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1 Introduction

Imagine that neighboring wildcat tracts are to be leased one by one, with

a non-trivial amount of time elapsing between auctions. The winner of an

auction wins the right to drill in the designated tract, which gives her access

to further information about the geology of the neighboring tracts. Thus, the

winner becomes the “neighbor” bidder (Wilson, 1969) in future auctions.

Or imagine two firms bidding to provide the Department of Defense (DoD)

with a prototype weapon system, with the rights to produce the system also

to be allocated by competitive bidding. The winner of the right to develop the

prototype will acquire further information about the preferences and goals of

the DoD, as well as about the cost of accommodating production regulations.

This information is valuable in the subsequent competition for production.

These examples feature private garnering of information, information that

is valuable to all agents, according to the interim outcomes of a sequential

allocation process. Whoever gets the good first acquires an informational

advantage over her opponents, the “non-neighbors.” How should the successive

auctions be designed in order to maximize social welfare or revenues?

This paper addresses this question in the context of sequential allocations

of units of a time-sensitive good, or one-period leases on a durable good.

Agents have multi-period demand, so they do not exit the market after trading.

Their valuations in each period are the sum of a private-value component and

a common-value component, the latter being unobserved ex-ante. Only the

current winner gets to observe this common component, privately, before the

next auction. Thus, there is an “information-access externality.”

The analysis focuses on the case where there are only two periods. This

case is directly relevant for the DoD example, and sheds light on related static

problems. Similar insights and designs apply to the infinite-horizon case if the

informational advantage of winning is always only one period ahead.1

I show that the first best is unattainable by means of standard mechanisms:

Implementability implies inefficiency (Lemma 2). In particular, allocating the

1The details are available from the author upon request.
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first-period unit leads to a lower expected future welfare. This trade-off be-

tween immediate surplus and expected future welfare can make it desirable to

withhold the first-period unit, even from the point of view of efficiency.

While the sequential second-price or English auction is inefficient, a slight

variation on the first-period auction can implement the second best (Theorem

2). Bidders are asked to pay a deposit before bidding. The deposit goes

towards the winner’s payment, and losers are reimbursed in full. However,

it acts both as a bid floor and as an entry fee in the first-period auction.

Thus, it excludes types of agents who would create too little surplus to justify

the ensuing decrease in expected future welfare. Moreover, if only one bidder

participates, she can get the good at a discount. This way, the auction also

accommodates the dynamic equilibrium externality : Allocating the first-period

unit to an agent reduces the continuation value of her opponents.

Another variation on the sequential second-price or English auction imple-

ments the revenue-maximizing mechanism (Theorem 3). The seller can raise

the highest (feasible) expected future welfare, and captures it by charging per-

sonalized entry fees. If the seller cannot commit to excluding bidders who do

not pay these fees, the second-period auction is a scoring-rule auction in which

the reserve price for the non-neighbor is set by the neighbor’s bid.

If the first-period unit is an input for the second-period unit, as in many

procurement applications, first-period trade must take place to be able to hold

the second-period auction. If the units are indivisible, a social planner cannot

improve upon the sequential second-price or English auction. When the units

are divisible, a more efficient option is double sourcing, namely splitting the

allocation: Informational asymmetries are mitigated at a lower cost in terms

of immediate surplus.2 Double sourcing is socially desirable (profitable) when

valuations (virtual utilities) are close to tied (Theorems 4 and 5).

The classical references on auctions with asymmetrically-informed bidders

are Wilson (1969), Weverbergh (1979), Engelbrecht-Wiggans et al. (1983),

2The informational role of double sourcing in government procurements is pointed out in
Gansler et al. (2009): “[...]Dual sourcing also increased the availability of supplier information
between competitive suppliers that resulted in more aggressive bidding.”
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and Hendricks and Porter (1988). These papers study equilibria in one-shot

common-value auctions where one bidder, the “neighbor,” profits from hav-

ing private information about the value of the object. Hernando-Veciana and

Troge (2011) show that the neighbor is actually hurt by the informational

asymmetry when the number of non-neighbors she faces is sufficiently high;

they call this the “insider’s curse.” Goeree and Offerman (2003) consider auc-

tions where all bidders receive partial signals about the common component.

Other recent work includes the dynamic extensions of Wilson (1969) by Virag

(2007) and Hörner and Jamison (2008).

In these papers, the informational asymmetry is exogenous, and can only

decrease through time. In the present paper, the informational asymmetry

is endogenous — bidders are ex-ante symmetric — and the information gap

between them only widens with trade. Moreover, rather than looking at be-

havior in a given auction, I design welfare-maximizing and revenue-maximizing

mechanisms.

This design problem concerns dynamic mechanisms under interdependent

values and multi-dimensional types. Athey and Segal (2007) and Bergemann

and Välimäki (2010) introduce efficient mechanisms for dynamic environments

with independent, private values. Pavan et al. (2011) characterize imple-

mentability of dynamic mechanisms under interdependent valuations and uni-

dimensional types. In a simple two-period model, I combine both interdepen-

dent values and multi-dimensional signals.

When there are both interdependent values and multi-dimensional types,

social-choice functions that are Bayesian-Nash implementable are generically

inefficient (Jehiel and Moldovanu, 2001), and only constant ones are generically

ex-post implementable (Jehiel et al., 2006).

However, the notion of genericity in this literature is extremely demand-

ing. As Bikhchandani (2006) shows, generic environments must feature both

interdependent values and allocative externalities; agents must care directly

about each other’s information and portion of the outcome. Yet, many rel-

evant economic problems are non-generic: In oil-tract auctions, the neighbor

only cares about whether she wins the lease, and she knows her ex-post valua-

4



tion for it. While Bikhchandani (2006) establishes the existence of non-trivial

mechanisms that are ex-post implementable under private consumption, we

lack a general characterization of implementability for non-generic problems.

For the problem I study, I present a characterization that allows me to design

second-best and revenue-maximizing auctions.

If the common-value signal represents ex-post verifiable information, the

designer can resort to royalty payments. Such contingent-payment schemes are

common in oil-tract auctions; the cost of a lease may be contingent on how

much oil is found after drilling. Royalty payments can mitigate the winner’s

curse and contribute to efficiency. Tan (2012) shows that the neighbor may

even willingly disclose the verifiable signal to the non-neighbor before bidding.

However, my focus is on non-verifiable information, such as private readings

about the probability of finding oil in adjacent tracts.

With non-verifiable information, implementability entails inefficiency in

standard mechanisms — mechanisms where the same messages determine both

allocations and payments. Mezzetti (2004) shows that efficiency is restored

if additional reports can be sent to the mechanism ex-post, even in generic

environments and even if signals are not verifiable.3 First-round messages

about types determine the allocation, while second-round messages about ex-

post utilities determine the payments. To shed light on the limitations and

strengths of more traditional auction formats, and to facilitate comparison

with the literature, I do not consider ex-post reports in the paper.4

By restoring efficiency, ex-post reports can “lift” the winner’s curse and

thus eliminate the dynamic equilibrium externality inherent in standard mech-

anisms. A downside of the scheme in Mezzetti (2004) is that agents are in-

different between any of their ex-post messages. Incentives for truth-telling

3I am grateful to an anonymous referee for prompting me to clarify this last point.
4Mechanisms á la Mezzetti (2004) are considered in the online appendix. With two

bidders, the following auction is efficient. Start with a second-price auction. The winner
reports the value of the unit, and this report sets a second-period entry fee for the loser.
In the second period, both bidders pay their opponent’s bid, but the loser receives a bonus
based on the value reported by the (new) winner.
The general consideration of ex-post payments requires a characterization of incentive

compatibility; Mezzetti (2004) focuses on efficiency.
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are weak, and weak incentives may lead to the existence of undesirable equi-

libria. Of course, this issue is a staple in mechanisms designed under partial

implementation, and the mechanisms I propose are no exception — especially

the auction in Theorem C1, if the neighbor fails to meet the reserve price (see

discussion at the end of Section 5). However, in the second-best auction of

Theorem 2, agents have stronger incentives than in Mezzetti (2004) to behave

as the desired equilibrium dictates.

When allocating under exclusivity creates informational asymmetries, it

might be desirable to allow for double sourcing. Anton et al. (2010) look at

a static auction where the rationale for double sourcing is uncertainty about

economies of scale. In both Klotz and Chatterjee (1995) and Hsieh and Kuo

(2011), double sourcing can help finance entry costs. Klotz and Chatterjee

(1995) also feature learning by doing. Valero (2013) rationalizes double sourc-

ing as a way of reducing dependence on a supplier whose production is subject

to shocks, by resorting to a more costly but more reliable competitor. I provide

an informational rationale for double sourcing.

This paper is organized as follows. Section 2 describes the basic setup.

Section 3 describes the class of mechanisms I consider, and discusses the char-

acterization of implementability. Section 4 describes the second-best allocation

rule and identifies a simple mechanism that implements it. Section 5 identifies

a revenue-maximizing mechanism. Section 6 analyzes the case where the units

can be double sourced. Section 7 concludes. Proofs are collected in Appendix

A. Appendix B describes the sequential second-price auction benchmark. Ap-

pendix C features additional details on revenue maximization.

2 The Model

Two units of a time-sensitive good are to be allocated one at a time over

two periods. There are N ∈ N agents, indexed by i = i1, . . . , iN . These agents

have multi-period demand, and their valuations are the sum of a private-value

and a common-value component. These components of the agents’ valuations

are renewed through time. There is a common discount factor δ > 0. As the
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horizon is finite, we can allow for δ ≥ 1, giving future payoffs more weight than

present payoffs. For instance, the first-period unit may be just a prototype, so

the second-period unit carries more weight.

The common component in period t is represented by vt, an i.i.d. draw from

a random variable V with pdf fV and compact support [v, v] ⊆ R+. The private

components in period t ∈ {1, 2} are wt := (wi1t, . . . , wiN t). These are i.i.d.

draws from a random variable W , independent of V , with pdf fW and compact

support [w,w] ⊆ R+. Both densities are assumed to be continuous, strictly

positive on their support, and strictly log-concave. The (ex-post) valuation of

agent i in period t is uit := vt +wit; it is drawn from U := V +W , with density

fU given by the convolution of fV and fW .5

A high valuation for the neighbor may come from a high common-value

or a high private-value component; only the first event is good news to non-

neighbors. If the latter group could observe the draw u = v + w of the neigh-

bor’s valuation, they would disentangle v and w by means of the conditional

expectations g(u) := E[V |U = u] and h(u) := u−g(u) = E[W |U = u], respec-

tively. Under strict log-concavity, these functions are continuous and strictly

increasing.6 Thus, a higher total valuation is indicative of higher values of both

components. Conversely, a non-neighbor who faces a low-valuation neighbor

would revise downwards her estimate of v; this is the typical winner’s curse.

Of course, non-neighbors do not observe u. However, they anticipate the value

of the unit conditional on outbidding the neighbor, and g and h are relevant

in characterizing their equilibrium behavior.

All signals are assumed to be non-verifiable. In the oil-tract example, the

informational advantage represents insights on the geological properties of the

field.7 Similarly, in the DoD example, v captures the insights about preferences

5The assumption of additivity is made mainly for simplicity of exposition. The results
in this paper generalize to valuations that are a linear combination of the signals, if the
coefficients are commonly known and the same for both agents. Some results (Theorem B1
and the first part of Lemma 2) extend to strictly increasing aggregator functions.

6See Lemma 1 in Goeree and Offerman (2003), or Lemma 4 in Larson (2009). As a
result, both g and h have continuous and strictly increasing inverses. Moreover, they satisfy
the boundary conditions g (v + w) = v, g (v + w) = v, h (v + w) = w, and h (v + w) = w.

7Of course, these geological properties may be related to the amount of oil found on the
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and goals of the DoD.

The timing is as follows. Each agent privately observes their period-t id-

iosyncratic component at the beginning of period t. The common-value com-

ponent is not observed ex ante. Only the first-period winner gets to observe

v2, privately, before the second-period allocation is determined.

Without loss of generality, we can take v1 := E(V ); to simplify notation,

we can write v := v2. I shall focus on the case N = 2, and discuss what

changes when moving to the case N ≥ 3 after the fact. The reason for this

is twofold; it simplifies the exposition at little cost in terms of changes to the

design of the auctions, and these changes are interesting in their own right.

Figure 1 summarizes the timing and information structure for N = 2, where

a := i1 and b := i2.

The assumption that v is perfectly observed from the allocation is without

loss of generality. If the neighbor observes only a noisy signal of v, the analysis

goes through replacing v with the conditional expectation of V given this

signal. What is important is that the informational advantage is one-sided;

namely, that the neighbor has nothing to learn from the non-neighbor.

The assumption of independence of V and W isolates experience with the

allocation as the only source of information (beyond the priors). If these signals

Figure 1: Timing and Information Structure.

tract, the latter being a verifiable signal. However, the informational advantage remains
insofar as the amount of oil in a tract is not a perfect signal of oil deposits in nearby tracts.
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were correlated, agents would update their guess of v from their first-period

signals, as well as from their opponents’ equilibrium behavior.

Independence across time is a restrictive assumption, and an extreme way

to represent renewal of signals. A more flexible representation would allow for

some amount of persistence or serial correlation. While there is no doubt that

this would make the problem more general, realistic, and interesting, it would

also introduce two complications.

If values are serially correlated, first-period behavior becomes informative

about second-period signals — insofar as it conveys information about first-

period signals. The mechanism designer could exploit this information, for in-

stance, by making the second-period outcome contingent on first-period bids.

Agents anticipate this impact of their current bids on the continuation of the

mechanism. While there is no lack of commitment power, this situation for-

mally resembles the “ratchet-effect” problem. This makes it hard to induce

agents to reveal information; it is well known that, under ratchet-effect condi-

tions, typically there is pooling in equilibrium.

But it is not only the mechanism designer that may want to “exploit” first-

period information disclosed in equilibrium. The non-neighbor can learn about

her competitor from the first-period outcome as well, and viceversa. Thus,

there is potential for signalling: Bidders may want to bid aggressively if, by

doing so, they can scare competitors away from the second-period auction.

These two difficulties obscure the effect of the informational impact of

allocating the first unit, and can render the problem intractable. Serial in-

dependence isolates the effect of learning “from experience” from these other

dynamic effects, and keeps the problem clean and tractable.

3 Implementability

The set of period-t allocations is X := {(0, 0), (0, 1), (1, 0)}, where the i-th

coordinate of xt ∈ X indicates whether agent i is allocated the period-t unit
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(xit = 1) or not (xit = 0).8 In the oil-tract example, each unit is a lease; the

government may grant a lease on neither or only on one of the tracts. In the

DoD example, the first unit is typically an input for the second one, so the

latter cannot be produced without the former. What can be done in this case,

and what is common practice in procurements, is to award multiple contracts.

This possibility is explored in Section 6.

The space of period-t transfer profiles is T := R2. Utilities are time-additive

and linear in outcomes. The ex-post discounted payoff to agent i, when the

signals are v, wi1, and wi2, is (v1 + wi1)xi1 − τi1 + δ [(v + wi2)xi2 − τi2].

A social-choice function is a pair of functions f = (f1, F2). The function

f1 : [w,w]2 → X × T specifies the first-period outcome as a function of first-

period private-component signals; we can write f1 = (q1, τ1), where q1 denotes

the allocation rule, and τ1 denotes the transfer function. Given w1, F2 (∙; w1) :

[v, v] × [w,w]2 → X × T specifies the second-period outcome as a function of

second-period signals. This second map satisfies the following measurability

condition: For any w1, w2 ∈ [w,w]2 and any v, v′ ∈ [v, v], F2 (v, w2; w1) =

F2 (v′, w2; w1) if q1 (w1) = (0, 0). In words, the second-period outcome can

only depend on information the agents indeed possess.

An important class of social-choice functions for the present problem is

that of simple social-choice functions. These are social-choice functions where

F2 (∙, w1) = F2 (∙, w′
1) for any w1 and w′

1 such that q1 (w1) = q1 (w′
1); second-

period portions of simple social-choice functions depend on first-period signals

only through the allocation the latter induce.

We may distinguish two kinds of histories at the beginning of period 2:

history h(0), where the first-period unit is not allocated to any of the agents,

and history h(i), where the first-period unit is allocated to agent i. Simple

social-choice functions can be identified by the following pieces: a pair of

functions q1, τ1, which specify the first-period outcome; functions q
(0)
2 , τ

(0)
2 ,

which specify the second-period outcome at history h(0); and functions q
(i)
2 , τ

(i)
2 ,

which specify the second-period outcome at h(i).

8Provided there is no need to do ironing, the restriction to deterministic mechanisms is
without loss of generality with linear utilities.
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In a dynamic mechanism, agents send messages each period, after observ-

ing their current private information. First-period messages determine the

first-period outcome, which determines who, if any, observes v before send-

ing second-period messages. For these mechanisms, I employ the notion of

implementability in Perfect Bayesian Equilibrium (Brusco, 2006).

A dynamic mechanism implements a social-choice function f in Perfect

Bayesian Equilibrium (PBE) if there is a Bayesian-Nash Equilibrium (BNE)

of the induced game that, at any history, induces a BNE in the continua-

tion game whose outcome coincides with f . For direct-revelation mechanisms,

this notion of implementability is equivalent to interim incentive compatibility

(Bergemann and Välimäki, 2010).9

This is a notion of partial implementability ; existence of other equilibria

that do not coincide with f is not ruled out. As noted in the introduction,

existence of undesirable equilibria is a concern especially for the mechanism

described in Theorem C1.

Corresponding to simple social-choice functions are simple direct-revelation

dynamic mechanisms. These are direct-revelation dynamic mechanisms where

the outcome function is a simple social-choice function; see Figure 2. The

next lemma establishes that we can restrict our attention to simple direct-

revelation dynamic mechanisms without loss of generality, for either welfare

or revenue maximization. The key is the assumption of serial independence,

which reduces the intertemporal link to the first-period allocation.

Lemma 1. If a dynamic mechanism implements a social-choice function de-

signed to maximize expected welfare or revenues, then so does a simple direct-

revelation dynamic mechanism.

There are two parts to this lemma. First, we can restrict attention to

direct-revelation mechanisms. This is just the standard Revelation Principle.

9As signals are fully renewed in the second period, the posterior for second-period signals
is the same as the prior. The bite in this notion lies in asking for sequential rationality at
every history, so agents cannot commit to second-period messages beforehand.
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Figure 2: Simple direct-revelation dynamic mechanisms.

Second, for welfare or revenue maximization, we can simply ask agents to

report their current private information, and conflate continuation games into

histories h(0) or h(i). This follows from the serial-independence assumptions;

restricting attention to simple direct-revelation mechanisms could involve loss

of generality if private-value signals are serially correlated.

To address questions of mechanism design, we want to characterize the set

of simple direct-revelation mechanisms that are implementable. At history

h(0), neither agent has information that is directly relevant to the other, and

their problem reduces to a standard independent-private-values problem.

At history h(i), agent i knows her ex-post valuation, so she faces a private-

value problem. However, her type is two-dimensional: She observes both

components of her valuation separately. Agent −i has a single piece of in-

formation, but she faces a winner’s-curse problem. The characterization of

implementability follows from Jehiel and Moldovanu (2001).10 In the present

problem, it leads to the following consequence: Implementable mechanisms

cannot discriminate among types with the same total valuation.

For each type (v, w) ∈ [v, v] × [w,w], define the “iso-valuation” plane

H(v, w) := {(v′, w′) ∈ [v, v] × [w,w] : v′ + w′ = v + w}. Given a simple direct-

revelation dynamic mechanism (q, τ ), let q
(i)
i2 denote the expected second-

10For more on multi-dimensional screening, see also Armstrong (1996), Rochet and Chone
(1998), Jehiel et al. (1999), Krishna and Perry (2000), Carlier (2001), Basov (2005), Araujo
et al. (2008), and Deneckere and Severinov (2009).
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period allocation rule for agent i at history h(i).

Lemma 2. If (q, τ ) is an implementable simple direct-revelation dynamic

mechanism, at history h(i), 1) All types of agent i in H(v, wi2) enjoy the

same second-period equilibrium surplus as (v, wi2); 2) There is a function

φ : [v + w, v + w] → [0, 1] such that q̄
(i)
i2 (v, wi2) = φ(v + wi2) for almost every

(v, wi2) ∈ [v, v] × [w,w].

We can think of Lemma 2 as an “equal treatment” result: Incentive com-

patibility in simple dynamic mechanisms entails treating different types with

the same valuation equally. The result stems from the fact that different

iso-valuation types must enjoy the same surplus, and that compensating any

differential treatment in the allocation via differential treatment in transfers

is infeasible from the point of view of incentives.11

From the point of view of the first period, the problem is an auction-design

problem with externalities. The continuation payoff of an agent when her

opponent becomes the neighbor is lower than when she is up against a non-

neighbor; in the former scenario, her future payoffs are subject to the winner’s

curse. This dynamic equilibrium externality is an externality that arises in

equilibrium, and takes the form of a consumption externality: Agents care

about each other’s first-period allocation due to its impact on their continua-

tion values. As this externality depends on the reported type, not on the true

type, standard characterizations of implementability continue to apply.

4 Inefficiency and Constrained Efficiency

An allocation rule is first best or efficient if it maximizes expected social

discounted welfare. The first-best allocation rule, denoted by qFB, dictates

that each unit be allocated to the agent with the highest current idiosyncratic

11Lemma 2 is similar to Lemma 2 in Araujo et al. (2008), who assume that agents have
multiplicative costs and focus on differentiable mechanisms with transfers that depend only
on the allocation. Analogous results hold in Deneckere and Severinov (2009), who assume
a single-crossing condition (Assumption 2) that rules out linear utility functions.
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signal, who is also the one with the highest current valuation; the common

component is disregarded.

Notice that the first best is a simple social-choice function. We can write

it as q
FB(i)
i2 (w2) = q

FB(−i)
i2 (w2) = q

FB(0)
i2 (w2) := I (wi2 > w−i2), and qFB

i1 (w1) :=

I (wi1 > w−i1), where I denotes the indicator function, taking the value 1 if

the statement in the argument is true, and 0 otherwise. By disregarding the

common-value component, the first best discriminates among different types of

the neighbor with the same total valuation based on the idiosyncratic portion

of their valuation. As a result of Lemma 2, we conclude that the first best is

not implementable.

Corollary 1. The first-best allocation rule is not incentive compatible.

By disregarding v, the first-best allocation rule does not “punish” the neigh-

bor for reporting a low value for v. As a result, this better-informed agent has

an incentive to understate the common-value component and exaggerate her

private-value component. Such misreporting leads to a higher probability of

trade in her favor, and payments cannot fully undo this favor.12

We can visualize the conflict in terms of orders on the two-dimensional

type space of the neighbor. For efficiency, any pair of types (v, w), (v′, w′) ∈

[v, v]× [w,w] are to be treated equally if w = w′, while they are to be treated

equally in implementable mechanisms if v + w = v′ + w′, even if w′ > w. See

Figure 3.

In Jehiel and Moldovanu (2001), inefficiency obtains when at least two

agents have private information about each other, information that is relevant

to determine the efficient allocation: One-dimensional payments are insuffi-

cient to induce agents to disclose this relevant multi-dimensional information.

12The same intuition applies to a setting where information about v has social value, not
just individual value. Imagine the designer must bear a cost c > 0 to carry out the sale of
the units. It can be socially valuable to let one agent observe v and choose a reserve price
such that the second sale is carried out only if it is worthwhile, at the cost of introducing
an informational asymmetry. The neighbor has no incentive to report any value beyond the
least value that yields the same outcome, and confound any excess common value with her
own, idiosyncratic portion of the value.
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Figure 3: Tension between efficiency and incentive compatibility.

In the present problem, the non-neighbor has no private information about

the neighbor’s valuation. Moreover, the common-value component, the source

of the asymmetry, is socially irrelevant.

An allocation rule is constrained efficient or second best if it maximizes ex-

pected welfare subject to the incentive-compatibility constraints. By Lemma

1, we focus on simple direct-revelation dynamic mechanisms. The following

theorem characterizes the second-best allocation rule. Let Sω0
2 and Sω1

2 denote

the expected continuation welfare levels stemming from history h(0) and histo-

ries h(a), h(b), respectively, and let Δω := Sω0
2 − Sω1

2 be the difference between

them. Lemma A2 in Appendix A shows that Δω ≥ 0; the incentive constraint

identified in Lemma 2 leads to a lower expected welfare at histories h(a), h(b)

than at history h(0). For this reason, we can think of Δω as the welfare cost of

implementability, resulting from the endogenous winner’s curse.

Theorem 1. The second-best allocation rule, qSB, is given as follows. In the

second period, at history h(0), allocate the unit to the agent with the highest

private-value signal: q
SB(0)
2 := q

FB(0)
2 ; at history h(i), use ui2 to proxy for wi2 by

h(ui2), compare it to w−i2, and allocate to the higher agent: q
SB(i)
i2 (ui2, w−i2) :=

I (h(ui2) > w−i2), and q
SB(i)
−i2 (w−i2, ui2) := I (h(ui2) < w−i2); finally, in the

first period, allocate the unit to the agent with the highest signal, provided

the expected surplus thus generated compensates for the welfare cost of imple-
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mentability: qSB
i1 (w1) := I (wi1 > max {w−i1, δΔ

ω − E(V )}).

The first-period portion of qSB
1 dictates allocating the unit to the agent with

highest private component if this results in a higher continuation welfare than

withholding the unit. In the second period, the allocation is efficient at history

h(0). At history h(i), qSB allocates the unit to agent i if her proxy private-

value component is at least as high as agent −i’s idiosyncratic component.

The welfare cost of implementability comes from the inefficiency present in

allocating according to h(ui2) rather than wi2. When wi2 > w−i2 > h(ui2) the

second-period unit goes to agent −i, while i has a higher (ex-post) valuation

for it. Similarly, when wi2 < w−i2 < h(ui2), agent i receives the second unit,

while agent −i would produce a higher surplus.

The second-period portion of the second best coincides with the equilibrium

outcome of a second-price or English auction (Theorem B1 in Appendix B).

At history h(i), bidder i bids ui2, her valuation, while −i bids h−1 (w−i2), her

guess of i’s valuation at which both bidders are “tied” in terms of private-value

components: w−i2 = h (ui2).13 While “bidding to tie” is typical equilibrium

behavior in common-value auctions, only the non-neighbor does the “guess-

ing” here. The inefficiency arises in the auction through “mistakes” in these

guesses: When h−1 (w−i2) > ui2 > u−i2, −i overestimates v and outbids i, who

should win; if h−1 (w−i2) < ui2 < v + w−i2, −i has the higher valuation, but

underestimates v and loses to i.

Just as the non-neighbor anticipates v from the equilibrium outcome in

an auction, it is tempting to interpret q
SB(i)
2 as saying that i reports only her

total valuation, and the planner guesses v from this report. However, this is

not accurate: In the truthful equilibrium, the neighbor reports both signals to

the planner. But, for the neighbor to be truthful, the planner cannot exploit

the two signals separately. The welfare cost of implementability embodies

this restriction, rather than the possibility of the planner making mistakes in

guessing v.

13Alternatively, if i’s valuation (hence, her bid) is equal to h−1 (w−i2), then −i anticipates
her valuation to be exactly tied with i’s: w−i2 + g

(
h−1 (w−i2)

)
= h−1 (w−i2).
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While a second-price or English auction in the second period achieves the

second best, the social planner can do better in the first period. A standard

auction would always result in trade, at the expense of future expected welfare,

even when the current surplus created is low. Therefore, the planner may want

to exclude low types, taking into account that excluding a bidder from the

auction shields her opponent from the future winner’s curse.

The next theorem identifies a simple variation on the sequential second-

price or English auctions that implements the second-best allocation rule. The

variation consists in introducing deposit requirements to bid in the first pe-

riod. Deposits are required to participate, for instance, in US General Services

Administration (GSA) auctions. As in GSA auctions, the deposit is fully re-

turned to the loser, and goes towards the winner’s payment. If only one

bidder participates, she is given the choice to purchase the good and get a

partial reimbursement of her deposit, or to claim the full deposit but walk

away empty-handed.

Denote the second-period equilibrium payoffs to a, b in h(a) by Sa2(ua2),

Sb2 (wb2), respectively, and let S2 := E [Sa2 (Ua2)] and S2 := E [Sb2 (Wb2)] be

the corresponding ex-ante payoffs. Let S0
2 := E [max{0, Ua2 − Ub2}] be the

(counterfactual) expected payoff if both bidders observed v. Lemma B1 in

Appendix B shows that S2 ≥ S0
2 ≥ S2: Having unilaterally more information

is always more profitable from the ex-ante perspective, even after taking into

account how others may react to the informational asymmetry.14 Therefore,

ΔS := S2 −S2 ≥ 0 represents the informational value of winning, the increase

in continuation surplus due to the informational advantage that results from

winning in the first period.

Theorem 2. Define r0 := δ
(
Δω + ΔS

)
and r1 := r0 − δ (S0

2 − S2). The

second-best allocation rule is implemented by the following sequential auction.

In the first period, bidders are asked to pay (simultaneously) a deposit of r0.

14We can think of S0
2−S2 as a decision-theoretic advantage: The behavior of the neighbor

would not change if her opponent were also informed, so the additional information cannot
hurt the non-neighbor; and of S2 −S0

2 as a strategic advantage: The neighbor prefers facing
a non-neighbor to another neighbor even after accounting for differences in behavior.
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If both pay, they (simultaneously) submit bids; admissible bids are not lower

than r0. The highest bidder wins and pays the difference between the lowest bid

and r0; the loser gets her deposit back. If only one bidder pays, she is given

the option to get the unit and a partial refund on her deposit of r0 − r1 =

δ (S0
2 − S2), or to get the full refund. No trade takes place if no bidder pays

the deposit. The second-period auction is always a standard second-price or

English auction.

See Figure 4. Allocating the first-period unit leads to a lower continuation

welfare. By acting as entry fees and as reserve prices, the deposits discourage

low-type agents, who would create too little surplus. Moreover, through con-

tingent refunds, deposits accommodate the dynamic equilibrium externality.

Example. Consider the case where U, V are uniformly distributed on the

interval [0, 1].15 Expected second-period payoffs in a second-price or English

auction are S2 = 7
24
, S0

2 = 1
6
, and S2 = 7

48
. Expected second-period welfare

values are Sω0
2 = 7

6
and Sω1

2 = 110
96
. Hence, we have r0 = δ

6
and r1 = δ 7

48
.

If E(V ) is high enough that first-period surplus always covers the dis-

counted welfare cost of implementability, it is not desirable to restrict trade.

Second-best allocation rule Auction in Theorem 2

Figure 4: Second-best allocation rule and auction design in Theorem 2.

15The density of the uniform distribution is not strictly log-concave. However, it yields
conditional-expectation functions g, h that are continuous and strictly increasing.
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In this case, the sequential second-price or English auction is second best, and

the deposits in the auction of Theorem 2 are “non-binding” in equilibrium.

Corollary 2. If E(V ) + w ≥ δΔω, in equilibrium, all types of bidders pay

the deposit, and the mechanism in Theorem 2 leads to the same equilibrium

outcome as the sequential second-price or English auction.

A similar conclusion follows if the planner is unable to withhold the first

unit. If both leases are to be granted, the sequence of second-price or English

auctions is the best the government can do in terms of social surplus.

Remark 1. The equilibrium that implements the second best in Theorem

2 embodies a stronger notion than Perfect Bayesian Equilibrium. While not

ex-post, the equilibrium is a posterior equilibrium with respect to the neigh-

bor’s bid (Green and Laffont, 1987): The non-neighbor has no regrets for

the outcome after learning the neighbor’s total valuation, which is the piece

of second-period information equilibrium behavior reveals. In other words,

the equilibrium outcome is the same that would prevail if the non-neighbor

observed her opponent’s total valuation before bidding.16

Remark 2. The informational asymmetry can be avoided by making the

second-period allocation non-responsive to the second-period information. For

instance, the government can adjoin the two tracts, and lease it as a single tract

in the first period. However, the welfare impact of neglecting second-period

information is at least as large as the welfare cost of implementability.17 If

16Jehiel et al. (2007) show, by example, that posterior implementability can be possi-
ble even when ex-post implementability is generically impossible. In the present paper,
the existence of non-trivial mechanisms that are posterior implementable might be due
to this implementation notion being weaker than ex-post implementability, or due to the
non-genericity of the framework. A question that remains open is under what conditions
posterior implementability of non-trivial allocation rules is generically possible, or what is
the maximal information feedback from non-trivial mechanisms that is generically consistent
with posterior implementability. This is the subject of ongoing research.

17This is an immediate consequence of Theorem 1, as the allocation rule that is non-
responsive to second-period signals is feasible. A direct argument is given in Lemma A3.
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both units are available simultaneously, we could sell both units in the second

period instead. However, this involves delay in trade, which may be costly.

An alternative way to implement the second best is to hold sequential

English auctions where, instead of asking for deposits, the clock starts at a

positive value and is adjusted downwards if only one of the bidders is willing to

participate. In fact, when there are more than two agents, the second-period

auction has to be of the open-bid format, where non-neighbors can observe if

the neighbor is still active.

Theorem 2’ Let N ≥ 3, r0 := δ
[
Δω + ΔS

]
, and r1 := r0 − δ (S0

2 − S2). The

second-best allocation rule is implemented by the following sequential auction.

In the first period, bidders are asked to pay (simultaneously) a deposit of r0 to

be entitled to submit a bid. If at least one pays, those who paid submit bids

(simultaneously); the rest are excluded. Admissible bids are not lower than

r0, and the highest bidder wins and pays the difference between the second-

highest bid and r0; losers get their deposits back. If only one bidder pays,

she is given the option to take the unit and a partial refund on her deposit of

r0 − r1 = δ (S0
2 − S2), or to get the full refund. No trade takes place if nobody

pays the deposit. The second-period auction is always an English auction.

The sealed-bid format fails at history h(i) because non-neighbors anticipate

the possibility of winning being tied to other non-neighbors as well as to the

neighbor. More than one non-neighbor outbidding the neighbor is “very” bad

news about the common-value component, and leads them to bidding too low.

This is avoided if non-neighbors can condition their behavior on whether the

neighbor is active or not.

Now, when N = 2, the value of information is positive (Lemma B1). How-

ever, Hernando-Veciana and Troge (2011) show that the value of information

is negative in an English auction if N is sufficiently large: High-type non-

neighbors bid more aggressively than under symmetry, on average, and the

distribution of non-neighbor bids becomes increasingly concentrated as they

become more and more numerous. This means that, potentially, the seller
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might need to subsidize the first-period winner if this negative effect is large

enough.

5 Maximizing Expected Revenue

Imagine now that the units are owned by a seller, who collects the transfers

of the mechanism. As with the social planner, I assume that v is not payoff

relevant to the seller, and that she does not know v. For revenue maximization,

the issue of commitment power becomes central. I consider the case where the

seller can make long-term commitments, and discuss what changes if she only

enjoys short-term commitment power.18

The highest ex-ante social surplus that can be achieved in the second period

is Sω0
2 . With intertemporal commitment power, the seller can create this

surplus through a second-price or English auction, and capture it via entry fees

charged at the end of the first period — before the second-period information

arrives.19 The next theorem identifies a revenue-maximizing mechanism.

Theorem 3. The following mechanism maximizes expected revenues. The

first-period auction is a second-price or English auction with reserve price

rπ∗ := (φ0)
−1

(−E(V ) + δΔω). After the bids are in and the winner is an-

nounced, but before allocating the unit, the winner is charged a second-period

entry fee of e1 := δS2, and the loser, of e2 := δS2; if the auction results in no

trade, both bidders are charged e3 := δS0
2 . If both bidders pay the correspond-

ing entry fee, the first-period unit is allocated and a second-price or English

auction follows. If only one bidder pays the fee, she gets the first-period unit

and a rebate of e−δE(U), where e is the fee she paid; she also gets the second-

period unit for free. If no bidder pays the fee, the first-period winner gets the

first-period unit but the second-period unit is withheld.

A benevolent social planner may restrict trade at most in the first period,
18The details for this second case are provided in Appendix C.
19Alternatively, instead of entry fees, the seller can resort to a deposit scheme. However,

unlike in Theorem 2, all agents — even the loser — would get partial reimbursements.
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to prevent the informational asymmetry from arising; a revenue-maximizing

seller may restrict trade in the second period, to extract bidders’ continuation

values. For instance, the DoD might award a contract for a prototype, but

then shut down production if none of the bidders are willing to pay the fees.

Example (Continued). In the case of long-term commitment, the first-

period reserve price is rπ∗ = 1
4
+ δ 1

96
and the entry fees are e1 = δ 7

24
, e2 = δ 7

48
,

and e3 = δ 1
6
. The net payment when a single bidder enters is δ.

As before, when there are more than 2 agents, the second-period auction

must be of the open format, allowing non-neighbors to condition their be-

haviour on whether the neighbor remains active. Nothing else changes; all of

the bidders who pay the corresponding entry fees participate in an English

auction for the second unit, while the rest are excluded.

The mechanism in Theorem 3 requires the seller to commit to excluding

from the second-period auction bidders who did not pay the entry fee at the

end of the first period. Otherwise, come the second period, the seller would

not refuse to sell to bidders who failed to pay the corresponding fees. In this

case, she faces a second-period auction-design problem.

If no bidder has observed v, the second-period problem is a standard

auction-design problem, with valuations wi2 + E(V ) for i = a, b. At history

h(i), the problem is an asymmetric auction-design problem with interdepen-

dent values. Following Myerson (1981), expected revenues are maximized by

a second-price or English auction with reserve price at history h(0), and by

the following scoring-rule auction at history h(i). Define the virtual-valuation

functions:

φ0(w) : = w −
1 − FW (w)

fW (w)
,

φ1(u) : = u −
1 − FU (u)

fU(u)
,

φ2(u) : = φ1(u) − g(u).

The reserve price for bidder i is r
(i)
i := (φ1)

−1
(0). The reserve price for −i is
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a function of i’s second-period bid; this function is r
(i)
−i(b) := (φ0)

−1
(−g(b)).

If the profile of bids is (bi2, b−i2), bi2 is compared to ψ(b−i2), where ψ :=

(φ2)
−1 ◦φ0, and the highest of these determines the winner. If i wins, she pays

ψ(b−i2); if −i wins, she pays ψ−1(bi2).

In this scoring-rule auction, bids determine scores based on virtual valu-

ations; the agent with the highest scored bid is allocated the unit, provided

this scored bid is sufficiently high. For the non-neighbor, how high her scored

bid has to be to qualify depends on the neighbor’s bid, insofar as the latter

conveys information about v. In the first period, a similar deposit scheme as

in Theorem 2 works (Theorem C1 in Appendix C).

Example (Continued). Virtual-utility functions are φ0(w) = 2w−1, φ1(u) =
3
2
u − max

{
1
u
, 1
}
, and φ2(u) = u − max

{
1
u
, 1
}
. Correspondingly, we have

ψ(w) = w − 1
2

+
√

w2 − w + 5
4
for w ∈

[
0, 1

2

)
, and ψ(w) = 2w for w ∈

[
1
2
, 1
]
.

At history h(0), a second-price or English auction with reserve price of 1
2
en-

sues. The auction at history h(i) features a reserve price for the neighbor of

r
(i)
i =

√
6

3
; the score for of the neighbor’s bid that determines the qualification

of the non-neighbor’s bid, r
(i)
−i, is redundant in this example. If bi2, b−i2 is the

profile of bids, bi2 is compared to max
{√

6
3

, ψ (b−i2)
}
; the latter is the amount

bidder i pays if she wins. Bid b−i2 is compared against max {0, ψ−1 (bi2)}; if

−i wins, this is the amount she pays.

An undesirable feature of this mechanism is that the neighbor’s bid is

taken to be meaningful even if it is below the reserve price she faces. In other

words, a “non-serious” neighbor, one whose valuation falls short of the reserve

price for her, must bid “as if seriously.” However, equilibrium behavior leaves

the bids of non-serious bidders indeterminate. We must select the bids that

correspond to the “serious-bidding” function; arbitrary non-serious bids convey

little information about v.
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6 Divisibility and Double Sourcing

The government cannot procure a new weapon system without first evalu-

ating a prototype. Or it may find it prohibitively costly to fund production of

an aircraft, or some other large asset, without first assessing a blueprint. With

no choice but to allocate both units, the government cannot improve on the

sequence of second-price or English auctions. However, the government may

be able to award multiple contracts to develop prototypes, even if ultimately

only one supplier is to be chosen. This is a more efficient way to prevent the

monopoly on information of common interest between competitors.

I represent this possibility of double sourcing in the present framework by

letting the units be divisible.20 To keep the discussion simple, I will only

consider the case N = 2; for government procurements, the assumption of few

providers is not unrealistic. Moreover, I will allow only for a 50-50 split (the

“split award” in Anton et al., 2010), and I will assume that both agents get to

observe v in the event of double sourcing.21

With more than two agents, the government may choose a proper subset of

agents among which to split the allocation; if all of the bidders selected observe

the common-value signal, the government can ask each of them to report this

signal, and threaten to exclude them from the second period if their reports

do not match.

The results in Section 3 apply to the allocation space X ′ := X∪{(1/2, 1/2)}.

Sharing the unit leads to a new continuation game, however; let hD be the his-

tory after the unit is split in the first period, and denote the second-period

portion of simple social-choice functions at history hD by fD
2 =

(
qD
2 , τD

2

)
.

With both agents having observed v, a second-price or English auction

is efficient; it is irrelevant whether agents are equally informed or equally

uninformed.22 Hence, in the second period, the second-best allocation rule is

20The insights are the same if we represent double sourcing as awarding multiple units
that are costly for the government to award and only one of them is socially valuable.

21Similar insights arise when we allow for a continuum of shares, the amount of infor-
mation about the common-value components depending on the size of these shares. The
details are available in the online appendix to this paper.

22If V andW are not independent, being equally uninformed or equally informed leads to
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still qSB
2 , and the continuation welfare levels are still Sω0

2 and Sω1
2 .

Now, the second best never wastes a unit: The informational asymmetry

can be prevented by means of double sourcing. Nonetheless, there remains

a trade-off. If first-period signals are wi1, w−i1, double sourcing creates an

immediate surplus of wi1+w−i1

2
, which is never higher than the immediate sur-

plus created under exclusivity, max{wi1, w−i1}; but double sourcing leads to

an expected continuation welfare of Sω0
2 instead of Sω1

2 . The net welfare from

allocating to i exclusively compared to double sourcing is:

wi1 + δSω1
2 −

wi1 + w−i1

2
− δSω0

2 =
wi1 − w−i1

2
− δΔω.

The next theorem is the counterpart of Theorem 2; it presents a sim-

ple variation of a sequential second-price or English auction that implements

the second-best allocation rule with double sourcing. Define K := δΔω +
δ
2

[(
S2 − S0

2

)
− (S0

2 − S2)
]
; Lemma A4 in Appendix A shows that K ≥ 0.

Theorem 4. The second-best allocation rule under divisibility is implemented

by the following sequential auction. In the first-period, both bidders (simulta-

neously) submit bids. If the highest bid is higher than the lowest bid by at least

2δΔω, the highest bidder wins exclusively and pays the lowest bid. If the bids

are within 2δΔω of each other, the unit is split and each bidder pays half her

opponent’s bid minus a discount of K. The second-period auction is always a

second-price or English auction.

See Figure 5. Bidders are asked to submit a single bid, and whether there is

double sourcing or exclusive dealing is contingent on how the two bids compare.

In the auction analyzed in Anton et al. (2010), agents submit separate bids

for exclusive dealing and for the split award.

Example (Continued). For double-sourcing the first unit, the bid spread is

different scenarios. If no agent observes v, they update their beliefs from their idiosyncratic-
component signals and anticipate the value of v conditional on winning. If all agents observe
v, their valuations are correlated but private, and there is no “guessing.”
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Second best with double sourcing Auction in Theorem 4

Figure 5: Second best with double sourcing and auction in Theorem 4.

2δΔω = δ
24
. In the event of double sourcing, bidders pay half their opponent’s

bid minus a discount of K = δ 7
96
.

For a revenue-maximizing seller, double sourcing is desirable when agents

are close to tied; but the relevant comparison is in terms of virtual valuations,

not actual valuations. Unlike the social planner, a seller might still find it

profitable to exclude some types, to save on information rents.

Theorem 5. Under long-term commitment, the following mechanism maxi-

mizes revenues. The first-period auction is a scoring-rule auction: If the profile

of bids is b1 = (ba1, bb1), with bi1 > b−i1, bidder i wins exclusively if φ0(bi1) >

φ0(b−i1) + 2δΔω, provided that bi1 ≥ rπ∗, where rπ∗ is defined in Theorem 3;

the unit is split if |φ0(bi1) − φ0(b−i1)| < 2δΔω and φ0(bi1)+φ0(b−i1)
2

≥ −E(V ).

Otherwise, there is no trade. Payments for exclusivity and double sourcing

are, respectively,

pE∗(b−i1) : = E(V ) +
B+(b−i1) + B−(b−i1)

2
,

pDS∗(b−i1) : =
E(V ) + B−(b−i1)

2
,
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where:

B−(b) : = max
{(

φ0
)−1 (

φ0(b) − 2δΔω
)
,
(
φ0
)−1 (

−φ0(b) − 2E(V )
)}

,

B+(b) : = max
{(

φ0
)−1 (

φ0(b) + 2δΔω
)
,
(
φ0
)−1 (

−φ0(b) − 2E(V )
)}

.

After the bids are in and the winner is announced, but before allocating the

unit, the winner is charged a second-period entry fee of e1 := δS2, and the

loser, of e2 := δS2; if the auction results in either double sourcing or in no

trade, both bidders are charged e3 := δS0
2 . The rest of the second-period auction

is as in Theorem 3.

Example (Continued). Under long-term commitment, the first-period unit

is allocated to bidder i if bi1 > b−i1 + δ 1
24
, if her bid mets the reserve price.

Otherwise, provided that bi1 + b−i1 ≥ 1
2
, the unit is double sourced. Payments

are based on B−(b) = max
{
b − δ 1

48
, 1−2b

2

}
and B+(b) = max

{
b + δ 1

48
, 1−2b

2

}
.

Without intertemporal commitment power, at history hD, second-period

expected revenues are maximized by a second-price or English auction with a

reserve price of r1∗(v) := (φ0)
−1

(−v) (See Theorem C2 in Appendix C).

7 Conclusion

This paper looks at the problem of sequentially allocating time-sensitive

units of a good. Agents’ valuations are the sum of both a private-value and

a common-value component. This common component is unobserved ex-ante;

it is only revealed through experience, and privately.

While the sequential second-price or English auction is inefficient, the sec-

ond best can be implemented by a slight variation on this mechanism in which

bidders are asked to pay deposits in the first period. If the first-period surplus

always covers the welfare cost of implementability, or if both units must be

allocated, then no variation is necessary: The sequential second-price or En-

glish auction implements the second best. If the units can be double sourced,
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bidders submit single bids directly, and the bid gap determines whether the

contract is split or awarded exclusively.

Another variation on the sequential second-price or English auction, with

personalized entry fees, implements the revenue-maximizing mechanism. When

the seller cannot commit to excluding bidders who fail to pay the entry fees,

then a scoring-rule auction with endogenous reserve prices is held after allo-

cating the first unit exclusively.

One important question remains open for future research: What kind of

social-choice functions can be implemented when private-value signals are per-

sistent? The planner may wish to exploit this persistence, and condition the

second-period allocation or the payments on the first-period outcome; but

then, agents may have incentives to pool and hide information in the first

place.

A Proofs

Proof of Lemma 1. By the Principle of Optimality, we can maximize wel-

fare or revenues recursively. Due to the independence of the agents’ first- and

second-period signals, the second-period state variables are the contemporane-

ous signals and the first-period allocation outcome, not the first-period signals.

The rest follows from the same argument behind the Revelation Principle.

For Lemma A1 and for the proof of Lemma 2 below, let S
(i)
i2 denote the

truthful-equilibrium payoff function of agent i at history h(i).

Lemma A1. Assume that there is a function Φ : [v + w, v + w] → R such

that S
(i)
i2 (v, wi2) = Φ(v+wi2) for every (v, w). If S

(i)
i2 is differentiable at (v, w),

Φ is differentiable at v + w.

Proof. Assume that (v, w) is an interior point; for boundary points, the same

argument works focusing on limits in the right directions. Take h > 0 small

enough that v + w + h ∈ [v + w, v + w], v + h
2
∈ [v, v] and w + h

2
∈ [w,w] and
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notice that h =
∥
∥
∥
[

h
2

h
2

]′∥∥
∥. Define the difference-quotient map, δ(v,w), as:

δ(v,w)(h) : =
Φ(v + w + h) − Φ(v + w)

h
=

S
(i)
i2

(
v + h

2
, w + h

2

)
− S

(i)
i2 (v, w)

∥
∥
∥
[

h
2

h
2

]′∥∥
∥

=
S

(i)
i2

(
v + h

2
, w + h

2

)
− S

(i)
i2 (v, w) −∇S

(i)
i2 (v, w)′

[
h
2

h
2

]′
∥
∥
∥
[

h
2

h
2

]′∥∥
∥

+ q
(i)
i2 (v, w).

Since S
(i)
i2 is differentiable at (v, w), the limit of the first term as h approaches

0 is 0. Thus, δ(v,w)(h) has limit q
(i)
i2 (v, w) as h approaches 0.

Proof of Lemma 2. (Idea for argument suggested by Alejandro Manelli.)

The first part is immediate, and means that we can write S
(i)
i2 as a function

S̃
(i)
i2 of the sum of the arguments. By incentive compatibility, S

(i)
i2 is convex

and hence differentiable almost everywhere on [v, v] × [w,w]. By Lemma A1,

if S
(i)
i2 is differentiable at (v, wi2) ∈ [v, v] × [w,w], then S̃

(i)
i2 is differentiable at

v + wi2. At such a point, we have:

∇S
(i)
i2 (v, wi2) = xi(v, wi2) = q

(i)
i2 (v, wi2)

[
1

1

]

= S̃
(i)
i2

′(v + wi2)

[
1

1

]

.

The result follows by taking φ := S̃
(i)
i2

′.

Proof of Theorem 1. Let the expected second-period welfare in a simple

direct-revelation dynamic mechanism be sω0
2 (q2), s

ω1
2 (q2), and let sω

1 (q) denote

the corresponding expected overall welfare:

sω0
2 (q2) : = E

[
(E(V ) + Wi2)q

(0)
i2 (W2) + (E(V ) + W−i2)q

(0)
−i2(W2)

]
,

sω1
2 (q2) : = E

[
Ui2q

(i)
i2 (Ui2,W−i2) + (V + W−i2)q

(i)
−i2(W−i2, Ui2)

]
,

sω
1 (q) : = E

[
qa1(W1)

(
E(V ) + Wa1 + δ

(
sω1
2 (q2) − sω0

2 (q2)
))

+ qb1(W1)
(
E(V ) + Wb1 + δ

(
sω1
2 (q2) − sω0

2 (q2)
))]

+ δsω0
2 (q2).

Start by analyzing the second-period allocation. At history h(0), there is no
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asymmetry or interdependencies in the information held by the agents, and the

first-best allocation can be achieved: sω0
2 (q2) ≤ E(V )+E [max {Wi2,W−i2}] =

sω0
2

(
qFB
2

)
= Sω0

2 . At history h(i), by Lemma 2, the planner only condition the

second-period allocation rule on the sum of agent i’s reports. We have:

sω1
2 (q2) = E [qi2 (Ui2,W−i2) Ui2 + q−i2 (Ui2,W−i2) (V + W−i2)]

≤ E [qi2 (Ui2,W−i2) (Ui2 − V − W−i2)] + E(U)

= E {E [qi2 (Ui2,W−i2) (Ui2 − V − W−i2)|Ui2,W−i2]} + E(U)

= E [qi2 (Ui2,W−i2) (h (Ui2) − W−i2)] + E(U)

≤ E [max {0, h (Ui2) − W−i2}] + E(U) = sω1
2

(
qSB
2

)
= Sω1

2 .

Moving back to the first period, fixing qSB
2 as continuation, sω

1

(
q1, q

SB
2

)
≤

δSω0
2 + E [max {max {Wa1,Wb1} + E(V ) − δΔω, 0}] = sω

1

(
qSB
)
.

Proof of Corollary 1. This is an immediate consequence of Lemma 2.

Lemma A2. Δω ≥ 0.

Proof. We can write expected second-period social welfare as follows:

Sω0
2 = E [max {Ui2, U−i2}] ,

Sω1
2 = E [max {Ui2, g(Ui2) + W−i2}] .

For each ui2 ∈ [v + w, v + w] and w−i2 ∈ [w,w], we have:

max {ui2, g (ui2) + w−i2} = max {ui2, E [V + w−i2 |Ui2 = ui2,W−i2 = w−i2 ]}

≤ E [max {Ui2, U−i2} |Ui2 = ui2,W−i2 = w−i2 ] .

The result follows by taking expectations.

Lemma A3. Let Sω
1 := sω

1

(
qSB
)
and S̃ω

1 := E [max {Wa1,Wb1}] + E(V ) +

δE(U); S̃ω
1 is the highest possible expected welfare when the second-period al-

location is fixed beforehand. Then, Sω
1 ≥ S̃ω

1 .
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Proof. Take a pair wa1, wb1 ∈ [w,w] such that trade takes place under qSB
1 , we

have max {wa1, wb1}+ E(V ) + δE(U) ≤ max {wa1, wb1}+ E(V ) + δSω1
2 . If the

signals induce no trade under qSB
1 , namely, if max {wa1, wb1} + E(V ) < δΔω,

then max {wa1, wb1}+E(V )+δE(U) < δΔω+δE(U) = δSω0
2 −δSω1

2 +δE(U) ≤

δSω0
2 . The result follows by taking expectations.

Proof of Theorem 2. Consider bidder i’s problem of type wi1, wi2, if bidder

−i of type w−i1, w−i2 adopts the following strategy:

• At history h(0), bid w−i2 + E(V ).

• At history h(−i), given v, bid u−i2 = v + wi2.

• At history h(i), bid h−1(w−i2).

• If both bidders have paid the deposit, bid w−i1 + E(V ) + δΔS.

• If only −i has paid the deposit, accept if w−i1 + E(V ) + δS2 − r1 ≥ δS0
2 .

• Pay the deposit if w−i1 ≥ w∗ := δΔω − E(V ).

As first-period signals are uninformative of v, beliefs for agent i at his-

tories h(0) and h(−i) are given by the priors. At history h(0), the symmetric

equilibrium in the second-price auction has both bidders bidding their id-

iosyncratic signals augmented by E(V ). Straightforward bidding gives a bid

of ui2 = wi2 + v at history h(i); Theorem B1 establishes that i bids h−1(wi2)

at history h(−i).

Turn to the first period. If bidder i is the only one who paid the deposit,

she will be offered the first-period unit and the rebate. This offer is accepted

by all types wi1 such that wi1 + E(V ) + δS2 − r1 ≥ δS0
2 , or, equivalently,

wi1 ≥ δΔω − E(V ) = w∗. If both bidders are active, they bid according to

Theorem B1.

Finally, consider the participation problem. Start with the case wi1 < w∗.

If w−i1 < w∗ and bidder i pays the deposit, she will be the only one to do so and

can get the first-period unit for a net payment of r1, her outside option being

δS0
2 . However, this is not profitable: wi1+E(V )+δS2−r1 < δS0

2 . An opponent
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of type w−i1 ≥ w∗ would pay the deposit and take the offer if unopposed.

Hence, i is better off not paying the deposit: wi1 + E(V ) + δS2 − β1(w−i1) ≤

wi1 + E(V ) + δS2 − r0 < δS2. In either case, type wi1 < w∗ cannot do better

than not paying the deposit.

If wi1 ≥ w∗ and her opponent is of type w−i1 < w∗, she will be the only

bidder in the auction, should she choose to participate. She can get the first-

period unit for a net payment of r1, which yields a payoff of at least δS0
2 . This

payoff is exactly her outside option, so she cannot profit by withholding the

deposit. When her opponent’s type is also above w∗, her outside option is

δS2. If she participates in the auction, both bidders will be present and the

(interim) payoff to i will be max {wi1 − w−i1, 0} + δS2 ≥ δS2.

It follows that the suggested strategy is a PBE. In fact, the strategies

remain best responses if the information disclosed in equilibrium were made

public beforehand. However, there would be ex-post regret if both components

of agent i’s valuation were made public at history h(i).

It is immediate that the equilibrium outcome at history h(0) coincides with

the second-best allocation rule; the same is true at history h(i). When both

bidders are active in the first period, the unit goes to the highest-value bidder.

The deposits and reimbursements are chosen to exclude the right types.

Proof of Corollary 2. Let w∗ = δΔω − E(V ) be the lowest type that pays

the deposit in equilibrium. If E(V ) + w ≥ δΔω, then w ≥ w∗.

Proof of Theorem 2’. The portion of the argument that correspond to the

continuation game at histories h(a), h(b) is a special case of Proposition 1 in

Hernando-Veciana and Troge (2011), so the details are omitted. As for the

first period, the same argument as in the proof of Theorem 2 applies, with

w−i1 := maxj 6=i wj1 replacing w−i1 in the analysis of agent i’s behavior.

Proof of Theorem 3. As the seller can exclude bidders who do not pay the

entry fee for the second period, bidders’ outside option at the moment of

paying the fees is 0. As the fees do not extract more than the corresponding

continuation values, it is individually rational (for all types) to pay the fee.
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Hence, the seller captures the full continuation welfare. Seller’s profits are:

Π(q1, τ1) = E
{
qa1(W1)

[
E(V ) + φ0(Wa1) + δSω1

2

]

+qb1(W1)
[
E(V ) + φ0(Wb1) + δSω1

2

]
+ [1 − qa1(W1) − qa2(W1)] δS

ω0
2

}
.

Following Myerson (1981), the first-period portion of the mechanism is a

second-price auction with reserve price rπ∗.

Lemma A4. K ≥ 0.

Proof. By Lemma A2, the first term in K is non-negative; we are done if we

show that the second term is non-negative as well. Define the ex-post surplus

functions:

S2(w2, v) : = max
{
0, wa2 − wb2 + v − g

(
h−1 (wb2)

)}
,

S0
2(w2) : = max{0, wa2 − wb2},

S2(w2, v) : = max {0, wa2 − wb2 + g (v + wb2) − v} ,

so S2 = E [S2(W2, V )]. For each w2, v, define p(∙; w2, v) : [0, 1]2 → R as:

p(x; w2, v) := max
{
0, wa2 − wb2 +

[
v − g

(
h−1 (wb2)

)]
x1 + [g (ub2) − v] x2

}
.

Notice that we can write S2(w2, v) = p((1, 0); w2, v), S0
2(w2, v) = p((0, 0); w2, v),

and S2(w2, v) = p((0, 1); w2, v). As the upper envelope of affine functions, it

follows that p(∙; w2, v) is convex. Thus, 1
2
p((1, 0); w2, v) + 1

2
p((0, 1); w2, v) ≥

p
((

1
2
, 1

2

)
; w2, v

)
, or:

S2(w2, v) + S2(w2, v) ≥ max
{
0, 2(wa2 − wb2) + g (v + wb2) − g

(
h−1 (wb2)

)}
.

By taking expectations over V conditional on w2 and on V > h−1 (wb2)−wb2,

Jensen’s Inequality and affiliation imply that max {0, 2(wa2 − wb2)} is at most:

E
[
S2(w2, v)|w2, V > h−1 (wb2) − wb2

]
+ E

[
S2(w2, v)|w2, V > h−1 (wb2) − wb2

]

Finally, taking expectations, we get that (S2−S0
2)−(S0

2−S2)
2

=
S2+S2

2
−S0

2 ≥ 0.
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Proof of Theorem 4. The payoff to wi1 when she bids b and −i bids b′ is:

si1(b, b
′; wi1) = δS2 +






wi1 + E(V ) + δΔS − b′ b > b′ + 2δΔω,
wi1+E(V )+δΔS

2
− b′

2
+ δΔω |b − b′| ≤ 2δΔω,

0 b < b′ − 2δΔω.

Define wi1 := wi1 + E(V ) + δΔS. We have wi1 − b′ > wi1−b′

2
+ δΔω if and only

if wi1 > b′ + 2δΔω; and wi1−b′

2
+ δΔω > 0 if and only if wi1 > b′ − 2δΔω.

Proof of Theorem 5. As in the proof of Theorem 3, the seller always cap-

tures the continuation welfare. (Recall that the continuation welfare is the

same at histories hD and h(0).) If first-period signals are w1, interim profits

are now φ0(wa1) + E(V ) + δSω1
2 if q1(w1) = (1, 0); φ0(wb1) + E(V ) + δSω1

2 if

q1(w1) = (0, 1); φ0(wa1)+φ0(wb1)
2

+ E(V ) + δSω0
2 if q1(w1) =

(
1
2
, 1

2

)
; and δSω0

2 if

q1(w1) = (0, 0). The following allocation rule maximizes expected revenues:

qπ
1 (w1) =






(1, 0) wa1 > wb1, wa1 ≥ max
{

(φ0)
−1

(φ0(wb1) + 2δΔω) , rπ∗
}

,

(0, 1) wb1 > wa1, wb1 ≥ max
{

(φ0)
−1

(φ0(wa1) + 2δΔω) , rπ∗
}

,
(

1
2
, 1

2

)
|φ0(wa1) − φ0(wb1)| < 2δΔω, φ0(wa1)+φ0(wb1)

2
≥ −E(V ),

(0, 0) otherwise,

where rπ∗ is as in Theorem 3. This allocation function satisfies the monotonic-

ity condition for implementability; if the profile of first-period types is such

that the unit is double sourced, then an increase in the signal of one of the

agents will never cause her to be excluded. In other words, in moving from

double sourcing to exclusive allocation, the favored agent always meets the re-

serve price rπ∗: φ0(wi1) ≥ φ0(w−i1) + 2δΔω and φ0(wi1) + φ0(w−i1) ≥ −2E(V )

imply φ0(wi1) ≥ −E(V ) + δΔω, or wi1 ≥ rπ∗. The transfers that yield an

implementable mechanism follow from the envelope formula for payoffs. For

agent i, for the double-sourcing allocation, we have:

τπ
i1(w1) =

E(V ) + B−(w−i1)

2
;
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for exclusivity,

τπ
i1(w1) = E(V ) +

B+(w−i1) + B−(w−i1)

2
;

otherwise, τπ
i1(w1) = 0. These correspond to the proposed mechanism.

B Sequential Second-price or English Auctions

Theorem B1. The following strategy profile is the unique strategy profile that

survives iterated deletion of weakly-dominated strategies. In the second period,

the neighbor bids her total valuation, while the non-neighbor bids according to

β2 = h−1. In the first period, both bid according to β1(w) = w + E(V ) + δΔS.

Proof. Assume, without loss of generality, that a is the neighbor in the second

period. Straightforward bidding is a weakly dominant strategy for her. If b ob-

served ua2 before bidding, she would update her valuation to wb2 +g(ua2). Her

payoff from bid b would be I (b > ua2) [wb2 − h (ub2)] ≤ max {0, wb2 − h (ub2)};

this upper bound is uniquely attained at b = h−1 (wb2).

In the first period, the bidders’ problem is equivalent to a problem of

independent and private values; bidding their valuation, wi1 + E(V ) + δΔS, is

a weakly-dominant strategy.

Lemma B1. S2 ≥ S0
2 ≥ S2.

Proof. Giving more information to the non-neighbor allows her to refine her

bids without changing the neighbor’s behavior; hence, S0
2 ≥ S2. Next, consider

S2(w2, v) = max {0, wa2 − wb2 + v − g (h−1 (wb2))} and S0
2(w2) := max{0, wa2−

wb2}, so that S2 = E
[
S2(W2, V )

]
, S0

2 = E [S0
2(W2)]. By Jensen’s Inequality

and affiliation, E
[
S2(w2, V ) |w2, Ua2 ≥ h−1 (wb2)

]
is at least

max
{
0, wa2 − wb2 + E

[
V
∣
∣Ua2 ≥ h−1 (wb2)

]
− E

[
V
∣
∣Ua2 = h−1 (wb2)

]}
,

which is at least S0
2(w2). The result follows taking expectations.
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C Short-Term Commitment

Lemma C1. The second-period revenue-maximizing mechanism at h(i) is im-

plemented by the following auction. The reserve price for i is r
(i)
i := (φ1)

−1
(0).

The reserve price for −i is a function of bidder i’s second-period bid; this func-

tion is r
(i)
−i := (φ0)

−1 ◦ (−g). If the profile of bids is (bi2, b−i2), bi2 is compared

to ψ(b−i2), where ψ := (φ2)
−1 ◦ φ0, and the highest of these determines the

winner. If i wins, she pays ψ(b−i2); if −i wins, she pays ψ−1(bi2).

Proof. Under implementable mechanisms, revenues are bounded above by the

following expression: E [max {φ0 (W−i2) + g (Ui2) , φ1 (Ui2) , 0}]. This bound is

attained by:

q
π,(i)
i2 (ui2, w−i2) = I

(
φ1 (ui2) > max

{
φ0 (w−i2) + g (ui2) , 0

})
,

q
π,(i)
−i2 (ui2, w−i2) = I

(
φ0 (w−i2) + g (ui2) > max

{
φ1 (ui2) , 0

})
.

Agents i, −i pay, respectively,

ui (w−i2) : = inf
({

u ∈ [v + w, v + w] : q
π,(i)
i2 (u,w−i2) = 1

})
,

w−i (ui2) : = inf
({

w ∈ [w,w] : q
π,(i)
−i2 (ui2, w) = 1

})

per unit; these prices represent the lowest types that trade. With these transfer

functions, both agents have incentives to bid truthfully.

For the next lemma, let π0
2 be the seller’s second-period expected profits

when no agent has observed v, and π1
2, when a single agent has:

π0
2 : = E

[
max

{
max

{
φ0(Wa2) + E(V ), 0

}
, max

{
φ0(Wb2) + E(V ), 0

}}]
,

π1
2 : = E

[
max

{
max

{
φ1(Ua2), 0

}
, max

{
φ0(Wb2) + g(Ua2), 0

}}]
.

Let S
π

2 , Sπ0
2 and Sπ

2 be the ex-ante second-period surplus of the neighbor,

of either agent if both are equally (un)informed, and of the non-neighbor,
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respectively:

S
π

2 : = E
[
max

{
Ua2 − max

{(
φ1
)−1

(0), ψ (Wb2)
}

, 0
}]

,

Sπ0
2 : = E

[
max

{
Wa2 − max

{
Wb2,

(
φ0
)−1

(−E(V ))
}

, 0
}]

,

Sπ
2 : = E

[
max

{
Wb2 − max

{(
φ0
)−1

(−g (Ua2)) , ψ−1 (Ua2)
}

, 0
}]

.

Lemma C2. The first-period allocation and transfer functions that maximize

expected revenues are given by qπ
i1 (w1) = I (φ0 (wi1) + Δπ > 0) I (wi1 > w−i1)

and by τπ
i1 (w1) = qπ

i1 (w1)
[
E(V ) − δ

(
Sπ

2 − S
π

2

)
+ max

{
w−i1, (φ

0)
−1

(−Δπ)
}]

+

(1 − qπ
−i1 (w1))δ (Sπ0

2 − Sπ
2 ), where Δπ := E(V ) − δ

(
Sπ0

2 − S
π

2 + π0
2 − π1

2

)
.

Proof. The seller’s revenues, Π(q1, τ1), can be bound above by:

E
[
max

{
φ0(Wa1), φ

0(Wb1)
}

+ Δπ
]
− Sa1(w) − Sb1(w) + δ

(
2Sπ0

2 + π0
2

)
.

The bound is attained by qπ
i1 (w1) = I (φ0 (wi1) + Δπ > 0) I (wi1 > w−i1); the

proposed transfers guarantee implementability.

Theorem C1. Let:

rπ0 : = E(V ) − δ
(
Sπ

2 − S
π

2

)
+
(
φ0
)−1

(−Δπ) ,

rπ1 : = rπ0 − δ
(
Sπ0

2 − Sπ
2

)
,

rπ2 : = E(V ) +
(
φ0
)−1

(−E(V )).

The following mechanism maximizes expected revenues under short-term com-

mitment. Both bidders are asked to pay (simultaneously) a deposit of rπ0. If

both pay, they (simultaneously) submit bids; admissible bids are not lower than

rπ0. The highest bidder wins and pays the difference between the lowest bid and

rπ0; the loser gets her deposit back. If only one bidder pays, she is given the

option to take the unit for a final price of rπ1, or a full refund. In either case,

if the unit is sold, the scoring-rule auction of Lemma C1 follows. The unit is
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withheld if nobody pays the deposit. If the unit is not sold, a second-price or

English auction with reserve rπ2 follows.

Proof. Consider the following strategy for bidder i’s of type wi1, facing bidder

−i of type w−i1:

• In the second period, bid as in the proof of Theorem 2 and Lemma C1.

• If both bidders are active in the first period, bid w−i1+E(V )−δ
(
Sπ

2 − S
π

2

)
.

• If only −i has paid the deposit, accept if w−i1+E(V )+δS
π

2 −rπ1 ≥ δSπ0
2 .

• Pay the deposit if w−i1 ≥ w∗∗ := (φ0)
−1

(−Δπ).

That this strategy identifies a symmetric equilibrium follows by a very similar

argument as in the proof of Theorem 2, so the details are omitted. It can be

checked that the equilibrium outcome coincides with the social-choice function

identified in Lemmas C1 and C2.

Allowing for double sourcing, at history hD, second-period expected rev-

enues are maximized by a second-price or English auction with reserve price

r1∗(v) := (φ0)
−1

(−v); the reserve price is r1∗(E(V )) instead if the first unit

has been withheld. Denote by πD
2 , SD

2 the ex-ante second-period profits and

surplus at hD:

πD
2 : = E

[
max

{
max

{
φ0(Wa2) + V, 0

}
, max

{
φ0(Wb2) + V, 0

}}]
,

SD
2 : = E

[
max

{
Wa2 − max

{
Wb2,

(
φ0
)−1

(−V )
}

, 0
}]

.

Let ΔD1 := δ
(
2SD

2 + πD
2 − S

π

2 − Sπ
2 − π1

2

)
be the difference in discounted con-

tinuation welfare at hD versus h(i); ΔD2 := δ
(
2Sπ0

2 + π0
2 − S

π

2 − Sπ
2 − π1

2

)
, that

at h(0) versus h(i); and ΔD3 := δ
(
2Sπ0

2 + π0
2 − 2SD

2 − πD
2

)
= ΔD2 − ΔD1, at

h(0) versus hD. Finally, define the reserve price rD := (φ0)
−1 (

ΔD2 − E(V )
)
.

Theorem C2. The following mechanism maximizes expected revenues under

short-term commitment. In the first period, both bidders submit bids. If the
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profile of bids is b1 = (ba1, bb1), with bi1 > b−i1, bidder i wins exclusively if

φ0(bi1) > φ0(b−i1)+2ΔD1 and bi1 ≥ rD; the unit is split if |φ0(bi1) − φ0(b−i1)| ≤

2ΔD1 and φ0(bi1)+φ0(b−i1)
2

≥ ΔD3 − E(V ). If bidder i wins exclusively and

b−i1 ≥ rD, her payment is:

pE∗(b−i1) := E(V ) +
C+(b−i1) + C−(b−i1)

2
− δ

(
Sπ

2 − S
π

2

)
,

where:

C−(b) : = max
{(

φ0
)−1 (

φ0(b) − 2ΔD1
)
,
(
φ0
)−1 (

−φ0(b) + 2ΔD3 − 2E(V )
)}

,

C+(b) : = max
{(

φ0
)−1 (

φ0(b) + 2ΔD1
)
,
(
φ0
)−1 (

−φ0(b) + 2ΔD3 − 2E(V )
)}

.

Otherwise, with bidder −i disqualified, she is offered the unit for a price of

pπ := δ
(
S

π0

2 − Sπ0
2

)
. In either case, bidder −i pays nothing. If the unit is

double sourced, bidder i pays:

pDS(b−i1) :=
E(V ) + C−(b−i1)

2
+ δ

(
SD

2 − Sπ
2

)
,

and similarly for bidder −i. The unit is withheld if nobody meets the reserve

price. The second-period auction is as in Theorem C1, with the corresponding

reserve price r1∗(∙).

Proof. Given w1, revenues are δ
(
S

π

2 + Sπ
2 + π1

2

)
+ E(V ) + φ0(wa1) if q1(w1) =

(1, 0); δ
(
S

π

2 + Sπ
2 + π1

2

)
+ E(V ) + φ0(wb1) if q1(w1) = (0, 1); δ

(
2SD

2 + πD
2

)
+

E(V ) + φ0(wa1)+φ0(wb1)
2

if q1(w1) =
(

1
2
, 1

2

)
; and δ (2Sπ0

2 + π0
2) if q1(w1) = (0, 0).

The allocation rule that maximizes revenues is given by:

qπ
1 (w1)

:=






(1, 0) wa1 > wb1, wa1 ≥ max
{

(φ0)
−1 (

φ0(wb1) + 2ΔD1
)
, rD
}

,

(0, 1) wb1 > wa1, wb1 ≥ max
{

(φ0)
−1 (

φ0(wa1) + 2ΔD1
)
, rD
}

,
(

1
2
, 1

2

)
|φ0(wi1) − φ0(w−i1)| < 2ΔD1, φ0(wi1)+φ0(w−i1)

2
≥ ΔD3 − E(V ),

(0, 0) otherwise.
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As in Theorem 5, this allocation function satisfies the monotonicity condition

for implementability. This is the proposed allocation rule. The payoff to wi1

from the proposed auction when she bids b, and −i bids b′, is:

si1(b, b
′; wi1)

= δSπ
2 +






wi1 −
C+(b′)+C−(b′)

2

b ≥ max
{

(φ0)
−1 (

φ0(b′) + 2ΔD1
)
, rD
}

,

b′ ≥ rD;

wi1 + δ
(
S

π0

2 − Sπ
2

)
− pπ

b ≥ max
{

(φ0)
−1 (

φ0(b′) + 2ΔD1
)
, rD
}

,

b′ < rD, accept;

δ(Sπ0
2 − Sπ

2 )
b ≥ max

{
(φ0)

−1 (
φ0(b′) + 2ΔD1

)
, rD
}

,

b′ < rD, reject;

wi1−C−(b′)
2

|φ0(b) − φ0(b′)| < 2ΔD1,
φ0(b)+φ0(b′)

2
≥ ΔD3 − E(V );

0 otherwise;

= δSπ
2 +






wi1 −
C+(b′)+C−(b′)

2
b ≥ C+(b′), b′ ≥ rD,

wi1 + δ(Sπ0
2 − Sπ

2 ) b ≥ C+(b′), b′ < rD, accept,

δ(Sπ0
2 − Sπ

2 ) b ≥ C+(b′), b′ < rD, reject,
wi1−C−(b′)

2
b ∈ [C−(b′), C+(b′)),

0 otherwise.

Bidding straightforwardly is a weakly dominant strategy. In the event of being

the only serious bidder, the offer to buy for price pπ is never rejected.
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