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Ergodic Theorems for Lower Probabilities�

S. Cerreia�Vioglio, F. Maccheroni, and M. Marinacci
Department of Decision Sciences and IGIER, Università Bocconi

September 2013

Abstract

We establish an Ergodic Theorem for lower probabilities, a generalization of standard proba-

bilities widely used in applications. As an application, we provide a version for lower probabilities

of the Strong Law of Large Numbers.

1 Introduction

The purpose of this paper is to state and prove an Ergodic Theorem for lower probabilities, a class of

capacities (that is, monotone set functions not necessarily additive) widely used in applications where

standard additive probabilities turn out to be inadequate.

We consider a measurable space (
;F), endowed with an FnF-measurable transformation � : 
!

, and a (continuous) lower probability � : F ! [0; 1]. We study four di¤erent notions of invariance

for lower probabilities (De�nitions 1-4). They are equivalent in the additive case, and so are genuine

generalizations to the nonadditive setting of the usual concept of invariance.

The most natural de�nition of invariance for a lower probability � (De�nition 1) requires that

� (A) = �
�
��1 (A)

�
8A 2 F :

It is the weakest generalization of invariance to the nonadditive case. Nevertheless, it is still possible

to derive a version of the Ergodic Theorem (Theorem 2). In other words, if � is an invariant lower

probability, then for each real valued, bounded, and measurable function f : 
! R the limit

lim
n

1

n

nX
k=1

f � �k�1 (!)

exists on a set that has measure 1 with respect to �. If, in addition, � is ergodic, we are able to

provide bounds in terms of upper and lower Choquet integrals for such limit.

Under the stronger notions of invariance (De�nitions 2-4), the previous result can be strengthened

in several ways. First, we develop a nonadditive version of Kingman�s super-subadditive ergodic

theorem (Theorem 3). Second, when (
;F) is a standard measurable space we can better characterize
the limit of the time averages (Corollary 2).

As an application of our main result, we establish a nonadditive version of the Strong Law of Large

Numbers (Theorem 4) for stationary and ergodic processes.

�AMS 2000 subject classi�cations. 28A12, 28D05, 37A05, 37A30, 37A50, 60F15, 60G10. Key words and phrases.
Capacities, Choquet Integral, Ergodic Theorems, Strong Law of Large Numbers, Invariant Measures. Corresponding
Author: Fabio Maccheroni <fabio.maccheroni@unibocconi.it>, U. Bocconi, via Sarfatti 25, 20136, Milano, ITALY.
The authors gratefully acknowledge the �nancial support of MIUR (PRIN grant 20103S5RN3_005) and of the AXA
Research Fund.
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2 Mathematical Preliminaries

Set functions Consider a measurable space (S;�), where S is a nonempty set and � is a �-algebra

of subsets of S. Subsets of S are understood to be in � even where not stated explicitly.

A set function � : �! [0; 1] is

(i) a capacity if � (;) = 0, � (S) = 1, and � (A) � � (B) for all A and B such that A � B;

(ii) convex if � (A [B) + � (A \B) � � (A) + � (B) for all A and B;

(iii) additive if � (A [B) = � (A) + � (B) for all disjoint A and B;

(iv) continuous if limn!1 � (An) = � (A) whenever either An # A or An " A;

(v) continuous at S if limn!1 � (An) = 1 whenever An " S;

(vi) a probability if it is an additive capacity;

(vii) a probability measure if it is a probability which is continuous at S.

We denote by �(S;�) the set of all probabilities on � and by �� (S;�) the set of all probability

measures on �. We endow both sets with the relative topology induced by the weak* topology.1

Given M � �� (S;�), we assume that M is endowed with the �-algebra AM which is the smallest

�-algebra that makes the evaluations P 7! P (A) measurable for all A 2 �.
A set function � : �! [0; 1] is

(viii) a lower probability (measure) if there exists a compact setM� �� (S;�) such that

� (A) = min
P2M

P (A) 8A 2 �:

Given a capacity �, its conjugate �� : �! [0; 1] is given by

�� (A) = 1� � (Ac) 8A 2 �:

It is immediate to verify that if � is a lower probability, then

�� (A) = max
P2M

P (A) 8A 2 �: (1)

The core of a capacity � is the weak* compact set de�ned by

core (�) = fP 2 �(S;�) : P � �g :

That is, the core is the collection of all probability measures that setwise dominate �.

A set function � : �! [0; 1] is

(ix) exact if core (�) 6= ; and � (A) = minP2core(�) P (A) for each A.

If � is a convex capacity continuous at S, then � is exact and ; 6= core (�) � �� (S;�) (see [7,

Lemma 2 and Theorem 1], [21, Theorem 3.2], and [18, Theorem 4.2 and Theorem 4.7]). In particular,

� is a lower probability where M = core (�). Conversely, if � is a lower probability, then � is exact,

continuous at S, and M � core (�) � �� (S;�). Nevertheless, being exact does not automatically

imply being convex. An exact capacity continuous at S is continuous.
1Recall that a net fP�g�2I converges to P , in the weak* topology, if and only if P� (A) ! P (A) for all A 2 �.

In other words, this is the restriction to �(S;�) of the topology � (ba (S;�) ; B (S;�)) where B (S;�) is the space of
all real valued, bounded, and �-measurable functions on S and ba (S;�) is the set of all bounded and �nitely additive
set functions on �. In the case of S being a Polish space and � the Borel �-algebra, the above topology should not be
confused with the topology generated by real valued, bounded, and continuous functions on S.
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Integrals We denote by B (S;�) the set of all bounded and �-measurable functions from S to R.

A capacity � induces a functional on B (S;�) via the Choquet integral:Z
S

fd� =

Z 1

0

� (fs 2 S : f (s) � tg) dt+
Z 0

�1
[� (fs 2 S : f (s) � tg)� � (S)] dt 8f 2 B (S;�)

where the right hand side integrals are (improper) Riemann integrals. If � is additive, then the Choquet

integral reduces to the standard additive integral. It is also routine to check that �
R
S
fd� =

R


�fd��

for all f 2 B (S;�). It is well known ([7, Lemma 2] and [18, Theorem 4.7]) that if � is a convex

capacity, thenZ
S

fd� = min
P2core(�)

Z
S

fdP and
Z
S

fd�� = max
P2core(�)

Z
S

fdP 8f 2 B (S;�) :

In the rest of the paper, we consider three measurable spaces (S;�). The �rst one is (
;F) which
we interpret as the space where ultimately uncertainty lives. Given a set P � �� (
;F), the second
space will be (P;AP) which we interpret as the space of all possible probability models equipped
with the natural �-algebra discussed above. Finally, given a real valued and F-measurable stochastic
process ffngn2N on 
, we will consider the space

�
RN; � (C)

�
, which we will interpret as the space of

observations endowed with the �-algebra generated by the algebra of cylinders C.

Prior and Predictive Capacities Given a set P � �� (
;F), a prior is a capacity � : AP ! [0; 1].

The associated predictive is the capacity �� : F ! [0; 1] de�ned by

�� (A) =

Z
P
P (A) d� (P ) 8A 2 F :

If � is additive and continuous at P, then � is a prior and �� is a predictive in the traditional sense.
We denote capacities that are additive and continuous at P by �. Given a set P, we denote the set of
strong extreme points of P by S (P).2

3 Ergodic Theorems

3.1 Invariant Capacities

In this section, we consider a measurable space (
;F). We also consider a measurable transformation
� : 
! 
 which is F=F-measurable. Recall that a probability measure P is (� -)invariant if and only
if

P (A) = P
�
��1 (A)

�
8A 2 F : (2)

We denote by I the set of all probability measures that satisfy (2) and by G the set of all invariant
events of F , that is, A 2 G if and only if A 2 F and ��1 (A) = A. An invariant probability measure

P is said to be ergodic if and only if P (G) = f0; 1g. Similarly, we say that a capacity � is ergodic if
and only if � (G) = f0; 1g. We denote by S (I) the subset of I such that

S (I) = fP 2 I : P (G) = f0; 1gg :

If (
;F) is a standard measurable space, then it can be checked that S (I) is the set of strong extreme
points of I (see Dynkin [12]). Finally, following Dunford and Schwartz [11, pp. 723-724] (see also

2Recall that P 2 P is a strong extreme point of P if and only if the Dirac at P (i.e., �P ) is the only probability
measure � : AP ! [0; 1] such that P (A) =

R
P Q (A) d� (Q) for each A 2 F .
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Dowker [9]), we say that a probability measure P is potentially (� -)invariant if and only if there exists

a probability measure P̂ 2 I such that

P (E) = P̂ (E) 8E 2 G:

We denote the set of potentially invariant measures by PI.

Next, we propose four notions of (� -)invariance for a capacity.

De�nition 1 A capacity � is invariant if and only if for each A 2 F

� (A) = �
�
��1 (A)

�
:

De�nition 2 A capacity � is strongly invariant if and only if for each A 2 F

�
�
An��1 (A)

�
= ��

�
��1 (A) nA

�
and �

�
��1 (A) nA

�
= ��

�
An��1 (A)

�
:

De�nition 3 A lower probability � is functionally invariant if and only ifM� I.

The fourth de�nition also describes a procedure in which invariant capacities can be constructed.

Such a procedure is a robust Bayesian procedure (see Berger [2] and Shafer [20]).

De�nition 4 A capacity � is robustly invariant if and only if � = �� for some convex capacity

� : AS(I) ! [0; 1].

It can be shown that if (
;F) is a standard measurable space and � is robustly invariant and
continuous at 
, then it is a lower probability. In the next two results, we will clarify the connection

between these four notions of invariance.

Proposition 1 Let (
;F) be a standard measurable space and � a lower probability. The following
statements are true:

1. If � is strongly invariant, then � is functionally invariant and core (�) � I.

2. If � is robustly invariant, then � is functionally invariant.

3. If � is functionally invariant andM2 AS(I), then � is robustly invariant and ergodic.

4. If � is functionally invariant, then � is invariant.

The connection among some of these notions of invariance becomes sharper when � is convex.

Theorem 1 Let (
;F) be a standard measurable space and � a convex capacity continuous at 
. The
following statements are equivalent:

(i) � is strongly invariant;

(ii) � is functionally invariant and core (�) � I;

(iii) � robustly invariant and core (�) � I;

(iv) core (�) � I.
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As a corollary, we obtain that the four de�nitions coincide with the usual de�nition of invariance

when � is a probability measure. Thus, all four notions are genuine generalizations to the nonadditive

case of the usual notion of invariance. Under additional assumptions on 
 and T , in the additive

case, the equivalence between points (i) and (iii) follows by an application of the Choquet-Bishop-de

Leeuw theorem (see Phelps [19]). In our case, the equivalence between points (i) and (iii) could be

proven by developing a nonadditive version of the Choquet-Bishop-de Leeuw theorem. This can be

done by using the techniques contained in Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

[5]. Finally, in the next section we will prove that, if � is an invariant lower probability, then its

core must be contained in PI.

3.2 Ergodic Theorem

Given the notions of invariance previously discussed, we could then ask ourselves if suitable ergodic

theorems can be developed for nonadditive probabilities. In light of Proposition 1 and Theorem 1, an

immediate dichotomy presents. In fact, the notion of invariance of De�nition 1 stands separate from,

and it is actually weaker than, the other notions of strong, robust, and functional invariance, even in

the convex case. Theorem 2 will just assume the weak form of invariance of De�nition 1. On the other

hand, Corollary 2 will assume strong invariance. Strong invariance, paired with the convexity of �

and (
;F) being standard, will allow us to provide a sharper version of Theorem 2. In Subsection 3.3,
with these stronger assumptions, we will also show that a subadditive/superadditive ergodic theorem

for nonadditive probabilities can be developed.

Theorem 2 Let (
;F) be a measurable space and � a lower probability. If � is invariant, then for
each f 2 B (
;F) there exists f? 2 B (
;G) such that

lim
n

1

n

nX
k=1

f
�
�k�1 (!)

�
= f? (!) � � a:s:

Moreover, if � is ergodic, then

�

 (
! 2 
 :

Z



f?d� � lim
n

1

n

nX
k=1

f
�
�k�1 (!)

�
�
Z



f?d��

)!
= 1:

As a corollary, we are able to show a necessary property that the core (�) of an invariant lower

probability � must satisfy (cf. Proposition 1). Clearly, it is not a characterization since it is well

known that there exist probability measures that are potentially invariant but not invariant.3

Corollary 1 If a lower probability � is invariant, then core (�) � PI.

As a second corollary, we discuss the ergodic theorem for convex and strongly invariant capacities.

The remark following the result clari�es to which extent we can further generalize the result. Compared

to Theorem 2, the following corollary assumes � convex and a stronger form of invariance that, in

turn, deliver a limit function f? which has more properties. These properties naturally generalize the

ones found in the Individual Ergodic Theorem of Birkho¤.

3 In the case � is convex, an alternative proof of Theorem 2 can be provided, based on techniques coming from
functional analysis and �rst developed by Eberlein [13] (see also Krengel [15, Chapter 2, Theorem 1.5] and Aliprantis
and Border [1, Theorem 20.19]).
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Corollary 2 Let (
;F) be a standard measurable space and � a convex capacity continuous at 
. If
� is strongly invariant, then for each f 2 B (
;F) there exists f? 2 B (
;G) such that

lim
n

1

n

nX
k=1

f
�
�k�1 (!)

�
= f? (!) � � a:s: (3)

Moreover,

1. For each P 2 I, f? is a version of the conditional expectation of f given G.

2.
R


f?d� =

R


fd�.

3. If � is ergodic, then

�

 (
! 2 
 :

Z



fd� � lim
n

1

n

nX
k=1

f
�
�k�1 (!)

�
�
Z



fd��

)!
= 1:

Remark 1 The results in (3) and point 1 can be both obtained by just imposing that � is a func-
tionally invariant lower probability. Similarly, point 3. can be obtained by only requiring � to be an

ergodic lower probability which is robustly invariant.

3.3 Subadditive Ergodic Theorem

Next we turn to a Subadditive/Superadditive Ergodic Theorem for lower probabilities.

De�nition 5 A sequence fSngn2N of F-measurable random variables is superadditive (resp., subad-

ditive) if and only if

Sn+k � Sn + Sk � �n (resp., � ) 8n; k 2 N:
The sequence fSngn2N is additive if and only if it is superadditive and subadditive.

Consider an F-measurable function f : 
! R. If we de�ne fSngn2N by

Sn =
nX
k=1

f � �k�1 8n 2 N; (4)

then we have that fSngn2N is an additive process. The opposite is also true, that is, if fSngn2N is
additive, then it takes the form (4) for some F-measurable real valued function f . On the other hand,
if we take fSngn2N as in (4) and we consider fjSnjgn2N we obtain a genuine subadditive process. Note
that if f 2 B (
;F), then we also have that there exists � 2 R such that

��n � Sn (!) � �n 8! 2 
: (5)

Similarly, we have that ��n � jSnj � �n for all n 2 N.

Theorem 3 Let (
;F) be a standard measurable space and � a lower probability. If fSngn2N is either
a superadditive or a subadditive sequence that satis�es (5) and if � is functionally invariant, then there

exists f? 2 B (
;G) such that
lim
n

Sn
n
= f? � � a:s:

Moreover,

1. If � is convex and strongly invariant and fSngn2N superadditive, then
R


f?d� = supn2N

R


Sn
n d�.

2. If � is convex and strongly invariant and fSngn2N subadditive, then
R


f?d�� = infn

R


Sn
n d��.

3. If � is ergodic and fSngn2N is either subadditive or superadditive, then

�

��
! 2 
 :

Z



f?d� � lim
n

Sn (!)

n
�
Z



f?d��

��
= 1:
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4 Strong Law of Large Numbers

4.1 Stationarity and Ergodicity

As an application of Theorem 2, we provide a nonadditive version of the Strong Law of Large Numbers.

Before doing so, we need to introduce some notation and terminology. Consider a sequence of real

valued, bounded, and measurable random variables f = ffngn2N � B (
;F). We denote by T the

tail �-algebra
\
k2N
� (fk; fk+1; :::).

De�nition 6 Given a capacity �, we say that f = ffngn2N is stationary if and only if for each n 2 N,
for each k 2 N0, and for each Borel subset B of Rk+1

� (f! 2 
 : (fn (!) ; :::; fn+k (!)) 2 Bg) = � (f! 2 
 : (fn+1 (!) ; :::; fn+k+1 (!)) 2 Bg) : (6)

This notion generalizes the usual notion of stationary stochastic process by allowing the underlying

probability measure to be nonadditive. Recall that
�
RN; � (C)

�
denotes the space of sequences endowed

with the �-algebra generated by cylinders. We denote a generic element of RN by x. We also consider
the shift transformation � : RN ! RN de�ned by

� (x) = (x2; x3; x4; ::::::) 8x 2 RN:

The sequence ffngn2N induces a natural (measurable) map between (
;F) and
�
RN; � (C)

�
, de�ned

by

! 7! f (!) = (f1 (!) ; :::; fk (!) ; :::) 8! 2 
:

De�ne �f : � (C)! [0; 1] by

�f (C) = �
�
f�1 (C)

�
8C 2 � (C) :

De�nition 7 Given a capacity �, we say that f = ffngn2N is ergodic if and only if �f is ergodic with
respect to the shift transformation.

Lemma 1 If � is a convex capacity continuous at 
 and f is stationary, then �f is a convex capacity
continuous at RN which is shift invariant. Moreover, f is ergodic if � (T ) = f0; 1g.

This observation is a �rst step to deduce the Strong Law of Large Numbers as a corollary of

Theorem 2. In fact, it can be shown that the assumption of stationarity yields that the limit

lim
n

1

n

nX
k=1

fk

exists �-a.s. In order to obtain also a characterization of the limit in terms of the (Choquet) expected

value, we further need �f to be ergodic.

Theorem 4 Let � be a convex capacity continuous at 
. If f = ffngn2N is stationary and ergodic,
then

�

 (
! 2 
 :

Z



f1d� � lim
n

1

n

nX
k=1

fk (!) �
Z



f1d��

)!
= 1:
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4.2 Independence

Here we propose two di¤erent notions of independence and show that they imply ergodicity of �, and

so, by Theorem 4, under stationarity, a Strong Law of Large Numbers holds for them.

We need a few notions. Recall that we endowed RN with the �-algebra � (C) generated by the
class C of cylinders, where C 2 C if and only if there exist k 2 N and E in the Borel �-algebra B

�
Rk
�

of Rk such that
C =

�
x 2 RN : (x1; :::; xk) 2 E

	
: (7)

In this case, we say that the set C is a cylinder of length k. We call Ck the �-algebra consisting of all
cylinders of length k. It is immediate to see that C =

[
k2N
Ck is an algebra. We denote by C1k+1 the

class of cylinders such that

C =
�
x 2 RN : (x1; :::; xk; xk+1; :::; xk0) 2 Rk � E

	
where k0 > k and E 2 B(Rk0�k). Note that C1k+1 is an algebra. Finally, we say that two cylinders
C1; C2 2 C are base disjoint if and only if there exists k 2 N such that C1 2 Ck and C2 2 C1k+1.

De�nition 8 A sequence ffngn2N � B (
;F) consists of independent random variables wrt a capacity
� if and only if, given any two base disjoint cylinders C1; C2 2 C, it holds

�f (C1) �f (C2) � �f (C1 \ C2) � �f (C1) ��f (C2) � ��f (C1 \ C2) :

We can now state the main result of the subsection:

Proposition 2 Let � be a capacity and ffngn2N a sequence of random variables in B (
;F). If

ffngn2N is a sequence of independent random variables wrt �, then f is ergodic.

We conclude by comparing our notion of independence with the de�nition contained in equation

(8) below, which Marinacci [17] and Maccheroni and Marinacci [16] studied in the context of totally

monotone capacities.4 Next result clari�es their relation when � is convex.5

Proposition 3 Let � be a convex capacity and ffngn2N a sequence of random variables in B (
;F).
If for each two base disjoint cylinders C1; C2 2 C

�f (C1 \ C2) = �f (C1) �f (C2) ; (8)

then ffngn2N is a sequence of independent random variables wrt �.

We close by observing that there are few but important di¤erences with the nonadditive Strong Law

of Large Numbers of Marinacci [17] and Maccheroni and Marinacci [16]. In terms of hypotheses, we

weaken the assumption of total monotonicity of � to convexity, while we replace the i.i.d hypothesis

of [17] with stationarity and ergodicity.6 When � is additive, this constitutes a weakening, in the

nonadditive case, the relation is not clear. Finally, compared to the main result of [16], we need to

assume the continuity of �. As a consequence of these assumptions, we obtain that empirical averages

exist �-a.s., a property that was not present in previous works. The bounds for these empirical averages

are the same of [17] and [16], that is, they are in terms of the lower and the upper Choquet integrals

of the random variables.
4The notions of independence studied in the aforementioned two papers deal just with rectangular cylinders. Nev-

ertheless, the generalization to all cylinders is quite natural, particularly, in light of the fact that, in the additive case,
the distinction is irrelevant.

5When � is additive, these di¤erent formulations of independence coincide. For, in this case �f is additive and
�f = ��f .

6Maccheroni and Marinacci [16] actually only assume pairwise independence.
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A Dynkin Spaces and Nonadditive Probabilities

Consider a standard measurable space (
;F) and a transformation � : 
 ! 
 which is FnF mea-

surable. Recall that we denote by I the set of all invariant probability measures. If I is a nonempty
set, then the triple (
;F ; I) forms a Dynkin space, according to the de�nition of Cerreia-Vioglio,
Maccheroni, Marinacci, and Montrucchio [6].

De�nition 9 (Dynkin, 1978) Let P be a nonempty subset of �� (
;F) where (
;F) is a separable
measurable space. The triple (
;F ;P) is a Dynkin space if and only if there exist a sub-�-algebra
G � F , a set W 2 F , and a function

p : F � 
 ! [0; 1]

(A;!) 7! p (A;!)

such that:

(a) for each P 2 P and A 2 F , p (A; �) : 
 ! [0; 1] is a version of the conditional probability of A

given G;

(b) for each ! 2 
, p (�; !) : F ! [0; 1] is a probability measure;

(c) P (W ) = 1 for all P 2 P and p (�; !) 2 P for all ! 2W .

It is not hard to check that, given f 2 B (
;F), the function f̂ : 
! R, de�ned by

f̂ (!) =

Z



fdp (�; !) 8! 2 
; (9)

is a version of the conditional expected value of f given G for all P 2 P, in particular, f̂ 2 B (
;G).
When (
;F) is a standard measurable space, (
;F ;P) = (
;F ; I), then G is the set of invariant
events. In particular, we can consider W = 
 (see Gray [14, Theorem 8.3]).

We prove an ancillary lemma.

Lemma 2 Let (
;F ;P) be a Dynkin space and let � be a lower probability. The following statements
are true:

1. For each f 2 B (
;F) we have thatZ



fd� � min
P2core(�)

Z



fdP � min
P2M

Z



fdP (10)

whereM is such that � (A) = minP2M P (A) for all A 2 F .

2. If � = �� for some convex capacity � : AS(P) ! [0; 1], thenZ



fd� �
Z



f̂d� 8f 2 B (
;F) : (11)

Proof. 1. If 0 � f 2 B (
;F), then � (f! 2 
 : f (!) � tg) � P (f! 2 
 : f (!) � tg) for all P 2
core (�) and all t 2 [0;1). It follows thatZ



fd� =

Z 1

0

� (f! 2 
 : f (!) � tg) dt �
Z 1

0

P (f! 2 
 : f (!) � tg) dt =
Z



fdP 8P 2 core (�) :

9



SinceM� core (�), this implies (10). On the other hand, if 0 6� f 2 B (
;F), then there exists c 2 R
such that f + c1
 � 0. It follows thatZ



fd� + c =

Z



(f + c1
) d� � min
P2core(�)

Z



(f + c1
) dP = min
P2core(�)

Z



fdP + c � min
P2M

Z
fdP + c;

proving the statement.

2. Since � = �� for some convex capacity � : AS(P) ! [0; 1], we have that

� (A) =

Z
S(P)

P (A) d� (P ) = min
�2core(�)

Z
S(P)

P (A) d� (P ) 8A 2 F :

Consider � 2 core (�). By the proof of point 1, it follows that

� (A) =

Z
S(P)

P (A) d� (P ) �
Z
S(P)

P (A) d� (P ) = �� (A) 8A 2 F ;8� 2 core (�) :

Since �� 2 �(
;F), it follows that

M = f�� : � 2 core (�)g � core (�) :

It is immediate to see thatM is convex and compact. By the proof of point 1 and [6, Proposition 25]

and since � is a convex capacity, we have that if f 2 B (
;F), thenZ



fd� � min
P2M

Z



fdP = min
�2core(�)

Z
S(P)

�Z



fdP

�
d� (P )

= min
�2core(�)

Z
S(P)

�Z



f̂dP

�
d� (P ) =

Z
S(P)

�Z



f̂dP

�
d� (P )

=

Z



f̂d�;

proving the statement. �

Lemma 3 Let (
;F) be a measurable space and G a sub-�-algebra of F . If � is a lower probability
such that � (G) = f0; 1g and g 2 B (
;G), then

�

��
! 2 
 :

Z



gd� � g (!) �
Z



gd��

��
= 1:

Proof. We proceed by assuming that g � 0. Since � is a capacity such that � (G) = f0; 1g and
0 � g � � for some � 2 R, it follows that the sets

I = ft 2 [0;1) : � (f! 2 
 : g (!) � tg) = 1g
and

J = ft 2 (�1; 0] : � (f! 2 
 : �g (!) � tg) = 1g

are well de�ned nonempty intervals. I is bounded from above and such that 0 2 I. J is unbounded
from below and such that �� 2 J . Since � is a lower probability, � is continuous. We can conclude
that t? = sup I 2 I and t? = supJ 2 J . Since � (G) = f0; 1g, this implies thatZ




gd� =

Z 1

0

� (f! 2 
 : g (!) � tg) dt =
Z sup I

0

dt = t?

andZ



�gd� =
Z 0

�1
[� (f! 2 
 : �g (!) � tg)� � (
)] dt =

Z 0

sup J

(�1) dt = t?:
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It follows that t? =
R


gd� and t? =

R


�gd�. Since t? 2 I and t? 2 J , we also have that

� (f! 2 
 : g (!) � t?g) = 1 = � (f! 2 
 : g (!) � �t?g) :

Since � is a lower probability, this implies that

�

��
! 2 
 :

Z



gd� � g (!) �
Z



gd��

��
= � (f! 2 
 : t? � g (!) � �t?g) = 1: (12)

We next remove the hypothesis that g � 0. Since g 2 B (
;G), it follows that there exists c 2 R such
that g+ c1
 2 B+ (
;G). By (12) and since the Choquet integral is constant additive, it follows that

1 = �

��
! 2 
 :

Z



(g + c1
) d� � g (!) + c �
Z



(g + c1
) d��

��
= �

��
! 2 
 :

Z



gd� + c � g (!) + c �
Z



gd�� + c

��
= �

��
! 2 
 :

Z



gd� � g (!) �
Z



gd��

��
;

proving the statement. �

B Proofs of Section 3

Proof of Proposition 1. Recall that if � is a lower probability measure, we have that

� � P � �� 8P 2 core (�) � �� (
;F) : (13)

1. Pick A 2 F . Since � is strongly invariant and � � ��, we have that

��
�
��1 (A) nA

�
= �

�
An��1 (A)

�
� ��

�
An��1 (A)

�
= �

�
��1 (A) nA

�
� ��

�
��1 (A) nA

�
:

It follows that �
�
An��1 (A)

�
= ��

�
An��1 (A)

�
= ��

�
��1 (A) nA

�
= �

�
��1 (A) nA

�
= k. By (13), we

can conclude that P
�
An��1 (A)

�
= k = P

�
��1 (A) nA

�
for all P 2 core (�). This implies that

P (A) = P
�
An��1 (A)

�
+ P

�
A \ ��1 (A)

�
=

= P
�
��1 (A) nA

�
+ P

�
A \ ��1 (A)

�
= P

�
��1 (A)

�
8P 2 core (�) ;

proving the statement.

2. By assumption, there exists a convex capacity � : AS(I) ! [0; 1] such that

� (A) =

Z
S(I)

P (A) d� (P ) = min
�2core(�)

Z
S(I)

P (A) d� (P ) 8A 2 F : (14)

De�neM = f�� : � 2 core (�)g. By [6, Lemma 24] and (14) and since � is continuous at 
, we have
that � is continuous at S (I), thus, each � in core (�) is a probability measure and M is a compact

subset of �� (
;F). Moreover, we also have thatM� I. We can conclude that

� (A) = min
�2core(�)

Z
S(I)

P (A) d� (P ) = min
P2M

P (A) 8A 2 F ;

proving the statement.
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3. FixM2 AS(I). Consider � : AS(I) ! [0; 1] de�ned by

� (F ) =

(
1 F �M
0 otherwise

8F 2 AS(I):

It is immediate to check that � is a convex capacity. By [18, Example 4.4] and sinceM 2 AS(I), we
have that

� (A) = min
P2M

P (A) =

Z
S(I)

P (A) d� (P ) 8A 2 F :

Since M � S (I), observe that P (A) 2 f0; 1g for all P 2 M and for all A 2 G. It follows that
� (G) = f0; 1g.
4. Since � is a functionally invariant lower probability, we have thatM� I and

� (A) = min
P2M

P (A) = min
P2M

P
�
��1 (A)

�
= �

�
��1 (A)

�
8A 2 F ;

proving that � is invariant. �

Proof of Theorem 1. Recall that if � is convex and continuous at 
, then it is a lower probability.

(i) implies (ii). It follows by point 1 of Proposition 1.

(ii) implies (iii). We just need to show that � is robustly invariant. De�ne I : B (
;F)! R by

I (f) =

Z



fd� 8f 2 B (
;F) :

By Schmeidler [22] (see also [18]), I is comonotonic additive and supermodular. Since � is convex,

we have that I (f) = minP2core(�)
R


fdP for all f 2 B (
;F). Since core (�) � I, this implies that ifR



f1dP �

R


f2dP for all P 2 I then I (f1) � I (f2). In particular, I (f) = I

�
f̂
�
for all f 2 B (
;F).

It is also immediate to see that I (k1
) = k for all k 2 R. It follows that I restricted to B (
;G) is
normalized, comonotonic additive, supermodular, and such thatZ




f1dP �
Z



f2dP 8P 2 I =) I (f1) � I (f2) :

By [6, Lemma 24 and Proposition 25] and since (
;F ; I) is a Dynkin space, it follows that there exists
�I : B

�
S (I) ;AS(I)

�
! R such that �I is normalized, monotone, comonotonic additive, supermodular,

and such that

I (f) = �I (hf; �i) 8f 2 B (
;G) .

By [22] (see also [18]), it follows that there exists a convex capacity � : AS(I) ! [0; 1] such that

I (f) =

Z
S(I)

�Z



fdP

�
d� (P ) 8f 2 B (
;G) : (15)

Since I (f) = I
�
f̂
�
for all f 2 B (
;F), it follows that (15) holds for all f 2 B (
;F). In particular,

by picking f = 1A with A 2 F , this shows that � is robustly invariant.

(iii) implies (iv). It is trivial.

(iv) implies (i). Since � is convex and core (�) � I, it follows that

�
�
An��1 (A)

�
+ �

�
A [

�
��1 (A)

�c�
=

Z



�
1
 + 1A � 1��1(A)

�
d�

= min
P2core(�)

Z



�
1
 + 1A � 1��1(A)

�
dP

= 1:
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This implies that �
�
An��1 (A)

�
= 1� �

�
A [

�
��1 (A)

�c�
= 1� �

��
��1 (A) nA

�c�
= ��

�
��1 (A) nA

�
.

An analogous argument delivers that �
�
��1 (A) nA

�
= ��

�
An��1 (A)

�
, proving the statement. �

Before proving Theorem 2, we provide an ancillary result.

Theorem 5 Let (
;F) be a measurable space, � a lower probability, and I a nonempty set. The
following statements are equivalent:

(i) There exists �P 2 I such that for each E 2 F

�P (E) = 1 =) lim
k
�
�
��k (E)

�
= 1;

(ii) There exists �P 2 I such that for each E 2 G

�P (E) = 1 =) � (E) = 1;

(iii) For each E 2 G
P (E) = 1 8P 2 I =) � (E) = 1;

(iv) For each f 2 B (
;F) there exists f? 2 B (
;G) such that

lim
n

1

n

nX
k=1

f
�
�k�1 (!)

�
= f? � � a:s:;

(v) core(�) � PI.

Proof. (i) implies (ii). If E 2 G, then ��k (E) = E for all k 2 N, yielding the statement.
(ii) implies (iii). It is trivial.

(iii) implies (iv). Consider f 2 B (
;F). De�ne f? : 
! R by

f? (!) = lim sup
n

1

n

nX
k=1

f
�
�k�1 (!)

�
8! 2 
:

De�ne f? : 
 ! R by considering the lim inf. Since f 2 B (
;F), it can be shown that f?; f? 2
B (
;G). Consider the event

E =

(
! 2 
 : lim

n

1

n

nX
k=1

f
�
�k�1 (!)

�
exists

)
= f! 2 
 : f? (!) = f? (!)g

=

(
! 2 
 : f? (!) = lim

n

1

n

nX
k=1

f
�
�k�1 (!)

�
= f? (!)

)
:

By Birkho¤�s Ergodic Theorem (see [3, Theorem 24.1]), we have that P (E) = 1 for all P 2 I. By
assumption, this yields that � (E) = 1. Since f was chosen to be generic, the statement follows.

(iv) implies (v). Recall that for each P 2 core (�), P (A) � � (A) for all A 2 F . By assumption,
we can conclude that for each P 2 core (�), for each f 2 B (
;F) there exists f? 2 B (
;G)

lim
n

1

n

nX
k=1

f
�
�k�1 (!)

�
= f? P � a:s:

By [11, Exercises 31 and 32, pag. 723�724], it follows that P 2 PI.
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(v) implies (i). Since � is a lower probability, it is continuous at 
 and exact. By [18, Theorem

4.2], it follows that there exists a measure P 2 core (�) such that for each A 2 F , for each " > 0, there
exists � > 0 such that

P (A) < � =) Q (A) < " 8Q 2 core (�) : (16)

It is immediate to show that P is such that for each A 2 F

P (A) = 0 =) Q (A) = 0 8Q 2 core (�) : (17)

Since P 2 core (�) � PI, we have that there exists �P 2 I such that �P (E) = P (E) for all E 2 G.
Consider E 2 F . Assume that �P (E) = 1. It follows that �P (Ec) = 0. At the same time, de�ne

Fn = [1k=n��k (Ec). Note that Fn # F 2 G. Since �P 2 I, it follows that �P (F ) = limn �P (Fn) �
�P (F1) �

P1
k=1

�P
�
��k (Ec)

�
= 0. It follows that �P (F ) = 0, that is, P (F ) = 0. By (17), we have

that Q (F ) = 0 for all Q 2 core (�), that is, �� (F ) = 0. Since � is a lower probability, �� satis�es the
Fatou�s property, that is, given a sequence fAkgk2N � F

0 � lim sup
k

�� (Ak) � ��
�
lim sup

k
Ak

�
:

This implies that

0 � lim inf
k

��
�
��k (Ec)

�
� lim sup

k
��
�
��k (Ec)

�
� ��

�
lim sup

k
��k (Ec)

�
= �� (F ) = 0:

We can conclude that

lim
k
�
�
��k (E)

�
= lim

k

�
1� ��

�
��k (Ec)

��
= 1;

proving the statement. �

The proof of Theorem 2 uses some of the techniques common in Ergodic Theory (see, e.g., [8,

Theorem 7]). Also, note that, given a capacity �, we have that

core (�) = fP 2 �(
;F) : �� � P � �g = fP 2 �(
;F) : �� � Pg :

Proof of Theorem 2. We �rst prove that, given the assumptions, ; 6=core(�) � PI. In particular,
this shows that I 6= ;.
Claim: Let � be a lower probability. If � is invariant, then core (�) � PI. In particular, I 6= ;.
Proof of the Claim. Since � is invariant, �� is invariant. Since � is a lower probability, � is

continuous at 
 and, in particular, ; 6= core (�) � �� (
;F). Fix a Banach-Mazur limit (see [1, pag.
550]) � : l1 ! R, that is, a linear functional from l1 to R such that:

1. � is linear;

2. � is positive;

3. � (x1; x2; :::) = � (x2; x3:::) for all x 2 l1;

4. � (x1; x2; :::) = limn xn for all x 2 c.

Observe that

� (A) � P (A) � �� (A) 8P 2 core (�) ;8A 2 F :

14



Fix P 2 core (�), de�ne Pn : F ! [0; 1] by

Pn (A) =
1

n

n�1X
k=0

P
�
��k (A)

�
8A 2 F :

Note that P
�
��k (A)

�
� ��

�
��k (A)

�
= �� (A) for all A 2 F and for all k 2 N0. Since core (�) is convex,

this implies that fPngn2N � core (�). For each A 2 F , de�ne xA = (P1 (A) ; P2 (A) ; P3 (A) ; :::). Note
that 0 � xA � 1N, thus, xA 2 l1 for all A 2 F . De�ne P̂ : F ! [0; 1] by

P̂ (A) = � (xA) 8A 2 F :

Since � is positive, note that P̂ is a well de�ned positive set function. Next, consider A;B 2 F such

that A \ B = ;. Since fPngn2N � �(
;F), it follows that Pn (A [B) = Pn (A) + Pn (B) for all

n 2 N. Since � is linear, this implies that

P̂ (A [B) = � (xA[B) = � (xA + xB) = � (xA) + � (xB) = P̂ (A) + P̂ (B) ;

proving that P̂ is additive. Next, consider A 2 G. Since ��k (A) = A for all k 2 N. It follows that
Pn (A) = P (A) for all n 2 N. Since � maps convergent sequences into their limit, we have that
P̂ (A) = � (xA) = P (A). In particular, this implies that P̂ (
) = 1 and P̂ (;) = 0. Up to now, we

have proved that P̂ 2 �(
;F) and P̂ (A) = P (A) for all A 2 G. Since fPngn2N � core (�), we have
that xA � �� (A) 1N. Since � is linear and positive, it follows that

P̂ (A) = � (xA) � � (�� (A) 1N) = �� (A) 8A 2 F ;

that is, P̂ 2 core (�). Since core (�) � �� (
;F), we can conclude that P̂ 2 �� (
;F). We next show
that P̂ is invariant. Note that for each A 2 F and for each n 2 N

Pn
�
��1 (A)

�
=
1

n

n�1X
k=0

P
�
��k�1 (A)

�
=
n+ 1

n
� 1

n+ 1

nX
k=0

P
�
��k (A)

�
� 1

n
P (A)

=
n+ 1

n
Pn+1 (A)�

1

n
P (A) :

De�ne y = (P2 (A) ; P3 (A) ; :::). De�ne z = x��1(A) � y 2 l1. Note that

jznj =
��Pn ���1 (A)�� Pn+1 (A)�� � 1

n
jPn+1 (A)� P (A)j �

2

n
8n 2 N:

It follows that limn zn = 0. Since � is shift invariant, linear, and it maps convergent sequences into

their limit, we have that���P̂ ���1 (A)�� P̂ (A)��� = ��� �x��1(A)�� � (xA)�� = ��� �x��1(A)�� � (y)��
=
��� �x��1(A) � y��� = j� (z)j = 0;

proving that P̂ is invariant. Given the previous part of the proof, P̂ 2 I and P 2 PI. Since P was

arbitrarily chosen in core (�), it follows that I 6= ; and core (�) � PI. �
By the previous claim and Theorem 5, the main statement follows.

Finally, assume that � is further ergodic. By Lemma 3 and since f? 2 B (
;G) and � is an ergodic
lower probability, it follows that

�

��
! 2 
 :

Z



f?d� � f? (!) �
Z



f?d��

��
= 1:
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By the initial part of the proof, we also have that

�

 (
! 2 
 : f? (!) = lim

n

1

n

nX
k=1

f
�
�k�1 (!)

�)!
= 1:

Since � is a lower probability, this implies that

�

 (
! 2 
 :

Z



f?d� � lim
n

1

n

nX
k=1

f
�
�k�1 (!)

�
�
Z



f?d��

)!
= 1;

proving the statement. �

Proof of Corollary 1. It is the proof of the claim contained in the proof of Theorem 2. �

We next proceed by proving Theorem 3 and obtaining Corollary 2 as a corollary of this former

result. It is also possible to provide a proof of Corollary 2 as a consequence of Theorem 2. By Theorem

2, the extra assumption of (
;F) being standard yields the extra property that f? can be chosen to
be the regular conditional expectation of f . Convexity and strong invariance imply that core (�) � I.
This yields that

R


f?d� =

R


fd� as well as

R


f?d�� =

R


fd��. This, in turn, delivers a sharper result

under the assumption of � being ergodic.

Lemma 4 Let fSngn2N be a superadditive (resp., subadditive) sequence that satis�es (5) and M a

compact subset of invariant probability measures. If fangn2N � R is de�ned by an = �minP2M
R


SndP

(resp., an = maxP2M
R


SndP ) for all n 2 N, then fangn2N is subadditive, that is, an+k � an + ak

for all n; k 2 N.

Proof. Since fSngn2N satis�es (5), fSngn2N � B (
;F). We just prove the superadditive case, being
the subadditive one similarly proven. If fSngn2N is superadditive and M is a compact subset of

invariant probability measures, then we have that for each n; k 2 N

�an+k = min
P2M

Z



Sn+kdP � min
P2M

Z



Sn + Sk � �ndP

� min
P2M

Z



SndP + min
P2M

Z



Sk � �ndP

= min
P2M

Z



SndP + min
P2M

Z



SkdP

= �an � ak;

proving the statement. �

Proof of Theorem 3. Since � is a functionally invariant lower probability, we have that M � I.
De�ne ffngn2N � B (
;F) by fn = Sn=n for all n 2 N. It follows that f̂n 2 B (
;G) for all n 2 N.
Since fSngn2N satis�es (5), it follows that there exists � 2 R such that �� � fn; f̂n � � for all n 2 N.
De�ne f? 2 B (
;G) by f? = supn2N f̂n (resp., f? = infn2N f̂n). By Kingman�s Subadditive Ergodic
Theorem (see Dudley [10, Theorem 10.7.1] and [14, Theorem 8.4]) and since W = 
, we have that

f? = limn f̂n and

P

��
! 2 
 : lim

n

Sn (!)

n
= f? (!)

��
= 1 8P 2M:

Since � is a lower probability, it follows that

�

��
! 2 
 : lim

n

Sn (!)

n
= f? (!)

��
= 1;

16



proving the main part of the statement.

1. If � is convex and strongly invariant, then we have that core (�) � I andZ



fd� = min
P2core(�)

Z



fdP 8f 2 B (
;F) : (18)

Consider the sequence fangn2N de�ned by an = �
R


Snd� for all n 2 N. By (18) and Lemma 4, we

have that fangn2N is subadditive. It follows that (see [14, Lemma 8.3]) limn
an
n = infn2N

an
n , that is,

lim
n

�an
n

= sup
n2N

�an
n
: (19)

Recall that
n
f̂n

o
is uniformly bounded. By Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

[4, Theorem 22], (19), and the main part of the statement and since core (�) � I, we have thatZ



f?d� =

Z



lim
n
f̂nd� = lim

n

Z



f̂nd� = lim
n

�
min

P2core(�)

Z



f̂ndP

�
= lim

n

�
min

P2core(�)

Z



fndP

�
= lim

n

Z



fnd� = lim
n

R


Snd�

n
= lim

n

�an
n

= sup
n2N

�an
n

= sup
n

R


Snd�

n
= sup

n2N

Z



fnd�:

proving point 1.

2. If � is convex and strongly invariant, then we have that core (�) � I andZ



fd�� = max
P2core(�)

Z



fdP 8f 2 B (
;F) : (20)

Consider the sequence fangn2N de�ned by an =
R


Snd��. By (20) and Lemma 4, we have that fangn2N

is subadditive. It follows that (see [14, Lemma 8.3])

lim
n

an
n
= inf

n

an
n
: (21)

Recall that
n
f̂n

o
is uniformly bounded. By [4, Theorem 22], (21), and the main part of the statement

and since core (�) � I, we have thatZ



f?d�� =

Z



lim
n
f̂nd�� = lim

n

Z



f̂nd�� = lim
n

�
max

P2core(�)

Z



f̂ndP

�
= lim

n

�
max

P2core(�)

Z



fndP

�
= lim

n

Z



fnd�� = lim
n

R


Snd��

n
= lim

n

an
n
= inf

n

an
n
= inf

n

R


Snd��

n
= inf

n2N

Z



fnd��:

proving point 2.

3. By Lemma 3 and since � is ergodic, it follows that

�

��
! 2 
 :

Z



f?d� � f? (!) �
Z



f?d��

��
= 1:

By the initial part of the proof, we also have that

�

��
! 2 
 : f? (!) = lim

n

Sn (!)

n

��
= 1:

Since � is a lower probability, this implies that

�

��
! 2 
 :

Z



f?d� � lim
n

Sn (!)

n
�
Z



f?d��

��
= 1;

proving the statement. �
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Proof of Corollary 2. Pick f 2 B (
;F). It is immediate to see that fSngn2N, de�ned by

Sn =
nX
k=1

f � �k�1 8n 2 N

is an additive sequence which satis�es (5). Since � is convex and strongly invariant, it is a functionally

invariant lower probability. De�ne ffngn2N by fn = Sn=n for all n 2 N. Note that f̂n = f̂ for all

n 2 N. By the proof of Theorem 3, we have that

lim
n

Sn
n
= lim

n
f̂n = f̂ ; � � a:s:

proving the main statement and point 1 where f? = f̂ .

2. Since � is convex and strongly invariant, then we have that core (�) � I andZ



fd� = min
P2core(�)

Z



fdP:

By point 1 and since core (�) � I, we have thatZ



fd� = min
P2core(�)

Z



fdP = min
P2core(�)

Z



f̂dP =

Z



f̂d�;

proving point 2. At the same time, note thatZ



fd�� = max
P2core(�)

Z



fdP = max
P2core(�)

Z



f̂dP =

Z



f̂d��:

3. By point 3 of Theorem 3 and the proof of point 2, the statement follows. �

Proof of Remark 1. By the same arguments contained in the proof of Corollary 2, it follows that
if � is a functionally invariant lower probability, then we have that

lim
n

Sn
n
= lim

n
f̂n = f̂ ; � � a:s:

where f? = f̂ . Next, assume that � is further ergodic and robustly invariant. By Lemma 2 and since

(
;F ; I) is a Dynkin space, we have that
R


fd� �

R


f̂d�. This implies that

R


f̂d�� �

R


fd��. By

Theorem 3, we also have that

�

��
! 2 
 :

Z



f?d� � lim
n

Sn (!)

n
�
Z



f?d��

��
= 1:

Since f? = f̂ , we can conclude that

�

��
! 2 
 :

Z



fd� � lim
n

Sn (!)

n
�
Z



fd��

��
= 1;

proving the statement. �

C Proofs of Section 4

Proof of Lemma 1. Consider a capacity � and a process f . It is immediate to see that �f is a
capacity. Next, consider fCngn2N � � (C) such that Cn " RN. It follows that the sequence fAngn2N,
de�ned by An = f�1 (Cn) for all n 2 N, is such that An " 
. Since � is continuous at 
, we have
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that limn �f (Cn) = limn �
�
f�1 (Cn)

�
= limn � (An) = 1, proving that �f is continuous at RN. Next,

consider C1; C2 2 � (C). Since � is convex, we have that

�f (C1 [ C2) + �f (C1 \ C2) = �
�
f�1 (C1 [ C2)

�
+ �

�
f�1 (C1 \ C2)

�
= �

�
f�1 (C1) [ f�1 (C2)

�
+ �

�
f�1 (C1) \ f�1 (C2)

�
� �

�
f�1 (C1)

�
+ �

�
f�1 (C2)

�
= �f (C1) + �f (C2) ;

proving that �f is convex. Next, consider C 2 C. Then, there exist k 2 N and E 2 B
�
Rk
�
such that

C =
�
x 2 RN : (x1; :::; xk) 2 E

	
. Note that

��1 (C) =
�
x 2 RN : � (x) 2 C

	
=
�
x 2 RN : (x2; :::; xk+1) 2 E

	
(22)

=
�
x 2 RN : (x1; x2; :::; xk+1) 2 R� E

	
:

By (22) and since f is stationary, it follows that

�f (C) = �
�
f�1 (C)

�
= � (f! 2 
 : (f1 (!) ; :::; fk (!)) 2 Eg) = � (f! 2 
 : (f2 (!) ; :::; fk+1 (!)) 2 Eg)

= � (f! 2 
 : (f1 (!) ; f2 (!) ; :::; fk+1 (!)) 2 R� Eg) = �
�
f�1

�
��1 (C)

��
= �f

�
��1 (C)

�
:

Since C 2 C was arbitrarily chosen, it follows that C �
�
C 2 � (C) : �f (C) = �f

�
��1 (C)

�	
� � (C).

Since �f is convex and continuous at RN, we have that
�
C 2 � (C) : �f (C) = �f

�
��1 (C)

�	
is a

monotone class. By the Monotone Class Theorem (see [3, Theorem 3.4]), it follows that � (C) =�
C 2 � (C) : �f (C) = �f

�
��1 (C)

�	
, that is, �f is shift invariant.

De�ne H =
1\
k=1

� (C1k )\� (C). Note that f�1 (H) = T and de�ne G the �-algebra of shift invariant

sets. Thus, �f (H) = f0; 1g if and only if � (T ) = f0; 1g. It is well known that G � H . In light of

these observations, it is immediate to see that if � (T ) = f0; 1g, then �f (G) = f0; 1g, that is, �f is
ergodic. �

Proof of Theorem 4. By induction and since f is stationary, it follows that for each k 2 N and for
each Borel subset B of R

� (f! 2 
 : f1 (!) 2 Bg) = � (f! 2 
 : f2 (!) 2 Bg) = ::: = � (f! 2 
 : fk (!) 2 Bg) : (23)

By (23), this implies that for each k 2 N and for each Borel subset B of R

�f
��
x 2 RN : xk 2 B

	�
= �

�
f�1

��
x 2 RN : xk 2 B

	��
= � (f! 2 
 : fk (!) 2 Bg) = � (f! 2 
 : f1 (!) 2 Bg) :

In particular, since ffngn2N � B (
;F), it follows that there exists m 2 R such that �m1
 � f1 �
m1
. If we replace B with [�m;m], then we can conclude that

�f
��
x 2 RN : xk 2 [�m;m]

	�
= � (f! 2 
 : f1 (!) 2 [�m;m]g) = 1:

De�ne � : RN ! R by

� (x) =

(
x1 if x1 2 [�m;m]
0 otherwise

8x 2 RN:

It is immediate to see that � 2 B
�
RN; � (C)

�
. Note also that

1\
k=1

�
x 2 RN : xk 2 [�m;m]

	
�

1\
n=1

(
x 2 RN : 1

n

nX
k=1

�
�
�k�1 (x)

�
=
1

n

nX
k=1

xk

)
:
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Since �f is a convex capacity which is further continuous at RN, it follows that

1 = �f

 1\
k=1

�
x 2 RN : xk 2 [�m;m]

	!
� �f

 1\
n=1

(
x 2 RN : 1

n

nX
k=1

�
�
�k�1 (x)

�
=
1

n

nX
k=1

xk

)!
� 1:

(24)

By Theorem 2 and since �f is shift invariant and ergodic, we have that there exists �? 2 B
�
RN;G

�
such that

�f

 (
x 2 RN :

Z
RN
�?d�f � lim

n

1

n

nX
k=1

�
�
�k�1 (x)

�
= �? (x) �

Z
RN
�?d��f

)!
= 1: (25)

By (24) and (25) and since �f is convex, we can conclude that

�f

 (
x 2 RN :

Z
RN
�?d�f � lim

n

1

n

nX
k=1

xk = �
? (x) �

Z
RN
�?d��f

)!
= 1: (26)

De�ne E =
�
x 2 RN : limn 1

n

Pn
k=1 �

�
�k�1 (x)

�
= �? (x)

	
and �n = 1

n

Pn
k=1 �

�
�k�1

�
for all n 2 N.

By (25), we have that P (E) = 1 for all P 2 core (�f ). By construction, f1E�ngn2N � B
�
RN; � (C)

�
is a uniformly bounded sequence which converges pointwise to 1E�?. By [4, Theorem 22] and since

�f is convex and P (E) = 1 for all P 2 core (�f ), this implies thatZ
RN
�?d�f =

Z
RN
1E�

?d�f =

Z
RN
lim
n
1E�nd�f = lim

n

Z
RN
1E�nd�f = lim

n

Z
RN
�nd�f : (27)

Next, since �f is convex and shift invariant, note that for each n 2 NZ
RN
�nd�f =

Z
RN

1

n

nX
k=1

�
�
�k�1

�
d�f �

1

n

nX
k=1

Z
RN
�
�
�k�1

�
d�f =

Z
RN
�d�f :

By (27), it follows that
R
RN �

?d�f �
R
RN �d�f . A similar argument yields that

R
RN g

?d��f �
R
RN �d��f .

Finally, since
R
RN �d�f =

R


f1d� and

R
RN �d��f =

R


f1d��, by (26), we can conclude that

1 = �f

 (
x 2 RN :

Z
RN
�d�f � lim

n

1

n

nX
k=1

xk �
Z
RN
�d��f

)!

= �

 (
! 2 
 :

Z



f1d� � lim
n

1

n

nX
k=1

fk (!) �
Z



f1d��

)!
;

proving the statement. �

Proof of Proposition 2. By assumption, we have that whenever C1 and C2 are two base disjoint
cylinders then

�f (C1) �f (C2) � �f (C1 \ C2) � �f (C1) ��f (C2) � ��f (C1 \ C2) : (28)

Next, �x C1 2 C and �C 2 G. It follows that C1 is of length k for some k 2 N. Consider the class

�k =
�
C 2 �

�
C1k+1

�
: (28) holds with C2 = C

	
:

Since �f satis�es (28) for base disjoint cylinders, note that C1k+1 � �k. Recall that C1k+1 is an algebra.
Second, since �f is continuous at RN, it follows that �k is a monotone class. By the Monotone Class
Theorem (see [3, Theorem 3.4]), it follows that �k � �

�
C1k+1

�
� G. This implies that (28) holds for

C1 and �C. Since C1 2 C and �C 2 G were arbitrarily chosen, we can conclude that

�f (C1) �f (C2) � �f (C1 \ C2) � �f (C1) ��f (C2) � ��f (C1 \ C2) 8C1 2 C;8C2 2 G: (29)
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By a similar argument and another application of the Monotone Class Theorem, it follows that

�f (C1) �f (C2) � �f (C1 \ C2) � �f (C1) ��f (C2) � ��f (C1 \ C2) 8C1 2 � (C) ;8C2 2 G: (30)

By (30), we can conclude that for each C 2 G

0 � �f (C) �f (Cc) � �f (C \ Cc) � �f (C) ��f (Cc) � ��f (C \ Cc) � 0:

This implies that �f (C) �f (Cc) = 0 = �f (C) ��f (C
c), that is, either �f (C) = 0 or ��f (Cc) = 0. In

other words, either �f (C) = 0 or �f (C) = 1. Thus, we can conclude that �f (G) = f0; 1g, that is, f is
ergodic. �

Proof of Proposition 3. Since � is convex, �f is convex. This implies that

max
P2core(�f )

P (A) = ��f (A) � �f (A) = min
P2core(�f )

P (A) 8A 2 � (C) :

Consider two base disjoint cylinders C1; C2 in C. Since ffngn2N satis�es (8), it follows that

�f (C1) �f (C2) = �f (C1 \ C2) = �f (C1) �f (C2) � �f (C1) ��f (C2) : (31)

Next, observe that C1 and Cc2 are two base disjoint cylinders. This implies that

�f (C1) ��f (C2) = �f (C1) [1� �f ((C2)c)] = �f (C1)� �f (C1) �f (Cc2) = �f (C1)� �f (C1 \ Cc2) : (32)

It is immediate to see that C1 \ Cc2 � C1. By [18, Theorem 4.7] and since �f is convex, there exists

P 2 core (�f ) such that

P (C1) = �f (C1) and P (C1 \ Cc2) = �f (C1 \ Cc2) :

Given (32), this implies that

�f (C1) �� (C2) = �f (C1)� �f (C1 \ Cc2) = P (C1)� P (C1 \ Cc2) = P (C1 \ C2) � ��f (C1 \ C2) : (33)

By (31) and (33), it follows that

�f (C1) �f (C2) = �f (C1 \ C2) = �f (C1) � (C2) � �f (C1) ��f (C2) � ��f (C1 \ C2) :

Since C1 and C2 were arbitrarily chosen, the statement follows. �
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