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Abstract 

We study a Mean-Risk model derived from a behavioral theory of Disappointment with multiple 

reference points. One distinguishing feature of the risk measure is that it is based on mutual deviations 

of outcomes, not deviations from a specific target. We prove necessary and sufficient conditions for 

strict first and second order stochastic dominance, and show that the model is, in addition, a Convex 

Risk Measure. The model allows for richer, and behaviorally more plausible, risk preference patterns 

than competing models with equal degrees of freedom, including Expected Utility (EU), Mean-

Variance (MV), Mean-Gini (MG), and models based on non-additive probability weighting, such as 

Dual Theory (DT). For example, in asset allocation, the decision-maker can abstain from diversifying 

in a risky asset unless it meets a threshold performance, and gradually invest beyond this threshold, 

which appears more acceptable than the extreme solutions provided by either EU and MV (always 

diversify) or DT and MG (always plunge). In asset trading, the model allows no-trade intervals, like 

DT and MG, in some, but not all, situations. An illustrative application to portfolio selection is 

presented. The model can provide an improved criterion for Mean-Risk analysis by injecting a new 

level of behavioral realism and flexibility, while maintaining key normative properties. 

 

Key words: Risk analysis; Uncertainty modeling; Utility theory; Stochastic dominance; Convex risk 

measures. 
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1. Introduction 

Mean-Risk analysis is an appealing approach to decision under risk that has sprung abundant literature 

and applications. This is because measuring the value of gambles as a function of their rewards and 

risks goes to the heart of decision makers’ concerns in a direct, transparent manner (Jia and Dyer 

1996). There seems to be general agreement—even compelling arguments (de Giorgi 2005)—that the 

potential reward of a gamble should be captured by its expected value, i.e., its mean. There is less 

accord about what constitutes an acceptable measure of risk. The challenge is to balance desirable 

normative properties with intuitively or behaviorally appealing considerations. This tension ultimately 

lies at the heart of any prescriptive theory of choice under risk. 

 

Here, we propose a Mean-Risk model that results from a reformulation of Disappointment without 

Prior Expectation (Delquié and Cillo 2006), a theory of Disappointment in which every outcome of a 

prospect can act as a reference point for any other outcome. We show that this Mean-Risk model 

presents advantages over the standard competing models because it is able to produce solutions to 

mean-risk optimization problems that are behaviorally more realistic, and at the same time it retains 

key normative properties required for use in a wide range of applications. Due to this flexibility, our 

model may provide an attractive criterion to capture decision makers’ risk-return preference patterns in 

Mean-Risk analysis. 

 

The paper proceeds as follows. Section 2 introduces the model. We show how it relates to other 

models of risk, and that it defines a class of risk measure distinct from the classic families widely 

considered throughout the literature. In Section 3, we provide necessary and sufficient conditions for 

monotonicity with respect to first and, more importantly, second order stochastic dominance, two 

essential normative criteria for ordering risky prospects. This generalizes previous results concerning 

the Mean-Gini model (Yitzhaki 1982, Ogryczak and Ruszczyński 2002). In Section 4, we show that 

the model yields a Convex risk measure, which is highly desirable for use in risk management because 

it rewards diversification. Next, the model’s implications for asset trading and optimal allocation are 

examined in Section 5. There, we show that the model allows for a richer pattern of risk taking 

behaviors than other standard models, and we specify the conditions under which qualitatively 

different types of behaviors occur. The risk taking behaviors produced by the model appear more 

realistic than those of other classic models with comparable degrees of freedom. These results are 

closely tied to the model’s ability to bridge first order and second order risk aversion. Section 6 

addresses practical issues in calibrating and using the model for applications, and provides a numerical 

example in stock portfolio selection. By way of summary, Section 7 concludes that the model provides 

a tractable, sound analysis of choice under risk, offering a wider range of available solutions in Mean-

Risk analysis. All proofs appear in the Appendices. 
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2. The Proposed Mean-Risk Model 

The literature on risk emanates from several intellectual traditions, notably Statistics (measures of 

dispersion and the moments approach), Economics (the EU approach, but also the inequality 

measurement approach), Finance (the portfolio efficient set approach), and Psychology (the 

behavioral/cognitive approach). Sarin and Weber (1993) present an overview of the Risk-Value 

models literature at the time of their writing; Pederson and Satchell (1998) provide a fairly detailed 

review of risk measures. 

 

Expected Utility stands as the ultimately rational approach to choice under risk, however, there is no 

explicit construction of a risk index as a primitive in EU. For an individual with utility function u, the 

risk of a gamble X can be measured as its risk premium, defined as π(X) = E[X] – u–1(Eu[X]) (Pratt 

1964), but the valuation of a gamble, i.e., its certainty equivalent, cannot in general be calculated 

directly from its expected value and its risk premium in a Risk-Value spirit, because the estimation of 

π(X) usually requires calculating the certainty equivalent, leading to a circularity. Under particular 

conditions on the u function and/or the distribution of X, EU can take a Risk-Value form. For example, 

if the utility function is exponential and gambles have a normal distribution, or if the utility function is 

quadratic, then EU is equivalent to a Mean-Variance model. Further ways to cast EU as a function of 

risk and return have been explored in some depth by Bell (1995) and Jia and Dyer (1996): the 

possibilities seem confined to a limited set. Because the notion of risk in EU is entirely driven by the 

concavity of the utility function, it is completely intertwined with the concept of diminishing marginal 

utility of money. To require that the valuation of each and every risk be entirely and only determined 

by the pattern of utility for wealth may be too rigid for some decision makers. That is, EU may leave 

out some aspects of risk that legitimately matter to the decision maker. 

 

The so-called Risk-Value framework may offer more flexibility in dealing with risk (Dyer and Jia 

1997) by allowing to define a risk measure “from scratch,” that is, unconstrained by whether it is 

consistent with the maximization of a particular EU function. Because risk is associated with the 

presence of uncertainty in the payoffs, that is, the extent to which their distribution departs from a sure 

outcome, risk measures are germane with measures of dispersion. Risk is traditionally measured as the 

propensity of a random outcome to deviate from some reference level. Stone (1973) proposes that 

three basic ingredients are relevant to devising a risk measure: (i) a reference level, from which 

deviations are measured; (ii) the range of deviations taken into account; and (iii) how deviations are 

weighed. He shows that this defines a general family that includes the standard risk measured used in 

Finance: variance, semi-variance, mean absolute deviation, and the probability of a loss worse than 

some specified level. 
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A wide variety of risk measures has been proposed, some of which have received special attention. For 

example, Mean Absolute Deviation, Semi-lower Deviation, Conditional Value-at-Risk, and the Gini 

Absolute Difference, among others, have been studied in depth as regards their normative properties 

(e.g. compliance with stochastic orderings, consistency) and computational performance in 

optimization (see the work of Ogryczak and Ruszczyński (1999, 2002); Mansini et al. (2003, 2007); 

Krzemienowski and Ogryczak (2005)). The risk measure we propose here was motivated by a desire to 

account for risk preferences that deviate systematically from EU, such as the widely observed Allais 

(1953) paradox and certainty effect (Kahneman and Tversky 1979), the common ratio effect, and 

reference-dependence in valuing outcomes. 

 

2.1 A Behaviorally Motivated Mean-Risk Model 

Delquié and Cillo (2006) developed the Disappointment without Prior Expectation model of choice 

under risk based on the postulate that individuals are liable to experience a mixture of disappointment 

and contentment from comparing the outcome received from a gamble to all the other possible 

outcomes, worse and better, rather than a single prior expectation. This extends the notion of reference 

dependence by allowing each and every outcome in the gamble to play the role of a reference point, 

that is, the value of an outcome is relative to the entire context in which it is embedded. In all previous 

formulations of Disappointment, including Bell (1985) and Loomes and Sugden (1986), the gamble is 

summarized into a single reference point. Kőszegi and Rabin (2007) proposed a model of reference-

dependent risk taking behavior in which the reference level is stochastic, consisting of the expectations 

the decision maker held in the recent past. 

 

It was also shown in Delquié and Cillo (2006) that Disappointment without Prior Expectation could be 

reformulated as a Risk-Value model, taking the following form: 

 ( )∑∑∑
= ≥=

−−=
n

i ij
jiji
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ii xvxvHppxvpXV
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where X is a gamble that yields payoff xi with probability pi, i = 1, …, n, 1=∑ ip  and x1 ≥ x2 ≥ ... ≥ xn; 

v(·) is an increasing function that describes the subjective value of outcomes; and the function H 

describes how an individual values discrepancies between achieved and missed outcomes, that is, the 

losses associated with less than desired outcomes. The immutable properties of H, that stem from its 

very definition, are: (i) H(0) = 0, and (ii) H is defined on the non-negative domain, that is, it takes non-

negative deviations as argument, i.e., differences between ordered outcomes. 

 

Here, for parsimony and for the sake of having a Risk-Value representation comparable to those that 

have appeared before, we focus on a special case of the above model: we will assume v linear 

throughout this paper. This assumption does not play a role in the essential results and claims 



 

5 

developed in the paper, and it will enable to us to concentrate on what can be accomplished with the 

simplest form. Thus, the model we are interested in here is: 

∑∑
= ≥

−=Δ

Δ−=
n

i ij
jiji xxHppX

XXXV

1

),()(with

)(]E[)(
        (1) 

where E[X] is the mean of X, a measure of its potential reward, and Δ(X) defines a risk-premium, that 

is, the amount by which the reward will be discounted to account for the presence of risk in X. For 

example, for a binary gamble X with outcomes x, y with probabilities p, 1–p respectively, and x ≥ y, we 

have: V(X) = px + (1–p)y – p(1–p)H(x–y). Note that if the outcomes are not ordered, we can just enter 

their absolute difference in the H function. If F denotes the cumulative distribution of X, the 

continuous form of Δ(X) is: 

⎥⎦
⎤

⎢⎣
⎡ −=−=Δ ∫∫ ∫ ∞−

∞+

∞− ∞−

X
x

ydFyXHxdFydFyxHX )()(E)()()()( .    (2) 

From now on, we will refer to the model expressed in (1), either its discrete or continuous form (2), as 

the M-Δ model. Note that the M-Δ model produces a valuation of a gamble directly in the form of a 

certainty equivalent. That is, V(X) in (1) is in the same units as the gamble’s payoffs, and a gamble is 

acceptable if and only if V(X) > 0. 

 

The function H weighs the relative impact of large and small deviations. Although H could be an 

increasing, decreasing, or even non-monotonic function, given the pervasiveness of risk averse 

behavior, it is sensible to focus on the case of H (strictly) increasing: this will imply H(y) > 0 for all y 

> 0 (since H(0) = 0), leading to a positive risk premium Δ(X) for any gamble. Under this assumption, a 

sure payoff equal to the expected value of the gamble will always be preferred to the gamble itself, and 

zero mean gambles will always be rejected. 

 

Δ(X) measures the riskiness of a gamble with no regard to its location, that is, irrespective of how good 

or bad the outcomes are (this, of course, is captured by E[X]). This may be regarded as a desirable 

feature for a risk measure, because a risk judgment itself should be distinct from the overall 

desirability of a gamble. Equation (1) specifies how risk should be traded off against the reward, that 

is, a decision rule. This rule emanates naturally from the behavioral hypothesis from which the model 

was derived. 

 

M-Δ in (1) has constant risk aversion (CRA) for any form of H. That is, if a constant is added to a 

gamble, the valuation of the gamble increases by the same constant. The property of decreasing risk 

aversion is often regarded as behaviorally more compelling than CRA. However, CRA presents a great 

practical advantage for applications, because it allows analyzing problems in terms of gains and losses 
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rather than in terms of total wealth, which is often impossible. This convenience is the reason why 

exponential utility is used so routinely in applications of EU. The essence of a Risk-Value 

representation is to accept risk as a primitive construct, not necessarily tied to the valuation of sure, 

final wealth: in this mind-set, the property that Δ(X) is independent of wealth is not shocking (Mitchell 

and Gelles 2003). Also, if the random variables considered are returns, i.e. relative payoffs, the M-Δ 

model would imply constant relative risk aversion, that is, diminishing risk aversion in the absolute 

payoffs. 

 

2.2 Relationship to Some Risk Measures 

Fishburn (1977) considers a family of risk measures in which risk is measured as a probability 

weighted function of the deviations below a specified target return, defined as follows: 

∫
∞−

−ϕ=
t

t xdFxtF )()()(ρ ,        (3) 

where F is the cumulative distribution of the random payoff, t the target level, and ϕ measures how 

deviations below the target are weighed. Fishburn (1977) examines the special case α−=−ϕ )()( xtxt

, for x ≤ t, so-called the ‘α-t’ model. The α-t model belongs to a general family considered by Stone 

(1973). 

 

Δ(X) is neither a particular case of the general measure considered by Fishburn (1977), Equation (3), 

nor part of the family proposed by Stone (1973). Indeed, one essential difference is that these 

traditional risk measures are sprung from the outcomes’ deviations from a fixed reference level, 

whereas Δ(X) is built on the mutual deviations of outcomes among one another. Nevertheless, 

Equation (2) makes a relationship to Equation (3) apparent: for X = x, the expression

∫ ∞− −
x

ydFyxH )()(
 
within the expectation in (2) is nothing but the Fishburn (1977) measure of risk, 

ρx(X), representing the risk of failing to achieve at least outcome x in gamble X. Thus, Δ(X) can be 

thought of as the mathematical expectation of the collection of Fishburn’s risk measures generated by 

taking as target level each and every value of X in turn. In Δ(X), each outcome of X can be viewed as 

playing the role of a target and contributing its own ‘à la Fishburn’ risk to the gamble: the total risk 

Δ(X) of the gamble is just the average of the risks associated with individual outcomes. Thus (1) can 

be written as: 

V(X) = E[X ] − E[ρX(X)] = E[X−ρX(X)] = E[uX(X)]      

with uX(x) = x−ρx(X), 

where uX(x) can be interpreted as the risk-adjusted utility of outcome x in gamble X. In other words, 

ρx(X) is the “risk premium” associated with just outcome x in gamble X, and E[ρX(X)] = Δ(X) is the 

risk premium of the whole gamble. 
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Notice from (1) that every pairwise difference between two outcomes enters exactly once in the 

makeup of Δ(X). For H non-decreasing, Δ(X) constitutes a general measure of dispersion, which 

includes an important case. Indeed, for H linear, Δ(X) yields the Gini Mean Difference (up to a 

positive multiplicative constant), also known in Statistics as the ‘Absolute Mean Difference’ measure 

of dispersion. Gini’s Mean Difference is defined as the mean of the absolute difference between two 

observations of a random variable.1 The Gini measure is most prominently used as a measure of 

inequality of income or wealth among a population, but it has also been used as a risk measure 

(Yitzhaki 1982, Ogryczak and Ruszczyński 2002). Observing that Δ(X) in (1) can also be written as: 

∑
=

−=Δ
n

ji
jiji xxHppX

1,

|),(|
2
1)(  

we see that for H(y) = y, Δ(X) = ½G(X), where G(X) is the Gini Mean Difference of X. 

 

Various generalizations of the Gini measure have been proposed before (e.g. Donaldson and Weymark 

1980, Yitzhaki 1983). Some generalizations introduce parameters that, in effect, transform the 

decumulative distribution function of X. As another type of extension, Krzemienowski and Ogryczak 

(2005) consider the Gini measure computed over below-mean outcomes in order to capture downside 

risk only. Our extension of Gini differs from previous generalizations by introducing a weighting 

function over the deviations. However, our approach did not start with the Gini measure seek to extend 

it; instead our purpose was to account for widely observed non-EU preference patterns, and this 

produced a risk measure that happens to include Mean-Gini as a particular case. 2 

 

3. Efficiency of the M-Δ Model 

To avoid the difficulties connected with knowing decision makers’ utility functions, several authors 

have examined the merits of ordering prospects in terms of dominance rules (Hadar and Russell 1969; 

Wong 2007, Egozcue and Wong 2010). Let X and Y be two random variables, and F and G, 

respectively, their cumulative distribution functions. Let us recall the definitions of first and second 

order stochastic dominance (FSD and SSD): 

 

DEFINITION 1. X is said to be as large as Y in the sense of FSD, denoted as 𝑋 ≽!"# 𝑌 if and only if 

𝐹 𝑥 − 𝐺(𝑥) ≤ 0 for all x. 

                                                   
1 The Gini Index, also called Gini Coefficient of Concentration, is a normalized, unit-free measure obtained by dividing 
the Gini Mean Difference by twice the mean of the distribution. 
2 Maccheroni et al. (2006) show that the Gini concentration index also arises in the so-called divergence 
preferences model they introduce to represent ambiguity preferences, and which generalizes the multiple priors 
model of Gilboa and Schmeidler (1989). The index of ambiguity aversion in Maccheroni et al.’s (2006) model 
includes the relative Gini concentration index as a particular case. They also show that their model with Gini as 
index of ambiguity aversion is equivalent to mean-variance preferences, when restricted to the domain of 
monotonicity of mean-variance. 
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DEFINITION 2. X is said to be as large as Y in the sense of SSD, denoted as 𝑋 ≽!!" 𝑌, if and only if 

𝐹 𝑡 − 𝐺(𝑡) 𝑑𝑡!
!! ≤ 0 for all x. 

The above define weak ordering relations. In both Definition 1 and 2, the strict stochastic dominance 

(SD) relation is defined as: 

𝑋 ≻!" 𝑌 if and only if 𝑋 ≽!" 𝑌 and 𝑌 ⋡!" 𝑋, 

i.e., the inequality is strict for at least one x in the above definitions; that is to say, F and G are not 

identical. 

 

Stochastic dominance establishes a partial ordering of probability distributions, and it can be shown 

that distribution F dominates distribution G in the sense of nth-order stochastic dominance if and only 

if all EU maximizing individuals with utility functions whose derivatives to order n alternate in sign 

(that is, u such that 1)( )1(sign +−= jju  for nj ,,1…= ) prefer F to G (Levy 1992). 

 

In selecting a risk measure ad hoc, we expose ourselves to—and presumably tolerate— violating some 

normative principles of EU, but we would like to maintain others. In particular, we do not want to give 

up monotonicity with respect to larger payoffs and decreasing risk, that is, respectively, FSD and SSD 

orders. SSD is critical because it lies at the heart of fundamental notions of risk and risk aversion, also 

it can rank more prospects than FSD. However, working directly with stochastic dominance orders, 

e.g., as constraints in portfolio optimization (Dentcheva and Ruszczyński 2006), is computationally 

challenging and not always tractable. Thus, a key issue in using any Risk-Value model is: does it rank 

prospects consistently with FSD and SSD? Propositions 1 and 2 below address this question for the M-

Δ model. 

 

PROPOSITION 1. Assume that H is differentiable and all expectations exist. The M-Δ model satisfies 

strict first order stochastic dominance if and only if 1)(0 ≤ʹ′≤ yH  for all y ≥ 0. 

 

The intuitive interpretation of the condition is that the sensitivity to outcomes differences should not 

exceed the sensitivity to the outcomes themselves. Indeed, if the weight placed on deviations in 

payoffs should ever exceed the weight put on the payoffs themselves, it would be possible to have a 

situation in which a strict increase in a payoff (making the gamble strictly better) would increase the 

risk Δ(X) of the gamble more than its expected reward E[X]. Delquié and Cillo (2006) showed the 

result of Proposition 1 for weak FSD using Machina’s (1982) concept of “local utility function”. The 

new proof we provide here uses a different approach and shows the result for strict FSD. 

 

PROPOSITION 2. Assume that H is twice differentiable and all expectations exist. The M-Δ model 

satisfies strict second order stochastic dominance if and only if H is such that, for all y > 0:
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1)(0 ≤ʹ′< yH  and 0)( ≥ʹ′ʹ′ yH , that is, H is strictly increasing, convex, and never grows faster than the 

identity function. 

 

The convexity of H essentially guarantees that adding an independent, zero-mean risk to X will never 

cause Δ(X) to decrease. Behaviorally, it reflects increasing sensitivity to larger deviations. Yitzhaki 

(1982) showed that the Mean-½Gini model satisfies FSD and SSD. While Yitzhaki (1982) showed 

only weak SSD consistency, Ogryczak and Ruszczyński (2002) showed that the Mean-Gini model 

meets strict SSD. Therefore, Proposition 2 extends this result to the M-Δ model. 

 

4. Convexity of the M-Δ Model 

Several axiomatic approaches to constructing risk measures have been proposed. Some approaches 

have a prescriptive orientation, that is, they attempt to outline general properties deemed desirable or 

necessary for adequate management of risk (Ma and Wong 2010). In this section, we examine how our 

risk model relates to two classes that have received a lot of attention: the so-called “Coherent” and 

“Convex” risk measures. 

 

Artzner et al. (1999) measure risk as the amount of cash that should be added to a risk position, i.e., a 

gamble, to make it acceptable (their formulation also incorporates the interest rate earned on the cash 

provisioned). They argue that the following axioms, P1-P4, are necessary for the proper management 

and regulation of risk, and they call measures satisfying them Coherent risk measures. Let ρ denote 

the risk measure as defined by Artzner et al. (1999), then for all X, Y: 

P1. Translation invariance: ρ(X+δ) = ρ(X) − δ, for all δ. 

P2. Subadditivity: ρ(X+Y) ≤ ρ(X) + ρ(Y). 

P3. Positive homogeneity: ρ(λX) = λρ(X), for all λ ≥ 0. 

P4. Monotonicity: If X ≤ Y, ρ(X) ≥ ρ(Y). 

 

The way Artzner et al. (1999) define risk is different from just variability or dispersion: it is essentially 

the negative of a mean-risk measure (or 0 if the mean risk measure is positive). Therefore, it 

corresponds to the M-Δ model by taking: ρ(X) = max(−V(X),0);3 and the above axioms may be recast 

in terms of Δ(.) as defined in (1) and (2). The correspondence between deviation risk measures and the 

measures considered by Artzner et al. (1990) was studied by Mansini et al. (2003). Also see 

Rockafellar et al. (2006) on the one-to-one correspondence between deviation measures and the type 

of risk measures defined by Artzner et al. (1999). 

 

                                                   
3 Indeed, if position X is unacceptable under the M-Δ model, i.e., V(X) < 0, then the amount by which the position 
needs to be augmented to make it, at the limit, acceptable is just −V(X). 
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Coherent risk measures are generally not consistent with SSD (de Giorgi 2005), but some are. For 

example, Ogryczak and Ruszczyński (1999) show that certain coherent risk measures based on semi-

deviations (standard or absolute) preserve SSD. Also, Mansini et al. (2003) showed that a SSD 

efficient measure that is LP decomposable is a coherent risk measure. 

 

The property of positive homogeneity (P3) may be considered rather restrictive. One could argue that 

doubling the position in a gamble will at least double the risk incurred, that is: 

P3'. ρ(λX) ≥ λρ(X) for all λ ≥ 1 (this implies that ρ(λX) ≤ λρ(X) for λ ≤ 1). 

The property P3' may be deemed more compelling, and more flexible, than P3. In this spirit, Föllmer 

and Schied (2002) propose to replace P2 and P3 by the weaker property: 

P2'. Convexity: ρ(λX + (1−λ)Y) ≤ λρ(X) + (1−λ)ρ(Y), for all 0 ≤ λ ≤ 1. 

Property P2' just provides that diversification should not increase risk, a cornerstone principle of risk 

management. Föllmer and Schied (2002) define risk measures satisfying Translation Invariance (P1), 

Convexity (P2') and Monotonicity (P4) as Convex risk measures. They show a representation theorem 

for Convex risk measures parallel to that obtained by Artzner et al. (1999) for Coherent risk measures. 

See de Giorgi (2005) and Brown and Sim (2009) for further characterization of Convex risk measures. 

 

It is not difficult to show that the M-Δ model will comply with the axioms of Convex risk measures 

under the following conditions: 

• Translation invariance: fulfilled for any H. Note that this, of course, implies constant risk 

aversion, which we discussed previously. 

• Convexity: fulfilled whenever H is convex. 

• Monotonicity: holds if and only if 1≤ʹ′H , as seen in Proposition 1. 

Thus, it turns out that the conditions for SSD (Proposition 2) ensure that M-Δ is, in addition, a Convex 

risk measure. 

 

For those who would like to use a Coherent risk measure, the Subadditivity axiom (P2) will be 

fulfilled if H is subadditive, and Positive homogeneity will hold if and only if H is linear. Thus, to 

satisfy the four axioms of Coherent risk measures simultaneously, H has to be a seminorm, that is, we 

have to take H linear: H(y) = βy, with 0 ≤ β ≤1. In that case, we have the Gini measure: Δ(X) =

)G(2 Xβ , where the parameter β reflects the decision maker’s trade-off between risk and reward. This 

shows incidentally that the Gini measure is an example of a Coherent risk measure satisfying SSD. 

 

In sum, the M-Δ model can accommodate the general axioms reviewed above, either individually or 

collectively, for convexity or coherence, and convexity of the risk measure is guaranteed whenever H 

fulfills the conditions of Propositions 1 and 2. 
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5. Asset Trading and Allocation under the M-Δ Model 

In this section, we examine two central problems in the economic analysis of investment behavior: the 

trading of an asset, and the optimal allocation of wealth to a risky asset. Before analyzing these 

problems, we begin with a general result on the ability of M-Δ to produce first order or second order 

risk aversion, because this distinction has been shown to drive risk taking behavior in a general 

fashion. In each case, we show that the M-Δ model has the flexibility to encompass the predictions 

made by EU and by models based on non-additive probability weighting. 

 

5.1 First Order vs. Second Order Risk Aversion 

The notions of first and second order risk aversion were presented by Segal and Spivak (1990). 

Consider the gamble αX, corresponding to taking a fraction α of the random variable X. Under first 

order risk aversion, the risk premium for a small risk αX, i.e. for α sufficiently small, is proportional to 

α, that is, linear in the size of the risk taken. Under second order risk aversion, the risk premium is 

proportional to α2, and thus approaches 0 faster than α. Thus, an individual with second order risk 

aversion becomes nearly risk neutral for small risks. 

 

First and second order risk aversion imply qualitatively different behavior when risks are scalable, 

such as when it is possible to buy variable quantities of an asset, or partially insure against a risk. 

 

Let X be a non-constant random variable, and denote by π(α) the risk premium of the gamble αX. 

DEFINITION 3.  An individual’s risk aversion is of 

- first order if for every non-constant X such that E[X] = 0, dπ/dα|α=0+ > 0; 

- second order if for every non-constant X such that E[X] = 0, dπ/dα|α=0 = 0 and d2π/dα2|α=0+ > 0. 

Note that the above definition, from Segal and Spivak (1990), is stated for the case of a risk-averse 

attitude, not risk-seeking. The inequalities in Definition 3 are reversed for a risk-seeking attitude. Also, 

we do not specify that the definition holds at a particular wealth level, because the individual’s wealth 

level is immaterial in the M-Δ model, which has constant risk aversion. 

 

All models based on rank-dependent probability weighting embody first order risk aversion, whereas 

EU and models with smooth Fréchet differentiability have second order risk aversion. The M-Δ model 

can embody either first or second order risk aversion, depending on a simple condition on the first 

derivative of H at 0. 

 

PROPOSITION 3. Consider an individual behaving according to the M-Δ model with a twice 

differentiable H function. The individual’s risk aversion is: 
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(i) first order if and only if 0)0( >ʹ′H ; 

(ii) second order if and only if 0)0( =ʹ′H  and 0)0( >ʹ′ʹ′H . 

 

The proof of Proposition 3 also shows that in the M-Δ model the risk premium for a small risk is 

proportional to the Gini Mean Difference. Under EU, the risk premium is a function of the variance, 

(Pratt 1964). 

 

The order of risk aversion determines behavior in taking a position on an asset, as we study next. 

 

5.2 Trading of an Asset and the No-trade Interval 

Consider an asset whose present monetary value can be described by the random variable X. Assume 

that it is possible to trade the asset in any (small) quantity. Under EU, a risk-averse individual with 

differentiable utility function will invest a positive quantity of his/her money in the asset if and only if 

the expected value E[X] of the asset exceeds its price, and he/she will short sell (some of) the asset if 

and only if the asset price exceeds E[X]. This result, shown in Arrow (1974) and also discussed in 

Segal and Spivak (1990), is due to the fact that risk aversion is of the second order under EU: as 

mentioned in Section 5.1, this implies that for sufficiently small risks the individual is locally risk-

neutral and decides according to expected value. Therefore, the individual will neither buy nor short 

sell the asset if, and only if, the price is exactly equal to the expected value of the asset. Dow and 

Werlang (1992) showed a contrasting result that, for an individual maximizing expected utility with 

non-additive subjective probabilities, an interval exists such that, for any price in this interval, the 

individual abstains from trading the asset. If the price is lower than the lower bound of the interval, the 

individual buys; if the price is higher than the upper bound, he/she short sells; for prices within the 

interval, he/she declines holding a position. This result, intuitively plausible and compatible with 

observed investment behavior, is further extended by Chateauneuf and Ventura (2010).4 

 

COROLLARY 4.  Consider an individual behaving according to the M-Δ model with a convex, 

differentiable H function and constant initial wealth. For any random asset X, the individual will: 

(i) hold no position when the asset price is in the interval

[ ])0()G(]E[),0()G(]E[ 2
1

2
1 HXXHXX ʹ′+ʹ′−  if he/she has first order risk aversion; 

(ii) take a position as an EU maximizer if he/she has second order risk aversion. 

 

The no-trade interval is always centered on E[X] and it has a strictly positive length if and only if the 

individual has first order risk aversion. In the case of first order risk aversion, the size of the no-trade 

                                                   
4 Under EU, no-trade intervals may be explained by the presence of trading costs, but it is unclear whether this 
accounts for empirical observations. 
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interval depends on both the individual’s attitude towards infinitesimal risks and the riskiness of the 

asset as measured by the Gini measure: the riskier the asset, the wider the range of prices within which 

the individual is unwilling to take a position. For 0)0( =ʹ′H , the individual is (nearly) risk-neutral for 

infinitesimal risks, just like an EU maximizer. 

 

Remark. When initial wealth W is random (includes background risks), if X and W are comonotonic, 

i.e., X does not provide a hedge against W, it can be shown that the individual will be willing to buy an 

amount of X only if the asset price π is < )0()G(]E[ 2
1 HXX ʹ′− , that is, the no-trade interval includes 

(is wider than) the interval given in Corollary 4. Because in this case X tends to compound the risk in 

W, the individual will be more conservative in buying it than he/she would be in the absence of 

background risk, which conforms to intuition. If, on the other hand, X and W are countermonotonic (W 

and –X are comonotonic), X provides a hedge against the risk in W, then the individual (even with first 

order risk aversion) will want to buy a strictly positive amount of X whenever π < E[X ]. Thus, for 

such X, we do not have a no-trade interval. Indeed, there is always an advantage to buying (some of) X 

whenever it is priced at anything less than its expected value, because it will dampen the background 

risk while providing an increase in expected total wealth. This again matches common sense. 

 

The class of models considered by Dow and Werlang (1992) always produce a no-trade interval of 

non-zero length, while EU never produces a no-trade interval. The M-Δ model bridges these two 

situations. Chateauneuf and Ventura (2010) show that Dow and Werlang’s (1992) result holds for non-

positive assets. Note that, owing to translation invariance, no assumptions were necessary about the 

sign of X in the M-Δ analysis above. If X < 0, the price at which the individual would be willing to buy 

the asset is, of course, negative, which is tantamount to selling insurance against X. 

 

5.3 The Asset Allocation Problem 

A question of interest for any model of choice under risk is the kind of solutions it provides to the 

optimal asset allocation problem. This is especially relevant if M-Δ is to be used as a criterion for 

building optimal portfolios of risky assets. 

 

Under EU, a risk-averse individual with differentiable utility should always invest a strictly positive 

amount of money in a risky asset that has a positive expected value, no matter how risky the asset, or 

how risk-averse the individual. This is because a risk-averse EU maximizer behaves arbitrarily close to 

risk-neutral for risks sufficiently small. Other models, such as Yaari’s (1987) Dual Theory (DT) 

model, predict “plunging,” that is, for any risky asset, invest either nothing or the full capital available 
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in the risky asset.5 Yaari (1987) argues that the two classes of solutions produced by EU and DT 

(always an interior solution, or always a corner solution, respectively) are extreme, and that an 

intermediate between these two situations would be more satisfactory. The M-Δ model is able to 

bridge these two extremes and, more interestingly, also produce anew intermediate solution between 

them: it allows an investor to hold back or diversify depending on whether the performance of the 

risky asset meets a certain threshold. That is, the M-Δ model does not prescribe diversification in all 

cases, but it does not have the problem of a bang-bang solution (as DT does). 

 

To show this, let us consider a simple asset allocation problem, involving a safe asset with 0 rate of 

return and a risky asset with a random rate of return θ distributed in the interval [−1, a] with 

cumulative distribution F. Assume that the risky asset has a positive expected return E[θ] > 0. Let K be 

the total amount available to invest, and x the amount to be invested in the risky asset, 0 ≤ x ≤ K. Thus, 

the net payoff is described by the random variable X =K + θx. According to the M-Δ model, the 

investor’s valuation of this portfolio is given by: 

)()(]E[)( xxRxKxKV Ψ=θ−θ+=θ+ .       (4) 

To examine how V(K + θx) varies with the investment level, let us take its derivative with respect to x: 

⎥⎦
⎤

⎢⎣
⎡ −θ−θʹ′−θ=Ψʹ′ ∫

θ

−1
)())()((E]E[)( tdFtxtHx .      (5) 

To analyze the sign of )(xΨʹ′  and state results below, it will be helpful to define the quantity: 

)G(
]E[)S(

2
1 θ

θ
=θ ,          (6) 

where G(.) is the Gini measure of risk. S(θ) defines a measure of performance of the risky asset: its 

return per “unit of risk,” or its reward-to-risk ratio, akin to the Sharpe ratio. It depends solely on the 

characteristics of the risky asset, not on the investor’s risk preferences, which are captured by H. S(.) 

so defined also happens to be the inverse of the Gini coefficient. Proposition 5 states that the solution 

to maximizing (4) can be either a corner solution (as in DT) or an interior solution (as in EU) all 

depending on S(θ) and the individual’s pattern of risk aversion. 

 

PROPOSITION 5.  Consider an individual behaving according to the M-Δ model with a differentiable, 

convex H function. For this individual, the optimal allocation to the risky asset may be to invest none, 

some, or all of the capital available in a risky asset depending on the performance of the risky asset 

S(θ). Specifically, if x* denotes the optimal allocation: 

(i) for )0()S( H ʹ′≤θ , the optimal allocation is the corner solution x* = 0; 

                                                   
5 “Dual Theory” (Yaari 1987) is an axiomatic model of Rank-Dependent Utility (RDU) (Quiggin 1982) with linear 
utility. The Mean-½Gini model considered by Yitzhaki (1982) also predicts plunging, because it can be shown to be 
equivalent to RDU with linear utility, i.e., DT, and probability weighting function w(p) = p2. 
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(ii) for ))1(()S()0( KaHH +ʹ′<θ<ʹ′ , there exists a unique solution 0< x*≤ K; 

(iii) for ))1(()S( KaH +ʹ′≥θ , the optimal allocation is x* = K. 

 

If the individual has second order risk aversion ( 0)0( =ʹ′H ), we have )0()S( H ʹ′>θ  whenever E[θ] > 

0. In such case, the solution necessarily involves a strictly positive investment, x*> 0, as under EU. An 

individual with first order risk aversion will hold back if the reward-to-risk performance of the risky 

asset remains below a certain threshold, and begin to diversify if the performance is beyond the 

threshold. The optimal diversification x* will gradually augment with S(θ). That is, M-Δ provides more 

flexibility not only by allowing different individuals to behave differently as we saw in asset trading, 

but also by allowing the same individual to adopt qualitatively different behaviors in different 

situations.  

 

Remark. Suppose the individual has 1≤ʹ′H  (still with H ʹ′ʹ′ > 0), that is, complies with the conditions of 

Proposition 2. Then, if S(θ) > 1, )(xΨʹ′ > 0 for all x. Thus for any security with S(θ) > 1, the maximum 

amount should be invested in the risky asset.6 

 

In sum, the value of the portfolio, Eq. (4), can be monotone decreasing, monotone increasing, or non-

monotone single peaked over the range of possible investment levels. Thus, the M-Δ model is able to 

produce a richer pattern of optimal solutions to the asset allocation problem, depending on the features 

of the risky asset relative to the investor’s pattern of risk aversion over the range of the portfolio’s 

outcome. To illustrate the point, Figure 1 provides an example of how the pattern of asset allocation 

under M-Δ is intermediate between those produced by EU and DT. The discontinuity in the DT pattern 

is the so-called plunging phenomenon. 

 

                                                   
6 For H linear: )(yH ʹ′ = c, with 10 ≤≤ c , we have plunging, i.e., corner solutions, for any risky asset. If the risky asset 
is such that S(θ) > c, the optimal solution is x* = K; if S(θ) < c, the optimal solution is x* = 0; if S(θ) = c, the investor is 
indifferent toward any level of investment between 0 and K. This, of course, concords with Yaari (1987), since the case 
H linear yields a Mean-Gini model equivalent to Yaari’s Dual Theory with quadratic, convex probability weighting. 
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Figure 1.  Optimal diversification in the risky asset under EU, DT, and M-Δ, 

as a function of the asset’s performance ratio S(θ) 
 

To wrap up this section, the M-Δ model can yield thresholds in diversification and no-trade intervals, 

without resorting to non-linear probability weighting. The decision maker’s sensitivity to small risks 

(i.e., the derivative of H at 0) and the reward-to-risk ratio of the asset, as defined by S(.) in (6), both 

play special roles in these results. Figure 2 illustrates three main patterns of weighting of deviations in 

the M-Δ model. An individual with a linear H function with slope less than 1, as shown in (a), is a DT 

maximizer. An individual with pattern (c) will behave qualitatively as an EU maximizer. An individual 

with pattern (b) will behave as an EU maximizer in some cases, although he/she is not acting 

according to any specific utility function, and as a RDU maximizer in other cases, although he/she is 

not acting according to any non-additive probability weighting, all depending on the reward-to-risk 

performance of the gambles faced relative to the obtuseness of the kink in H at 0. Patterns (a) and (b) 

have first order risk aversion, while (c) has second order risk aversion. The strength of first order risk 

aversion depends on the size of )0(H ʹ′ , thus M-Δ offers a continuum of some sort between first order 

and second order risk aversion. 

 

0 

K 

x* 

S(θ) 

(EU) 

(DT) 

(M-Δ) 
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Figure 2.  Three types of H functions: (a) Linear: Mean-Gini; (b) Nonlinear with a kink at 0; 

(c) Nonlinear with no kink at 0, e.g. Mean-Variance 
 

 

6. Practical Aspects of Using the M-Δ Model 

6.1 Assessment and Encoding of the H function 

Using the M-Δ model requires obtaining an estimate of the deviations weighting function, H. This 

function can be assessed by eliciting the DM’s preferences for simple gambles, much like in utility 

assessment. For example, the well-known methods of Certainty Equivalence (CE) and Probability 

Equivalence (PE) (Hershey and Schoemaker 1985) can be used to obtain a set of indifference 

statements, from which non-parametric estimates of values of H can be directly calculated. The CE 

and PE methods obtain indifference statements between a binary gamble X = {x, p ; 0, 1–p} and a sure 

payoff s by varying s or p, respectively. This readily yields a point value estimate of H as follows: 

V(s) = V(X)  

s = px + (1–p)0 – p(1–p)H(x–0) = px – p(1–p)H(x) 

Hence: H(x) = (px – s)/(p(1–p)). 

 

Other elicitation methods can be used, of course. The elicitation questions will produce a system of 

linear equations in the unknowns, and these can be designed to have as many unknowns as 

(independent) equations so as to yield an exact, unique solution. For example, three outcome lotteries 

with equally spaced outcomes will result in only two unknowns on H. Consider X = {x+d, p1; x, p2; x–

d, 1–p1–p2} and Y = {y+d, q; y, 1–q}. A preference relation between X and Y involves up to 5 different 

outcomes, but only 2 unknowns, H(2d) and H(d). One other equation involving either or both of these 

unknowns would be sufficient to solve. Realizing this can provide great flexibility in designing easily 

solvable assessment questionnaires. 

(a) 

(b) 

(c) 
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An arbitrary set of indifference statements may result in equations involving a set of unknown H 

values that cannot be solved exactly (as may also arise in assessing utility functions). In this case, a 

numerical method may be used to find a set of H values providing a best fit to the preference data, 

such as minimizing least-square error, or other appropriate criterion. 

 

Selecting a parametric form for H can further simplify the assessment, for in that case, it reduces to the 

estimation of just the parameter(s) of the functional form. Examples of one-parameter H functions that 

satisfy the conditions of Propositions 1 and 2 are: H(y) = y2/(y+α), α ≥ 0; or H(y) = y + e−α
y − 1 with 0 

≤ α ≤ 1. The latter features first order risk aversion for 0 ≤ α < 1, and second order risk aversion for α 

= 1 (see Proposition 3). A somewhat simple possibility could be to assume a piecewise linear function: 

H(y) = 0 for 0 ≤ y ≤ δ, H(y) = y − δ for y > δ, that is, H(y) = max(0, y − δ). This function lets risk 

aversion kick in when the spread of gambles exceeds δ, that is, deviations up to a certain level are just 

ignored, while deviations beyond this range are weighed linearly. The value of the parameter δ could 

be readily determined by asking: “what is the largest range of deviations for which risk would not be a 

concern at all?” Of course, this simple function satisfies SSD in the weak sense only for small gambles 

(whose spread does not exceed δ), because it is risk-neutral for such gambles. 

 

The above functions are proposed just as illustrative examples, not to suggest that they are more 

desirable than other possible forms. The choice of an appropriate H function should be based on how 

well it accounts for the decision maker’s risk preference patterns, and other considerations such as 

computational tractability. 

 

6.2 Computational Issues 

The computational tractability of a risk measure is an important consideration for use in large scale 

optimization problems. Risk measures that enable linear programming (LP) formulations are of special 

interest, due to the great computational efficiency of LP optimization (Mansini et al. 2003, 

Krzemienowski and Ogryczak 2005). The M-Δ model with non-linear weighting of deviations will, of 

course, not allow an LP formulation of mean-risk optimization, and thus sacrifice computational 

power. The Gini measure, which weights deviations linearly, does give rise to an LP specification, 

although it produces larger size optimization models than linear risk measures based on deviations 

from a target, such as, e.g., Mean Absolute Deviation. Indeed, for an optimization problem in which 

the data set consists of random variables (e.g. stock returns) with n discrete realizations, linear single 

target deviation measures will require n additional decision variables and associated constraints, while 

the Gini measure will require n2 additional variables and associated constraints, specifically one for 

each deviation between any two realizations. The use of piecewise linear H functions in M-Δ would 

permit LP formulations, although this would produce LP problems larger than Mean-Gini, because 

each piecewise linear segment of the H function would necessitate its own set of decision variables in 
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the LP formulation. Nonetheless, very large LP problems can routinely be solved efficiently 

nowadays. Therefore, piecewise linear H functions could offer a good compromise between 

solvability, by allowing LP formulations, and descriptive flexibility, by allowing a wide diversity of 

risk preference patterns.7 See Mansini et al. (2007) for a study of this issue in the case of using 

Conditional Value-at-Risk (C-VaR) as a risk measure involving an LP formulation. 

 

6.3 Numerical Illustration 

We developed a set of compact computational formulas for calculating Δ(X) of any discrete 

distribution, for a number of parametric H functions, in spreadsheet applications. The functions accept 

data arrays as arguments, which can be either a set of observations of the random variable X, {x1, x2, 

..., xn} (a one-dimensional array), or a frequency distribution,{pi, xi; i = 1, …, n} (a two-dimensional 

array). The parameter(s) of the H function can also be specified as arguments. These functions 

(available from the authors) can be loaded in the function library of the spreadsheet program, and used 

like other standard spreadsheet functions. 

 

For numerical illustration purposes, we built the M-Δ efficient frontier for a basket of 15 stocks of 

large companies, selected to cover a diversified range of industries and geographical origins (North 

America, Europe, and Asia). For each stock, monthly prices adjusted for dividends and stock splits 

were obtained for the period from January 1999 to January 2010, allowing calculation of monthly 

returns for 11 years, that is, 132 observations. The efficient frontier was computed by minimizing the 

portfolio risk, Δ, for different levels of expected return set as a constraint, assuming no short sales (i.e., 

non-negativity constraints on stock weights). The decision variables in the optimization model are the 

weights on the stocks, with the constraint that they sum to 1. The H function used in the Δ risk 

measure was linear plus exponential form with parameter α= 0.2. 

 

Because Mean-Variance (M-V) plays a central role in modern finance and, despite shortcomings, is 

still the most widely used criterion to select portfolios of securities, it is relevant to compare the 

portfolios generated by M-Δ to those of M-V. The optimization model formulation for M-V is 

identical to that described above, except that the objective function is to minimize the portfolio 

variance instead of the Δ measure of risk. The portfolios produced by M-Δ and M-V have generally 

similar profiles, but with differences that appear to be systematic. 

 

First, M-Δ appears to produce more diversified portfolios than M-V over the range of achievable 

returns, except at high returns. Everywhere except toward the northeast extremity of the efficient 

                                                   
7 Care should be taken to verify that the results shown in Sections 3 and 5 for differentiable functions hold for 
piecewise linear functions meeting the required monotonicity and convexity conditions, which we believe to be 
the case. 
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frontier, the M-Δ portfolio includes more stocks than the M-V portfolio, also the mean absolute 

deviation of portfolio weights from equal weights (the so-called “naïve diversification” portfolio) is 

lower for M-Δ than for M-V. When high returns are required, the M-Δ and M-V portfolios tend, as 

expected, to become more concentrated on a smaller number of stocks, those capable of producing 

high expected returns. In those cases, M-Δ selects the same number or one or two fewer stocks than 

M-V. This phenomenon was again observed by replicating the analysis on a different set of 10 stocks, 

selected arbitrarily by ticker symbol alphabetical order from the CRSP data base of Wharton Research 

Data Services, with monthly return history from 1999 to 2008. Throughout the range of the efficient 

frontier, the M-Δ portfolios include a greater or equal number of stocks than M-V. Also, the mean 

absolute deviation of weights from equal weights is lower for M-Δ than M-V with one exception; 

again, at high returns (the same holds if the standard deviation is used as a measure of how spread out 

the weights are). 

 

Second, M-Δ portfolios have return distributions with more pronounced skewness. This is reported in 

Table 1, showing a summary of comparative features of optimal portfolios obtained by M-Δ and M-V 

at different levels of target expected return covering the efficient frontier. 

 

Table 1. Comparative features of M-Δ and M-V portfolios at different return levels, showing min, 
max and skewness of returns, and number of stocks selected out of 15 in the optimal portfolio 

 
Mean portfolio 
(monthly) return  

M-Δ 
portfolio 

M-V 
portfolio 

0.56% 

Min return -9.54% -9.39% 
Max return 13.96% 11.25% 
Skewness 0.238 0.069 
Nbr. of stocks 9 8 

0.65% 

Min return -9.02% -8.90% 
Max return 17.19% 12.68% 
Skewness 0.527 0.200 
Nbr. of stocks 9 7 

0.75% 

Min return -8.32% -8.40% 
Max return 21.93% 15.25% 
Skewness 1.068 0.408 
Nbr. of stocks 7 5 

0.85% 

Min return -8.30% -8.45% 
Max return 27.73% 18.34% 
Skewness 1.803 0.671 
Nbr. of stocks 5 7 

0.95% 

Min return -11.81% -8.49% 
Max return 35.01% 23.90% 
Skewness 2.683 1.148 
Nbr. of stocks 6 6 
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As can be seen in Table 1, the M-Δ optimal portfolios have systematically and sizably higher positive 

skewness than the M-V optimal portfolios. Of course, positive skew in the portfolios is due to the 

presence of positive skew in the distributions of individual stock returns. As it turns out, the other data 

set of 10 stocks contained stocks with mostly negative skewness. For those stocks, M-Δ portfolios 

have stronger negative skewness than M-V portfolios. The point is that M-Δ efficient portfolios seem 

to retain more of the skewness of the component stocks than M-V portfolios. Empirical evidence 

indicates that investors often prefer positive skewness. To the extent that investors are able to screen 

stocks for positive skewness, M-Δ may help construct portfolios that preserve this desirable feature. 

Alternatively, because higher skewness is associated with higher risk-return combinations (as 

evidenced in Table 1), M-Δ may better allow investors to satisfy their desire for upside potential 

without having to sacrifice efficiency or take excessive risk exposure (see Mitton and Vorkink 2007 

for a study of this issue under M-V). 

 

Finally, the data set and optimization model at hand for this illustration gave us the opportunity to 

verify the predictions of Proposition 5. For this, we construct an efficient portfolio (either by M-Δ or 

M-V) and calculate the reward-to-risk ratio, S defined in (6), of this portfolio. By solving the optimal 

allocation between cash and the portfolio for investors with different risk aversion levels, we verify 

that investors with )0(H ʹ′  ≤ S (which is equal to 1 – α for the H function we used) do not wish to 

invest and prefer to keep all cash, while investors with )0(H ʹ′  > S allocate a positive proportion of 

their money to the portfolio, and the higher )0(H ʹ′ , the larger this proportion. 

 

7. Conclusion 

The issue in selecting a risk measure for Mean-Risk analysis is that riskiness of a gamble, like 

intelligence of a person, is a complex, multifaceted concept: reducing it to a single index will 

necessarily leave out some aspects of it. The question is how much relevance and flexibility can be 

captured by a single index. The M-Δ model appears to increase behavioral realism without sacrificing 

normative compliance and parsimony. It owes its flexibility to its very mathematical structure, which 

is based on mutual deviations among outcomes instead of deviations from a given benchmark. 

 

First, M-Δ combines normative properties that are highly desirable for the practice of risk 

management. With H convex increasing (but less steep than 1), M-Δ satisfies stochastic dominance 

properties and provides convexity in the risk measure. Second, it derives entirely from one of the most 

robust findings of behavioral research: that people’s appraisal of something depends on the context in 

which it is embedded. Third, M-Δ is parsimonious: as EU or DT it will require the elicitation of only 

one function, which is less onerous and complex than the concurrent assessment of utility and 
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probability weighting of RDU. Furthermore, despite having no more degrees of freedom than EU and 

DT, M-Δ produces a richer —and more empirically plausible— range of risk taking behaviors than 

either of these two models. For example, in specific circumstances, it can variously produce no-trade 

zones, declining to invest, or thresholds in diversification decisions, and allows an individual to adopt 

qualitatively different behaviors in different situations, thus producing commonsensical solutions that 

EU or DT cannot generate. Thus, M-Δ can help popularize the use of Mean-Risk analysis in areas of 

decision under risk where this approach has not been considered, or provide a more flexible criterion 

in the wide range of situations where it is already used, such as finance, project selection, or energy, to 

name a few. For large scale applications, consideration needs to be given to computational 

performance, and the M-Δ model in its general form (with non-linear H) may be less efficient. The 

trade-off between computational performance and risk behavior flexibility has to be balanced by the 

analyst based on the purposes at hand. 

 

Further work can be pursued along several lines. We have considered only differentiable H functions 

for ease of deriving mathematical results and characterizing risk-taking behavior. For computational 

applications, it may be advantageous to use piecewise linear functions, which are continuous but not 

differentiable, having different right and left derivatives at a number of points. Further work could 

seek to derive our main theoretical results (particularly on SD) without assuming differentiability. 

Another area of interest would be to derive the predictions of the M-Δ model for preferences toward 

different kinds of insurance contracts, as Doherty and Eeckhoudt (1995) do for RDU. Also, the 

possibilities of using the M-Δ model as a basis for pricing assets, that is, deriving a CAPM, should be 

explored because this might incorporate more behavioral relevance in asset pricing. 

 

 

Appendix A. Proof of Proposition 1 

Let X and Y be two random variables, and F (f ) and G (g), respectively, their cumulative distribution 

(probability density) functions. 

Sufficiency. Suppose that 𝑋 ≻!"# 𝑌. Let us show that this implies )()( YVXV > . We want to show: 
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Because 1)( ≤ʹ′ yH  for all y, 1)()()( ≤≤−ʹ′ ∫∫
∞−∞−

xx

dttfdttftxH , and therefore 0)( ≥ʹ′ xuF , that is, uF is 

increasing. Because   𝑋 ≻!"# 𝑌 and uF is increasing, we have: E[uF(X)] ≥ E[uF(Y)] (Hadar and Russell 

1969), that is: ∫∫
+∞

∞−

+∞

∞−

≥ )()()()( xdGxuxdFxu FF . Let us now show that )()()( YVxdGxuF >∫
+∞

∞−

.  

For this, we first show that ∫∫
∞−∞−

−−≥−−
xx

tdGtxHtdFtxH )()()()(  for all x with a strict inequality for 

at least one x. 

Integration by parts yields:

∫∫∫
∞−∞−

∞−
∞−

−ʹ′−=−ʹ′−−−=−−
xx

x
x

dttFtxHdttFtxHtFtxHtdFtxH )()()()()()()()( . 

Likewise ∫∫
∞−∞−

−ʹ′−=−−
xx

dttGtxHtdGtxH )()()()( . 

Therefore, ( )∫∫∫
∞−∞−∞−

−−ʹ′−=−−−−−
xxx

dttGtFtxHtdGtxHtdFtxH )()()()()()()( .  (7) 

Because   𝑋 ≻!"# 𝑌, 0)()( ≤− xGxF  for all x, and the inequality is strict for at least one x. Also 

0≥ʹ′H , therefore we have: 

( ) 0)()()( ≥−−ʹ′− ∫
∞−

x

dttGtFtxH  for all x, and there exists x such that the inequality is strict, unless 

0=ʹ′H  everywhere (we will deal with that case separately). Hence, if there exists y such that 

0)( >ʹ′ yH , we have: 

( ) 0)()()()( >
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−ʹ′−∫ ∫

+∞

∞− ∞−

xdGdttGtFtxH
x

, that is, from (7): 

∫ ∫∫ ∫
+∞

∞− ∞−

+∞

∞− ∞−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−>

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−− )()()()()()( xdGtdGtxHxdGtdFtxH

xx

, adding ∫
+∞

∞−

)(xxdG  on both sides: 

∫ ∫∫∫ ∫∫
+∞

∞− ∞−

+∞

∞−

+∞

∞− ∞−

+∞

∞−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−+>

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−+ )()()()()()()()( xdGtdGtxHxxdGxdGtdFtxHxxdG

xx

, i.e. 

)()()( YVxdGxuF >∫
+∞

∞−

 

In sum, we have shown: )()()()()()( YVxdGxuxdFxuXV FF >≥= ∫∫
+∞

∞−

+∞

∞−

. 



 

24 

Now, suppose 0)( =ʹ′ yH  for all y. Then the Δ measure of risk is constant equal to 0 and   𝑉 𝑋 = E 𝑋  

for all X. Because   𝑋 ≻!"# 𝑌, we have   E 𝑋 > E[𝑌], that is:   𝑉(𝑋) > 𝑉(𝑌). 

 

Necessity. Suppose there exists x such that )(xH ʹ′  > 1, that is, )(xH ʹ′ = 1+h with h > 0. We construct a 

pair of gambles X, Y such that   𝑋 ≻!"# 𝑌 and   𝑉 𝑋 < 𝑉(𝑌). Going back to the definition of the 

derivative of a function, we have: 

hxHxHxH +=⎟
⎠

⎞
⎜
⎝

⎛
ε

−ε+
=ʹ′

→ε
1)()(lim)(

0
. 

Now going back to the definition of a limit, we know that there exists δ > 0 such that: for 0< ε < δ  

2/)1()()( hhxHxH
<+−

ε

−ε+ . That is, there exists ε > 0 such that: 

ε++>ε+ )2/1()()( hxHxH .        (8) 

Let us take such ε, and consider the following binary gambles: Y = {x, p; 0, 1−p}, X = {x+ε, p; 0, 1−p}, 

with p = h/(h +2). Clearly   𝑋 ≻!"# 𝑌, and for these gambles we have: 

    V(X) = p(x+ε) – p(1−p)H(x+ε) 

< p(x+ε) – p(1−p)(H(x)+(1+h/2)ε) by (8) 

 = V(Y) + pε(1 − (1–p)(1+h/2)) 

 = V(Y)     because (1−p)(1+h/2) = 1. 

This completes the proof. 

 

Appendix B. Proof of Proposition 2 

Let X and Y be two random variables, and F (f ) and G (g), respectively, their cumulative distribution 

(probability density) functions. 

Sufficiency. Suppose that 𝑋 ≻!!" 𝑌. Let us show that this implies )()( YVXV > . We want to show: 

)()()()()()()()( YVxdGtdGtxHxxdFtdFtxHxXV
xx

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−>

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−= ∫ ∫∫ ∫

+∞

∞− ∞−

+∞

∞− ∞−

. 

Define uF(.) as in Appendix A. The second derivative of uF is (taking notice again that the variable of 

differentiation, x, appears both as a bound of the integral and inside the integral): 

)()0()()()( xfHtdFtxHxu
x

F ʹ′−−ʹ′ʹ′−=ʹ′ʹ′ ∫
∞−

. 

Because 0)( ≥ʹ′ʹ′ yH  and 0)0( ≥ʹ′H , 0)( ≤ʹ′ʹ′ xuF , thus uF is concave. Also uF is increasing, as we saw in 

Appendix A. 
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Because   𝑋 ≻!!" 𝑌 and uF is increasing, concave, we have ∫∫
+∞

∞−

+∞

∞−

≥ )()()()( xdGxuxdFxu FF  (Hadar and 

Russell 1969). 

Let us now show that )()()( YVxdGxuF >∫
+∞

∞−

. 

Integration by parts on the right side of Equation (7) yields: 

( ) ( ) ( )

( ) ( ) (9)          )()()()()()0(

)()()()()()()()()(

∫ ∫∫

∫ ∫∫∫

∞− ∞−∞−

∞− ∞−∞−∞−∞−

−−ʹ′ʹ′−−ʹ′−=

−−ʹ′ʹ′−−−ʹ′−=−−ʹ′−

x tx

x txtx

dtdyyGyFtxHdyyGyFH

dtdyyGyFtxHdyyGyFtxHdttGtFtxH
 

Because   𝑋 ≻!!" 𝑌,    𝐹 𝑡 − 𝐺(𝑡) 𝑑𝑡!
!! ≤ 0 for all x, and the inequality is strict for at least one x. 

Thus, because 0)0( ≥ʹ′H  and 0≥ʹ′ʹ′H , the expression in (9) is positive for all x and, unless both 

0)0( =ʹ′H  and 0=ʹ′ʹ′H , this expression is strictly positive for some x (because    𝐹 𝑡 −!
!!

𝐺(𝑡) 𝑑𝑡 < 0  for some x, due to   𝑋 ≻!!" 𝑌). The case 0)0( =ʹ′H  and 0=ʹ′ʹ′H  simultaneously is 

excluded because it corresponds to H constant equal to 0, which is not strictly increasing. 

Thus, from (7) we have for all x: ∫∫
∞−∞−

−−≥−−
xx

tdGtxHtdFtxH )()()()(  with a strict inequality for 

some x. Therefore: 

∫ ∫∫ ∫
+∞

∞− ∞−

+∞

∞− ∞−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−>

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−− )()()()()()( xdGtdGtxHxdGtdFtxH

xx

. 

Adding ∫
+∞

∞−

)(xxdG  on both sides of the preceding inequality, we get: )()()( YVxdGxuF >∫
+∞

∞−

. 

In sum, we have shown: )()()()()()( YVxdGxuxdFxuXV FF >≥= ∫∫
+∞

∞−

+∞

∞−

. 

 

Necessity. Suppose there exists x0 such that 0)( 0 <ʹ′ʹ′ xH . Then, there exists ε > 0 such that: 

)()()()( 0000 ε−−<−ε+ xHxHxHxH . Using such ε, we can construct a gamble involving x0 and a 

mean preserving spread of it (Rothschild and Stiglitz 1970) that would cause a decrease in Δ. 

Define: ( ) ε−ε+=ʹ′+ /)()()( 000 xHxHxH  and ( ) εε−−=ʹ′− /)()()( 000 xHxHxH . Thus )( 0xH +ʹ′ <

)( 0xH −ʹ′ . Take the binary gamble X = {x0, p; 0, 1–p}, with 0 < )1/( pp − < )()( 00 xHxH +− ʹ′−ʹ′ . Now 

consider the three-outcome gamble Y = {x0+ε, p/2; x0–ε, p/2; 0, 1−p}. Y is a mean preserving spread of 

X, that is,   𝑋 ≻!!" 𝑌. However, we have: 
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( )

)(
)()1(

 of choiceby ))()(()()()1(
2
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)1(

)()()1(
2

)2(
)1(2

)()()1(
2

)2()2/(2/)()1(2/)()1()(

0

0000

00

00

2
00
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xHpp

pxHxHxHxHpp

H
p
pxHxHpp

H
p

pxHxHpp

HpxHppxHppY

Δ=

−=

εʹ′−ʹ′+ε−+ε+−<

ε≤ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε

−
+ε−+ε+−≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε

−
+ε−+ε+−=

ε+ε−−+ε+−=Δ

+−

 

that is, Δ(Y) < Δ(X), hence, V(Y) > V(X). This completes the proof. 

 

Appendix C. Proof of Proposition 3 

Consider a non-constant random variable X and denote by F its cumulative distribution. Under the M-

Δ model, the risk premium associated with the gamble αX is: π(α) = Δ(αX). For first order risk 

aversion we need to show that dπ/dα|α=0+ > 0; for second order risk aversion, we need to show that 

dπ/dα|α=0 = 0 and d2π/dα2|α=0+ > 0. 

We have: ⎥⎦
⎤

⎢⎣
⎡ −α=αΔ=απ ∫ ∞−

X
ydFyXHX )())((E)()( , 

thus: ⎥⎦
⎤

⎢⎣
⎡ −−αʹ′=

α
π

∫ ∞−
X

ydFyXyXH )()))(((E
d
d

 

therefore, )G()0()()(E)0()())(0(E
d
d

2
1

0

XHydFyXHydFyXH
XX

×ʹ′=⎥⎦
⎤

⎢⎣
⎡ −ʹ′=⎥⎦

⎤
⎢⎣
⎡ −ʹ′=

α

π
∫∫ ∞−∞−

=α

,  

where G(X) is the Gini Mean Difference measure. 

Because X is non-constant, G(X) > 0. Therefore, dπ/dα|α=0+ > 0 if and only if 0)0( >ʹ′H , which shows 

Part (i). 

The above also shows that dπ/dα|α=0 = 0 if and only if 0)0( =ʹ′H . Besides: 

⎥⎦
⎤

⎢⎣
⎡ −−αʹ′ʹ′=

α

π
∫ ∞−
X

ydFyXyXH )()))(((E
d
d 2

2

2

, 

thus, )()0()()(E)0(
d
d 22

0
2

2

XHydFyXH
X

σ×ʹ′ʹ′=⎥⎦
⎤

⎢⎣
⎡ −×ʹ′ʹ′=

α

π
∫ ∞−

=α +

. 

Because X is non-constant, σ2(X) > 0, hence d2π/dα2|α=0+ > 0 if and only if 0)0( >ʹ′ʹ′H , that is, H is 

strictly convex at 0, which shows (ii). Note that the convexity of H at 0 is only there to ensure that the 

risk attitude is negative (averse), which is the case of interest, as opposed to positive (seeking) or 

neutral. Indeed, if we had 0)0( ≤ʹ′ʹ′H  when 0)0( =ʹ′H , then H would be decreasing negative (or 

constant), implying risk-seeking (or neutral) behavior. 
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Appendix D. Proof of Corollary 4 

Let π be the price of one unit of the asset. Under the M-Δ model, the individual’s utility increase for 

buying a quantity α ≥ 0 of the asset is: 

V(α(X – π)) = E[α(X – π)] – Δ(α(X – π)) = α(E[X ] – π) – Δ(αX). 

The analysis of interest here is how V(α(X – π)) varies with α: in particular, starting from no position 

(α = 0), is there a positive increase in utility for moving to α > 0? To understand the variations in 

V(α(X – π)) = Ψ(α) as a function of α, let us study its derivative: 

⎥⎦
⎤

⎢⎣
⎡ −−αʹ′−π−[Ε =αΨʹ′ ∫ ∞−

X
ydFyXyXHX )()))(((E])( . 

Because H is convex and differentiable, H ʹ′  is continuous increasing, therefore Ψʹ′  is continuous 

decreasing in α. Because Ψ(0) = 0, Ψ(α) can take > 0 values if and only if there exists a range where 

Ψʹ′  is positive. Such a range exists if and only if )0(Ψʹ′ > 0, that is: 

)0()G(]E[)0( 2
1 HXX ʹ′−π−=Ψʹ′ > 0. 

Thus the individual will be willing to buy (some of) the asset if and only if: 

)0()G(]E[ 2
1 HXX ʹ′−<π . 

The optimal amount to buy will be determined by where Ψʹ′  becomes 0, if at all. Note that if the 

individual complies with the conditions of Proposition 2, that is, 1≤ʹ′H , we have  ≥αΨʹ′ )(

)G(] 2
1 XX −π−[Ε  for all α ≥ 0. Then, if the price of the asset is such that )G(]E[ 2

1 XX −<π ,  

V(α(X – π)) increases indefinitely with α. For such a favorably priced asset, the individual would buy 

the maximum quantity possible of the asset, subject to budget or other constraints. 

 

Now consider short selling the asset. The individual’s utility resulting from selling a quantity α ≥ 0 of 

the asset is: 

V(α(π – X)) = α(π – E[X ]) – Δ(–αX) = α(π – E[X ]) – Δ(αX). 

Reasoning as before, we find that this utility can be positive if and only if: )0()G(]E[ 2
1 HXX ʹ′−−π > 

0. That is, the individual will sell the asset if and only if its price is such that: 

)0()G(]E[ 2
1 HXX ʹ′+>π . 

 

Therefore, for prices within the interval [ ])0()G(]E[,)0()G(]E[ 2
1

2
1 HXXHXX ʹ′+ʹ′− , the individual is 

not willing to hold a position on the asset. If the individual has second order risk aversion, )0(H ʹ′ = 0, 

the no-trade interval reduces to the single point {E[X]}, as under EU. 

 

Appendix E. Proof of Proposition 5 
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Because H is convex, H ʹ′  is increasing, therefore )(xΨʹ′  in (5) is decreasing in x and the question is 

whether it changes sign in the interval [0, K]. A strictly positive solution, x* > 0, can occur if, and only 

if, )0(Ψʹ′ > 0. From (5), we have: 

)G()0(
2
1]E[)())(0(E]E[)0(

1
θʹ′−θ=⎥⎦

⎤
⎢⎣
⎡ −θʹ′−θ=Ψʹ′ ∫

θ

−
HtdFtH . 

Thus )0(Ψʹ′ > 0 if and only if )0()S( H ʹ′>θ , which shows (i). 

Working from (5) again, we can derive the following inequalities: 

)G())1((]E[
)G())1((]E[

)())()1((E]E[

)())()((E]E[)(

2
1
2
1

1

1

θ+ʹ′−θ≥

θ+ʹ′−θ=

⎥⎦
⎤

⎢⎣
⎡ −θ+ʹ′−θ≥

⎥⎦
⎤

⎢⎣
⎡ −θ−θʹ′−θ=Ψʹ′

∫

∫
θ

−

θ

−

KaH
xaH

tdFtxaH

tdFtxtHx

 

Thus, if ))1(()S( KaH +ʹ′≥θ , then 0)( ≥Ψʹ′ x  for 0 ≤ x ≤ K, and the optimal solution is at x* = K. An 

interior, unique solution away from the bound K will occur if )(KΨʹ′ < 0. As an example of this, if θ 

has a two point distribution with all probability mass at b and a (a > b), it is easy to verify that the 

solution is such that 0 < x* < K when ))(()S()0( KbaHH −ʹ′<θ<ʹ′ . 
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