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Abstract

This paper proposes a framework to evaluate the impact of longevity-
linked securities on the risk-return trade-off for traditional portfolios.
Generalized unexpected raise in life expectancy is a source of aggre-
gate risk in the insurance sector balance sheets. Longevity-linked se-
curities are a natural instrument to reallocate these risks by making
them tradable in the financial market. This paper extends the strate-
gic asset allocation model of Campbell and Viceira (2005) to include
a longevity-linked investment in addition to equity and fixed income
securities and describe the resulting term structure of risk-return trade-
offs. The model highlights an unexpected predictability pattern of the
survival probability estimates and gives an empirical valuation of the
market price of longevity risk based on the Lee and Carter (1992) mor-
tality model and on the time series of prices for standardized annuities
publicly offered by US insurance companies.
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§Università L. Bocconi, IGIER and CAREFIN, Milano, claudio.tebaldi@unibocconi.it

1



1 Introduction

This paper proposes a framework to evaluate the impact of longevity-linked
securities on the risk-return trade-off for traditional portfolios. Longevity-
linked securities are instruments designed to reduce the impact of undiver-
sifiable longevity risk on public and private balance sheets. Longevity risk is
the risk that an annuitant lives more than forecasted by the annuity provider,
so that the company has to pay the annuity for a longer-then-expected period
after her retirement. Longevity risk can be decomposed in two underlying
components: an idiosyncratic random variation risk and a common trend
risk. Random variation risk is the risk that mortality rates differ from their
expected outcome as a result of chance or individual-specific characteristics.
Trend risk, on the other hand, is the risk that unanticipated changes in life-
style behavior or medical advances significantly improve longevity for the
population as a whole. Idiosyncratic risk is dealt with by pooling a large
number of different individuals. Trend risk, similarly to any macroeconomic
risk, is on the other hand an “aggregate risk” that cannot be diversified away
by pooling. One path toward the reduction of the impact of longevity risk on
the balance sheets of public and private insurance providers passes through
the creation of a market for longevity-linked securities, both to enhance risk
sharing among different categories of financial investors and insurance sellers
and to produce an efficient valuation of the cost of longevity risk1. An im-
portant step to understand the potential of such a market is the evaluation
of the impact of longevity-linked securities on the risk return trade-off for
traditional portfolios.

The notion of risk term structure is the major innovation of our approach
to longevity risk security valuation models, and represents our first contri-
bution to the literature. A risk term structure describes the dependence of
the risk-return tradeoff on the investor’s holding period. Its importance is
well known in the analysis of financial markets, where the set of investment
opportunities includes a number of securities with different degree of persis-
tence and predictability: equities are traded on high frequency markets and
bonds are traded on a wide range of maturities, thus making optimal blend
of financial securities vary with the investor’s holding period. Quite surpris-
ingly, most of the financial research on securitization of longevity risks relies
on valuation models where uncertainty is simply accounted by their period
volatility (e.g. yearly). This assumption is clearly unrealistic, as longevity

1An early proposal to design of financial instruments for hedging longevity risk is done
in Blake and Burrows (2001).
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shocks are known to be driven by low frequency trends on time scales compa-
rable to business cycles. Their impact is negligible for short-term investors
but can be substantial for a long term investor like a pension fund, which
may be institutionally constrained and unable to periodically rebalance its
portfolio of annuitants. As a consequence, the impact of longevity risk on fi-
nancial portfolios is expected to depend heavily on the holding period, and a
proper description of the risk-return tradeoff term structure is therefore cru-
cial to promote an effective integration of longevity risk management in the
insurance industry with the maturity transformation and risk diversification
business in the financial sector.

To investigate the impact of longevity risks on the term structure of
risk return trade-offs and of optimal investment allocations we extend the
Vector Autoregression (VAR) framework originally proposed by Campbell
and Viceira (2005) to estimate the term structure of the Markowitz (1952)
risk-return efficient frontier generated by US stocks, Treasury bonds and
Treasury bills. In their model, Campbell and Viceira (2005) estimate a
VAR model including returns on US stocks, Treasury bonds and bills and
a set of associated predictors, namely the dividend-price ratio, the spread
between long-term and short-term bonds and the nominal T-bill yield. We
extend this framework by assuming that the set of investment opportunities
also includes a synthetic financial security exposed to aggregate longevity
risk and that the set of predictors includes a mortality predictor. In partic-
ular, the set of returns is extended by considering the prices of standardized
immediate annuities offered and publicly reported by North American insur-
ance companies. The mortality predictor, on the other hand, is delivered by
the popular Lee and Carter (1992) stochastic mortality model and is used to
describe the aggregate actuarial uncertainty driving the evolution of annuity
prices.

The second contribution of the paper characterizes the efficient mean-
variance allocations for investors with holding period ranging from 1 to 40
years when longevity-linked securities can be included in their portfolios.
This evaluation offers a natural benchmark for longevity risk pricing and is
a necessary step for the development of a liquid market for longevity-linked
securities. From a portfolio allocation point of view, we build on Cocco
and Gomes (2012), who analyze the portfolio choice problem of an agent
investing in financial assets whose returns are correlated with the shocks
to survival probabilities and which can be used to buy insurance against
aggregate longevity risk. In particular, the authors study both the portfolio
allocation between these bonds and risk-free assets and how their demand
changes over the life-cycle depending on individual characteristics. Long
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horizon mean-variance allocations share many properties with the strategic
asset allocations chosen by intertemporal utility maximizing investors, but
they are much easier to compute (Campbell and Viceira (2005)). In this
respect, our VAR is very close in spirit to the Campbell, Chan, and Viceira
(2003) strategic asset allocation model but allows to extend the analysis
of Cocco and Gomes (2012) to analyze allocation choices for an investor
who can choose between a larger set of securities, namely equity and long
term bonds. Along this direction, our precise description of the term struc-
ture of longevity risk-return trade-offs illustrates that the creation of liquid
longevity-linked securities with a stable demand critically hinges on an effi-
cient maturity transformation activity. In fact, only with the support of the
latter it is possible to diversify longevity risks among investors with short
holding periods and averse to liquidity and credit risks of long-duration
bonds.

The results we get from this modeling and estimation exercise are promis-
ing: our investigation identifies an interesting and unexpected predictability
pattern on the estimated survival probability. Moreover, the joint informa-
tion provided by the evolution of survival probabilities and annuity prices
offers a simple quantification of the compensation of aggregate longevity
risk exposure which is robust and not far from common expectations in the
industry. Last but not least, the maturity profiles of longevity risk offers a
clear and natural indication on the stochastic asset (and liability) manage-
ment policies which can be used to improve diversification and fully exploit
the benefits from financial innovation. In particular, the analysis of Sharpe
Ratios and durations of longevity liabilities is bridged with effective hedg-
ing policies and is a natural point of departure for the design of synthetic
longevity-linked securities.

While annuity prices are used to extract information about the price
of longevity risk implicit in the annuity contracts offered by US insurance
companies, it is important to draw a clear distinction between annuities and
the synthetic tradable security included in the VAR. The prices used in our
empirical estimation refer to standardized retail insurance contracts which
significantly differ from tradable financial securities: they are individual-
specific and their purchase is irreversible. The synthetic security introduced
in the VAR has a payoff which only depends on aggregate longevity risk -
as measured by the (ideally publicly available) index of our construction -
and offers a stylized example of a longevity-linked security. The distinction
between annuities and longevity-linked securities is particularly important
as the valuations of financial and actuarial contracts differ in a significant
way, as previously highlighted in the actuarial literature.
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From an empirical point of view Mitchell, Poterba, Warshawsky, and
Brown (1999), Poterba (2001), Horneff, Mitchell, and Stamos (2009) among
others, study the welfare benefits from purchasing annuities and discuss
the well-known under-annuitization puzzle. On the theoretical side, on the
other hand, the actuarially fair pricing of annuities is a well known and an-
alyzed problem (see e.g. Pitacco, Denuit, Haberman, and Olivieri (2009)
and Milevsky (2006) and references therein). The point of contact be-
tween the valuation of an annuity as from the above literature and that
of the longevity-linked security we employ in this paper is a “fair pricing”
argument of widespread use in actuarial science (Milevsky (2006)): rational
agents decide whether to annuitize or to defer the purchase of the annuity
for a given period of time by comparing the return offered by the annuity
with the potential return from self-annuitization during the deferral period.
As the efficiency of self-annuitization depends on the alternative financial
investments available in the market, it is reasonable to expect that an an-
nuity contract will offer a return that is both competitive as compared to
that of similar financial securities and includes a specific mortality credit
component.

Biffis, Denuit, and Devolder (2010) point our three sources of risk affect-
ing insurance securities: basis risk, i.e. the risk that the population from
which the survival probabilities were estimated differs from the insurer’s co-
hort, systematic mortality risk, and unsystematic mortality risk. We focus
on the systematic mortality risk component, the only one which should be
priced by rational agents willing to share undiversifiable longevity risk. A
central result of our modelling procedure is the precise quantification of the
potential benefits for investors and insurance providers generated by the
creation of an integrated market for longevity risk sharing. In this context,
it is important to remark that a transparent and accessible evaluation of
the price of aggregate risk is necessary not only for financial longevity risk
sharing schemes but also for actuarial ones.

An approach similar to ours for the pricing of longevity risk is followed
by Lin and Cox (2005) and Lin and Cox (2008), who apply the 1-factor and
2-factor Wang transform to estimate longevity premia from annuity prices.
While we retain their main actuarial valuation principles, we avoid the use
of the Wang transform which, as pointed out by Pelsser (2008), “does not
lead to a price which is consistent with the arbitrage-free price” and, there-
fore, “cannot be a universal framework for pricing financial and insurance
risks” (Wang (2002)). Milevsky, Promislow, and Young (2006) and Bayrak-
tar, Milevsky, Promislow, and Young (2009) develop a theory for pricing
undiversifiable mortality risk in an incomplete market. They postulate that
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an issuer of a life contingency requires compensation for this risk according
to a pre-specified instantaneous Sharpe ratio (see also Bayraktar and Young
(2008)). Within our model, the incompleteness generated by demographic
uncertainty is accounted for by including an additional state variable which
is extracted from the Lee and Carter (1992) model for stochastic mortality.
Previous attempts to quantify the impact of longevity risk on market prices,
like Friedberg and Webb (2007), who apply the Capital Asset Pricing Model
(CAPM) and the Consumption Capital Asset Pricing Model (CCAPM) to
quantify risk premia for potential investors in longevity bonds, produce very
low estimates of such a premium. The authors acknowledge that there is
likely to exist a “mortality premium puzzle” similar to the well-known “eq-
uity premium puzzle” (Mehra and Prescott (1985)) driving higher mortality
risk premia in the data than those economic models would suggest.

The paper is organized as follows: Section 2 describes the construction
of the aggregate longevity risk state variable and the estimation of an ex-
tended VAR that includes the aggregate longevity risk shock and annuity
price changes. Section 3 describes the optimal allocation for investors who
have the opportunity to invest in a synthetic longevity-linked security with
short duration and discusses the normative implications for the design of
an efficient market for longevity risk transfer. Section 4 defines an hedging
portfolio for aggregate longevity risk and quantifies longevity risk compen-
sation as measured by the Sharpe Ratio of this hedging portfolio. Section 5
concludes.

2 Risk and returns in a VAR model for financial
securities and annuity prices

Our empirical strategy follows the approach to the optimal portfolio choice
problem under return predictability proposed by Campbell, Chan, and Vi-
ceira (2003) and Campbell and Viceira (2005). However, we extend the
traditional investment opportunity set made by stocks, bonds and T-bills
with a longevity-linked security and derive the optimal portfolio allocation
at different horizons based on a Vector Autoregressive (VAR) specification
for returns and their predictors. As we include a longevity-linked security
in the investment opportunity set, we build an appropriate associated pre-
dictor from the estimation of a stochastic mortality model. We therefore
first illustrate how annuity valuation implies that the unexpected general-
ized mortality innovation as from the popular Lee and Carter (1992) model
can be used as a predictor of the return of a longevity-linked security. We
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then propose a VAR model of the joint dynamics of the returns on stocks,
bills, bonds, longevity-linked securities and their predictors. In the context
of the VAR dynamics, we build the optimal intertemporal hedging portfolio
and address the issue of pricing longevity risk.

2.1 A reduced form model for annuity valuation

Our estimate of the longevity risk-return trade-off is based on the historical
time series of observed prices for standardized annuity contracts offered by
insurance companies to voluntary individual annuitants. By “standardized”
annuities we mean single premium (involving a one-time investment) imme-
diate (commencing regular income payments one period after the premium
has been paid) single life (guaranteeing to make payments only to a single
beneficiary until her death) fixed (providing fixed payments) annuities.

It is important to remark that annuity contracts significantly differ from
tradable financial contracts, as they are individual-specific and their pur-
chase is irreversible. Moreover, insurance companies cannot liquidate the
subscribers and annuities cannot be replicated or sold short2. Finally, infor-
mational asymmetry between the subscriber and the insurance company is
known to affect annuity pricing: it is documented that voluntary subscribers
of life annuities live longer than average population3.

Despite these differences, the following simple argument proves that re-
turns from annuities are not independent from those of alternative financial
investments. Assume that a rational agent of age x at time t faces the al-
ternative between immediate annuitization at price Px,t or a deferral of the
entry decision by one year, buying the annuity at time t+1 and age x+1 at
a price Px+1,t+1. In order for the agent to opt for immediate annuitization,
the return provided by the annuity should be at least as large as the one
she would get from a financial investment with a similar risk-return profile
plus a mortality credit, the extra return required by the annuitant as a com-
pensation for the risk of a premature death between x and age x + 1. To
precisely quantify such risk, let qx,t denote the mortality rate for individuals

2An important element distinguishing insurance companies from several other financial
intermediaries is the lack of a secondary market where the contracts written by insurance
companies may be traded. The holder cannot sell her insurance policy to a third final
investor, albeit, in recent years, secondary markets for some insurance contracts have
developed.

3The adverse selection problem in annuity pricing has been discussed, among others,
by Mitchell, Poterba, Warshawsky, and Brown (1999) and Finkelstein and Poterba (2004).
More recently the role of informational asymmetries in longevity markets has been ana-
lyzed in Biffis and Blake (2010)
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of age x in year t, i.e. the probability that a person aged x and alive at the
beginning of year t dies within the end of the year. We define by sx+i,t+i

the probability to be alive in year t + i, of age x + i, conditional on being
alive at age x, so that 4

sx,t = 1,

sx+i,t+i = sx+i−1,t+i[1− qx+i,t+i] i = 1, . . . ,∞.

Life expectancy for a person aged x at time t is defined as ex,t =
∞
Σ
i=1
sx+i,t+i.

Survival probabilities tend to zero as time increases, given that mortality
rates qx,t increase with age x, and the probability of a premature death
between x and age x+ 1 is then quantified by 1− sx+1,t+1/sx,t.

Assuming that annuities are offered to rational agents in a competitive
market, prices set by insurance companies should correspond to the low-
est return making the investor indifferent between immediate annuitization
or deferral. Given this premise and the previous definitions, we derive an
approximate accounting identity providing an explicit expression of these
contributions.

As a starting point consider the definition of the one-period holding
return for an annuity paying a coupon C in each period (year) to a person
aged x at time t as follows:

RAt+1 =
(Px+1,t+1 + C)sx+1,t+1

Px,tsx,t
− 1. (1)

Dividing both sides of (1) by
(
1 +RAt,t+1

)
and multipling both sides by

Px,t

C ,
we have:

Px,t
C

=
1(

1 +RAt,t+1

) (sx+1,t+1

sx,t

)(
1 +

Px+1,t+1

C

)
.

Denoting with lowercase letters the natural logarithms of uppercase letters
we have:

px,t − c = −rAt+1 + ln

(
sx+1,t+1

sx,t

)
+ ln

(
1 + epx+1,t+1−c) .

Finally, taking a Taylor expansion of the last term about the average log
price-coupon ratio, P

C = ep−c, we have

4The common actuarial notation for the survival probability sx+i,t+i would be ipx,t.
It is modified in order to keep using the common financial convention where p indicates
the logarithmic price of a risky security, e.g. p− d will indicate the price-dividend ratio.
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px,t − c ' −rAt+1 + ln

(
sx+1,t+1

sx,t

)
+ ln

(
1 +

P

C

)
+

+
P/C

1 + P/C
(px+1,t+1 − c− p− c)

= −rAt+1 + ln

(
sx+1,t+1

sx,t

)
+ ks + ρ (px+1,t+1 − c) ,

where ρ ≡ ep−c

1+ep−c
. Therefore annuity returns can be written as

rAt+1 = k + ρ (px+1,t+1)− px,t + (1− ρ) c+ ln

(
sx+1,t+1

sx,t

)
,

and recalling that

ln

(
sx+1,t+1

sx,t

)
= ln (1− qx,t) ,

we get by rearranging that

px,t = k + (1− ρ) c+ ρ (px+1,t+1)− rAt+1 + ln (1− qx,t) .

Taking the term-by-by-term difference of the valuation equation between
time t+ 1 and t, the value of the coupon (nominal payment is fixed) disap-
pears from the valuation equation, so that

∆px,t = ρ (px+1,t+1 − px+1,t)−∆rAt+1 + ∆ ln (1− qx,t) , (2)

with ∆px,t ≡ px,t − px,t−1.
Consider now the the popular Lee and Carter (1992) model for stochastic

mortality. This model has both strong within-sample fitting properties and
remarkable out-of-sample predictive power. Together with the relative ease
of its computation, these characteristics have made it the standard mortality
forecasting model among practitioners and academics. The model consists
of a system of equations for the logarithm of the mortality rate of each age
cohort x at time t, qx,t and a time-series equation for an unobservable time-
varying mortality index kt, common among all age cohorts. In particular,
we have

ln (qx,t) = ax + bxkt + εx,t, (3)

kt = c0 + c1kt−1 + et, (4)

εx,t ∼ NID
(
0, σ2

ε

)
,

et ∼ NID
(
0, σ2

e

)
,

9



where ax and bx are age-specific constants. The error term εx,t captures
cross-sectional errors in the model-based prediction of mortality for differ-
ent cohorts, while the error term et captures random fluctuations in the
time series of the common factor kt driving mortality at all ages. This com-
mon factor evolves over time as an auto-regressive process and the favorite
Lee-Carter specification makes it a unit-root process by setting c1 = 1. Iden-
tification is achieved by imposing the restrictions

∑
t kt = 0 and

∑
x bx = 1,

so that the unobserved mortality index kt is estimated through Singular
Value Decomposition5.

Under the Lee-Carter specification we have that the revision of the mor-
tality credit contribution is linear in the innovation to the unobserved com-
mon factor component kt. In fact,

qx,t = exp (ax + bxkt + εx,t) ,

kt = c0 + c1kt−1 + et,

so that for small variations in mortality rates

ln (1− exp [ax + bx (kt) + εx,t])− ln (1− exp [ax + bx (kt−1) + εx,t−1])

' − [bxet + εx,t+1 − εx,t] .

A similar measure has already been introduced and discussed in Friedberg
and Webb (2007). Assuming that agents will compensate only aggregate
risk, the priced contribution to mortality credit is given by et+1, and we can
re-write (2) as

∆px,t = ρ (px+1,t+1 − px+1,t)−∆rAt+1 + bx (−et) . (5)

The last equation shows that the innovations in the common mortality
factor in the Lee-Carter model can be taken as a predictor for the change
in the price of a longevity-linked security.

Solving this relation forward up to period t+m and taking expectations
given the information set available at time t, we have:

∆px,t ' −
m∑
j=0

ρjEt∆r
A
t+1+j +

m∑
j=0

ρjbxEt (−et+j+1) ,

which shows that the annuity price variation is determined by future changes
in the holding period returns and by expected revisions in mortality rates.

5See Appendix A for a full description of the adopted identification and estimation
strategy.
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2.2 A model for stochastic mortality and its performance on
the US data

We apply the Lee and Carter (1992) model to estimate shocks to mortality
for cohorts in the age interval between 65 and 110. We restrict the estimation
to the cohorts of retired population for several reasons. First, the active
rebalancing of the contributions is not feasible for these cohorts, as they
typically consist of people who left the accumulation phase and entered the
decumulation phase. Hence, reallocation via securitization or resinsurance
is the only viable strategy that insurance companies can pursue to hedge the
associated longevity risk associated. Second, the largest publicly available
empirical data sets on annuity prices apply to annuitants belonging to these
cohorts. Third, limiting the specification to retired cohorts alleviates some
well-known limitations of the Lee-Carter model when applied to the entire
population (see Lee (2000)). On the other hand, the approach we propose
is fully flexible and we do not see specific obstacles to extend it to any other
(log-linearized version) of stochastic mortality models.

In Figure 1 we report evidence on the performance of the Lee-Carter
model in fitting US mortality rates. Our data come from the Human Mor-
tality Database of the University of Berkeley6. In Figure 1.1 we plot real-
ized mortality at age 65 throughout the period 1952-2007 (red dashed line)
against its Lee-Carter fitted value (blue continuous line). The model is esti-
mated on cohorts aged 20 to 110. In Figure 1.2, we report the cross-sectional
R2 of the estimate for all age cohorts in the same period. The model per-
forms very well in fitting mortality rates at all ages but those greater than
95, where the volatility of mortality is high: for more than fifty percent of
ages, the R2 is above 95%, and for more than seventy-five percent of ages it
is above 80%. Figure 1.3 reports the estimated unobservable common mor-
tality index k from Equation (4), which clearly features a negative trend.
The autoregressive coefficient c1 from Equation (4) is equal to 0.977 with an
associated standard deviation of 0.015, and this persistence allows to make
strong predictions about future mortality. Figure 1.4 reports the innovations
in the unobservable mortality index, which has a persistent autoregressive
structure: this variable will be our measure of the relevant uncertainty on
mortality and the predictor of returns of longevity-linked securities.

Insert Figure 1 about here

We use the Lee-Carter model to derive an observable counterpart of the
priced contribution to mortality credit. This measure, called qkt, is very

6The data are publicly available at http://www.mortality.org/
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similar to the one discussed in Friedberg and Webb (2007), and coincides
with the unexpected variation in the survival rate pooled over all retired
cohorts7:

qkt+1 '
110∑
x=65

{ln (1− qx,t+1)− Et [ln (1− qx,t+1)]} .

Using the Lee Carter specification, the observable index qkt+1 can be ap-
proximated by:

qkt+1 ' −
110∑
x=65

(αx + bxkt+1 + εx,t+1)− (αx + bxEt [kt+1])

= −
110∑
x=65

(αx + bx (kt + et+1) + εx,t+1)− (αx + bxkt)

= −
110∑
x=65

(bxet+1 + εx,t+1)

and, taking into account the normalization condition
∑110

x=65 bx = 1 and
the assumption that the non-systematic component vanishes when pooling
cohorts, i.e.

∑110
x=65 εx,t+1 ' 0, we have

qkt+1 ' −
110∑
x=65

(bxet+1 + εx,t+1) ' −et+1.

This shock describes the time evolution of the unexpected variation in mor-
tality rates which has a uniform impact across cohorts, and is estimated by
applying the Lee and Carter model only to retired cohorts. Then the fil-
tered innovation for the unobserved mortality index in the (restricted) Lee
Carter model is included in the vector of autoregressive variables to describe
unexpected variation in mortality rates. This variable offers a publicly avail-
able, cohort-independent, information which investors can observe and use
to quantify variability of systematic longevity risk.

2.3 VAR dynamics with annuity price changes

In this subsection we show that, using the above reduced valuation approach,
it is possible to model the stochastic evolution of annuity prices ∆px,t us-
ing a VAR specification which extends that of Campbell and Viceira (2005)

7We estimate the model on retired cohorts, only.
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(hereinafter CV-VAR(1)). Following Barberis (2000), Campbell and Viceira
(2002, 2005), we describe dynamics of asset returns and relevant predictors
using a VAR(1) model:

zMkt
t = ΦMkt

0 + ΦMkt
1 zMkt

t−1 + νMkt
t (6)

where

zMkt
t =

 r0t

xMkt
t

sMkt
t


is a m × 1 vector, with r0t being the log real return on the asset used as a
benchmark to compute excess returns on all other asset classes, xt being the
n×1 vector of log excess returns on all other asset classes with respect to to
the benchmark, and st is the (m− n− 1) × 1 vector of returns predictors.
The exact specification and its estimation results are reviewed in Appendix
B.

As described in the previous subsections, although an annuity is not a
financial security and cannot be priced accordingly, rationality of the annu-
itant forces the (log) holding period return rAt to be comparable (but for
the mortality credit) to the compensation one would get by investing in a
portfolio of traded financial securities with similar risk and return charac-
teristics while deferring by one year the annuitization. Hence we claim, and
later show empirically, that the financial component of the return rAt can
be replicated using a portfolio of securities whose evolution is described by
the CV-VAR(1) model. Moreover, assuming a stationary evolution for rAt ,
the VAR(1) specification implies that also −

∑m
j=0 ρ

jEt∆r
A
t+1+j is a linear

function of the state variables zMkt
t . This is equivalent to assuming

−
m∑
j=0

ρjEt∆r
A
t+1+j = φA0 + φA,Mkt

1 zMkt
t .

If innovations in the common mortality trend are persistent, we can express
the variation in the price of the annuity as follows:

∆px,t ' φA0 + φA,Mkt
1 zMkt

t + φ2 (−et) ,

and therefore the standard CV-VAR(1) model can be augmented to include

the evolution of the annuities’ (log) price growth in excess to the return of
the safe asset, x∆px,t, following the specification

x∆px,t = φA0 + φA,Mkt
1 zMkt

t−1 + φ2 (−et) + νAt+1,
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where νAt+1 is the combination of all shocks in the state variables and idiosyn-
cratic mortality shocks. Excess changes in annuity prices are determined by
a combination of market returns, market return predictors and the aggregate
longevity predictor. We now analyze the effect of extending the traditional
portfolio to include excess annuity prices by considering the following aug-
mented VAR specification:

zt = Φ0 + Φ1zt−1 + νt (7)

νt ∼ N (0,Σν),

where

zt =


r0t

xMkt
t

∆px,t
sMkt
t

−et


and Σν is the (m+ 2)×(m+ 2) variance-covariance matrix of the returns

on financial assets, the annuity prices and their associated predictors.

2.4 The dynamics of returns of US bonds, bills, stocks and
annuities

To evaluate how the inclusion of annuities and a predictor for the change in
their prices modifies the optimal portfolio allocation at different horizons,
we compare the results obtained from the CV-VAR(1) estimation over the
yearly sample 1953-2007 to those obtained from our extended VAR. The
first model includes six variables: the ex-post real T-bill rate, the annual
excess returns on stocks, the annual excess returns on long-term (20-year)
bonds, the log yield on a 90-day T-bill, the log dividend-price ratio and
the yield spread (defined as the difference between the 20-year zero-coupon
bond yield from the CRSP Fama-Bliss data file - the longest yield available
in the file - and the T-bill rate). The second model is an eight-variables
VAR obtained by adding to the standard CV-VAR(1) the log difference
in the annuity premium minus the risk-free rate (which extends the set of
excess returns) and the aggregate mortality shock (which extends the set of
predictors). Table 1 shows sample statistics for all variables. Our sample
which includes observations up to the most recent update of mortality data,
compares well with the annual sample used in previous studies. Only the
statistics on long term bond indicate a lower expected return, a result which
is clearly driven by the recent trends in interest rate policy.
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Table 2 shows the results for the standard CV-VAR(1). Table 3 shows
the results for the augmented VAR. Both estimated VAR’s include constants
in each equation. Detailed information on the data used in the estimation
are reported in Appendix C. The results from the standard model are well
in line with those reported in Campbell, Chan, and Viceira (2003). When
the extended VAR is estimated, no major changes take place in the coef-
ficients attached to the six financial variables in the original model. For
those variables whose explanatory power is significantly different from zero,
the impulse response coefficients are qualitatively similar between the two
tables and confirm all the stylized properties found in the original estima-
tion: real T-bill, stock and bond returns are predicted by nominal short
rate, dividend-price and term spread. The longevity shock is persistent and
helps to predict the change in annuity prices (a positive shock to longevity
increases the price of annuities). It also has some significance in predicting
excess returns on bonds. The two new equations included in the extended
VAR describe the evolution of the aggregate longevity shock and the loga-
rithmic yearly change of the annuity price in excess to the nominal T-bill.
The estimated aggregate longevity shock dynamics qkt is substantially a
univariate mean reverting with a persistence of 0.75 with substantially zero
expectation (estimation provides a value Et−1 [qkt] = 0.0005) confirming
both that the information conveyed by the aggregate longevity shock is not
spanned by other variables and that the spread between expected and real-
ized aggregate longevity is mean reverting and thus may be used to forecast
aggregate longevity growth.

The aggregate longevity shock is a significant predictor for x∆prt+1 (the
log difference in the annuity premium minus the risk-free rate), which is
also significantly predicted by past real and nominal T-bill rates and the
excess returns on long-term bonds. Annuity price growth in excess to the
T-bill rate have a positive loading on the real rate and a negative one on the
nominal T-bill rate, a negative loading on long term excess bond rate returns
and a positive dependence on the aggregate longevity shock. In Figure 2
the time series of historical (real) logarithmic price changes is compared
to the replication as operated by the VAR dynamic model aggregating the
information of financial securities returns and of the forecasting variables,
including the aggregate longevity shock.

Insert Figure 2 about here

The good fit indicates that the VAR estimation produces a realistic “re-
duced form” pricing model for the annuity contract offered by insurance

15



companies to annuitants. We underline once more that this approach is tai-
lored to capture the main stylized features of the interaction between finan-
cial markets and annuity risk management in the insurance industry. This
approach accounts only for aggregate longevity risk and does not account
for the actuarial components of insurance premia which must be included
to hedge basis risks or adverse selection effects, which in turn require a
discussion of the specific characteristics of annuitants.

3 The impact of longevity securitization on opti-
mal allocations

The possibility to trade longevity-linked securities extends the set of invest-
ment opportunities and offers a new diversification dimension. Following
Campbell and Viceira (2005), we compute the optimal portfolios for in-
vestors adopting a buy-and-hold strategy with holding period between 1
and 40 years. The set of investment opportunities is composed by T-bills,
equity, a rolling strategy in a long term bond and the Annuity Linked Se-
curity (ALS henceforth). This security grants to its holder a yearly return
equal to ∆prt the variation of the mean (logarithmic) price observed on
the US insurance market for a standardized annuity contract. Clearly the
return from this contract will raise if aggregate longevity is raising and will
decrease if aggregate mortality increases. A long position in the ALS corre-
sponds to an unavailable tontine insurance in which contracts are terminated
and then possibly renegotiated every year (for an actuarial discussion of such
synthetic contracts see Milevsky (2006), p. 224). A short position in the
ALS allows the investor to sell protection on the longevity risk of the cohort
of 65-years-old US annuitants.

A term structure of conditional volatilities at different horizons can be
naturally derived from the estimation of our VAR process for returns and
predictors.

Insert Figure 3 about here

In Figure 3, we compare the term structures of the standard deviation
of the ALS and of traditional financial securities for an horizon ranging
from 1 to 40 years. Notice that the annualized volatility increases with the
holding period, the clear sign of the long-term nature of the risks underlying
annuity prices. For holding periods shorter than 10 years, ALS is less risky
than equity and (rolling) bond investments, while on longer horizons its
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risk exceeds that of other securities: the irreversible nature of annuitization
implies that, from a pure financial point of view, this contract has a risk-
return profile similar to the one by a buy-and-hold strategy on a long term
bond. ALS price fluctuations reflect changes in the long-run expectations
about inflation and longevity trends, and a small persistent change to future
expectations can have a relevant impact on the current evaluation of the
annuity contract, making prices fluctuate accordingly. Note that an ALS is
not the contract that an insurance company would like to use to reinsure
aggregate longevity risk. In fact, an insurance company with a portfolio of
annuities under management would be willing to reinsure only aggregate
longevity risk but would prefer to retain the residual difersifiable risk, as
pooling different cohorts of annuitants is the remunerative core business of
the industry.

Figures 4, 5 plot the correlations among the extended set of securities as
a function of the holding period.

Insert Figure 4, 5 about here

The correlations between the ALS and financial securities have a sharp
decline with the holding period. These correlations, and more in general the
term structure of assets’ risk and returns, determine the weight that each
asset receives in the portfolio allocation of an investor with mean-variance
preferences for any given horizon. To have a sense of how this portfolio
allocation changes by including the possibility to invest in the ALS we again
follow Campbell and Viceira Campbell and Viceira (2005) and first consider
the generalized absolute minimum variance portfolio (henceforth GMV), the
portfolio with the lowest variance on the mean-variance efficient frontier. For
each holding period this portfolio is described in Figure 6.

Insert Figure 6 about here

Figure 6 shows that the investor overweights the allocation in the T-
bill to buy a combination of ALS and long term bond independently of the
investment horizon. This combination is a long position in the bond and a
short one in the ALS when the holding period is below 10 years, while for
longer horizons the two positions are switched. Hence, over periods of time
smaller than a decade, risk exposure is minimized by selling protection to
longevity while the same investment becomes speculative over longer holding
periods. As a consequence, it is expected that demand for longevity exposure
and the liquidity of longevity-linked securities can be considerably increased
by offering products with short durations.
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Figure 7 compares the term structure of risk of the extended GMV with
that of the “Campbell-Viceira” GMV and that of a T-bill. Inclusion of the
ALS reduces risk for all holding periods with the exception of the interval
between 10 and 15 years, where the optimal allocation in the ALS shifts
from negative to positive values and the rolling position in long term bonds
from positive to negative.

Insert Figure 7 about here

Roughly speaking, the allocation and the risk profile of the GMV confirm
that a long position in aggregate longevity is financially appealing, with low
risk and good diversification properties, only for an investor with an hori-
zon longer than 12-13 years. This result is consistent with the hypothesis
that annuity prices offer a return which is competitive with the alternative
investments available to the investor: annuities for a 65 year old investor
have an effective duration around 12 years (see, for example, Loeys, Pani-
girtzoglou, and Ribeiro (2007)). Note that the 12-year minimum variance
portfolio corresponds to an allocation in the ALS which is essentially zero.

Based on these observations it is possible to conclude that the creation
of short-duration (less than 10 years) longevity-linked securities is the key
step for an efficient securitization of longevity risk. These securities offer a
stochastic liability which can be efficiently used to finance investments with
good diversification properties. The risk-return analysis of the ALS shows
that securitization of longevity, which is a long run risk in the sense of car-
rying a small but persistent component, does not necessarily require the use
of long-duration securities. On the contrary, upon a precise quantification of
the term structure of longevity risk exposures, a more efficient management
of maturity transformation can be realized using structured securities, like
for example swaps. These findings indicate that the problems which affected
early longevity-indexed security issuances were clearly determined by long
durations giving rise to liquidity and credit risk components so large as to
overwhelm the effect of longevity risk both for pricing and hedging.

As a second illustration of the optimal mean-variance allocations in-
cluding a position in the short-term ALS, in Figure 8 we plot the optimal
allocations for a portfolio with an expected return of 10% as a function of
the holding period returns. As expected, the ALS short position is used to
leverage a portfolio of T-bills, equity and long-term bonds.

Insert Figure 8 about here
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4 Longevity securitization and inter-temporal hedg-
ing of the aggregate longevity risk

The results from the estimation of the extended VAR provide evidence of
a significant response of annuity prices to variations in aggregate longevity
rates. Quoted annuity prices are expected to include a compensation for
the insurance company to bear a risk exposure for the unexpected raise of
the undiversifiable longevity risk component. Following the conventional
Intertemporal CAPM (ICAPM) interpretation (Merton (1973)) expected
utility maximizers try to hedge the stochastic changes of their investment
opportunity created by unexpected aggregate longevity shocks. The hedging
portfolio is determined by an allocation in traded securities whose return is
maximally correlated with the longevity shock qkt. This portfolio is deter-
mined by the constrained minimization problem:

min
w

V art−1

[
Rqkt (wt−1)− qkt

]
s.t. : Rqkt (wt−1) = wt−1 · xt +W0,t−1rtbt

where xt is a n + 1 dimensional vector including the log excess returns of
market securities plus the annuity log price growth in excess to the T-bill
rate, Rqkt is the return on the replication portfolio and W0,t is the investor’s
wealth at time t. We assume that the trading strategy is constrained by the
condition that, in each period t,

wxrtb,t + wxr,t + wxb,t + wx∆p,t = W0,t,

and that the real return of the portfolio at each period is given by

Rt (wt−1, wrtb,t−1) = wxr,t−1 · (xrt + rtbt) + wxb,t−1 · (xbt + rtbt)

+wx∆p,t−1 · (x∆p+ rtbt) + (W0,t −wt−1 · 1) rtbt

wt−1 = [wxr,t−1, wxb,t−1, wx∆p,t−1] ,

xt = [xrt, xbt, x∆pt] ,

W0,t = wrtb,t−1 + wt−1 · 1.

Recall that the purchase of an annuity is irreversible and payments are done
until the death of a single beneficiary, while x∆pt is the annuity price vari-
ation between time t − 1 and t for the 65 year old male cohort in excess
to the T-bill rate. Hence the Aggregate Longevity Hedging Portfolio (here-
inafter ALHP) is not tradable unless a new security paying off the return
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∆pt on a yearly basis is available to the investor. This is a benchmark ex-
ample of the theoretical motivations underpinning the necessity of longevity
securitization.

By construction, the ALHP tracks the aggregate longevity shock qkt
and is therefore the best available product to reinsure aggregate longevity
risk. Note that the efficiency of the replication increases with the number of
investment opportunities exposed to aggregate longevity risk. In practice,
the hedging portfolio is determined by performing the minimization over
the set of unconstrained allocations wt = [wxr,t, wxb,t, wx∆p,t], while the
position in the short rate is set equal to wrtb,t = W0−wt·1. Since our VAR
model generates a stationary dynamics, the minimum variance replication
portfolio corresponds to a time-independent allocation w∗t−1 = w. The first
order condition8 therefore implies the solution

wT = V ar [xt]
−1 {Cov [xt, qkt]} ,

wrtb = W0 −w · 1

We consider three alternative replication portfolios corresponding to zero
initial investment (W0 = 0) with an increasing set of restrictions on the
allocations. Table 4 reports three hedging portfolios. The first portfolio
considers an unrestricted allocation, while the second an allocation where
investment in equity is not allowed (wxr = 0). In both cases the allocation
strategy is a short position in T-bill and equity and a long position in long
term bond and in the ALS.

The third hedging portfolio is further restricted by forcing a zero allo-
cation in the T-bill, wrtb = 0, thus making the long-term bond the only
available financial security available to finance the annuity liability. In all
the three cases the volatility induced by the aggregate longevity shock as
measured by the volatility of the aggregate longevity replication portfolio
is close to 60 basis points in annual terms, and this value remains almost

8

min
w

V art−1

[
Rqk

t (w)− qkt
]

= min
w

V art−1 [qkt] + V art−1

[
Rqk

t (w)
]
− 2Covt−1

[
qkt, R

qk
t (wt−1)

]
= min

w
V art−1

[
Rqk

t (w)
]
− 2Covt−1

[
qkt, R

qk
t (w)

]
= min

w
V art−1 [w · xt +W0rtbt]− 2Covt−1 [qkt,w · xt +W0rtbt]

= min
w

wV art−1 [xt] w
T + w · {−2Covt−1 [xt, qkt]}
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constant for any holding period with an essentially flat term structure of
volatility. This value is slightly bigger but comparable to the 50 basis points
which are usually considered as the market standard for longevity risk (see
Loeys, Panigirtzoglou, and Ribeiro (2007)).

The above measures of aggregate longevity risk and the values of its
replication portfolios can be revised on a yearly basis, at the highest revision
frequency of the mortality rates. By making ALHP tradable on a yearly
basis, one could sell aggregate longevity protection without incurring in the
liquidity problem of long duration securities.

According to Campbell (1996), an intertemporal utility-maximizing agent
will optimally demand to invest or sell the hedging portfolio for aggregate
longevity, if the state variable qk forecasts changes in financial or human
capital. The empirical estimation of the extended VAR shows that the ag-
gregate longevity shock indeed predicts price changes in annuity prices and
in long term bonds, and supports the hypothesis of existence of non-zero
potential demand for ALS. While a complete discussion of the demand for
longevity-linked securities requires a structural equilibrium framework like,
for example, the model of Cocco and Gomes (2012), in the next section we
estimate the size of the compensation for bearing longevity risk assuming
that the set of investment opportunities also includes the ALS.

4.1 Pricing longevity risk

Milevsky, Promislow, and Young (2005) propose to use the notion of Sharpe
Ratio as an actuarial measure of systematic longevity risk compensation.
While the Sharpe Ratio of an investment is determined by the ratio be-
tween the expected return from the investment in excess to a benchmark
security (usually the T-bill) and the expected volatility, in actuarial science
the Sharpe Ratio determines the excess markup per unit of volatility that an
aggregate longevity protection seller would charge to the protection buyer.

The discussion of the previous subsections suggests the possibility to use
the information conveyed by the VAR dynamic model to estimate a longevity
risk compensation. It is easy to understand that within our framework the
Sharpe Ratio of the ALHP is a reliable measure of such compensation. Note
that by definition the ALHP is a zero investment portfolio, as

wALHP =
[
wALHPxrtb,t , w

ALHP
xr,t , wALHPxb,t , wALHPx∆p,t

]
,

wALHP ·ι = 0,

and that the corresponding return can be split as a the differential between
the return of a long position in financial securities and a short position
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in the ALS liability. Hence, the ratio between the expected differential
return and its risk provides a properly defined Sharpe Ratio. Moreover,
differently from previous approaches, our estimation procedure identifies a
dynamic compensation component whose evolution is maximally correlated
with longevity shocks as opposed to other intermediation margins, which
are instead not expected to be correlated with longevity shocks.

Conditional expected values of risk and returns may substantially differ
from unconditional ones, and therefore the conditional Sharpe ratios depend
on the holding period τ and generate a term structure. This term structure
depends on the initial level of the VAR state variables corresponding to the
current level of financial returns and the current level of predictors. Over
an horizon τ the Sharpe Ratio is the ratio between the τ -period expected
excess simple return and the τ -period standard deviation. Hence, recalling
that the extended VAR(1) models logarithmic returns we have:

SRτ,rt =
Exτ,rt
Stdτ,rt

,

Stdτ,rt (w) =

√√√√V art,rt

[
τ∑
k=1

w· (rt+k + r0,t+kι)

]
/τ ,

Stdτ,rt (wrtb) =

√√√√V art,rt

[
τ∑
k=1

wrtbr0,t+k

]
/τ ,

Exτ,rt = Et,rt

[
1

τ

τ∑
k=1

w · rt+k

]
+
Std2

τ,rt (w)

2τ
.

Figure 9 reports the term structure of equity Sharpe Ratios obtained by
setting the initial condition of the state variables to their long-term expected
values.

Insert Figure 9 about here

The above conditional model shows that the relative compensation of
different securities as measured by the Sharpe Ratios depends on the horizon
and on the state of the economy. When the holding period goes to infinity
(τ → ∞) the Sharpe Ratio SRτ,rt for a generic portfolio w converges to a
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limit SR∞ (w)9:

SR∞ =
Ex∞
Std∞

,

Ex∞ = lim
τ→+∞

{
Et,zt

[
1

τ

τ∑
k=1

w · rt+k

]
+
Std2

τ,rt (w)

2τ

}
,

Std∞ = lim
τ→+∞

√√√√V art,rt

[
τ∑
k=1

w· (rt+k + r0,t+kι)

]
/τ ,

As shown in the Figure 9, convergence of the SRτ,rt to SR∞ does occur
at very long horizons, but the limiting procedure is necessary in order to
produce a bona fide unconditional measure of expected performance con-
sistent with the predictability patterns we documented. Table 5 reports
the estimation of long term Sharpe Ratios for all the financial securities
included in the extended VAR(1): an equity index, a rolling position in
long-term bonds and the ALS. As expected the Sharpe Ratios of the ALS
security is negative, as its performance is is lower than that of benchmark
risk freE security, the T-Bill. On the other hand, the low period variance
implies that the unconditional level of the ALS Sharpe Ratio is as high as
SRALS∞ = (−) 0.43, indicating the potential usefulness of this synthetic se-
curity as a ”liability” offering a good potential reward to investors seeking
new diversification strategies. As this liability is financed by a short term T-
Bill, and the maturity mismatch is well known to increase interest rate risk
variations, the high value of the Sharpe Ratio can however be misleading.

A similar problem arises when measuring the Sharpe Ratio of the ALHP,
the measure of aggregate longevity risk premium. The ALHP can be split
in a short position in a ALS security and a long position in a portfolio of
traded financial securities, thus making the Sharpe Ratio depend on the
composition of the portfolio used to finance the short position.

Table 6 reports the Sharpe measure of aggregate longevity risk compen-
sation for the three alternative allocations defined in Table 4: the unre-
stricted one wALHP Unr, the one excluding allocation to equity, wALHP 1,
and the one where the ALS stochastic liability can be hedged using only

9These quantities can be easily computed using the following expressions of the long
run mean and covariance:

µ∞ = (I−Φ1)−1 Φ0

Σ∞ = (I−Φ1)−1 Φ1 (I−Φ1)−T
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long term bonds wALHP 2. As the Table shows, Sharpe Ratios decrease
with increasing restrictions. Moreover, the difference in the Sharpe Ratios
is essentially determined by the different position used to hedge the stochas-
tic liability induced by the short position in the ALS. The Sharpe Ratio is
the highest if the investor can use all financial securities, and the lowest if
she is allowed to hedge using long term bonds (a security typically held by
insurance companies). In fact, the hedging portfolio wALHP 2 using only
long term bonds is safer (but less profitable) than wALHP 1 which also uses
T-bills, as its duration matches that of the stochastic liability and thus has
identical response to (small) interest rate fluctuations.

In conclusion, the actuarial longevity premium estimate consistent with
a prudent hedging policy is given by SRALHP 2

∞ = 0.33. Its value is not far
from the conventional level 0.25 used in the actuarial pricing of longevity
products as discussed in Loeys, Panigirtzoglou, and Ribeiro (2007). This
estimation is expected to overestimate the potential Sharpe Ratio from
longevity liability, as shorting costs are not explicitly accounted in this anal-
ysis. In addition the adverse selection effect is also expected to play a role
here: the mortality rates of annuitants are known to be significantly smaller
from those of average population (see Poterba (2001) and Mitchell, Poterba,
Warshawsky, and Brown (1999)). Given the scarcity of data on prices of
traded longevity-linked securities, the same problems affect virtually any
empirical measure of longevity risk compensation.

From a normative point of view these considerations indicate a further
indirect motivation to promote the integration between financial and actuar-
ial markets: their development would drive a more transparent and precise
assessment of the price for aggregate longevity risk. Among other benefits
it is worth mentioning that this assessment can certainly reduce the danger-
ous unawareness of the public and private costs deriving from generalized
longevity increase. Unreported robustness checks show that our results are
unaffected if the estimation is based on maximum and minimum annuity
premia rather than on the mean ones. Similarly, the estimated values are
robust to changes (reductions) of the sample used for the extended VAR(1)
estimation.

5 Conclusions

Our analysis shows that a promising direction to improve the efficiency of
longevity risk sharing is integration between insurance and financial mar-
kets. We believe that our results uncover some critical issues to improve
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longevity risk securitization. First, the long term nature of the longevity
risk requires an accurate analysis of the term structure of the risk return
trade-offs generated by including a longevity-linked security in the set of in-
vestments. Second, a potential large number of short term investors would
be willing to increase their exposure to longevity risk without increasing their
investment horizon. This requires the organization of a maturity transfor-
mation activity by financial intermediaries that seems to be a crucial step
to increase the interest of the market for longevity-linked securities, as well
as their liquidity. Third, an integrated market for insurance and financial
contracts with a publicly traded longevity index would also imply a more
transparent and efficient pricing of life annuities with a direct benefit for
annuity subscribers.
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A Identification and estimation of the Lee-Carter
mortality model

The Lee and Carter (1992) model consists of a system of equations for
logarithms of mortality rates for age cohort x at time t , qx,t, , and a time-
series equation for an unobservable time-varying mortality index kt:

ln (qx,t) = ax + bxkt + εx,t (8)

kt = c0 + c1kt−1 + et

εx,t ∼ NID
(
0, σ2

ε

)
et ∼ NID

(
0, σ2

e

)
where ax and bx are age-specific constants. The error term εx,t captures

cross-sectional errors in the model based prediction for mortality of different
cohorts, while the error term et captures random fluctuations in the time
series of the common factor kt driving mortality at all ages.. This common
factor, usually known as the unobservable mortality index evolves over time
as an autoregressive process and the favorite Carter-Lee specification makes
is a unit-root process by setting c1 = 1. Identification is achieved by imposing
the restrictions

∑
t kt = 0 and

∑
x bx = 1, so that the unobserved mortality

index kt is estimated through Singular Value Decomposition (SVD). SVD
is a technique based on a theorem of linear algebra stating that a (m × n)
rectangular matrix M can be broken down into the product of three matrices
- an (m ×m) orthogonal matrix U , a diagonal (m × n) matrix S, and the
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transpose of an orthogonal (n × n) matrix V . The SVD of the matrix M
will be therefore be given by M = USV ′ where U ′U = I and V ′V = I. The
columns of U are orthonormal eigenvectors of AA′ , the columns of V are
orthonormal eigenvectors of A′A, and S is a diagonal matrix whose elements
are the square roots of eigenvalues from U or V in descending order. The
restriction

∑
t kt = 0 implies that ax is the average across time of qx,t, and

Equation 8 can be rewritten in terms of the mean-centered log-mortality
rate as

qx,t − qx,t ≡ m̃x,t = bxkt + εx,t. (9)

Grouping all the m̃x,t in a unique (X×T ) matrix m̃ (where the columns are
mortality rates at time-t ordered by age groups and the rows are mortality
rates through time for a specific age-group x), leads naturally to use SVD
to obtain estimates of bx and kt. In particular, if m̃ can be decomposed as
m̃ = USV ′, b = [b0, b1, . . . , bX ] is represented by the normalized first column
of U, u1 = [u0,1, u1,1, . . . , uX,1], so that

b =
u1∑X

x=0 ux,1
.

On the other hand the mortality index vector k = [k1, k2, . . . , kT ] is given
by

k = λ1(

X∑
x=0

ux,1)ν1

where ν1 = [ν1,1, ν1,2, . . . , ν1,T ]′ is the first column of the V matrix and
λ1 is the highest eigenvalue of the matrix S. The values of mortality rates
obtained with this method will not, in general, be equal to the actual number
of deaths. In Lee and Carter (1992), the authors hence re-estimate kt in a
second step, taking the values of ax and bx as given from the first-step SVD
estimate and using actual mortality rates. The new values of k are obtained
so that, for each year, the actual death rates are equal to the implied ones.
This two-step procedure allows to take into account the population age
distribution, providing a very good fit for 13 of the 19 age groups in the
authors’ sample, where more than 95% of the variance over time is explained.
For seven of these, more than 98% of the variance is explained.
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B Financial asset returns and their predictors: the
basic specification of the VAR model for tradi-
tional financial investments

Consider the continuously compounded security market returns from time
t to time t + 1, rt+1 . Define µt, the conditional expected log return given
information up to time t as follows:

rt+1 = µ+ ut+1,

where ut+1 is the unexpected log return. Define the τ -period cumulative
return from period t+ 1 through period t+ τ, as

rt,t+τ =
τ∑
i=1

rt+i.

The term structure of risk is defined as the conditional variance of cumula-
tive returns, given the investor’s information set, scaled by the investment
horizon

Σr(τ) ≡ 1

τ
V ar(rt,t+τ | Dt), (10)

where DMkt
t ≡ σ{zMkt

τ : τ ≤ t} consists of the full histories of returns as well
as predictors that investors use in forecasting returns. Following Barberis
(2000) and Campbell and Viceira (2002, 2005), we describe asset return dy-
namics by means of a first-order vector autoregressive or VAR(1) model.
We choose a VAR(1) as the inclusion of additional lags, even if easily im-
plemented, would reduce the precision of the estimates:

zMkt
t = ΦMkt

0 + ΦMkt
1 zMkt

t−1 + νMkt
t , (11)

where

zMkt
t =

 r0t

xMkt
t

sMkt
t


is a (m× 1) vector, with r0t being the log real return on the asset used as a
benchmark to compute excess returns on all other asset classes, xMkt

t being
the (n× 1) vector of log excess returns on all other asset classes with respects
to the benchmark, and sMkt

t is the ((m− n− 1)× 1) vector of returns pre-
dictors. In the VAR(1) specification, ΦMkt

0 is a (m× 1) vector of intercepts
and ΦMkt

1 is a (m×m) matrix of slopes. Finally, νMkt
t is a (m× 1) vector
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of innovations in asset returns and returns’ predictors for which standard
assumptions apply, i.e.

νMkt
t ∼ N (0,ΣMkt

ν ), (12)

where ΣMkt
ν is the (m×m) variance-covariance matrix. Note that

ΣMkt
ν =

 σ2
0 σ′0x σ′0s

σ0x Σxx Σ′xs
σ0s Σxs Σss


and the unconditional mean and variances-covariance matrix of zt, assuming
that the VAR is stationary end therefore that this moments are well-defined,
can be represented as follows:

µMkt
z =

(
Im − ΦMkt

1

)−1
ΦMkt

0

vec
(

ΣMkt
zz

)
=

(
Im2 − ΦMkt

1 ⊗ ΦMkt
1

)−1
vec

(
ΣMkt
ν

)
.

The conditional mean of the cumulative asset returns at different hori-
zons are instead

Et(z
Mkt
t+1 +...+zMkt

t+τ ) =

(
τ−1∑
i=0

(τ − i)
(

ΦMkt
1

)i)
ΦMkt

0 +

 τ∑
j=0

(
ΦMkt

1

)j zMkt
t ,

and their variance is:

V art(z
Mkt
t+1 + ...+ zMkt

t+τ ) = ΣMkt
ν + (I + ΦMkt

1 )ΣMkt
ν (I + ΦMkt

1 )′ + (13)

(I + ΦMkt
1 +

(
ΦMkt

1

)2
)ΣMkt

ν (I + ΦMkt
1 +

(
ΦMkt

1

)2
)′ + ...

+(I + ΦMkt
1 + ...+

(
ΦMkt

1

)τ−1
)Σν(I + ΦMkt

1 + ...+
(

ΦMkt
1

)τ−1
)′.

Once the conditional moments of excess returns are available the follow-
ing selector matrix extracts for each period, τ -period conditional moments
of log real returns

Mr =

[
1 01×n 01×(m−n−1)

ιn×1 In×n 0n×(m−n−1)

]
which implies

1

τ

[
Et
(
rτ0,t+1

)
Et
(
rτt+1

) ]
=

1

τ
MrEt(z

Mkt
t+1 + ...+ zMkt

t+τ )
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1

τ

[
V art

(
rτ0,t+1

)
V art

(
rτt+1

) ]
=

1

τ
MrV art(z

Mkt
t+1 + ...+ zMkt

t+τ )M ′r.

Therefore after the estimation of the VAR it is possible to derive uncondi-
tional and conditional moments for returns and excess returns at all different
investment horizons. These moments deliver the dynamics of returns and the
risk of different assets across investment horizons. This information forms
the input for portfolio allocation. Following Campbell and Viceira (2005),
we consider a benchmark portfolio to be obtained by attributing optimal
weights to bond, stock and T-bills. Therefore we include in xMkt

t excess
returns on stocks and bonds, real returns on T-bills, while we include in
sMkt
t three factors commonly recognized as good predictors of these assets’

returns. In particular, the predictors are the nominal short-term interest
rate, the dividend price ratio and the yield spread between long-term and
short term bonds.

C The dataset

C.1 Annuity prices

We estimate the change in the annuity price included in our VAR(1) model
as

∆p65,t+1 = ln

(
PAt+1,65

PAt,65

)
,

where PAt+1,65 is the annuity price offered on the US market for 1$ monthly

life annuities written on 65-year-old males. Consequently ∆pAt+1 is the yearly
log price change of a standardized 65 year-old annuity between time t and t+
1. Our annuity prices consist of the sample average premiums for immediate
$1 monthly life annuities for 65-year old US males issued during the 1952-
2007 period. In order to have the longest time series of prices, we collected
premiums from different sources. In order to have the longest time series of
prices, we collected premia from different sources. Following Warshawsky
(1988) and Friedman and Warshawsky (1988), premia over the 1952-1967
period come from successive annual issues of Spectator’s Handy Guide and
A.M. Best’s Flitcraft Compend , whereas premia over the 1968-1985 years
come from the successive annual issues of A.M. Best’s Flitcraft Compend.
Following Koijen and Yogo (2012), Cox and Lin (2007) and Brown, Mitchell,
and Poterba (2002), we compile premia for the 1986-2007 years from the
semiannual issues of Annuity Shopper. These data are integrated with those
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obtained from the annual issues of the Life/Health editions of Best’s Review
for the 1995-1998 period.

Given the length of the sample period and the different sources of data we
use, our sample premia refer to an unbalanced panel of companies. Although
the correct approach should be to use only rates reported by the same com-
panies, this would substantially reduce the number of premia available each
year for computing the minimum, the maximum and the average annual
annuity premium which, consequently, might not be reflective of the true
value of annuity price. The pricing approach adopted in the present paper
is essentially based on the assumption that price changes of annuities reflect
changes of fundamental risks priced by buyers and sellers. A side product of
this estimation analysis is a direct empirical measure of the effective price
reaction to changes in systematic mortality trends Clearly, empirical evi-
dence of this connection would support the hypothesis that some form of
competition drives the prices in the market for annuities.

C.2 Marketed securities and the state variables

The Campbell and Viceira (2005) model is developed using quarterly data.
As adapting the mortality series to this frequency is both hardly feasible
(lack of mortality data for frequencies higher than yearly) and less meaning-
ful (for example, some months of the year experience higher mortality rates
than others), we focus our analysis on annual data. We download the finan-
cial data from Robert Shiller’s website10for the postwar period 1952-2007
and, following Campbell, Chan, and Viceira (2003) construct the financial
time series as:

• Short-term ex-post real rate: return on 6-month commercial paper
bought in January and rolled over July, minus the Producer Price
Index (PPI).

• Excess return on stocks: log return on the S&P 500 Stocks, from which
the short-term interest rate is subtracted.

• Excess return on bonds: returns are obtained using the loglinear ap-
proximation described in Campbell, Lo, MacKinlay, and Whitelaw
(1998)

rn,t+1 = Dn,tyn,t − (Dn,t − 1)yn−1,t+1,

10http://www.econ.yale.edu/˜shiller/data.htm
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where n is the Bond maturity, the Bond yield is Yn,t, the log Bond
yield is yn,t = (1 + Yn,t) and Dn,t is the Bond duration, calculated at
time t as

Dn,t ≈
1− (1 + Yn,t)

−n

1− (1 + Yn,t)−1

with n set to 20 years and yn−1,t+1 approximated by yn,t+1.

• Excess annuity prices’ growth, as described in the previous subsection
of this Appendix.

Finally the following set of state variables are included in the VAR to
parametrize the opportunity set faced by the investor

• Nominal T-bill rate: return on 6-month commercial paper bought in
January and rolled over July.

• Log dividend-price ratio: natural logarithm of the S&P 500 dividend
series minus the logarithm of the S&P 500 price series.

• Yield spread: difference between the log yield of the long Bond and
the short yield on the commercial paper.

• Aggregate longevity shocks: qkt as defined in Section 2, are average
differences between predicted and fitted mortality rates for the cohorts
underlying life annuities (in our case, 65-110).

34



D Figures and Tables

Figure 1: Lee-Carter Fitted mortality and pseudo out-of-sample (1991-2007)
projections. Figure 1.1: Fitted mortality rates at 65. Figure 1.2: Cross-Sectional

R2 of Equation (3) Figure 1.3: The unobservable mortality index kt. Figure 1.4:

Innovations in kt.
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Figure 2: Time series of historical (real) logarithmic price changes (dashed
line) vs the replication as operated by the VAR dynamic model.
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Figure 3: Term structure of risks for the securities included in the Extended
VAR model.

37



0 5 10 15 20 25 30 35 40
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Horizon

C
o

rr
e

la
tio

n
s

Correlations of returns

 

 

Tbills−Stocks
Tbills−Bonds
Stocks−Bonds

Figure 4: Term Structure of correlations between financial securities in-
cluded in the Extended VAR model
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Figure 5: Term Structure of correlations between financial securities and
the Annuity-Linked Security.
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Figure 6: Term structure of allocations forming the GMV portfolio at dif-
ferent horizons.

39



0 5 10 15 20 25 30 35 40
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Horizon

P
er

ce
nt

ag
e 

S
td

v

Risk of T−Bills and GMV

 

 

TBills
GMV without ALS
GMV

Figure 7: Term structure of risks for an allocation in T-Bill (continuous
line), in the GMV portfolio restricted to financial securities (dashed line),
in the GMV portfolio including also the Annuity-Linked Security.
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of the state variables is set to their long term expected value.

42



rtb xr xb x∆pr y d− p spr qk

Mean 0.027 0.056 0.0046 −0.027 5 0.056 −3.493 0.004 0.00(4)

Std Dev 0.052 0.160 0.108 0.057 0.031 0.411 0.014 0.041

Sharpe Ratio - 0.353 0.04 259 3 −0.482 46 - - - -

Table 1: Summary Statistics. Mean returns is computed including the
Jensen correction term, thus are computed as µ + 0.5σ2. Sharpe Ratio
is computed as the ratio between Mean and Std Dev. Note: rtb = ex post
real T-bill rate, xr = excess stock return, xb = excess bond return, (d− p)
= log dividend-price ratio, y = nominal T-bill yield, spr = yield spread.
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VAR(1) - Matrix Φ1 - Yearly Sample 1953-2007. Original Financial Variables

rtbt xrt xbt yt (d− p)t sprt R2 adjR2

(t) (t) (t) (t) (t) (t)
rtbt+1 0.567 -0.027 -0.110 0.414 -0.008 -0.640 0.530 0.471

(3.825) (-0.662) (-1.843) (2.350) (-0.462) (-1.507)
xrt+1 0.099 0.021 -0.003 -0.935 0.107 0.271 0.087 -0.027

(0.192) (0.130) (-0.013) (-1.056) (1.963) (0.171)
xbt+1 0.830 -0.087 -0.508 0.246 -0.036 4.684 0.546 0.489

(3.649) (-1.286) (-4.315) (0.558) (-1.235) (5.132)
yt+1 -0.218 0.036 0.043 1.006 0.005 0.211 0.784 0.757

(-3.686) (2.463) (2.053) (9.821) (1.337) (1.214)
(d− p)t+1 -0.548 0.071 0.049 0.398 0.939 1.414 0.872 0.855

(-0.993) (0.402) (0.237) (0.417) (16.822) (0.787)
sprt+1 0.126 -0.030 0.009 -0.039 -0.001 0.405 0.455 0.387

(2.778) (-2.680) (0.706) (-0.532) (-0.434) (3.204)

Cross-Correlations of Residuals
rtb xr xb y (d− p) spr

rtb 3.552 0.464 0.070 -0.247 -0.501 0.285
xr - 13.507 0.170 -0.406 -0.977 0.435
xb - - 7.273 -0.637 -0.191 0.160
y - - - 1.403 0.425 -0.845

(d− p) - - - - 14.480 -0.436
spr - - - - - 1.066

Table 2: VAR(1) coefficients with relative t-statistics and Cross-Correlations
of Residuals. Note: rtbt = ex post real T-bill rate, xrt = excess stock return,
xbt = excess bond return, (d− p)t = log dividend-price ratio, yt = nominal
T-bill yield, sprt = yield spread.
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VAR(1) - Matrix Φ1 - Yearly Sample 1953-2007. Annuities

rtbt xrt xbt x∆prt yt (d− p)t sprt (qk)t R2 adjR2

(t) (t) (t) (t) (t) (t) (t) (t)
rtbt+1 0.477 0.007 -0.106 0.074 0.590 -0.010 -0.680 -0.016 0.475 0.389

(3.265) (0.203) (-1.753) (0.640) (2.534) (-0.568) (-1.452) (-0.116)
xrt+1 0.190 0.048 0.131 0.929 -0.215 0.154 -0.892 -0.236 0.167 0.031

(0.388) (0.363) (0.679) (1.660) (-0.225) (2.423) (-0.462) (-0.372)
xbt+1 0.917 -0.116 -0.502 0.116 0.267 -0.054 4.362 0.588 0.562 0.491

(4.121) (-1.972) (-4.311) (0.370) (0.550) (-1.921) (4.203) (2.721)
x∆prt+1 0.531 -0.099 0.057 -0.188 -1.146 -0.034 -0.446 0.271 0.516 0.437

(4.294) (-2.228) (0.970) (-0.968) (-3.950) (-1.871) (-0.675) (2.199)
yt+1 -0.204 0.025 0.038 -0.046 0.940 0.007 0.286 -0.064 0.794 0.761

(-3.702) (2.477) (1.702) (-0.841) (9.253) (1.896) (1.315) (-1.728)
(d− p)t+1 -0.812 0.149 -0.081 -0.898 -0.038 0.885 2.475 0.148 0.845 0.819

(-1.392) (0.808) (-0.363) (-1.504) (-0.035) (13.163) (1.141) (0.221)
sprt+1 0.104 -0.017 0.014 0.048 0.036 -0.002 0.339 0.011 0.456 0.367

(2.452) (-1.775) (1.040) (1.069) (0.466) (-0.585) (2.076) (0.404)
(qk)t+1 -0.113 -0.051 0.000 -0.059 -0.008 -0.009 0.373 0.747 0.575 0.506

(-1.341) (-1.671) (0.002) (-0.617) (-0.034) (-1.172) (1.292) (6.625)

Cross-Correlations of Residuals
rtb xr xb ∆pr y (d− p) spr (−qk)

rtb 3.763 0.206 0.117 0.192 -0.298 -0.234 0.318 0.104
xr - 14.584 0.040 -0.063 -0.248 -0.970 0.295 0.118
xb - - 7.184 0.176 -0.620 -0.089 0.132 -0.014

∆pr - - - 3.927 -0.547 0.022 0.583 -0.044
y - - - - 1.368 0.262 -0.843 -0.041

(d− p) - - - - - 15.768 -0.277 -0.098
spr - - - - - - 1.047 0.047

(−qk) - - - - - - - 2.617

Table 3: VAR(1) coefficients with relative t-statistics and Cross-Correlations
of Residuals. Note: rtbt = ex post real T-Bill rate, xrt = excess stock
return, xbt = excess bond return, ∆prt = log difference on annuities premium
(d − p)t = log dividend-price ratio, yt = nominal T-bill yield, sprt = yield
spread, (−qk) = aggregate mortality shock.
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HedgingPortfolio wxr wrtb wrtb wx∆pr

Unconstrained -0.042 -0.014 0.009 0.047
Constrained 1 wxr = 0 0 -0.062 0.004 0.058
Constrained 2 wrtb = wxr = 0 0 0 -0.059 0.059

Table 4: Optimal Allocation for Aggregate Longevity Hedging Portfolio
under different constraints on the set of financial securities included in the
hedging portfolio.

SREquity∞ SRLongBond∞ SRALS∞
0.429 0.0323 (-) 0.437

Table 5: Long term Sharpe Ratios for securities included in the Extended
VAR. Values are computed as illustrated in eq.8.

SRUnc∞ SRCons 1
∞ SRCons 2

∞
(-) 0.504 (-) 0.421 (-) 0.333

Table 6: Long term Sharpe Ratios for Aggregate Longevity Hedging Port-
folios. Values are computed as illustrated in eq.8.
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