However, laboratory

and field studies on intertemporal choice have cast doubt on this assumption.1 This evidence suggests that discounting

between two future dates gets steeper as we get closer to these dates. Such time-inconsistent intertemporal preferences

capture self-control problems. Naturally, all this evidence on self-control problems have led many economists to model

this phenomenon and study its positive and normative implications.2

∗We would like to thank Per Krusell, and seminar participants at Bogazici University, Goethe University in Frankfurt, IIES, the SED meetings in

Ghent, University of Alicante, University of Bologna, University of Oxford for their comments and suggestions.
†Bocconi University, IGIER, IFS, and CEPR.
‡Sabanci University.
1See DellaVigna (2009) for a survey of field studies and Frederick, Loewenstein, and O’Donoghue (2002) for a survey of experimental studies. Also,

see Laibson, Repetto, and Tobacman (2007) for evidence of self-control problems in consumption asset holdings panel data.
2Three main models that have been proposed to capture self-control problems are the hyperbolic discounting model of Laibson (1997), the tempta-

tion model of Gul and Pesendorfer (2001), and the planner doer model of Thaler and Shefrin (1981).
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In this paper, we study optimal capital income taxation over the life-cycle in the presence of self-control problems.

A common modeling assumption in the literature is that the degree of self-control problem is constant over time. Even

though this assumption might be a good approximation of reality for analyzing many questions, a significant body of

empirical studies points to the opposite: like many other personality traits, people’s ability to self-control changes as they

age. The first set of evidence for changing level of self-control over the life-span comes from personality psychology. As

Ameriks, Caplin, Leahy, and Tyler (2007) states ”personality psychologists associate self-control with conscientiousness,

one of the ‘big five’ personality factors.”3 There is a long list of empirical studies in personality psychology that show

that conscientiousness and in particular its lower-level facet, self-control, changes with age.4 Indeed, in a survey arti-

cle on personality development in adulthood, Caspi, Roberts, Robins, and Trzesniewski (2003) conclude ”it appears that

the increase in conscientiousness is one of the most robust patterns in personality development, especially in young

adulthood.” There is a second set of more direct evidence in favor of changing self-control: research on intertemporal

discounting over the life-span has shown that short term discount rates fall with age predicting a life-cycle develop-

mental trend toward increased self-control.5 All this evidence suggests that, in order to study capital taxation over the

life-cycle, one should extend the traditional models of self-control to allow for varying degrees of self-control problem

over the life-cycle. This is exactly what the current paper does.

In our model, at all ages, agents make consumption and savings decisions facing self-control problems. In the last

period of their lives, people make consumption and bequest decisions knowing that they are going to be replaced by their

offspring next period. We model preferences that exhibit self-control problems through the quasi-hyperbolic discounting

framework of Laibson (1997), which builds on the seminal works of Strotz (1955) and Phelps and Pollak (1968). We

extend the Laibson (1997) model in two ways that are important to our analysis. First, we allow for the degree of self-

control problem to change over time. Second, we introduce partial sophistication which essentially amounts to allowing

for different degrees of self awareness about the existence of the self-control problems. In this environment, we define

the first-best allocation as the allocation that would arise in the absence of self-control problems. The main exercise in

this paper is to examine the optimal tax policy that implements the first-best allocation. It is well-known that in models

of quasi-hyperbolic discounting there is multiplicity of equilibria.6 We restrict attention to linear Markov equilibria,

which are not necessarily unique even under CEIS assumption. In our environment however, since when facing linear

future policies each agent’s problem is strictly concave, the linear equilibrium of finite-period economies - when it exists

- is unique.

3Actually, Ameriks, Caplin, Leahy, and Tyler (2007) validates this relationship between conscientiousness and the measure of self-control used in

the experiment (the EI gap) and finds that ”the data reveal a strong relationship between the conscientiousness questions and the absolute value of the

EI gap.”
4For example, see John, Gosling, Potter, and Srivastava (2003) and Helson, Jones, and Kwan (2002). Ameriks, Caplin, Leahy, and Tyler (2007) also,

through their experimental finding, show that there is a profound reduction in the scale of self-control and conscientiousness problems as individuals

age.
5Green, Fry, and Myerson (1994), Green, Myerson, and Ostaszewski (1999), Read and Read (2004), and Ameriks, Caplin, Leahy, and Tyler (2007).
6For discussions of multiplicity of equilibria, see, among others, Laibson (1994) and Krusell and Smith (2003).
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We restrict attention to logarithmic utility and derive closed form formulas for optimal age-dependent capital taxes.

Our closed-form solution represents the equilibrium obtainable as the limit of the equilibria of finite-period economies.

We show that optimal capital taxes can be positive as well as negative in different periods of life and they can be in-

creasing, decreasing, or changing non-monotonically with age, depending on what we assume about the evolution of

self-control problem over the life-cycle. This is a potentially important message since it shows that researchers who take

self-control problems seriously should also take the evolution of self-control problems over the life-cycle seriously before

making policy suggestions. This result also questions the basic presumption in the literature - based on the assumption

of constant self-control over age - that self-control problems always imply savings subsidies.

When utility is logarithmic, optimal taxes are independent of how sophistication changes over the life-cycle. More-

over, if the economy is in the steady-state and agents are fully sophisticated, then optimal taxes are independent of the

CEIS coefficient. These results make the tax formulas computed for the logarithmic case quite general. Using these

formulas, we prove that if, as strongly suggested by personality psychologists, the degree of self-control increases with

age, then capital should indeed be subsidized in all periods. We put forth empirical evidence that suggests that the degree

of self-control increases concavely with age. We prove that, if this is the case, then optimal capital subsidies should

decrease with age. We also study the quantitative effects of age-dependent self-control and find that optimal taxes in our

environment are much larger than those implied by models with constant self-control, especially for agents in the early

stage of the life-cycle.

Finally, we know from O’Donoghue and Rabin (1999) that allowing for even constant level of partial naivete can

change people’s behavior.7 We analyze how changing naivete over the life-span alters our optimal taxation results.

When CEIS coefficient is different from one and agents are allowed to be partially sophisticated, closed form solutions for

optimal taxes are unavailable. Therefore, we resort to numerical analysis at the steady state. We derive two conclusions

from our numerical experiments. First, as long as the level of sophistication is not changing abruptly from one period to

another, the pattern of optimal capital subsidies over the lifecycle is surprisingly robust to partial sophistication. Second,

this result approximately holds for a large range of CEIS coefficients, which implies that the pattern of optimal capital

subsidies is somewhat robust to different levels of CEIS coefficients, at least in the steady state.

Related Literature. Krusell, Kuruscu, and Smith (2002) and Krusell, Kuruscu, and Smith (2010) are the two most

closely related papers to the current study. The first one, Krusell, Kuruscu, and Smith (2002), considers infinitely living

agents facing self-control problems in the form of quasi-hyperbolic discounting à la Laibson. They restrict attention

to logarithmic utility and show that a constant subsidy to investment (similar to our capital subsidy) implements the

commitment allocation. Krusell, Kuruscu, and Smith (2010) analyzes optimal taxation in an economy where agents live

finitely many periods and have temptation and self-control problems à la Gul and Pesendorfer (2001). They first prove

that under CEIS preferences, as the parameter that controls temptation goes to infinity, the optimal policy prescriptions

of the quasi-hyperbolic model and the temptation model become identical. Then, they show that for the logarithmic

7See Ariely and Wertenbroch (2002) for behavioral evidence on partial sophistication.
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utility case, this equivalence result holds for any temptation level, and they compute optimal savings taxes. They show

that savings should be subsidized and that this subsidy should be increasing with time due to finite life time effect.8

Our work differs from these papers along two main dimensions. First and foremost, we allow for changing level of self-

control problems over the life-cycle while both papers assume the level of self-control problem to be constant over time.

By assuming empirically plausible patterns of self-control problems over the life-cycle, we show that capital subsidies

should actually be decreasing with age. Second, we allow for agents to be partially aware of their future self-control

problems (partial sophistication) as opposed to assuming people at all ages predict their future self-control level perfectly

which is the assumption these papers make. This allows us to study the affects of sophistication on capital subsidies.

As discussed above, an immediate implication of our results is that capital income taxes should be age-dependent.

The age-dependence result is also a feature of two sets of earlier contributions that analyze benefits of age-dependent

capital income taxes with time-consistent agents. First, in the Ramsey taxation tradition, Erosa and Gervais (2002) shows

that, in life-cycle economies, if the government has access to age-dependent linear capital and labor income taxes, the

resulting optimal tax system features age-dependence both for capital and labor income. Second, the New Dynamic

Public Finance literature calls for age-dependence in optimal capital and labor income tax codes (e.g., Kocherlakota

(2010)). The forces generating age-dependence in the current paper are however completely different from the forces in

these papers.

2 Model

The economy is populated by a continuum of a unit measure of dynasties who live for a countable infinity of periods,

t = 1, 2, ..., where each agent within a dynasty is active for I + 1 periods. In the first I periods, agents make consumption

saving decisions facing different degrees of self-control problems at different ages. In the last period of their lives,

agents decide how much to consume and bequeath to the offspring, knowing that they are going to be replaced by

their offsprings next period. People are altruistic and they anticipate their offspring’s self-control problems.9 We use

quasi-hyperbolic discounting formalized by Laibson (1997) to model self-control problems as follows.

An agent who is in his ultimate period of life (we refer to this agent as parent from now on) has the following

preferences over dynastic consumption stream:

u(c0) + δu(c1) + δ2u(c2) + .. + δIu(cI) + δI+1u(c′0) + ...

where c0 is the consumption level of the current parent, ci is the consumption level of the offspring at age i, and c′0 is the

8In the infinite horizon version of their model, the subsidies would be constant.
9In this paper, we are only interested in analyzing life-cycle capital taxation under self-control problems. Therefore, we could have even assumed

there are no intergenerational links and hence no bequest motive. We do model altruism (and assume altruism factor is equal to the time discount

factor) to abstract away from the effects of finite life time on taxes (see Krusell, Kuruscu, and Smith (2010) for finite life time effects). In a separate

paper, Pavoni and Yazici (2012), we analyze bequest taxation under self-control problems in a much more general environment.
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consumption level of the offspring when he becomes a parent. u is the instantaneous utility function and δ refers to both

the discount factor and the altruism factor. The offspring has different preferences at different periods of his life:

u(c1) + β1δ
[

u(c2) + δu(c3) + ... + δI−1u(c′0) + ...
]

,

u(c2) + β2δ
[

u(c3) + ... + δI−2u(c′0) + ...
]

,

.

.

u(cI) + βIδ
[

u(c′0) + ...
]

.

The first equation above is the agent’s preference during his first period of adult life, second equation is his preference

during his second period, and so on. When βi = 1 for all i, all agents at all ages are time-consistent as there is no self-

control problem. Throughout the paper we will assume that βi < 1, meaning individuals postpone their planned savings

when the date of saving comes. If we were to take βi = β for all i, as previous papers have assumed, that would mean

that the degree of self-control problem is constant as people age. However, as documented by personality psychologists

and experimental studies, as people age, the severity of the self-control problem they face might change. Therefore, we

allow for the severity of self-control problems, βi, to depend on i.

Another dimension of self-control problems is the extent to which agents can predict the level of self-control problems

their followers (be it their future selves or their offsprings) face. We allow for partial sophistication which essentially

amounts to allowing for different degrees of self awareness about the existence of self-control problems.10 We explain in

detail the way we model partial sophistication in the next subsection.

The instantaneous utility function, u, is of the CEIS form with elasticity parameter σ > 0 :

u(c) =
c1−σ

1 − σ
, for σ 6= 1;

= log c, else.

Production takes place at the aggregate level according to the function F(k, l), where k is aggregate capital and l is

aggregate labor. The production function satisfies the usual neoclassical properties together with the Inada conditions:

F1, F2 > 0 ; F11, F22 ≤ 0; and lim
k→0

F1 = ∞; lim
k→∞

F1 = 0.

Labor is inelastically supplied, so at all dates l = 1. Define

f (k) = F(k, 1) + (1 − d)k,

10We are not the first ones to model partial sophistication, O’Donoghue and Rabin (1999) is. However, the way we introduce partial sophistication

is different from theirs. We justify our way of modeling partial sophistication on the grounds of tractability and the fact that the two models deliver

very similar predictions. The other added bonus of our model partial sophistication is that the structure is consistent with a learning approach to

sophistication (e.g., Ali (2011)).
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where d refers to the fraction of capital that is forgone due to depreciation. There is a credit market in which agents

can trade one period risk-free bonds and capital as perfectly substitutable assets. Since at any given date all agents are

identical, so are their asset holdings. Let bt be the amount of asset holdings of the agent alive in period t; the credit

market clearing condition is hence kt = bt.

2.1 First-Best Allocation

The first best allocation is the allocation that would arise if no one in the economy had self-control problems. It is given

by the solution to a fictitious social planner’s consumption-saving problem where the planner has discounting with δ.

The following Euler Equations characterize the first-best allocation, which we denote with superscript star throughout

the paper:11

u′(c∗i ) = δ f ′(k∗i )u
′(c∗i+1), for i = 0, 1, 2, .., I − 1, (1)

and

u′(c∗I ) = δ f ′(k∗I )u
′(c′∗0 ),

..

2.2 Implementing First-Best Allocation

Since people in this economy face self-control problems, laissez-faire market equilibrium cannot attain the first-best

allocation. Our main interest in this paper is to find and characterize a tax system that implements the first-best allocation

in the market environment. We call such a tax system optimal. We proceed by defining a market equilibrium with taxes.

It is important to note that from the outset we restrict the set of taxes that are available to the government to linear taxes

on savings coupled with lump-sum rebates (throughout the paper we call this the set of linear taxes). In general, it is not

obvious that there is a linear tax system that implements first-best allocation. However, since we focus our attention to

linear equilibria, a linear tax system that implements the first-best allocation exists. We will verify this claim in Section 4.

2.3 Markov Equilibrim with Taxes

For notational simplicity, here in the main text, we only present the stationary version of the model where the level of

aggregate capital stock starts from its steady-state level, k. The prices at the steady-state are given by

R = f ′(k), (2)

w = f (k)− f ′(k)k.

11We do not state the transversality condition but our first-best allocation will converge to a steady state with positive capital as long as k0 > 0.
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In such a world, the only index we need to carry around is the age index i. In Appendix B, we provide the general setup

where the economy starts from an arbitrary level of capital stock and prices change over time. We prove our main result,

Proposition 1, for the general case, and show that if the utility function is logarithmic, then first-best taxes do not depend

on whether the economy is at the steady-state or in a transition.

Let τi be the savings (capital) tax agent i = 0, 1, .., I pays. Tax proceeds are rebated in a lump-sum manner in every

period. Denote the lump-sum rebate in period i by Ti and let τ = {τi, Ti}i. For each set of taxes, we define the policy

functions bi(·; τ) for i = 0, 1, .., I, describing the optimal behavior of agent i given prices, taxes, and his beliefs about

other agents’ policy rules. When agent of age n is deciding bn, his evaluation of the effect of his choice on bi, i > n

will be described by the (nested) function bi(bi−1(...bn+1(bn; τ)...; τ); τ), which will be referred to as bi(..(bn)..)) so as

to simplify notation. In addition, in order to only deal with functions, we assume each agent’s solution is unique, a

property satisfied by our closed form solution involving linear policies. Of course, in case of multiple solutions, our

policy functions correspond to appropriate selections from the policy correspondences.

A Stationary Markov equilibrium with taxes τ := {τi, Ti}
I
i=0 consists of a level of capital k, prices R, w, value functions

V(·; τ) and {Wi(·; τ)}I
i=0 and policy functions {bi(·; τ)}i such that: (i) the prices satisfy (2); (ii) the value functions and the policies

are consistent with the parent’s problem described below; (iii) the government budget is satisfied period-by-period and markets clear:

Ti = Rτibi(k; τ) and bi(k; τ) = k for all i.

Parent’s Problem:

V (b; τ) = max
b0

u (R (1 − τ I) b + w + TI − b0) + δ

[

I−1

∑
i=0

δiu (R (1 − τi) bi(..(b0)..) + w + Ti − bi+1(..(b0)..)) + δIV (bI(..(b0)..); τ)

]

s.t. for all b0 (3)

b1(b0; τ) = arg max
b̂1

u
(

R (1 − τ0) b0 + w + T0 − b̂1

)

+ δβ1

[

π1u
(

R (1 − τ1) b̂1 + w + T1 − b2(b̂1)
)

+ (1 − π1)W1

(

b̂1; τ
)]

+δβ1π1

{

I−1

∑
i=2

δi−1u
(

R (1 − τi) bi(..(b̂1)..) + w + Ti − bi+1(..(b̂1)..)
)

+ δI−1V
(

bI(..(b̂1)..); τ
)

}

s.t. for all b1

b2(b1; τ) = arg max
b̂2

u
(

R (1 − τ1) b1 + w + T1 − b̂2

)

+ δβ2

[

π2u
(

R (1 − τ2) b̂2 + w + T2 − b3(b̂2)
)

+ (1 − π2)W2

(

b̂2; τ
)]

+δβ2π2

{

I−1

∑
i=3

δi−2u
(

R (1 − τi) bi(..(b̂2)..) + w + Ti − bi+1(..(b̂2)..)
)

+ δI−2V
(

bI(..(b̂2)..); τ
)

}

s.t. for all b2

...

bI−1(bI−2; τ) = arg max
b̂I−1

u
(

R (1 − τ I−2) bI−2 + w + TI−2 − b̂I−1

)

+

+δβI−1

[

π I−1

{

u
(

R (1 − τ I−1) b̂I−1 + w + TI−1 − bI(b̂I−1)
)

+ δV
(

bI(b̂I−1); τ
)}

+ (1 − π I−1)WI−1

(

b̂I−1; τ
)]

(4)

s.t. for all bI−1

bI(bI−1; τ) = arg max
b̂I

u
(

R (1 − τ I−1) bI−1 + w + TI−1 − b̂I

)

+ δβI

[

π IV
(

b̂I ; τ
)

+ (1 − π I)WI

(

b̂I ; τ
)]

(5)
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where the functions Wi for i = 0, 1, .., I − 1 solve:

Wi (b; τ) = max
b′

u
(

R (1 − τi) b + w + Ti − b′
)

+ δWi+1

(

b′; τ
)

;

with

WI (b; τ) = max
b′

u
(

R (1 − τ I) b + w + TI − b′
)

+ δW0

(

b′; τ
)

.

Here, V (b; τ) represents the value of a parent’s problem who saved b units in his last period before parenthood and

faces the tax system τ. The parent chooses his bequest b0 and does not have any direct control over b1, ..., bI . Note that

his preferences are not aligned with his offspring’s (in a given period i, parent’s discount factor is δ whereas offspring’s

is βiδ). The parent is sophisticated in the sense that he foresees this misalignment of preferences, and correctly forecasts

future policies.

To understand the nested nature of policies better and the way we model partial sophistication, let us analyze the

definition of policies in (4) and (5). First, constraint (5) describes how self I chooses bI . The number π I ∈ [0, 1] rep-

resents the belief of self I about the presence of self-control problems. More precisely, this is the belief of self I about

the probability that next period when he becomes a parent he will face an offspring with self-control problems, i.e.

(β1, ..., βI) 6= (1, ..., 1), and the offspring will face an offspring with self-control problems, and so on. Note that in reality

this probability is one, meaning in each generation people face self-control problems over their life-cycle. If π I < 1,

self I is partially naive in the sense that he incorrectly attaches positive probability (1 − π I) to the event that there will

never be self-control problems in the future, i.e. (β1, ..., βI) = (1, ..., 1). So, in our environment, π I represents the level

of sophistication of self I. We assume that all agents, including the parents, correctly guess the level of sophistication of

their future selves, (πi)i. In other terms, agents share the same higher-order beliefs.12 Second, consider constraint (4)

which defines how self I − 1 chooses bI−1. The number π I−1 ∈ [0, 1] represents the degree of sophistication of self I − 1,

meaning self I − 1 knows the truth that his followers will have self-control problems with probability π I−1. In particular,

with π I−1 probability self I − 1 thinks self I chooses bI according to (5), and with the remaining probability he thinks self

I chooses bI without facing any self-control problems. We have just seen that the last constraint, (5), enters the parent’s

problem in at least two ways: first, in the definition of self I’s policy function and then as a constraint in the definition of

self I − 1’s policy function. These two different constraints are represented by a single constraint, (5), because the parent

and self I − 1′s sophisticated belief agree about how self I will behave.13 Similarly, the constraint describing self I − 1’s

policy is also a constraint in the constraint that describes self I − 2’s policy, and self I − 2’s policy is also a constraint of

self I − 3’s, and so on. Thus, actually the constraint that describes the policy of self i enters parent’s problem in i different

places but since these are all identical constraints, we represent them with just one constraint that describes self i′s policy.

12Of course, this structure is rich enough to allow for disagreements on higher order beliefs across agents as in O’Donoghue and Rabin (2001). At the

same time, if certain regularity conditions are satisfied, it is possible to map such disagreements within a learning environment à la Ali (2011) as either

coming from different priors about each other’s sophistication or from different information sets across agents. Details are available upon request.
13Sophisticated belief of self i about how self n, n > i, agrees with parent’s belief thanks to our assumption that the same ‘beliefs’ (πi)i are are shared

by all agents.
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We restrict attention to linear equilibria, meaning equilibria with policy functions that are linear in net present value

of current wealth. This implies that agents’ problems are strictly concave maximization problems. As a result, first-

order optimality conditions are not only necessary but also sufficient, which means we can replace agents maximization

problems with the associated first-order conditions. First define

Γi(b) = R(1 − τi)b + w + Ti + Gi,

Gi =
Ti+1

R (1 − τi+1)
+

Ti+2

R2 (1 − τi+1) (1 − τi+2)
+ .. +

TI

RI−i
I

∏
j=i+1

(

1 − τ j

)

+
T0

RI−i+1(1 − τ0)
I

∏
j=i+1

(

1 − τ j

)

+ ...,

where Gi is the net present value of future lump-sum taxes, Γi(b) is the net present value of wealth available to an agent

at the beginning of age i + 1 with asset level b. We derive closed form solutions of the form:

ci(b) = MiΓi−1(b),

where the constant Mi is the fraction consumed out of net present value of wealth at the beginning of age i. The closed

form is obtained by rewriting the parent’s problem using linearity of the policy functions and the first-order approach,

and finding analytic expressions for the value functions Wi and V and the vector of constants Mi describing the optimal

linear policies.

Before we analyze the properties of optimal taxes in our environment however, we first want to analyze the main

forces behind them in a simple three period model. This is the aim of the next section.

3 A three period example

In this section, we consider a simple heuristic example. The simplest environment to analyze the main mechanism must

consist of three periods since we want to analyze the first-best tax on an agent, self 1, choosing a savings level, b1, taking

into account the action of a future self, self 2 choosing b2, and future government policies, τ2. To ease the exposition, we

assume people initially have k0 units of capital and production function has the form f (k) = Rk.

The problem of self 1 is:

max
b1

u(k0 − b1) + β1δ{π1 [u(R(1 − τ1)b1 + T1 − b2(b1)) + δu(R(1 − τ2)b2(b1) + T2)]

+(1 − π1)
[

u(R(1 − τ1)b1 + T1 − b̂2(b1)) + δu(R(1 − τ2)b̂2(b1) + T2)
]

}

s.t. for all b1

b2(b1) ∈ arg max
b̃2

u(R(1 − τ1)b1 + T1 − b̃2) + β2δu(R(1 − τ2)b̃2 + T2), (6)

b̂2(b1) ∈ arg max
b̃2

u(R(1 − τ1)b1 + T1 − b̃2) + δu(R(1 − τ2)b̃2 + T2), (7)

9



where b1, b2 are self 1 and self 2’s savings and b̂2 represents what self 1 naively believes self 2 will choose. The functions

b2(·) and b̂2(·) describe self 2’s actual choice and naive self 1’s expectation of self 2’s choice as functions of first period

savings, respectively. We plug these in the objective function of the parent.

For ease of exposition, assume the policies are differentiable.14 The first-order conditions of the partially sophisticated

self 1 is:

u′(c1) = π1δ
[

u′(c2)[R(1 − τ1)− b′2(b1)] + δR(1 − τ2)b
′
2(b1)u

′(c3)
]

+(1 − π1)δ
[

u′(ĉ2)[R(1 − τ1)− b̂′2(b1)] + δR(1 − τ2)b̂
′
2(b1)u

′(ĉ3)
]

,

where ĉ2, ĉ3 represent self 1’s naive belief about self 2’s consumption choice in periods two and three. First-order opti-

mality conditions of (6) and (7) are:

u′(c2) = β2δR(1 − τ2)u
′(c3),

u′(ĉ2) = δR(1 − τ2)u
′(ĉ3).

The first condition above describes the actual behavior of self 2, and implies that self 2 should receive a subsidy, τ2 =

1
β2

− 1. Since in this example self 2 does not face any future selves with self-control problems, the only role of period two

tax is to correct for self 2’s undersaving behavior, and that is why the sign of the optimal tax on self 2 is unambiguously

negative. Once we plug these constraints in self 1’s first-order optimality condition, we get:

u′(c1) = β1δR(1 − τ1)u
′(c2)

{

π1

[

1 + b′2(b1)
{−1 + 1

β2
}

R(1 − τ1)

]

+ (1 − π1)
u′(ĉ2)

u′(c2)

}

.

This means that optimal period one tax solves:

(1 − τ∗
1) =

1

β1

{

π1

[

1 + b′2(b
∗
1)

{−1 + 1
β2
}

R(1 − τ∗
1)

]

+ (1 − π1)
u′(ĉ2)

u′(c∗2)

}−1

,

where b∗1 and c∗2 represent first-best asset and consumption levels respectively. The tax formula for 1− τ∗
1 consists of two

main components. The first part, 1
β1

, is easier to understand. Because of his current self-control problem, self 1 discounts

tomorrow by an extra β1 and hence wants to undersave relative to the first-best. By multiplying the after tax return

with 1
β1

, we can exactly offset the extra discounting, thereby getting rid of this undersaving motive of the agent. Let us

call this first part of the tax formula the current component. Clearly, the current component of tax is always negative, i.e.

it always calls for a subsidy. It is intuitive that current component is not affected by the agent’s sophistication level at

all. This is not the end of the story, however. Self 1’s choice of current savings is also affected by the actions of future

selves and future government policies. Therefore, even if we correct for his undersaving through the current compo-

nent of the tax, he still deviates from the first-best saving level in order to compensate for his future self’s suboptimal

14It is well-known that in general we cannot guarantee even the continuity of the policy functions (e.g., see Morris and Postlewaite (1997),

Krusell and Smith (2003), and Harris and Laibson (2000)).
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actions (due to future self-control problems) and/or in response to future policies. The second part of the tax formula
{

π1

[

1 + b′2(b1)
{−1+ 1

β2
}

R(1−τ∗1)

]

+ (1 − π1)
u′(ĉ2)
u′(c2)

}−1

is there to correct deviations in current savings caused by future actions

and policies. We call this part the future component of the tax formula. This is where the level of sophistication matters.

As we show in Appendix A, the future component is always less than one, i.e. it calls for a tax, independent of the level of

sophistication.15

To gain intuition on why future component always calls for a tax, first consider the future component in the case

where self 1 is fully sophisticated, i.e. set π1 = 1. For the future component to be less than one under full sophistication,

it must be that b′2(b
∗
1)

{−1+ 1
β2

}

R(1−τ∗1)
> 1; a property always satisfied since −1 + 1

β2
> 0 and b′2(b

∗
1) > 0. The later condition

(monotonicity of the policy) is quite general. The condition −1 + 1
β2

> 0 is key, and reflects the fact that from self 1’s

perspective self 2 undersaves in period two. This is a violation of an Envelope condition that holds when agents are time-

consistent. In the quasi-hyperbolic model with sophisticated agents, according to self 1, self 2 is undersaving, and this

appears as an extra return to savings for self 1. Since the allocation satisfies the condition u′(c∗2) = β2δ(1 − τ∗
2)Ru′(c∗3),

each unit saved by self 2 has a cost u′(c∗2) that is lower than the self 1’s perceived return δ(1 − τ∗
2)Ru′(c∗3). Hence,

whenever b′2(b
∗
1) > 0, self 1 is induced to save some extra money. The reader might still feel puzzled by our argument:

after all, when facing the optimal taxes, self 2 saves the right amount with respect to first-best. Note however, that from

self 1’s perspective, self 2 is still undersaving (at the new price that is inflated by the subsidy).

Now consider the problem of a self 1 who is fully naive, that is, set π1 = 0. The key condition for a tax is now
u′(ĉ2)
u′(c∗2)

> 1. Since self 1 naively believes that self 2 has no self-control problems, he thinks self 2 will save more than what

self 2 will actually save. More precisely, self 1 incorrectly believes that period two consumption ĉ2 will be low compared

to c∗2 , and hence, marginal utility of consumption in period two is higher relative to what it really is. As a result, naive

self 1 perceives a large return Ru′(ĉ2) to his savings and saves too much.

We have just seen that both fully sophisticated and fully naive agents have a tendency to oversave to compensate

for their future selves’ behavior. Since under both full sophistication and full naivete future component calls for a tax, it

calls for a tax under any level of partial sophistication as well.

The sign of the optimal capital tax depends on whether the current or the future component dominates. For βi ≡

β < 1 (i.e., constant self-control) the current component always dominates, and hence, the optimal tax is negative (i.e.,

optimality calls for a capital subsidy). We will see below that for βi changing with age the optimal tax can in general be

positive or negative.

15However, as we show in Appendix D, the magnitude of the future component, and therefore, the level of optimal taxes in general depend on the

level of sophistication.
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4 Optimal Taxes

In this section we analyze optimal capital taxes in the model introduced in section 2. The first proposition below charac-

terizes optimal taxes when utility is logarithmic for any level of sophistication.

Proposition 1 Suppose u(c) = log(c). For any level of partial sophistication over the life-cycle, π = (π1, π2, .., πI), we have:

1 − τ∗
0 = 1 − δ + β1δ,

1 − τ∗
i =

1

βi

(

1 − δ + βi+1δ
)

, for i ∈ {1, .., I − 1}

1 − τ∗
I =

1

βI

.

Proof. Relegated to Appendix B.

The invariance of optimal taxes to the level of sophistication for logarithmic utility is analogous to the equivalence

result obtained by Pollak (1968) on consumption policies. Since our model of partial sophistication is different from that

considered in the literature, it is interesting that it shares this property with the more standard framework. In Appendix

A, we use the 3-period example of Section 3 to provide further intuition on this equivalence result.

Proposition 1 holds regardless of whether the economy is in the steady state or in a transition. Below we show

that if the economy is in the steady state and all the agents in the economy are fully sophisticated, then optimal taxes

characterized above for the σ = 1 case is valid for any σ.

Proposition 2 Assume k is such that δ f ′(k) = 1 and πi = 1 for all i, then optimal taxes are independent of CEIS coefficient σ.

Proof. Relegated to Appendix B.

Using the jargon developed in Section 3, 1
βi

is the current component of the optimal tax on agent at age i and
(

1 − δ + βi+1δ
)

is the future component. As expected, the current component always calls for a subsidy whereas the

future component always calls for a tax in order to implement first-best allocation. Since τ∗
0 is only shaped by the future

component, it is always positive. Since it is applied to the wealth transferred to future generations, τ∗
0 can be interpreted

as a bequest tax. In this paper, we do not analyze taxation of wealth transferred across generations. We study this topic

in detail in Pavoni and Yazici (2012).

4.1 Lessons for Capital Taxation

Proposition 1 implies several general lessons for capital taxes which are summarized below in a series of corollaries.

Corollary 3 (Age-dependence) Optimal capital taxes are age-dependent.
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The first lesson to be learnt from logarithmic utility case is that in general optimal capital taxes should depend on

people’s age. The reason for the necessity of this dependence is the changing the degree of self-control problem over

age, for which, as discussed in the introduction, there is an overwhelming amount of evidence in personality psychology

literature.

Corollary 4 (Sign of the Capital Taxes)

(1) Optimal capital taxes might be positive or negative depending on how βi changes with i.

(2) With log utility, if βi+1 ≥ βi, for all i, optimal capital tax is negative for all ages:

Proof. (1) For an example of τi > 0, set βi+1 ≈ 0 and βi > 1 − δ. For a subsidy, set βi = βi+1 = β < 1. See also Figure 1.

(2) 1 − τ∗
i = 1

βi
(1 − δ + βi+1δ) >

βi+1
βi

≥ 1.

The lesson to be taken about the sign of the age-dependent capital taxes is simply that optimal capital taxes might

be positive or negative depending on the evolution of the severity of the self-control problem over the life cycle. This

is an important message since it shows that researchers who take self-control problems seriously should also take the

evolution of self-control problems over the life-cycle seriously before making policy suggestions. This is quite contrary to

the presumption in the literature that self-control problems always imply subsidies.16 The existing literature overlooks

this result because they assume constant self-control problems under which the current component always dominates

the future component, and hence, implementing first-best calls for subsidies.

There is also a sharper message when we take logarithmic utility or CEIS with full sophistication seriously: if, as

suggested by personality psychologists, the degree of self-control problem is decreasing over the life-cycle, then capital

should be subsidized at all ages.

Corollary 5 (Monotonicity of Capital Taxes)

(1) Optimal capital taxes might be increasing or decreasing depending on how βi change with i.

(2) With log utility, optimal capital taxes are always negative in the last period before parenthood, τ∗
I < 0. If βi+1 ≥ βi, for all i,

then optimal capital tax is negative for all ages.

Proof. (1) See the green line with crosses in Figure 2 below for an example.

(2) 1 − τ∗
i−1 = 1−δ

βi−1
+

βiδ
βi−1

>
1−δ

βi
+

βiδ
βi−1

>
1−δ

βi
+

βi+1δ
βi

= 1 − τ∗
i , where the first and second inequalities follow

from βi−1 < βi and βi+1 − βi ≤ βi − βi−1, respectively.

The lesson about the monotonicity of capital taxes again points to the importance of the evolution of the severity of

self-control problem over the life-cycle: without the knowledge of how βi changes with i, policy prescriptions regarding

the optimal dependence of capital taxes on age would be misguided. Point (2) in Corollary 5 is potentially important

since there is evidence in the personal psychology literature which suggests that people’s ability to self-control increases

16O’Donoghue and Rabin (1999) is an exception where it says if the agent is sophisticated then he may oversave. However, even in that paper it says

that ”naifs will undersave in essentially any savings model” and hence should be subsidized. Proposition 1 shows that, in our environment depending

on how self-control evolves over the life-cycle, even naive may oversave and hence may need to be taxed.
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concavely with age.17 Interestingly, this result is contrary to Krusell, Kuruscu, and Smith (2010) which concludes unam-

biguously that in any finite economy with constant self-control, subsidies should be increasing with age.

We display Figure 1 and Figure 2 to show how different assumptions about the pattern of self-control problem over

the life-span can affect the evolution of optimal capital taxes. In the first figure, we see that constant βi, which is depicted

by a dashed line, implies constant subsidies as found by previous literature. The decreasing pattern of βi depicted by the

red crosses on the left panel of the figure delivers capital taxes to be positive until the very last period as shown on the

right panel. In the second figure, we see different self-control patterns that are all increasing with age. In this case, as the

theory shows, capital should be subsidized; however, we see that the monotonicity property of subsidies with respect to

age depends on the curvature of βi.

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Age

β

β over Lifecycle

 

 

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Capital Subsidies over Lifecycle

Age

−
τ

decreasing
constant

Figure 1: Optimal capital subsidies for decreasing and constant patterns of βi over the life-cycle.

4.2 Numerical Analysis

In this subsection, we numerically analyze optimal capital taxation over the life-cycle assuming either one of the justifica-

tions of the tax formulas in Proposition 1 hold: either utility is logarithmic or the steady-state condition holds and all the

agents in the model are fully sophisticated. In order to conduct a numerical analysis, we have to choose particular values

17See John, Gosling, Potter, and Srivastava (2003) and Roberts, Walton, and Viechtbauer (2006), among others, and the next section for more details

on the evidence on concavity of βi as a function of i.
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Figure 2: Optimal capital subsidies for concave, linear, and convex increasing patterns of βi over the life-cycle.

for the parameters of the model. Individuals are assumed to be born at the real-time age of 20 and they live I = 50 years,

so they die at age 70. Observe that the tax formulas do not depend on the constant relative risk aversion coefficient σ, the

shape of the production function F, or the depreciation rate, d. So, we do not specify values for these parameters. The

only parameters that are needed are the true yearly discount factor δ and the evolution of self-control parameter with

age, {βi}i.
18 We set the true yearly discount factor δ = 0.96 which is consistent with Laibson, Repetto, and Tobacman

(2007)’s estimate in a constant self-control model when σ = 1.

As evident from the optimal tax formulas, self-control function {βi} is the crucial ‘parameter’. Moreover, Figure 1 and

Figure 2 show that taxes are in general very sensitive to the vector {βi}. Therefore, to say something concrete, we need

to make several assumptions about {βi}. We assume that βi is increasing and concave in i. In words, this means that the

degree of self-control problem decreases with age and this decline slows down with age. We have two sets of evidence in

favor of these assumptions. First, research on intertemporal discounting over the life-span has shown that short term dis-

count rates fall with age predicting a life-cycle developmental trend toward increased self-control.19 Second, personality

18Observe that if we want the taxes computed using the formulas in Proposition 1 to be valid under any σ and with full sophistication, then we need

to assure that the interest rate R (or the deeper parameters of the production function F and d) satisfies the steady-state condition

R = f ′(k) = F′(k, 1)− d = δ−1,

where k refers to steady-state level of capital stock.
19See Green, Fry, and Myerson (1994) , Green, Myerson, and Ostaszewski (1999), Read and Read (2004), and Ameriks, Caplin, Leahy, and Tyler
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psychologists associate self-control with conscientiousness, one of the ‘big five’ personality factors,20 and in the words

of Caspi, Roberts, Robins, and Trzesniewski (2003) ‘it appears that the increase in conscientiousness is one of the most

robust patterns in personality development, especially in young adulthood.’ So, there seems to be a consensus among

psychologists that self-control increases with age. The evidence for concavity of this increase comes again from the per-

sonality psychology literature. John, Gosling, Potter, and Srivastava (2003) and Roberts, Walton, and Viechtbauer (2006)

both find that conscientiousness increases concavely over the life-cycle. John, Gosling, Potter, and Srivastava (2003) es-

timates conscientiousness as a quadratic function of age and finds that the quadratic age term has a negative coefficient

‘indicating that the rate of increase [in conscientiousness] was greater at younger ages than at older ages.’21 We use a

quadratic βi function and perform robustness checks by varying the degree of concavity allowing for linearity as well.

We also make assumptions about the level of βi at the youngest and oldest age. In our benchmark calculations, we

assume β1 = 0.5. For σ = 1, Laibson, Repetto, and Tobacman (2007) estimate β = 0.81 along with δ = 0.96. However,

in their sample, the average age is around 40. Using the linear quadratic developmental trend suggested by personality

psychology, we compute that self-control parameter at age 20, β1, should be approximately 0.5 in order to have this pa-

rameter equal to 0.81 at age 40. We check for robustness by setting β1 = 0.4 and β1 = 0.65.22 We assume that self-control

problem vanishes towards the end of one’s life-cycle. This is in line with the evidence from research on intertemporal

discounting as summarized in Read and Read (2004): ”Green et al’s major result- that younger people show hyperbolic

discounting while older people show exponential discounting - is supported by our data.” The old people have a mean

age of seventy-five in Read and Read (2004) and seventy in Green, Myerson, and Ostaszewski (1999), which is consistent

with the age of our oldest agent, seventy.

Now we report the results. In all our simulations, capital taxes are negative so they are indeed subsidies and these

subsidies are decreasing with age throughout the life-cycle. This is expected given Corollary 4 and Corollary 5 and the

fact that we followed empirical evidence by assuming βi is increasing and concave in i. As Figure 3 and Figure 4 depict,

optimal capital subsidies at the beginning of the life-cycle are between 4% and 12%, depending on the specifications,

and decrease monotonically with age to between 0 and 1%.23 The speed at which the subsidies decline depends on the

curvature of βi. Figure 3 displays the sensitivity of subsidies to the degree of concavity of βi function. In the figure, the βi

function is depicted on the left while the corresponding age-dependent capital subsidies are depicted on the right. The

(2007).
20Ameriks, Caplin, Leahy, and Tyler (2007) also analyzes the relationship between conscientiousness and the measure of self-control used in the

experiment (the EI gap) and finds that ‘the data reveal a strong relationship between the conscientiousness questions and the absolute value of the EI

gap.’ Borghans, Duckworth, Heckman, and ter Weel (2008) also states that conscientiousness is conceptually related to self-control problems.
21It is possible to compute one-year short-term discount rates (our β′s) using Green, Myerson, and Ostaszewski (1999)’s estimates of hyperbolic

discount functions for different age groups in his study and such an analysis confirms that β is a concave increasing function of age. However, he has

only three age groups.
220.65 is the one-year short-term discount rate we computed using Green, Myerson, and Ostaszewski (1999)’s estimate of hyperbolic discount func-

tion for his young adult group which has mean age of 20 years.
23If we denote by β51 the self-control parameter of the parent (of course, also denotable as β0), then - by construction - β51 = 1. Although it is not

always easy to see in the figures, in our specifications however, β50 is typically less than one.
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initial level of self-control problem β1 is set to 0.5. The three curves other than the solid one represent different degrees

of concavity within the same family of quadratic functions. The blue dashed curve has the highest level of concavity

whereas the green straight line has the least, and the red dotted curve is in between.24 We see that the more concave

the function is the higher the initial level of taxes are, the faster the decline with age is, and the lower the value of

final level of taxes. In the solid curve in turquoise, βi is a 4th root function of age. The corresponding age-dependent

capital subsidies curve on the right shows that the type of concave function chosen also matters for the level and shape

of age-dependent subsidies. Figure 4 shows sensitivity with respect to our assumption regerding the initial level of the

self-control problem β1. In the figure, we assume βi follows a quadratic pattern with coefficient b = −.02, as the blue

dashed line on Figure 3. We see that the lower is β1 the higher is the starting value of taxes and also the sharper the

decline.
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Figure 3: Sensitivity with respect to the curvature of βi

Observe that here the tax base is the gross return on asset holdings. Most actual tax systems, however, tax asset

income. If we translate our numbers taking that into account, we find that optimal subsidies on capital income at early

ages always takes values above 100%, touching the level of almost 300% for the highest range of the subsidy.25 These are

24The exact quadratic form used is βi = ai + bi2 + d. On the picture we only report the coefficient of the quadratic term, b, since the remaining

parameters a and d are pinned down by the initial and final values of the self-control parameter, β1 = .5 and β51 = 1.
25Denoting the capital income tax by τk

i , the relation between our taxes and tax on capital income is: 1 − τk
i = R(1−τi)−1

R−1 . As a consequence, for
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Table 1: Optimal Subsidies under Constant Self-Control Problems

β 0.81 0.65 0.5 0.4

−τ 0.93% 2.15% 4% 6%

−τk 23% 54% 100% 149%

obviously large numbers.

Now we argue that the subsidies we obtain are much larger than those implied by models with constant self-control,

and explain why. Table 1 reports the taxes implied by constant self-control for the four representative levels of β. There

are two main forces that inflate the optimal level of subsidies when βi changes over the life-cycle. First, the empirical

evidence implies quite low β’s for young individuals. In the jargon of Section 3, the current component of the tax is quite

strong for young individuals. Second, the increasing level of self-control with age reduces the importance of the future

component of the tax. Thus, for empirically plausible patterns of self-control, both forces go in the direction of increasing

savings subsidy to the young.

Interestingly, the mitigating effect of increasing self-control on the future component of optimal taxes is strong enough

to imply larger taxes for older individuals as well, compared to the model with constant self-control. Looking, for

−τ1 = .12 we have −τk
1 = 2.997.
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example, at the column related to a constant β = .81 in Table 1, we see that the implied optimal capital income subsidy

−τk is 23%. In our model, the agent with the same degree of self-control problem receives capital income subsidy of

more than 57%. To see this, observe that the blue dashed line in the left panel of Figure 3 shows that in our model an

agent has the corresponding degree of self-control in period twenty, i.e., β20 ≈ .81, and the corresponding line on the

right panel shows −τ20 ≈ .023, which indeed implies a capital income tax larger than 57%. Another way of noticing

the same phenomenon is to realize that in all our parameterizations, for the oldest individuals we have β50 well above

.9. In spite of that, capital subsidies are sometimes larger than those implies by a model with constant self-control with

β = .81.

5 Effect of Partial Sophistication

In the previous section, we show that: (1) when the constant relative risk aversion coefficient σ is equal to 1, then the

degree of sophistication is immaterial for taxes; (2) under the assumption that all the agents in the economy are fully

sophisticated and the economy is at a steady-state, σ is immaterial for taxes. In these two cases, taxes are given by

Proposition 1. It is evident that in order to investigate the robustness of our policy findings with respect to naivete, we

need to move away from the assumptions of σ = 1 and full sophistication at the same time. This is exactly what this

section does. Unfortunately, when σ 6= 1 and agents are allowed to be partially sophisticated, we do not get closed form

solutions for optimal taxes. Therefore, we have to resort to numerical analysis. For simplicity, we keep the assumption

that the economy is at steady state.

In our first set of analysis, we set σ = 2 and analyze how different patterns of the evolution of partial sophistication

over the life-cycle affect optimal life-cycle subsidies.26 In Figure 5, the blue solid curve represents the benchmark case of

full sophistication (π = 1) where optimal taxes do not depend on σ. Each dashed curve represents a life-cycle pattern

where sophistication level starts at π at the beginning of life and is constant until period 10 when it jumps to 1 and in

period 11 it jumps back to π. Then, there is a second jump in period 25, but this is a permanent one: agent remains fully

sophisticated from then on. We repeat this numerical analysis for π = 0.3, 0.5, 0.7, and 0.9. As evident from Figure 5, the

level of optimal subsidies differ significantly from the benchmark case with full sophistication only in periods which are

followed by a sharp change in the level of sophistication in the subsequent period. For instance, for π = 0.3, the level of

sophistication in period 9 is 0.3 whereas it is 1 in period 10. As a result, as the figure shows, optimal period 9 subsidies

are significantly larger compared to the benchmark case. Similarly, a significant decline in sophistication from 1 in period

10 to 0.3 in period 11 implies much lower optimal subsidies compared to the benchmark case. On the other hand, since

sophistication level is 0.3 in both periods 11 and 12, optimal subsidies in period 11 are roughly identical to the case of

fully sophisticated benchmark. In other words, when the level of sophistication does not change across periods, its level

is not quantitatively important for the level of optimal taxes. We also analyze the effect of sophistication on optimal

26We set β1 = 0.5 and β51 = 1, and βi = ai + bi2 + d, where b = −0.02 throughout this section.
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subsidies when the level of sophistication changes smoothly over the lifecycle. We assume π increases concavely. This

experiment is summarized in Figure 6, where we confirm that the level of sophistication matters for optimal taxes only

when it changes sharply between two adjacent periods.

Finally, we do robustness checks for σ different from 2. As Figure 6 suggests, as σ moves away from 1, the effect of

sophistication becomes more significant. However, even when σ = 5, the difference between optimal capital subsidies

in the benchmark model and the partially sophisticated model is around 0.05% for the first period and this difference

decreases to below 0.01% after the fourth period. Figure 6 suggests a qualitative pattern regarding how optimal taxes are

affected by sophistication level for a given level of σ. When σ = 0.5, the optimal subsidies under partial sophistication

are given by the dotted line that lies below the solid curve, which also represents optimal taxes for σ = 0.5 under full

sophistication. On the other hand, for all σ > 1 in the figure, we see that optimal subsidies under partial sophistication

are higher than optimal subsidies under full sophistication at every age level. These observations suggest a particular

pattern: that for σ > 1(< 1), optimal taxes increase with the level of sophistication. In Appendix D, we explain this

pattern formally.27

So, there are two major conclusions derived from the above set of experiments. First, as long as the level of naivete

is not changing abruptly from one period to another, the level optimal capital subsidies over the lifecycle is robust to

various scenarios about how sophistication changes with age. Second, as the last experiment shows, when the level of

partial sophistication is changing smoothly (or not changing at all), the level optimal capital subsidies over the lifecycle

is not significantly affected by our choice of the coefficient of constant relative risk aversion.

6 Conclusion and Discussion

This paper studies optimal capital taxation in an economy where agents face self-control problems. In line with evidence

suggested by personality psychology and experimental studies we assume that the severity of the self-control problem

changes over the life-cycle. We also allow for age-dependent partial sophistication. We restrict attention to CIES utility

functions and focus on linear Markov equilibria. We derive explicit formulas which allow us to compute optimal taxes

given the evolution of self-control problem over the life-cycle. We show that if agents ability to self-control increases

concavely with age, then capital should be subsidized and the subsidy should decrease with age. Our numerical analysis

shows that capital subsidies should start somewhere between 4% and 12% at the beginning of the life-cycle and decline

monotonically with age to somewhere between 0% and 1%, depending on the particular parameterization of the model.

These are very large numbers, especially if we translate them into subsidies to capital income. More importantly, we

show they are much larger than the savings subsidy we would obtain in models with constant self-control. This is

27An earlier related result is given in O’Donoghue and Rabin (2003) which shows that, when we model partial sophistication a la

O’Donoghue and Rabin (1999), if σ > 1(< 1), then more sophisticated people over-consume less (more). O’Donoghue and Rabin (2003) does not

analyze taxes but the tax implication of their finding is obvious: if σ > 1(< 1), then more sophisticated people should be taxed more (less) heavily. We

show that this result is valid under our way of modeling partial sophistication as well.
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especially true for young individuals, but we explain why it holds actually at almost all ages. Our model is probably too

simple for delivering precise policy predictions. We believe however, that our analysis provides a key lesson: researchers

who take self-control problems seriously should also carefully measure the evolution of self-control problems over the

life-cycle seriously before making policy suggestions.

We conclude by arguing that existence of illiquid assets does not change our optimal tax results as long as there are

no borrowing constraints. More precisely, a tax system that is optimal in an environment without illiquid assets is still

optimal in the same environment with an illiquid asset as long as we complement the tax system with an appropriate tax

on the illiquid asset. Appendix E provides a more formal illustration of this argument through a three period example.
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7 Appendix A - Explaining Future Component of Optimal Taxes

In this section we analyze the future component described in Section 3 more closely. To isolate the future component, we

assume β1 = 1. The analysis is heuristic in the sense that we assume that the equilibrium involves differentiable policies.

Sophisticated Future Component. We first analyze the future component when the agent is fully sophisticated in

period one, so suppose π1 = 1. We call the optimal tax on sophisticated period one agent τS
1 . The first order condition

of self 2 reads as follows:

u′(c2) = β2δR(1 − τ2)u
′(c3).

This implies that in order to implement first best period two saving, b∗2 , the planner has to subsidize the return to period

two saving by (1 − τ∗
2) =

1
β2

.

Self1’s first order conditions reads:

u′(c1) = δ
[

u′(c2)R(1 − τ1) + b′2(b1)
{

−u′(c2) + δR(1 − τ2)u
′(c3)

}]

.

The right-hand-side of this condition is the marginal benefit of saving an extra unit in period one whereas the left-

hand-side is the marginal cost. When self 2 has no self-control problem, u′(c2) = δR(1 − τ2)u
′(c3), so the right-

hand side reduces to u′(c1) = δu′(c2)R(1 − τ1). However, being fully sophisticated, self 1 correctly believes that self

2 has a self-control problem and is going to undersave from self 1’s perspective (from first-best perspective self 2

is saving the right amount thanks to period two subsidy), meaning, u′(c2) < δR(1 − τ2)u
′(c3). Self 1 correctly be-

lieves that saving an extra unit in period one has an additional marginal benefit of increasing b2, which is equal to

δb′2(b1) {−u′(c2) + δR(1 − τ2)u
′(c3)} > 0. As a result, he keeps increasing his savings until

u′(c1) = δ
[

u′(c2)R(1 − τ1) + b′2(b1)
{

−u′(c2) + δR(1 − τ2)u
′(c3)

}]

> δu′(c2)R(1 − τ1)
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which implies

(1 − τS
1 ) <

u′(c∗1)

δRu′(c∗2)
= 1,

meaning self 1 should be taxed for his oversaving. The exact amount of the tax solves:

1 − τS
1 =

[

1 + b′2(b
∗
1)

{−1 + 1
β2
}

R(1− τS
1)

]−1

< 1

since b′2(b1) > 0.

It is important here to realize that even though self 2 saves the right amount with respect to first-best thanks to period

two taxes, from self 1’s perspective he is undersaving and that is why self 1 wants to oversave and hence should be taxed.

So, even if self 2 was an oversaver and we had to tax him to make him save at the first best level, as long as β2 < 1, the

argument would still apply and we would still have to tax self 1. Moreover, if β2 = 1, then even if we had to distort the

problem of self 2, τ2 6= 0, to make self 2 save at the first-best level, we would still have future component of self 1’s tax

equal to zero. So, what matters for future component is not future government policy but it is next period self’s degree

of self-control problem.

Naive Future Component. Now we analyze the future component when self 1 is fully naive, so suppose π1 = 0. We

call the optimal tax on the naive self 1 agent τN
1 . As in the previous case where self-1 was sophisticated, self-2’s first-order

condition

u′(c2) = β2δR(1 − τ2)u
′(c3)

implies in order to implement first best we have to subsidize self 2 by (1 − τ∗
2) =

1
β2

.

The naive self 1 incorrectly believes that self 2 chooses his savings according to:

u′(ĉ2) = δR(1 − τ2)u
′(ĉ3),

meaning for any level of b1 self 1’s guess of self 2’s consumption is less than self 2’s actual consumption, ĉ2 < c2. As a

result, without any period one tax, self 1 would incorrectly think that if he sets period one saving equal to b∗1 period two

consumption would be too low since

u′(c∗1) = δRu′(c∗2) < δRu′(ĉ2).

This implies that without period one tax self 1 would set his savings above b∗1 since self 1’s first order condition for b1 is:

u′(c1) = δR(1 − τN
1 )u′(ĉ2).

So, to prevent this oversaving, we need to tax b1, and the exact amount of the tax is given by:

(1 − τN
1 ) =

u′(c∗2)

u′(ĉ2)
< 1.

Again it is important to note that whether self 2 is an oversaver or an undersaver from first-best perspective does not

matter for the result that self 1 is an oversaver and hence should be taxed. To see this, observe that when β2 < 1, as
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long as we get self 2 to choose first-best savings (independent of whether we need to set (1 − τ2) > 0 or < 0 to achieve

this), we have ĉ∗2 < c∗2 . Hence self 1 will think that there is too little consumption in period two and hence will oversave.

Moreover, if β2 = 1, then future component of self 1’s tax will be zero independent of the value of τ2. So, again what

matters for future component of self 1’s tax is not future government policy but next period self’s degree of self-control

problem.

We have shown that the future component of the tax is positive under both full sophistication and full naivete. Since

the future component under partial sophistication is a weighted average of the two, we have that for any π1 future

component is positive:

{

π1

[

1 + b′2(b1)
{−1 + 1

β2
}

R(1 − τ∗
1)

]

+ (1 − π1)
u′(ĉ2)

u′(c2)

}−1

=

{

π1

(

1 − τS
1

)−1
+ (1 − π1)

(

1 − τN
1

)−1
}−1

< 1.

Equivalence under Logarithmic Utility

It is relatively easy to show that if the utility function is logarithmic, then:

b2(b1) =

(

R(1 − τ1)b1 + T1 +
T2

R(1 − τ2)

)

β2δ

1 + β2δ
.

Sophisticated future component:

(1 − τS
1) =

[

1 + R(1 − τS
1)

β2δ

1 + β2δ

{−1 + 1
β2
}

R(1 − τS
1 )

]−1

=
1 + β2δ

1 + δ

Naive future component:

(1 − τN
1 ) =

ĉ∗2
c∗2

=

(

R(1 − τ1)b1 + T1 +
T2

R(1−τ2)

)

1
1+δ

(

R(1 − τ1)b1 + T1 +
T2

R(1−τ2)

)

1
1+β2δ

=
1 + β2δ

1 + δ
.

We have just seen that when the utility is logarithmic, the future component of the optimal tax is the same for fully

naive and fully sophisticated agents. Therefore, partial sophistication future component is independent of the degree of

sophistication, π1 :

{

π1

[

1 + δ

1 + β2δ

]

+ (1 − π1)
1 + δ

1 + β2δ

}−1

=
1 + β2δ

1 + δ
.

8 Appendix B - Proofs

8.1 Proof of Proposition 1.

In this section, we provide the proof of our main result, Proposition 1, for the general setup where the economy starts

from any initial level of capital stock and prices change over time. In order to do so, we first define the parent’s problem

under taxes in the general setup.
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Preparation to the proof.

Let k0 be the initial level of capital stock and {k∗t }t be the sequence of first-best levels of capital stocks that start from

k0. We know that the first best is recursive in kt. Let K : IR → IR be the function describing the evolution of the aggregate

level of capital in the first-best:

k∗t+1 = K(k∗t ).

Agents face a price sequence satisfying:

R(kt) = f ′(kt),

w(kt) = f (kt)− f ′(kt)kt,

that is, it is generated by a capital stock sequence {k∗t }t where the capital stock is generated by K. Since the problem is

recursive, a government which aims to implement the first-best allocation will use the same taxes in any two periods if

the age of the agent and the capital stock in those periods are the same. Therefore, without loss of generality, we define

taxes as functions of age and capital stock as follows: τi(kt) is the savings (capital) tax agent at age i = 0, 1, .., I pays if

the capital stock in that period is kt. Government (per-period) budget feasibility requires the lump-sum rebate to satisfy:

Ti(kt) = R(kt)τi(kt)bi(kt; τ).

To describe the problem of the agents, we define the policy functions bi(·, kt; τ) describing the optimal behavior of the

agent i as function of bi−1 given the level of aggregate capital kt, the taxes τ := {τi(·), Ti(·)}i and what he believes other

agents’ rules will be, and that the evolution of capital follows the rule K. When agent n is deciding bn, his evaluation of

the effect of his choice on bi, i > n will be described by the function bi(bi−1(...bn+1(bn, k∗t ; τ)...), k∗t+i−n−1; τ), k∗t+i−n; τ),

where for all t, s, we intent k∗t+s = K(K(...(k∗t )...)), where the the K function has been applied s times. To simplify

notation, we will denote this mapping simply as bi(..(bn)..)).

Finally, our notation will be simplified if we let k be the level of capital stock already in place in the last period of a

parent and k′ or k1 refer to the capital stock next period and ki refer to the level of capital stock i periods after the period

in which capital stock was k, namely: ki = K(K(...(k)...)), where the function K has been applied i times. In the problem

below, the function K is fixed to that of first best. Of course, the function describing the evolution of aggregate capital in

equilibrium is part of the fixed point argument as it must satisfy market clearing.
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Parent’s Problem along the Transition

V (b, k; τ)= max
b0

u (R(k) (1 − τ I) b + w(k) + TI − b0) + δ

[

I−1

∑
i=0

δiu
(

R(ki+1) (1 − τi) bi(...(b0)..) + w(ki+1) + Ti − bi+1

)

+ δIV
(

bI(...(b0)..), kI+1; τ
)

]

s.t. for all b0

b1(b0, k1; τ) ∈ arg max
b̂1

u
(

R(k1) (1 − τ0) b0 + w(k1) + T0 − b̂1

)

+δβ1





π1

{

∑
I−1
i=1 δi−1u

(

R(ki+1) (1 − τi) bi(...(b̂1)..) + w(ki+1) + Ti − bi+1(...(b̂1)..)
)

+ δI−1V
(

bI(...(b̂1)..), kI+1; τ
)}

+ (1 − π1)W1

(

b̂1, k2; τ
)





s.t. for all b1

b2(b1, k2; τ) ∈ arg max
b̂2

u
(

R(k2) (1 − τ1) b1 + w(k2) + T1 − b̂2

)

+δβ2





π2

{

∑
I−1
i=2 δi−2u

(

R(ki+1) (1 − τi) bi(...(b̂2)..) + w(ki+1) + Ti − bi+1(...(b̂2)..)
)

+ δI−2V
(

bI(...(b̂2)..), kI+1; τ
)}

+ (1 − π2)W2

(

b̂2, k3; τ
)





s.t. for all b2

...

s.t. for all bI−2

bI−1(bI−2, kI−1; τ) ∈ arg max
b̂I−1

u
(

R(kI−1) (1 − τ I−2) bI−2 + w(kI−1) + TI−2 − b̂I−1

)

+ δβI−1 (1 − π I−1)WI−1

(

b̂I−1, kI ; τ
)

+δβI−1

[

π I−1

{

u
(

R(kI) (1 − τ I−1) b̂I−1 + w(kI) + TI−1 − bI(...(b̂I−1)..)
)

+ δV
(

bI(...(b̂I−1)..), kI+1; τ
)}]

s.t. for all bI−1

bI(bI−1, kI ; τ) ∈ arg max
b̂I

u
(

R (1 − τ I−1) bI−1 + wI−1 + TI−1 − b̂I

)

+ δβI

[

π IV
(

b̂I , kI+1; τ
)

+ (1 − π I)WI

(

b̂I , kI+1; τ
)]

where the functions Wi for i = 0, 1, .., I − 1 solve:

Wi (b, k; τ) = max
b′

u
(

R (1 − τi) b + wi + Ti − b′
)

+ δWi+1

(

b′, k′; τ
)

;

with

WI (b, k; τ) = max
b′

u
(

R (1 − τ I) b + wI + TI − b′
)

+ δW0

(

b′, k′; τ
)

.

Letting bi and ki+1 be the saving level in period i and aggregate capital stock in period i + 1, define (we disregard the

tax dependence for notational simplicity):

Γi(bi, ki+1) = R(ki+1)(1− τi(k
i+1))bi + w(ki+1) + Ti(k

i+1) + Gi(k
i+1),

Gi(k
i+1) =

Ti+1(k
i+2)

R(ki+2)
(

1 − τi+1(ki+2)
) +

Ti+2(k
i+3)

R(ki+2)R(ki+3)
(

1 − τi+1R(ki+2)
) (

1 − τi+2R(ki+3)
) + .. +

TI(k
I+1)

I

∏
j=i+2

R(kj)
(

1 − τ j−1(kj)
)

+ ...,

ci+1(bi, ki+1) = Mi+1Γi(bi, ki+1),

where Gi(k
i+1) is the net present value of future lump-sum taxes and Γi(bi, ki+1) is the net present value of wealth

available to agent at the beginning of age i + 1 when the level of capital stock today is ki+1, the level of assets is bi and
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Mi+1 is the fraction consumed out of that wealth. It follows from the flow budget constraint in period i + 1 that if the

stated consumption rule is part of an optimal policy, his saving in period i + 1 must satisfy for all bi:

bi+1(bi, ki+1; τ) = R(ki+1)
(

1 − τi(k
i+1)

)

bi + w(ki+1) + Ti(k
i+1)− Mi+1Γi(bi, ki+1) = .

Note that from
∂bi+1(bi, ki+1; τ)

∂bi
= (1 − Mi+1)

∂Γi(bi, ki+1)

∂bi
= (1 − Mi+1)R(ki+1)

(

1 − τi(k
i+1)

)

It is relatively simple algebra to show that, under the consumption rule given above, net present value of wealth between

any two consecutive periods is related as follows:

Γi(bi(bi−1, ki; τ), ki+1) = R(ki+1)(1 − τi(k
i+1))(1− Mi)Γi−1(bi−1, ki). (8)

Using the above recursion, it is possible to express consumption as follows:

ci+1(bi(..(b)..), ki+1) = Qi(k)Mi+1ΓI (b) ,

where bi(..(b)..) is the shortcut for the nested policy we describe above and

Qi(k) := Πi
s=0 (1 − Ms) R(ks+1)

(

1 − τs(k
s+1)

)

,

with ks+1 = K(..(k)..), where the map K is applied s + 1 times as usual.

Now using linearity of the policy functions and the first-order approach, we can rewrite the parent’s problem as:

V (b, k; τ) = max
M0

u (M0ΓI (b)) + δ

[

I−1

∑
i=1

δiu (Qi−1(k)MiΓI (b)) + δIV
(

(1 − MI)QI−1(k)ΓI (b) , kI+1; τ
)

]

(9)

s.t. for all i ∈ {1, ..., I − 1}

(MiQi−1(k)ΓI (b, k))−σ =δβi











πiR(k
i+1)(1 − τi(k

i+1))







∑
I
j=i+1 δj−(i+1)

(

MjQj−1(k)ΓI (b, k)
)−σ

Mj
Qj−1(k)
Qi(k)

+δI−iV ′(bI(..(b)..), kI+1; τ)(1 − MI)
QI−1(k)

Qi(k)







+ (1 − πi)W ′
i

(

bi(..(b)..), ki+1; τ
)











(MI QI−1(k)ΓI (b, k))−σ = δβI

[

π IV
′
(

bI(..(b)..), kI+1; τ
)

+ (1 − π I)W ′
I

(

bI(..(b)..), kI+1; τ
)]

.

Core proof of Proposition 1.

We will prove that facing the sequence of first-best capital stocks and the taxes specified in Proposition 1, people

will choose first-best allocation, thereby verifying both (1) that the sequence of first-best capital stocks is actually part of

equilibrium under Proposition 1 taxes, and (2) that under Proposition 1 taxes people choose first-best.

Guess

V (b, k; τ) = D log(ΓI (b, k)) + B(k),

Wi(b, k; τ) = Di log(Γi (b, k)) + Bi(k), for i = 0, .., I
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where D and D0, D1, .., DI, B0, ..., BI are constants of the parent’s and naive self-i’s value functions.

STEP 1: Compute the coefficients for the naive value functions, D0, .., DI.

If we let k′ = K(k), from the first-order condition for the Wi problem, we have (after tedious calculations):

bi (b, k; τ) =
R(k)(1 − τi(k))b + w(k) + Ti(k)− [Gi+1(k

′) + w(k′) + Ti+1(k
′)] [δR(k′)(1 − τi+1(k

′))Di+1]
−1

1 + [δR(k′)(1 − τi+1(k′))Di+1]
−1 R(k′)(1 − τi+1(k′))

.

Plugging this in the value function, and performing some tedious re-arrangements, we get for i = 0, 1, .., I:

Di = (1 + δDi+1)

and

DI = (1 + δD0) .

Thus,

D0 = D1 = .. = DI =
1

1 − δ
.

STEP 2: Compute the coefficients for parent’s value function, D.

Take D1, .., DI from above. Compute V′ and W ′
i for i = 0, 1, .., I in terms of D, Di using the guesses for value functions:

V′(bI(..(b)..), kI+1; τ) = DR(kI+1)(1− τ I(k
I+1))(ΓI(b, k)QI(k))

−1, (10)

W ′
i (bi(..(b)..), ki+1; τ) = DiR(k

i+1)(1− τi(k
i+1))(ΓI(b, k)Qi(k))

−1,

where we used the recursion (8).

Plugging these in the constraints described in problem (9), we get for all i ∈ {1, ..., I − 1}:

(MiQi−1(k))
−1 = δβiR(k

i+1)(1 − τi(k
i+1)) (Qi(k))

−1





πi

{

∑
I
j=i+1 δj−(i+1) + δI−iD

}

+ (1 − πi) Di





and

(MI QI−1(k))
−1 = δβI R(1 − τ I(k

I+1)) (QI(k))
−1 [π I D + (1 − π I) DI ] .

Now, using the marginal condition describing self-I behavior, it is easy to show that

MI(D) =
1

1 + βIδ(π I D + (1 − π I) DI)
.

Similarly, use other constraints defining the policies to compute Mi(D) for i = 1, .., I − 1 :

Mi(D) =
1

1 + βiδ
(

πi

{

∑
I
j=i+1 δj−(i+1)+ δI−iD

}

+ (1 − πi) Di

) .

Taking first-order condition with respect to bequests in the parent’s problem (9) and plugging in the Mi(D) from above,

we get:

M0(D) =
1

1 + δ
(

∑
I−1
j=0 δj + δI D

) .
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Now verify the value function to compute D :

D log (ΓI (b, k))+ B(k) = log (M0(D)ΓI (b, k))+ δ

[

I−1

∑
i=0

δi log (Qi(k)Mi+1(D)ΓI (b, k)) + δI
{

D log (ΓI (b, k) QI(k)) + B(kI+1)
}

]

,

which implies

D =
I−1

∑
i=0

δi + δI D

and hence

D =
1

1 − δ
.

By plugging D in the formula for Mi(D), we compute

Mi =
1 − δ

1 − δ + βiδ
, for all i ∈ {1, .., I}, (11)

M0 = 1 − δ.

Now we turn to taxes that implement first-best allocation. The constraint that describes self-i’s behavior for i ∈

{1, .., I − 1} becomes the following once we plug in the derivatives of the value functions from (10) :

(MiQi−1(k)ΓI (b, k))−1 = δβiR(k
i+1)(1 − τi(k

i+1)) (Mi+1Qi(k)ΓI (b, k))−1





πi

{

∑
I
j=i+1 δj−(i+1) + δI−iD

}

+ (1 − πi) Di



Mi+1. (12)

The comparison of (12) with the first-best condition (1) gives the first-best tax as:

(

1 − τ∗
i (k

i+1)
)

=
1

βi









πi

{

∑
I
j=i+1 δj−(i+1)+ δI−iD

}

+ (1 − πi) Di



Mi+1





−1

=
1

βi

(

1 − δ + βi+1δ
)

.

For self-I, the constraint describing his behavior in problem (9) reads as follows:

(MIQI−1(k)ΓI (b, k))−1 = δβI R(kI+1)(1 − τ I(k
I+1)) (M0QI(k)ΓI (b, k))−1 [π I D + (1 − π I) DI ] M0,

and the comparison of this with the first-best condition gives

(

1 − τ∗
I (k

I+1)
)

=
1

βI

.

Finally, a comparison of the following first-order condition of the parent

(M0ΓI (b, k))−1 = δR(k1)(1 − τ0(k
1))(M1Q0(k)ΓI (b, k))−1

[

∑
I−1
i=0 δi + δI D

]

M−1
1

with the corresponding first-best condition gives

(

1 − τ∗
0(k

1)
)

= (1 − δ + β1δ) .
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8.2 Proof of Proposition 2.

If we plug in the constraint defining the policy of the agent at age i + 1 in the constraint of agent at age i, we get:

u′ (ci) = δβiR(1 − τi)u
′ (ci+1)







1 +
∂bi+1(bi)

∂bi

(

1
βi+1

− 1
)

R(1 − τi)







,

which renders first-best taxes as:

(1 − τ∗
i ) =

1

βi

1

1 +
∂bi+1(b∗i )

∂bi

(

1
βi+1

−1
)

R(1−τ∗i )

.

Under CEIS utility and linear policies, we have:

∂bi+1(bi)

∂bi
= (1 − Mi+1)R(1 − τi).

Now plug this in the tax formula above to get the CEIS specific tax formula:

(1 − τ∗
i ) =

1

βi

1

1 + (1 − M∗
i+1)

(

1
βi+1

− 1
) . (13)

When Rδ = 1, in the first best allocation we have c∗i = c∗i+1 for all i. This means

c∗i = M∗
i Γi−1(b

∗
i−1) = c∗i+1 = M∗

i+1Γi(b
∗
i )

which, using the relationship Γi(bi) = R(1 − τi)(1 − Mi)Γi−1(bi−1) implies

M∗
i =

M∗
i+1R(1 − τ∗

i )

1 + M∗
i+1R(1 − τ∗

i )
. (14)

Plugging (13) in (14), we get a system of (I + 1) equations in (I + 1) unknows (M∗
0 , ..., M∗

I ) that fully pin down agents

policies when they face first-best taxes, for the CEIS case:

M∗
i =

M∗
i+1R 1

βi

1

1+(1−M∗
i+1)

(

1
βi+1

−1
)

1 + M∗
i+1R 1

βi

1

1+(1−M∗
i+1)

(

1
βi+1

−1
)

Clearly, the solution to this system does not depend on σ. In fact, it is easy to show that the logarithmic utility solution

given by equation (11) satisfies the above system of equations, meaning it is an equilibrium. Plugging (11) in the formula

for taxes, (13), we get that first-best taxes are the same as the logarithmic utility case.
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9 Appendix C - Computational Procedure

9.1 Guess:

Guess

V (b; τ) = D(τ)
(ΓI (b))

1−σ

1 − σ
,

Wi(b; τ) = Di(τ)
(Γi (b))

1−σ

1 − σ
,

where D and Di for i = 0, 1, .., I are constants of the parent’s and naive self-i’s value functions. Observe that these

constants depend on the tax system, τ. In what follows, for notational simplicity this dependence will be implicit.

9.2 Characterizing equilibrium value function constants for a given tax system τ:

STEP 1: Computing equilibrium D0, .., DI.

From the first-order conditions for the Wi problem, we have: for all i ∈ {0, 1, .., I − 1}

Di =

[

[δR(1 − τi+1)Di+1]
− 1

σ R(1 − τi+1)

1 + [δR(1 − τi+1)Di+1]
− 1

σ R(1 − τi+1)

]1−σ(

1 + δ
Di+1

[δR(1 − τi+1)Di+1]
− 1−σ

σ

)

, (15)

DI =

[

[δR(1 − τ0)D0]
− 1

σ R(1 − τ0)

1 + [δR(1 − τ0)D0]
− 1

σ R(1 − τ0)

]1−σ(

1 + δ
D0

[δR(1 − τ0)D0]
− 1−σ

σ

)

.

Given taxes, the solution to these I + 1 equations give us I + 1 unknowns, D0, .., DI.

STEP 2: Computing equilibrium D.

From our guess of the value function, we have

V′ (bI ; τ) = D(ΓI (bI))
−σR(1 − τ I),

and by envelope we have

V′ (bI ; τ) = R(1 − τ I)u
′ (c0) = R(1 − τ I) (M0ΓI (bI))

−σ ,

which together imply

D = M−σ
0 . (16)

9.3 Characterizing optimal tax system, τ∗:

The incentive constraints for agents i = 1, ..I together with parent’s optimality condition with respect to bequest decision

characterize the solution to the parent’s problem and hence the equilibrium for a given tax system, τ. Comparison of

these I + 1 equations with the corresponding first-best euler equations, we immediately see that optimal taxes must

satisfy:
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For all i ∈ {0, .., I − 2}, (17)

(

1 − τ∗
i+1

)

=
1

βi+1













[

πi+1

{

∑
I
j=i+2 δi−(i+2)

(

M∗
j

Q∗
j−1

Q∗
i+1

)1−σ

+ δI−(i+1)D∗
(

Q∗
I

Q∗
i+1

)1−σ
+ (1 − πi+1) D∗

i+1

}]

M∗−σ
i+2













−1

(1 − τ∗I ) =
1

βI

(

[

π I D∗ + (1 − π I) D∗
I

]

M∗−σ
0

)−1

(1 − τ∗0) =









[

∑
I
i=1 δi−1

(

Mi
Q∗

i−1

Q∗
0

)1−σ
+ δI D∗

(

Q∗
I

Q∗
0

)1−σ
]

M∗−σ
1









−1

,

where D∗ and D∗
i are first-best values computed according to (16) and (15) evaluated at first-best taxes.

9.4 Iteration

1. Before starting the iteration, compute first-best consumption and saving allocations (c∗i , b∗i )
I
i=0 according to:

c∗0 = Rb
(RI+1 − 1)

RI+1

1

∑
I
i=0

(

(Rδ)
1
σ

R

)i
,

for all i ∈ {0, .., I − 1}, c∗i+1 = c∗i (Rδ)
1
σ ,

b∗0 = Rb − c∗0 ,

for all i ∈ {0, .., I − 1}, b∗i+1 = Rb∗i − c∗i+1.

2. Start with a guess for the first-best tax system τ = (τ0, .., τ I), where is given by government’s period budget

constraint Ti = Rb∗i τi (for the initial guess we use optimal taxes in the logarithmic case).

3. Compute the linear policy functions according to formulas:

M0 =
c∗0

Rb(1 − τ I) + TI + GI
=

c∗0
Rb + GI

,

For all i ∈ {0, 1, .., I − 1}, Mi+1 =
c∗i+1

Rb∗i (1 − τi) + Ti + Gi
=

c∗i+1

Rb∗i + Gi
,

(a) where

GI =
1

1 −
[

RI+1 ∏
I
j=0(1 − τ j)

]−1

I

∑
i=0

Ti

Ri+1 ∏
i
j=0(1 − τ j)

and for all i ∈ {0, .., I − 1}

Gi =
Gi+1 + Rb∗i+1τi+1

R(1 − τi+1)
.
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4. Compute D and D1, ..DI according to (16) and (15) evaluated at the tax guess.

5. Now use the linear policies computed in step 3 and the value function constants computed in step 4 to compute

taxes according to the system of equations describing optimal taxes (17).

6. If the taxes you compute in step 5 is the same as the taxes you started the last iteration, stop. If not, use the taxes

you computed in step 5 as the new guess and continue iteration.

10 Appendix D - Partial Sophistication, CEIS coefficient, and Optimal Taxes

In this section, we formally answer the question: Do taxes increase or decrease with increasing sophistication? We illustrate

this through the simple three period example we use in section 3. Since the degree of partial sophistication affects optimal

taxes only through the future component, without loss of generality we assume β1 = 1.

Self 1’s problem:

max
b1

u(k0 − b1) + π1δ [u(R(1 − τ1)b1 + T1 − b2(b1)) + δu(R(1 − τ2)b2(b1) + T2)]

+(1 − π1)δ
[

u(R(1 − τ1)b1 + T1 − b̂2(b1)) + δu(R(1 − τ2)b̂2(b1) + T2)
]

s.t.

b2(b1) = arg max
b̃2

u(R(1 − τ1)b1 + T1 − b̃2) + β2δu(R(1 − τ2)b̃2 + T2)

b̂2(b1) = arg max
b̃2

u(R(1 − τ1)b1 + T1 − b̃2) + δu(R(1 − τ2)b̃2 + T2)

Proposition 6 If σ > 1 (< 1), then
∂τ∗1
∂π1

> 0(< 0).

Proof. The first order condition of self 1 reads:

u′(c1) = β1δ{π1

[

u′(c2)R(1 − τ1) + b′2(b1){−u′(c2) + δR(1 − τ2)u
′(c3)}

]

+(1 − π1)
[

u′(ĉ2)R(1 − τ1) + b̂′2(b1){−u′(ĉ2) + δR(1 − τ2)u
′(ĉ3)}

]

}

When utility is CEIS, a self 2 that has self-control problem level β̄2 consumes according to:

c2(b1) = M2(β̄2)

(

R(1 − τ1)b1 + T1 +
T2

R(1 − τ2)

)

,

where

M2(β̄2) =
R(1 − τ2)

R(1 − τ2) +
(

R(1 − τ2)β̄2δ
) 1

σ

.

With probability π1 self 1 correctly believes that β̄2 = β2 and with probability 1 − π1, he believes that self 2 has no

self-control problems and hence β̄2 = 1.
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Now it follows from the budget that:

b2(b1) = (R(1 − τ1)b1 + T1) (1 − M2(β̄2))− M2(β̄2)
T2

R(1 − τ2)

which implies

b′2(b1) = R(1 − τ1)(1− M2(β̄2))

Plugging this in the first order condition, we get:

u′(c1) = β1δR(1 − τ1)u
′(c2)







π1
[M2(β2)u′(c2)+(1−M2(β2))δR(1−τ2)u′(c3)]

u′(c2)

+(1 − π1)
[M2(1)u′(ĉ2)+(1−M2(1))δR(1−τ2)u′(ĉ3)]

u′(c2)







.

So, the first best tax is:

1 − τ∗
1 =

1

β1

{

π1
κ(β2)

(c∗2)
−σ

+ (1 − π1)
κ(1)

(c∗2)
−σ

}−1

where

κ(β̄2) =
[

M2(β̄2)(c2)
−σ + (1 − M2(β̄2))δR(1 − τ2)(c3)

−σ
]

> 0.

Remember we want to compute:

sign

(

∂(τ∗
1)

∂π1

)

= sign





∂
[

π1 + (1 − π1)
κ(1)

κ(β2)

]

∂π1





= sign

(

1 −
κ(1)

κ(β2)

)

since first-best allocation is independent of π1.

Now we show that
κ(1)

κ(β2)
is greater (smaller) than 1 when σ < (>)1. One can show that after plugging in M2(β̄2),

getting rid of period 1 wealth, and regrouping:

κ(β̄2)

κ(β2)
=

[

( R(1−τ2)

R(1−τ2)+(R(1−τ2)β̄2δ)
1
σ
)1−σ

{

1 + δ
(

R(1 − τ2)β̄2δ
) 1

σ−1
}

]

[

( R(1−τ2)

R(1−τ2)+(R(1−τ2)β2δ)
1
σ
)1−σ

{

1 + δ (R(1 − τ2)β2δ)
1
σ−1
}

] .

Then,

∂
κ(β̄2)
κ(β2)

∂β̄2

= κ(β2)
−1















(1−σ)
σ

(

R(1−τ2)

R(1−τ2)+(R(1−τ2)β̄2δ)
1
σ

)1−σ

R(1 − τ2)δ
(

R(1 − τ2)β̄2δ
) 1

σ−1

(

1
β̄2

− 1
)







1

R(1−τ2)

(

R(1−τ2)+(R(1−τ2)β̄2δ)
1
σ

)





















,

which implies

sign
∂

κ(β̄2)
κ(β2)

∂β̄2

= sign
(1 − σ)

σ
.
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This means that, for any π1, if σ > 1(< 1), then for β̄2 ∈ (β2, 1),
κ(β̄2)
κ(β2)

is increasing (decreasing) with β̄2, which further

implies
κ(1)

κ(β2)
< (>)1 since

κ(β2)
κ(β2)

= 1. Thus, we get the following result:

sign

(

∂(τ∗
1)

∂π1

)

> (<)0 if σ > (<)1.

11 Appendix E - Introducing an Illiquid Asset

Consider again the three period example of Section 3, with one difference: there is an additional asset people can buy in

period one. Also, again for simplicity we assume β1 = 0. This asset, denoted by d1, is illiquid in the sense that it does

not pay in period two, but pays in period 3 an after tax return Rd(1 − τd)d1. Self 2’s problem then is:

c2, c3 ∈ arg max
c2,c3

u(c2) + β̄2δu(c3)

s.t.

c2 +
c3

R(1 − τ2)
≤ R(1 − τ1)b1 + T1 +

T2

R(1 − τ2)
+

Rd(1 − τd)d1

R(1 − τ2)
≡ y1(b1, d1)

Let c2(y1), c3(y1) be the solution to the above problem when β̄2 = β2 and ĉ2(y1), ĉ3(y1) when β̄2 = 1.

Self 1’s problem:

max
b1,d1

u(k0 − b1 − d1) + π1δ [u(c2(y1)) + δu(c3(y1))]

+(1 − π1)δ [u(ĉ2(y1)) + δu(ĉ3(y1))] .

Case 1. Government sets taxes such that

Rd(1 − τd) < R2(1 − τ1)(1 − τ2).

In this case, obviously d1 = 0. So, it is as if there are no illiquid assets; government prevents people from using these

assets through taxes. Then, simply by setting τ1, τ2 exactly equal to first-best taxes in the environment without illiquid

asset, τ∗
1 , τ∗

2 , we implement first-best allocation in the market with the illiquid asset. Let us compute these taxes for

future use. Since

u′(c2) = β2δR(1 − τ2)u
′(c3),

first-best requires

(1 − τ∗
2) =

1

β2

.

To compute optimal period one tax, take first-order condition of the parent’s problem with respect to b1 :

u′(c1) = δ





π1

[

u′(c2(y1))c
′
2(y1)

∂y1(b1,d1)
∂b1

+ δu′(c3(y1))c
′
3(y1)

∂y1(b1,d1)
∂b1

]

+(1 − π1)
[

u′(ĉ2(y1))ĉ
′

2(y1)
∂y1(b1,d1)

∂b1
+ δu′(ĉ3(y1))ĉ

′
3(y1)

∂y1(b1,d1)
∂b1

]
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where
∂y1(b1,d1)

∂b1
= R(1 − τ1). Therefore,

u′(c1) = δR(1 − τ1)





π1 [u
′(c2(y1))c

′
2(y1) + δu′(c3(y1))c

′
3(y1)]

+(1 − π1)
[

u′(ĉ2(y1))ĉ
′

2(y1) + δu′(ĉ3(y1))ĉ
′

3(y1)
]





which implies:

(1 − τ∗
1) =

u′(c∗1)

δR
(

π1

[

u′(c∗2)c
′
2(y

∗
1) + δu′(c∗3)c

′
3(y

∗
1)
]

+ (1 − π1)
[

u′(ĉ∗2)ĉ
′

2(y
∗
1) + δu′(ĉ∗3)ĉ

′

3(y
∗
1)
]) ,

where y∗1 is the first-best net present value of wealth.

Case 2. Government sets taxes such that

Rd(1 − τd) ≥ R2(1 − τ1)(1 − τ2).

Then, obviously, agents might be using d1 ≥ 0. In that case, since

u′(c2) = β2δR(1 − τ2)u
′(c3)

still holds, first-best still requires

(1 − τ∗
2) =

1

β2

.

To see optimal taxes on the illiquid asset, consider the first-order condition with respect to d1 :

u′(c1) = δ





π1

[

u′(c2(y1))c
′
2(y1)

∂y1(b1,d1)
∂d1

+ δu′(c3(y1))c
′
3(y1)

∂y1(b1,d1)
∂d1

]

+(1 − π1)
[

u′(ĉ2(y1))ĉ
′

2(y1)
∂y1(b1,d1)

∂d1
+ δu′(ĉ3(y1))ĉ

′

3(y1)
∂y1(b1,d1)

∂d1

]





where
∂y1(b1,d1)

∂d1
= Rd(1−τd)

R(1−τ2)
. Therefore,

u′(c1) = δ
Rd(1 − τd)

R(1 − τ2)





π1 [u
′(c2(y1))c

′
2(y1) + δu′(c3(y1))c

′
3(y1)]

+(1 − π1)
[

u′(ĉ2(y1))ĉ
′

2(y1) + δu′(ĉ3(y1))ĉ
′

3(y1)
]





which implies:

Rd(1 − τd∗) = R(1 − τ∗
2)

u′(c∗1)

δR
(

π1

[

u′(c∗2)c
′
2(y

∗
1) + δu′(c∗3)c

′
3(y

∗
1)
]

+ (1 − π1)
[

u′(ĉ∗2)ĉ
′

2(y
∗
1) + δu′(ĉ∗3)ĉ

′

3(y
∗
1)
])

= R(1 − τ∗
2)R(1 − τ∗

1). (18)

As a result, when there is an illiquid asset, government can either prevent people from using this asset by taxing it

heavily or has to tax it according to (18). In either case, the taxes on period one and period two liquid assets are exactly

equal to the first-best taxes in the environment without illiquid assets.
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