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Abstract

In a decision problem under uncertainty, a decision maker considers a set of alternative actions whose

consequences depend on uncertain factors outside his control. Following Luce and Rai¤a (1957), we adopt

a natural representation of such situation that takes as primitives a set of conceivable actions A, a set of

states S and a consequence function � : A � S ! C. With this, each action induces a map from states to

consequences, or Savage act, and each mixed action induces a map from states to probability distributions

over concequences, or Anscombe-Aumann act. Under a consequentialist axiom, preferences over pure or

mixed actions yield corresponding preferences over the induced acts. The most common approach to the

theory of choice under uncertainty takes instead as primitive a preference relation over the set �(C)S of

all Anscombe-Aumann acts. This allows to apply powerful convex analysis techniques, as in the seminal

work of Schmeidler (1989) and the vast descending literature. This paper shows that we can maintain the

mathematical convenience of the Anscombe-Aumann framework within a description of decision problems

which is closer to applications and experiments. We argue that our framework is more expressive, it allows

to be explicit and parsimonious about the assumed richness of the set of conceivable actions, and to directly

capture preference for randomization as an expression of uncertainty aversion.
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1 Introduction

In the modern development of economic theory the role of uncertainty has been ubiquitous and the past two

decades witnessed a number of studies that extended classical risk theory results to cope with new dimensions

of uncertainty, in particular with Knightian uncertainty (often called ambiguity). These theoretical studies have

found applications in a variety of �elds, from asset pricing to market participation, from contract theory to risk

management.1 The framework which these studies relied upon remained the one adopted by the seminal paper

of Schmeidler (1989), the so called Anscombe-Aumann framework. In the literature this term usually does not

refer to the original framework of Anscombe and Aumann (1963), but to its simpli�ed version proposed by

Fishburn (1970). In such version, the objects of choice are functions f : S ! �(C),2 where S = fs1; :::; sng is a
set of states of the world, C is a set of deterministic consequences, and �(C) is the set of random consequences.3

In particular, as Fishburn (1970) p. 176 writes

... We adopt the following pseudo-operational interpretation for f 2 �(C)S. If f is �selected� and s 2 S
obtains then f (s) 2 �(C) is used to determine a resultant consequence in C...

This framework gives the set of conceivable alternatives a tractable and mathematically familiar convex space

structure that has been fundamental for the development of axiomatic models of choice under uncertainty. The

translation of economic choice situations in this framework, however, is not always intuitive. For this reason

in this paper we study the connection between the mathematically convenient framework of Anscombe and

Aumann (1963) and the one of Luce and Rai¤a (1957), which is more natural in terms of decision making. For

Luce and Rai¤a, a decision problem under uncertainty is described by a table

s1 s2 ::: sn

a1 c11 c12 ::: c1n

a2 c21 c22 ::: c2n

::: ::: ::: ::: :::

(1)

in which cij 2 C is the consequence of action ai 2 A in state sj 2 S and the decision maker can choose a
pure action a 2 A or a mixed action � 2 �(A).4 Mixed actions are interpreted in the usual game theoretic
way as mixed strategies of a player choosing rows in the table above. The objects of choice of the Luce-Rai¤a

framework (the mixed actions � 2 �(A)) are thus common in economics, statistics, and operations research,
unlike those of the Anscombe-Aumann framework (the acts f 2 �(C)S), which are peculiar to decision theory.
In this paper we show that the Luce-Rai¤a framework is actually as tractable as the Anscombe-Aumann one,

and can be immersed into it provided decision makers are consequentialist, that is, indi¤erent between actions

that generate the same distribution of consequences in every state. Our analysis thus presents a vocabulary

that allows to translate all decision theoretic results that have been expressed in the language of Anscombe-

Aumann acts into the language of mixed actions. Such translation facilitates the access to uncertainty models

to anybody familiar with mixed strategies, and allows to use these models directly �o¤ the shelves� in any

application framed in the language of game theory (such as auction theory, matching, mechanism design, moral

hazard, etc.). Moreover, mixed actions are easier to implement in the controlled setup of an experiment than

Anscombe-Aumann acts. Therefore, the framework we consider here facilitates the exchange between theory and

experiments, and in particular the experimental analysis of choice models derived within the Anscombe-Aumann

framework.

The paper is organized as follows. After a preliminary analysis of decision problems and frameworks (Section

2), we �rst study (Section 3) the properties of randomization of pure actions and relate it to randomization of
1See Gilboa and Marinacci (2013) for a recent survey.
2Called horse lotteries by Anscombe and Aumann (1963) and Anscombe-Aumann acts in the subsequent literature.
3Formally, the set of all �nitely supported probability distributions on C.
4This is the framework they describe on p. 276. Later in their book they replace consequences cij with their utilities uij .
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consequences in the Anscombe-Aumann framework. The novelty here is not the introduction of mixed actions,

already present in Luce and Rai¤a (1957), but the relation between the two kinds of randomization.5 Subse-

quently, we study the basic properties of preferences and choice correspondences in the Luce-Rai¤a framework

(Section 4), and we illustrate them by establishing behavioral characterizations of two classical choice criteria

(Section 5). Finally, we relate uncertainty aversion with preference for randomization, and we show how it

provides a natural explanation for commonly observed random choice behavior (Section 6). Two important

remarks on independence and timing close the main text of the paper (Section 7).

All proofs are in Appendix B.

2 Decision problems under uncertainty

2.1 Setup

In a decision problem under uncertainty, a decision maker considers a set of alternative actions whose conse-

quences depend on uncertain factors outside his control. Formally, there is a set A of conceivable pure actions

a that can result in di¤erent material consequences c, within a set C, depending on which state s of the world

(or of the environment) in a space S = fs1; :::; sng obtains. The dependence of consequences on actions and
states is described by a consequence function

� : A� S ! C

(a; s) 7! � (a; s)

that details the consequence c = � (a; s) of each action a in each state s.6 A decision problem (under uncertainty

in normal form) is a quartet (A; S; C; �) where A is a nonempty subset of conceivable pure or mixed actions

that are also feasible for the decision maker.7 We call decision framework the quartet (A;S;C; �).

In such a framework, a bet on an event E � S is an action cEd 2 A that delivers consequence c if E is true
and d otherwise, that is,

� (cEd; s) =

(
c s 2 E
d s =2 E:

(2)

In particular, if E = S, cSd delivers c in every state. For this reason such bet is called a sure action and denoted

cS. We say that all bets are conceivable if and only if for every c; d 2 C and E � S there exists a (possibly

nonunique) action cEd 2 A such that (2) holds. Analogously, all sure actions are conceivable if and only if for
every c 2 C there exists a (possibly nonunique) action cS 2 A for which � (cS; �) � c.

2.2 Examples

Example 1 (portfolio selection) An investor in a frictionless �nancial market with J primary assets chooses
at time 0 a portfolio h 2 RJ being uncertain about the vector r 2 fr1; r2; :::; rng � RJ of gross returns that will
prevail at time 1. Denoting by S the set f1; 2; :::; ng, the investor�s monetary payo¤ at time 1 is

� (h; s) = rs � h 8 (h; s) 2 RJ � S

The decision framework is thus
�
RJ ; S;R; �

�
. Depending on the investor�s wealth w, his budget set is Bw =n

h 2 RJ :
P

j2J hj = w
o
and the corresponding decision problem is (Bw; S;R; �).

5This relation was hinted at by Kreps (1988) in Chapter 7, where Savage acts (functions f : S ! C) are randomized. See the
concluding Section 7 for details.

6 In table (1), � (ai; sj) = cij for each action ai 2 A and each state sj 2 S.
7We use interchangeably the words feasible and available. We denote by capital script letters sets of (possibly degenerate)

distributions or sets of Anscombe-Aumann acts.

3



Note that here all bets are conceivable if and only if the market is complete, while all sure actions are

conceivable if and only if there exists a risk-free portfolio. N

In the previous example the distinction between the decision framework
�
RJ ; S;R; �

�
and the family of

relevant decision problems f(Bw; S;R; �) : w 2 Rg is neat. The next example shows that in other cases the
focus is on a single decision problem that essentially coincides with the decision framework.8

Example 2 (normal game-forms) An agent interacting with other agents chooses his action being uncertain
about the choices of the others. The consequences of the interaction are determined by the pro�le of actions

chosen by all agents. In this vein, normal game-forms


I; (Si)i2I ; C; g

�
are used to model players� strategic

interaction in a game (see, e.g., Glazer and Rubinstein, 1996). They consist of a �nite set I of players, a set

Si of available strategies for each player i 2 I, a set C of consequences, and a function g : �i2ISi ! C that

associates consequences with strategy pro�les.9 The decision framework of each player j is (Sj ; S�j ; C; g), his

actions are the strategies in Sj and the corresponding state space is S�j = �i 6=jSi.

Depending on whether the player can commit his actions to a random device or not, that is, on whether

mixed strategies are available or not, here the decision problem is either (� (Sj) ; S�j ; C; g) or (Sj ; S�j ; C; g)

itself (unless there is an explicit description of the available randomizations). N

Our �nal example is the famous omelet of Savage (1954), which we report verbatim because at the beginning

of the next section it will be used to clarify the relations between pure actions and Savage acts.

Example 3 (the omelet) ... Your wife has just broken �ve good eggs into a bowl when you come in and
volunteer to �nish making the omelet. A sixth egg, which for some reason must either be used for the omelet or

wasted altogether, lies unbroken beside the bowl. You must decide what to do with this unbroken egg. Perhaps

it is not too great an oversimpli�cation to say that you must decide among three acts only, namely, to break

it into the bowl containing the other �ve, to break it into a saucer for inspection, or to throw it away without

inspection. Depending on the state of the egg, each of these three acts will have some consequences of concern

to you, say that indicated by...

Table 1 Good Rotten

break into bowl six-egg omelet no omelet, and �ve good eggs destroyed

break into saucer six-egg omelet, and a saucer to wash �ve-egg omelet, and a saucer to wash

throw away �ve-egg omelet, and one good egg destroyed �ve-egg omelet

... If two di¤erent acts had the same consequences in every state of the world, there would from the present

point of view be no point in considering them two di¤erent acts at all... Or, more formally, an act is a function

attaching a consequence to each state... N

2.3 Reduced decision problems and consequentialism

The �nal sentence of Savage in Example 3 refers to the identi�cation of each pure action a 2 A with the section
�a 2 CS , which is called the Savage act induced by a

�a : S ! C

s 7! � (a; s)

8That is, the decision framework is (A;S;C; �) and the decision problem is either (� (A) ; S; C; �) or (A;S;C; �) itself.
9By contrast, normal-form games also include a pro�le (ui)i2I of von Neumann-Morgenstern utility functions on C.
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For example, the action �break into bowl�is identi�ed by Savage with the act f = �break into bowl given by

f (Good) = six-egg omelet ; f (Rotten) = no omelet, and �ve good eggs destroyed

Two actions a and b are thus identi�ed if

� (a; s) = � (b; s) 8s 2 S

that is, if �a = �b. Two such actions generate the same consequences in every state of the world and are called

realization equivalent,10 denoted a � b.
The identi�cation of realization equivalent actions is pervasive in the modelling of individual and interactive

decisions. For example, when


I; (Si)i2I ; Z; g

�
is the normal game-form of an extensive game-form (Example 2),

then the set of consequences Z is the set of terminal nodes, the consequence function g is the outcome function,

and our de�nition of realization equivalence corresponds to the one of Kuhn (1953). His Theorem 1 shows that

two strategies are realization equivalent if and only if they induce the same decision plan (see Rubinstein, 1991,

p. 911). In this case, the identi�cation of realization equivalent strategies leads to the quasi-reduced normal

game-form.11

De�nition 1 A decision framework (A;S;C; �) is reduced if and only if a � b implies a = b.

Non-reduced decision frameworks can always be reduced by identifying all elements of each realization

equivalence class. Sometimes, the equivalence classes obtained in the reduction maintain a direct interpretation

in terms of the original problem. For example, when the normal game-form


I; (Si)i2I ; Z; g

�
is considered,

realization equivalence classes of strategies correspond to decision plans. In other cases, their interpretation is

less immediate. In Example 1, the S � J matrix R = [rs]
n
s=1, called Arrow-Debreu tableau, groups the state-

contingent returns of the marketed assets. Therefore, the section �h = Rh of portfolio h, called the contingent

claim replicated by h, describes the state-contingent payo¤s generated by h.12 The usual interpretation of a

realization equivalence class
�
h 2 RJ : Rh = x

	
, geometrically an hyperplane, as an object of choice consists in

identifying it with contingent claim x itself. But, while a portfolio is a collection of primary assets, a contingent

claim x 2 RS is a contract that pays x (s) if rs is the true vector of gross returns, that is, it is a derivative
asset.13

Be that as it may, from the decision maker�s perspective the reduction of a nonreduced decision framework

is an innocuous simpli�cation as long as he is indi¤erent between pure actions that have the same consequences

in every state. Denoting by % = %A the decision maker�s preferences on A and by � (resp. �) its symmetric
(resp. asymmetric) part, this amounts to:

Consequentialism If a; b 2 A, then a � b implies a � b.

This assumption is reasonable when the decision maker only cares about consequences, and actions are just

means to an end (to obtain �desirable�consequences). Paraphrasing Marschak and Radner (1972, p. 12), if

all consequences were directly available the �most desirable�would be chosen. But, it is the actions, not the

consequences, that are available for choice.

Given a decision framework (A;S;C; �), it is consequentialism that allows to elicit both the �desirability�of

consequences and the �plausibility�of events, provided % is transitive.14
10Marschak and Radner (1972, Ch. 1) call them essentially equivalent.
11See Swinkels (1989) for a careful distinction among the various reduced forms of a game.
12 In particular, the decision framework is reduced if and only if there are no redundant assets, that is, the rank of the Arrow-

Debreu tableau is equal to the number of marketed assets. See, e.g., LeRoy and Werner (2000, Ch. 1) or Cerny (2009, Ch.
1).
13According to the O¢ ce of the Comptroller of the Currency (1999) a derivative is �a �nancial contract whose value is derived

from the performance of assets, interest rates, currency exchange rates, or indexes.�
14A transitive binary relation which is also re�exive is called preorder.
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Proposition 1 Let (A;S;C; �) be a decision framework and % a transitive binary relation on A.

1. If % satis�es consequentialism, then % is a preorder; the converse is true provided (A;S;C; �) is reduced.

2. If % satis�es consequentialism and all sure actions are conceivable, then

c %C d def() cS % dS (3)

is a well de�ned preorder on C.

3. If % satis�es consequentialism and all bets are conceivable, then

E %� F def() cEd % cFd 8c �C d

is a well de�ned preorder on the power set of S.

The simple proof of this proposition shows that consequentialism is crucial for the well posedness of the

preorders %C and %�. These preorders are, respectively, interpreted as qualitative descriptions of the decision
maker�s tastes and beliefs on C and S. For later reference, we remark that to elicit tastes and beliefs all bets

must be conceivable (even if not necessarily feasible). This assumption, although strong, is weaker than the

Savage one that requires all acts to be conceivable.15 In Savage�s framework the role of bets cEd is played by

binary acts cEd taking value c on E and d on Ec, and sure actions cS correspond to constants acts cS .

3 Mixed actions and immersion

Following the common practice of game theory and statistics, we consider a decision maker that conceives the

possibility of committing his actions to some random device. As a result, the set of conceivable actions is the

set �(A) of all mixed actions. Let us reiterate that this should not be interpreted as an assumption about the

feasibility of all mixed actions, but rather as an assumption about the ability of the decision maker to consider

hypothetical alternatives. We will not discuss the di¤erence between feasibility and conceivability anymore; but

referring to Savage�s omelet one last time, the toss of a coin before deciding where to break the sixth egg seems

easier to conceive than an act that delivers a �six-egg omelet�if the sixth egg is rotten and �no omelet, and �ve

good eggs destroyed�if the sixth egg is good.

Formally,

�(A) =

(
� : A! [0; 1]

����� � (a) > 0 for �nitely many a�s in A and X
a2A

� (a) = 1

)

is the set of all probability distributions on A with �nite support.16 In particular, pure actions can be viewed as

special mixed actions through the embedding a ,! �a of points into point-masses. Conceptually, the elements

� 2 �(A) should be interpreted as chance distributions, that is, objective probabilities such as those featured by
random devices, and not as epistemic distributions, that is, subjective probabilities describing beliefs.17 Mixed

actions correspond to mixed strategies in game theory and to randomized decision rules in statistics.18

15That is, for every f : S ! C there exists a 2 A such that �a = f . Formally, Savage assumes (A;S;C; �) =
�
CS ; S; C; %

�
where

% (f; s) = f (s) is the evaluation pairing. In this decision framework, the number of bets is jCj+ jCj (jCj � 1)
�
2jSj�1 � 1

�
while the

number of acts is jCjjSj. With 10 states and 10 consequences there are 46 thousands of bets and 10 billions of acts.
16With the usual abuse we denote by the same greek letter a probability distribution on A and the probability measure it induces

on the set of all parts of A.
17We refer to Luce and Rai¤a (1957) and Anscombe and Aumann (1963) for a discussion of this distinction.
18One should distinguish between mixed decision rules and behavioral decision rules. But, since we are considering �nite state

spaces, the distinction is irrelevant.
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The relevance of mixed actions is well illustrated by the decision problem:

s1 s2

a1 0 1

a2 1 0

(4)

with action set A = fa1; a2g, state space S = fs1; s2g, consequence space C = f0; 1g, and consequence function
� (a1; s1) = � (a2; s2) = 0 and � (a1; s2) = � (a2; s1) = 1. As Luce and Rai¤a (1957, p. 279) observe, the mixed

action

� =
1

2
�a1 +

1

2
�a2

guarantees an expected value of 1=2 regardless of which state obtains, while the minimum guaranteed by both

pure actions is 0. Randomization may thus hedge uncertainty, an obviously important feature in analyzing

these decision problems (see also Debreu, 1959, p. 101).

Recall that �(C) is the collection of random consequences, that is, the set of all chance distributions on C

with �nite support. Each mixed action (a chance distribution of pure actions) induces a random consequence

(a chance distributions of deterministic consequences) in every state: if the decision maker takes mixed action

�, the chance of obtaining consequence c in state s is

� (fa 2 A : � (a; s) = cg)

which we denoted by �� (c j s). Note that

�� (� j s) =
�
� � ��1s

�
(�)

is an element of �(C) for all s 2 S, that is, each mixed action � 2 �(A) determines an Anscombe-Aumann
act

�� : S ! �(C)

s 7! � � ��1s
that associates to each s 2 S the distribution of consequences resulting from the choice of � in state s. As

anticipated in the Introduction, Anscombe-Aumann acts are functions f 2 �(C)
S from states to random

consequences, and they are the prevalent objects of choice in the axiomatic literature on decision making

under uncertainty.19 The next proposition describes some properties of the relation between mixed actions and

Anscombe-Aumann acts.

Proposition 2 Let (A;S;C; �) be a decision framework. The map

z : � (A) ! �(C)
S

� 7! ��

has the following properties:

1. For every a 2 A and every s 2 S, ��a (s) = ��(a;s); that is, z (a) = �a under the identi�cation of points
and point-masses.

2. For every �; � 2 �(A) and every q 2 [0; 1], �q�+(1�q)� = q�� + (1� q) ��; that is, z is a¢ ne.

3. f��g�2�(A) = �(C)
S if and only if f�aga2A = CS; that is, z is onto if and only if all Savage acts are

conceivable.
19See, again, Gilboa and Marinacci (2013).
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The �rst point of this proposition shows that the relation between a mixed action � and the corresponding

Anscombe-Aumann act �� extends the relation between a pure action a and the corresponding Savage act �a.

Speci�cally, the Anscombe-Aumann act ��a induced by the pure action a coincides with the Anscombe-Aumann

act induced by the Savage act �a. This observation allows to consistently extend to mixed actions the de�nition

of realization equivalence of pure actions.

De�nition 2 Let (A;S;C; �) be a decision framework. Two mixed actions �; � 2 �(A) are realization equiv-
alent if and only if they generate the same distribution of consequences in every state of the world, that is,

� � � def() �� = ��.

By the �rst point of Proposition 2, given two pure actions a; b 2 A and s 2 S,

� (a; s) = � (b; s) () ��(a;s) = ��(b;s) () ��a (s) = ��b (s) (5)

That is, a and b are realization equivalent in the sense of the previous section (i.e., �a = �b) if and only if they

are realization equivalent as mixed actions (i.e., ��a = ��b). In turn, De�nition 2 allows to extend the notion of

consequentialism to preferences % = %�(A) between mixed actions. A decision maker is now consequentialist if
and only if he is indi¤erent between mixed actions that generate the same distribution of consequences in every

state of the world. Formally,

Mixed consequentialism If �; � 2 �(A), then � � � implies � � �.

By (5), consequentialism is the restriction to pure actions of mixed consequentialism. Like consequentialism

allows to immerse any decision problem with pure actions in the Savage framework (a z7! �a), mixed conse-

quentialism allows to immerse any decision problem with mixed actions in the Anscombe-Aumann framework

(� z7! ��). In fact, mixed consequentialism allows to de�ne a binary relation %z by

�� %z �� def() � % � (6)

on the collection of Anscombe-Aumann acts f��g�2�(A) � �(C)
S . A¢ nity of z then allows to easily translate

behavioral assumptions of % on �(A) into corresponding properties of %z on f��g�2�(A), as detailed in
Proposition 3 below and in Lemma 2 in Appendix B. Thanks to the �transfer principle�between frameworks

established by (6), in the mathematical derivation of choice models it remains possible take advantage of the

analytical tractability of the Anscombe-Aumann setup, without incurring in its interpretational di¢ culties. To

put it simply, the transfer principle makes it possible to conduct the behavioral analysis, in the main text

of a decision theoretic paper, in terms of the more natural mixed actions, moving the Anscombe-Aumann

paraphernalia to its appendix.

The last point of Proposition 2 shows in what sense our framework is never more demanding in terms

of hypothetical comparisons than the Anscombe-Aumann one, and equally demanding only when all Savage

acts are conceivable. In other words, the Anscombe-Aumann framework �(C)S corresponds, via the transfer

principle (6), to the mixed extension �
�
CS
�
of the Savage framework.

Finally, note that also in a reduced decision framework mixed actions that are realization equivalent may

well di¤er.20 But, Proposition 2 implies that the framework cannot be further reduced by eliminating a pure

action a which is realization equivalent to a mixed action � with support in A n fag.

Corollary 1 Let (A;S;C; �) be a reduced decision framework. If a 2 A and � 2 �(A), then �a � � () � = �a.

The language developed so far also allows to connect decision analysis in the Anscombe-Aumann framework

with statistical decision theory, as detailed in the working paper version.
20For example, (12) below is reduced, and the mixed actions � = 1

2
�a1 +

1
2
�a2 and � =

1
2
�b1 +

1
2
�b2 are clearly distinct (they

have disjoint support), but �� = �� , so that they are realization equivalent.
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4 Rationality and dominance

Up until this point, we have been studying two alternative decision theoretic frameworks and their relationships.

We now focus our attention on the decision maker�s preferences. Let (A;S;C; �) be a decision framework and

% = %�(A) be a binary relation on �(A) representing the decision maker�s preferences.

Axiom A. 1 (Weak order) % is complete and transitive.

Although Karni, Maccheroni, and Marinacci (2013) show that completeness is not crucial for our analysis,

we maintain it for the sake of simplicity. Inspired again by Luce and Rai¤a (1957, p. 276), we also assume that

... our subject�s preferences among ... outcomes, and among hypothetical lotteries with this outcomes as prizes,

are consistent in the sense that they may be summarized by means of a utility function ...

Since the objects of choice are elements of �(A), not of C or �(C), this amounts to assume that all sure

actions are conceivable and that the decision maker�s preferences restricted to lotteries of sure actions (the

mixed actions with support in the set of all sure actions) satisfy the axioms of von Neumann-Morgenstern�s

expected utility. For this reason, and for others that will become clear soon, reduced decision frameworks in

which all sure actions are conceivable deserve a special name.

De�nition 3 A Luce-Rai¤a framework (A;S;C; �) is a reduced decision framework in which all sure actions

are conceivable.

In these frameworks it becomes possible to elicit both the decision maker�s preferences over consequences

(Proposition 1.2) and his attitudes toward risk. In fact, the map

� : � (C) ! �(A)P
c2C

 (c) �c 7!
P
c2C

 (c) �cS

is an a¢ ne embedding of the set �(C) of random consequences onto the set �` (A) of all mixed actions with

support in the set fcSgc2C of all sure actions.21 For each  2 �(C), by choosing � () the decision maker
receives consequence c with objective probability  (c) regardless of which state obtains,22 both  and � () are

formal descriptions of lotteries with consequences as prizes. Since � is an a¢ ne bijection from �(C) to �` (A),

we can set

 %�(C) �
def() � () % � (�)

and infer the decision maker�s preferences %�(C) between random consequences from his preferences % between
mixed actions. In this way, � becomes an isotone isomorphism between

�
�(C) ;%�(C)

�
and (�` (A) ;%); for

this reason, we often write  instead of � (), and  % � instead of  %�(C) �.23
In this perspective, the utility function sought-after by Luce and Rai¤a is delivered by the following axiom.

Axiom A. 2 (von Neumann-Morgenstern payo¤s) If ; �; � 2 �` (A), then

1. fq 2 [0; 1] : q + (1� q) � % �g and fq 2 [0; 1] : � % q + (1� q) �g are closed sets;
21 It is reduction that guarantees the well posedness of �. Without reduction one should consider realization equivalence classes

of mixed actions with support in the set of all sure actions. This is clearly possible, but leads to a notational cost which is not
justi�ed by the conceptual gain since mixed consequentialism will be maintained (see Proposition 3).
22 In fact, ��() �  as shown in Lemma 1 of Appendix B.
23The same happens in the Anscombe-Aumann framework where one writes  not only to denote  2 �(C), but also the constant

act S �  (and  % � means S % �S since the primitive preferences % are de�ned on �(C)S). In this case, the role of � is played
by the embedding  ,! S of random consequences onto constant Anscombe-Aumann acts.
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2.  � � implies 1
2
 +

1

2
� � 1

2
� +

1

2
�.

The preference % is a weak order on �` (A) ' �(C), and the above two requirements are the continuity and
independence axioms of Hernstein and Milnor (1953) restricted to �` (A). Hence, Axioms A.1 and A.2 imply

the existence of a cardinally unique payo¤ function u : C ! R such that

 % � ()
X
c2C

 (c)u (c) �
X
c2C

� (c)u (c) : (7)

With respect to this payo¤ function, the (very weak) dominance relation of game theory

� >u � def()
X
a2A

� (a)u (� (a; s)) �
X
a2A

� (a)u (� (a; s)) 8s 2 S

has a natural decision theoretic counterpart

� <S � def() �� (s) % �� (s) 8s 2 S

also called dominance. According to both de�nitions, � dominates � if and only if the decision maker prefers

the lottery generated by � to the lottery generated by � in every state. Axioms A.1 and A.2 guarantee that the

two de�nitions of dominance are equivalent.

The next axiom requires that dominant actions be actually preferred.

Axiom A. 3 (Dominance) If �; � 2 �(A) and � <S �, then � % �:

Under this additional axiom, the decision framework (A;S;C; �) can be identi�ed with the zero-sum game

(A;S;C; �; u) between decision maker and nature.24 In fact, A.1-A.3 imply that two payo¤ equivalent actions

are indi¤erent for the decision maker,25 and the consequences cij in table (1) can be replaced by their utilities

uij = u (cij) (cf. footnote 4).

In terms of choice behavior, the assumptions we made so far mean that the decision maker is rational in the

sense of Arrow (1959) and chooses dominant actions whenever they are available. To see why this is the case,

denote by } (� (A)) the collection of all nonempty �nite subsets of �(A). A rational choice correspondence

� : } (� (A)) ! } (� (A)) maps every set A 2 } (� (A)) into one of it subsets, � (A) � A, and satis�es the
weak axiom of revealed preference:

WARP If A � B 2 } (� (A)) and A \ � (B) 6= ?, then � (A) = A \ � (B).

A binary relation % is said to be generated by a rational choice correspondence � if and only if � % � is

equivalent to � 2 � (f�; �g). By Theorem 3 of Arrow (1959), % is a weak order and

� (A) = f� 2 A : � % � 8� 2 Ag 8A 2 } (� (A)) :

In this case, it is natural to extend � to the family of all subsets A of �(A) for which f� 2 A : � % � 8� 2 Ag 6=
?. Finally, each u : C ! R induces the dominance correspondence

�u : } (� (A)) ! } (� (A)) [ f?g
A 7! f� 2 A : � >u � 8� 2 Ag

that associates to each set A of available alternatives the, possibly empty, set of dominant alternatives.

24As Luce and Rai¤a (1957, p. 279) discuss, the choice of �u as a payo¤ function for nature is best seen as purely formal.
25Formally, � >u � and � >u � imply � � �.
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Theorem 1 Let (A;S;C; �) be a Luce-Rai¤a framework and % be binary relation on �(A). The following

conditions are equivalent:

(i) % satis�es A.1, A.2, and A.3;

(ii) % is generated by a rational choice correspondence � for which there exists u 2 RC such that

�u (A) � � (A) 8A 2 } (� (A))

with equality if A � �` (A).

By Theorem 1, a rational decision maker �rst computes the expected payo¤s of lotteries with consequences

as prizes, and then ranks mixed actions according to dominance. At this point, he chooses dominant actions

when they are available; in any case, his choices do not violate WARP.

The next result shows that this decision maker is consequentialist, so that the binary relation %z on

Anscombe-Aumann acts given by (6) is a well de�ned weak order satisfying risk independence and monotonic-

ity,26 that is, it is rational in the sense of Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi

(2011).

Proposition 3 Let (A;S;C; �) be a Luce-Rai¤a framework and % a binary relation on �(A) that satis�es

A.1-A.3, and F = z (� (A)). Then:

1. % satis�es mixed consequentialism;

2. F is a convex subset of �(C)S containing all constant Anscombe-Aumann acts;

3. %z on F is a weak order satisfying risk independence and monotonicity.

All this motivates the following de�nition.

De�nition 4 Let (A;S;C; �) be a Luce-Rai¤a framework. A binary relation % on �(A) is a rational preference
(under uncertainty) if and only if it satis�es A.1-A.3.

5 Two classical criteria

We illustrate the notions introduced so far by establishing a behavioral characterization of two important

rational criteria: classical maxminimization, due to Wald (1950), and subjective expected utility maximization,

due to Savage (1954). Both criteria rely on a numerical representation of preferences. As for von Neumann-

Morgenstern�s expected utility, the existence of such a representation is ensured by the continuity axiom of

Hernstein and Milnor, now assumed on the entire set �(A) rather than on �` (A).

Axiom A. 4 (Continuity) If �; �; � 2 �(A), then fq 2 [0; 1] : q�+ (1� q)� % �g and fq 2 [0; 1] : � % q�+
(1� q)�g are closed sets.

Given a Luce-Rai¤a framework (A;S;C; �) and a rational preference % on �(A), continuity implies that for
every � 2 �(A) there exists �` 2 �(C) such that � � �`. Therefore, the functional

V : � (A) ! R
� 7!

P
c2C

�` (c) u (c)

26See Appendix A for a list of the most common axioms in the Anscombe-Aumann framework.
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that associates to each mixed action its equivalent expected payo¤ V (�) = E�` [u] represents %. In particular,
it allows to associate to any decision problem (A; S; C; �) an indirect (expected equivalent) payo¤

v (A) = sup
�2A

E�` [u] (8)

and to describe the rational choice correspondence associated to % by

� (A) = arg sup
�2A

E�` [u]

provided the supremum is attained.27

5.1 Classical maxminimization

A conservative criterion that a decision maker confronted with a decision problem (A; S; C; �) might adopt
consists in choosing an action the (state-wise) lowest expected payo¤ of which is largest, that is, an element of

� (A) = argmax
�2A

min
s2S

X
a2A

� (a)u (� (a; s)) : (9)

We call this procedure for choosing an action classical maxminimization. It may arise because the decision

maker has no idea about the relative likelihood of the various states.28 Behaviorally, the axiom that, on top of

rationality and continuity, characterizes (9) is an extreme version of the �default to certainty�axiom of Gilboa,

Maccheroni, Marinacci, and Schmeidler (2010).

Axiom A. 5 (Extreme caution) If � 2 �(A),  2 �` (A), and � 6<S , then  � �.

This axiom shows how conservative is the classical maxminimization criterion: if a mixed action does not

dominate a lottery, then the lottery is strictly preferred.

Theorem 2 Let (A;S;C; �) be a Luce-Rai¤a framework and % be binary relation on �(A). The following

conditions are equivalent:

(i) % is a continuous rational preference that satis�es extreme caution;

(ii) there exists u 2 RC such that, if �; � 2 �(A),

� % � () min
s2S

X
a2A

� (a)u (� (a; s)) � min
s2S

X
a2A

� (a)u (� (a; s)) : (10)

Relative to the original axiomatization of Milnor (1954), this axiomatization is simpler and arguably more

intuitive.

5.2 Subjective expected utility

In game theory often rationality is identi�ed with the adoption of the choice criterion

� (A) = argmax
�2A

E��� [u � �]

where � is a subjective probability on S that the decision maker uses to assess the subjective expected utility

E��� [u � �] =
X
s2S

� (s)
X
a2A

� (a)u (� (a; s))

27One should write Vu and vu instead of V and v since these functions obviously depend on u. The subscripts are omitted since
u is cardinally unique.
28Or of what are the objectives and beliefs of his opponents (see Milnor, 1954, p. 49, and Osborne, 2003, p. 335).
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of each mixed action � 2 �(A). This criterion, which evaluates each action by the expectation of its payo¤s
u (� (a; s)) with respect to the hybrid probability � (a)� (s),29 is characterized by the independence axiom; this

time assumed on the entire set �(A) rather than on �` (A).

Axiom A. 6 (Independence) If �; �; � 2 �(A), then � � � implies 1
2
�+

1

2
� � 1

2
� +

1

2
�.

Along with A.4, clearly A.6 implies A.2. A variation on the Expected Utility Theorem of Anscombe and

Aumann, together with the techniques we developed so far, then delivers:

Theorem 3 Let (A;S;C; �) be a Luce-Rai¤a framework and % be binary relation on �(A). The following

conditions are equivalent:

(i) % is a continuous rational preference that satis�es independence;

(ii) there exist u 2 RC and � 2 �(S) such that, if �; � 2 �(A),

� % � ()
X
s2S

� (s)
X
a2A

� (a)u (� (a; s)) �
X
s2S

� (s)
X
a2A

� (a)u (� (a; s)) :

In general, � is not unique. Like in Lehrer and Teper (2014), the set of Anscombe-Aumann acts generated by

�(A) may be a proper subset of the whole set �(C)S of all Anscombe-Aumann acts. In the Anscombe-Aumann

framework, uniqueness holds under two additional assumptions:

� preferences are not trivial, so that �C is not empty (see Proposition 1);

� all acts are conceivable, so that %� is a weak order on the class of all parts of S (see again Proposition 1).

The �rst assumption readily translates into the following axiom.

Axiom A. 7 (Nontriviality) There exist �; � 2 �(A) such that � � �.

To obtain a complete %�, all bets have to be conceivable.

De�nition 5 A Marschak-Radner framework (A;S;C; �) is a reduced decision framework in which all bets are
conceivable.

Marschak and Radner (1972) assume that all acts be conceivable, but restrict their attention to pure actions.

Their �rst chapter presents the counterpart of Savage�s Expected Utility Theorem when pure actions, rather

than Savage acts, are considered. Next theorem presents the counterpart of the Anscombe-Aumann�s Expected

Utility Theorem, when mixed actions, rather than Anscombe-Aumann acts, are considered.

Theorem 4 Let (A;S;C; �) be a Marschak-Radner framework and % be binary relation on �(A). The following
conditions are equivalent:

(i) % is a nontrivial and continuous rational preference that satis�es independence;

(ii) there exist a nonconstant u 2 RC and � 2 �(S) such that, if �; � 2 �(A),

� % � ()
X
s2S

� (s)
X
a2A

� (a)u (� (a; s)) �
X
s2S

� (s)
X
a2A

� (a)u (� (a; s)) :

29We say that � (a)� (s) is hybrid because is the product of a chance � (a) and a belief � (s). In the same vein, we use the
term payo¤ for u (� (a; s)), expected payo¤ for the (objective) average

P
a2A

� (a)u (� (a; s)) of payo¤s, and expected utility for the

(subjective) average
P
s2S

� (s)
P
a2A

� (a)u (� (a; s)) of expected payo¤s.
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In this case, � is unique.

In a Bayesian decision theory perspective (with no data, see Berger, 1985, Ch. 1), the negative expected

utility

r (�; �) = �E��� [u � �] =
Z
S

E��(s) [�u] d� (s)

is called Bayes risk of (randomized action) � under (prior distribution) �.30

6 Uncertainty aversion

6.1 Axiom and behavior

The di¤erence between the two rational preferences described in the previous section, classical maxminimization

and subjective expected utility maximization, is readily seen in the so called Ellsberg paradox (after Ellsberg,

1961). Consider a coin that a decision maker knows to be fair, as well as an urn that he knows to contain

100 black and white balls in unknown proportion (and so there may be from 0 to 100 black balls).31 To bet

on heads/tails means that the decision maker wins $100 if the tossed coin lands on heads/tails (and nothing

otherwise); similarly, to bet on black/white means that the decision maker wins $100 if a ball drawn from the

urn is black/white (and nothing otherwise).

Ellsberg�s thought experiment suggests, and a number of behavioral experiments con�rm, that many decision

makers are indi¤erent between betting on either heads or tails and are also indi¤erent between betting on either

black or white, but they strictly prefer to bet on the coin rather than on the urn. We can represent this

preference pattern as

bet on heads � bet on tails � bet on white � bet on black (11)

The urn draw is a version of decision problem (4), namely

� B W

a1 $0 $100

a2 $100 $0

where a1 is the bet on white and a2 is the bet on black. The corresponding Luce-Rai¤a framework is obtained

by adding the two sure actions b1 and b2 corresponding to consequences 100$ and 0$, respectively,

� B W

a1 $0 $100

a2 $100 $0

b1 $100 $100

b2 $0 $0

. (12)

In turn, the presence of sure actions allows to express the coin toss as a lottery delivering $100 and $0 with

even chances, that is, 12�b1 +
1
2�b2 =

1
2�b2 +

1
2�b1 and (11) becomes

1

2
�b1 +

1

2
�b2 �

1

2
�b2 +

1

2
�b1 � a1 � a2: (13)

Consider now the following gamble proposed by Rai¤a (1961): toss the coin, then bet on white if the coin lands

on heads and bet on black otherwise. Formally, this gamble is represented by the mixed action 1
2�a1 +

1
2�a2 ,

30Again one should write ru instead of r and again the subscript is omitted because of the cardinal uniqueness of u.
31A fair coin here is just a random device generating two outcomes with the same 1=2 chance. The original paper of Ellsberg

models it as another urn that the decision maker knows to contain 50 white balls and 50 black balls.
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which is easily seen to be realization equivalent to 1
2�b1 +

1
2�b2 .

32 Under mixed consequentialism, it follows

1

2
�a1 +

1

2
�a2 �

1

2
�b1 +

1

2
�b2 � a1 � a2 (14)

which is consistent with classical maxminimization and inconsistent with subjective expected utility.33

Also Rai¤a (1961) uses the realization equivalence between the �compound gamble� 12�a1 +
1
2�a2 and the

�coin toss� 12�b1 +
1
2�b2 to argue in favour of their indi¤erence. From this indi¤erence, he then concludes that

the decision problem �mixed urn draw�(� (fa1; a2g) ; fB;Wg ; �) has the same indirect payo¤ of the problem
�coin toss�

��
1
2�b1 +

1
2�b2

	
; fB;Wg ; �

�
. Indeed, assuming wlog u (100$) = 1 and u (0$) = 0, according both to

maxminimization

max
�2�(fa1;a2g)

min
s2fB;Wg

X
a2A

� (a)u (� (a; s)) =
1

2
= max

�2f 12 �b1+ 1
2 �b2g

min
s2fB;Wg

X
a2A

� (a)u (� (a; s))

and to expected utility with uniform beliefs

max
�2�(fa1;a2g)

X
s2S

1

jSj
X
a2A

� (a)u (� (a; s)) =
1

2
= max

�2f 12 �b1+ 1
2 �b2g

X
s2S

1

jSj
X
a2A

� (a)u (� (a; s))

The maxima are attained in both cases on the lhs at 1
2�a1 +

1
2�a2 and on the rhs at

1
2�b1 +

1
2�b2 . But note

that this observation, corresponding to the �rst part 1
2�a1 +

1
2�a2 �

1
2�b1 +

1
2�b2 of (14), leaves its second

part 1
2�b1 +

1
2�b2 � a1 � a2 normatively compelling because of the decision maker�s ignorance about the

relative likelihood of the states B and W . Jointly the two parts suggest that the �mixed urn draw�problem

has the same value as the �coin toss� problem which has a greater value than the �pure urn draw�problem

(fa1; a2g ; fB;Wg ; �),34 and this is exactly the normative insight of the Ellsberg paradox. Randomization has
value since it eliminates the dependence of the probability of winning on the unknown composition of the urn;

randomization, in fact, makes this probability a chance, thus hedging uncertainty. On the other hand, subjective

expected utility cannot value randomization because of the simple mathematical fact that the expected utility

of a mixed action is never greater than the maximum of the expected utilities of all pure actions in its support.

The preference for randomization that might emerge under uncertainty is called uncertainty aversion.

Axiom A. 8 (Uncertainty aversion) If �; � 2 �(A), then � � � implies 1
2
�+

1

2
� % �.

This axiom, due to Schmeidler (1989), captures the idea that randomization (here in its simplest �fty-�fty

form) may provide an hedge against epistemic uncertainty by trading it o¤ for chance. Accordingly, decision

makers who dislike uncertainty should (weakly) prefer to randomize. In this perspective, the observation of

random choice behavior may be explained by the presence of uncertainty and aversion to it, as predicted by

Rai¤a in commenting Ellsberg.

6.2 Uncertainty averse representations

As shown by Theorem 5 below, continuous rational preferences that are uncertainty averse feature a represen-

tation V : � (A)! R of the form
V (�) = inf

�2S
R (�; �) 8� 2 �(A) (15)

where R : � (A) ��(S) ! (�1;1] is a suitable reward function whose �rst component is increasing in the
expected utility E��� [u � �] for each �xed �. Intuitively, if the decision maker knew the probability � of the
32 If the color of the drawn ball is white (resp. black), then probability of winning by choosing this gamble is the chance that the

coin toss assigns to betting on white (resp. black), and this chance is 1=2 since the coin is fair.
33Note that, under the assumptions of Theorem 3, a1 � a2 implies � (B) = � (W ) = 1=2.
34See, again, Luce and Rai¤a (1957, p. 279) and the discussion of Klibano¤ (1992, p. 6).
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states, he would maximize expected utility. Insu¢ cient information about the environment, along with the need

of taking decisions that perform well under di¤erent probabilistic scenarios � 2 S � �(S), leads to a robust

approach, that is, to maxminimization.

� Classical maxminimization is characterized by

R (�; �) = E��� [u � �]

for all (�; �) 2 �(A)��(S), so that

V (�) = min
�2�(S)

E��� [u � �] = min
s2S

X
a2A

� (a)u (� (a; s)) : (16)

� Subjective expected utility is characterized by

R (�; �) =

(
E��� [u � �] (�; �) 2 �(A)� f�g
+1 otherwise

for some � 2 �(S), so that
V (�) = E��� [u � �] : (17)

� Maxmin expected utility (Gilboa and Schmeidler, 1989) is characterized by

R (�; �) =

(
E��� [u � �] (�; �) 2 �(A)� S
+1 otherwise

where S � �(S) is a compact set of probability distributions considered by the decision maker, so that

V (�) = min
�2S

E��� [u � �] : (18)

� Variational preferences (Maccheroni, Marinacci, and Rustichini, 2006) are characterized by

R (�; �) = E��� [u � �]� c (�) 8 (�; �) 2 �(A)��(S)

where c : � (S)! [0;1] is a lower semicontinuous cost function penalizing the probability distributions,
so that

V (�) = min
�2�(S)

fE��� [u � �]� c (�)g : (19)

For example, denoting by � 2 �(S) a reference probability and by H (�jj�) the relative entropy of � 2 �(S)
with respect to �, the multiplier preferences of Hansen and Sargent (2001, 2008) correspond to the special case

of variational preferences in which c (�) is proportional to H (�jj�),35 while their constraint preferences are
maxmin expected utility preferences with S = f� 2 �(S) : H (�jj�) � "g for some " > 0.
In order to obtain representation (15), due to Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

(2011), we need two �nal pieces of notation. First, given u 2 RC , we denote by U = co (u (C)) the smallest

interval containing u (C) and by G (U;�(S)) the set of functions G : U ��(S)! (�1;1] such that:

1. G is quasiconvex,

2. inf�2�(S)G (x; �) = x for all x 2 U ,

3. G is increasing in the �rst component,

35See Strzalecki (2011) for an axiomatization.
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4. the function { 7! inf�2�(S)G ({ � �; �) is continuous on US .

Second, for each l 2 �U and each � 2 �(S), we denote by B (l; �) the set of all mixed actions that have
Bayes risk level l under �, that is,

B (l; �) = f� 2 �(A) : r (�; �) = lg

and by v (l; �) the indirect payo¤ v (B (l; �)) of decision problem (B (l; �) ; S; C; �), as de�ned in (8).

Theorem 5 Let (A;S;C; �) be a Marschak-Radner framework and % be a binary relation on �(A). The

following conditions are equivalent:

(i) % is a nontrivial and continuous rational preference that satis�es uncertainty aversion;

(ii) there exist a nonconstant u 2 RC and G 2 G (U;�(S))! (�1;1] such that, if �; � 2 �(A),

� % � () inf
�2�(S)

G (E��� [u � �] ; �) � inf
�2�(S)

G (E��� [u � �] ; �) : (20)

In this case, u is cardinally unique and, for each u, the minimal element of G (U;�(S)) satisfying (20) is
the indirect payo¤

Gu (x; �) = v (�x; �) 8 (x; �) 2 U ��(S) : (21)

Continuous and uncertainty averse rational preferences are thus represented by

V (�) = inf
�2�(S)

G (E��� [u � �] ; �) 8� 2 �(A) (22)

and (15) is obtained by setting

R (�; �) = G (E��� [u � �] ; �) 8 (�; �) 2 �(A)��(S)

and by choosing as S the projection on �(S) of the domain of R. In particular, when the minimal Gu described
by (21) is considered,

Ru (�; �) = v (r (�; �) ; �)

is the indirect payo¤ of the decision problem in which are available only the mixed actions with the same Bayes

risk as � under �. This is noteworthy since the indirect payo¤ v (l; �) can be seen as a comparative index of

uncertainty aversion (see Cerreia-Vioglio et al., 2011).

Finally, Gilboa and Schmeidler (1989) show that in order to obtain the maxmin expected utility represen-

tation (18) it is necessary and su¢ cient to add an axiom guaranteeing the cardinal separation of payo¤s and

beliefs,36 which we report in the form adopted by Maccheroni et al. (2006).

Axiom A. 9 (C-Independence) If �; � 2 �(A), ; � 2 �` (A), and p; q 2 (0; 1], then

p�+ (1� p) % p� + (1� p) =) q�+ (1� q)� % q� + (1� q)�:

It is worthwhile to mention that A.9 delivers maxmin expected utility in any Luce-Rai¤a framework, that

is, even if not all bets are conceivable.37 The weakening of A.9 obtained by requiring p = q is necessary and

su¢ cient for the variational representation (19), as shown by Maccheroni et al. (2006).

36See Ghirardato, Maccheroni, and Marinacci (2005).
37Building on Gilboa et al. (2010), another way to obtain maxmin expected utility is replacing, in Theorem 2, �extreme caution�

with �default to certainty�with respect to the unambiguous preference

� %� � () q�+ (1� q)� % q� + (1� q)� 8q 2 [0; 1] and 8� 2 �(A) :

See Ghirardato, Maccheroni, and Marinacci (2004).
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7 Concluding remarks

7.1 Mixed Savage acts

After introducing the Anscombe-Aumann framework �(C)S , Kreps (1988) in Chapter 7 brie�y considers the

framework�
�
CS
�
in which the objects of choice are lotteries with Savage acts as prizes. In the language adopted

here, �
�
CS
�
is the set of all mixed actions corresponding to the reduced decision framework

�
CS ; S; C; %

�
of

Savage in which all acts are conceivable and % (f; s) = f (s) (see Footnote 15 and point 3 of Proposition 2).

Note that in this case, for each � 2 �
�
CS
�
,

%� (c j s) = �
��
f 2 CS : % (f; s) = c

	�
= �

��
f 2 CS : f (s) = c

	�
=

X
ff2supp�:f(s)=cg

� (f) :

Therefore, %� is the Anscombe-Aumann act that Kreps calls � (�) in Problem 3 (p. 111), where he also alludes

at the role of mixed consequentialism.

His purpose is the foundation of subjective expected utility for the decision framework
�
CS ; S; C; %

�
. In this

regard our analysis shows (Theorem 3) that it is actually unnecessary to assume that all acts are conceivable

to obtain subjective expected utility; the exercise can be done in any Luce-Rai¤a framework.

But, more importantly, our focus is di¤erent. Unlike Kreps, we are not after any axiomatic representation of

preferences. The purpose of our analysis is, instead, to show that in applications there is little to lose and much

to gain by replacing the framework of Anscombe and Aumann with that of Luce and Rai¤a. In fact, tractability

is preserved and interpretability is enhanced (as actions are often �few�and not naturally expressed as Savage

acts), and the portability to the game theoretic/statistical/optimal control language is made immediate.

7.2 Independence and preference for randomization

In a Luce-Rai¤a framework, the independence and uncertainty aversion axioms A.6 and A.8 are expressed

for mixed actions, that is, for elements of �(A). Mathematically, these axioms have the same form as the

independence and preference for randomization axioms of risk theory, which are expressed for lotteries. In

general, we maintain independence on �` (A) ' �(C), the set of lotteries with consequences as prizes, and

preference for randomization on �(A). This choice is motivated by the consequentialist theme of the paper

and by the objective of remaining as close as possible to the uses and conventions of the Knightian uncertainty

modelling. In particular, independence on �` (A) is required by A.2.2, which is the analogue in a Luce-Rai¤a

framework of the standard risk independence axiom in an Anscombe-Aumann framework. The presence of

states and the assumption of mixed consequentialism make independence on �(A) a strong requirement since

it prevents payo¤-hedging. Its restriction to�` (A) is not vulnerable to this critique since hedging considerations

are excluded by the state-independence of the distribution of consequences featured by the elements of �` (A).

On the contrary, hedging considerations are exactly those justifying uncertainty aversion on �(A).

In risk theory, preference for randomization may also capture aversion to uncertainty about the value of

consequences, as discussed by Maccheroni (2002) and Cerreia-Vioglio (2009). This kind of uncertainty can also

be viewed as uncertainty about a subjective state space, a concept introduced by Kreps (1979) and Dekel, Lipman

and Rustichini (2001). Along these lines, we could also abandon independence on �` (A), use the techniques of

Cerreia-Vioglio (2009), and obtain a representation featuring both states of the world and subjective states.

Finally, observe that, while our analysis relies on the presence of randomization, an altogether di¤erent

�utilitarian� perspective on the Anscombe-Aumann framework that dispenses with randomization has been

pursued by Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003).
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7.3 Timing and commitment

The immersion � z7! �� of Section 3 may seem to associate an ex ante notion of randomization, featured by mixed

actions, to an ex post one, featured by Anscombe-Aumann acts. Commitment, however, renders the distinction

between ex ante and ex post empty. Speci�cally, in the Anscombe-Aumann framework an act f : S ! �(C) is

a non-random object of choice with random consequences f (s). Randomization is usually interpreted to occur

ex post : the decision maker commits to f , �observes� the realized state s, then �observes� the consequence c

generated by the random mechanism f (s), and receives c.38 In contrast, the mixed actions we consider are, by

de�nition, random objects of choice. Randomization might be interpreted to occur either ex ante or ex post :

in the �rst case, the decision maker commits to �, �observes�the realized action a, then �observes�the realized

state s, and receives the consequence c = � (a; s); in the second, the decision maker commits to �, �observes�the

realized state s, then �observes�the realized action a, and receives the consequence c = � (a; s).39 Clearly the

second interpretation conforms to the one of Anscombe-Aumann acts while the �rst does not. But commitment,

that is, the impossibility of changing the action selected by the random device, makes the distinction immaterial.

Proposition 2.2 helps, inter alia, to further clarify this issue. Since each mixed action � can be written as a

convex combination � =
P

a2A � (a) �a of point-masses, by a¢ nity of z,

�� (s) =
X
a2A

� (a) ��a (s) 8s 2 S (23)

and �� (s) is the chance distribution on C induced by the �ex ante randomization�of actions a with probabilities

� (a) if state s obtains. Consider the act f� : S ! �(C) given by

f� (s) =
X
a2A

� (a) ��(a;s) 8s 2 S (24)

Now f� (s) is the chance distribution on C induced by the �ex post randomization�of consequences � (a; s) with

probabilities � (a) if state s obtains. Proposition 2.1 implies that �� = f�, thus showing that it is impossible

to draw the distinction between �ex ante�and �ex post�in our abstract setup or in that of Fishburn (1970).40

In a richer setup, with two explicit layers of randomization, Anscombe and Aumann (1963) are able to

formalize this issue and assume that �it is immaterial whether the wheel is spun before or after the race�.41 Here

we do not pursue this matter anymore, but we refer to Sarin and Wakker (1997) and Wakker (2010, Ch. 4) for a

further discussion on single-stage versus multi-stage perspectives on randomization. See also Eichberger, Grant,

and Kelsey (2013) for a recent explicit dynamic choice model and Saito (2013) for a menu choice approach

aimed at eliciting to what extent the decision maker believes in the hedging e¤ects of randomization.

A Anscombe-Aumann axioms

Here we report the preferential axioms that are usually stated in the Anscombe-Aumann framework. In this

section %F and %#F are binary relations on a convex subset F of �(C)S that contains the set C ' �(C) of all
constant acts.

Axiom AA. 1 (Weak order) %F is complete and transitive.

Axiom AA. 2 (Risk independence) If ; �; � 2 C, then  �F � implies
1

2
 +

1

2
� �F

1

2
� +

1

2
�.

38We say �interpreted�since this timeline and the timed disclosure of information are unmodelled. In principle, one could think
of the decision maker committing to f and receiving the outcome of the resulting process.
39Again the timeline and the timed disclosure of information are unmodelled. In principle, one could think of the decision maker

committing to � and receiving the outcome of the resulting process.
40See Kuzmics (2012) on this issue.
41Seo (2009) studies the consequences of weakening this assumption.
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Axiom AA. 3 (Monotonicity) If f; g 2 F and f(s) %F g(s) for all s 2 S, then f %F g.

Axiom AA. 4 (Continuity) If f; g; h 2 F , then fq 2 [0; 1] : qf + (1� q) g %F hg and fq 2 [0; 1] : h %F qf+
(1� q) gg are closed sets.

Axiom AA. 5 (Default to certainty) If f 2 F ,  2 C, and f 6%#F , then  �F f .

Axiom AA. 6 (Independence) If f; g; h 2 F , then f �F g implies
1

2
f +

1

2
h �F

1

2
g +

1

2
h.

Axiom AA. 7 (Non-triviality) There exist f; g 2 F such that f �F g.

Axiom AA. 8 (Uncertainty aversion) If f; g 2 F and q 2 (0; 1), f �F g implies qf + (1� q) g %F f .

Axiom AA. 9 (C-Independence) If f; g 2 F ,  2 C, and q 2 (0; 1], then

f %F g () qf + (1� q) %F qg + (1� q):

B Proofs

Throughout this appendix, if  2 �(C) and u 2 RC we indi¤erently writeX
c2C

 (c)u (c) or E [u] or u () .

Proof of Proposition 1. 1. For each a 2 A, �a = �a so that a � a and by consequentialism a �A a. Therefore
%A is re�exive and transitive, that is, a preorder. Conversely, let (A;S;C; �) be reduced and %A be a preorder.
For every a; b 2 A, a � b implies (because of reduction) a = b, and re�exivity of %A delivers a �A b. Therefore
%A satis�es consequentialism.

2. Let c; d 2 C and ac; bc; ad; bd 2 A, not necessarily distinct, be such that

� (ac; �) = � (bc; �) � c and � (ad; �) = � (bd; �) � d. (25)

These sure actions exist since all sure actions are conceivable. By consequentialism, %A is a preorder and (25)
implies ac �A bc and ad �A bd. Therefore, by transitivity of %A,

ac %A ad () bc %A bd

and %C is well de�ned.42 Re�exivity and transitivity of %C descend from re�exivity and transitivity of %A.

3. The proof is similar to the one of the previous point, hence left to the reader. �

Proof of Proposition 2. 1. Fix s 2 S. For each c 2 C,

��a (c j s) = �a (fb 2 A : � (b; s) = cg) =
(
1 c = � (a; s)

0 otherwise
= ��(a;s) (c)

that is ��a (s) = ��(a;s). Write x instead of �x if either x 2 A or x 2 C, then

z (a) = z (�a) =

266664
��a (s1)

��a (s2)
...

��a (sn)

377775 =
266664
��(a;s1)

��(a;s2)
...

��(a;sn)

377775 =
266664
� (a; s1)

� (a; s2)
...

� (a; sn)

377775 = �a
42Speci�cally, %C= f(c; d) 2 C � C : ac % ad for some/all ac; ad 2 A such that �ac � c; �ad � dg.
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as desired.

2. Fix s 2 S. For each c 2 C,

�q�+(1�q)� (c j s) = (q�+ (1� q)�) (fa 2 A : � (a; s) = cg)
= q� (fa 2 A : � (a; s) = cg) + (1� q)� (fa 2 A : � (a; s) = cg)
= q�� (c j s) + (1� q) �� (c j s)

that is, �q�+(1�q)� = q�� + (1� q) �� .

3. Let D be an arbitrary nonempty subset of C. Then �(D) is convex in RD, and its extreme points are the
point-masses f�dgd2D. Therefore �(D)

S is convex too. Next we show that its extreme points are the vectors

of point-masses. If g 2 �(D)S is not extreme there exist g0; g00 2 �(D)S with g0 6= g00, say 0 � g0 (d j s) <
g00 (d j s) � 1, and q 2 (0; 1) such that g = qg0+(1� q) g00. Then g (d j s) = qg0 (d j s)+(1� q) g00 (d j s) 2 (0; 1)
and g (s) is not a point-mass. Conversely, if g 2 �(D)S is not a vector of point-masses, then g (s) is not a
point-mass for some s 2 S. Therefore, there exist g0 (s) ; g00 (s) 2 �(D) with g0 (s) 6= g00 (s) and q 2 (0; 1) such
that g (s) = qg0 (s) + (1� q) g00 (s). But this implies that g = qg0 + (1� q) g00 where g0 (resp. g00) is obtained
replacing the s-th element g (s) of the vector g with g0 (s) (resp. g00 (s)). Thus g is not extreme.

In particular, the generic extreme point of �(D)S is266664
�e(s1)

�e(s2)
...

�e(sn)

377775 with

266664
e (s1)

e (s2)
...

e (sn)

377775 = e 2 DS :

If part. Assume f�aga2A = CS . For each e 2 CS , there exists ae 2 A such that �ae = e. For each f 2 �(C)
S ,

set D =
S
s2Ssuppf (s). Then �(D)

S is compact in RD since D is �nite. By the Krein�Milman Theorem,

there exists � 2 �
�
DS
�
such that

f =
X
e2DS

� (e)

266664
�e(s1)

�e(s2)
...

�e(sn)

377775 =
X
e2DS

� (e)

266664
��(ae;s1)

��(ae;s2)
...

��(ae;sn)

377775 =
X
e2DS

� (e)

266664
��ae (s1)

��ae (s2)
...

��ae (sn)

377775 (26)

where the last equality follows from point 1 of this proposition. By (26) and a¢ nity of z (point 2 of this

proposition),

f =
X
e2DS

� (e) ��ae =
X
e2DS

� (e)z (�ae) = z

 X
e2DS

� (e) �ae

!

where
X
e2DS

� (e) �ae 2 �(A) since DS is �nite and �(A) is convex. Therefore, z is onto.

Only if part. Assume z (� (A)) = � (C)S . For each e 2 CS , there exists � 2 �(A) such that

�� (s) = �e(s) 8s 2 S: (27)

Partition the �nite support of �, into realization equivalence classes so that

supp� =
kG
i=1

Ai
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with �ai = �a0i for all ai; a
0
i 2 Ai and all i = 1; 2; :::; k and �ai 6= �aj if ai 2 Ai, aj 2 Aj and i 6= j. Moreover, for

each i = 1; 2; :::; k arbitrarily select bi 2 Ai. By (27), for each s 2 S,

�e(s) =
X

a2supp�
� (a) ��a (s) =

kX
i=1

 X
ai2Ai

� (ai) ��ai (s)

!

but, for each i = 1; 2; :::; k, and all ai 2 Ai,

��ai (s) = ��(ai;s) = ��(bi;s) = ��bi (s) :

Therefore, setting � (bi) =
P

ai2Ai

� (ai) for all i = 1; 2; :::; k and � (a) = 0 if a 2 A n fb1; :::; bkg, � 2 �(A) is such

that

�e(s) =
kX
i=1

 X
ai2Ai

� (ai)

!
��bi (s) =

kX
i=1

� (bi) ��bi (s) =
kX
i=1

� (bi) ��(bi;s)

and 266664
�e(s1)

�e(s2)
...

�e(sn)

377775 =
kX
i=1

� (bi)

266664
��(bi;s1)

��(bi;s2)
...

��(bi;sn)

377775 : (28)

The summands
�
��(bi;s1) ::: ��(bi;sn)

�|
are distinct (extreme) points in�(C)S and

�
�e(s1) ::: �e(s1)

�|
is an extreme

point of �(C)S . Then � = �b for some b 2 supp� � A, and (28) implies e = �b. The arbitrary choice of e

allows to conclude CS � f�aga2A and the converse inclusion is trivial. �

Proof of Corollary 1. If � 6= �a there exists b 6= a such that � (b) 6= 0. Since the framework is reduced �b 6= �a
and there exists s 2 S such that � (a; s) 6= � (b; s). Setting c = � (b; s), it follows

�� (c j s) � � (b) > 0 = ��(a;s) (c) = ��a (c j s)

and hence �� 6= ��a and �a 6� �. By contrapositive �a � � =) � = �a, and the converse is trivial. �

Lemma 1 Let (A;S;C; �) be a decision framework, � 2 �(A), u 2 RC , and � 2 �(S). Then:

1. �� (s) =
P
a2A

� (a) ��(a;s) for all s 2 S;

2. u (�� (s)) = E��(s) [u] =
P
a2A

� (a)u (� (a; s));

3.
R
S
u (�� (s)) d� (s) = E��� [u � �].

Moreover, if (A;S;C; �) is a Luce-Rai¤a framework, then

� : � (C) ! �` (A)P
c2C

 (c) �c 7!
P
c2C

 (c) �cS

is a¢ ne and bijective. In particular:

4. for each � =
P
c2C

� (cS) �cS 2 �` (A) the only  2 �(C) such that � () = � is ��1 (�) =
P
c2C

� (cS) �c;

5. for each  2 �(C) and each s 2 S, ��() (s) = .
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Proof. 1. Follows from points 1 and 2 of Proposition 2. Speci�cally,

�� = z

 X
a2A

� (a) �a

!
=
X
a2A

� (a)z (�a) =
X
a2A

� (a) ��a

and therefore for each s 2 S
�� (s) =

X
a2A

� (a) ��a (s) =
X
a2A

� (a) ��(a;s):

2. By de�nition, for all s 2 S,

u (�� (s)) = E��(s) [u] = E P
a2A

�(a)��(a;s) [u] =
X
a2A

� (a)E��(a;s) [u] =
X
a2A

� (a)u (� (a; s)) :

3. By de�nition,Z
S

u (�� (s)) d� (s) =
X
s2S

� (s)
X
a2A

� (a)u (� (a; s)) =
X
a2A

X
s2S
� (a)� (s)u (� (a; s)) = E��� [u � �] :

If (A;S;C; �) is a Luce-Rai¤a framework, since all sure actions are conceivable for each c 2 C there exists a
sure action ac 2 A such that � (ac; �) � c, reduction instead guarantees that such sure action is unique and we
denote it by cS. In other words the map c 7! cS is well de�ned. It is also easy to check that its range is the

set of all sure actions and that the map is injective. Therefore c ,! cS is an embedding of C onto the set of all

sure actions. The fact that � is a¢ ne and bijective immediately follows.

4. Clearly  =
P
c2C

� (cS) �c 2 �(C) and  (c) = � (cS) for all c 2 C, by de�nition of � it follows � () =P
c2C

 (c) �cS = �.

5. By de�nition � () =
P

c2supp
 (c) �cS , therefore, for each s 2 S,

��() (s) = �
P

c2supp
(c)�cS (s) =

X
c2supp

 (c) ��cS (s) =
X

c2supp
 (c) ��(cS;s) =

X
c2supp

 (c) �c = : (29)

�

Proof of Theorem 1. (i) =) (ii). Since % satis�es A.1, then

�% (A) = f� 2 A : � % � 8� 2 Ag 8A 2 } (� (A))

is a rational choice correspondence and generates %. Since % also satis�es A.2, then %�(C) satis�es Axioms 1,
2, and 3 of Hernstein and Milnor (1953) and there exists u 2 RC such that, if ; � 2 �(C), then

 %�(C) � ()
X
c2C

 (c)u (c) �
X
c2C

� (c)u (c)

and, by de�nition of %�(C) this means

� () % � (�) () E [u] � E� [u] :

Therefore, if �; � 2 �(A), then

� <S � () �� (s) %�(C) �� (s) 8s 2 S
() u (�� (s)) � u (�� (s)) 8s 2 S

()
X
a2A

� (a)u (� (a; s)) �
X
a2A

� (a)u (� (a; s)) 8s 2 S

() � >u �:
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Now A.3 implies

� >u � =) � % � (30)

moreover, if �; � 2 �` (A), then � = � () and � = � (�) for some ; � 2 �(C), and

� % � ()  %�(C) � () ��() (s) %�(C)
��(�) (s) 8s 2 S () � >u �

that is %, <S , and >u coincide on �` (A) where

� % � ()  %�(C) � () E [u] � E� [u] ()
X
c2C

� (cS)u (c) �
X
c2C

� (cS)u (c) :

This immediately implies, for each A 2 } (� (A)) such that A � �` (A),

�% (A) = f� 2 A : � % � 8� 2 Ag
= f� 2 A : � >u � 8� 2 Ag = �u (A)

For a generic A 2 } (� (A)), by (30),

�u (A) = f� 2 A : � >u � 8� 2 Ag
� f� 2 A : � % � 8� 2 Ag = �% (A) :

(ii) =) (i). If % is generated by a rational choice correspondence � : } (� (A)) ! } (� (A)), then % satis�es

A.1. By (ii) there exists also u 2 RC such that:

�u (A) � � (A) for all A 2 } (� (A)) and equality holds if A � �` (A) :

Therefore, if �; � 2 �(A),

� <S � () �� (s) %�(C) �� (s) 8s 2 S
() � (�� (s)) % � (�� (s)) 8s 2 S
() � (�� (s)) 2 � (f� (�� (s)) ; � (�� (s))g) 8s 2 S

but f� (�� (s)) ; � (�� (s))g � �` (A) for all s 2 S, that is

� <S � () � (�� (s)) 2 �u (f� (�� (s)) ; � (�� (s))g) 8s 2 S () � (�� (s)) >u � (�� (s)) 8s 2 S: (31)

Moreover, given �; � 2 �(A)

� >u � ()
X
a2A

� (a)u (� (a;w)) �
X
a2A

� (a)u (� (a;w)) 8w 2 S () E��(w) [u] � E��(w) [u] 8w 2 S

and (31) becomes

� <S � () E��(��(s))(w) [u] � E��(��(s))(w)
[u] 8w; s 2 S

but, ��() �  for all  2 �(C), therefore

� <S � () E��(s) [u] � E��(s) [u] 8w; s 2 S ()
X
a2A

� (a)u (� (a; s)) �
X
a2A

� (a)u (� (a; s)) 8s 2 S

(32)

() � >u � =) � 2 �u (f�; �g) � � (f�; �g) =) � % �

and % satis�es A.3.
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Finally, if �; � 2 �` (A), then � = � () and � = � (�) for some ; � 2 �(C), and

� % � () � () % � (�) ()  %�(C) � () ��() (s) %�(C)
��(�) (s) 8s 2 S () � <S �

but supp�; supp� � fcSgc2C and by (32)

� % � ()
X
a2A

� (a)u (� (a; s)) �
X
a2A

� (a)u (� (a; s)) 8s 2 S

()
X
c2C

� (cS)u (� (cS; s)) �
X
c2C

� (cS)u (� (cS; s)) 8s 2 S

()
X
c2C

� (cS)u (c) �
X
c2C

� (cS)u (c)

and so % satis�es Axioms 2 and 3 of Hernstein and Milnor (1953) on �` (A), that is, A.2. �

Recall that if  2 �(C) and u 2 RC we indi¤erently write E [u] or u (); with a similar abuse, if f 2 �(C)S

we denote by u (f) the element of RS de�ned by

u (f) =

266664
u (f (s1))

u (f (s2))
...

u (f (sn))

377775 =
266664
Ef(s1) [u]
Ef(s2) [u]

...

Ef(sn) [u]

377775 :
Lemma 2 Let (A;S;C; �) be a Luce-Rai¤a framework, F = z (� (A)), u 2 RC , and % be a preorder on �(A).
Then:

1. F is a convex subset of �(C)S containing all constant Anscombe-Aumann acts;

2. if % satis�es A.3, then % satis�es mixed consequentialism;

3. if all bets are conceivable, fu (f) : f 2 Fg = (co (u (C)))S = u (� (C))S.

Moreover, if % satis�es mixed consequentialism, then %z is a well de�ned preorder on F and:

4. for N = 1; 3; 4; 6; 7; 9, %z satis�es AA.N if and only if % satis�es A.N;

5. AA.2 for %z is implied by A.2 for % (and they are equivalent under A.4);

6. AA.5 for %z is equivalent to A.5 for % when %#z is de�ned by

f %#z g () f (s) %z g (s) 8s 2 S;

7. AA.8 for %z implies A.8 for % (and they are equivalent under A.1 and A.4).

Proof. 1. Follows from a¢ nity of z and the fact that ��() �  for all  2 �(C).

2. If �; � 2 �(A) and � � �, then �� (s) = �� (s) for all s 2 S; since % is a preorder � (�� (s)) % � (�� (s)),
that is, �� (s) %�(C) �� (s) for all s 2 S, and A.3 implies � % �. By a symmetric argument � % �.

3. Obviously, fu (f) : f 2 Fg � (co (u (C)))S = u (� (C))S . Set U = co (u (C)) and assume u (C) is not a

singleton, otherwise the result is trivial. For every vector { = [x1 ::: xn]
| 2 US there exist c 6= d in C and

q1; q2; :::; qn 2 [0; 1] such that266664
x1

x2
...

xn

377775 =
266664
q1u (c) + (1� q1)u (d)
q2u (c) + (1� q2)u (d)

...

qnu (c) + (1� qn)u (d)

377775 =
266664
u (q1�c + (1� q1) �d)
u (q2�c + (1� q2) �d)

...

u (qn�c + (1� qn) �d)

377775 :
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Set D = fc; dg, set B = fa 2 A : �a (S) � fc; dgg, and consider the Luce-Rai¤a framework (B;S;D; �). Since
all the bets are conceivable in (A;S;C; �), then f�bgb2B = DS . In particular, by point 3 of Proposition 2 for

each f 2 �(D)S , there exists �f 2 �(B) such that

�f (fb 2 B : � (b; s) = cg) = f (cjs) 8s 2 S:

Choose f 2 �(D)S such that f (c j si) = qi = 1 � f (d j si) for all i = 1; :::; n, and set � (a) = �f (a) if a 2 B
and � (a) = 0 if a 2 A nB. Then, � 2 �(A) and, for all i = 1; :::; n,

�� (c j si) = �f (fb 2 B : � (b; si) = cg) = f (c j si) = qi
�� (d j si) = f (d j si) = 1� qi

so that �� (si) = qi�c + (1� qi) �d and u (�� (si)) = qiu (c) + (1� qi)u (d), that is, u (��) = {.

Assume % satis�es mixed consequentialism. Let f; g 2 F and �f ; �f ; �g; �g 2 �(A), not necessarily distinct,
be such that

��f = ��f = f and ��g = ��g = g. (33)

These mixed actions exist since F = z (� (A)). By mixed consequentialism, (33) implies �f � �f and �g � �g
Therefore, by transitivity of %,

�f % �g () �f % �g

and %z is well de�ned.43 Re�exivity and transitivity of %z descend from re�exivity and transitivity of %.

The veri�cation of points 4, 5, and 6 is routine.

7. Assume %z satis�es AA.8. If �; � 2 �(A) and � � �, then �� �z �� . By AA.8, 2�1�� + 2�1�� %z ��,
therefore �2�1�+2�1� %z �� and 2�1�+ 2�1� % �, so that % satis�es A.8.
Conversely, assume % satis�es A.1 and A.4. Next we show that A.8 implies that for all �; � 2 �(A) such

that � � � and all q 2 (0; 1) it holds q� + (1� q)� % �. Per contra, assume there exist �; � 2 �(A) and
p 2 (0; 1) such that � � � and p�+ (1� p)� � �. Set

T = ft 2 [0; 1] : t�+ (1� t)� � �g :

Clearly p 2 T . Moreover, by A.1 and A.4, T is open in [0; 1] and hence there exists O open in R such that
T = O \ [0; 1], but T � (0; 1), therefore T = O \ (0; 1) is open in R. Therefore there exists an open interval in
T that contains p. The set

I =
[

p3(q;r)�T

(q; r)

is a union of pairwise overlapping open intervals, and so it is an open interval itself: p 2 I = (�q; �r) � T � (0; 1).
If �q 2 T , there would exist " > 0 such that (�q � "; �q + ") � T , and then p 2 (�q � "; �r) � T , whence

(�q � "; �r) � I = (�q; �r)

a contradiction. Therefore �q =2 T and (analogously) �r =2 T , that is,

�q�+ (1� �q)� % � and �r�+ (1� �r)� % �.

Since (�q; �r) � T is nonempty, eventually, �q + n�1 and �r � n�1 belong to T , and by A.4

�q�+ (1� �q)� - � and �r�+ (1� �r)� - �.
43 In fact,

�
(f; g) j � % �;8�; � 2 �(A) : �� = f and �� = g

	
=
�
(f; g) j 9�; � 2 �(A) : �� = f , �� = g, and � % �

	
� F � F

and the relation %z they de�ne on F is such that, if �; � 2 �(A) then � % � () �� %z �� .
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That is, �q�+ (1� �q)� � �r�+ (1� �r)� � �, and A.8 implies� �q
2
+
�r

2

�
�+

�
1� �q

2
� �r

2

�
� =

1

2
(�q�+ (1� �q)�) + 1

2
(�r�+ (1� �r)�) % �r�+ (1� �r)� � �

but this is a contradiction since 2�1�q + 2�1�r 2 (�q; �r) � T .
Now let f; g 2 F be such that f �z g and arbitrarily choose q 2 (0; 1). Let �; � 2 �(A) be such that f = ��

and g = �� , then f �z g implies � � �, A.1, A.4, and A.8 imply q�+ (1� q)� % �, whence �q�+(1�q)� %z ��
and qf + (1� q) g = q�� + (1� q) �� %z �� = f . As wanted. �

Proof of Proposition 3. It immediately follows from Lemma 2. �

Proofs of Theorems 2, 3, 4, and 5. Let % be a rational preference. As shown in the �rst part of the proof
of Theorem 1, there exists u 2 RC such that:

� if ; � 2 �(C), then  %�(C) � ()
P
c2C

 (c)u (c) �
P
c2C

� (c)u (c);

� if �; � 2 �(A), then � <S � () � >u � ()
P
a2A

� (a)u (� (a; s)) �
P
a2A

� (a)u (� (a; s)) for all s 2 S;

� if �; � 2 �` (A), then � % � () � <S � ()
P
c2C

� (cS)u (c) �
P
c2C

� (cS)u (c).

If moreover % is continuous, for every � 2 �(A) there exists �` 2 �(C) such that � � �`, more precisely,
� � � (�`). In fact, choosing w and m in S so that

�� (m) %�(C) �� (s) %�(C) �� (w) 8s 2 S (34)

it follows � (�� (m)) <S � <S � (�� (w)). Whence � = � (�� (m)) and � = � (�� (w)) belong to �` (A) and, by
A.3, � % � % �. Therefore, the nonempty and closed (by A.4) sets

fq 2 [0; 1] : q� + (1� q)� % �g and fq 2 [0; 1] : � % q� + (1� q)�g

cover (by A.1) the connected set [0; 1]. In particular, they cannot be disjoint, and there is q` 2 [0; 1] such that
q`�+(1� q`)� � �; convexity of �` (A) = � (� (C)) implies that q`�+(1� q`)� = � (�`) for some �` 2 �(C).
If �; � 2 �(A), then

� % � () � (�`) % � (�`) () �` %�(C) �` ()
X
c2C

�` (c)u (c) �
X
c2C

�` (c)u (c)

that is, the functional
V : � (A) ! R

� 7!
P
c2C

�` (c)u (c)

represents % on �(A).44
For each � 2 �(A), by (34) and A.3, � (�� (m)) % � % � (�� (w)) so that

max
s2S

X
a2A

� (a)u (� (a; s)) = max
s2S

E��(s) [u] = E��(m) [u] = V (� (�� (m)))

� V (�)

� V (� (�� (w))) = E��(w) [u] = min
s2S

E��(s) [u] = min
s2S

X
a2A

� (a)u (� (a; s)) :

44Notice that V is well de�ned since whenever �0`; �
00
` 2 �` (A) are such that �

�
�0`
�
� � and �

�
�00`
�
� �, then �0` ��(C) �00`

and
P
c2C

�0` (c)u (c) =
P
c2C

�00` (c)u (c). Also observe that if � = � () 2 �` (A), one can choose �` =  and obtain V (� ()) =P
c2C

 (c)u (c) = E [u].
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Up until this point, we only assumed that % satis�es A.1-A.4.

Theorem 2. If, in addition, A.5 holds, then � (�`) - � implies � <S � (�`), that is �� (w) %�(C) �`, and

min
s2S

X
a2A

� (a)u (� (a; s)) = min
s2S

E��(s) [u] = E��(w) [u] � E�` [u] = V (�) :

Summing up, V (�) = mins2S
P
a2A

� (a)u (� (a; s)) for all � 2 �(A), which proves (10). The converse is routine,

hence omitted. �

If % satis�es A.1-A.4, by Lemma 2, %z is well de�ned and satis�es AA.1-AA.4 on F = z (� (A)). For
each f = �� 2 F , � � � (�`) implies f �z ��(�`) = (�`)S . In the Anscombe-Aumann jargon, �` is a certainty
equivalent f of f = ��, more precisely,

f� 2 �(C) : � � � (�)g = f 2 �(C) : �� � Sg :

Moreover, if g = �� 2 F , then

f %z g () � % � () �` %�(C) �` () E�` [u] � E�` [u] () u (f ) � u (g) :

In particular, for every ; � 2 �(C),

S %z �S () ��() %z ��(�) () � () % � (�) ()  %�(C) � () E [u] � E� [u] () u () � u (�) :

Set U = co (u (C)) = u (� (C)) and u (F) = fu (f) : f 2 Fg � US � RS , and for each { 2 u (F) de�ne

I ({) = u (f ) if { = u (f) .

Using the techniques of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011) it can be shown that

I : u (F)! R is well de�ned, monotone and normalized (that is I (x1S) = x for all x 2 U). Moreover, for each
� 2 �(A), V (�) = E�` [u] = u (�`) = I (u (��)) and if f = ��; g = �� 2 F

f %z g () V (�) � V (�) () I (u (��)) � I (u (��)) () I (u (f)) � I (u (g)) : (35)

Theorems 3 and 4. If % satis�es A.6, then %z satis�es AA.6 by Lemma 2, which, together with (35), implies
I is a¢ ne. Theorem 3 follows by the �nite dimensional versions of the Krein-Rutman Extension Theorem (see,

e.g. Ok, 2007, p. 496) and the Riesz Representation Theorem. The additional assumptions of Theorem 4,

nontriviality of % and conceivability of all bets, guarantee that u is nonconstant and � is unique. �

Theorem 5. Follows from Theorem 3 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011) and

Lemma 2 again, which guarantees that fu (f) : f 2 Fg = US when all bets are conceivable and that %z satis�es
AA.8 when % satis�es A.1-A.4 and A.8. �
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