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Abstract

How should a decision-maker assess the potential of an investment when a group of experts

provides strongly divergent estimates on its expected payoff? To address this question, we

propose and analyze a variant of the well-studied α-maxmin model in decision theory. In our

framework, and consistent to the paper’s empirical focus on R&D investment, experts’ subjective

probability distributions are allowed to be action-dependent. In addition, the decision maker

constrains the sets of priors to be considered in accordance with ethical considerations and/or

operational protocols. Using tools from convex and conic optimization, we are able to establish

a number of analytical results including a closed-form expression of our model’s value function,

a thorough investigation of its differentiability properties, and necessary conditions for optimal

investment. We apply our framework to original data from a recent expert elicitation survey

on solar technology. The analysis suggests that more aggressive investment in solar technology

R&D is likely to yield significant dividends even, or rather especially, after taking ambiguity

into account.
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1 Introduction

Motivation & sketch of the main idea. Suppose a decision maker is called to determine

optimal R&D investment in a breakthrough technology. Since the technology is completely new

and untested, there are no historical data that may provide guidance on the potential effectiveness

of R&D. Thus, a group of experts with broad experience in related ventures is assembled to provide

their assessment of different investment options.

For concreteness, assume the decision maker is contemplating two investment scenarios, r1

and r2, and consults 5 experts whose judgments are independent of each other. Each expert

n ∈ {1, 2, ..., 5} provides two probability distribution functions (pdfs) {πn(·|r1), πn(·|r2)} on the

future payoff of the technology, conditional on the chosen level of investment. Suppose, for the

sake of providing a simple example, that all these pdfs are Normal N (µ, σ2) densities. Table 1 lists

their expected values and variances:

n πn(·|r1) πn(·|r2)

1 N (3, 3) N (5.5, 2)

2 N (2, .5) N (2.25, 0)

3 N (1, 1) N (1.5, .5)

4 N (5, 1) N (2.75, 1)

5 N (4, .5) N (2.5, 3)

Table 1: An illustrative example.

Clearly, expert opinions vary widely under both r1 and r2 and it is not clear which one is

better. How can a decision maker assimilate this information and ultimately choose between the

two alternatives?

The standard way of tackling this problem is to aggregate over experts in some fashion, compute

the resulting aggregate distributions π(·|r1) and π(·|r2), and use them to compare r1 and r2. The

simplest instance of this practice would assign equal weight to each expert and linearly aggregate

the pdfs. Indeed, there is a rich, primarily statistical and management-science, literature that

studies the many different ways such aggregations may be performed. The overarching goal of this

line of research is to derive a unique probability distribution encapsulating expert beliefs. In their

comprehensive surveys, Clemen and Winkler [8, 9] broadly distinguish between (i) mathematical

approaches and (ii) behavioral approaches. Mathematical approaches use the individual pdfs to

construct a single probability distribution in two basic ways: either through axiomatically-justified

mathematical formulas of aggregation, or, where possible, through Bayesian statistical methods

that pay particular attention to issues of dependence and bias. Conversely, behavioral approaches

are more qualitative in nature and involve the direct repeated interaction between experts in order
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to reach consensus on a single “group” estimate.

In contrast to this literature, we suppose that the above setting is one in which the quest for a

unique probability distribution summarizing expert opinion is generically intractable. This could

be due to a variety of reasons: (a) the proposed venture on which expert opinion is sought may be

unprecedented and exceedingly complex; (b) experts may bring to the table different backgrounds,

skills, and visions that are not readily comparable, (c) the decision maker may not have the time

and resources to study expert opinions on a deeper level in order to then combine them, (d) he may

need to make a one-shot investment now, so that he will not be able to learn over time the track

record and quality of an expert’s judgment, (e) he may simply want to simultaneously explore the

consequences of many different aggregation schemes in a systematic fashion.

We do not claim that the above modeling assumptions are the norm, nor that they always call

for different approaches than the ones surveyed by Clemen and Winkler. Rather, we merely argue

that they are not completely implausible and that, when present, may significantly complicate the

computation of a unique distribution. As a result, an alternative modeling framework for addressing

such situations may be sought in the literature on decision making under ambiguity.1 In contrast

to the Bayesian setting, in which probabilities are assigned to events via a unique Bayesian prior,

decision-theoretic models of ambiguity are designed to address situations in which a decision maker

is unable to assign precise probabilistic structure to physical and economic phenomena. This, we

assume, is the environment our decision maker finds himself in.

Acknowledging his inability to objectively assign weights to experts, the decision maker wishes

to examine the implications of many different aggregation schemes. However, he wants to do so

in a systematic and transparent fashion. To this end, suppose that he is willing to consider all

possible aggregation schemes subject to a constraint that no single agent be granted weight more

than a level b̃. The latter could be a normative or operational desideratum in the sense that it

provides a check on the influence of any single expert. Consequently, the decision maker grants

that the payoff of ri can be distributed according to any distribution satisfying
∑5
n=1 pnπn(·|ri) for

a collection of non-negative pn’s such that
∑5
n=1 pn = 1 and maxn pn ≤ b̃. The parameter b̃ can

range from 1/5, implying that all five agents must be granted equal weight, to 1, which means that

the decision maker takes into account all possible aggregation schemes, including ones that assign

zero weight to all but one expert. Alternatively, when b̃ = 1/2, the above requirement could be

considered as the adoption of a sort of “no-dictatorship” clause.

Having parametrized the set of aggregation schemes under consideration in this way, the deci-

sion maker wishes to explore the range of possible outcomes that may occur as a result of choosing

r1 or r2. To this end, the left panel of Figure 1 plots best- and worst-case expected payoffs over the

1See Gilboa and Marinacci [13] for a comprehensive recent survey of this literature.
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sets of priors implied by b̃, in the manner described above. The plot makes clear that for values

of b̃ less than about 0.32, r1 has higher best- and worst-case payoffs than r2, while this relation is

reversed for b̃ greater than about 0.71. In between 0.32 and 0.71, r1 dominates r2 in the best case,

and is dominated by it in the worst case.

The range between the best and worst-case curves encapsulates the range of possible outcomes

of r1 and r2, subject to varying levels of b̃. What has not been provided yet is a criterion for

helping decide between the two investment options. To this end, we assume that the decision

maker’s preferences are captured by a convex combination of the best- and worst- case expected

payoffs. That is, given a choice b̃, the utility he assigns to r1 or r2 is equal to α (∈ [0, 1]) times

the worst-case, plus (1− α) times the best-case expected payoffs, over the set of priors implied by

the bound b̃. This seems like a reasonable way to rank alternatives, given a general ignorance over

how to aggregate experts.2 The right panel of Figure 1 demonstrates the investment option which

dominates in different regions of (b̃, α) space. The red region denotes dominance by r1, whereas

the blue by r2. In agreement with our earlier observations, we see that for b̃ ≤ .32 (≥ .71), r1 (r2)

will always be preferred to r2 (r1), independently of α. For b̃ ∈ (.32, 0.71) the value of α matters.

For example, when b̃ = 1/2 we see that r1 (r2) is preferred as long as α is roughly less (greater)

than 0.5. The implications of the decision maker’s possible choices of b̃ and α have been clearly

laid out in these graphs.
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Figure 1: Applying a variant of the α-maxmin model to the example of Table 1.

2The axiomatic foundations of this choice are well-studied and go back to the work of Arrow and Hurwicz [2] in

the 1970s. We elaborate in the next subsection.
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Our contribution. The decision-theoretic model we introduce and analyze in this paper is an

extended formal treatment of the above intuitive argument. In our setting, a decision maker

elicits the judgment of a set of experts on the effect of R&D investment on the future cost of a

technology.3 Levels of R&D investment r affect the decision maker’s problem in two ways: (a)

they alter experts’ subjective probability distributions on the technology’s future cost and (b) they

are arguments of a utility function that measures the investment’s cost-effectiveness as a function

of R&D expenditure and the resulting technological improvement. As an initial benchmark, our

framework posits equal-weight linear aggregation over experts’ divergent probability distributions.

Subsequently, it considers enlargements of the set of possible aggregation schemes by parameterizing

over their maximum distance, measured via the l2- norm, with respect to the benchmark equal-

weight aggregation. This distance is referred to as aggregation ambiguity. It can be naturally

interpreted as a bound on the total weight that can be assigned to any group of experts, thus

modifying and generalizing the considerations introduced in the previous example with its emphasis

on groups of single agents through parameter b̃. Its value should be objectively assigned by the

decision maker, in accordance with operational or ethical desiderata. Next, our model computes

the best-and worst-case expected outcomes of a given level of R&D investment, subject to the

feasible set of distributions that is implied by assigned levels of aggregation ambiguity. Finally,

the decision maker’s preferences are captured by a convex combination of the best and worst-case

expected outcomes. The relative weights placed on the worst and best cases represent his ambiguity

attitude, the parameter α in the previous example.

Our model nests in a straightforward manner pure averaging and pure best/worst-case opti-

mization. In addition, its simple structure allows for precise analytical insights. Using results from

convex and conic optimization (Alizadeh and Goldfarb [1]), we are able to prove differentiability

with respect to aggregation ambiguity and provide a simple closed-form expression for our value

function and its optimizing arguments. As the optimization problem we are concerned with is a

simple instance of second-order cone programming that is likely to appear in other contexts, these

results may possibly be of more general interest. We proceed to investigate the value function’s

differentiability in R&D investment and, where applicable, provide a closed-form expression for this

derivative. This can subsequently be used to obtain a necessary condition for optimal R&D invest-

ment. We conclude the paper’s theoretical section by arguing that, while non-differentiability of the

value function with respect to investment is in principle possible, it may not be often encountered

in practice.

The paper’s empirical section applies our model to original data from the ICARUS project

3While our formal model is general and can be applied to other contexts of decision making under uncertainty,

we adopt the terminology of “technology” and “R&D investment” for concreteness.
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(Bosetti et al. [4]), a recent expert elicitation survey on the potential of European Union R&D

investment in alternative energy technologies.4 As an initial step, we use the collected data of the

survey to construct experts’ subjective probability distributions on the future cost of solar energy

conditional on R&D investment. Subsequently, we employ an integrated assessment model (Bosetti

et al. [5]) to calculate the benefits of R&D investment (in the form of lower future solar-electricity

costs) and use these estimates to inform our assesment of the relevant R&D alternatives. The

application of our theoretical model to these data suggests that ambiguity plays an important role

in assessing the potential of solar technology. Our analysis allows us to (cautiously) draw two

policy implications: (1) that a doubling of EU investment in solar technology R&D is likely to

yield significant dividends, even after taking ambiguity into account, (2) that a 50% increase in

investment will likely always be less preferred to either a 100% increase, or maintaining the status

quo.

Relation to the literature. The literature on belief aggregation and decision making under

ambiguity is huge and spans a number of different disciplines including economics, statistics, op-

erations research, psychology, and philosophy, among others. Thus, in the following remarks we

focus purely on and describe the contributions which are directly relevant to the formal model we

introduce.

Our framework is a variation of the α-maxmin model that has been studied extensively in the

economic-theory literature beginning with Arrow and Hurwicz [2]. Later contributions by Gilboa

and Schmeidler [14] (whose seminal paper dealt with the pure maxmin model), Ghirardato et

al. [12], Chateauneuf et al. [7], and Eichberger et al. [10] provided axiomatic treatments of similar

models in which a decision maker’s actions are modeled by Savage acts [20], i.e. functions from a

state space to a space of consequences. The model presented herein is not a strict application of this

framework. This is because its decision variables are not functions but real numbers, representing

levels of R&D investment, that enter the value function as arguments of both (a) a utility function

measuring the technology’s payoff as well as (b) the set of priors that the decision-maker is taking

into account when performing his best- and worst-case analysis. This latter element of action-

dependent subjective beliefs is non-standard in the decision-theoretic literature. Jaffray [16] had

first introduced a similar notion with an α-maxmin model based on non-additive belief functions,

while later Ghirardato [11] analyzed a model in which acts map from states to sets of consequences.

More recently, Olszewski [18] studied the α-maxmin model in a related setting in which decision

makers are called to choose between sets of lotteries over which the maximum and the minimum

payoffs are subsequently computed. Moreover, Viero [21] axiomatized the α-maxmin model in a

4For more information see www.icarus-project.org.
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setting in which acts map from states to sets of lotteries, and thus can be viewed as a generalization

of the model of Olszewski.

Evidently, the model we study in this paper may be categorized as an α-maxmin model with

action-dependent subjective probabilities. However, in contrast to the aforementioned papers, our

formal setting is considerably less abstract and we do not pursue axiomatic analyses. Instead, we

take the α-maxmin model’s axiomatic foundations as given and introduce aggregation ambiguity

as a novel (and, we hope, meaningful) model parameter defining the set of priors to be considered.

Subsequently, we devote a great deal of attention to the derivation and differentiability properties

of the α-maxmin value function. Correspondingly, the mathematical machinery we employ is also

quite different than that of the more fundamental literature.

We see the primary virtues of this approach as being those of intuitiveness and practicality.

Allowing for precise analytics and straightforward interpretation, our work aims to extend and

operationalize the insights of the deeper contributions of the literature on the α-maxmin model

to realistic decision-making settings. Indeed, the model we propose is an outgrowth of the need

to develop a tractable theoretical framework to accommodate expert opinions gathered by the

aforementioned ICARUS expert elicitation project (see Section 4).

Paper outline. The structure of the paper is as follows. Section 2 introduces the formal model,

while Section 3 analyzes its theoretical properties. Section 4 illustrates the theoretical results with

original data from the ICARUS expert elicitation survey on solar technology. Section 5 provides

brief concluding remarks and directions for future research. All mathematical proofs, remaining

tables and figures, as well as non-essential supplementary information are collected in an Appendix.

2 Model Description

Consider a set N of experts indexed by n = 1, 2, ..., N . R&D investment is denoted by a variable

r ∈ R and the technology’s cost by c ∈ C, where R and C are subsets of real numbers. An expert

n’s probability distribution of the future cost of technology given investment r is captured by a

random variable having a probability distribution function (pdf)

πn(c|r). (1)

Note that the decision variables of our model (R&D investment) directly affect experts’ subjective

probability distributions of the technology’s cost. This means that our setting is not amenable to

standard decision-theoretic frameworks going back to Savage [20].

Expert beliefs over the economic potential of R&D investment may, and usually do, vary

significantly. The question thus naturally arises: How do we make sense of this divergence when
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studying optimal R&D investment? In the absence of data that could lend greater credibility to

one expert over another, one straightforward way would be to simply aggregate over all pdfs πn as

given by Eq. (1), so that we obtain an “aggregate” joint pdf π̄, where

π̄(c|r) =
N∑
n=1

1

N
πn(c|r). (2)

This approach inherently assumes that each and every expert is equally likely to represent reality,

and makes use of simple linear aggregation. However, a great deal of information may be lost in

such an averaging-out process, especially when there are big differences among experts.

We thus move beyond simple averaging. In our framework each expert n’s pdf πn(c|r) is

weighted by the decision maker through a second-order probability pn. The set of admissible

second-order distributions p depends on the amount of ambiguity the decision maker is willing to

take into account when aggregating across experts, and in particular on how “far” he is prepared to

stray from equal-weight aggregation. Specifically, we consider the set of second-order distributions

P(b) over a set of N experts, parametrized by b ∈
[
0, N−1

N

]
where

P(b) =

{
p ∈ <N : p ≥ 0,

N∑
n=1

pn = 1,
N∑
n=1

(
pn −

1

N

)2

≤ b
}
. (3)

Here, the set P(b) captures the uncertainty of the decision-maker’s aggregation protocol. Thus,

we refer to parameter b it as aggregation ambiguity. Letting eN denote a unit vector of dimension

N , we see that distributions p belonging to P(b) satisfy ||p − eN
N ||2 ≤

√
b, where || · ||2 denotes

the L2-norm. Setting b = 0 implies complete certainty and adoption of the equal-weight singleton,

while b = N−1
N complete ambiguity over the set of all possible second-order distributions.5 (We

discuss the interpretation and implications of different choices of b shortly.)

Weighting the expert pdfs (1) under all aggregation schemes belonging in P(b) induces the

following set of priors

Π(b, r) =

{
N∑
n=1

pn(b)πn(·|r) : p ∈ P(b)

}
(4)

governing the future cost of the technology conditional on R&D investment r. Thus, holding r fixed,

an increase in b implies an expansion of the set of priors a decision maker is willing to consider.

Now, define the real-valued function

u (c, r) : C ×R 7→ <,
5The latter statement holds in light of the fact that values of b > N−1

N
cannot enlarge the feasible set. This is

because the maximizers of
∑N

n=1

(
pn − 1

N

)2
over the set of probability vectors concentrate all probability mass on

one expert, leading to an aggregation ambiguity of
(
1− 1

N

)2
+ (N − 1) ·

(
1
N

)2
= N−1

N
.
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as representing the utility of R&D investment r, under cost realization c. Given investment r,

utility u, and the set of second-order distributions P(b) introduced in (3), we can calculate the

best- and worst-case expected outcomes associated with r, given aggregation ambiguity b. This

provides a measure of the spread, as measured by utility u, between the worst and best-cases, given

a “willingness” to stray from the benchmark equal-weight distribution that is constrained by b.

More formally, we consider the functions

Vmax(r|b) = max
π∈Π(b,r)

∫
C
u (c, r) dπ(c) (5)

Vmin(r|b) = min
π∈Π(b,r)

∫
C
u (c, r) dπ(c). (6)

The functions (5)-(6) fix a level of aggregation ambiguity b and subsequently focus on the best

and worst cases. As such they capture extreme attitudes towards uncertainty in aggregation. To

express more nuanced decision-maker preferences we consider the following value function

V (r|b, α) = α · Vmin(r|b) + (1− α) · Vmax(r|b) α ∈ [0, 1], (7)

representing a convex combination of the worst- and best-cases. The parameter α above captures

the decision maker’s ambiguity attitude. It measures his degree of pessimism given aggregation

ambiguity b: the greater (smaller) α is, the more (less) weight is placed on the worst-case scenario.

Given values for b and α, Eq. (7) operates as an objective function when searching for optimal

investment decisions r.

What do different choices of b imply? We provide a straightforward interpretation of an

ambiguity level b in our model (the interpretation of α is clear). Consider the benchmark equal-

weight aggregation 1
N eN . Now take a set of experts N̂ of cardinality N̂ and begin increasing the

collective second-order probability attached to their pdfs. The convex structure of the feasible set

P(b) enables us to provide a tight upper bound on the maximum total second-order probability

that can be placed on this set of experts, as a function of b and N̂ (we denote
∣∣∣N̂ ∣∣∣ = N̂):

max
p∈P(b)

∑
n∈N̂

pn = min

N̂N + N̂

√
N − N̂
N̂N

b, 1

 . (8)

Extending this logic to any subset of experts, we have the following holding:

p ∈ P(b) ⇔

p ≥ 0,
N∑
n=1

pn = 1,
∑
n∈N̂

pn ≤ min

N̂N + N̂

√
N − N̂
N̂N

b, 1

 , for all N̂ ⊆ N

 .
(9)
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As mentioned before, the value of b should be objectively assigned by the decision maker in

accordance with ethical or operational desiderata. For instance, and again recalling the motivating

example of Section 1, choices of b which seem natural are ones that ensure that no single agent is

granted weight greater than 1/2. Applying this requirement to Eq. (8) would mean that we restrict

ourselves to choices of b satisfying

b ≤ (N − 2)2

4N(N − 1)
. (10)

Yet, while the above restriction is reasonable, we remain agnostic with regard to the determination

of a universally-preferred choice of b, and envision different values to be appropriate in different

contexts. Indeed, when the stakes are very high and disagreement very acute, it may be more

important to set a high value for b and allow for assigning a lot of weight to extreme opinions, than

to respect no-dictatorship considerations leading to bounds such as (10).

3 Theoretical Results

In this section we focus on the optimization problems (5) and (6) and analyze the behavior of value

function V (r|b, α), as we vary ambiguity levels b and R&D investment r. Using results from convex

optimization we are able to compute this function and establish its differentiability in b (everywhere

except at a single point). Differentiablity with respect to r is more subtle and we use the results of

Milgrom and Segal [17] to provide ranges of b and α for which it holds. However, we conclude the

section by arguing that, while non-differentiability of the value function with respect to investment

is in principle possible, it may not be often encountered in practice. Where applicable, we ease

notation in the following manner:6

un(r) ≡
∫
C
u(c, r)dπn(c|r),

Vmax(r, b) ≡ Vmax(r|b) = max
π∈Π(b,r)

∫
C
u (c, r) dπ(c) = max

p∈P(b)

N∑
n=1

pnun(r) (11)

Vmin(r, b) ≡ Vmin(r|b) = min
π∈Π(b,r)

∫
C
u (c, r) dπ(c) = min

p∈P(b)

N∑
n=1

pnun(r). (12)

Eqs. (11) and (12) are valid by the linearity of the expectation operator under mixtures of distri-

butions.

The remainder of the Section is divided into two parts. Section 3.1 studies optimization prob-

lems (11) and (12) under a fixed value of r. Our objective here is to study the effect of varying

levels of b. Section 3.2 uses the results derived in 3.1 to investigate the differentiability of the value

function V (r|b, α) and provide necessary conditions for optimal R&D investment.

6While b is a parameter, we will abuse notation and, throughout Section 3.1, consider it a variable.
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3.1 Varying b under fixed r

In this subsection, we focus our attention on the maximization problem (11) as the results and proofs

for (12) are completely symmetric. This is because Vmin(r, b) = −maxp∈P(b)

∑N
n=1 pn(−un(r)).

Furthermore, while we keep r fixed, we do not suppress it as an argument in order to stress the

results’ dependence on chosen levels of R&D investment.

We begin by proving a few straightforward properties regarding continuity, monotonicity, and

concavity of Vmax(r, b).

Proposition 1 Fix r ∈ R. The function Vmax(r, b) defined in Eq. (11) is increasing, concave, and

continuous in b.

Before we state our next result we need to introduce additional notation. First, let Nk(r)
denote the set of experts sharing the k’th order statistic of {u1(r), u2(r), ..., uN (r)}. There are

a total of N(r) such sets where, depending on the problem instance, N(r) can be any number

in {1, 2, ..., N}, and we define Nk(r) = |Nk(r)|. For instance, and with apologies for the clunky

notation, NN(r)(r) denotes the set of agents sharing the maximum of {u1(r), u2(r), ..., uN (r)}.
Furthermore, let N+

k (r) =
⋃N
i=kNi(r), N−k (r) =

⋃k
i=1Ni(r) and N+

k (r) =
∣∣∣N+

k (r)
∣∣∣, N−k (r) =∣∣∣N−k (r)

∣∣∣. Our model structure enables us to easily show the following Lemma.

Lemma 1 Fix r ∈ R and consider the optimization problem (11). Define ambiguity level b∗max(r) ≡
1

NN(r)(r)
− 1

N . Vmax(r, b) is strictly increasing in b ∈ [0, b∗max(r)] and equal to maxn∈N un(r) in

b ∈ [b∗max(r), N−1
N ].

Lemma 1 suggests that b∗max(r) is an important threshold. It represents the level of aggregation

ambiguity above which the set P(b) allows for the maximum expert estimate to be attained as an

objective function value of (11). Our next result establishes that for levels of ambiguity smaller than

this extreme value, the optimal solutions of problem (11) will be unique and bind the quadratic

ambiguity constraint associated with set P(b).

Proposition 2 Fix r ∈ R. Suppose b ∈ [0, b∗max(r)] and consider the maximization problem (11).

There exists a unique optimal solution pmax(r, b) and it must satisfy the quadratic constraint of

set (3) with equality. For b ∈ (b∗max(r), N−1
N ] all probability vectors pmax(r, b) satisfying pmaxn (r, b) =

0 for n 6∈ NN(r)(r) and
∑
n∈NN(r)

(
pmaxn (r, b)− 1

N

)2
≤ b−

N−
N(r)−1

(r)

N2 will be optimal solutions of (11).

We are now ready to prove the paper’s first main result. Theorem 1 establishes that function

Vmax(r, b) is differentiable with respect to b everywhere on
(
0, N−1

N

)
except at the point b∗max(r).

Moreover, it formalizes a straightforward monotonicity property of the optimal solutions of (11)
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and (12) that is essential to the derivation of the value function pursued in Theorem 2. In proving

Theorem 1 we make extensive use of results from conic optimization, in particular the duality

theory of second-order cone programming (see Alizadeh and Goldfarb [1]).

Theorem 1 Fix r ∈ R.

(a) The function Vmax(r, b) is differentiable with respect to b everywhere on b ∈
(
0, N−1

N

)
except

b∗max(r).

(b) Let pmax(r, b) denote an optimal solution of Vmax(r, b). The following levels of aggregation

ambiguity

bmaxk (r) = min
{
b̂ : ∀b ≥ b̂, we have pmaxn (r, b) = 0 for all n ∈ Nk(r)

}
, (13)

where k ∈ {1, 2, ..., N(r)− 1}, are well-defined and strictly increasing in k.

Part (a) of Theorem 1 shows that, keeping r fixed, Vmax(r, b) is a smooth function of b, except for a

single kink at the level of aggregation ambiguity at which the maximum estimate can be obtained.

Part (b) implies that bmaxk (r) can be interpreted in the following way: it denotes the threshold level

of ambiguity such that, for all b greater than or equal to it, at optimality no probability mass is ever

allocated to experts belonging in N−k (r) (i.e., having a un(r) that is less than or equal to the k’th

order statistic of {u1(r), u2(r), ..., uN (r)}). Thus, when b exceeds this level, one can safely disregard

experts in N−k (r). While the existence and monotonicity of these ambiguity thresholds (13) may

be intuitive, their proofs are relatively involved and require insights from conic duality [1].

Having established differentiability with respect to b, we go on to provide a set of differen-

tial equations that Vmax(r, b) must satisfy. These differential equations will prove valuable in its

subsequent derivation.

Proposition 3 Fix r ∈ R and let pmax(r, b) denote the unique optimal solution of maximization

problem (11) as a function of b ∈ [0, b∗max(r)]. Suppose expert nk satisfies nk ∈ Nk(r). Consider

bmaxk (r) defined in Eq. (13). Vmax(r, b) satisfies the following differential equation:

2
∂

∂b
Vmax(r, b)

(
pmaxnk

(r, b)− 1

N
− b
)

= unk(r)− Vmax(r, b), b ∈ (0, bmaxk (r)) . (14)

Before presenting the paper’s second main result, let u(k)(r) denote the k’th order statistic of

{u1(r), u2(r), ..., uN (r)}, where k = 1, 2, ..., N(r). Now, define the following quantities:

uk(r)
+ =

∑
n∈N+

k
(r) un(r)

N+
k (r)

, (15)

dk(r)
+ = N+

k+1

(
u(k)(r)− uk+1(r)+

)2
, (16)

12



where k ∈ {1, 2, ..., N(r)} (we set d+
N(r) ≡ 0).

The term uk(r)
+ is simply an average of the values of the set {u1(r), u2(r), ..., uN (r)} that are

greater than or equal to its k’th order statistic. The term dk(r)
+ measures the total dispersion

between the k’th expected payoff and the average of those greater than it, adjusted for size of the

latter group.

Now, we use the above quantities to define

b+0 (r) ≡ 0, b+N(r)(r) ≡
N − 1

N
, (17)

b+k (r) =
N−k (r)

N+
k+1(r)N

+

∑N(r)−1
l=k+1 dl(r)

+

N+
k+1(r)dk(r)+

Nk(r)

N+
k (r)

, k ∈ {1, 2, ..., N(r)− 1}. (18)

Straightforward algebra yields the following monotonicity properties, where k ∈ {1, 2, ..., N(r)−
1}:7

N+
k+1(r)dk(r)

+(r) > N+
k+2(r)dk+1(r)+,

b+k (r) < b+k+1(r).

We are now ready to state our second main result and provide a closed-form expression for

Vmax(r, b). To prove the following Theorem, we explicitly solve the systems of differential equations

established in Proposition 3.

Theorem 2 Fix r ∈ R. Consider the optimization problem (11) and the vectors
(
u+(r),d+(r), b+(r)

)
defined in Eqs. (15)-(16)-(17)-(18). The vector b+(r) satisfies

b+k (r) = bmaxk (r) k ∈ {1, 2, ..., N(r)− 1}

where bmaxk (r) is defined in Eq. (13). The function Vmax(r, b) equals

Vmax(r, b) = uk(r)
+ +

√√√√√(b− N−k−1(r)

N+
k (r)N

)N(r)−1∑
l=k

d+
l (r), b ∈

[
b+k−1(r), b+k (r)

)
, (19)

where k = 1, 2, ..., N(r).

Theorem 2 shows that, keeping r fixed, Vmax(r, b) will be a concatenation of appropriately-

specified square-root-like functions (when k = 1, we set
N−
k−1

(r)

N+
k

(r)N
≡ 0).8 These concatenations occur

7Details available upon request.
8These results are consistent with the more general analysis of Section 4.2 in Iyengar [15]. However, Iyengar uses

different arguments and does not prove differentiability in b, nor does he derive and interpret differential equations

and a precise formula for Vmax and its optimal solution pmax (we provide the latter in Corollary 1). Instead, his

analysis is concerned with determining the complexity of calculating an optimal solution of (12).
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at levels of ambiguity bmax which are interpreted by Eq. (13), and can be computed explicitly

through Eq. (18). The curvature of these functions is driven by the dispersion of experts’ expected

estimates, as captured by the quantities dk(r)
+ of Eqs (16).

As we can see from Eq. (8), when k ≥ 2, the fraction
N−
k−1

(r)

N+
k

(r)N
in the square root represents the

minimum level of b at which it becomes possible to assign zero weight to all experts in N−k−1(r).

Hence, the fact that bmaxk−1 (r) = b+k−1(r) >
N−
k−1

(r)

N+
k

(r)N
for all k (see Eq. (18)), ensures that Eq. (19) is

well-defined.

We can now combine the various results we have established to characterize the optimal solution

of (11).

Corollary 1 Consider r ∈ R and b ∈
[
0, N−1

N

]
. Suppose first that b < b+N(r)−1(r). Consider any

expert nl ∈ Nl(r) for some l ∈ {1, 2, ..., N(r)}. There exists a unique optimal solution pmax(r, b)

and it satisfies

pmaxnl
(r, b) =


1

N+
k

(r)
+ (unl(r)− uk(r)+)

√
b−

N−
k−1

(r)

NN+
k

(r)√∑N(r)−1

i=k
d+i (r)

b ∈
[
b+k−1(r), b+k (r)

)
, k = 1, 2, ..., l

0 b ∈
[
b+l (r), b+N(r)−1(r)

)
.

Now suppose b ≥ b+N(r)−1(r). Here, by Proposition 2 all vectors pmax(r, b) satisfying pmaxn (r, b) = 0

for n 6∈ NN(r)(r) and
∑
n∈NN(r)

(
pmaxn (r, b)− 1

N

)2
≤ b −

N−
N(r)−1

(r)

N2 will be optimal. This set is a

singleton at b = b+N(r)−1(r).

Corollary 1 provides succinct expressions for the optimal expert probabilities given investment

r and aggregation ambiguity b.

3.2 Necessary conditions for optimal R&D investment r

We now shift the focus of our analysis to investigate the differentiability of value function V (r|b, α),

given by Eq. (7), with respect to r.9 Here, the picture is considerably more subtle. We use the

results of Milgrom and Segal [17] to state the following Theorem.

Theorem 3 Fix b ∈
[
0, N−1

N

]
and α ∈ [0, 1] and consider the value function V (r|b, α) given by

Eq. (7). Assume R = [rm, rM ] ⊂ < and that the functions un(r) are continuously differentiable on

R for all n ∈ N . Let Pmax(r, b) and Pmin(r, b) denote the sets of optimal solutions of problems (11)

and (12) respectively, as given by Corollary 1 and its equivalent statement for the minimization

9We now return to considering b as a parameter of the value function.
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problem. The function V (·|b, α) : R → < is differentiable at r0 ∈ (rm, rM ) if and only if the set{
N∑
n=1

(
αpminn (r0, b) + (1− α)pmaxn (r0, b)

) d

dr
un(r0)

}

is a singleton. In that case,

dV

dr
(r0|b, α) =

N∑
n=1

(
αpminn (r0, b) + (1− α)pmaxn (r0, b)

) d

dr
un(r0), (20)

for all pairs of optimal pmin(r0, b) ∈ Pmin(r0, b) and pmax(r0, b) ∈ Pmax(r0, b).

Theorem 3 in combination with Proposition 2 allows us to establish the differentiability of the

value function V (r|b, α) at a point r = r0 for a range of b and α.

Corollary 2 Suppose the assumptions of Theorem 3 hold. The function V (·|b, α) : R → < is dif-

ferentiable at r0 ∈ (rm, rM ) for all b ∈ [0,min {b∗max(r0|α), b∗min(r0|α)}] where b∗max(r|α) = b∗max(r)

if α < 1 and N−1
N otherwise and b∗min(r|α) = b∗min(r) if α > 0 and N−1

N otherwise. The derivative

is given by Eq. (20) where pmax(r0, b) and pmin(r0, b) are uniquely defined by Corollary 1.

Conversely, Theorem 3 also suggests that it is possible for the function V (r|b, α) to be non-

differentiable at a value r0 for a nontrivial range of b and α. This non-differentiability is due to the

fact that for b > b∗max(r0) (b∗min(r0)) optimization problem maxp∈P (b)
∑N
n=1 pnun(r0) (minp∈P (b)

∑N
n=1 pnun(r0))

admits multiple optimal solutions. Consequently, within this range of (b, α), a derivative at r = r0

will generally fail to exist. Proposition 4 formalizes this observation.

Proposition 4 Suppose the conditions of Theorem 3 hold and consider r0 ∈ (rm, rM ).

(a) Suppose there exist two experts n1 and n2 satisfying
dun1

dr (r0) 6= dun2
dr (r0) and n1, n2 ∈

NN(r0)(r0) (N1(r0)). Then the function Vmax(r|b) (Vmin(r|b)) is not differentiable at r = r0

for all b > b∗max(r0) (b > b∗min(r0)).

(b) Suppose α ∈ (0, 1). If there exist experts n1 and n2 satisfying
dun1

dr (r0) 6= dun2
dr (r0) such that

n1, n2 ∈ N1(r0) then the function V (r|b, α) is not differentiable at r = r0 for all b > b∗min(r0).

If there exist experts n3 and n4 satisfying
dun3

dr (r0) 6= dun4
dr (r0) such that n3, n4 ∈ NN(r0)(r0)

then the function V (r|b, α) is not differentiable at r = r0 for all b > b∗max(r0).

In instances described by Proposition 4, it is clear that one cannot use first-order conditions

to establish the potential optimality of an R&D investment r0. This non-differentiability is an

unsatisfying, though not entirely unexpected, consequence of the maxmin nature of our model.
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It stems from the fact that beyond a certain level of aggregation ambiguity there may exist a

multiplicity of aggregation schemes that combine to yield the absolute maximum and minimum

payoffs. Nevertheless, in the remainder of this section, we suggest that such non-smoothness issues

may not, to a significant degree, encountered in practice.

Addressing non-differentiability. Given Corollary 2 and Proposition 4, we would like to nar-

row the range of b and α over which V (r|b, α) would fail to be differentiable. For this purpose, we

provide a plausible lower bound on problematic ranges of b with the following informal argument.

Consider carefully the continuously differentiable functions un(r) =
∫
c∈C u(c, r)dπn(c|r). Since sub-

jective probability distributions will generally differ across experts, then, assuming the domain C is

moderately large, it is unlikely that at any point r0 we will have more than 2 experts sharing the

same expected payoff, including the maximum and minimum values of {u1(r0), u2(r0), ..., uN (r0)}.
Therefore, it is likely that N1(r) ≤ 2 and NN(r)(r) ≤ 2 for all r ∈ R. This observation leads to the

following bound

min
r∈R

min{b∗max(r), b∗min(r)} ≥ 1

2
− 1

N
=
N − 2

2N
,

so that Corollary 2 implies that V (·|b, α) will be, at the very least, everywhere differentiable for

any choice of α ∈ [0, 1] and b ≤ N−2
2N . If we assume that decision makers are constrained in their

maximal choice of b due to, say, the no-dictatorship requirements leading to bounds such as those

of Eq. (10), then potentially problematic ranges of b ≥ N−2
N are less likely to be considered and the

negative result of Proposition 4 loses its bite.

Related to the above, Corollary 2 implies the diffentiability of V (·|b, α) at all r0 ∈ (rm, rM ),

for all b and α, for an important special case: that in which there exists a pair of experts that are

consistently the most optimistic and pessimistic across all levels of R&D. If surveyed experts have

different backgrounds, such consistently optimistic and pessimistic opinions may occur.

Corollary 3 Suppose the conditions of Theorem 3 hold and there exist two experts n1 and n2 such

that un1(r) > un(r) for all n 6= n1 and un2(r) < un(r) for all n 6= n2, for all r ∈ R. In other

words, experts n1 and n2 are consistently the most optimistic and pessimistic across all levels of

R&D. Then Theorem 3 implies that V (r|b, α) is differentiable at all r0 ∈ (rm, rM ) for all choices

of b and α, with its derivative given by Eq. (20).

Hence, for problem instances satisfying the conditions of Corollary 3, first-order conditions

that make use of Eq. (20) may be always invoked to solve for the maximizer of the value function

V (r|b, α), regardless of the values of b and α. To be sure, these conditions will be necessary, though

not in general sufficient, for optimality.
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4 Empirical Application to Solar-Technology R&D

We base the empirical application of our paper to original data collected by the ICARUS survey,

an expert elicitation on the potential of solar technologies. During the course of 2010-2011, the

ICARUS survey collected expert judgments on future costs and technological barriers of different

Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies.10 Sixteen leading European

experts from academia, the private sector, and international institutions took part in the survey.

The elicitation collected probabilistic information on (1) the year-2030 expected cost of the tech-

nologies; (2) the role of public European Union R&D investments in affecting those costs; and (3)

the potential for the deployment of these technologies (both in OECD and non-OECD countries).

We refer readers interested in the general findings of the survey to Bosetti et al. [4] and we focus

here on the data on future costs as they form the basis of our analysis.

Current 5-year EU R&D investment in solar technology is estimated at 165 million US dollars.

The ICARUS study elicited the probabilistic estimates of the 16 experts on the 2030 solar electricity

cost (2005 c$/kWh) under three future Scenarios: (1) keeping current levels of R&D constant until

2030, (2) increasing them by 50%, and (3) increasing them by 100%. Coherent responses were

obtained from 14 out of the 16 experts so the analysis that follows focuses solely on them. We used

linear interpolation of the survey’s collected data (generally 3-6 points of each expert’s cumulative

distribution function(cdf) conditional on R&D investment) to compute a pdf for each expert n ∈
{1, 2, ..., 14}, given the three relevant levels of R&D investment denoted by r ∈ {r1, r2, r3} (here

ri refers to Scenario i).11 These pdfs represent experts’ subjective probability distributions of the

cost of technology as denoted in Eq. (1). Figure 2 plots the corresponding cdfs as well as the cdf

that the aggregate pdf (2) leads to, under all three Scenarios.

[FIGURE 2 here]

As one can see in Figure 2 there is considerable disagreement between experts over the potential

of solar technology. This disagreement is particularly acute under Scenario 1, and diminishes

as R&D levels increase. Nonetheless, the breakthrough nature of innovation and the need to

cross certain firm cost thresholds, means that ambiguity in expert estimates remains an important

concern, even under Scenario 3. This will become apparent in the analysis to follow.

We measure the utility of an investment via its net payoff. Denoting the benefit associated to

10The survey is part of a 3-year ERC-funded project on innovation in carbon-free technologies (ICARUS - Innovation

for Climate chAnge mitigation: a study of energy R&D, its Uncertain effectiveness and Spillovers www.icarus-

project.org).
11Please refer to section A2 of the Appendix for more information on how expert pdfs were constructed from the

ICARUS survey data.
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a technology cost c by the function B(c) and the opportunity cost of an investment r by O(r), this

is given by the following utility function:

u(c, r) = B(c)−O(r). (21)

The next section describes how we provide numerical values for B(·) and O(·).

Quantifying benefits and opportunity costs of solar technology R&D. Expected benefits

of solar technology R&D investments are quantified via a general equilibrium intertemporal model

that can account for a range of macro-economic feedbacks and interactions. These include the effects

of energy and climate change policies, the competition for innovation resources with other power

technologies, the effect of growth, as well as a number of other factors.12 To capture the long-term

nature of such investments, the integrated assessment model is run over the time horizon 2105-2100

in 5-year time periods for the whole range of exogenously-imposed possible 2030-costs of solar power

that we are considering. Subsequently, simulation results are compared to the benchmark case in

which the cost of solar power is so high that the technology is not competitive with alternative

production modes. For each possible 2030 solar-power cost, the benefit to the European Union is

quantified by the discounted EU-consumption improvement over the entire time-horizon 2005-2100

with respect to the case where solar technology is not competitive. Table 2 summarizes the results.

[TABLE 2 here]

Three important assumptions are at the basis of the numbers reported in Table 1. First, as the

survey concentrated on public EU R&D investment and the effects of increasing it, we disregard

spillovers and technological transfers to the rest of the world and consider only the consumption

improvement for Europe. Second, we evaluate the benefit of alternative 2030 costs of solar power

assuming that no carbon policy is in place and that no special constraints on other technologies

are imposed (e.g., a partial ban on nuclear technology). Third, we discount cash flows using a 3%

discount rate. Although our choice is well in the range of discount rates adopted for large scale

public projects, it is important to note that the cost threshold for positive payoffs is robust for

a wide range of more myopic discount rate values. Our assumptions all err on the side of being

conservative about the potential payoffs of solar-technology R&D.

We now explain how we calculate the costs of solar R&D investment. Given an R&D investment

r, we assume that actual R&D spending is fixed at r during the period 2005-2030, in line with the

12The analysis is carried out using the World Induced Technical Change Hybrid (WITCH) model (Bosetti et al. [5]),

an energy-economy-climate model that has been used extensively for economic analysis of climate change policies.

See www.witchmodel.org for a list of applications and papers.
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survey questions. After 2030 we assume that spending drops to half its initial value, i.e. r/2,

and remains at that level until 2100. This drop occurs because we assume that post-2030 funds

represent the government’s commitment to maintain the technological gains achieved by 2030. We

now derive the discounted opportunity cost of such expenditure streams of solar-technology R&D

spending. In doing so we follow Popp [19] and assume that, at every time period, this opportunity

cost is equal to 4 times the original investment. Thus, in our model the opportunity cost of a level

of R&D investment r is given by the net present value of the stream O(t) where O(t) = 4 · r for

t = 1, 2, ..., 6 and 2 ·r for t = 7, 8, ..., 20 (once again we use a 3% discount rate). Table 3 summarizes

these results for the three R&D Scenarios that the ICARUS survey focused on.

[TABLE 3 here]

Application of the decision-theoretic framework. We now extend our analysis to explicitly

account for aggregation ambiguity and adopt the decision-theoretic model introduced in Section

2.13 Our objective is to compare the three R&D Scenarios, and we do not consider optimizing over

a continuous R&D domain R. We make this choice primarily because we wish to keep the applied

section brief and pursue more in-depth empirical analysis in future work.14

Figure 3 plots Vmax
(
r, b2

)
and Vmin

(
r, b2

)
over b ∈

[
0,
√

13
14

]
≈ [0, .96] for the three Scenarios.

The parametrization b2 is adopted since it allows us to (a) dampen the curvature of the original

functions as given by Theorem 2 and (b) interpret the parameter b as a bound on the Euclidean

distance of admissible aggregation schemes with respect to the benchmark equal-weight aggregation.

[FIGURE 3 here]

Focusing first on Scenario 1, we note that pure aggregation of expert opinion (corresponding to

b = 0) yields a payoff of approximately $1.36×109. We observe that the worst-case payoff drops to

about $− 3.4× 109 at b ≈ .25 at which point it largely stops being sensitive to changes in b, slowly

asymptoting to its minimum value of $−3.67×109; in contrast, the best-case one increases steadily

to a maximum value of $22.7× 109 at the maximum level of b = .96. Under Scenario 2, the payoff

under zero ambiguity is equal to $7.8× 109. Subequently, we see that the worst-case payoff drops

to 0 at b = 0.15, at which point it keeps decreasing at a smaller rate until it practically reaches its

minimum value of $− 5.5× 109 at b ≈ .55. Conversely, the best-case payoff rises steadily to about

$32 × 109 for b ≈ .55 at which point it continues to rise at a much smaller rate until it reaches a

maximum value of $33.3 × 109 at b = .96. Thus for Scenario 2, aggregation uncertainty becomes

13All simulations are performed in Mathematica.
14Indeed, constructing plausible approximations of experts’ un(r) functions over an interesting range of r will likely

require further engagement with the experts.
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largely unimportant once b reaches the threshold of 0.55. Under Scenario 3 the unambiguous payoff

is around $20 × 109, significantly higher than both other Scenarios. The worst-case payoff drops

relatively smoothly to a minimum value of $− 7.35× 109 for b = .96, while the best-case one rises

at a comparatively higher rate to $70.9× 109.

It is clear that aggregation ambiguity is important under Scenario 3, for both the worst- and

best-case payoffs, significantly more so than under Scenarios 1 and 2. This fact is interesting in

light of Figure 1, which shows that experts’ pdfs are much more dispersed under Scenarios 1 and 2

than they are under 3. The reason behind this seemingly unexpected result is straightforward. As

Table 1 suggests, expected payoffs of R&D investment are very sensitive at low cost values, i.e., less

than 8c$/kWh. The more aggressive investment of Scenario 3 has a greater effect on these lower

cost values, and therefore its best- and worst-case payoffs are in turn more sensitive to changes in

b.

We now consider the effect of ambiguity attitude on the decision maker’s problem. Figure

4 plots the value function V
(
r|b2, α

)
given by Eq. (7) for all three investment Scenarios, over

all levels of aggregation ambiguity and a decision-maker’s attitude toward it. This allows policy

makers to visualize the effects of the three R&D investment decisions over the entire range of

possible ambiguity levels and ambiguity attitudes. As we expect from Figure 3, Scenario 3 fares

much better than both 1 and 2 over a very wide range of b and α, and is much more sensitive to

changes in both.

[FIGURE 4 here]

Figure 5 goes a step further and compares the three R&D Scenarios for all possible combinations

of b and α. Following the color scheme of Figure 3, a region’s color corresponds to the Scenario that

performs the best within it, while the bold numbers within regions denote the relative order of the

three Scenarios within this range of (b, α) (e.g., an expression “321” means Scenario 2 dominates

1, and Scenario 3 dominates both 2 and 1).

[FIGURE 5 here]

Figure 5 makes clear that Scenario 3 dominates 1 and 2 for an extremely wide range of com-

binations of b and α. Conversely, Scenario 1 is the best option for a combination of very high b

and α. Somewhat surprisingly, we see that Scenario 2 is dominated by either 1 or 3 for all possible

combinations of b and α and thus will never be chosen by a decision maker whose preferences

are captured by Eq. (7). Thus, on the basis of the presented data, it is clear that policy makers

should opt for the most aggressive R&D investment, unless they are both (a) open to ignoring

a very large set of surveyed experts (b) extremely concerned about the possibility of worst-case
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failure. Moreover, assuming all three options are readily implementable, they can safely disregard

the middle-range R&D investment implied by Scenario 2.

5 Conclusions and Directions for Future Work

Structured expert surveys can play an important role in assessing the potential of uncertain invest-

ments. If designed well, they may be able to capture in a transparent and objective way subjective

probabilities that can subsequently be used as scientific data in the decision maker’s deliberations.

Yet, gathered information can vary substantially across experts. In particular, if the elicitation

is designed correctly it should exactly aim at covering all prevailing “visions” about the specific

investment. The different backgrounds and perspectives that experts bring to the elicitation process

imply that collected subjective probability distributions will, more often than not, span a wide and

potentially confusing spectrum.

Condensing all of the problem’s uncertainty into one single average probability distribution

may, especially in cases where standard aggregation methods cannot be readily applied, conceal

important information and yield policy recommendations that are not robust. To deal with this

issue, we proposed and analyzed a novel decision-theoretic framework inspired by the well-studied

α-maxmin model. In line with the paper’s focus on R&D investment, decision variables in our

model affect experts’ subjective probability distributions of the future cost-effectiveness of an in-

vestment. We applied our framework to original data from a recent expert elicitation survey on

solar technology. The analysis suggested that more aggressive investment in solar technology R&D

is likely to yield substantial benefits even after ambiguity over expert opinion has been taken into

account.

Our work suggests several fruitful avenues for future research. A particularly challenging one

would be to extend the model to take into account meaningful nonlinear functions of higher moments

of the considered mixture distributions. For example, settings where Vmax would be equal to an

expression like maxπ∈Π(b,r)
Eπ [u(r)]√
Varπ [u(r)]

and Vmin its minimization analogue. This change would

introduce nonlinearities that significantly complicate the analysis of Section 3. Alternatively, one

could keep the current framework and take into account issues of dependence and bias across experts

by modifying the constraint implied by the set P(b). On the applied front, extensions of this work

would delve deeper into the ICARUS survey data to obtain more data points and ultimately solve

for optimal R&D investment over a continuous domain R.
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Appendix

A1: Proofs

To ease notation, in our proofs we suppress dependence on R&D investment r except where neces-

sary.

Proposition 1. We prove the Proposition for Vmax(b) (the argument for Vmin(b) is analogous).

That Vmax(b) is increasing in b follows by definition. Consider the optimization problems given by

the right-hand-side of Eq. (11) for b1 ∈ [0, N−1
N ] and b2 ≥ b1 and denote their optimal solutions by

pmax(b1) and pmax(b2) respectively. By feasibility we may note the following:

N∑
n=1

(
pmaxn (b1)− 1

N

)2

≤ b1,
N∑
n=1

(
pmaxn (b2)− 1

N

)2

≤ b2. (22)

Consider a convex combination of b1 and b2 given by b(λ) = λb1 + (1− λ)b2 for some λ ∈ [0, 1] and

the optimization problem

Vmax(b(λ)) = max
p∈P(b(λ))

N∑
n=1

pnmn. (23)

To prove concavity of Vmax in b it suffices to show that

Vmax(b(λ)) ≥ λVmax(b1) + (1− λ)Vmax(b2).

To this end, consider the probability vector given by

p(λ) = λpmax(b1) + (1− λ)pmax(b2).

By feasibility of pmax(b1) and pmax(b2) we immediately deduce that p(λ) ≥ 0 and that
∑N
n=1 pn(λ) =

1. Now we may write

N∑
n=1

(
pn(λ)− 1

N

)2

=
N∑
n=1

(
λ

(
pmaxn (b1)− 1

N

)
+ (1− λ)

(
pmaxn (b2)− 1

N

))2

triangle ineq.

≤

λ( N∑
n=1

(
pmaxn (b1)− 1

N

)2
) 1

2

+ (1− λ)

(
N∑
n=1

(
pmaxn (b2)− 1

N

)2
) 1

2


2

(22)

≤
[
λ
√
b1 + (1− λ)

√
b2
]2
≤
[√

λb1 + (1− λ)b2

]2

= b(λ). (24)

By Eq. (24) and the observations immediately preceding it we can conclude that p(λ) is feasible

for optimization problem (23). Thus we may write

Vmax(b(λ)) ≥
N∑
n=1

p(λ)nun = λ
N∑
n=1

pmaxn (b1)un + (1− λ)
N∑
n=1

pmaxn (b2)un

= λVmax(b1) + (1− λ)Vmax(b2),
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where the last equality follows from the assumed optimality of pmax(b1) and pmax(b2). We now

proceed to show continuity. By concavity Vmax(b) will be continuous on the open interval (0, N−1
N )

so we need only consider the endpoints 0 and N−1
N . Since Vmax(b) is increasing in b we must have

limb→(N−1
N

)− Vmax(b) ≤ Vmax(N−1
N ). However, if limb→(N−1

N
)− Vmax(b) < Vmax(N−1

N ) then we reach

a contradiction if we apply concavity to (N − 1)/N and other values of b.

To prove continuity at b = 0 consider an ε > 0. Now let δ > 0 and write

|Vmax(δ)− Vmax(0)| = Vmax(δ)− Vmax(0) =
N∑
n=1

(
pmaxn (δ)− 1

N

)
un

≤ max
n∈N
|un|

N∑
n=1

∣∣∣∣pmaxn (δ)− 1

N

∣∣∣∣
Hölder’s ineq.

≤ max
n∈N
|un|

[
N∑
n=1

(
pmaxn (δ)− 1

N

)2
] 1

2

≤ max
n∈N
|un|
√
δ.

Thus, any choice of 0 < δ < ε2

(maxn∈N |un|)2 will ensure that |Vmax(δ)− Vmax(0)| < ε, completing the

proof.

Lemma 1. The function Vmax(b) is bounded above by un for any n ∈ NN(r). This upper bound

is attained by a probability vector p if and only if it satisfies∑
n∈N̂

pn = 1, for some N̂ ⊆ NN(r)

Consider a subset N̂ ⊆ NN(r), with cardinality N̂ . Eq. (8) implies that the value of b at which it

first becomes possible to assign probability 1 to subset N̂ is given by

b(N̂ ;N) =
1

N̂
− 1

N
.

The minimizer of b(N̂ ;N) over N̂ ⊆ NN(r) is the entire set NN(r), yielding the desired result.

Now consider b < b∗max and the optimal solution pmax(b). As b < b∗max there must exist

a j 6= NN(r) such that pmaxj (b) > 0. Now consider increasing b by an amount ε. For δ > 0

small enough the solution p̃ which is identical to pmax(b) except that p̃j = pmaxj (b) − δ and

p̃k = pmaxk (b) + δ for some k ∈ NN(r) will be feasible and result in a strictly greater objective value,

so that Vmax(b+ ε) > Vmax(b). Equivalent reasoning applies to the Vmin case.

Proposition 2. Suppose first that b = b∗max. It is clear here that the unique optimal solution is

given by pmax such that pmaxn = 1/NN(r) for all n ∈ NN(r) and pmaxn = 0 otherwise. The quadratic

ambiguity constraint binds by the definition of b∗max.
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Consider now the case b < b∗max and suppose there exists an optimal solution pmax(b) such

that the quadratic ambiguity constraint is slack. As b < b∗max there must exist an j 6= NN(r)

such that pmaxj (b) > 0. For ε > 0 small enough the solution p̃max in which p̃j = pmaxj (b) − ε

and p̃k = pmaxk (b) + ε for some k ∈ NN(r) will be feasible and result in a strictly greater objective

value, contradicting pmax(b)’s optimality. Thus, all optimal solutions must satisfy the quadratic

ambiguity constraint with equality.

We now prove uniqueness. Suppose there exist two optimal solutions pmax,1 and pmax,2. By

the preceding argument they must bind the quadratic ambiguity constraint. Consider the set of

probability vectors given by their convex combinations

p(λ) = λpmax,1 + (1− λ)pmax,2, λ ∈ [0, 1].

For λ ∈ (0, 1), p(λ) will satisfy the ambiguity constraint with strict inequality, since:

N∑
n=1

(
pn(λ)− 1

N

)2

=
N∑
n=1

(
λ

(
pmax,1n − 1

N

)
+ (1− λ)

(
pmax,2n − 1

N

))2

strict convexity

<
N∑
n=1

[
λ

(
pmax,1n − 1

N

)2

+ (1− λ)

(
pmax,2n − 1

N

)2
]

= λ
N∑
n=1

(
pmax,1n − 1

N

)2

+ (1− λ)
N∑
n=1

(
pmax,2n − 1

N

)2

= λb+ (1− λ)b = b.

Thus all solutions p(λ) are feasible. That they are optimal follows trivially by the assumed opti-

mality of pmax,1,pmax,2 and the linear objective function of (11). But this is a contradiction as all

optimal solutions must satisfy the quadratic ambiguity constraint with equality. The second claim

of the Proposition regarding b > bmax is trivial.

Theorem 1. We prove the result for Vmax; the argument for Vmin is analogous. To do so we

need to invoke results from conic duality. We begin with part (a). Given x = (x0, x̄) ∈ <n+1 we

introduce the following notation to denote inclusion in a second-order cone of dimension n+ 1

(x0, x̄) ∈ L2
n+1 ⇔ x0 ≥ ||x̄||2.

We follow Alizadeh and Goldfarb [1] to write (11) as a primal conic program P(b) and introduce its

dual D(b) (for clarity, next to the primal constraints we indicate the corresponding dual variables):
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max
p,q,q0,θ

N∑
n=1

unpn

s.t. −pn + qn = 0, ∀n ∈ N , (yn)
N∑
n=1

−pn = −1, (y0)

P(b) θn = 0, ∀n ∈ N , (γn)

q0 =

√
b+

1

N
, (β0)

(pn, θn) ∈ L2
2, ∀n ∈ N

(q0,q) ∈ L2
n+1,

min
y,y0,γ,β0,zp,zq,zq0,zθ

y0 +

√
b+

1

N
β0

s.t. −y0 − yn + zpn = −un, ∀n ∈ N

yn + zqn = 0, ∀n ∈ N

γn + zθn = 0, ∀n ∈ N

D(b) −β0 + zq0 = 0

(zpn, zθn) ∈ L2
2, ∀n ∈ N

(zq0,−zq) ∈ L2
n+1.

Since both the primal and the dual have feasible strictly interior solutions, strong duality holds

(see Theorem 13 of [1]). Without loss of generality, we can immediately simplify D(b) by setting

zθ = γ = 0 and zp ≥ 0. Correspondingly, we can eliminate the variable zq by replacing it with

−y. Finally, it is evident that at optimality the quadratic constraint of the dual will be binding so

that z∗q0 = β∗0 =
√∑N

n=1(−yn)2 =
√∑N

n=1 y
2
n. Collecting all of these observations we may re-write

the dual in the following much simpler way:

D1(b) = min
y,y0

y0 +

√
b+

1

N

√√√√ N∑
n=1

y2
n

s.t. −un + y0 + yn ≥ 0, n = 1, 2, ..., N. (25)

Examining (25) we deduce that at optimality y∗n = max(0, un−y0). Thus we may simplify the dual

even further to an unconstrained optimization problem with just one variable:

D2(b) = min
y0

y0 +

√
b+

1

N

√√√√ N∑
n=1

max(0, un − y0)2. (26)

By strong duality the dual optimal objective will be bounded between 1
N

∑N
n=1 un and u(N(r)). We

immediately see that solutions satisfying y0 > u(N(r)) result in strictly greater objective function

values than y0 = u(N(r)), so that we can safely disregard them. Conversely, solutions satisfying

y0 < 0 yield

y0 +

√
b+

1

N

√√√√ N∑
n=1

max(0, un − y0)2 = y0 +

√
b+

1

N

√√√√ N∑
n=1

(un − y0)2

> y0 +
√
Nb+ 1(|u(1)| − y0) =

√
Nb+ 1|u(1)|+ y0(1−

√
Nb+ 1).

Thus, values of y0 <
|u(N(r)|

1−
√
Nb+1

result in a strictly greater objective function value than y0 = u(N(r))

and hence can also be disregarded. With these observations we may rewrite the dual (26) in the
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following way:

D3(b) = min
y0∈
[ |u(N(r))|

1−
√
Nb+1

,u(N(r)

] y0 +

√
b+

1

N

√√√√ N∑
n=1

max(0, un − y0)2 (27)

The domain of D3(b) is thus compact, for any b > 0. For values of b ∈ [0, b∗max) we know that the

optimal solution of the primal will be strictly less than u(N(r)). Thus, strong duality implies that

for all b ∈ (0, b∗max), any optimal solution y∗(b) must satisfy y∗(b) < u(N(r)−1). However, notice

that the objective function of D3 is strictly convex for y0 < u(N(r)−1). Thus, we may deduce that

when b ∈ (0, b∗max) D3(b) admits a unique optimal solution y∗0(b).

The above observation implies that we can apply Danskin’s theorem (see Proposition B.25 in

Bertsekas [3]) to conclude that the optimal dual objective value, and therefore by strong duality

Vmax(b) as well, is differentiable at all b ∈ (0, b∗max) and that

dVmax
db

(b) =

√∑N
n=1 max(0, un − y∗0(b))2

2
√
b+ 1

N

, b ∈ (0, b∗max). (28)

Before we proceed with investigating the endpoints b = 0 and bmax, we show that y∗0(b) is

strictly increasing in b ∈ (0, b∗max). Consider b1 < b2 with both belonging in (0, b∗max) and their

optimal solutions y∗0(b1) and y∗0(b2). By uniqueness of y∗0(b) in this range of b we have

y∗0(b1) +

√
b1 +

1

N

√√√√ N∑
n=1

max(0, un − y∗0(b1))2 < y∗0(b2) +

√
b1 +

1

N

√√√√ N∑
n=1

max(0, un − y∗0(b2))2

y∗0(b2) +

√
b2 +

1

N

√√√√ N∑
n=1

max(0, un − y∗0(b2))2 < y∗0(b1) +

√
b2 +

1

N

√√√√ N∑
n=1

max(0, un − y∗0(b1))2.

Summing the above inequalities and rearranging terms yields(√
b2 +

1

N
−
√
b1 +

1

N

)
√√√√ N∑
n=1

max(0, un − y∗0(b1))2 −

√√√√ N∑
n=1

max(0, un − y∗0(b2))2

 > 0

⇒

√√√√ N∑
n=1

max(0, un − y∗0(b1))2 −

√√√√ N∑
n=1

max(0, un − y∗0(b2))2 > 0⇒ y∗0(b2) > y∗0(b1).

We discuss now the differentiability of Vmax at b ∈ {0, b∗max}. At b = 0 the domain of (27) is

no longer bounded below and therefore we can no longer invoke Danskin’s theorem. Consequently,

we reason in a different way. By continuity (recall Proposition 1) we must have

lim
b→0+

Vmax(b) =
N∑
n=1

un
N
⇔ lim

b→0+
y∗(b) +

√
1

N

√√√√ N∑
n=1

max(0, un − lim
b→0+

y∗(b))2 =
N∑
n=1

un
N
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The strict monotonicity of y∗(b) and Hölder’s inequality imply that limb→0+ y
∗(b) < 0. Subse-

quently, simple algebra obtains:

lim
b→0+

y∗(b)−
∑N
n=1 un
N

= −

√√√√ 1

N

N∑
n=1

(un − lim
b→0+

y∗(b))2

If we take squares now on both sides and re-apply Hölder’s inequality, we see that

lim
b→0+

y∗(b) = −∞ ⇒ lim
b→0+

dVmax
db

(b) = +∞.

Now we consider b = b∗max. Note that the optimal solution y∗0(b∗max) is not unique; instead it

can take any value in the interval [u(N(r)−1), u(N(r))]. Hence Danskin’s theorem implies that the

subdifferential of Vmax(b) at b∗max will consist of all convex combinations of

√
N(N(r))(u(N(r))−u(N(r)−1))

2
√
b∗max+ 1

N

and 0.

We now prove part (b). Let us go back to the original primal-dual pair (P(b),D(b)) and

consider a pair of optimal solutions of the primal and dual problems. By Proposition 2 the primal

optimal solution (p∗(b),q∗(b),θ∗(b), q∗0(b)) is unique, while our reasoning in part (a) established

the uniqueness of the optimal dual variables (β∗0(b),y∗(b), y∗0(b), z∗p(b), z∗q(b)). Applying Theorem

16 and part (ii) of the complementarity conditions of Lemma 15 of Alizadeh and Goldfarb [1], we

arrive at the following conditions:

q∗0(b)z∗qn(b) + β∗0(b)q∗n(b) = 0⇔ −
√
b+

1

N
y∗n(b) +

√√√√ N∑
n=1

y∗n(b)2p∗n(b) = 0, n = 1, 2, ..., N

⇔ −
√
b+

1

N
max(0, un − y∗0(b)) +

√√√√ N∑
n=1

max(0, un − y∗0(b))2 p∗n(b) = 0, n = 1, 2, ..., N.(29)

When b < b∗max, strong duality implies y∗0(b) < u(N(r)−1) which in turn ensures
∑N
n=1 max(0, un −

y∗0(b))2 > 0. As mentioned earlier, when b = b∗max y
∗
0(b) can take any value in [u(N(r)−1), u(N(r))]

so we choose one that again yields
∑N
n=1 max(0, un − y∗0(b∗max))2 > 0. Hence, the complementarity

conditions (29) yield

p∗n(b) = 0⇔ un − y∗0(b) ≤ 0, n = 1, 2, ..., N. (30)

Since y∗0(b) is strictly increasing in b in (0, b∗max) and limb→0+ y
∗
0(b) = −∞ and limb→b∗max− y

∗(b) =

u(N(r)−1), Eq. (30) implies the existence of a set {b1, b2, ..., bN(r)−1} such that

0 < b1 < b2 < .... < bN(r)−1 = b∗max{{
p∗n(b) = 0 ∀n ∈ N−k

}
⇔ b ≥ bk

}
, ∀k = 1, 2, ..., N(r)− 1.
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Proposition 3. We prove the result for Vmax; the argument for Vmin is analogous. Focusing on

optimization problem (11), we introduce Lagrangian multipliers and write the Karush-Kuhn-Tucker

(KKT) conditions:

un − 2λ

(
pn −

1

N

)
+ µ+ νn = 0, n ∈ {1, 2, ..., N} (31)

λ

(
N∑
n=1

(
pn −

1

N

)2

− b
)

= 0, λ ≥ 0 (32)

N∑
n=1

(
pn −

1

N

)2

≤ b,
N∑
n=1

pn = 1, p ≥ 0 (33)

νnpn = 0, νn ≥ 0, n ∈ {1, 2, ..., N}. (34)

Since our problem is concave with affine equality constraints and satisfies Slater’s condition (see

section 5.2.3 in [6]), strong duality holds and the KKT conditions (31)-(34) will be necessary and

sufficient for both primal and dual optimality. In other words, the duality gap is zero and the

vector (p∗,ν∗, λ∗, µ∗) satisfies (31)-(34) if and only p∗ and λ∗,ν∗, µ∗ are primal and dual optimal

respectively (see section 5.5.3 in [6]).

From Proposition 2 we know that there exists a unique primal optimal solution p∗. By strong

duality, the Lagrangean dual problem admits an optimal solution, and we refer to it by λ∗,ν∗, µ∗.15

Since Vmax(b) is differentiable (Theorem 1) and strong duality holds we follow Section 5.6.3 in Boyd

and Vandenberghe [6] to deduce the following simple relation:

d

db
Vmax(b) = λmax(b), b ∈ (0, b∗max). (35)

Eq. (35) means that we can now focus on calculating the Lagrange multiplier λmax(b). Before we

do so we note the following useful identity

N∑
n=1

(
pmaxn (b)− 1

N

)2

=
N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
− 1

N

N∑
n=1

pmaxn (b) +
N∑
n=1

1

N2

=
N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
. (36)

Multiplying both sides of Eq. (31) by pmaxn (b) and then summing over all n = 1, 2, .., N obtains

N∑
n=1

unp
max
n (b)− 2λmax(b)

N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
+ µmax(b)

N∑
n=1

pmaxn (b) = 0

(36)⇒
N∑
n=1

unp
max
n (b)− 2λmax(b)

N∑
n=1

(
pmaxn (b)− 1

N

)2

+ µmax(b) = 0

15Note that at this point one can manipulate the KKT conditions (31)-(34) to show that the Lagrangean dual’s

optimal solution is also unique.
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Prop. 2⇒ µmax(b) = 2λmax(b) · b−
N∑
n=1

unp
max
n (b). (37)

Now we consider Eq. (31) for expert nk ∈ Nk. By part (b) of Theorem 1 we must have pmaxnk
(b) > 0

if and only if b ∈ [0, bmaxk ). Substituting the value of µmax(b) obtained in Eq. (37), and applying

the complementary slackness condition (34) we obtain

unk − 2λmax(b)

(
pmaxnk

(b)− 1

N

)
=

N∑
n=1

unp
max
n (b)− 2λmax(b) · b

(35)⇒ 2
d

db
Vmax(b)

(
pmaxnk

(b)− 1

N
− b
)

= unk − Vmax(b), b ∈ (0, bmaxk ) . (38)

Theorem 2. We focus on Vmax; the argument for Vmin is symmetric. Recall the definition of

bmaxk of Eq. (13). Consider first b ∈ (0, bmax1 ) so that pmaxn (b) > 0 for all b ∈ (0, bmax1 ) and n ∈ N .

Recalling Proposition 3 and adding Eqs. (38) for all n ∈ N yields the following differential equation

−2Nb
dVmax(b)

db
= −NVmax(b) +

∑
n∈N

un, b ∈ (0, bmax1 ). (39)

Solving differential equation (39) leads to the following expression:

Vmax(b) = Cmax1

√
b+

∑
n∈N un
N

, b ∈ [0, bmax1 ), (40)

where Cmax1 is a constant to be determined. Consider now b ∈ [bmaxk−1 , b
max
k ) for k ∈ {2, 3, ..., N(r)−

1}. In this range of b we will have pmaxn (b) > 0 if and only n ∈ N+
k . Adding Eqs. (38) for all such

n ∈ N+
k yields the following differential equation

2

(
N−k−1

N
−N+

k b

)
dVmax

db
=

∑
n∈N+

k

un −N+
k Vmax(b), b ∈ [bmaxk−1 , b

max
k ) (41)

Solving differential equation (41) gives the following:

Vmax(b) = u+
k + Ck

√
N+
k b−

N−k−1

N
, b ∈

[
bmaxk−1 , b

max
k

)
, (42)

for k ∈ {2, 3, ..., N(r)− 1}, where Cmaxk is a constant to determined. Finally since bmaxN(r)−1 = b∗max

we use Lemma 1 to conclude

Vmax(b) = max
n∈N

un, b ∈
[
bmaxN(r)−1,

N − 1

N

]
. (43)
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Putting together Eqs. (40), (42), and (43) we see that Vmax will equal

Vmax(b) =



∑
n∈N un

N + Cmax1

√
b b ∈ [0, bmax1 )

u+
k + Cmaxk

√
N+
k b−

N−
k−1

N b ∈
[
bmaxk−1 , b

max
k

)
, k = 2, 3, ..., N(r)− 1

maxn∈N un b ∈
[
bmaxN(r)−1,

N−1
N

] (44)

for appropriately chosen constants (Cmax1 , Cmax2 , ..., CmaxN(r)−1) and
(
bmax1 , bmax2 , ..., bmaxN(r)−1

)
. By

Proposition 1 and Theorem 1, Vmax is continuous everywhere and differentiable everywhere at

(0, N−1
N ) except b∗max. Thus, the vectors (Cmax1 , Cmax2 , ..., CmaxN(r)−1) and

(
bmax1 , bmax2 , ..., bmaxN(r)−1

)
must fulfill these criteria of continuity and differentiability and are thus uniquely determined by

the following system of nonlinear equations (45)-(52):

Case 1: N(r) = 2. ∑
n∈N un

N
+ Cmax

1

√
bmax
1 = max

n∈N
un (45)

bmax
1 =

1

Nmax
2

− 1

N
. (46)

Case 2: N(r) ≥ 3.

∑
n∈N un

N
+ Cmax

1

√
bmax
1 = u+2 + Cmax

2

√
N+

2 b
max
1 − N−1

N
(47)

Cmax
1√
bmax
1

=
Cmax

2 N+
2√

N+
2 b

max
1 − N−

1

N

(48)

u+k + Cmax
k

√
N+

k b
max
k −

N−k−1
N

= u+k+1 + Cmax
k+1

√
N+

k+1b
max
k −

N−k
N

, k = 2, 3, ..., N(r)− 2 (49)

Cmax
k N+

k√
N+

k b
max
k − N−

k−1

N

=
Cmax

k+1 N
+
k+1√

N+
k+1b

max
k − N−

k

N

, k = 2, 3, ..., N(r)− 2 (50)

u+N(r)−1 + Cmax
N(r)−1

√
N+

N(r)−1b
max
N(r)−1 −

N−N(r)−2

N
= max

n∈N
un (51)

bmax
N(r)−1 =

1

Nmax
N(r)

− 1

N
(52)

It now remains to show that the solution of System (45)-(52) will eventually lead to the ex-

pression of the Theorem. To do this we calculate explicitly the Cmaxk and bmaxk ’s and then show

how applying them to formula (44) yields the desired result.
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We begin with Case 1 and N(r) = 2. That

bmax1 =
1

N2
− 1

N
(53)

is trivially true. Then, Eq. (45) yields

Cmax1 =

√
N2

N1
·N ·

(
u(2) − u+

1

)
=

√
N1

N+
1

d+
1 . (54)

We now focus on Case 2 and N(r) ≥ 3. Once again, we have by definition bmaxN(r)−1 = 1
NN(r)

− 1
N ,

whence Eq. (51) implies

CmaxN(r)−1 =

√
NN(r)

NN(r)−1
·
(
u(N(r)) − u+

N(r)−1

)
=

√√√√NN(r)−1

N+
N(r)−1

d+
N(r)−1.

Focusing on Eq. (50) for k ∈ {2, 3, ..., N(r)− 2} and solving for Cmaxk yields:

Cmaxk =

√
N+
k b

max
k − N−

k−1

N

N+
k

Cmaxk+1 N
+
k+1√

N+
k+1b

max
k − N−

k
N

. (55)

Plugging (55) into Eq. (49) we obtain:

Cmaxk+1

√
N+
k+1b

max
k −

N−k
N

1−
N+
k+1

N+
k

·
N+
k b

max
k − N−

k−1

N

N+
k+1b

max
k − N−

k
N

 = ū+
k − ū

+
k+1. (56)

After some algebra, the left-hand-side of Eq. (56) can be simplified so that:

Cmaxk+1 N
+
k+1

N

N−
k−1

N+
k

− N−
k

N+
k+1√

N+
k+1b

max
k − N−

k
N

=

∑
n∈N+

k
un

N+
k

−

∑
n∈N+

k+1
un

N+
k+1

⇒ −Cmaxk+1

Nk

N+
k

√
N+
k+1b

max
k − N−

k
N

=

(
u(k)N

+
k+1 −

∑
n∈N+

k+1
un

)
Nk

N+
k N

+
k+1

⇒ −
Cmaxk+1√

N+
k+1b

max
k − N−

k
N

= u(k) − u+
k+1 (57)

Combining Eqs. (50) and (57) obtains for k = 2, 3, ..., N(r)− 2:

Cmaxk = −
N+
k+1

N+
k

(
u(k) − u+

k+1

)√
N+
k b

max
k −

N−k−1

N
(58)

bmaxk =

(
Cmaxk+1

u(k)−u+k+1

)2

+
N−
k
N

N+
k+1

, (59)
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which after some simple algebra leads to the following nonhomogeneous linear recursion for the

squares of the Cmaxk ’s:

(Cmaxk )2 =
N+
k+1

N+
k

(
Cmaxk+1

)2
+
Nk

N+
k

d+
k

N+
k

, k = 2, 3, ..., N(r)− 2. (60)

Solving recursion (60) backwards with (previously derived) initial value CmaxN(r)−1, taking square

roots, and recalling the positive sign of the Cmaxk ’s, leads to a simple expression for the Cmaxk ’s:

Cmaxk =

√√√√√ 1

N+
k

N(r)−1∑
l=k

Nl

N+
l

d+
l , k = 2, 3, ..., N(r)− 1. (61)

Applying Eq. (61) to Eq. (59) yields

bmaxk =
N−k

N+
k+1N

+

∑N(r)−1
l=k+1 d+

l

N+
k+1d

+
k

Nk

N+
k

, k = 2, 3, ..., N(r)− 1. (62)

Finally plugging Cmax2 into Eqs. (47)-(48) yields

Cmax1 =

√√√√√N(r)−1∑
l=1

Nl

N+
l

d+
l , (63)

bmax1 =
N−1
N+

2 N
+

∑N(r)−1
l=2 d+

l

N+
2 d

+
1

N1

N+
1

. (64)

Note that Eqs. (63)-(64) are consistent with the results for Case 1 as given by Eqs. (53)-(54). Thus

there is no more need to distinguish between Case 1 and 2.

Finally, applying Eqs. (61)-(62)-(63)-(64) to Eq. (44) and performing elementary algebra es-

tablishes the result.

Corollary 1. The result follows by Propositions 2 and 3 and Theorems 1 and 2.

Theorem 3. Here we apply part (iii) of Corollary 4 in Milgrom and Segal [17] to functions

Vmax(r|b) and Vmin(r|b) (we express the latter as a maximization problem).

Corollary 2. Follows by Proposition 2 and Theorem 3.

Proposition 4. Follows from Proposition 2 and Theorem 3.
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Corollary 3. The statement of the Corollary implies that NN(r)(r) = {n1} and N1(r) = {n2} for

all r ∈ R. Hence, b∗max(r) = b∗min(r) = N−1
N for all r ∈ [rm, rM ]. Applying Corollary 2 establishes

the result.

A2: Constructing expert pdfs for the three R&D Scenarios from ICARUS survey

data

In the ICARUS survey, experts were asked to provide values for the 10th, 50th, and 90th percentile

of their distributions for the 2030 cost of solar technology conditional on all three Scenarios. In

addition, they were asked to provide values for the probability of this cost being less than or equal

to the following three values: 11.3, 5.5, and 3c$/kWh. These “threshold” cost levels correspond to

projections of the costs of electricity from fossil fuels or nuclear in 2030. The first (11.27 c$/kWh)

corresponds to the 2030 projected cost of electricity from traditional coal power plants in the

presence of a specific policy to control CO2 emissions (thus effectively doubling electricity costs

from fossil sources). The second threshold cost (5.5 c$/kWh) is the projected cost of electricity

from traditional fossil fuels in 2030, without considering any carbon tax. Finally, the third (3

c$/kWh) reflects a situation in which solar power becomes competitive with the levelized cost of

electricity from nuclear power.

Asking experts the follow up question on the likelihood of reaching threshold cost targets

allowed the survey authors to guard against the cognitive pitfalls associated with direct elicitation of

subjective probabilities, to increase the amount of elicited information, and to deepen the discussion

with the expert, hence improving their perception of his/her beliefs. In cases where the two sets of

answers (percentile values and threshold probabilities) were inconsistent, we contacted the expert

in order to obtain coherent estimates. Moreover, we asked all experts to give values for the upper

and lower limits of their distribution’s support in order to pinpoint the intervals over which their

implied probability distributions range.

Such corrected estimates were obtained from 14 out of the original 16 experts, and therefore

the analysis of Section 4 focuses solely on them. Among the respondents, not all provided values on

the left and right endpoints of their distributions’ support. As a result, we deduced between 6 and 8

points of 14 experts’ cumulative distribution functions (cdf) of the 2030 cost of solar electricity, given

the aforementioned three R&D investment Scenarios. From these points a probability distribution

function (pdf) was constructed using linear interpolation in the following way. First of all, and in

accordance with the experts’ answers, we considered cost levels c lying in [2c$/kWh, 30c$/kWh]

and discretized this interval on a scale of 0.5 (30c$/kWh represents an estimate of the technology’s

current cost). Now, suppose an expert reported the values of his/her cdf Fn at two successive
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points c1 and c2 where c2 > c1 and gave no further information on cost levels between c1 and c2.

Assuming right-continuity of Fn we took the probability mass Fn(c2) − Fn(c1) to be distributed

uniformly among the cost levels {c1 + .5, c1 + 1, ..., c2}. For experts who did not provide values for

the lower limit of their distribution’s support we assumed that whatever probability mass remained

to be allocated (always less than .1) was distributed uniformly between the smallest argument of

the cdf and two cost levels below it. For example, if an expert only indicated that cl was his y’th

percentile and gave no further points of the cdf below this, we assumed that a probability mass

of y was distributed evenly across {cl − 1, cl − .5, cl}. In the case of an unknown upper limit, if

an expert only indicated that cu was his yth percentile and gave no further arguments for the cdf

above it, we assumed that a probability mass of 1−y was distributed evenly across {cu+ .5, cu+1}.
Following this procedure we arrived at probability distribution functions for all 14 experts

conditional on all three Scenarios. The implied cumulative distribution functions are depicted in

Figure 2.
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A3: Tables and Figures not in main text

2030 solar-technology cost c Benefit B(c)

(2005 USc$/kWh) (US$ 109)

2 189.90

2.5 170.76

3 151.26

3.5 131.74

4 112.12

4.5 92.29

5 71.47

5.5 50.64

6 29.27

6.5 23.59

7 12.32

7.5 3.67

8 1.76

> 8 0

Table 2: EU discounted consumption improvement as a function of 2030 solar-power cost

R&D Scenario r Opportunity Cost O(r) (US$ 109)

r1 3.67

r2 5.51

r3 7.35

Table 3: Discounted opportunity cost of R&D Scenarios
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Figure 2: Expert and aggregate cdfs of the 2030 cost of solar technology under the three R&D Sce-

narios. Recall that the cdf’s domain is {2, 2.5, ..., 29, 29.5, 30}. Cost is measured in 2005 USc$/kWh.

36



0.2 0.4 0.6 0.8
b

20

40

60

Payoff

VmaxHr3,b2L

VminHr3,b2L

VmaxHr2,b2L

VminHr2,b2L

VmaxHr1,b2L

VminHr1,b2L

0.96

Figure 3: Worst and Best-Case net payoffs (benefits minus opportunity cost) for the three R&D

scenarios. Net payoffs are measured in US$109.
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Figure 4: Net payoff (benefits minus opportunity cost) for the three R&D scenarios, as a function

of ambiguity b and ambiguity attitude α. Net payoffs are measured in US$109.
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Figure 5: Comparison of the three R&D scenarios over all values of b and α.
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