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REAL OPTIONS AND AMERICAN DERIVATIVES: THE DOUBLE CONTINUATION REGION

Abstract

We thoroughly study the non-standard optimal exercise policy associated with relevant capital investment

options and with the prepayment option of widespread collateralized-borrowing contracts like the gold loan.

Option exercise is optimally postponed not only when moneyness is insu¢ cient but also when it is excessive.

We contribute an important extension of the classical optimal exercise properties for American options. Early

exercise of an American call with a negative underlying payout rate can occur if the option is moderately in

the money. We fully characterize the existence, the monotonicity, the continuity, the limits and the asymptotic

behavior at maturity of the double free boundary that separates the exercise region from the double continuation

region. We �nd that the �nite-maturity non-standard policy conspicuously di¤ers from the in�nite-maturity

one.

1 Introduction

A number of signi�cant decision-making problems in �nance can be reformulated as American option problems

with an endogenous negative interest rate. Two chief examples are the prepayment option in collateralized

borrowing like the recently popular gold loans and a notable class of capital investment options. Gold loans

are familiar among Indian �nancial intermediaries.1 An endogenous negative interest rate for the American

derivatives embedded into loans collateralized by tradable assets appears whenever the loan rate is above the

riskfree rate. An endogenous negative interest rate in waiting-to-invest real options appears whenever the

risk-adjusted expected growth rate of the project value is above the rate used by the �rm to discount it.

We show that such decision-making problems can imply a non-standard double continuation region: exer-

cise is optimally postponed not only when the option is not enough in the money (the standard part of the

continuation region) but also when the option is too deep in the money (the non-standard part of the contin-

uation region). For �nite-maturity and perpetual American puts and calls with a negative interest rate in a

di¤usive setting, we contribute by providing a detailed analysis of the conditions that enable the double contin-

uation region and a comprehensive characterization of the double free boundary entailed by such a continuation

region2.

Importantly, we contribute to a thorougher understanding of the optimal exercise properties for American

options. Given a positive riskfree rate r, it is well known that it is always suboptimal to exercise prior to

maturity an American call on a tradable asset with payout rate � equal to zero (Merton (1973)) and, more

generally, an American contingent claim for which the net bene�t of exercising immediately is non-positive

at all times (Detemple (2006)). For example, consider the optimal exercise date t� of the prepayment option

1Muthoot Finance is one of the largest gold loan companies in India. J.P. Morgan Chase started accepting gold as loan collateral

from institutional players since February 2011, amid a climate of soaring gold prices.
2Our single-underlying result of multiple continuation regions mirrors upside down the literature documenting multiple exercise

regions in models with a single underlying asset, e.g. Chiarella and Ziogas (2005) and Detemple and Emmerling (2009).
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embedded into a 5-year loan collateralized by gold. To maximize intuition, assume the absence of risk. The

loan amount is q and the current gold price is G so that the optimal exercise date boils down to

t� = argmax
0 � t � 5

e�rt
�
Ge(r��)t � qet

�+
,

where  is the borrowing rate commanded by the loan contract. Focus on the in-the-money case (G > q). If

 had been zero, the standard Merton result of t� = 5 would have applied as holding gold is burdened with

the storage cost �G� (the payout rate � is negative). A positive  that dominates the risk-free rate ( > r)
introduces a prepayment incentive for the borrower. Such an incentive is overpowered by �G� (t� > 0) when
gold is markedly dear, that is when the degree of in-the-moneyness is huge. However, the storage cost is not

overwhelming and immediate prepayment does occur (t� = 0) when the loan rate  is su¢ ciently high and the

degree of in-the-moneyness is moderate. Fix r = 1%, � = �1%,  = 7% and q = 1. If G = 7 the prepayment

option exercise is optimally delayed for three years (t� = 3: 083), whereas if G = 2 the borrower exercises

immediately (t� = 0). The deterministic decision-making example admits a neat restatement as an American

option problem with a constant strike price q and an endogenous interest rate � = r � ,

t� = argmax
0 � t � 5

e��t
�
Ge�t � q

�+
,

where � = r � � �  is the gold price�s adjusted drift rate. The restatement streamlines the optimal exercise
analysis. If � = �6%, � = �5% and q = 1, the spur to postpone exercise caused by a negative interest rate wins
over the aversion to delay induced by the drift towards the out-of-the-money region (t� = 3: 083) for G = 7,

whereas the spur is insu¢ cient (t� = 0) for G = 2.

Our results add to the vast literature on American options under di¤usive risk, see for instance Broadie

and Detemple (1996), (2004), Detemple and Tian (2002), Detemple (2006), and more recently Medvedev and

Scaillet (2010). We conduct an in-depth study of the existence, the monotonicity, the continuity, the limits

and the asymptotic behavior at maturity of both the upper and the lower free boundary. We start from the

American put problem and prove the conditions for the existence of a double continuation region in the case

of a negative interest rate via convexity, monotonicity and value-dominance arguments. We use the variational

inequality approach to prove the continuity of the double free boundary. We then carefully characterize the

double free boundary near to maturity (for asymptotic results on the (single) free boundary with non-negative

interest rate see Medvedev and Scaillet (2010) and the references therein). Finally, we translate the results

obtained for the American put problem into double-free-boundary statements for the American call problem

via the American put-call symmetry (e.g. Carr and Chesney (1996) and Detemple (2001)).

In a gold loan the precious metal is the collateral, which the borrower has the right to redeem at any

time before or on the loan maturity. We show that, since gold is a tradable investment asset with storage

(and insurance) costs and without earnings, a double continuation region can ensue: the exercise of a deep

in-the-money redemption option may be optimally postponed by the borrower. This is an interesting and

distinct addition to the existing literature on the optimal redeeming strategy of tradable securities used as

loan collateral: Xia and Zhou (2007) focus on perpetual stock loans; Ekström and Wanntorp (2008) deal with
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margin call stock loans; Zhang and Zhou (2009) look into stock loans in the presence of regime switching; Liu

and Xu (2010) consider capped stock loans, whose subtle variational-inequality issues are studied by Liang and

Zu (2012); Dai and Xu (2011) examine the impact of the dividend-distribution criterion on the stock loan. The

stock loan problem comes with a standard (unique) free boundary as the risk-neutral percentage drift of the

underlying stock price equals the riskfree rate minus a non-negative dividend yield.

By investigating the general American option problem with a negative interest rate with possibly �nite

maturities, our work thoroughly extends the speci�c perpetual-real-option analysis developed in Battauz, De

Donno and Sbuelz (2012). We examine capital investment options akin to, for instance, the option of entering

the lucrative but challenging business of nuclear energy. Projects may have values with conspicuous growth

rates even after risk adjustment (say rates above the discount rate used by the �rm), but the overall cost of

entering them is likely to increase even more conspicuously in the future (uranium is a scarce resource and

demand for safety is de�nitely increasing). Such a hierarchy in the risk-adjusted growth/discount rates for the

real option is conducive to the non-standard optimal continuation policy. Our work focuses on mapping in

detail the �nite-maturity non-standard optimal exercise policy (see Sections 2 and 3) and clearly shows that

the perpetual early-exercise region constitutes a rather poor proxy for the �nite-maturity one (see the examples

in Sections 4 and 5).

The rest of the paper is organized as follows. Sections 2 and 3 deal with the double continuation region

for American puts and calls, respectively. Sections 4 and 5 discuss the double continuation region for the

redemption option embedded in a gold loan and for an interesting class of real options. Section 6 concludes

and an Appendix contains all the proofs.

2 The American put

We consider an American put option written on the log-normal asset X, whose drift under the valuation

measure is positive and denoted with �. We denote the volatility with �, the strike with K, and the interest

rate with �. The put value at time t is given by

ess sup
t���T

E
h
e��(��t) (K �X(�))+

���Fti = v(t;X(t))
where

v(t; x) = sup
0���T�t

E

"
e���

�
K � x � exp

��
�� �

2

2

�
�+ � B(�)

��+#
(2.1)

and B is a standard Brownian motion under the valuation measure. In Sections 2 and 3, expectations and

distributions of stochastic processes refer all to the valuation measure and, for the sake of simplicity, we will

omit their dependence on the probability measure. If the option is perpetual, its value is

v1(x) = sup
0��

E

"
e���

�
K � x � exp

��
�� �

2

2

�
�+ � B(�)

��+#
:
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Regardless of the sign of �; the function v in (2:1) dominates the payo¤ function, is convex and decreasing with

respect to x, decreasing with respect to t; and dominated by the perpetual put v1, that is

(K � x)+ � v(t; x) � v(t; 0) � v1(x) for all t 2 [0;T ] and x � 0: (2.2)

(see for instance Karatzas and Shreve (1998), and Broadie and Detemple (1997)).

These properties interact with the sign of � to determine the shape of the free boundary, and the �geom-

etry structure� of the exercise region. More precisely, if � � 0; for any t < T we have that v(t; 0) =

sup0���T�t E
�
e��� (K � 0)+

�
= (K � 0)+ : Since v(t; x) coincides for x = 0 with the immediate exercise

payo¤, convexity and (2:2) imply that either v(t; x) > (K � x)+ for all x > 0 (see the thick dashed line in the
left-hand panel of Figure 1) or v(t; x) = (K�x)+ for any x belonging to the interval whose extremes are 0 and

x�(t) = sup fx � 0 : v(t; x) = K � xg � K

(see the thick solid line in the left-hand panel of Figure 1). The value x�(t) is the unique put critical price at

t with nonnegative interest rates. Detemple and Tian (2002) and Detemple (2005) show that this is true for a

large class of di¤usion processes with nonnegative stochastic interest rates.

Figure 1: The value of the American put option v(t; �) (thick lines),
and the immediate exercise put payo¤ (thin line). K = 1:
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On the contrary, if � < 0; then v(t; 0) = sup0���T�t E
�
e��� (K � 0)+

�
= e���(T�t) �K > K: The value of

the American option for x = 0 now strictly dominates the immediate exercise payo¤: v(t; 0) = e��(T�t) �K >

(K � 0)+. Then either early exercise is never optimal at date t, i.e. v(t; x) > (K � x)+ for all x > 0 (see the
thick dashed line in the right-hand panel of Figure 1), or early exercise is optimal at time t for some x0 2 (0;K),
i.e. (K � x0)+ = v(t; x0) (see the thick solid line in the right-hand panel of Figure 1). If x0 is unique, then

the exercise region collapses into a single point (the free boundary at time t). If x0 is not unique, then by

convexity and (2:2) the exercise region at time t is constituted by a connected segment de�ned by the extremes
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l(t) � u(t) 2 [0;K] where3

l(t) = inf
�
x � 0 : v(t; x) = (K � x)+

	
(2.3)

u(t) = sup
�
x � 0 : v(t; x) = (K � x)+

	
^K (2.4)

such that v(t; x) = (K � x)+ for l(t) � x � u(t) and v(t; x) > (K � x)+ for x < l(t) and x > u(t): This implies
that the continuation region at time t is splitted in two segments. Exercise is optimally postponed not only

when the option is insu¢ ciently in the money (x > u(t)) but also (surprisingly, at �rst sight) when the option

is excessively in the money (x < l(t)). In the excessively in the money region (x < l(t)), moreover, the value

of the American put decreases with steeper slope than the immediate put payo¤, i.e. @v
@x(t; x) < �1; as it is

readily seen in the right-hand panel of Figure 1. On the contrary, if � � 0; the derivative @v
@x(t; x) � �1 for

all x: Thus, if the exercise region at date t is non-empty, it is the negativity of the interest rate that modi�es

its usual �geometry structure�(see Detemple and Tian (2002) and Detemple (2005)). Assumptions (2:6) and

(2:7) in Proposition 2:2 are su¢ cient conditions for the non-emptiness of the exercise region in the perpetual

case, and, consequently, in the �nite-maturity case at any date t (see Theorem 2.3). In particular, Assumption

(2:6) implies that the �dividend yield� � = � � � is negative. Therefore, the negativity of both � and � is
crucial to determine the presence of the double continuation region. Clearly, the continuation region cannot be

constituted by more than two non-connected segments, because the convex function v(t; �) must lie above the
payo¤ function (K � �)+:
Let us denote with ER =

�
(t; x) 2 [0;T ]� [0;+1[ : v(t; x) = (K � x)+

	
; the early exercise region, and with

CR =
�
(t; x) 2 [0;T ]� [0;+1[ : v(t; x) > (K � x)+

	
; the continuation region.

Given a �nite maturity and a negative interest rate, Theorems 2.3 and 2.4 provide an accurate description

of the double continuation region, which is separated from the (single) early exercise region by a double free

boundary. Our �ndings contribute to the extant literature on multiple free boundaries that separate the (single)

continuation region from the multiple exercise region for certain American options with multiple underlying

assets, e.g. Broadie and Detemple (1997).

The function v in (2:1) can be expressed as the solution of the system of variational inequalities (see

for instance Bensoussan and Lions (1982), Jaillet, Lamberton and Lapeyre (1990), Feng, Kovalov, Linetsky,

Marcozzi (2007), and Kovalov, Linetsky, and Marcozzi (2007) for the related numerical solution):8>><>>:
v (T; �) = � (�) , v (t; �) � � (�) for any t 2 [0;T ]

@
@tv + Lv � �v � 0 on (0;T )�<

+

@
@tv + Lv � �v = 0 on f(t; x) 2 (0;T )�<

+ : v (t; x) > �(x)g

(2.5)

where � (x) = (K � x)+ and (Lv)(t; x) = 1
2�

2x2 @2

@x2
v(t; x)+�x @

@xv(t; x):When interest rates are non-negative,

it is well known that (2:5) admits a smooth solution (see Jaillet, Lamberton and Lapeyre (1990)). The same

conclusion can be achieved even if the interest rate is negative, as shown in the next proposition.

3Whenever t < T; we have sup
�
x � 0 : v(t; x) = (K � x)+

	
� K; because (K � x)+ = 0 and v(t; x) > 0 for x � K: On the

contrary, for t = T the sup
�
x � 0 : v(T; x) = (K � x)+

	
= +1: Hence the cap at K in the de�nition of u is binding at T only.
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Proposition 2.1 (Smoothness of the put value v, negative interest rate) The solution of (2:5) admits

partial derivatives @v
@t ;

@v
@x ;

@2v
@x2

that are locally bounded on [0;T ) � <+: Moreover, v enjoys the smooth-�t
property, i.e. @v

@x is continuous on [0;T )�<
+.

In the in�nite-maturity case, the constant double free boundary can be explicitly computed by solving

the di¤erential equation implied by (2:5) in the continuation region and by applying the important smooth-

pasting principle at the free boundary (see Battauz, De Donno and Sbuelz (2012). For the standard case of

non-negative interest rates in models based on Lévy processes see e.g. Boyarchenko and Levendorski¼¬(2002a),

Boyarchenko and Levendorski¼¬ (2002b), Alili and Kyprianou (2005), and Jiang and Pistorius (2008). The

result requires an ad-hoc direct veri�cation, because v1 violates the usual boundedness requirements. Indeed,

when � < 0 and x = 0 the optimal exercise time is �� = +1, and the value of the American option is
v1(0) = E

�
e���

�
(K � 0)+

�
= +1: Battauz et al. (2012) work out a closed-form solution for the special case

of a perpetual real-option problem. The following proposition adapts their statement to our current framework

(for convenience of the reader, the main steps of the proof are summoned in the Appendix).

Proposition 2.2 (Perpetual put, negative interest rate) If T = +1;

� < 0; �� �
2

2
> 0 (2.6)

and �
�� �

2

2

�2
+ 2��2 > 0; (2.7)

then the perpetual American put option value is

v1(x) =

8>><>>:
Al � x�l for x 2 (0; l1)
K � x for x 2 [l1;u1]
Au � x�u for x 2 (u1; +1)

(2.8)

where �u < �l are the negative solutions of the equation

1

2
�2�2 +

�
�� �

2

2

�
� � � = 0; (2.9)

that is

�l =
�
�
�� �2

2

�
+

r�
�� �2

2

�2
+ 2��2

�2
and �u =

�
�
�� �2

2

�
�
r�

�� �2

2

�2
+ 2��2

�2
:

The critical asset prices are

l1; u1 = K
�i

�i � 1
for i = l; u (2.10)

and the constant Al and Au are given by

Al = �
(l1)

1��l

�l
and Au = �

(u1)
1��u

�u
(2.11)
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Given a negative interest rate � < 0, the positive-drift condition (2:6) and the positive-discriminant condition

(2:7) guarantee the existence of (negative) solutions of the equation (2:9) and rule out the potential explosive

e¤ect of a negative interest rate on the put value function. If the interest rate is negative, the holder of

the option may obtain an in�nite expected gain by deferring inde�nitely the exercise of the option. Such an

incentive to inde�nite deferment can be counteracted by a signi�cant chance that the option goes out of the

money as time goes by. This is the case if the growth rate of the underlying asset X is high enough compared

to the absolute value of the negative interest rate, as stated by the condition (2:7): j�j <
�
���2

2

�2
2�2

:

The function v1 de�ned in (2:8) enjoys the following properties in the continuation region: v is decreasing,

it dominates the immediate payo¤, and the process
�
v1(X(t))e��t

	
t
is a local martingale. The condition (2:7)

also empowers the supermartingality of the process
�
v1(X(t))e��t

	
t
in the early exercise region.

In Theorem 2.3 we study the American put option problem with � < 0 and T < +1. We analyze in detail
the double free boundary, which is constituted by the upper free boundary (corresponding to the constant u1

in the perpetual case) and by the lower free boundary (corresponding to the constant l1 in the perpetual case).

The upper free boundary enjoys all the properties it has in the standard case of non-negative interest rates:

it is increasing, continuous and tends to the strike price at maturity. The lower free boundary is decreasing,

continuous everywhere but at maturity, where it exhibits a discontinuity. We use the variational inequality

approach to prove the continuity of the double free boundary, thus extending the standard-case results of

Lamberton (1998).

Theorem 2.3 (Continuation region and free boundary characterization, �nite-maturity put, neg-

ative interest rate)

If conditions (2:6) and (2:7) are veri�ed, then for any t 2 [0;T ) there exist

�K

�� � � l(t) < u(t) � K (2.12)

such that (K � x)+ = v(t; x) for any x 2 [l(t);u(t)] and (K � x)+ < v(t; x) for any x =2 [l(t);u(t)].
The lower free boundary l : [0;T ]! [0; l1) is decreasing, continuous for any t 2 [0;T ), l(T�) = �K

��� > l(T ) = 0.

The upper free boundary u : [0;T ]! (u1;K] is increasing, continuous for any t 2 [0;T ], and u(T ) = u(T�) =
K:

The early exercise region is ER = f(t; x) 2 [0;T ]� [0;+1[ : l(t) � x � u(t)g ; and the double continuation
region is CR = f(t; x) 2 [0;T ]� [0;+1[ : 0 � x < l(t) or x > u(t)g ; where f(t; l(t)) ; (t; u(t)) : t 2 [0;T ]g is the
double free boundary.

Describing the free boundary close to maturity is of key importance for the American option holder. The

asymptotic behavior of the free boundary of an American put option in the standard case of a positive interest

rate and of a di¤usive underlying has been studied by several authors, as Barles at al. (1995), and, more recently,

by Evans et al. (2002), and by Lamberton and Villeneuve (2003). In a di¤usive framework with stochastic

volatility and stochastic interest rates, Medvedev and Scaillet (2010) derive an accurate approximation formula
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for the American put price, by �rst introducing an explicit proxy for the exercise rule based on the normalized

moneyness, and then by using proper asymptotic expansions for short-maturities.

In Theorem 2.4 we study the asymptotic behavior of the double free boundary at maturity in the case of

a negative interest rate. When the interest rate dominates the non-negative dividend yield of the underlying4,

Evans et al. (2002) show that the free boundary of an American put option tends at maturity to the strike

price in a parabolic-logarithmic form. In the case of a negative interest rate the same asymptotic behavior at

maturity is shown by the upper free boundary. As for the non standard lower free boundary we prove that it

converges at maturity monotonically decreasingly to its left-limit5 l(T�) = �K
��� in a parabolic form.

Theorem 2.4 (asymptotic behavior of the free boundaries at maturity, put, negative interest rate)

If conditions (2:6) and (2:7) are veri�ed, then for t! T the upper free boundary satis�es

u(t)�K � �K�

s
(T � t) ln �2

8� (T � t)�2 :

For t! T , the lower free boundary satis�es

l(t)� �K

�� � �
�K

�� �

�
�y��

p
(T � t)

�
;

where y� 2 (�1; 0), y� � �0:638, is the number such that � (y) = sup
0���1

E

24 �Z
0

(y +B (s)) ds

35 = 0 for all

y � y� and � (y) > 0 for all y > y�:

In Figure 2 we plot the double free boundary for an American put option with a negative interest rate. The

dashed part of the upper free boundary is obtained via binomial approximation. The solid lines correspond to

the asymptotic approximation (The binomial approximation of the lower free boundary coincides numerically

with the parabolic asymptotic approximation for the entire life of the option). Red (green) circles indicate the

4The introduction of jumps can produce e¤ects akin to an additional dividend rate. See e.g. Boyarchenko and Levendorski¼¬

(2002a), Levendorski¼¬(2004), and Levendorski¼¬(2008).
5The discontinuity of our non-standard lower free boundary at T parallels the discontinuity of the (unique) free boundary at

T in the standard case of a non-negative interest rate that is dominated by the underlying payout rate (see e.g. Evans, Kuske,

and Keller (2002) and Ingersoll (1998)). We here adapt the covered-put argument of Ingersoll (1998). Assume tradability and

consider the strategy of holding the underlying asset and the put at time � = T � dt for a small positive dt. Recall that, in our
non-standard case, the interest rate � and the underlying payout rate � � � are negative. The critical (lower) price x� = l (�)

is the indi¤erence point such that the value of unwinding the strategy at � equals the present value of waiting to do so at T :

K = Ke��dt + x� (�� �) dt. It follows that lim
dt!0

x� = K �
��� . Notice that the covered-put argument does not apply to the upper

free boundary (u(T�) = u(T ) = K).
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exercise (no exercise) region at T .

Figure 2: The double free boundary for a put � = �4%; K = 1:2; � = 20%; � = 8%; T = 1
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Conditions (2:6) and (2:7) are su¢ cient but not necessary for the existence of the double free boundary. In

the next proposition we provide a necessary time-dependent condition for the optimality of early exercise of

the put option during the life of the option when interest rates are negative. As a consequence, this condition

is also necessary for the existence of a double free boundary with negative interest rates.

Proposition 2.5 (necessary condition for early exercise, negative interest rate). If � < 0 and � > 0

a necessary condition for the optimal exercise of the �nite-maturity American put option at t 2 [0;T ) is

N�1
�
e�(T�t)

�
�N�1

�
e(���)(T�t)

�
� �

p
T � t; (2.13)

where N�1 (�) denotes the inverse of the standard normal cumulative distribution function.

Condition (2:13) requires �; the growth rate of the underlying asset X; to be relatively high compared to

the (negative) interest rate �; in such a way that the distance between the two quantiles N�1 �e�(T�t)� and
N�1 �e(���)(T�t)� is at least as big as �pT � t: While working towards the common objective of limiting the
relative strength of � versus �; condition (2:13) is a requirement milder than the su¢ cient conditions (2:6) and

10



(2:7).

Figure 3: The European �nite-maturity put value ve (t; x) for T � t = 9 and K = 1
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The intuition behind Proposition 2.5 is visualized in Figure 3: If the time t value of the European put option,

ve (t; x) ; strictly dominates the immediate payo¤ function for all x � 0; then there is no optimal early exercise
at t; since the time t value of the American put option dominates ve (t; x) ; that is v (t; x) � ve (t; x) > (K � x)+ :
If interest rates are non-negative, i.e. � � 0; this can never happen, because at x = 0 we have that ve (t; 0) =
Ke��(T�t) � (K � 0)+ = K; and by continuity ve (t; x) lies below (K � x)+ on an entire segment of non-

negative underlying values (see the gray graph in Figure 3). On the contrary, when interest rates are negative,

i.e. � < 0; the time t value of the European put option when the underlying is 0 dominates the immediate

payo¤, because ve (t; 0) = Ke��(T�t) > (K � 0)+ = K: Hence two alternatives are possible: Either ve (t; x)

dominates the immediate payo¤ function for all x � 0 (the blue graph in Figure 3), and consequently early

exercise is never optimal at date t: Or ve (t; x) < (K � x)+ for some x > 0 (the green graph in Figure 3),

and early exercise might be optimal at date t. When � < 0; Equation (2:13) is equivalent to the existence of

some x > 0 such that ve (t; x) � (K � x)+ : Equation (2:13) is therefore a minimal necessary condition for the
possibility of optimal early exercise at date t in case of negative interest rates, that in turn implies the possible

existence of a double continuation region.

3 The American call

We consider an American call option written on the log-normal asset X, whose drift under the valuation

measure is positive and denoted with �. We denote the volatility with �, the strike with K, and the interest

rate with �. The call value at time t is given by

ess sup
t���T

E
h
e��(��t) (X(�)�K)+

���Fti = v(t;X(t))
where

v(t; x) = sup
0���T�t

E

"
e���

�
x � exp

��
�� �

2

2

�
�+ � B(�)

�
�K

�+#
(3.1)

11



and B is a standard Brownian motion under the valuation measure. We focus on the case � < 0.

If � > 0, the value of the perpetual call option is unbounded:

v(t; x) = v1(x) = sup
0��

E

"
e���

�
x � exp

��
�� �

2

2

�
�+ � B(�)

�
�K

�+#

� sup
0�T

e��T �
�
E
�
x � exp

��
�� �

2

2

�
T + � B(T )

��
�K

�+
= sup
0�T

e��T
�
x � e�T �K

�+
= +1

by applying Jensen�s inequality.

By contrast, for �; � < 0, the function v in (3:1) can be bounded also in the perpetual case, as we show in

Proposition 3.2. In the �nite-maturity case, v in (3:1) can be characterized as the solution of the variational

inequality (2:5) with � (x) = (x�K)+. Regardless of the sign of �, the function v in (3:1) dominates the call
payo¤ (0 � (x�K)+ � v(t; x) for any t 2 [0;T ] and x � 0) and is convex and increasing with respect to x

for any t 2 [0;T ]. These properties are inherited from the convexity and the monotonicity of the call payo¤.

From the de�nition of v in (3:1) as a supremum on the set of stopping times from 0 up to time-to-maturity

we can also deduce that, for any x � 0; the function v(t; x) is decreasing with respect to t: Obviously, the

�nite-maturity option is dominated by the perpetual one: v(t; x) � v1(x) for any t 2 [0;T ] and x � 0:We also
observe that the negative sign of � and � (with the additional conditions (3:2) and (3:3)) prevents the function

v1 to be dominated by the identity function, i.e. the standard inequality v1(x) � x does not hold true, as

opposite to the case depicted in Xia and Zhou (2007).

The mentioned properties of v in (3:1) imply that the early exercise region at time t is constituted by a

connected segment de�ned by the extremes l(t) � u(t) 2 [0;K] where

l(t) = inf
�
x � 0 : v(t; x) = (x�K)+

	
_K

u(t) = sup
�
x � 0 : v(t; x) = (x�K)+

	
such that v(t; x) = (x�K)+ for l(t) � x � u(t) and v(t; x) > (x�K)+ for x < l(t) and x > u(t): This entails
that the continuation region at time t is splitted in two segments. We characterize the double continuation

region, the early exercise region and the double free boundary in Theorem 3.3. In Proposition 3.2 we give

parameter value restrictions under which the American perpetual call option is �nite even when interest rates

are negative. We also provide explicit expressions for the constant double free boundary.

In the �nite-maturity case the lower free boundary enjoys all the property it has in the standard case, where

interest rates are positive: it is decreasing, continuous and tends to the strike price at maturity. The upper

free boundary is increasing, continuous everywhere but at maturity, where it is in�nite.

Proposition 3.2 and Theorem 3.3 are proved by building upon (respectively) Proposition 2.2 and Theorem

2.3 and by applying the American put-call symmetry (see Carr and Chesney (1996) and Schroder (1999)). The

American put-call symmetry relates the price of an American call option to the price of an American put option

by swapping the initial underlying price with the strike price and the dividend yield with the interest rate. As

12



explained by Detemple (2001), such symmetry relies on the symmetry of the distribution of the log-price of X;

and on the symmetry of call and put payo¤s. The change of numeraire allows to derive such property also in

our case, where both the interest rate � and the �dividend yield� � = ��� are negative. The negativity of both
� and � is crucial to determine the presence of the double continuation region. For the ease of the reader, the

following proposition remaps the American put-call symmetry to our framework.

Proposition 3.1 (American put-call symmetry)

Consider the American call option with strike K; interest rate �; underlying drift �; underlying volatility �;

and initial underlying value x; whose value at time t 2 [0;T ] is denoted with v (t; x) = vcall (t; x;K; �; �; �) in
(3:1).

Consider the symmetric American put option with strike Kput = x; interest rate �put = � � �, underlying
drift �put = ��; underlying volatility �put = � and initial underlying value xput = K; whose value at time

t 2 [0;T ] is denoted with vput (t; xput;Kput; �put; �put; �put) = vput (t;K;x; �� �; ��; �) :

1. The following conditions

� < � < ��
2

2
< 0; (3.2)�

�� �
2

2

�2
+ 2��2 > 0; (3.3)

for �; �; � in the American call problem are equivalent to conditions (2:6) and (2:7) for parameters

�put; �put; �put in the symmetric American put problem.

2. (Carr and Chesney ((1996)); Detemple (2001); Detemple (2006)) The value of the American call coincides

with the value of the symmetric American put

v (t; x) = vcall (t; x;K; �; �; �) = vput (t;K;x; �� �; ��; �) (3.4)

for any t 2 [0;T ] :

3. For any t 2 [0;T ] let l (t) (resp. u (t)) denote the lower (resp. upper) free boundary at time t for

the American call option with strike K; and parameters �; �; �. Let lput (t) (resp. uput (t)) denote the

lower (resp. upper) free boundary at time t for the symmetric American put with strike Kput = 1; and

parameters �put; �put; �put: If (3:2) and (3:3) are satis�ed, then for any t 2 [0;T ] we have

l (t) =
K

uput (t)
; (3.5)

u (t) =
K

lput (t)
: (3.6)

We employ Proposition 3.1 to study the double free boundary for the American call option. Proposition

3.2 focuses on the perpetual case. Theorem 3.3 deals with the �nite-maturity case and Theorem 3.4 provides

the asymptotic behavior of the upper and lower free boundaries at maturity.

13



Proposition 3.2 (Perpetual call, negative interest rate) If T = +1; and conditions (3:2) and (3:3) hold,
then the perpetual American call option value is

v1(x) =

8>><>>:
Al � x�l for x 2 (0; l1)
x�K for x 2 [l1;u1]
Au � x�u for x 2 (u1; +1)

where �l > �u > 1 are the positive solutions of the equation (2:9) : The double free boundary is given by the

constant l1; u1 de�ned in (2:10), and the constant Al and Au are given by equation (2:11) :

Theorem 3.3 (Continuation region and free boundary characterization, �nite-maturity call, neg-

ative interest rate)

Under conditions (3:2) and (3:3) ; for any t 2 [0;T ) there exist

l(t) � l1 < u1 � u(t)

such that (x�K)+ = v(t; x) for any x 2 [l(t);u(t)] and (x�K)+ < v(t; x) for any x =2 [l(t);u(t)].
The lower free boundary l : [0;T ]! [K; l1) is decreasing, continuous for any t 2 [0;T ], and l(T ) = l(T�) =

K.

The upper free boundary u : [0;T )!
�
u1;

�K
���

i
is increasing, continuous for any t 2 [0;T ), with u(T�) =

�K
��� > K and u(T ) = +1:
The early exercise region ER = f(t; x) 2 [0;T ]� [0;+1[ : l(t) � x � u(t)g and the double continuation

region is CR = f(t; x) 2 [0;T ]� [0;+1[ : 0 � x < l(t) or x > u(t)g ; where f(t; l(t)) ; (t; u(t)) : t 2 [0;T ]g is the
double free boundary.

Theorem 3.4 (Asymptotic behavior of the free boundaries at maturity, call, negative interest

rate)

Under conditions (3:2) and (3:3) ; for t! T the upper free boundary satis�es

u(t)� �K

�� � � y
��
p
(T � t):

For t! T , the lower free boundary satis�es

l(t)�K � K�

s
(T � t) ln �2

8� (T � t)�2 ;

where y� � �0:638 is de�ned in Theorem 2.4.

In Figure 4 we plot the double free boundary for an American call option with a negative interest rate. The

dashed part of the lower free boundary is obtained via binomial approximation. The solid lines correspond to
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the asymptotic approximation.

Figure 4: Double free boundary for a call with � = �12%; K = 0:5; � = 20%; � = �8%; T = 1
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Conditions (3:2) and (3:3) are su¢ cient but not necessary for the existence of a double free boundary for the

call option. A necessary condition for optimal exercise at t is N�1 �e�(���)(T�t)��N�1 �e�(T�t)� � �pT � t;
that can be derived by applying the put-call symmetry (Proposition 3.1) to the necessary condition for the

early exercise of put options established in Proposition 2:5.

4 The gold loan

Collateralized borrowing has been seeing a huge increase after the �nancial crisis. Treasury bonds and stocks

are the collateral usually accepted by �nancial institutions, but gold is increasingly being used around the

world6. Major Indian non-banking �nancial companies like Muthoot Finance and Manappuram Finance have

been quite active in lending against gold collateral. As Churiwal and Shreni (2012) report in their survey of

the Indian gold loan market, gold loans tend to have short maturities and rather high spreads (borrowing rate

minus riskfree rate), even if signi�cantly lower than without collateral. The prepayment option is common,

permitting the redemption of the gold at any time before maturity. We emphasize that gold loans noticeably

di¤er from stock loans, because gold is a tradable investment asset with storage/insurance costs and without

earnings. This can lead to peculiar redemption policies that constitute an interesting application of our results

in Proposition 3.2 and Theorems 3.3 and 3.4.

In a gold loan, the borrower receives at time 0 (the date of contract inception) the loan amount q > 0

using one mass unit (one troy ounce, say) of gold as collateral. This amount grows at the rate , where  is a
6For example see "J.P. Morgan Will Accept Gold as Type of Collateral" (Wall Street Journal, Commodities, February 8, 2011),

reported by C. Cui and R. Hoyle.
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constant borrowing rate (higher than the riskfree rate r) stipulated in the contract, and the cost of reimbursing

the loan at time t is thus given by qet. When paying back the loan, the borrower regains the gold and the

contract is terminated. We assume that the costs of storing and insuring gold holdings are Gc > 0 per unit

of time, where G is the gold spot price. Consistently, the dynamics of G under the risk-neutral measure Q is

assumed to be
dG(t)

G(t)
= (r + c) dt+ �dW (t);

where r is the constant riskless rate, � is the gold returns�volatility, and W is a Brownian motion under the

risk-neutral measure Q (see for instance Hull (2011)). Given a �nite maturity T , the value of the redemption

option at date 0 is

C(0; G (0)) = sup
0���T

EQ
�
e�r� (G(�)� qe� )+

�
= sup
0���T

EQ
h
e�(r�)� (X(�)� q)+

i
where X(t) = G (t) e�t is the gold price de�ated at the rate : Therefore, the initial value of the redemption

option of a gold loan is the initial value of an American call option in (3:1) on the lognormal underlying X

with parameters

� = r �  < 0

� = r + c� 

K = q:

Similarly, the value of the redemption option at any date t 2 [0;T ] can be computed as C(t; G (t)) = v(t;X (t));
with v de�ned in (3:1) : The percentage storage and insurance costs c are positive and usually below the spread

 � r > 0. Hence, we posit � < � < 0: If conditions (3:2) and (3:3) are also veri�ed, i.e.

r �  < r �  + c < ��
2

2
and

�
r �  + c� �

2

2

�2
+ 2�2 (r � ) > 0

a double no-redemption region appears in the perpetual case, as by Proposition 3.2. Using the same proposition,

we can compute the perpetual constant free boundaries l1 and u1 in terms of the de�ated gold price process

X(t) = G (t) e�t. For �nite-maturity contracts, Theorem 3.4 provides the asymptotic approximation of the

double free boundaries near maturity. Churiwal and Shreni (2012) show that maturities for gold loans are

generally within 36 months. Borrowing rates typically range from 12% to 16% for banks and from 12% to 24%

for specialized institutions, whereas the yield on Indian short-term government bonds7 has been hovering around

8%. Data from the Gold World Council8 show that the daily log change in the gold spot price expressed in

Indian rupees has registered an annualized historical volatility of 21:4% over the period from the 3rd of January

7The source is the Government Securities Market Section of the Reserve Bank of India DataBase on The Indian Economy (RBI�s

DBIE, http://dbie.rbi.org.in).
8http://www.gold.org/investment/statistics/.
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1979 to the 5th of May 2013. Average storage/insurance costs are about9 2%. By �xing r = 8%, c = 2%,

 = 17%, and � = 21:4% the mentioned parametric restrictions are met. Given quantities normalized by the

loan amount (q = 1), Figure 5 visualizes the perpetual double free boundary (l1 = 1:70 and u1 = 2:64) and

the proxied �nite-maturity double free boundary (l (t) and u (t) for t close to the expiry date T = 1 expressed

in years), as by Theorem 3.4. Figure 5 highlights that the two perpetual free boundaries are a poor proxy

for the two �nite-maturity free boundaries near expiration. For instance, if at t = 0:95 the de�ated gold

price X is equal to 3 (the point denoted with a red diamond in Figure 5), the perpetual boundaries suggest

to delay the gold loan redemption (the red diamond lies outside the perpetual immediate-redemption region),

though the asymptotic approximation of the double free boundary implies optimal immediate redemption (the

red diamond lies inside the immediate redemption region). Binomial-tree calculations show that the relative

welfare loss associated to suboptimal delay is 3 basis points of the immediate-redemption value. A similar but

lesser deep-in-the-money situation is represented in Figure 5 by the point denoted with a black circle (X = 1:5

at t = 0:95). The relative welfare loss from suboptimal delay in this case is of 23 basis points. Conversely, if

the de�ated gold price X is 4:7 at t = 0:95 (the point denoted with a green cross in Figure 5), it is optimal

to postpone the gold redemption even though the redemption option is quite deep in the money and very

short-lived.

Figure 5: Double no-redemption region of a gold loan near maturity
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The parameter values are: T = 1; r = 8%; c = 2%;  = 17%; � = 21:4%; and q = 1:

Red (green) circles indicate the redemption (no redemption) region at T .

9The cost of leasing a bank safety locker and of insuring the jewellery kept in it adds up to about 2% of the sum assured

(�Protect your riches�, by Chandralekha Mukerji, Money Today, August 2012).
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5 Capital investment options

This example closely follows the setup in Battauz et al. (2012), who consider exclusively the perpetual case.

By contrast, we focus here on the �nite-maturity case and on the behavior of the double free boundary near

maturity. Uncertainty is described by the historical probability space (
;P; (Ft)t). The present value V of the
project and the investment cost I have lognormal dynamics under the historical probability measure P (see

Dixit and Pindyck (1993) for a classical review of risky investment and Aase (2010) for a recent survey). The

�rm�s management decides when to disburse the irreversible investment cost I to undertake the project. Risk

adjustment corresponds to choosing the valuation measure P̂ (equivalent to P) by the �rm�s management. The

discount rate br is also selected by the �rm�s management. The P̂�dynamics of V is

dVt = Vt

�b�V dt+ �V dW P̂
t + e�V dfW P̂

t

�
;

where b�V , �V , and ~�V are real positive constants. The investment cost I has P̂�dynamics
dIt = It

�b�I dt+ �I dW P̂
t

�
;

where b�I and �I ; are real positive constants, and W P̂, fW P̂ are P̂�independent Brownian motions.
Access to the project is possible only up to the date T . Thus, at any date t 2 [0; T ] the management

evaluates the t-dated value of the option to invest

ess sup
t���T

EP̂
h
e�br(��t)(V� � I� )+���Fti : (5.1)

The real option problem (5.1) can be reduced to a one-dimensional American put option by taking the process

Vte
�t as numeraire (see Battauz (2002), Carr (1995), and Geman et al. (1995)), where

� = � (b�V�br)
is the opposite of V �s expected growth rate (under P̂) in excess of the discount rate br. Indeed, denoting with
PV the probability measure associated to the numeraire Vte�t; whose Radon-Nikodym derivative with respect

to the probability measure P̂ is dP
V

dP̂
= VT e

�T

V0ebrT ; the problem (5.1) can be written as

ess sup
t���T

EP̂
h
e�br(��t)(V� � I� )+���Fti = Vt � v(t;Xt); (5.2)

with

v(t;Xt) = ess sup
t���T

EP
V
h
e��(��t) (1�X� )+

���Fti (5.3)

and

Xt =
It
Vt
:

The underlying of the put option in (5.3) is the lognormal cost-to-value ratio X, that under the probability

measure PV can be written as

Xt = X0 exp

��
�� �

2

2

�
t+ � Bt

�
;
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where Bt is a PV -Brownian motion, and where

�2 = (�I � �V )2 + e�2V ;
� = b�I � b�V :

The parameter � = � (b�V�br) plays in (5.3) the role of the interest rate. Consider now the case of a highly
pro�table project for which b�V > br:
This case is usually neglected by the literature on real options, because it can lead to an explosive option

value in the perpetual case (see Battauz at al. (2012) for a detailed discussion). In the �nite maturity case, if

� = b�I � b�V < 0; the option is optimally exercised only at maturity T: On the contrary, if � = b�I � b�V > 0;
Theorem 2.3 shows that early exercise can be optimal, and that the early exercise region is surrounded by a

double continuation region. Investments in nuclear plants are an interesting area of possible application. The

business is extremely lucrative, but the overall cost of entering it is likely to increase markedly in the future

(demand for nuclear plant safety is de�nitely rising). This may cause the cost of entering a nuclear energy

project to grow at a higher expected rate than the value of the project itself, leading to � = b�I � b�V > 0:
Figure 6: Double free boundary for a capital investment option near maturity
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For instance, with br= 3%; b�V = 5%; �V = 7%; e�V = 3%; b�I = 6%; and �I = 10% (see10 Figure 6), we

get � = � (b�V�br) = �2%; � = 4:242%; and � = 1%. Conditions (2:6) and (2:7) are met, and Proposition

2.2 delivers the two perpetual free boundaries l1 = 0:763 and u1 = 0:873: Suppose that the option has

10The seminal work of McDonald and Siegel (1986) also deals with risk for both the value V and the cost I. With the key

di¤erence of a distinct hierarchy for the discount and growth rates, the parameter values for the risk-adjusted processes of V and I

employed in Figure 6 are in the same range as those used by McDonald and Siegel (1986), see e.g. their Tables I and II at p. 720.
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ten years to maturity, i.e. T = 10. Theorem 2.4 enables the investigation of the double free boundary near

maturity. In Figure 6 the double free boundary is plotted for t 2 [9:6; 10], i.e. when only 4:8 months are
left to expiration. At t = 9:9, if the cost-to-value ratio I=V is 0:72 (the red diamond in Figure 6), immediate

investment is optimal. The perpetual double free boundary is a poor proxy for the double free boundary near

expiration and implies a delayed investment (the red diamond lies outside the perpetual immediate investment

region). Binomial-tree calculations show that the relative welfare loss associated to suboptimal adjournment

is 1 basis points of the immediate-exercise value. A similar but lesser deep-in-the-money situation is depicted

in Figure 6 by the black circle (I=V = 0:9 at t = 9:9). The relative welfare loss from suboptimal deferment in

this case is of 15 basis points. Conversely, if the cost-to-value ratio I=V is 0:4 at t = 9:9 (the point green cross

in Figure 6), the �rm must postpone the investment, even if the investment option is quite deep in the money

and de�nitely short-lived.

6 Conclusions

The signi�cance of American option problems with an endogenous negative interest rate is conspicuous as

they are reformulations of the option-like features of popular secured loans and of relevant capital budgeting

problems. For �nite-maturity and perpetual American puts and calls with a negative interest rate, we study in

detail the conditions that bring about a non-standard double continuation region (option exercise is optimally

delayed if moneyness is insu¢ cient and, in a non-standard fashion, if it is overly su¢ cient) and comprehensively

investigate the properties (existence, monotonicity, continuity, limits and behavior close to maturity) enjoyed

by the double free boundary that separates the early-exercise region from the double continuation region.

Our study contributes a substantial extension of the standard optimal exercise properties for American

options and covers the exact necessary/su¢ cient conditions that empower optimal early exercise of an American

call with a negative underlying payout rate. We also contribute to the extant literature on the optimal redeeming

strategy of tradable securities used as loan collateral as we characterize the double continuation region implicit

in the gold loan, a thriving form of collateralized borrowing. Real options that combine strong expected

growth for the project values with a marked escalation of the investment costs provide another distinct area of

application for our results.

Several promising avenues of further research emerge, with an interesting mix of economic and technical

challenges. They include studying the impact on non-standard optimal exercise policies of di¤usive stochastic

volatility, jump risk, and drift-parameter uncertainty. We plan to pursue them in future work.

7 Appendix

Proof of Proposition 2.1. See the proofs of Theorem 3.6 and of Corollary 3.7 in Jaillet et al. (1990) and

note that, for � < 0, the discount factor is positive and bounded by e��T .�

Proof of Proposition 2.2.
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The proof follows the same arguments of Battauz et al. (2012) while adapting them to our framework.

The function v1 is retrieved by plugging into the di¤erential equation in (2:5) for the continuation region

the educated guess v1(x) / x�: This leads to equation (2:9) for the parameter �. Smooth pasting and value
matching deliver the constants Al; Au and the two free boundaries l1; u1: The authors then verify that v1

de�ned in (2:8) and �� = inf ft � 0 : l1 � Xt � u1g satisfy

(a) v1(x) = E
h
e���

�
v1(X��)

i
;

(b) v1(x) � E
�
e���v1(X� )

�
for any stopping time � .

Such direct veri�cation is needed because v1 violates the usual boundedness requirements (a typical bounded-

ness assumption requires the existence of an integrable random variable H such that the inequality

e��(�
�^�^t)v1(X��^�^t) < H

holds almost surely for all F�stopping times � and for all t > 0):We look for negative values of the parameter
� to capture the monotonicity property of v1. If the conditions (2:6) and (2:7) hold true, the equation (2:9)

admits two negative solutions �u;l =
�
�
���2

2

�
�
r�

���2

2

�2
+2��2

�2
; which de�ne the two constant free boundaries

l1 = K�l
�l�1 and u1 = K�u

�u�1 . If the conditions (2:6) and
�
�� �2

2

�2
+ 2��2 = 0 hold true, the equation (2:9)

has a unique negative solution� =
�
�
���2

2

�
�2

; which de�nes the constant free boundary l1 = u1 = K�
��1 : In

the early exercise region ER the function v1 de�ned in (2:8) coincides with the put payo¤. It is important

to verify that the process
�
v1(X(t))e��t

	
t
is a supermartingale also in ER, because the variational inequality

@
@tv+Lv� �v � 0 in (2:5) must hold on the whole (0;T )�<

+: More precisely, on the early exercise region the

variational inequality in (2:5) yields @
@tv+Lv� �v =

1
2�

2x2 � 0+�x � (�1)� � (K � x)+ = x � (�� �)� �K � 0
for all x 2 [l1 ;u1] : Since � � � < 0; the inequality is satis�ed in ER if and only if l1 � (�� �) � �K � 0:

By substituting the expression for l1 = K�l
�l�1 ; we see that the above inequality is satis�ed if and only if

�l
�l�1 � (�� �) � � � 0; equivalent to �l � �

� ; and, by substituting the explicit expression for �l; equivalent to

�
�
�� �2

2

�
+

r�
�� �2

2

�2
+ 2��2 � �

��
2: Under the condition (2:7) the last inequality is equivalent to the

system 8<:
�
��

2 +
�
�� �2

2

�
� 0�

�� �2

2

�2
+ 2��2 �

�
�
��

2 +
�
�� �2

2

��2
.

The inequality in the second row is satis�ed under our assumptions, because it is equivalent to: 2��2 ��
�
��

2
�2
+2 ���

2
�
�� �2

2

�
,
�
�
��

2
�2
+2 ���

2
�
�� �2

2

�
�2��2 � 0, ��2+2�

�
�� �2

2

�
�2�2 � 0, ��2���2 � 0

, � � �: We are left with verifying the inequality in the �rst row:

�

�
�2 +

�
�� �

2

2

�
� 0() � � � �

�2

�
�� �

2

2

�
:

In fact, the condition (2:7) implies � > �
�
���2

2

�2
2�2

> � �
�2

�
�� �2

2

�
, because �

�
���2

2

�2
2�2

> � �
�2

�
�� �2

2

�
is

equivalent to
���2

2
2 < �() �� �2

2 < 2�() �+ �2

2 > 0; which is the condition (2:6).�
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Proof of Theorem 2.3. The two branches l and u of the double free boundary are de�ned in (2:3) and (2:4) :

We start by proving inequality (2:12) : Under our assumptions, the function v1 and the constants l1 and u1

are well de�ned and the strict inequality l1 < u1 holds because the inequality in (2:7) is strict, leading to

�u < �l < 0 and therefore to l1 < u1. The strict inequality l(t) < u(t) for any t 2 [0;T ] in (2:12) follows from
the chain l(t) � l1 < u1 � u(t).

To show that l(t) � l1 and that u(t) � u1 for any t 2 [0;T ] it is su¢ cient to observe that�
x : v1(x) > (K � x)+

	
�
�
x : v(t; x) > (K � x)+

	
for any �xed t; because y 2 fx : v(t; x) > (K � x)+g implies v1(y) � v(t; y) > (K�x)+: Taking the complement
sets, the above inclusion is reversed and we get�

x : v1(x) = (K � x)+
	
�
�
x : v(t; x) = (K � x)+

	
:

By passing to the in�mum, this inclusion leads to l1 � l(t), and by passing at the supremum we get u1 � u(t):
Next, we prove that l(t) � �K

��� for any t 2 [0;T ) :We observe that any (t; x) in the exercise region ER satis�es

the inequality @
@tv+Lv��v � 0 in (2:5) : Since for (t; x) 2 ER we have v(t; x) = K�x; the inequality simpli�es

to ��x� � (K � x) = (�� �)x� �K � 0, that is x � �K
��� > 0 for any (t; x) 2 ER: By passing to the in�mum

over x for any �xed t in the previous inequality we get that l(t) � �K
��� :

We now prove the monotonicity properties of l and u: We �rst show that l is decreasing. Let t0 < t00: We

have (K � l (t0))+ � v (t00; l (t0)) � v(t0; l (t0)) = (K � l (t0))+ ; where the �rst inequality follows from v(t00; �) �
(K � �)+ ; the second one from the fact that v(�; l (t0)) is decreasing, and the last equality from the de�nition

of l (t0) : As a consequence v (t00; l (t0)) = (K � l (t0))+ ; and therefore l (t00) � l (t0) :
To show that u is increasing, let t0 < t00:We exploit the monotonicity properties of v and we get (K � u (t0))+ =

v (t0; u (t0)) � v(t00; u (t0)) � (K � u (t0))+ : Therefore v(t00; u (t0)) = (K � u (t0))+ ; and, consequently, u (t00) �
u (t0) :

The next step is to prove that at maturity l (T ) = 0 and u (T ) = K. To show that l (T ) = 0; we observe

that, since v(T; x) = (K � x)+ for all x � 0, l(T ) = inf
�
x � 0 : v(T; x) = (K � x)+

	
= inf fx � 0g = 0: The

equality u (T ) = K follows from u(T ) = sup
�
x � 0 : v(T; x) = (K � x)+

	
^K = sup fx � 0g ^K = K:

We now show that u (T�) = K = u (T ) and l (T�) = �K
��� > 0 = l (T ). By construction u (t) � K for all

t 2 [0;T ] ; and hence u (T�) � K: Suppose by contradiction that u (T�) < K: The set (0;T )�(u (T�) ;K) � CR
and therefore (L � �) v = � @

@tv � 0. As t " T we have

(L � �) v ! (L � �) (K � x) = (�� �)x� �K for x 2
�
u
�
T�
�
;K
�
:

But then we have (�� �)x� �K � 0 for x 2 (u (T�) ;K) and therefore (�� �)u (T�)� �K � 0 =) u (T�) �
�K
��� , delivering the contradiction.

Suppose now (by contradiction) that l (T�) > �K
��� : The set (0;T )� (0; l (T

�)) � CR and hence

(L � �) v = � @
@t
v � 0 for x 2

�
�K

�� � ; l
�
T�
��
�
�
0; l
�
T�
��
:
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As t " T we have

(L � �) v ! (L � �) (K � x) = (�� �)x� �K for x 2
�
�K

�� � ; l
�
T�
��
;

where the limit is in the sense of distributions. We hence have (�� �)x� �K � 0 for x 2
�
�K
��� ; l (T

�)
�
, that

is

(��+ �)x+ �K � 0 for x 2
�
�K

�� � ; l
�
T�
��
:

which delivers the contradiction because x � �K
��� implies (��+ �)x+ �K � (��+ �) �K��� + �K = 0:

We �nally deal with the continuity of the l and u. The argument for u is the same as the one used by

Lamberton and Mikou (2008), so that we omit it. We show instead how to prove the continuity of l. The

right continuity of l follows from the monotonicity of l, and the continuity of v and (K � �)+. Indeed, since l is
decreasing, we have, for any sequence tn # t 2 [0;T ] ; that limtn#t l(tn) � l(t): Because of the de�nition of l; for
any tn we have the equality v (tn; l(tn)) = (K � l(tn))+: By the continuity of v and of the put payo¤ we pass
to the limit and we get v (t; limtn#t l(tn)) = (K � limtn#t l(tn))+: This equality implies that limtn#t l(tn) � l(t);
and right continuity is proved.

The left continuity follows from the system of variational inequalities (2:5) satis�ed by v: First of all we

observe that if for some t 2 [0;T ) we have l(t) = �K
��� ; then l(t) =

�K
��� for all t 2

�
t;T
�
; because l is decreasing

and bounded from below by the constant �K
��� : With a small abuse of notation we denote with

�
t;T
�
the

(possibly empty) set in which l(t) = �K
��� . On

�
t;T
�
the function l is constant and therefore continuous. Let

t 2
�
0; t
�
and take a generic sequence tn " t: Since l is monotonically decreasing, the limit l(t�) = limtn"t l(tn)

exists and l(t�) � l(t): Suppose by contradiction that the inequality is strict, i.e. l(t�) > l(t). Then the open
set (0; t) � (l(t); l(t�)) � CR and therefore (2:5) implies @

@tv + Lv � �v = 0; that is Lv � �v = � @
@tv � 0 on

(0; t)� (l(t); l(t�)) where the inequality holds because v is decreasing with respect to t:
Conversely the open set (t;T )�(l(t); l(t�)) � ER and therefore (2:5) implies 0 � @

@tv+Lv��v = Lv��v =
(�� �)x� �K on (t;T )� (l(t); l(t�)) ; where the equalities follow from v(t; x) = K � x on ER.

Hence by continuity we get Lv� �v = (�� �)x� �K = 0 for any x 2 (l(t); l(t�)) ; that is satis�ed only for
l(t) = l(t�) = x = �K

��� ; delivering the contradiction.�

Proof of Theorem 2.4. To prove the asymptotic behavior of the upper free boundary, we exploit formula (1.5)

at page 221 in Evans et al. (2002) with interest rate r = � and dividend yield D = � � � < � = r < 0: Their
formula relies only on the satis�ed inequality D < r; and is not a¤ected by the negativity of the parameters

r and D. Hence we get u(t) � K � K�
q
(T � t) ln �2

8�(T�t)�2 ; as t ! T . To prove the asymptotic behavior

of the lower free boundary we exploit Remark 2 in Lamberton and Villeneuve (2003), that in our framework,

applied at �y; and with # = T � t, and � := l (T�) e��y
p
#; implies

v (T � #;�) = (K � �)+ + #
3
2 j�jK�� (y) + o

�
#
3
2

�
for y > y�, since @

@x

�
��Ke��t + (�� �) e�

�
���+�2

2

�
t+�x

������
0; 1
�
ln �K

���

� = �K� < 0: (This equation substitutes
equation (2) in the proof of Theorem 2 in Lamberton and Villeneuve (2003). For convenience of the reader,
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their notation is: r = �, � = � � �, t0 = 0, x0 = 1
� ln

�K
��� , f(t; x) = e��t

�
K � e

�
���2

2

�
t+�x

�+
, Df (t; x) =

��Ke��t + (�� �) e�
�
���+�2

2

�
t+�x

. Theorem 2 in Lamberton and Villeneuve (2003) cannot be used in our

case to �nd out the beahviour of the lower free boundary, since it relies on the non-negativity of interest rates).

Since � (y) > 0; it follows that v (T � #;�) > (K � �)+ : Hence (T � #;�) =
�
T � #; l (T�) e��y

p
#
�
2 CR and

for # small enough this is equivalent to say that

� = l
�
T�
�
e��y

p
# < l (T � #) :

Note that the inequality is here reversed with respect to the standard case of a unique (upper) free boundary.

Passing to the log we get

ln l
�
T�
�
� �y

p
# < ln l (T � #)

ln l
�
T�
�
� ln l (T � #) < �y

p
#

and therefore

lim sup
t!T

l (T�)� l (t)
l (T�)�

p
(T � t)

� y:

Since the inequality holds for all y > y�, we get

lim sup
t!T

l (T�)� l (t)
l (T�)�

p
(T � t)

� y�:

We now prove the opposite inequality for y � y�. If for all y � y� and # = T � t! 0

l (T � #) � l
�
T�
�
e��y

p
# � l

�
T�
� �
1� y�

p
#
�

the proof is complete. Hence, suppose now that

l (T � #) > � = l
�
T�
�
e��y

p
#:

This means that (T � #;�) 2 CR: We exploit again Remark 2 in Lamberton and Villeneuve (2003) applied to
�y (instead of y) that implies

' (#) = v (T � #;�) = (K � �)+ + g (#) with g (#) = o
�
#
3
2

�
> 0;

where the positivity of g (#) follows from the fact that � 2 CR. The smooth �t property (Proposition 2.1)
allows to �nd � 2 (�; l (T � #)) such that

v (T � #;�)� (K � �) = (l (T � #)� �)2

2

@2v

@x2
(T � #; �) : (7.1)

Indeed, since v admits continuous �rst order derivative w.r.t. x and there exists @2v
@x2

(T � #;x) for all x 2
(�; l (T � #)) ; we can apply a Taylor expansion with the Lagrange remainder for x = � and bx0 = l (T � #) to
conclude that

v (T � #;x) = v (T � #; bx0) + @

@x
v (T � #; bx0) (x� bx0) + 1

2

@2v

@x2
(T � #; �) (x� bx0)2
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for some � 2 (x; bx0) = (�; l (T � #)) : Since
v (T � #; bx0) = v (T � #; l (T � #)) = K � l (T � #)

@

@x
v (T � #; bx0) = @

@x
v (T � #; l (T � #)) = �1;

the Taylor expansion delivers (7:1) :

As � 2 (�; l (T � #)) ; we have that (T � #; �) 2 CR and therefore

� @

@#
v + Lv � �v = 0 for (t; x) = (T � #; �)

with (Lv)(t; x) = 1
2�

2x2 @2

@x2
v(t; x) + �x @

@xv(t; x): From the PDE at (t; x) = (T � #; �) we derive that

1

2
�2�2

@2v

@x2
(T � #; �) = @

@#
v (T � #; �)� �� @

@x
v (T � #; �) + �v (T � #; �)

� 0� �� @

@x
v (T � #; �) + �v (T � #; �) because v increasing w.r.t. #

> ��� (�1) + �v (T � #; �) because @

@x
v (T � #; �) � �1

> �� + �v (T � #;�) because � > � and v (T � #; �) < v (T � #;�) :

The quantity ��+ �v (T � #;�) is positive, since

��+ �v (T � #;�) = ��+ � ((K � �) + g (#))

= �K
�
1� e��y

p
#
�
+ �g (#) � �K�y

p
#+ o

�
�y
p
#
�
> 0:

Therefore we can write

(l (T � #)� �)2 = (v (T � #;�)� (K � �))
1
2
@2v
@x2

(T � #; �)

<
g (#)

��+�v(T�#;�)
�2�2

=
�2�2g (#)

��+ � ((K � �) + g (#)) < C
g (#)

��+ � ((K � �) + g (#))

where C > 0. Hence

(l (T � #)� �)2 < C g (#)

�K
�
1� e��y

p
#
�
+ �g (#)

� C
o
�
#
3
2

�
�K�y

p
#+ o

�
�y
p
#
� = C 0 o

�
#
3
2

�
��y

p
#+ o

�
�y
p
#
� = C 0o ��2y2#�

where C 0 > 0: This implies that

(l (T � #)� �) < o
�
��y

p
#
�
as #! 0

But then

l (T � #)� � = l (T � #)� l
�
T�
�
e��y

p
# < o

�
��y

p
#
�
as #! 0
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i.e.

l (T � #) � l
�
T�
� �
1� �y

p
#
�
+ o

�
��y

p
#
�
as #! 0

for y � y�. In other words

l
�
T�
�
� l (t) � l

�
T�
�
�
�
l
�
T�
� �
1� y�

p
(T � t)

��
= l
�
T�
�
y�
p
(T � t);

for all y � y�, and hence
l
�
T�
�
� l (t) � l

�
T�
�
y��
p
(T � t):

Therefore we get

lim inf
t!T

l (T�)� l (t)
l (T�)�

p
(T � t)

� y�

and thus our proof is complete.�

Proof of Proposition 2.5 If the European put option ve dominates the immediate payo¤ at t for all values

of the underlying x; then there is no optimal exercise for the American option at t: The distance between the

European put option and the immediate payo¤ at (t; x) is f (t; x) = ve (t; x)� (K � x)+ ; where

ve (t; x) = Ke
��(T�t)N (z)� xe(���)(T�t)N

�
z � �

p
(T � t)

�
; (7.2)

with N (y) denoting the distribution function of a standard normal random variable, and

z =
�
ln Kx �

�
�� �2

2

�
(T � t)

�
1

�
p
T�t : For any t 2 [0;T ] ; the function f (t; �) is convex, reaching its min-

imum at 0 < xm < K such that @
@xf (t; xm) = 0: Hence f (t; xm) > 0 is equivalent to the fact that the

European option ve (t; x) dominates at t the immediate payo¤ for any x > 0. Therefore xm is the solu-

tion of the equation @
@xf (t; x) = 0 or @

@xve (t; x) = �1: We compute @
@xve (t; x) = Ke��(T�t)fN (z)

@z
@x �

e(���)(T�t)N
�
z � �

p
(T � t)

�
�xe(���)(T�t)fN

�
z � �

p
(T � t)

�
@z
@x ; where fN denotes the density of a stan-

dard normal random variable and @z
@x = �

1
x�
p
T�t : Hence

@

@x
ve (t; x) =

e��(T�t)

�
p
T � t

0BBB@�Kx fN (z) + e�(T�t)fN �z � �p(T � t)�| {z }
K
x
fN (z)

1CCCA� e(���)(T�t)N �z � �p(T � t)� ;

delivering @
@xve (t; x) = �e(���)(T�t)N

�
z � �

p
(T � t)

�
: Therefore xm is de�ned via the following equation

N
�
zm � �

p
T � t

�
= e�(���)(T�t), where zm =

�
ln K

xm
�
�
�� �2

2

�
(T � t)

�
1

�
p
T�t : Finally

ve (t; xm) = Ke
��(T�t)N (zm)� xme(���)(T�t)e�(���)(T�t) = Ke��(T�t)N (zm)� xm

and hence f (t; xm) = ve (t; xm) � (K � xm) = e��(T�t)KN (zm) � K > 0 if and only if e��(T�t)N (zm) �
1 > 0: Therefore the necessary condition for possible optimal exercise at t is e��(T�t)N (zm) � 1 � 0; i.e.

zm � N�1 �e�(T�t)� : Since zm is de�ned via N
�
zm � �

p
T � t

�
= e�(���)(T�t), we get zm = �

p
T � t +

N�1 �e�(���)(T�t)� ; that delivers (2:13):�
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Proof of Proposition 3.1. The proof of Points 1 and 2 relies on the change of numeraire, as explained by

Detemple (2001). In particular, we refer to Theorem 6, page 76 in Detemple (2001) extended to the case of a

negative interest rate � as well as a negative �dividend yield�� = ��� < 0 for the call�s underlying asset. Denote
with �put = � � � and �put = ��. Conditions (3:2) and (3:3) for �; � are equivalent to conditions (2:6) and
(2:7) in Proposition 2:2 and in Theorem 2:3 for �put = �� � and �put = ��: In fact, (2:6) follows immediately
from (3:2) ; and (2:7) becomes

�
�put � �2

2

�2
+ 2�put�

2 =
�
��� �2

2

�2
+ 2 (�� �)�2 =

�
�� �2

2

�2
+ 2��2 > 0;

which is true by condition (3:3) (the converse implication is also readily veri�ed). This completes the proof of

Points 1 and 2.

To prove Point 3 and derive formulae (3:5) and (3:6), we use the put-call symmetry provided by Carr and

Chesney (1996). If the call and the put option have the same moneyness, xK =
bKputbxput formula (5) in Section III

of Carr and Chesney (1996) implies that

vcall (t; x;K; �; �; �) =
p
xK

vput

�
t; bxput; bKput; �� �; ��; ��qbxput bKput :

This formula derives from (3:4) by exploiting the homogeneity property of the put option. In fact, take a � > 0

such that bKput = x
� ; is an unconstrained strike for the put option, and let bxput = xput

� = K
� : The put option

with parameters bxput; bKput (and �put; �put; �put as before) has the same moneyness of the call option, becausebKputbxput = x
K : Moreover

vcall (t; x;K; �; �; �) = vput (t; xput;Kput; �put; �put; �put) by formula (3:4)

= vput (t;K;x; �� �; ��; �)

= � � vput
�
t;
K

�
;
x

�
; �� �; ��; �

�
by the homogeneity property of put

= � � vput
�
t; bxput; bKput; �put; �put; �put� :

Writing � =
p
� � � =

q
xbKput
� Kbxput ; we arrive at formula (5) in Section III of Carr and Chesney (1996). We

apply now this formula to derive the expression of the upper free boundary as in formula (3:6) : Since (2:6) and

(2:7) in Proposition 2:2 and in Theorem 2:3 are satis�ed, there exist two critical prices at time t 2 (0;T ) for the
American put option vput

�
t; bxput; bKput; �put; �put; �put� : Let bKput = 1 and denote with 0 < lput(t) < uput(t)

the lower and upper free boundary of the American put option vput (t; bxput; 1; �put; �put; �put) : The parameters
x;K ; and bxput are constrained by the equality x

K = 1bxput : The Carr and Chesney (1996) version of the American
put-call symmetry allows to write

vcall (t; x;K; �; �; �) =
p
xK

vput (t; bxput; 1; �� �; ��; �)p
1 � bxput :
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The time-t upper free boundary for the call can be written as

u(t) = sup
�
x � 0 : vcall(t; x) = (x�K)+

	
= sup

(
Kbxput � 0 : pxK vput (t; bxput; 1; �� �; ��; �)pbxput =

�
Kbxput �K

�+)

= K �
 
inf

(bxput � 0 :
s

KbxputKvput (t; bxput; 1; �� �; ��; �)pbxput =

�
Kbxput �K

�+)!�1
because

x

K
=

1bxput
= K �

�
inf

�bxput � 0 : Kbxput vput (t; bxput; 1; �� �; ��; �) = Kbxput (1� bxput)+
���1

= K �
�
inf
�bxput � 0 : vput (t; bxput; 1; �� �; ��; �) = (1� bxput)+	��1

= K � (lput (t))�1 ;

which gives formula (3:6) : Formula (3:5) follows by similar arguments. Formulae (3:5) and (3:6) extend formula

(6) in Section III of Carr and Chesney (1996) to account for the double free boundary.�

Proof of Proposition 3.2. By Point 1 of Proposition 3.1, �put = ��� and �put = �� satisfy conditions (2:6)
and (2:7) in Proposition 2:2. Therefore, for the symmetric perpetual put option with Kput = 1, there exist two

constant free boundaries

0 < lput1 < uput1 :

The boundaries lput1 < uput1 lead to u1 > l1 for the call option via equations (3:6) and (3:5) :�

Proof of Theorem 3.3. Under assumptions (3:3) and (3:2), the function v1 and the constants l1 and u1 are

well de�ned. The monotonicity and the continuity of the free boundary follow by arguments similar to those

used for the put case. The results can also be derived from Theorem 2.3 by means of the American put-call

symmetry as explained in Proposition 3.1. We focus here on the non-standard upper free boundary for the call

option, whose existence is implied by the negative interest rate � < 0. For t = T; the de�nition of u as

u(T ) = sup
�
x � 0 : v(T; x) = (x�K)+

	
implies u(T ) = +1:

For any t 2 (0;T ) ; equation (3:6) in Proposition 3.1 yields that u (t) = K
lput(t)

is positive, increasing and

continuous, because by Theorem 2.3 the non-standard lower free boundary lput of the put option is positive,

decreasing and continuous on (0;T ) : In particular, the limit of u as t! T� is u (T�) = K
lput(T�)

= K
�put

�put��put
=

K
(���)
���+�

= K��
��� > K and this concludes the proof.�

Proof of Theorem 3.4. The asymptotic expressions of u and l at maturity derive from formulae (3:5) and

(3:6) applied to the asymptotic expression found in Theorem 2:4 for the symmetric put with parameters as

de�ned in Proposition 3.1. A Taylor approximation of the �rst order delivers the �nal expression.�
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