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Abstract

We use frequency domain techniques to estimate a medium-scale DSGE model on di�er-

ent frequency bands. We show that goodness of �t, forecasting performance and parameter

estimates vary substantially with the frequency bands over which the model is estimated.

Estimates obtained using subsets of frequencies are characterized by signi�cantly di�erent

parameters, an indication that the model cannot match all frequencies with one set of param-

eters. In particular, we �nd that: i) the low frequency properties of the data strongly a�ect

parameter estimates obtained in the time domain; ii) the importance of economic frictions in

the model changes when di�erent subsets of frequencies are used in estimation.

This is particularly true for the investment cost friction and habit persistence: when low

frequencies are present in the estimation, the investment cost friction and habit persistence are

estimated to be higher than when low frequencies are absent.
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1 Introduction

DSGE models have become the benchmark tool for quantitative dynamic macroeconomics both for

academics and for policy-makers. Estimated versions of these models are used routinely by policy

institutions and inform policy decisions at many Central Banks around the world.

The empirical performance of these models has been studied in a number of dimensions. Among

others, Smets and Wouters, 2003, analyze the �t by comparing the autocovariance functions of the

estimated model and the data; Del Negro, Schorfheide, Smets and Wouters, 2007, study the fore-

casting performance with regard to unrestricted Bayesian VARs; Canova and Sala, 2009, focus on

identi�cation issues; Guerron-Quintana, 2010, studies the sensitivity of the results to the observables

used in the estimation.

In this paper, we use a state-of-the-art medium-scale DSGE model similar to those developed

by Christiano et al., 2005 or Smets and Wouters, 2007, and study it in the frequency domain. We

exploit the feature that the likelihood function of the model has an asymptotically equivalent rep-

resentation in the frequency domain in which the observations are asymptotically orthogonal (Han-

nan, 1970). This orthogonality property allows us to estimate the model with Bayesian methods

on various frequency bands. We then evaluate �t, parameter values and out-of-sample forecasting

performance for models estimated across frequency bands.

DSGE models are typically estimated in the time domain either by combining a set of priors

with the likelihood function in a Bayesian framework (An and Schorfheide, 2007) or by maximum

likelihood (Ireland, 2004). This is equivalent to �tting the model over the whole spectral density. As

the model generates cross-frequency restrictions, the presence in the estimation of frequencies that

the model is not intended to explain may a�ect the estimates. Potential misspeci�cation at some

frequencies may spill to all the spectrum and contaminate the estimates (Hansen and Sargent, 1993,

focus on the biases caused by misspeci�cation of seasonal frequencies; Cogley, 2001a, focuses on the

misspeci�cation of the trend component). In general, if no misspeci�cation is present, parameter

estimates will not depend on the frequencies used. Estimation on frequency bands would just be

less e�cient than estimation over the entire frequency domain.

In this paper, we do not take a stand on what is the form of the potential misspeci�cation or

at what frequencies it is mainly located. Given the DSGE model that we use, we analyze whether

results are sensitive to the frequency bands used in the estimation.
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There are predecessors to this paper. Altug, 1989, estimates a singular real business cycle (RBC)

model in the frequency domain by exploiting its representation as a dynamic factor model; Hansen

and Sargent, 1993, use the likelihood function expressed in the frequency domain to study the

e�ects of using seasonally adjusted versus seasonally unadjusted data in the estimation of rational

expectations models. Watson, 1993, evaluates the �t of calibrated RBC models by comparing the

spectral densities of the data and of the model. Diebold et al., 1998, Berkowitz, 2001, and Cog-

ley, 2001b, stress the importance of estimating economic models over subsets of frequencies in the

presence of misspeci�cation or measurement errors. They focus on di�erent classes of models and

use di�erent loss functions. Christiano and Vigfusson, 2003, consider an economic model which is

a simpli�ed version of the model analyzed here, but they do not consider estimation over subsets

of frequencies.

Our paper is also related to a large literature that, starting from Kydland and Prescott, 1982,

estimates DSGE models on pre�ltered data1,2. We will discuss the relations with this literature in

greater detail below. We note here that our estimation method, which is based on the likelihood

function computed over frequency bands, is not equivalent to any of the approaches commonly used

in the empirical literature on DSGE models.

Results show that current generation DSGE models perform reasonably well when estimated

over all frequencies, in comparison to �rst-generation RBC models analyzed in Watson, 1993. There

are a number of dimensions however, in which they do not �t the data satisfactorily. These di-

mensions include the interaction between real and nominal variables and the labor market variables.

We show that parameter estimates and model's �t depend critically on the inclusion of few low

frequencies in the estimation. When we analyze the role of various frictions over frequencies, we

see that the investment cost function and the associated exogenous shock are estimated to be very

important only when low frequencies are present.

In terms of forecasting performance, we compare DSGEs with BVARs, and observe that there

are some gains from using models estimated on subsets of frequencies. It is nevertheless di�cult to

1Table 1 in Ng and Gorodnichenko, 2010 provides a long list of references to papers that use di�erent methods
to �lter data and/or model, with a special emphasis to the treatment of low frequency components.

2Standard �lters used in the macroeconomic literature are the Hodrick and Prescott (HP), 1997, �lter, and the
band-pass �lter, see Baxter and King, 1999, or Christiano and Fitzgerald, 2003.
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select the best forecasting model, as the forecasting performance varies substantially, depending on

the variable to be forecast and on the forecasting horizon.

The paper is organized as follows. Section 2 discusses the econometric model and compares

our approach with others in the literature. Section 3 brie�y presents the DSGE model. Section 4

discusses the estimation results. Section 5 deals with the forecasting exercise. Section 6 concludes.

2 The likelihood function of DSGE models in the frequency

domain

In this Section, we present the well-known result that the Gaussian log-likelihood function of a

state-space model has a counterpart in the frequency domain.

Given a linearized DSGE model, parameterized by the vector of parameters θ:

yt = Z(θ)xt (1)

xt = A(θ)xt−1 +B(θ)uθt (2)

with V (uθt ) = Σ(θ), in which the (N × 1) vector yt in the measurement equation ( 1) represents

the observables and the (k × 1) vector xt in the transition equation ( 2) denotes the states, the

(N ×N) spectral density matrix for yt can be written as:

Sy(ω, θ) =
1

2π
Z(θ)(I −A(θ)e−iω)−1B(θ)Σ(θ)B(θ)′(I −A(θ)′eiω)−1Z(θ)′ (3)

where ω ∈ [0 2π] denotes the frequency.

The log-likelihood function of the state space model in (1) and (2) has an asymptotic counterpart

in the frequency domain (Hannan, 1970 or Harvey, 1991)3:

logL(θ, Iy) ∝ −1

2

T∑
j=1

{
log [detSy(ωj , θ)] + tr

[
Sy(ωj , θ)

−1Iy(ωj)
]}

(4)

The likelihood function depends on two arguments: the periodogram Iy(ωj), to be de�ned below,

3For �nite T , equation (4) is an approximation to the time-domain log-likelihood. As T → ∞, equation (4)
converges to the time-domain log-likelihood (Harvey, 1989, p. 192).
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and the spectral density of the model Sy(ω, θ), de�ned in (3). The part of the likelihood that

depends on the data is the periodogram, Iy(ωj):

Iy(ωj) =
1

T
q(ωj)q(ωj)

′ (5)

where

q(ωj) =

T∑
t=1

yte
−iωjt ωj =

2πj

T
, j = 1, . . . , T (6)

is the discrete Fourier transform of the observables yt.

The elements in the summation in equation (4) are asymptotically uncorrelated. This implies

that one can include only the elements associated to the frequencies ωj of interest, estimate the

model and check what the impact of di�erent frequencies on parameter estimates is. It is therefore

useful to add to equation (4) an indicator w(ωj) that takes value 1 if frequency ωj is included and

value 0 if it is excluded:

logLw(θ, Iy) ∝ −1

2

T∑
j=1

w(ωj)
{

log [detSy(ωj , θ)] + tr
[
Sy(ωj , θ)

−1Iy(ωj)
]}

(7)

This is precisely what we do in the rest of the paper by choosing indicator functions w(ωj) that

give positive weight to well-de�ned sets of frequencies.

2.1 Relation with the literature

We now discuss the relation between our approach and the common practice of estimating models

in the time domain using pre�ltered data. The literature on the topic is very large and a number of

papers (Singleton, 1988, Cogley, 2001a and, more recently, Ng and Gorodnichenko, 2010, Canova

and Ferroni, 2011 or Canova, 2012) have discussed under what conditions the estimation on pre-

�ltered data delivers consistent estimates. The literature has mainly focused on the treatment of

low frequency components, but the same ideas apply to any frequency.

One approach assumes a stationary economic model, speci�cally developed to explain business

cycles. The model is matched with data detrended with a statistical �lter (Smets and Wouters, 2003,

Rubio-Ramirez and Rabanal, 2005). This is justi�ed only under the (often implicit) assumption

that the optimal decision rules of agents can be factorized in a trend and in a stationary part and
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that removing the trend does not distort the business cycle, stationary component. If this is not

true, estimates will be biased (Singleton, 1988). In general, Cogley, 2001a, Doorn, 2006, and Ng

and Gorodnichenko, 2010 convincingly show that estimates are severely biased when model and

data are �ltered with di�erent �lters.

A di�erent approach speci�es a non-stationary model and pre�lters both the data and the

model with the same �lter. As in Cogley, 2001a, let us consider a situation in which the vector

of observables is composed by xt = [∆x1t x2t], where x1t is a vector of non-stationary variables4

and x2t is a vector of stationary variables.5 It can be shown that the likelihood function for xt

and the likelihood function for K(L)xt = [S(L)∆x1t H(L)x2t], where H(L) denotes the HP �lter

and S(L) = H(L)/(1 − L), are the same (Cogley, 2001a, Proposition 2)6. Maximum likelihood

(ML henceforth) estimation where data and model are both �ltered with K(L) is equivalent to ML

estimation on xt. As the band spectral ML estimator in general di�ers from the ML estimator7, it

will also di�er from the ML estimator on pre�ltered data K(L)xt.

3 The model

The DSGE model which we estimate shares many features with Smets and Wouters, 2007 and

Christiano, Eichenbaum and Evans, 2005. The particular speci�cation which we employ builds on

Justiniano et al., 2010 and Sala et al., 2011. The model combines a RBC core with Keynesian

features. The RBC core model features habit formation, investment adjustment costs, and variable

capital utilization, while the Keynesian features include monopolistic competition in goods and

labor markets, and nominal price and wage rigidities. The model also includes growth in the form

of a technology shock with a unit root, as in Altig et al., 2005. There are seven exogenous shocks:

household preferences, labor-augmenting technology, investment-speci�c technology, government

spending, price and wage markup, and monetary policy, all assumed to follow AR(1) processes. As

the model is relatively standard, we only report the stationary, log-linearized version here. Appendix

A presents the model in greater detail.

4The vector x1t could be composed either by trend-stationary or di�erence stationary processes.
5This will also be the setup of our model, in which the technology process has a unit root, which is inherited by

some of the observables.
6The argument would be the same if H(L) was a band-pass �lter.
7As shown above, the two are asymptotically equivalent only when all frequencies are considered in the summation

in equation 7.
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E�ective capital:

k̂t + ε̂zt = ν̂t + ˆ̄kt−1; (8)

Physical capital accumulation:

ˆ̄kt =
1− δ
γz

[
ˆ̄kt−1 − ε̂zt

]
+

(
1− 1− δ

γz

)[
ˆinvt + ε̂invt

]
; (9)

Marginal utility of consumption:

(
1− h

γz

)(
1− βh

γz

)
λ̂t =

h

γz
[ĉt−1 − ε̂zt ]−

(
1 +

βh2

γ2
z

)
ĉt (10)

+
βh

γz
Et
[
ĉt+1 + ε̂zt+1

]
+

(
1− h

γz

)[
ε̂bt −

βh

γz
Etε̂

b
t+1

]
;

Consumption Euler equation:

λ̂t = Etλ̂t+1 +
[̂
it − Etπ̂t+1

]
− Etε̂zt+1; (11)

Investment:

ˆinvt =
1

1 + β

[
ˆinvt−1 − ε̂zt

]
+

1

ηkγ2
z (1 + β)

[
q̂t + ε̂invt

]
+

β

1 + β
Et

[
ˆinvt+1 + ε̂zt+1

]
; (12)

Tobin's Q:

q̂t =
β(1− δ)

γz
Etq̂t+1 +

[
1− β(1− δ)

γz

]
Etr̂

k
t+1 −

[̂
it − Etπ̂t+1

]
; (13)

Capital utilization:

ν̂t = ην r̂
k
t ; (14)

Production function:

ŷt =
Y + F

Y

[
αk̂t + (1− α) l̂t

]
; (15)

Labor demand:

ŵt = m̂ct + αk̂t − αl̂t; (16)
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Capital renting:

r̂kt = m̂ct − (1− α)k̂t + (1− α)l̂t; (17)

Phillips curve:

π̂t = ιbπ̂t−1 + ιo [m̂ct + ε̂pt ] + ιfEtπ̂t+1, (18)

where

ιb =
γp

1 + βγp
, ιo =

(1− βθp)(1− θp)
θp(1 + βγp)[1 + (εp − 1)ξ]

, ιf =
β

1 + βγp
;

Aggregate wage:

ŵt = γb [ŵt−1 − π̂t + γwπ̂t−1 − ε̂zt ] + γo

[
ωl̂t − λ̂t + ε̂bt

]
+γfEt

[
ŵt+1 + π̂t+1 − γwπ̂t + ε̂zt+1

]
+ γoε̂

w
t , (19)

where

γb =
1

(1 + β)(1 + κw)
, γo =

κw
1 + κw

, γf =
β

(1 + β)(1 + κw)
,

κw =
(1− βθw)(1− θw)

θw(1 + β)[1 + ωεw/(εw − 1)]
;

Government spending:

ĝt = ŷt +
1− gy
gy

ε̂gt ; (20)

Monetary policy rule:

ît = ρsît−1 + (1− ρs)
[
φππ̂t + φy

(
ŷt − ŷf lext

)]
+ ε̂mt ; (21)

Resource constraint:

ŷt =
c

y
ĉt +

inv

y
ˆinvt +

g

y
ĝt +

rkk

y
ν̂t. (22)

k̂t denotes e�ective capital, ν̂t is the capital utilization rate, ˆ̄kt−1 is the physical capital, λ̂t is

the marginal utility of consumption, ĉt is consumption, ŷt is output, ŷt− ŷflext is the output gap, ît

is the nominal interest rate, q̂t is Tobin's q, r̂
k
t is the rental rate of capital, ν̂t is capacity utilization,

l̂t is labor input, ŵt is the real wage, m̂ct is marginal costs, π̂t is the in�ation rate, ĝt is government
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spending as a fraction of output, ˆinvt is investment. ε̂
z
t is the technology shock, εmt is a monetary

shock ε̂bt is a preference shock, ε̂
inv
t is the investment shock, εpt is a price-markup shock, ε

w
t is a wage

mark-up shock and εgt is a shock to government spending.

α is the capital share, δ is the depreciation rate, γz is the growth rate of technology, β is the

discount factor, h measures the degree of habits in consumption, ω is the inverse Frisch elasticity of

labor supply, θw and θp are, respectively, the Calvo wage and price parameters, ην is the elasticity

of capital utilization, ηk is the 2nd derivative of the investment cost function, γw and γp denote,

respectively, wage and price indexation, εw and εp are, respectively, the steady state wage and price

markups, φπ is the coe�cient on in�ation in the Taylor rule, φy the coe�cient on the output gap

in the Taylor rule, ρs is the degree of smoothing in the Taylor rule, F denotes �xed costs in the

production function, endogenously determined by a zero-pro�t condition, gy is the average ratio of

government spending to output and ξ is the Kimball's aggregator parameter.

4 Estimation

In this Section, we describe the details of the estimation method. Let us start with the data.

4.1 Data

The seven variables used in the estimation are: [∆ log(Yt); ∆ log(It); ∆ log(Ct); ∆ log(Wt); Ht;

πt; it] and they are matched with the following quarterly U.S. data from 1960Q1 to 2010Q4:

(1) output growth: the quarterly growth rate of per capita real GDP; (2) investment growth:

the quarterly growth rate of per capita real private investment plus real personal consumption

expenditures of durable goods; (3) consumption growth: the quarterly growth rate of per capita

real personal consumption expenditures of services and nondurable goods; (4) real wage growth:

the quarterly growth rate of real compensation per hour; (5) employment: hours of all persons

divided by population; (6) in�ation: the quarterly growth rate of the GDP de�ator; and (7) the

nominal interest rate: the quarterly average of the federal funds rate.

We use (100 times the) growth rates for the variables that are non-stationary in the theoretical

model (output, consumption, investment, and the real wage) and demean all the variables. We

write the measurement equation of the state space form to match the seven series with their model

counterparts. The �rst 170 observations in the dataset (up to 2002Q2) are used in estimation. The
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last 34 (from 2002Q3 to 2010Q4) are used to perform a pseudo-out-of-sample forecasting exercise

to be described below.

It is instructive to look at the spectral density of the data and at the decomposition of the

variance by frequency bands. We report them in Figure 18. The growth rates of output, investment

and consumption share a similar spectral shape: there is a spectral peak at frequencies correspond-

ing to cycles with a 7 years period. The decomposition of the variance9 in low (cycles with period

longer than 8 years), business cycle (cycles with period between 1 and 8 years) and high frequencies

(cycles with period shorter than 1 year) on non-overlapping bands is similar for variables in �rst

di�erences, ∆ log(Y ), ∆ log(I), ∆ log(C) and ∆ log(W ); around 10% of the variance is located at

low frequencies , 40− 50% of the variance is at business cycle frequencies , the remainder (around

35− 40%) is located at high frequencies.

Variables in levels behave very di�erently: the spectral density of hours, in�ation and the interest

rate does not display any peak and it is monotonically decreasing to 0 as frequency increases. This

is reminiscent of the "typical spectral shape" of economic variables, noted by Granger, 1966. The

variance decomposition across frequencies is consequently very di�erent from the one of growth

rates: 75−80% of the variance is located at low frequencies, 20−25% is at business cycle frequencies

and very little is left at high frequencies.

4.2 Estimating the model over frequency bands

We consider four frequency bands10 in estimating the model:

1. All; we put w(ωj) = 1 on all frequencies in equation (7);

2. High-pass; we put w(ωj) = 1 on frequencies ωj > 2π/32, corresponding to cycles with period

shorter than 8 years (32 quarters). This band contains 95% of the observations;

3. Business cycle, labeled BC; we set w(ωj) = 1 on frequencies between 2π/32 < ωj < 2π/4,

corresponding to cycles with period between 1 and 8 years (between 4 and 32 quarters). This band

contains 44% of the observations;

4. Low-pass; we set w(ωj) = 1 for ωj < 2π/4, corresponding to cycles with period longer than 1

8The spectral density of the data has been estimated by �tting a BVAR with Minnesota and sum-of-the-coe�cients
priors on variables in levels: [log(Yt); log(It); log(Ct); log(Wt); Ht; πt; it] and transforming non-stationary variables
in growth rates (for details, see Appendix C). The gray area is a 68% credible set.

9Recall that the integral below the spectral density is equal to the variance. The integral over frequency bands
gives the variance located at those frequencies.

10Each frequency band corresponds to a set of weights w(ωj) in equation (7).
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year (4 quarters)). This band contains 49% of the observations.

In order to keep enough data points in the estimation, the bands are partly overlapping. As

we move from experiment 2 to 4, we give less weight to high frequencies and more weight to low

frequencies.

We discard frequency zero in the estimation. We do so because the model implies cointegration

relations between output, consumption, investment and the real wage: the unit root variables

are all driven by the common stochastic trend in technology. When the trending variables are

expressed in growth rates, their spectral density at frequency zero has reduced rank and the model

is stochastically singular at that frequency.

4.3 Bayesian inference

We estimate the model with Bayesian methods (see An and Schorfheide, 2007, for a comprehensive

survey). For each of the four sets of frequencies discussed above, we obtain the posterior distribution,

logLw(θ; Iy)+p(θ), where the log-likelihood function logLw(θ; Iy) is de�ned in (7) and p(θ) de�nes

the log-priors for the parameters to be estimated.

Few parameters are calibrated using standard values: the discount factor β is set to 0.99, the

capital depreciation rate δ to 0.025, the capital share α in the Cobb-Douglas production function

is set to 0.33, the average ratio of government spending to output to 0.2, the steady-state growth

rate, γz is set to 4% per year. Finally, the sensitivity of the �rm's elasticity of demand with regard

to shifts in its market share, the Kimball's aggregator parameter,11 denoted by ξ, is calibrated to

10.

I estimate the remaining 13 structural parameters: the elasticity of the utilization rate to the

rental rate of capital, ην ;
12 the elasticity of the investment adjustment cost function, ηk; the habit

parameter h and the labor supply elasticity ω; the steady-state wage and price mark-ups, εw and

εp; the wage and price rigidity parameters, θw and θp; the wage indexation parameters, γw and

γp and the monetary policy parameters φπ, φy, and ρs. In addition, I estimate the autoregressive

parameters of the exogenous disturbances, as well as the standard deviations of the innovations.

I stick to standard prior speci�cation and standard calibration, as I want to compare results

11This parameter only appears in the log-linear version of the model.
12Following Smets and Wouters, 2007, I de�ne ψν so that ην = (1− ψν) /ψν and estimate ψν .
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with those already present in the literature. These are summarized in the second column of Table

2. Most of the priors are standard in the literature; see, for example, Justiniano et al., 2010.

The utilization rate elasticity ψν and the habit parameter h are both assigned Beta priors with

mean 0.5 and standard deviation 0.1, while the capital adjustment cost elasticity ηk is assigned a

Normal prior with mean 4 and standard deviation 1.5. The labor supply elasticity ω (the inverse

of the Frisch elasticity) is given a Gamma prior with mean 2 and standard deviation 0.75.

The two Calvo parameters for wage and price adjustment, θw and θp, are assigned Beta priors

with means 3/4 and 2/3, respectively, and standard deviation 0.1, while the wage and price index-

ation parameters γw and γp are given a Beta distribution with mean 0.5 and standard deviation

0.15. The two steady-state wage and price markups are both given Normal priors centered around

1.15, with a standard deviation of 0.05.

The coe�cient φπ on in�ation in the monetary policy rule is given a Normal prior with mean 1.7

and standard deviation 0.3, while the coe�cient φy on the output gap is given a Gamma prior with

mean 0.125 and standard deviation 0.1. The coe�cient on the lagged interest rate, ρs, is assigned

a Beta prior with mean 0.75 and a standard deviation of 0.1. All these are broadly consistent with

empirically estimated monetary policy rules.

All persistence parameters for the shocks are given Beta priors with mean 0.5 and standard

deviation 0.1. Finally, for the standard deviations of the shock innovations, we assign Inverse

Gamma priors with mean 0.15 and standard deviation 0.15.

As often done in the literature (Justiniano et al., 2010), we normalize few shocks before estima-

tion. The investment speci�c shock is normalized so that it has a unitary impact on physical capital.

The price markup shock is normalized so that it has a unitary impact on in�ation and �nally the

preference shock εp is normalized so to have a unitary impact on the marginal utility of consumption.

The posterior distribution of the 4 models is obtained by generating draws with the random-walk

Metropolis-Hastings algorithm (for a review, see An and Schorfheide, 2007). The mode is computed

with the simulated annealing algorithm (see Corana et al., 1987 or Go�e et al., 1994). We generate

a Markov chain of 200,000 draws per each of the four frequency bands. We discard the initial 50,000

draws and retain one every �ve subsequent draws. We simulate two di�erent chains for each model

and check robustness of the results. We verify convergence by checking that the recursive means

and variances of the Markov chain stabilized after the burn-in period with a CUMSUM statistic.
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As an additional check on our estimation method, we note that the log-likelihood expressed in

the frequency domain is an approximation of the likelihood in the time domain. We therefore verify

that results in the time domain are similar to those in the frequency domain when all frequencies

are used. We draw from the posterior obtained from the time domain with the random-walk

Metropolis-Hastings algorithm, evaluating the log-likelihood in the time domain with the Kalman

�lter. Parameters' posterior distributions (shown in column entitled Time in Table 2) are very

similar to those obtained using all frequencies and implied spectral densities are virtually identical,

thus con�rming the goodness of the approximation to the likelihood in the frequency domain.13

4.4 Results

Figure 2 shows the diagonal of the log-spectral density matrix14 for the seven observables for the

4 estimated models, together with the log-spectral density of the data. Figures 3 and 4 show,

respectively, the autocovariance and the autocorrelation function of the data and of the 4 estimated

models. Table 1 reports the ratio between the variance of the data and the variance implied by each

of the four models evaluated at the posterior median. The ratio is computed over all frequencies

and also over three non-overlapping bands: low (cycles with a period longer than 8 years), business

cycle (cycles with a period between 2 and 8 years) and high (cycles with a period shorter than 1

year). Each entry in Table 1 is computed as:

∫
ΩF

Siiy (ω, θM )dω∫
ΩF

Siiy,V AR(ω)dω
(23)

where ΩF denotes the frequency band, Sy(ω, θM ) is modelM spectral density, M = [All,High-pass,

BC,Low-pass] and Sy,V AR(ω) is the median of the spectral density plotted in Figure 1.

There are signi�cant di�erences in �t among the four models.

We �rst discuss the results for variables that are stationary in the model and enter the estimation

in levels (hours, in�ation and the interest rate). Secondly, we discuss the results for variables that

are non-stationary in the model and enter the estimation in growth rates (∆ log(Y ), ∆ log(I),

13In Appendix B we report results from a Monte Carlo experiment. We generate data from the DSGE model
and evaluate the small-sample properties of the frequency domain ML estimator on di�erent frequency bands and
in comparison with the time domain version. Results show that the frequency domain approximation, both on the
whole spectrum and on subsets of frequencies, is remarkably good.

14We show here the log-spectral density, as opposed to the spectral density, in order to make the �gure clearer and
easier to interpret.
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∆ log(C) and ∆ log(W ).

Regarding variables in levels, models that do not include low frequencies in the estimation (High-

pass and BC) generate too little volatility (the ratio between the variance generated by the model

and the variance of the data is around 35% for model BC and 45% for model High-pass), especially

at low frequencies (the ratio between the variance generated by the model and the variance of the

data at low frequency is around 10% for model BC and 20% for model High-pass). This is often

compensated by too much volatility at business cycle or high frequencies.

Models that include low frequencies (All and Low-pass) generate the right amount of volatility

for π and i while they over predict the variance of hours. These models also tend to generate too

much volatility at business cycle frequencies.

It is interesting to note that, in a number of cases in which the variance of the model over all

frequencies matches closely the variance of the data, this hides large errors at all frequency bands,

which, when integrated over all frequencies, cancel out. This is, for example, the case of the variance

of the interest rate obtained with model All: the overall model/data variance ratio is around one

(0.84), but this is obtained by averaging ratios of 0.53, 1.90 and 1.73 at low, business cycle and

high frequencies, respectively.

Regarding variables in �rst-di�erences, models that include low frequencies in the estimation

(All and Low-pass) tend to over predict the variance located at low and business cycle frequencies

and to over predict the overall variance. Models that do not include low frequencies overall generate

less volatility but still over predict the volatility of the growth rates of output and consumption.

Di�erences among models become less relevant at high frequencies, while model Low-pass under

predict the high frequency volatility.

Turning to comovements, Figures 3 and 4 show that the 4 estimates can again be divided into 2

groups. Models that include low frequencies generate similar autocovariances and autocorrelations

but are signi�cantly di�erent from those of models estimated without low frequencies.

Models that do not consider low frequencies generate too little autocorrelation for the variables

in levels. No model is able to match the autocovariance of ∆ log(Y ) and ∆ log(I) with the variables

in levels, nor the autocorrelation of hours.

Summarizing, there are two results that emerge from comparing the �t of the four models.

The �rst is that there are a number of dimensions in which state-of-the-art DSGE models do

not �t well. These dimensions relate to the interaction between nominal and real variables and to
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labor market variables (especially hours). Our analysis of �t in the frequency domain is reminiscent

of the results in Watson, 1993, where he showed that the spectral density of �rst generation RBC

models was very di�erent from the spectral density of the data, even though the often used time

domain statistics showed a good �t between the model and data.

The second is that low frequencies are key in shaping the �t of the model. The two estimated

models in which low frequencies are present (All and Low-pass) deliver a very similar �t. The two

estimated models in which low frequencies are not present (High-pass and BC) are very similar

among themselves, but are very di�erent from models in which low frequencies are present.

Let us now analyze how do parameters change when estimated over various frequencies. Table 2

shows the posterior distribution of parameters in the 4 cases. We compare each of the three

alternative models to All. From the posterior distribution of model All, we compute the marginal

posterior distribution of each parameter. We then compare the parameter's median in each of the

three models [Low-pass, BC, High-pass] to the corresponding marginal posterior of model All and

report percentiles. Parameter values that fall in the tails of the marginal posterior distribution

(with less than 1% probability) are indicated in Table 2 with two asterisks. One asterisk indicate

parameter values with probability between 1% and 5%. Some parameters are hardly sensitive to the

di�erent frequencies on which they are estimated. This is the case, for example, for price stickiness,

θp, the two markups, εp and εw. These are parameters that have been shown to be weakly identi�ed

in this class of models (see Canova and Sala, 2009 and Iskrev, 2010).

Other parameters follow a clear pattern when moving from Low-pass to BC and to High-pass.

When less weight is given to low frequencies and more weight to high frequencies, they change

monotonically. ψz, the elasticity of capital utilization increases from 0.68 to 0.81, ηk, the second

derivative of the investment cost function, decreases from 5.1 to 0.65, φπ, the monetary policy

response to in�ation, decreases from 1.81 to 1.28 and to 1.12; φy, the monetary policy response to

the output gap, increases from 0.19 to 0.34 and to 0.56.

Some parameters of the exogenous shocks display similar patterns. ρb, the AR(1) parameter of

the preference shock and ρw, the AR(1) parameter of the wage markup shock, decrease respectively

from 0.77 to 0.38 and from 0.53 to 0.28 as we move from low frequencies to high frequencies. This

is the same pattern for ρp, the AR(1) parameter of the price mark-up shock and ρz, the AR(1)

parameter of the technology shock. As it is to be expected, as we move from high to low frequencies,
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the shocks become more autocorrelated in order to generate more variance at low frequencies.

The standard deviation of the innovation to the investment shock σi increases from 0.06 to

0.29 as we move from high to low frequencies; the volatilities of other innovations change with the

frequencies but not monotonically.

From the analysis above it is di�cult to understand whether the observed changes in parameters

are relevant in terms of �t. If the posterior is �at in the direction of a given parameter, a large

variation in the value of that parameter will have a small e�ect on model's �t (Canova and Sala,

2009). In order to evaluate properly model's �t sensitivity to di�erent parameters on various

frequency bands, and, at the same time, to take into account the possibility of weak identi�cation,

we evaluate the sensitivity of the value of the posterior evaluated at the median with regard to

changes in the parameters. More precisely, we consider as a benchmark the value of the posterior

for the All case evaluated at the parameter's posterior median; we then replace one parameter at

a time with the median estimated in the High-pass, BC and Low-pass case, respectively. Table 3

reports percentage variations in the value of the posterior. Large values for a given parameter

indicate that model's �t is very sensitive to the variation in that parameter. We report parameters

for which the posterior changes by more than 5% in bold, and we underline parameters that generate

a percentage change in the posterior between 1% and 5%.

Fit is hardly sensitive to changes in the elasticity of capital utilization and the Frisch elasticity.

The indexation parameters, the Calvo probability parameters and the markups, both in wages and

prices are weakly identi�ed and they do not signi�cantly a�ect �t.

Models All and Low-pass are characterized by similar parameter values and �t. There is only

one structural parameter to which the model's �t is sensitive and this is ηk, the elasticity of the

investment cost function. Fit is also sensitive to some shocks' variances, namely, σb, σi, σp and σw.

When comparing All to High-pass, there are 3 features of the model that matter: the investment

adjustment cost, ηk, habit persistence h and the Taylor rule. The shocks that matter the most are

the investment speci�c shock and the premium shock.

When the BC parameters are used, results are similar to those of the High-pass case. Fit is

sensitive to the investment adjustment cost, ηk, to habit persistence h and to the interest rate

smoothing parameter, ρs. The exogenous shocks to which �t is most sensitive are the investment

speci�c shock and the premium shock.

Summarizing, the model's feature which is sensitive to the frequency bands is the investment
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adjustment cost and the associated investment-speci�c shock. When there are no low frequencies

in the estimation, the investment cost is relatively low, at 0.65. When low frequencies enter the

estimation, the investment costs jumps up to 5.28, in order to slow down the response of investment

to changes in Tobin's q and generate more persistent dynamics. The same is true, albeit to a lesser

extent, for habit persistence: when low frequencies enter the estimation, habit persistence is 0.8;

when there are no low frequencies, that number is reduced to 0.7.

5 Forecasting

Let us now turn to the analysis of the forecasting performance of DSGE models. In this pseudo-

out-of-sample forecasting exercise, we compute forecasts using the standard approach based on the

state-space representation of the model. The objective is to evaluate if the forecasting performance

is a�ected when parameter estimates obtained on subsets of frequencies are used in forecasting

actual data. We employ two forecasting models.

The �rst is the actual state-space model:

yt = Z(θ̂m)xt (24)

xt = A(θ̂m)xt−1 +B(θ̂m)uθ̂mt (25)

where V (uθ̂mt ) = Σ(θ̂m) and the index m denotes one of the four estimates obtained above.

The second model, considered as a benchmark, is a Bayesian VAR (BVAR henceforth). In

selecting the priors, we combine two prior speci�cations. The �rst is the Minnesota prior (Litterman,

1996) based on the extension to a Normal-inverted Wishart, as in Kadiyala and Karlssson, 1997.

The second is the sum-of-coe�cient prior (Sims and Zha, 1998) in which the VAR coe�cients

are restricted to sum to zero. These priors have been successfully used in the literature on the

forecasting performance of Bayesian VARs (Banbura et al., 2010). Appendix C discusses in greater

detail the BVAR speci�cation. The BVAR is estimated with variables in levels and on the same

sample over which DSGE models are estimated.

The pseudo-out-of-sample experiment is as follows.

We put ourselves at time T = 2002Q2, the end of the estimation period. For each of the four esti-

mated DSGE models (All, Low-pass, BC, High-pass), we follow the sampling the future procedure
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described in Christo�el et al., 2011, to construct predictive densities:

1. Draw a parameter vector θj from the posterior distribution;

2. Draw the state variables at time T from xT ∼ N(xT |T , PT |T ), where xT |T is the estimate of xT

and PT |T is the covariance matrix of xT , given θj , obtained from the Kalman �lter;

3. Simulate a path for the state variables from equation (25) using the drawn value for xT as the

initial value and a sequence of structural shocks uT+1, ..., uT+h drawn from N(0,Σ(θj));

4. Compute a path for the variables yT+1, ..., yT+h using the measurement equation (24);

5. Repeat steps 2-4 M1 times for a given θj . Repeat steps 1-5 M2 times.

We set M1 = 10 and M2 = 100 and report median forecasts h−steps ahead (h = 1, 2, 3, 4, 8, 12).

For the BVAR in levels, we draw from the posterior distribution, forecast the levels, transform

the forecasts to obtain forecasts for the variables in growth rates (output, consumption, investment

and the real wage) and compute median forecasts h−steps ahead (h = 1, 2, 3, 4, 8, 12). We then

add one observation and repeat the same procedure. We do not re-estimate models as we add

observations.

We use 34 observations as a forecasting sample. We therefore end up with 34 one-step ahead

forecasts, 33 two-steps ahead forecasts and so on, up to 23 twelve-steps ahead forecasts.

We use two measures of forecasting performance: the RMSFE (Root Mean Squared Forecast

Error) for each variable and for each forecasting horizon h, and the log-determinant of the covari-

ance matrix of forecast errors for di�erent h, log |Ω(h)|, proposed by Doan et al., 1984, where the

covariance matrix of forecast errors is:

Ω(h) = N−1
h

T+Nh−1∑
t=T

et+h|te
′
t+h|t (26)

et+h|t is the h-step-ahead forecast error vector from the forecast produced at time t and Nh is

the number of evaluated h-step-ahead forecasts. The eigenvectors of the forecast error covariance

matrix generate linear combinations of the variables with uncorrelated forecast errors. The deter-

minant equals the product of the eigenvalues and thereby measures the product of the forecast error

variances associated with these linear combinations. The more linear combinations exist that can

be predicted with small forecast error variance, the smaller the log-determinant statistic (Del Negro
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and Schorfheide, 2012).

5.1 Discussion

Figure 5 shows the ratio between the RMSFE of the BVAR and the RMSFE of alternative models

for each forecasting horizon. Numbers above (below) one mean that the BVAR delivers a smaller

(larger) RMSFE than the alternative model. Figure 6 shows the log-determinant of the covariance

matrix of forecast errors for each forecasting model and for each forecasting horizon. Let us start

from the RMSFE plots. There are large di�erences depending on the variable to be forecast and on

the forecasting horizon. Concerning consumption growth, we see that all DSGE models beat the

BVAR by a large amount. Within DSGEs, the best models at short forecasting horizon are All and

Low-pass. As the forecasting horizon becomes longer, di�erences among DSGEs tend to disappear.

For output and investment growth, the BVAR is the best forecasting horizon, while among DSGEs,

Low-pass and BC are the best forecasting models at all horizons in the short run. As before, at

long forecasting horizons, di�erent DSGEs converge to a similar performance and are similar to the

BVAR model at horizon 8 and 12. For wage growth, High-pass and All are now the best DSGE

models in the short-run. The BVAR is nevertheless superior at all forecast horizon. Concerning

hours, the BVAR is the best model up to 8 quarters ahead. At long horizons, DSGEs are very

similar among themselves and deliver smaller RMSFE than the BVAR. Among DSGEs, at short

horizons Low-pass and BC beat All and especially High-pass, that performs poorly. For nominal

variables, in�ation and interest rate, DSGE models outperform the BVAR at 1 and 2 steps ahead.

For horizons 3, 4 and 8 the BVAR is the best model, while at h = 12 DSGEs and BVAR have

similar performances. In general, few conclusions can be drawn. At longer forecasting horizons,

all DSGEs deliver a similar performance. This is not surprising: as forecasts tend to converge to

the unconditional mean, di�erences among models tend to disappear. The BVAR is not the best

forecasting models at all horizons and for all variables. DSGE models have a good performance

especially when forecasting 8 and 12 steps ahead and, at those horizons, tend to behave similarly

to the BVAR for all variables. Among DSGEs, Low-pass generally has a very good performance

when forecasting at short horizons, with the exception of the real wage. Model High-pass does the

opposite. It does badly on all variables, with the exception of the real wage. The multivariate

statistic o�er similar results. At short horizons the BVAR forecasts better than DSGEs, while,

at longer horizons, the advantage of the BVAR is reduced; at horizon 12, DSGEs are the best
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forecasting models. At short horizons, All and Low-pass are the best models, while at longer

horizons, BC and especially High-pass are the best models.

6 Conclusion

In this paper we use frequency domain techniques to estimate a medium-scale DSGE model on

di�erent frequency bands. We show that goodness of �t, forecasting performance and parameter

estimates vary substantially with the frequency bands over which the model is estimated.

We point to two main results. First, the information contained in low frequencies (denoted

here as frequencies whose period is longer than eight years) drive the estimates obtained in the

time domain (or equivalently, over all frequencies). Second, when the estimation is performed over

di�erent frequency bands, parameter estimates and model �t are signi�cantly a�ected. More specif-

ically, when low frequencies are not present in the estimation, model �t and parameter estimates

change signi�cantly.

When we analyze parameter estimates, we note that the friction that is more sensitive to fre-

quency bands is the investment cost friction: when low frequencies are present, the investment

friction is estimated to be high, slowing down the response of investment to Tobin's q, and gener-

ating persistent dynamics to match the low frequency component of real variables, such as output

and investment growth; when the model is estimated over higher frequencies, this friction becomes

less relevant. The same is true for habit persistence: when low frequencies are not present, habit

persistence signi�cantly decreases.

If there is no misspeci�cation, parameter estimates should not depend (asymptotically) on fre-

quency bands. However, when low frequencies are present, estimated parameters are di�erent from

estimated parameters when low frequencies are absent: a signal that the model cannot match all

frequencies with one set of parameters. Interestingly, when low frequencies are eliminated, param-

eters associated to frictions that generate slow moving �uctuations become less important. We

conjecture that many of the mechanisms needed in DSGE models to match the data turn out to be

signi�cant simply because models are estimated over low frequencies.

Our results show that estimating a DSGE model in the time domain (or equivalently, over all

frequencies) has pros and cons. If the model is designed for business cycle analysis, and if estimates

over frequency bands are di�erent, then it is not clear whether it is reasonable to estimate it over
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all frequencies.

Our results also have important implications in understanding the outcomes of policy experi-

ments conducted with DSGE models and shed a negative light on the assumed "structuralness" of

parameters. If the estimated model is used to compute the welfare costs of business cycles, as in

Lucas, 1987, or to evaluate the e�ect of a new tax on the economy, potentially di�erent answers

can be obtained, depending on the frequency used in estimating parameters.

We believe that the approach of this paper could be employed as a useful diagnostic check for

estimated models. The estimation of models on all frequencies and on subsets of frequencies gives

insights on the role of frictions across frequency bands and this could be employed to build improved

models. We see this as an interesting topic for future research.

Finally, when the forecasting performance is analyzed, we �nd that there are some gains from

using models estimated over subsets of frequencies, but that forecasting performance depends on

the variable to be forecasted and on the forecast horizon. In general, DSGEs are competitive

with BVARs when forecasting 12 steps ahead. Di�erences among DSGEs estimated over di�erent

frequencies tend to vanish when the forecasting horizon becomes longer, as they all converge to the

unconditional mean.
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Model Frequency bands

All All Low BC High
∆ log(Y ) 1.93 1.76 2.27 1.75
∆ log(I) 1.44 1.32 1.87 1.21
∆ log(C) 2.32 2.50 3.59 1.58

∆ log(W ) 1.46 1.70 2.03 1.22
H 1.30 0.75 3.27 8.20
π 0.75 0.47 2.11 1.53
i 0.84 0.53 1.90 1.73

High-pass All Low BC High
∆ log(Y ) 1.31 1.15 1.18 1.42
∆ log(I) 1.12 0.51 1.11 1.20
∆ log(C) 1.68 1.68 1.92 1.55

∆ log(W ) 1.41 1.75 1.85 1.18
H 0.29 0.09 0.79 5.59
π 0.26 0.083 0.81 1.23
i 0.34 0.13 0.96 1.86

BC All Low BC High
∆ log(Y ) 1.23 1.15 1.17 1.29
∆ log(I) 0.83 0.56 0.93 0.81
∆ log(C) 1.40 1.54 1.82 1.13

∆ log(W ) 0.98 1.64 1.63 0.62
H 0.41 0.18 1.10 4.96
π 0.33 0.16 1.10 0.87
i 0.41 0.17 1.07 2.02

Low-pass All Low BC High
∆ log(Y ) 1.68 1.89 1.93 1.46
∆ log(I) 0.99 1.29 1.28 0.79
∆ log(C) 1.66 2.36 2.71 0.88

∆ log(W ) 1.08 1.80 1.92 0.63
H 1.44 1.03 2.95 5.98
π 0.77 0.52 2.30 0.91
i 0.94 0.61 2.10 1.95

Table 1: Model variance divided by the data variance. The ratio is computed for 7 observables
(in rows) and for the 4 models (from top to bottom: All, High-pass, BC, Low-pass), over 4 non-
overlapping frequency bands (in column, from left to right, All, Low, BC, High). Each entry is

computed as:

∫
ΩF

Siiy (ω,θM )dω∫
ΩF

Siiy,V AR(ω)dω
, where ΩF denotes the frequency band, Sy(ω, θM ) the model's M

spectral density and Sy,V AR(ω) the median of the spectral density of the data in Figure 1 .
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Model
Parameter Prior Time All High-pass BC Low-pass
ψz (elasticity of k utilization) Beta(0.5 , 0.1) 0.72

[0.60;0.82]
0.73

[0.62;0.83]
0.83∗

[0.74;0.89]
0.78

[0.68;0.86]
0.72

[0.60;0.81]

ηk (2
nd derivative of I cost f.) N (4 , 1.5) 3.09

[2.09;4.35]
2.91

[1.96;4.13]
0.65∗∗

[0.40;1.09]
1.81∗

[0.93;3.67]
5.28∗∗

[3.78;7.13]

h (habit persistence) Beta(0.5 , 0.1) 0.75
[0.67;0.82]

0.80
[0.74;0.85]

0.71∗∗
[0.63;0.78]

0.71∗∗
[0.63;0.78]

0.81
[0.75;0.86]

ω (inverse Frish elast.) Γ(2 , 0.75) 2.93
[1.74;4.43]

3.02
[1.85;4.67]

2.99
[1.92;4.42]

2.56
[1.44;4.14]

2.45
[1.44;3.91]

γw (w indexation) Beta(0.5 , 0.15) 0.69
[0.53;0.83]

0.69
[0.51;0.82]

0.38∗∗
[0.21;0.58]

0.31∗∗
[0.15;0.51]

0.58
[0.38;0.77]

γp (p indexation) Beta(0.5 , 0.15) 0.26
[0.11;0.44]

0.21
[0.09;0.49]

0.15
[0.06;0.28]

0.25
[0.12;0.44]

0.43
[0.23;0.65]

θw (w stickiness) Beta(0.75 , 0.1) 0.83
[0.74;0.90]

0.82
[0.74;0.89]

0.71∗
[0.60;0.81]

0.76
[0.63;0.87]

0.82
[0.73;0.90]

θp (p stickiness) Beta(0.66 , 0.1) 0.79
[0.71;0.85]

0.80
[0.75;0.85]

0.85
[0.80;0.90]

0.80
[0.71;0.86]

0.78
[0.71;0.83]

εp (p markup) N (1.15 , 0.05) 1.36
[1.30;1.42]

1.36
[1.30;1.42]

1.33
[1.27;1.39]

1.33
[1.26;1.39]

1.33
[1.26;1.39]

εw (w markup) N (1.15 , 0.05) 1.14
[1.06;1.23]

1.14
[1.06;1.22]

1.16
[1.08;1.23]

1.15
[1.07;1.23]

1.14
[1.06;1.22]

φπ (π in Taylor rule) N (1.7 , 0.3) 1.86
[1.56;2.22]

2.05
[1.68;2.43]

1.12∗∗
[0.72;1.58]

1.28∗∗
[0.91;1.70]

1.81
[1.48;2.18]

φy (Y gap in Taylor rule) Γ (0.125 , 0.1) 0.31
[0.21;0.44]

0.31
[0.22;0.45]

0.62∗∗
[0.47;0.82]

0.34
[0.21;0.51]

0.19∗∗
[0.11;0.28]

ρs (i smoothing) Beta(0.75 , 0.1) 0.81
[0.75;0.85]

0.80
[0.75;0.84]

0.60∗∗
[0.48;0.69]

0.53∗∗
[0.41;0.63]

0.76
[0.69;0.82]

ρz (technology) Beta(0.5 , 0.1) 0.13
[0.07;0.22]

0.21
[0.14;0.29]

0.24
[0.16;0.33]

0.35∗∗
[0.25;0.45]

0.35∗∗
[0.25;0.46]

ρm (monetary) Beta(0.5 , 0.1) 0.24
[0.15;0.35]

0.30
[0.22;0.40]

0.33
[0.22;0.50]

0.29
[0.18;0.42]

0.30
[0.19;0.41]

ρb (preference) Beta(0.5 , 0.1) 0.74
[0.62;0.83]

0.67
[0.58;0.75]

0.38∗∗
[0.28;0.51]

0.51∗∗
[0.38;0.64]

0.77
[0.68;0.83]

ρi (I speci�c) Beta(0.5 , 0.1) 0.50
[0.38;0.64]

0.49
[0.38;0.61]

0.50
[0.40;0.61]

0.46
[0.34;0.58]

0.48
[0.35;0.60]

ρp (p markup) Beta(0.5 , 0.1) 0.66
[0.53;0.76]

0.65
[0.44;0.75]

0.44∗
[0.30;0.56]

0.57
[0.43;0.70]

0.69
[0.53;0.78]

ρw (w markup) Beta(0.5 , 0.1) 0.29
[0.18;0.41]

0.33
[0.23;0.44]

0.28
[0.19;0.39]

0.45∗
[0.32;0.56]

0.53∗∗
[0.39;0.65]

ρg (G) Beta(0.5 , 0.1) 0.96
[0.93;0.98]

0.93
[0.90;0.95]

0.87∗∗
[0.81;0.91]

0.84∗∗
[0.77;0.90]

0.91
[0.87;0.94]

σz (technology) IΓ(0.15 , 0.15) 1.08
[0.99;1.18]

1.10
[1.01;1.21]

1.12
[1.02;1.23]

0.90∗∗
[0.79;1.03]

0.87∗∗
[0.77;1.00]

σm (monetary) IΓ(0.15 , 0.15) 0.23
[0.21;0.26]

0.24
[0.22;0.27]

0.22∗
[0.19;0.24]

0.23
[0.20;0.27]

0.26
[0.23;0.31]

σb (preference) IΓ(0.15 , 0.15) 0.44
[0.31;0.84]

0.71
[0.45;1.09]

0.42∗
[0.27;0.66]

0.30∗∗
[0.20;0.49]

0.46
[0.32;0.80]

σi (I speci�c) IΓ(0.15 , 0.15) 0.22
[0.15;0.31]

0.21
[0.14;0.29]

0.07∗∗
[0.05;0.10]

0.12∗∗
[0.07;0.22]

0.28
[0.19;0.41]

σp (p markup) IΓ(0.15 , 0.15) 0.09
[0.07;0.12]

0.10
[0.07;0.13]

0.13∗
[0.11;0.16]

0.08
[0.06;0.11]

0.06∗∗
[0.05;0.08]

σw (w markup) IΓ(0.15 , 0.15) 0.22
[0.18;0.25]

0.21
[0.18;0.24]

0.21
[0.18;0.25]

0.13∗∗
[0.10;0.17]

0.12∗∗
[0.08;0.17]

σg (G) IΓ(0.15 , 0.15) 0.36
[0.33;0.40]

0.36
[0.33;0.40]

0.35
[0.32;0.38]

0.40
[0.34;0.46]

0.41∗
[0.36;0.48]

Posterior value at median 1102.0 1162.8 426.4 389.6

Table 2: Parameter estimates: median. In brackets the 5% and 95% percentile of the posterior dis-
tribution. Median and posterior percentiles from one chain of 200,000 draws from a RW Metropolis
algorithm. The initial 50,000 draws have been discarded. We retain 1 in every 5 subsequent draws.
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All/High-pass All/BC All/Low-pass

ψz (elasticity of k utilization) 0.15 0.04 0.00
ηk (2

nd derivative of I cost f.) 11.3 1.84 6.17
h (habit persistence) 3.87 4.17 0.00
ω (inverse Frish elast.) 0.00 0.03 0.03
γw (w indexation) 0.62 0.92 0.08
γp (p indexation) 0.13 0.00 0.51
θw (w stickiness) 0.95 0.33 0.00
θp (p stickiness) 0.29 0.01 0.01
εp (p markup) 0.01 0.03 0.03
εw (w markup) 0.01 0.01 0.00
φπ (π in Taylor rule) 0.91 0.51 0.01
φy (Y gap in Taylor rule) 1.34 0.02 0.76
ρs (i smoothing) 5.42 9.06 0.38
ρz (technology) 0.02 0.48 0.48
ρm (monetary) 0.00 0.01 0.00
ρb (preference) 3.65 0.95 0.38
ρi (I speci�c) 0.00 0.02 0.00
ρp (p markup) 6.37 0.87 0.14
ρw (w markup) 0.11 0.50 1.46
ρg (G) 0.50 0.89 0.04
σz (technology) 0.01 0.71 0.99
σm (monetary) 0.19 0.02 0.14
σb (preference) 5.46 19.6 3.50
σi (I speci�c) 52.1 6.59 1.27
σp (p markup) 1.55 0.18 3.79
σw (w markup) 0.03 4.83 7.04
σg (G) 0.02 0.14 0.29
Overall 39.0 27.8 11.0

Table 3: Percentage change in the posterior when the corresponding parameter is varied from the
median value estimated in model All to the median value estimated in model High-pass (column
2), BC (column 3) and Low-pass (column 4).
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Figure 1: Data spectrum, BVAR estimates. Numbers in the �gure indicate the fraction of variance
located at di�erent frequency bands - low denotes cycles with period 32 < per < ∞ quarters; BC
denotes cycles with period 4 < per < 32 quarters; high denotes cycles with period 2 < per < 4.
Vertical bars separate the frequency domain in the three regions low, BC and high. Bold line:
posterior median of the BVAR estimates. Shaded areas: 68% credible sets. For details, see Appendix
C and footnote 6.

.
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Figure 2: Log-spectra of data and models estimated on di�erent frequency bands. Vertical bars
separate the frequency domain in the three regions low, BC and high. low denotes cycles with
period 32 < per <∞ quarters; BC denotes cycles with period 4 < per < 32 quarters; high denotes
cycles with period 2 < per < 4. For details, see Appendix C and footnote 6.

.
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Figure 3: Autocovariance function of models estimated on di�erent frequency bands. Bold: data;
Circles: All; Dashed: High-pass; Starred: BC; Dotted: Low-pass. Shaded areas are 90% Bayesian
credible sets for model All. The posterior distribution is obtained by drawing 100 parameters from
the posterior distribution, simulating 100 samples of 170 observations (to match the dimension of
the sample) for each draw and computing the autocovariance function for each sample.



Figure 4: Autocorrelation function of models estimated on di�erent frequency bands. Bold: data;
Circles: All; Dashed: High-pass; Starred: BC; Dotted: Low-pass. Shaded areas are 90% Bayesian
credible sets for model All. The posterior distribution is obtained by drawing 100 parameters from
the posterior distribution, simulating 100 samples of 170 observations (to match the dimension of
the sample) for each draw and computing the autocorrelation function for each sample.



Figure 5: Mean Squared Forecast Error (MSFE). Ratio with regard to the MSFE obtained with
a BVAR. The horizontal axis denotes the forecasting horizon. Numbers above one indicate that
BVAR delivers a smaller MSFE.
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Figure 6: Log-determinant of the covariance matrix of the forecast errors. Horizontal axis denotes
the forecasting horizon. Good forecasting models are characterized by a smaller value of the log-
determinant.
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A Appendix: the DSGE model

We present here the DSGE model in greater detail. The presentation follows closely Sala et al.,

2011.

A.1 Households

The economy features a continuum of households, indexed by j ∈ [0, 1]. Each household consumes

�nal goods, supplies a speci�c type of labor to intermediate goods �rms via employment agencies,

saves in one-period nominal government bonds, and accumulates physical capital through invest-

ment. It transforms physical capital to e�ective capital by choosing the capital utilization rate, and

then rents the e�ective capital to intermediate goods �rms.

Household j chooses consumption Ct(j), labor supply Ht(j), bond holdings Bt(j), the rate of

capital utilization νt, investment It, and physical capital K̄t to maximize the intertemporal utility

function

Et

{ ∞∑
s=0

βsεbt+s

[
log (Ct+s(j)− hCt+s−1(j))− Ht+s(j)

1+ω

1 + ω

]}
(1)

where β is a discount factor, h measures the degree of habits in consumption, ω is the inverse Frisch

elasticity of labor supply, εbt is an intertemporal preference shock, and εbt is a shock to the disutility

of supplying labor. The intertemporal preference shock has mean unity and is assumed to follow

the autoregressive process

log εbt = ρb log εbt−1 + ζbt , ζbt ∼ i.i.d. N(0, σ2
b ). (2)

The capital utilization rate νt transforms physical capital K̄t into e�cient capital Kt according

to

Kt = νtK̄t−1, (3)

and the e�cient capital is rented to intermediate goods �rms at the nominal rental rate Rkt . The

cost of capital utilization per unit of physical capital is given by A(νt), and we assume that νt = 1

in steady state, A(1) = 0, and A′(1)/A′′(1) = ην , as in Christiano, Eichenbaum and Evans, 2005

and others.
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Physical capital accumulates according to

K̄t = (1− δ)K̄t−1 + εit

[
1− S

(
It
It−1

)]
It, (4)

where δ is the depreciation rate of capital, εit is an investment-speci�c technology shock with mean

unity, and S(·) is an adjustment cost function which satis�es S (γz) = S ′ (γz) = 0 and S ′′ (γz) =

ηk > 0, where γz is the steady-state growth rate. The investment-speci�c technology shock follows

the process

log εit = ρi log εit−1 + ζit , ζit ∼ i.i.d. N(0, σ2
i ). (5)

Let Pt be the nominal price level, Rt the one-period nominal (gross) interest rate, At(j) the

net returns from a portfolio of state-contingent securities, Wt the nominal wage, Πt nominal lump-

sum pro�ts from ownership of �rms, and Tt nominal lump-sum transfers. Household j's budget

constraint is then given by

PtCt + PtIt +Bt = Tt +Rt−1Bt−1 +At(j) + Πt +Wt(j)Ht(j) + rkt νtK̄t−1 − PtA (νt) K̄t−1. (6)

Assuming that households have access to a complete set of state-contingent securities, consumption

and asset holdings are the same for all households.

A.2 Final goods-producing �rms

A perfectly competitive sector combines a continuum of intermediate goods Yt(i) indexed by i ∈ [0, 1]

into a �nal consumption good Yt.

Following Smets and Wouters, 2007, we assume that each �rm's elasticity depends inversely on

its relative market share, as in Kimball, 1995, who generalizes the standard Dixit-Stiglitz aggregator.

Thus, letting Yt(i) be the quantity of output sold by retailer i and Pt(i) the nominal price, �nal

goods, denoted Yt, are a composite of individual retail goods following∫ 1

0

G
(
Yt(i)

Yt
, εpt

)
di = 1, (7)

where the function G(·) is increasing and strictly concave with G(1) = 1, and εpt is a time-varying

measure of substitutability across di�erentiated intermediate goods. This substitutability implies
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a time-varying (gross) markup of price over marginal cost equal to εpt that is assumed to follow the

process

log εpt = (1− ρp) log εp + ρp log εpt−1 + ζpt , ζpt ∼ i.i.d. N(0, σ2
p), (8)

where εp is the steady-state price markup.

A.3 Intermediate goods producing �rms

Each �rm in the intermediate goods sector produces a di�erentiated intermediate good i using

capital and labor inputs according to the production function

Yt(i) = max
{
Kt(i)

α [ZtHt(i)]
1−α − ZtF, 0

}
, (9)

where α is the capital share, Zt is a labor-augmenting productivity factor, whose growth rate

εzt = Zt/Zt−1 follows a stationary exogenous process with steady-state value εz which corresponds

to the economy's steady-state (gross) growth rate γz, and F is a �xed cost that ensures that pro�ts

are zero. The rate of technology growth is assumed to follow

log εzt = (1− ρz) log εz + ρz log εzt−1 + ζzt , ζzt ∼ i.i.d. N(0, σ2
z). (10)

Thus, technology is non-stationary in levels but stationary in growth rates, following Altig et al.,

2005. We assume that capital is perfectly mobile across �rms and that there is a competitive rental

market for capital.

Prices of intermediate goods are set in a staggered fashion, following Calvo, 1983. Thus, only a

fraction 1− θp of �rms are able to reoptimize their price in any given period.

Firms that do not re-optimize instead index their price to a combination of past in�ation and

steady-state in�ation according to the rule

Pt(i) = γpπ
γp
t−1Pt−1(i), (11)

where γp = π1−γp is an adjustment for steady-state in�ation.
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A.4 The labor market

As in Erceg et al., 2000, each household is a monopolistic supplier of specialized labor Ht(j), which

is combined by perfectly competitive employment agencies into labor services Ht according to

Ht =

[∫ 1

0

Ht(j)
1/εwt dj

]εwt
, (12)

where εwt is a time-varying measure of substitutability across labor varieties that translates into a

time-varying (gross) markup of wages over the marginal rate of substitution between consumption

and leisure. The wage markup shock is assumed to follow

log εwt = (1− ρw) log εw + ρw log εwt−1 + ζwt , ζwt ∼ i.i.d. N(0, σ2
w). (13)

where εw is the steady-state wage markup.

In any given period, a fraction 1−θw of households are able to set their wage optimally. Similar

to the price indexation scheme, the remaining fraction indexes their wage to the steady-state growth

rate γz and a combination of past in�ation and steady-state in�ation according to

Wt(j) = Wt−1(j)γzπ
γw
t−1π

1−γw . (14)

A.5 Government

The government sets public spending Gt according to

Gt =

[
1− 1

εgt

]
Yt, (15)

where εgt is a spending shock with mean unity that follows the process

log εgt = ρg log εgt−1 + ζgt , ζgt ∼ i.i.d. N(0, σ2
g). (16)

The nominal interest rate it is set using the monetary policy rule1

1The monetary policy rule is speci�ed in terms of output gap Yt/Y
flex
t , de�ned as the deviation of output from

the level under �exible prices and wages.
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it
i

=

(
it−1

i

)ρs [(πt
π

)φπ (
Yt/Y

flex
t

)φy]1−ρs
εmt , (17)

where π is the steady-state level of in�ation and εmt is an AR(1) monetary policy shock which

follows:

log εmt = ρm log εmt−1 + ζmt , ζmt ∼ i.i.d. N(0, σ2
m). (18)

A.6 Market clearing

Finally, to close the model, the resource constraint implies that output is equal to the sum of

consumption, investment, government spending, and the capital utilization costs:

Yt = Ct + It +Gt +A (νt) K̄t−1. (19)

To �nd the steady state, the model is expressed in stationary form. Thus, for the non-stationary

variables, let lower-case letters denote their value relative to the technology process Zt:

yt ≡ Yt/Zt, kt ≡ Kt/Zt, k̄t ≡ K̄t/Zt, it ≡ It/Zt, ct ≡ Ct/Zt,

gt ≡ Gt/Zt, λt ≡ ΛtZt, wt ≡Wt/(ZtPt), w∗t ≡W ∗t /(ZtPt),

Note that the marginal utility of consumption Λt will shrink as the economy grows. The wage is

expressed in real terms. Also, the real rental rate of capital and real marginal cost are expressed

as:

rkt ≡ Rkt /Pt, mct ≡MCt/Pt,

and the optimal relative price as

p∗t ≡ P ∗t /Pt.

The stationary model is then log-linearized around the steady state.
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B Appendix: Monte Carlo experiments

In this Appendix, we study the small sample performance of the frequency domain maximum

likelihood estimator by running a number of Monte Carlo experiments. First, we investigate the

small sample performance of the frequency domain estimator over all frequencies with regard to

the time domain counterpart. Second, we study the small sample performance of the maximum

likelihood over frequency bands.

Our Monte Carlo is conducted as follows. We generate 100 arti�cial samples of length 170 from

the state-space representation of our DSGE model, parameterized with the median parameters

estimated in All2. The length of the arti�cial samples is chosen in order to mimic the number

of actual observations. For each arti�cial sample, we estimate parameters using the four di�erent

sets of frequencies discussed in the main text, All, High-pass, Low-pass and BC. We also estimate

parameters in the time domain, evaluating the log-likelihood with the Kalman �lter. Table 1

reports median estimates over the 100 arti�cial samples, with standard deviations in brackets. We

�rst compare estimation over all frequencies All (in Column 3) with estimation in the time domain

(in Column 4). Theory tells us that results obtained with these two methods should be equivalent,

at least asymptotically. By comparing Columns 3 and 4 we see that results are very similar. In this

case the frequency domain likelihood is a good approximation of the time domain likelihood. As

maximum likelihood on a frequency band is similar to an estimation on a subsample, we evaluate

the loss in e�ciency that we incur when estimating on a subset of frequencies. Columns 5 to 7 show

that the standard deviations of the estimates increase somewhat with regard to the All case, but

that median estimates are still very close to the true value.

In sum, the evidence shows that, when using the DSGE model as data-generating process,

maximum likelihood in the frequency domain is equivalent to maximum likelihood in the time

domain, and that the precision of the estimates is still very good when estimation is performed on

frequency bands.

2In the Monte Carlo we have calibrated the inverse of the Frish elasticity ω as it is very weakly identi�ed.
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Model
Parameter True Time All High-pass BC Low-pass
ψz (elasticity of k utilization) 0.73 0.73

[0.07]
0.74
[0.08]

0.77
[0.08]

0.76
[0.09]

0.73
[0.08]

ηk (2
nd derivative of I cost f.) 2.91 3.53

[1.41]
3.16
[1.56]

3.41
[1.74]

3.11
[2.09]

2.98
[1.83]

h (habit persistence) 0.80 0.81
[0.04]

0.81
[0.04]

0.81
[0.05]

0.82
[0.06]

0.81
[0.06]

γw (w indexation) 0.69 0.63
[0.14]

0.63
[0.14]

0.66
[0.16]

0.66
[0.18]

0.63
[0.15]

γp (p indexation) 0.21 0.21
[0.19]

0.21
[0.19]

0.21
[0.17]

0.24
[0.23]

0.24
[0.22]

θw (w stickiness) 0.82 0.87
[0.12]

0.88
[0.08]

0.86
[0.11]

0.88
[0.12]

0.87
[0.10]

θp (p stickiness) 0.80 0.81
[0.04]

0.81
[0.05]

0.81
[0.05]

0.81
[0.06]

0.82
[0.06]

εp (p markup) 1.36 1.36
[0.06]

1.35
[0.06]

1.34
[0.06]

1.35
[0.06]

1.36
[0.05]

εw (w markup) 1.14 1.39
[0.03]

1.37
[0.25]

1.30
[0.30]

1.33
[0.30]

1.48
[0.29]

φπ (π in Taylor rule) 2.05 2.12
[0.91]

2.02
[0.82]

2.31
[0.99]

2.13
[0.97]

1.95
[0.84]

φy (Y gap in Taylor rule) 0.31 0.34
[0.22]

0.30
[0.21]

0.35
[0.24]

0.33
[0.24]

0.30
[0.20]

ρs (i smoothing) 0.80 0.81
[0.07]

0.79
[0.07]

0.80
[0.08]

0.79
[0.09]

0.79
[0.08]

ρz (technology) 0.21 0.21
[0.08]

0.18
[0.08]

0.19
[0.08]

0.21
[0.14]

0.19
[0.13]

ρm (monetary) 0.3 0.31
[0.09]

0.30
[0.10]

0.28
[0.1]

0.29
[0.20]

0.28
[0.18]

ρb (preference) 0.67 0.69
[0.09]

0.68
[0.10]

0.64
[0.14]

0.62
[0.15]

0.69
[0.13]

ρi (I speci�c) 0.49 0.46
[0.08]

0.47
[0.08]

0.48
[0.10]

0.47
[0.15]

0.47
[0.12]

ρp (p markup) 0.65 0.67
[0.19]

0.66
[0.18]

0.67
[0.18]

0.64
[0.24]

0.65
[0.20]

ρw (w markup) 0.33 0.32
[0.08]

0.32
[0.08]

0.33
[0.08]

0.29
[0.15]

0.31
[0.14]

ρg (G) 0.93 0.93
[0.04]

0.94
[0.04]

0.90
[0.11]

0.86
[0.12]

0.93
[0.05]

σz (technology) 1.10 1.09
[0.07]

1.14
[0.11]

1.15
[0.11]

1.13
[0.15]

1.15
[0.14]

σm (monetary) 0.24 0.24
[0.01]

0.25
[0.02]

0.25
[0.02]

0.26
[0.03]

0.25
[0.03]

σb (preference) 0.71 0.73
[0.44]

0.79
[0.86]

0.82
[1.39]

0.96
[1.47]

0.76
[0.93]

σi (I speci�c) 0.21 0.24
[0.09]

0.23
[0.10]

0.24
[0.11]

0.22
[0.16]

0.22
[0.15]

σp (p markup) 0.10 0.10
[0.03]

0.10
[0.03]

0.10
[0.03]

0.10
[0.04]

0.10
[0.03]

σw (w markup) 0.21 0.20
[0.02]

0.21
[0.02]

0.21
[0.03]

0.23
[0.06]

0.22
[0.06]

σg (G) 0.36 0.36
[0.02]

0.37
[0.02]

0.36
[0.02]

0.36
[0.03]

0.36
[0.03]

Table 1: Monte Carlo results. 100 simulations with sample size T = 170. Column 2 reports the
true values. Each column displays median estimates. Standard deviations in brackets.
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C Appendix: the BVAR model

In this Appendix, we discuss the BVAR speci�cation.

We combine two common prior speci�cations. The �rst is the Minnesota prior (Litterman,

1996), based on the extension to a Normal-inverted Wishart, as in Kadiyala and Karlssson, 1997.

The second is the sum-of-coe�cient prior (Sims and Zha, 1998) in which the VAR coe�cients are

restricted to sum to zero. The presentation in this Appendix follows Banbura et al., 2011.

Let us write the VAR model for the N variables Yt in levels as:

Yt = c+A1Yt−1 + ...+ApYt−p + ut (20)

or, in its error correction form:

∆Yt = c− (I −A1 −A2 − ...−Ap)Yt−1 +B1∆Yt−1 + ...+Bp−1∆Yt−p+1 + ut (21)

The Minnesota prior assumes that:

E[(Ap)ij ] =

 δi j = i, p = 1

0 otherwise
(22)

V [(Ap)ij ] =


λ2

0

p2
j = i

λ2
0λcσ

2
i

p2σ2
j

otherwise
(23)

where the parameters A1, ...Ap are assumed to be a priori independent. The prior on the

intercept is di�use.

The Minnesota prior assumes that the equations in the VAR are tilted towards an AR(1) with

coe�cient δi. If δi = 1 this implies that variable i follows a random walk with drift.

The speci�cation in (23) assumes that the prior variance of the coe�cients is inversely related

to the lag (the coe�cient 1/p2). The parameter λ0 captures the tightness of the prior and the

parameter λc controls the cross equation tightness of the prior. The scaling factor σ2
i /σ

2
j takes into

account that variables may have di�erent scales.

Let us now focus on the ECM representation (21). Note that in a VAR in �rst-di�erences, the
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restriction (I − A1 − A2 − ... − Ap) = 0 is satis�ed. The sum of coe�cients prior (Sims and Zha,

1997) forces the matrix Π = (I −A1 −A2 − ...−Ap) to shrink to 0, and therefore tilts the VAR in

levels towards a VAR in �rst-di�erences.

The VAR model in equation (20) can be written as:

Y = Xβ + U (24)

where Y = [Y1...YT ]′, X = [X1...XT ]′ and X = [Y ′t−1...Y
′
t−p 1]′, U = [u1...uT ]′, β = [A1...Ap c]′.

Following Kadiyala and Karlsson, 1997, the Normal-inverted Wishart prior has the form:

vec(β)|Ψ ∼ N(vec(β0),Ψ⊗ Ω0)

Ψ ∼ IW (S0, α0)
(25)

The prior parameters β0,Ω0, S0 and α0 in (25) are chosen so that prior expectations and vari-

ances of β coincide with those in equations (22) and (23) and that the prior covariance matrix of

the residuals is diagonal, �xed and known: Ψ = Σ, with Σ = diag[σ2
1 , ..., σ

2
N ].3

Dummy observations can be used to implement the priors. As shown by Sims and Zha, 1998 and

Banbura et al., 2010, adding Td observations Yd and Xd to model (24) is equivalent to imposing the

Normal-inverted Wishart prior (25) with β0 = (X ′dXd)
−1X ′dYd, Ω0 = (X ′dXd)

−1, Ud = (Yd−XdB0),

S0 = U ′dUd, and α0 = Td − (Np+ 1). The dummy observations are:

Yd =


(1/λ0)diag[δ1σ1, ..., δNσN ]

0N(p−1)×N

diag[σ1, ..., σN ]

01×N

 (26)

Xd =


(1/λ0)(Jp ⊗ diag[σ1, ..., σN ]) 0Np×1

0N×Np 0N×1

01×Np ε

 (27)

where Jp = diag[1, ..., p] and ε is a very small number that implements an improper prior on

3The condition that allows the covariance matrix of vec(β)|Ψ to be equal to (Ψ⊗Ω0) is: λc = 1. This is assumed
throughout.
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the constant c. Although the parameters should be set using only prior information, we follow

Litterman, 1986, Sims and Zha, 1998 and Banbura et al., 2010 and set the σ2
i equal to the residual

variance obtained from an autoregression of order p for the variables Yit.

The sum of coe�cients prior can be implemented by adding N dummy observations

(1/τ)diag[δ1µ1, ...., δNµN ] to Yd and
[
(1/τ)(i′p ⊗ diag[δ1µ1, ...., δNµN ]) 0N×1

]′
to Xd.

The parameter µi is equal to the sample mean of the variable Yi (as in Sims and Zha, 1998) and

ip is a p× 1 unit vector. The total number of dummy observations is now Td = N(p+ 2) + 1.

The regression model augmented with the dummy observations is:

Y∗ = X∗β∗ + U∗ (28)

where Y∗ = [Y ′ Y ′d ]′, X∗ = [X ′ X ′d]
′, U∗ = [U ′ U ′d]

′ and β∗ = [A1...Ap c]
′ implies that the posterior

distribution has the form:

vec(β∗)|Ψ, Y ∼ N(vec(β̂∗),Ψ⊗ (X ′∗X∗)
−1)

Ψ|Y ∼ IW (Σ̂∗, Td + T + 2− (Np+ 1))
(29)

where β̂∗ = (X ′∗X∗)
−1X ′∗Y∗ and Σ̂∗ = (Y∗ −X∗β̂∗)′(Y∗ −X∗β̂∗).

We estimate the forecasting BVAR with variables in levels with p = 1, as selected by the Schwarz

Bayesian information criterion (BIC). We set δi = 1 for output, investment, consumption and the

real wage and δi = 0.9 for hours, in�ation and the nominal interest rate, those variables that are

stationary in the DSGE model, re�ecting a prior belief that they exhibit a fair degree of persistence

(Koop and Korobilis, 2009)4. We set λ0 = 0.12 as in Kadiyala and Karlsson, 19975, τ = 10λ0 as in

Banbura et al., 2010 and Christo�el et al., 2011.6

4Banbura et al., 2010, set δi = 0 for variables characterized by substantial mean reversion
5We have also experimented with λ0 = 0.262 and λ0 = 0.108 as suggested in Banbura, Giannone and Reichlin,

2010. Forecasting results are unchanged.
6Figure 1 in the paper displays estimates for the spectral densities of the observables [∆ log(Yt); ∆ log(It);

∆ log(Ct); ∆ log(Wt); Ht; πt; it]. Those estimates have been obtained by �tting a BVAR with Minnesota and
sum-of-coe�cients priors on the levels: [log(Yt); log(It); log(Ct); log(Wt); Ht; πt; it] and di�erentiating variables
expressed in growth rates. p is set to 4 and λ0 = 0.12. Shaded areas show 68% credible sets.
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