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Abstract

We view economic time series as the result of a cascade of shocks occurring at different

times and different frequencies (scales). We suggest that economic relations that are found to

be elusive when using raw data may hold true for different layers (details) in the cascade of

economic shocks. This observation leads to a notion of a scale-specific predictability. Using

direct extraction of the details and two-way aggregation, we provide strong evidence of risk

compensations in market returns, as well as of an unusually clear link between macroeconomic

uncertainty and uncertainty in financial markets, at frequencies lower than the business cycle.
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1 Introduction

Low-frequency economic shocks may not just be long-run averages of high-frequency shocks. Simi-

larly, low-frequency economic relations may not imply analogous relations at higher frequencies.

In agreement with this premise, we argue that every frequency of observation may, in general,

be impacted by specific shocks and can, in consequence, carry unique information about the va-

lidity of economic relations. While such relations are typically tested - and often rejected - at a

specific, high frequency, they may be valid at lower frequencies without requiring the researcher to

impose, coherently with data, tight constraints at the highest frequency of observation for internal

consistency.

To capture these ideas parsimoniously, we introduce an novel way to model economic time series

leading to a new notion of scale-specific predictability. In essence, we view economic time series as a

sum of scale-specific components, or details. We define the details as elements of the observed time

series with a specific level of resolution. Higher scales are associated with lower resolution, lower

frequencies, and higher calendar-time persistence. Higher scales are, also, affected by shocks which

are relatively smaller in size but persist in the system relatively longer, as is typical of long-run

shocks.

Often-studied economic relations - like the presumed dependence between market risk-premia

and expected volatility (risk-return trade-offs) or between nominal rates and expected inflation

(Fisher’s effects) - may be hard to detect when using the raw series themselves. In the framework

we propose, however, otherwise-elusive economic relations are found to apply to specific frequencies,

levels of resolutions, or - in our jargon - scales.

We show that direct extraction of the details from observed regressands and regressors can

shed important light on the validity of the assumed economic restrictions. Since economic data are

viewed as aggregates of a cascade of scale-specific shocks with different sizes and different half-lives,

focusing on individual elements of a time series with specific levels of resolution provides us with

a suitable way to disaggregate information occurring at different frequencies. This, in turn, gives

us a methodology to zoom in on to specific layers of the cascade of shocks affecting the system at

different frequencies, isolate each layer, and identify those layers over which economic restrictions

are more likely to be satisfied. To this extent, we find that the pattern of predictability in the

details often reaches a peak corresponding to scales associated with business-cycle frequencies or
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lower. At these scales - but only at these scales - the corresponding slope estimates have signs and

magnitudes which are consistent with classical economic logic.

The paper shows that lagged values of the market return variance’s detail with decade-long

periodicity (or lower) forecast future values of the corresponding variance detail as well as future

values of the excess market return’s detail with the same periodicity. In essence, we provide evi-

dence for an extremely slow-moving component in market variance which predicts itself and predicts

a similarly slow-moving component of the market’s excess returns, i.e., a scale-specific risk-return

trade-off. Interestingly, the same finding applies to consumption variance. The consumption vari-

ance’s detail with decade-long periodicity is positively autocorrelated and predicts future values of

the excess market return’s detail with the same periodicity. Said differently, higher past values of a

slow-moving component of consumption variance predicts higher future values of the corresponding

slow-moving component in market returns because it predicts higher future values of itself (and

this higher variance component should, in agreement with classical economic theory, be compen-

sated). This is, again, a low-frequency risk-return trade-off, i.e., a risk-return trade-off on selected

details. While market variance and consumption variance are hardly correlated in the raw data,

the low-frequency details delivering predictability have the same periodicity and, importantly, a

correlation close to 90%. This finding establishes an extremely close link between macroeconomic

uncertainty and uncertainty in financial markets, thereby lending support to sensible economic logic

often contradicted by elusive empirical findings on the subject. Importantly, both in the case of

market variance and in the case of consumption variance, when evaluating risk-return trade-offs by

running predictive regressions on the 10-year details, rather than on the original series, we find R2

values of 75% (for market variance) and 84% (for consumption variance). These are figures hardly

seen in classical assessments of predictability. We deduce that short-run shocks hide equilibrium

relations which careful signal extraction can bring to light.

What are the implications of scale-wise predictability for conducting long-run predictive anal-

ysis? We show formally that two-way (forward for the regressand, backward for the regressor)

adaptive aggregation of the series, as suggested by Bandi and Perron (2008), leads to increased

predictive ability precisely at frequencies corresponding to a scale, or level of resolution, over which

the economic relation is more likely to apply. We demonstrate that aggregation works as a low-

pass filter capable of eliminating high-frequency shocks, or short-term noise, while highlighting the

low-frequency details to which economic restrictions apply. In this sense, finding increasing pre-

3



dictability upon forward/backward aggregation, as in the case of the long-run risk-return trade-offs

illustrated by Bandi and Perron (2008), is symptomatic of risk compensations which apply to highly

persistent, low-frequency details of returns and variance. When testing the restrictions on disag-

gregated raw data, such components are hidden by noisier high-frequency details. Their signal,

however, dominates short-term noise when two-way aggregation is brought to data. Conversely,

aggregation provides a way to make scale-specific predictability operational. We find that two-way

aggregation of both the regressor and the regressand, rather than simple aggregation of the re-

gressand, yields predictability at horizons corresponding with the scale(s) over which scale-specific

predictability occurs. Because there is a close one-to-one map between predictability on the de-

tails and predictability upon two-way aggregation, the latter provides an operational way to make

predictability on the details implementable in practical contexts (asset allocation being a classical

example).

Figure 1 and 2 provide illustrations of these ideas. The left panels in Figure 1 present scatter

plots of forward aggregates of excess market returns on backward aggregates of market variance

for different levels of aggregation. The right panels present scatter plots of components (details)

of the same series corresponding to analogous frequencies between one and two years (j = 1), two

and four years (j = 2), and 8 and 16 years (j = 4), respectively. Figure 2 provides the same

information for consumption variance. Predictability on the details at scale j = 4 (bottom right

panels) translates into predictability upon two-way aggregation provided aggregation is conducted

over analogous horizons (bottom left panels). The former (predictability on the details) amounts to

a spectral feature of the two series of interest, one that carries important economic content in that

it directly relates frequency, or scale, to predictable variation in returns. The latter (predictability

upon forward/backward aggregation) is a detection tool based on raw data and, importantly for our

purposes, it may be viewed a way to translate scale-specific predictability into return predictability

for the long run, with all of its applied implications.

[Insert Figure 1 about here]

[Insert Figure 2 about here]

The separation of a time series in terms of details with different levels of resolution is conducted

using wavelet methods as in Multiresolution Analysis (see, e.g., Mallat (1989), Dijkerman and

Mazumdar (1994), Yazici and Kashyap (1997)).
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Our use of wavelets is, however, solely intended to facilitate extraction of scale-specific infor-

mation. Differently from the literature on wavelets and its reliance on traditional time series rep-

resentations,1 once extracted, the components are thought to be driven by time and scale-specific

shocks which are not necessarily aggregates of short-term shocks. Hence, importantly, our proposed

data generating process departs from classical Wold specifications in which low-frequency shocks

are linear combinations of high-frequency shocks by allowing for specificities in the system’s shocks

across both time and scale. This new data generating process has proven successful in the context

of structural consumption models to explain the market risk premium (Ortu, Tamoni, and Tebaldi

(2013) and Tamoni (2011)) and provide an alternative view of cross-sectional asset pricing by virtue

of a novel notion of scale-specific beta (Bandi and Tamoni, 2013). Here, we employ a scale-time

process to broaden the scope and nature of tests of economic restrictions (with an emphasis on pre-

dictive relations) and introduce a new approach for modelling and testing these restrictions. To this

extent, we study formally the dual role of suitable aggregation in detecting scale-specific economic

restrictions and translating them into operational long-run features of the data.

The evaluation of low-frequency contributions to economic and financial time series has a long

history, one which we can not attempt to review here. Barring fundamental methodological and con-

ceptual differences having to do with our assumed data generating process, the approach adopted

in this paper shares features with successful existing approaches. Consistent with band spectral

methods (Hannan, 1963), the frequency dimension is important for our purposes. In light of the

predictive nature of this study, time adaptation and localization in both frequency and time are,

however, crucial. Band spectral methods only guarantee the latter and, by applying to traditional

time series formulations, they are silent about the role of time and scale in the evaluation of the im-

pact of economic shocks, which is something that we emphasize. As in Beveridge and Nelson (1981),

who popularized time-series decompositions into stochastic trends and transitory components, we

can view the details as components (more than two, in this paper) with different levels of (calendar-

time) persistence operating at different frequencies. In our framework, the components’ shocks are,

again, functions of both time and scale. Comin and Gertler (2006) argue that the common practice,

in business-cycle research, of including longer than 8-year oscillations into the trend (see e.g., Bax-

ter and King, 1999), thereby effectively removing them from the analysis, may be associated with

1For stimulating treatments of wavelet methods for time series analysis, we refer the reader to Percival and Walden
(2000) and Gençay, Selçuk, and Whitcher (2001).
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significant loss of information. We aim at capturing analogous effects. While Comin and Gertler

(2006) decompose a series into a “high-frequency” component between 2 and 32 quarters and a

“medium-frequency” component between 32 and 200 quarters, our detail extraction allows us to

disentangle multiple driving forces associated with different persistence levels within their assumed

frequencies. Moreover, Comin and Gertler (2006) use a band-pass filter which amounts to a two-

sided moving average and appears, therefore, not suitable for some of our purposes, i.e., to study

predictability. In contrast, the method we propose is one-sided into the past, adapted to current

information, and implementable in real time. As in Hansen and Sheinkman (2009), we employ op-

erators to extract low-frequency information (in our case, the low-frequency information embedded

in the details). Finally, essential scale-wise information in the extracted details can be summarized

by a finite number of “typical” points, the result of an econometric process called “decimation”.

Figure 1 and 2, right panels, are constructed using them. These typical points can be viewed as

being akin to ”the small number of data averages” used by Müller and Watson (2008) to identify

low-frequency information in the raw data. In our case, however, they are scale-specific and, as such,

particularly useful to formalize our notion of frequency-specific, or scale-specific, predictability.

The work on stock-return prediction is broad2 and has led to some controversy (e.g., Cochrane,

2008, for a well-known defense of predictability and references). While it is generally accepted that

long-run prediction is more successful than short-run prediction, both are viewed as ”reflections of a

single underlying phenomenon” (Cochrane, 2001). This paper decouples short-run shocks from long-

run shocks and offers an alternative mechanism through which predictability may arise, at certain

frequencies alone, due to the presence of interconnected layers in the flow of economic shocks. It is

this mechanism that justifies our notion of scale-wise predictability.

We proceed as follows. Section 2 provides intuition for the analysis of time series with differ-

ent levels of resolution. We show how the data can be viewed as a collection of time-specific and

frequency-specific shocks, as in a generalized Wold decomposition, or - equivalently - as the sum of

details operating at different frequencies. Section 3 introduces scale-specific predictability, the idea

that economic relations may hold true for individual layers in the cascade of shocks affecting the

economy and, hence, for individual details, but may be hidden by high-frequency perturbations.

2The literature documents predictability induced by financial ratios, see e.g. Campbell and Shiller (1988), Lamont
(1998), Kelly and Pruitt (2013), interest rate variables, see e.g. Fama and Schwert (1977), Fama and French (1989)
and macroeconomic variables, see e.g. Lettau and Ludvigson (2001), Menzly, Santos, and Veronesi (2004), Nelson
(1976), Campbell and Vuolteenaho (2004).
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This section discusses the double role of low-pass filters based on two-way aggregation: detection of

the level of resolution over which scale-wise predictability plays a role and operationalization of scale-

wise predictability to forecast long-run returns. Section 4 employs direct extraction of the details, as

well as aggregation, to provide strong evidence of long-run risk-return trade-offs in market returns.

We focus on both low-frequency risk consumptions due to market variance and low-frequency risk

compensations due to consumption variance. Their close link, and overall coherence, is established

by providing significant evidence about the scale-wise co-movement between macroeconomic uncer-

tainty, as captured by consumption variance, and uncertainty in financial markets. In Section 5 we

verify the assumptions of theory using simulations. Specifically, we impose predictability on the

”typical” points of certain details, re-construct the original series from these ”typical” points, and

show effectiveness of two-way aggregation in the identification of low-frequency economic relations.

Section 6 turns to another well-know economic relation, namely Fisher hypothesis. Our interest in

Fisher hypothesis is two-fold. First, we wish to show applicability of the methods to broad classes

of economic relations. Second, contrary to risk-return trade-offs, the case of Fisher effects is one for

which maximum predictability is not obtained over the very long haul. It is, instead, achieved over

an horizon of about 8 years and is associated with tent-shaped behavior in the predictive slopes

and R2s. We show, using simulations and formal derivations, that this tent-like behavior represents

an important implication of our assumed data generating process. Section 7 concludes. Technical

details are in the Appendices.

2 Time-series modelling with multiple scales

Consider a weakly-stationary time series {xt−i}i∈Z. We may write

xt =

J∑
j=1

x
(j)
t + π

(J)
t , (1)

where the x(j)s are components (or details) associated with time (t) and scale (j) and π
(J)
t is a

long-run trend. The collection of values x
(j)
t with j fixed corresponds to the representation of a

time-series (viewed as a function of time t) at the jth scale.

While alternative choices are possible, in this paper we use Haar wavelets to decompose {xt−i}i∈Z
into details. The use of Haar wavelets provides a clear connection between aggregation (and long-
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run dynamics) and time-series components with low levels of resolution and high calendar-time

persistence. We formally explore the link between Haar wavelets and aggregation in the next section.

In general, however, any wavelet can be viewed as an aggregation scheme (e.g., Abry, Veitch, and

Flandrin (1998)).

Consider the case J = 1. We have

xt =
xt − xt−1

2︸ ︷︷ ︸
x
(1)
t

+

[
xt + xt−1

2

]
︸ ︷︷ ︸

π
(1)
t

,

which amounts to breaking the time series into a transitory and a persistent component. Set, now,

J = 2. We obtain

xt =
xt − xt−1

2︸ ︷︷ ︸
x
(1)
t

+

[
xt + xt−1 − xt−2 − xt−3

4

]
︸ ︷︷ ︸

x
(2)
t

+

[
xt + xt−1 + xt−2 + xt−3

4

]
︸ ︷︷ ︸

π
(2)
t

,

which further separates the persistent component π
(1)
t into an additional transitory and an additional

persistent component.

The procedure can, of course, be iterated yielding a general expression for the detail x
(j)
t , i.e.,

x
(j)
t =

∑2(j−1)−1
i=0 xt−i

2(j−1)︸ ︷︷ ︸
π
(j−1)
t

−
∑2j−1

i=0 xt−i
2j︸ ︷︷ ︸
π
(j)
t

where the element π
(j)
t satisfies the recursion

π
(j)
t =

π
(j−1)
t + π

(j−1)

t−2j−1

2
.

In essence, the time series can be written as a collection of details x
(j)
t with different degrees of reso-

lution (i.e., calendar-time persistence) along with a low-resolution approximation π
(J)
t . Equivalently,

it can be written as a telescopic sum
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xt =

J∑
j=1

{
π

(j−1)
t − π(j)

t

}
︸ ︷︷ ︸

x
(j)
t

+ π
(J)
t = π

(0)
t , (2)

in which the details are naturally viewed as changes in information between scale 2j−1 and scale 2j .

The scales are dyadic and, therefore, enlarge with j. The higher j, the lower the level of resolution,

and the larger the scale. In particular, the innovations x
(j)
t = π

(j−1)
t − π(j)

t become smoother, and

more persistent in calendar time, as j increases. The representation in Eq. (2) will be especially

useful when discussing aggregation.

2.1 Decimation

Decimation is the process of defining non-redundant information, as contained in a suitable number

of “typical” points, in the observed details. Returning to Figure 1 and Figure 2, the panels on the

right-hand side are constructed from these ”typical” points and, therefore, only contain essential

information about the corresponding scale.

Let us return to the case J = 2, as in the example above, but similar considerations apply more

generally. Define the vector

Xt = [xt, xt−1, xt−2, xt−3]ᵀ

and consider the orthogonal transform matrix

T (2) =


1
4

1
4

1
4

1
4

1
4

1
4 −1

4 −1
4

1
2 −1

2 0 0

0 0 1
2 −1

2

 .

It is easy to see that T (2)(T (2))> is diagonal and

T (2)Xt =
[
π

(2)
t , x

(2)
t , x

(1)
t , x

(1)
t−2

]ᵀ
.

By letting time t vary in the set
{
t = k22 with k ∈ Z

}
one can now define (from T (2)Xt) the
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decimated counterparts of the calendar-time details, namely

{
x

(j)
t , t = k2j with k ∈ Z

}
for j = 1, 2

and {
π

(2)
t , t = k22 with k ∈ Z

}
.

Mallat (1989) provides a recursive algorithm for the general case with J not necessarily equal to 2.3

2.2 Scale-specific shocks

Assume, without loss of generality and for convenience, that the time series {xt−i}i∈Z is mean zero.

The details x(j) are also mean zero and weakly-stationary for any fixed j (Wong, 1993). One can

write the representation (understood in the mean-squared sense):

xt =
J∑
j=1

∞∑
k=0

aj,kε
(j)

t−k2j
, (3)

where ε
(j)
t = x

(j)
t − PMj,t−2j

x
(j)
t and PM

j,t−2j
is a projection mapping onto the closed subspace

Mj,t−2j spanned by
{
x

(j)

t−k2j

}
k∈Z

. This is a Wold representation which applies to every scale.

Specifically, it is a decomposition which explicitly represents the time series of interest as a linear

combination of shocks classified on the basis of their arrival time, as is typical in the analysis of

linear stationary time-series, as well as their scale. The decomposition will reduce to a classical

Wold representation for linear stationary processes if

ε
(j)
t︸︷︷︸

x
(j)
t −PMj,t−2j

x
(j)
t

=

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 /
√

2j

︸ ︷︷ ︸∑2j−1
i=0

(
xt−i−PMt−i−1

xt−i

)
.

Appendix A provides a proof of this result. Intuitively, if the scale-specific innovations are sums

of high-frequency innovations, then the information contained by the series at every scale is an

3In general, we can use the components x
(j)
t , j = 1, .., J , and π

(J)
t in their entirety to reconstruct the time series

using (1). This is the redundant decomposition of a time series proposed in Renaud, Starck, and Murtagh (2005).
Alternatively, one can reconstruct the time series signal from the decimated components using the (inverse of the)
Haar unitary matrix, see Appendix B.
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aggregate of that contained at higher frequencies. If, on the other hand, this is not the case, then

there is a separation between scales - in terms of their informational content - which still preserves

their consistency. This would translate into shocks which are specific to individual scales, thereby

giving meaning to economic relations which, again, may only be satisfied at certain frequencies.

The logic behind this approach to time series modelling, and its implications for detecting short

and long-run dynamics in economic time series, is further described in Appendix B.

Consistent with Eq. (1) and Eq. (3), one may now represent the details as linear autoregressive

processes. A convenient (2-parameter) way to do so is to write

x
(j)
t = ρjx

(j)

t−2j
+ ε

(j)
t (4)

or, in terms of decimated observations (for an integer k),

x
(j)

k2j
= ρjx

(j)

k2j−2j
+ ε

(j)

k2j
(5)

where the shocks ε(j) are uncorrelated across scales, white noise, and with a scale-specific variance

σj . The model is autoregressive of order 1 in the dilated time of the scale being considered. The

parameter ρj captures scale-specific persistence. We note that dependence in scale time can be

considerably lower than dependence in calendar time, the later being an increasing function of

the scale (Appendix C, Subsection C.2.1 for a formal proof). We also note that the assumption

of uncorrelatedness across scales is due to the ability of a filter like T (2) to ”decorrelate” the

original observations (see, e.g., Dijkerman and Mazumdar (1994) and Gençay, Selçuk, and Whitcher

(2001)). Both properties, i.e., low correlation in scale time and uncorrelatedness across scales, will

be verified in the data. While richer autoregressive specifications may be employed in the usual

way, a parsimonious structure in scale time, consistent to the one in Eq. (5), is bound to lead, upon

re-construction of the raw series, to rich dynamics in calendar time. Motivated by issues of signal

processing akin to the economic issues of interest to us, Dijkerman and Mazumdar (1994) propose

an analogous representation.

Eq. (3) and Eq. (5) are important. The former describes the idea that economic time series can

be represented as aggregates of shocks that are both time and scale specific. For any scale indexed

by j, the latter defines a parsimonious way in which scale-specific shocks impact the corresponding
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layer of the time series of interest. We note that, given Eq. (5), by choosing the pair {ρj , σj} for

each j, one can readily view the specification on the scales as a novel data generating process for

the original time series, resulting in (a form of) Eq. (3). The original time series can, in fact, be

re-constructed from the details by using the properties of the matrix T (J) (Mallat, 1989). Appendix

B and simulations (below) provide further details. From an inferential standpoint, {ρj , σj} can be

readily identified once the details have been extracted.

In what follows, we begin with the extraction of the details and the analysis of their dynamics.

We will then investigate the relation between details of suitable predictors and regressands in order

to establish the presence, or lack thereof, of our notion of scale-wise predictability. We argue

that scale-wise predictability is a channel through which economic restrictions may be satisfied at

particular levels of resolution without having to be satisfied at all levels of resolution. By imposing

Eq. (5), we will then simulate a model with multiple scales and show its effectiveness in replicating

important stylized findings in the data. Before doing so, however, we turn to the role of aggregation

in revealing predictability on the scales and, importantly, in providing a way to exploit it.

3 Two-way aggregation and scale-specific predictability

Consider a predictive variable yt and a predictor xt. It is standard in macroeconomics and finance

to verify predictability by computing linear, or nonlinear, projections at the highest frequency

of observation. It is also common to aggregate the regressand. A recent approach proposed by

Bandi and Perron (2008) aggregates both the regressand (forward) and the regressor (backwards).

The aggregate regressor is adapted to time t information and is, therefore, non anticipative. The

logic for aggregating both the regressand and the regressor resides in the intuition according to

which equilibrium implications of economic models may impact highly persistent components of the

variables {yt, xt} while being hidden by short-term noise (Bandi and Perron, 2008). Aggregation

provides a natural way to filter out noise, thereby yielding a cleaner signal. We now formalize this

intuition.

Assume the following predictive model postulated in terms of details:

y
(j)

t+2j
= α+ βx

(j)
t for j > s.
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In this specification, the assumed relation applies to each jth scale (with j > s), but may be

confounded by the presence of uncorrelated shocks at other scales. Said differently, the (scale) time

t∗ + 1 value of the jth scale of the variable y is linearly related to the time t∗ value of the jth scale

of the variable x. Since time is scale specific and dilated, the time t∗ + 1 value of the jth scale is

expressed as t+ 2j in calendar time units.

Let us begin with a preliminary observation. Aggregation of the time series {xt−i}i∈Z uncovers

information at different scales or, more precisely, for scales that are higher than the one correspond-

ing to the aggregation level. To see this, using Eq. (2), write

xt−2s+1,t =

(
2s−1∑
i=0

xt−i

)
/2s = π

(s)
t =

J∑
j=s+1

{
π

(j−1)
t − π(j)

t

}
︸ ︷︷ ︸

x
(j)
t

+ π
(J)
t . (6)

where s = 0, 1, . . . , J . The implication of this simple derivation is that economic relations which

emerge from aggregation, and may not appear at higher frequencies, can be viewed as scale-specific.

Using Eq. (6), forward/backward aggregation yields

yt+1,t+2s =

(
2s−1∑
i=0

y(t+2s)−i

)
/2s = π

(s)
t+2s =

=
J∑

j=s+1

y
(j)
t+2s + π

(J)
t+2s =

J∑
j=s+1

{
α+ βx

(j)
t

}
+ π

(J)
t+2s︸ ︷︷ ︸

=k+βxt−2s+1,t

. (7)

Thus, predictability on the details implies predictability upon suitable aggregation of both the

regressand and the regressor. In essence, economic relations which apply to highly persistent com-

ponents will be revealed by two-way averaging since higher frequency dynamics will not affect

inference.

Eq. (7) provides a clear way to understand the role of suitable (two-way) aggregation. As stated,

however, the result hinges on two assumptions: predictability applies to scales j > s, where s is the

level of aggregation, and the same slope β characterizes all scale-wise predictive regressions. In this

sense, the relation is particularly useful to understand the implications of scale-wise predictability

over the very long run (i.e., for a large j). In this scenario, in fact, Eq. (7) predicts that long-run

forward/backward averaging of the regressand/regressor will lead to predictability upon aggregation.
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Interestingly, it should also lead to slope estimates which are very closely related, in terms of their

numerical value, with the true slopes of the relevant scale-wise predictive regression(s). This case

will be very pertinent to understand the long-run risk-return trade-offs reported below.

An alternative scenario is one in which scale-wise predictability applies to a moderate scale,

rather than to the very long haul. Under mild assumptions, Appendix C-C.2.2 shows that, unsur-

prisingly, the optimal amount of averaging should be conducted for time lengths corresponding to

the scale over which predictability applies. More specifically, if predictability applies to a specific

detail with fluctuations between 2j−1 and 2j periods, the largest R2 is achieved for a level of for-

ward/backward aggregation corresponding to 2j periods. Before and after, the R2s should display

a tent-like behavior.

The data generating process that we propose has an additional empirical implication worth

mentioning. Under predictability at the same jth scale, should forward predictors (yt+1,t+2s) be re-

gressed on differences of aggregated regressors (xt−2s+1,t−xt−2×2s+1,t−2s), rather than on aggregated

regressors (xt−2s+1,t), the maximum R2 would be achieved for a level of aggregation corresponding

to 2j−1 periods, rather than 2j periods. Additionally, the sign of the slope estimate would be the

opposite of the sign of the true slope linking details at the jth scale (see Appendix C-C.2.4). We

will use this additional implication of theory to further validate the consistency between assumed

data generating process and empirical findings in Section 6.

Next, we broaden the scope of classical predictability relations in the literature. We focus

on risk-return trade-offs. Because of their different features, we later discuss Fisher effects. We

first show the outcome of two-way aggregation and predictive regressions run on aggregated raw

series. We then turn to regressions on the extracted details and illustrate the consistency of their

findings with those obtained from two-way aggregation. This consistency is further confirmed by

simulation as well as in the context of the illustrative treatment in Appendix C. From an applied

standpoint, one could proceed in the opposite way: detect predictability on the scales and then

utilize predictability on the scales by suitably aggregating regressands and regressors. The latter

method is a way in which one could exploit the presence of a scale-specific risk-return trade-off to

perform return predictability and, among other applications, asset allocation over suitable horizons.
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4 Risk-return trade-offs

4.1 Equity returns on market variance

The basic observation driving our understanding of the analysis of risk-return trade-offs at different

levels of aggregation performed by Bandi and Perron (2008) is the following: the “basis”of inde-

pendent shocks yielding return time series must be classified along two dimensions: their time of

arrival and their scale or level of resolution/persistence.

As discussed above, we propose an adapted linear decomposition which represents a time series

as a sum of decorrelated details whose spectrum is concentrated on an interval of characteristic

time scales (inverse of frequencies) ranging from 2j−1 to 2j .4 Each element of the time series

xt is decomposed into a sum of detail components x
(j)
t classified by their degree of (scale-wise)

persistence ρj plus a permanent component π
(∞)
t . By construction each detail x

(j)
t is stationary and

mean zero. The permanent component may be viewed as the sum of deterministic and stochastic

trend components with infinite persistence.

We apply the decomposition to logarithmic excess returns and realized variance series, rt and v2
t .

5

The details are shown in Figure 3. The hypothesis of uncorrelatedness among detail components

with different degrees of persistence is not in contradiction with data. Table 2 presents pair-wise

correlations between the individual details of market variance and excess market returns. Virtually

all correlations are small and very statistically insignificant. Not surprisingly, the largest one (0.39)

corresponds to the adjacent pair of variance’s scales j = 3 and j = 4.6

[Insert Figure 3 about here]

Next, we consider the forward/backward regressions

rt+1,t+h = αh + βhv
2
t−h+1,t + ut,t+h, (8)

4For a clear interpretation of the j-th scale in terms of the corresponding time spans, we refer to Table 1.
5Appendix F describes the data and construction of variables.
6It is worth emphasizing that these pair-wise correlations are obtained by using redundant data on the details

rather than the decimated counterparts described in Subsection 2.1. This is, of course, due to the need of having the
same number of observations for each scale. Hence, even though they are small, we expect these correlations to be
slightly upward biased.

There could also be leakage between adjacent time scales. It is possible to reduce the impact of leakage by replacing
the Haar filter with alternative filters with superior robustness properties (the Daubechies filter is one example). The
investigation of which filter is the most suitable for the purpose of studying predictability on the scales is beyond the
scopes of the present paper. As pointed out earlier, also, the use of the Haar filter is particularly helpful to relate
scale-wise predictability to aggregation, a core aspect of our treatment.
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where rt+1,t+h and v2
t−h+1,t are aggregates of excess market returns and return variances over an

horizon of length h. Empirical results are reported in Table 6-Panel A. We confirm the findings

in Bandi and Perron (2008), namely future excess market returns are correlated with past market

variance. Dependence increases with the horizon, and is strong in the long run, with R2 values

between 7 and 10 years ranging between about 16% and 51%.

A crucial observation in Bandi and Perron (2008) is that “the long-run results are not compatible

with classical short-term risk return trade-offs.” Proposition 3 in that paper discusses the asymptotic

properties of the long-run regressions’ slope estimates and R2s and shows that disaggregated asset

pricing models which solely imply dependence between excess market returns and (autoregressive)

conditional variance at the highest resolution cannot deliver the reported findings upon aggregation.

This is easily seen. Consider a classical one-period (h = 1) predictive system:

rt,t+1 = α+ βv2
t−1,t + ut,t+1,

v2
t,t+1 = ρv2

t−1,t + εt,t+1. (9)

By invoking a simple recursion, it can be verified that the parameter estimate from Eq. (8) would

converge to ρhβ and, hence, to zero as h→∞. When using return and variance data, instead, we

find that the slopes tend to increase with the horizon while becoming more statistically significant

(Table 6-Panel A).

In essence, the empirical findings point to an alternative data generating process, one in which

low-frequency shocks are not necessarily linear combinations of high frequency shocks and low-

frequency dynamics are not simply successive iterations of high-frequency dynamics. To this extent,

this paper argues that the relation between risk and return may be viewed as being scale-specific.

In agreement with the implications of Eq. (7), aggregation is helpful to reveal these low-frequency

risk compensations.

To corroborate this logic, we run detail-wise predictive regressions analogous to the classical

predictive regressions in Eq. (9), namely

r
(j)

k2j+2j
= βjv

2(j)

k2j
+ u

(j)

k2j+2j
(10)
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with j = 1, ..., 4 and k an integer. Similarly, we run

v
2(j)

k2j+2j
= ρjv

2(j)

k2j
+ ε

(j)

k2j+2j
. (11)

Note that the elements at time-scale j are defined on a time-grid whose time unit is 2j times the

unit scale of the original time series of observations. These are the decimated elements of the

details described in Subsection 2.1. They can be viewed as containing essential information about

each scale. In this sense, they have an interpretation that is similar to the “small number of data

averages” in Müller and Watson (2008), one that, however, applies to each individual detail rather

than to the overall time series as in Müller and Watson (2008).

The results are based on yearly data and are reported in Table 6-Panel B. For a clear interpre-

tation of the corresponding levels of resolution, we refer to Table 1. The strongest predictability

is for j = 4, which corresponds to economic fluctuations of 8 to 16 years. The importance of this

scale relates back to the increased significance of backward-aggregated variance as a predictor of

forward-aggregated excess market returns at similar low frequencies (Table 6-Panel A). In fact,

consistent with the derivation in Eq. (7), aggregation begins to reveal scale-wise predictability over

an horizon (s) of about 7 years and, as documented, scale-wise predictability applies to a scale j

satisfying j > s. For an explicit graphical representation based on scatter plots, we refer the reader

back to Figure 1.

For j = 4, the R2 on the detail-wise predictive regression is a considerable 74%. The R2 on

the detail-wise variance autoregression is 16%. For both regressions, the slope is positive. In the

case of the detail-wise predictive regression, its value is - coherently, again, with theory in Eq. (7) -

similar to that obtained from two-way aggregation (about 1.5). As for the autoregressive variance

coefficient, while its numerical value appears small, we recall that it is a measure of correlation on

the dilated time of a scale designed to capture economic fluctuations with 8 to 16 year cycles.

In essence, we find that, at scale j = 4, a very slow-moving component of the variance process

predicts itself as well as the corresponding component in future excess market returns. Said dif-

ferently, higher past values of a variance detail predict higher future values of the same variance

detail and, consequently, higher future values of the corresponding detail in excess market returns,

as required by conventional logic behind risk compensations. While this logic applies to a specific

level of resolution in our framework, it translates - upon aggregation - into predictability in long-run
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returns as shown formally (in Section 3) and in the data.

We now turn to consumption variance.

4.2 Equity returns on consumption variance

Replacing market variance with consumption variance, as justified structurally by Tamoni (2011),

does not modify the previous results. If anything, it reinforces previous findings.7

We start off with two-way aggregation (Table 7-Panel A). The R2 values between 7 and 10 years

range between about 22% and 53%. Running detail-wise predictive regressions leads to maximum

predictability (and an R2 of 83%) associated with low-frequency cycles of about a decade on average,

i.e., j = 4 (Table 7-Panel B). Similarly, for j = 4, a detail-wise autoregression of future consumption

variance on past consumption variance yields a positive autocorrelation of 0.18 and an R2 value of

about 50%.

Again, consistent with theory, aggregation begins to uncover detail-wise predictability at hori-

zons (7 years, in this case) just below the time length over which predictability on the details

operates (between 8 and 16 years). In addition, aggregation leads to slope estimates which are

very closely related, in terms of their numerical value, with the slope estimates of the correspond-

ing scale-wise predictive regressions (about 3.5), c.f. Table 7-Panels A and B. Figure 2 provides a

graphical representation.

In sum, because it predicts itself, a slow-moving component of consumption variance has fore-

casting ability for the corresponding slow-moving component of excess market returns. This finding

points, once more, to a low-frequency risk compensation in market returns, one that - however -

now operates through the economically-appealing channel of consumption risk.

4.3 The relation between market variance and consumption variance

These observations raise an important issue having to do with the relation between uncertainty in

financial markets and macroeconomic uncertainty, as captured by consumption variance. Barring

small differences, when exploring suitable scales, both variance notions have predictive power for

excess market returns on the details. Similarly, they both have predictive power for long-run returns

upon adaptive (two-way) aggregation.

7We note that the “decorrelation” property of the details applies to consumption variance very strongly (see Table
2).
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While this result appears theoretical justifiable since there should be, in equilibrium, a close

relation between consumption variance and market variance (see, e.g., Eq. (12) in Bollerslev,

Tauchen, and Zhou, 2009, for a recent treatment), the empirical relation between these two notions

of uncertainty is well-known to be extremely mild, at best. In an influential paper on the subject,

Schwert (1989) finds a rather limited link between macroeconomic uncertainty and financial market

variance. This work has spurred a number of contributions which, also, have provided evidence that

the relation between variance in financial markets and a more ”fundamental” notion of variance is

extremely weak in US data (see, e.g., the discussion in Diebold and Yilmaz, 2008).

We argue that this statistical outcome may not be as counter-intuitive as generally believed.

Specifically, it may be due to variance comparisons which focus on high frequencies. Schwert

(1989), for instance, uses monthly data from 1857 to 1987. We conjecture that, being the result of

equilibrium conditions, the presumed relation between macroeconomic variance and financial market

variance may not occur at high frequencies and may, therefore, be irreparably confounded in the raw

data. Using our jargon, the relation could, however, hold true for suitable lower frequency details

of both variance processes. Figure 4-Panels A and B provides graphical representations supporting

this logic. The upper panel relates market variance to the variance of consumption growth using

yearly data. The lower panel looks at the link between the details of the two series with scale j = 4,

i.e., the details capturing economic fluctuations between 8 and 16 years. The relation between the

raw series is extremely mild, the correlation being about 0.05. The details are, instead, very strongly

co-moving. Their estimated correlation is around 90%.

[Insert Figure 4 about here]

A large, successful literature has examined the validity of classical risk-return relations by re-

fining the way in which conditional means and conditional variances are identified. Similarly, a

large, equally successful literature has studied the properties of financial market volatility and, in

some instances, looked for significant associations, dictated by theory, between macroeconomic un-

certainty and uncertainty in financial markets. This paper addresses both issues by taking a unified

view of the problem, one which emphasizes the role played by low-frequency shocks. We argue that

equilibrium relations, the one between future excess market returns and past consumption/market

variance or the one between contemporaneous market variance and contemporaneous consumption

variance, may be satisfied at the level of individual layers of the raw series while being drastically
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clouded by high-frequency variation in the data.

5 Simulating scale-specific predictability

One important observation about two-way aggregation is in order. One may argue that, by gener-

ating stochastic trends, aggregation could lead to spurious (in the sense of Granger and Newbold,

1974, and Phillips, 1986) predictability. If this were the case, contemporaneous aggregation should

also lead to patterns that are similar to those found with forward/backward aggregation. In all

cases above, one could show that this is not the case.8 In other words, contemporaneous aggrega-

tion does not lead to any of the effects illustrated above (including consistency between the slope

estimates obtained from the aggregated series and from the details). Following a similar logic, one

could also argue that spurious behavior would prevent a tent-shape pattern from arising in the slope

estimates and R2 from predictive regressions on the aggregated series because it would simply lead

to (approximate, at least) upward trending behavior in both. Again, this is not the case. Tent-shape

patterns may readily arise as shown formally in Appendix C and in the simulations below. The

study of Fisher effects (in Section 6) provides empirical evidence confirming the latter result.

In this section we establish, by simulation, that scale-wise predictability translates into pre-

dictability upon two-way aggregation. Supporting the implications of theory in Appendix C, we

show that tent-shaped patterns are possible provided, of course, predictability occurs at the appro-

priate scale. We also show that, if predictability on the details applies, contemporaneous aggregation

leads to insignificant outcomes. Similarly, if no predictability on the details applies, two-way ag-

gregation leads to insignificant outcomes. In sum, the findings discussed in this section provide

support for a genuine (close to) 10-year cycle in the predictable variation of the market’s risk-return

trade-offs, as reported previously.

We begin by postulating processes for the (possibly related) details of the variance and return

series:

v
2(j)

k2j+2j
= ρjv

2(j)

k2j
+ ε

(j)

k2j+2j
(12)

r
(j)

k2j+2j
= v

2(j)

k2j

8The corresponding tables are not reported for conciseness but can be provided by the authors upon request. See,
also, Bandi and Perron (2008) for further evidence.
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for j = j∗ and

v
2(j)

k2j+2j
= ε

(j)

k2j+2j

r
(j)

k2j+2j
= u

(j)

k2j ,k2j+2j
,

for j 6= j∗, where k is defined as above and j = 1, . . . , J = 9. The shocks ε
(j)
t and u

(j)
t satisfy

corr(u
(j)
t , ε

(j)
t ) = 0 ∀t, j. The model implies a predictive system on the scale j∗ and unrelated

details for all other scales. In other words, predictability only occurs at the level of the j∗th detail.

Here, the scales are defined at the monthly level. Due to the dyadic nature of the scales, this

is simply done to gain granularity in the analysis. The data generating process is formulated for

”deconstructed” or ”decimated” data. One, then, has to recover the raw time series. To do so, we

simulate the process at scale j every 2j steps and multiply it by the inverse Haar Matrix. Appendix

C illustrates within a tractable example the simulation procedure in the time-scale domain and the

reconstruction steps in the time domain.

In agreement with the discussion in Section 3, we will now show that a predictive relation

localized around the j∗th scale will produce a pattern of R2s which has a peak for aggregation levels

corresponding to the horizon 2j
∗

(rather than 2j
∗−1 or in-between).

5.1 Running the predictive regression

Table 3-Panel A shows the results obtained by running the regression in Eq. (8) on simulated

data generated from Eq. (12). We compare these results to those in Table 4, where no scale-wise

predictability is assumed.

When imposing the relation at scale j∗ = 6, i.e., for a time span of 32 to 64 months (c.f., Table

1), we reach a peak in the R2s of the two-way regressions at 5 years. The 5-year R2 is about 25 times

as large as the one obtained in the case of a spurious regression at the same horizon. Moreover,

the slope estimates increase reaching their maximum value at 5 years and approaching the slope’s

true value on the 6th details of 1 (with some attenuation due to the impact of other scales). After

the 5-year mark, the slope estimates decrease almost monotonically. This is a rough tent-shaped

pattern which readily derives solely from imposing scale-wise predictability at a frequency lower

than business-cycle frequencies but not as low as, say, the 10-year or 120-month frequency (c.f.,

Appendix C).
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If we now impose the relation at scale j∗ = 7, i.e., for a time span of 64 to 128 months, we

would expect the peak in the R2s from the two-way regressions to shift to about 128 months, again

the upper bound of the range of possible horizons given scale j∗ = 7. Should this horizon also

be the upper bound of the horizons of aggregation, we would expect upward trending behavior in

the estimated slopes, t-statistics, and R2. This logic is consistent with the simulations in Table 5

confirming the ability of suitable aggregation to detect scale-wise predictability over the relevant

scale.

As emphasized earlier, should aggregation lead, somewhat mechanically, to statistically signifi-

cant, larger slopes and higher R2 by virtue of the creation of stochastic trends, tent-shaped behaviors

would be unlikely and contemporaneous aggregation would also lead to spurious predictability. We

have shown that tent-shaped structures naturally arise from predictability at the corresponding

scale. We now turn to contemporaneous aggregation. Again, we consider the cases j∗ = 6 and

j∗ = 7 (in Table 3 and Table 5-Panel B). When both the regressor and the regressand are ag-

gregated over the same time interval, no predictability is detected. Appendix C-C.2.3 provides a

theoretical justification. Appendix D contains additional simulations and diagnostics.

6 Fisher hypothesis

In its simplest form, Fisher hypothesis postulates that the nominal rate of return on assets (interest

rates as well as nominal returns on equities, for example) should move one-to-one with expected

inflation (Fisher, 1930). The empirical work on the subject is broad and very mixed in terms of

findings. Mishkin (1992) and Fisher and Seater (1993), for instance, run regressions of k-period

continuously-compounded nominal interest rates (and h-period GDP growth) on contemporaneous

h-period expected inflation (and the growth of nominal money supply). Boudoukh and Richardson

(1993) run regressions of k-period nominal stock returns also on contemporaneous h-period expected

inflation. In all cases, it is natural to test whether the slope of the predictive regression is equal to

1, as implied by theory.

Here, we study the relation between nominal rates of returns and inflation by exploring pre-

dictability using backward/forward aggregation. We find that, for a suitable horizon h, h-period

continuously-compounded nominal returns are strongly correlated with past h-period realized infla-

tion. The same logic as that employed for long-run risk-return trade-offs may be applied to explain
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these findings. If low-frequency details of the nominal rates are linked to low-frequency details of

realized inflation, two-way aggregation will uncover this dependence. Direct extraction of the details

would also allow us to zoom in onto individual layers of information. We are now more specific.

The results are reported in Tables 8-Panels A, B, and C. For nominal stock returns, we find a

tent-shaped predictability pattern (as aggregation increases) with a peak between 7 and 9 years.

Importantly, as predictability increases, the corresponding beta estimates approach the value of 1.

The 1-year beta is 0.43 with a t-statistic of 0.57 and an R2 of 0.81%. The 8-year beta, instead,

is equal to 1.03 with a t-statistic of 3.30 and an R2 of about 28%. Turning to the details, at

scale j = 3, i.e., for frequencies between 4 and 8 years, the R2 of the predictive regression has

a value of about 30%. Its associated slope estimate is positive (2.47). So, is the autocorrelation

coefficient (0.13) associated with the autoregression on the 3rd detail of the inflation process. We

recall that the estimated autocorrelation is on ”decimated” data. The corresponding calendar-time

autocorrelation would be considerably higher.

Analogous findings apply to nominal interest rates (Table 10). With two-way aggregation, the

1-year beta is 0.37 with a t-statistic of 2.92 and an R2 of about 21%. The 8-year beta is twice as

large and equal to 0.70 with a t-statistic of 3.14 and an R2 of about 35%. The tent-shaped pattern

is even more marked than in the previous case. The corresponding details (j = 3) yield a predictive

regression with a positive slope and an R2 value of 13.25%.

In sum, a predictable slow-moving component of the inflation process (operating between 4 and

8 years) appears to correlate with slow-moving components of nominal stock returns and interest

rates. Higher past values of the j = 3 inflation detail predict higher future values of the same detail,

as well as higher values of the nominal rates’ details, thereby yielding compensation for inflation

risk at a low level of resolution. Such a compensation is revealed by aggregation.

Gathering essential information about low-frequency dynamics is inevitably hard. Yet, even

though the predictive and autoregressive slopes on the decimated details may not be accurately

estimated, the results are striking. Differently from the risk-return trade-offs analyzed in Section

4, which operate at scale j = 4, the economic logic underlying Fisher hypothesis appears to be

satisfied at scale j = 3. In agreement with our formal discussion in Section 3, two-way aggregation

should yield maximum predictability over an horizon close to 23, i.e., close to 8 years. This is, in

fact, consistent with data. It is also consistent with a new set of simulation, calibrated on the data,

which assume scale-wise predictability at scale j = 3 and find a peak of predictability upon two-way

23



aggregation precisely at 8 years (Table 8-Panel A2).

As discussed in Section 3 (and shown in Appendix C-C.2.2) predictable variation induced by

a detail, like j = 3, which is not at the upper bound of those that can be reliably handled given

the available span of data and is not capturing the very long run (j = 4 in our case), would

induce explicit tent-shaped behavior upon aggregation. Another interesting implication of the

assumed data generating process is that, if we were to run regressions of forward aggregated nominal

returns on differences of backward aggregated inflation (rather than on levels), the maximum level of

predictability would occur at the horizon 23−1 rather than at the horizon 23. In addition, the slope

estimate would be negative, rather than positive (Appendix C-C.2.4). We confirm both implications

of theory with data. Table 9-Panel B provides the corresponding results. Leaving the very long

run aside (more on this later), the maximum R2 is obtained for h = 4. The estimated slope at

this horizon is negative and equal to −1.59. Simulations support these findings. As in Table 8, we

assume a data generating process, calibrated on the data, with predictable variation corresponding

to the 3rd scale. Again, leaving aside the very long run, the largest R2 is obtained for h = 4.

The corresponding estimated slope is also negative and rather close to what is found in the data

(−1.22 rather than −1.59). It is interesting to notice that, not only does this model diagnostic

provide support for the expected behavior of the assumed scale-based data generating process at

h = 4, it also delivers long-run outcomes which are consistent with data. Both in the data and in

simulation the long-run slopes (horizons between 8 and 10 years) are positive and rather significant.

The corresponding R2s are, also, somewhat larger.

7 Further discussions and conclusions

Shocks to economic time series can be time-specific and, importantly for our purposes, frequency-

specific. We suggest that economic relations may apply to individual layers in the cascade of shocks

affecting the economy and be hidden by effects at alternative, higher frequencies. These layers, and

the frequency at which they operate, can be identified. In particular, the nature and the magnitude

of the existing, low-frequency, economic relations can be studied. To do so, this paper proposes direct

extraction of the time-series details - and regressions on the details - as well as indirect extraction by

means of two-way aggregation of the raw series - and regressions on forward/backward aggregates

of the raw series. The mapping between the two methods is established and their close relation
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is exploited empirically. While the direct method allows one to identify, up to the customary

estimation error, the data generating process (i.e., the details and, upon reconstruction, the original

series), the indirect method provides one with a rather immediate way to evaluate the frequency

at which layers in the information flow are connected across economic variables and employ this

information for prediction. By providing an alternative way in which one may implement long-run

predictability (aggregated regressand on past aggregated regressor, rather than on past regressor

over one period), two-way aggregation provides a natural way to exploit scale-specific predictability

(in asset allocation for the long run, for example). Using both direct extraction of the details and

aggregation, we provide evidence of the long-run validity of certain economic relations (risk-return

trade-offs and Fisher’s hypothesis) typically found to be elusive when working with raw data at the

highest frequency of observation.

The use of variance and inflation as predictors of asset returns is particularly appealing in our

framework because the corresponding backward-aggregated measures do not lose their economic

interpretation. Backward-aggregated variance and backward-aggregated inflation can readily be

interpreted as long-run past variance and long-run past inflation. Having made this point, alter-

native popular predictors, like the dividend-yield and other financial ratios, may also be employed.

While their long-run past averages are not as easily interpretable, the role played by aggregation in

the extraction of low-frequency information contained in the details applies generally. So does the

proposed approach to predictability. To the extent that market return data and the dividend-yield -

for instance - contain relevant information about long-run cash-flow risk, regressions on their details

and on properly-aggregated data appear very well-suited to uncover this information. We leave this

issue for future work.
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Gençay, R., F. Selçuk, and B. Whitcher (2001): An Introduction to Wavelets and Other

Filtering Methods in Finance and Economics. Academic Press, New York, first edn.

Granger, C. W. J., and P. Newbold (1974): “Spurious regressions in econometrics,” Journal

of Econometrics, 2(2), 111–120.

Hannan, E. J. (1963): “Regression for Time Series with Errors of Measurement,” Biometrika,

50(3/4), pp. 293–302.

Hansen, L. P., and J. A. Sheinkman (2009): “Long-term Risk: An Operator Approach,” Econo-

metrica, 77(1), 177–234.

Kelly, B., and S. Pruitt (2013): “Market Expectations in the Cross-Section of Present Values,”

The Journal of Finance, 68(5), 1721–1756.

Lamont, O. (1998): “Earnings and Expected Returns,” The Journal of Finance, 53(5), pp. 1563–

1587.

Lettau, M., and S. Ludvigson (2001): “Consumption, Aggregate Wealth, and Expected Stock

Returns,” Journal of Finance, 56(3), 815–849.

Mallat, S. G. (1989): “A Theory for Multiresolution Signal Decomposition: The Wavelet Repre-

sentation,” IEEE Trans. Pattern Anal. Mach. Intell., 11, 674–693.

Menzly, L., T. Santos, and P. Veronesi (2004): “Understanding Predictability,” Journal of

Political Economy, 112(1), 1–47.

27



Mishkin, F. S. (1992): “Is the Fisher effect for real? : A reexamination of the relationship between

inflation and interest rates,” Journal of Monetary Economics, 30(2), 195–215.

Müller, U. K., and M. W. Watson (2008): “Testing Models of Low-Frequency Variability,”

Econometrica, 76(5), 979–1016.

Nelson, C. R. (1976): “Inflation and Rates of Return on Common Stocks,” The Journal of

Finance, 31(2), 471–483.

Ortu, F., A. Tamoni, and C. Tebaldi (2013): “Long-Run Risk and the Persistence of Con-

sumption Shocks,” Review of Financial Studies, 26(11), 2876–2915.

Percival, D. B., and A. T. Walden (2000): Wavelet Methods for Time Series Analysis (Cam-

bridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press.

Phillips, P. (1986): “Understanding spurious regressions in econometrics,” Journal of Economet-

rics, 33(3), 311–340.

Renaud, O., J.-L. Starck, and F. Murtagh (2005): “Wavelet-Based Combined Signal Filtering

and Prediction,” IEEE Transactions SMC, Part B, 35, 1241 – 1251.

Schwert, G. W. (1989): “Why Does Stock Market Volatility Change over Time?,” Journal of

Finance, 44(5), 1115–53.

Tamoni, A. (2011): “The multi-horizon dynamics of risk and returns,” SSRN eLibrary.

Wong, P. W. (1993): “Wavelet decomposition of harmonizable random processes,” IEEE Trans-

actions on Information Theory, 39(1), 7–18.

Yazici, B., and R. Kashyap (1997): “A class of second order self-similar processes for 1/f phe-

nomena,” IEEE Transactions on Signal Processing, 45(2), 396–410.

28



Figure 1: Market Volatility. The left panels present scatter plots of forward aggregates of
excess market returns on backward aggregates of market variance for different levels of aggregation.
The right panels present scatter plots of components (details) of the same series corresponding to
analogous frequencies between one and two years (j = 1), two and four years (j = 2), and 8 and
16 years (j = 4), respectively. For a clear interpretation of the scales j = 1, 2, . . . into appropriate
time horizons, please refer to Table 1.
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Figure 2: Consumption Volatility. The left panels present scatter plots of forward aggregates
of excess market returns on backward aggregates of consumption variance for different levels of
aggregation. The right panels present scatter plots of components (details) of the same series
corresponding to analogous frequencies between one and two years (j = 1), two and four years (j =
2), and 8 and 16 years (j = 4), respectively. For a clear interpretation of the scales j = 1, 2, . . . into
appropriate time horizons, please refer to Table 1.
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(a) Time-scale decomposition for market returns

(b) Time-scale decomposition for market realized variance

Figure 3: Panel A displays the time-scale decomposition for the excess stock market returns. Panel
B displays the time-scale decomposition for market realized variance. Solid lines represent the
details, diamonds represent the decimated counterparts of the calendar-time details. For a clear
interpretation of the scales j = 1, 2, . . . into appropriate time horizons, please refer to Table 1.
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Figure 4: The upper panel in the figure displays the raw yearly series of market volatility (black-
asterisk line) and consumption volatility (red-circle line); the lower panel displays the details of the
two series with scale j = 4.
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Panel A: Panel B: Panel C:
Monthly calendar time Quarterly calendar time Annual calendar time

Time-scale Frequency resolution Frequency resolution Frequency resolution

j = 1 1− 2 months 1− 2 quarters 1− 2 years
j = 2 2− 4 months 2− 4 quarters 2− 4 years
j = 3 4− 8 months 1− 2 years 4− 8 years
j = 4 8− 16 months 2− 4 years 8− 16 years
j = 5 16− 32 months 4− 8 years 16− 32 years
j = 6 32− 64 months 8− 16 years > 32 years
j = 7 64− 128 months 16− 32 years

π
(7)
t > 128 > 32 years

Table 1: Interpretation of the time-scale (or persistence level) j in terms of time spans in the case of
monthly (Panel A), quarterly (Panel B) and annual (Panel C) time series. Each scale corresponds
to a frequency interval, or conversely an interval of periods, and thus each scale is associated with
a range of time horizons.

Panel A: Panel B: Panel C:
Market volatility Consumption volatility Market excess returns

Scales j = 1 2 3 4 1 2 3 4 1 2 3 4
1 0.28 -0.12 -0.03 0.29 0.10 -0.09 -0.04 -0.03 0.07

(0.13) (0.09) (0.06) (0.16) (0.09) (0.08) (0.09) (0.07) (0.06)
2 -0.05 0.01 0.06 -0.04 -0.14 0.13

(0.15) (0.10) (0.20) (0.12) (0.10) (0.10)
3 0.39 0.10 0.15

(0.11) (0.13) (0.13)

Table 2: Pairwise correlations. We report the pair-wise correlations between the individual
details of market variance (Panel A), Consumption variance (Panel B) and excess market returns
(Panel C). The pair-wise correlations are obtained by using redundant data on the details rather

than the decimated counterparts. Standard errors for the correlation between x
(j)
t and x

(j′)
t , j 6= j′,

are Newey-West with 2max(j,j′) lags.
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Panel A: yt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t -0.01 -0.03 -0.09 -0.28 -0.10 0.43 0.71 0.67 0.44 0.18 0.04 -0.01
(-0.13) (-0.38) (-0.96) (-2.42) (-0.80) ( 4.40) ( 8.19) ( 7.61) ( 4.47) ( 1.54) (0.36) (-0.05)

Adj.R2 [0.18] [0.48] [1.64] [7.19] [2.18] [16.86] [43.06] [38.83] [17.59] [4.44] [1.74] [2.22]

Panel B: yt+1,t+h = αh + βhxt+1,t+h + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt+1,t+h -0.00 -0.01 -0.02 -0.06 -0.14 -0.26 -0.34 -0.33 -0.21 -0.09 -0.03 -0.01
(0.00) (-0.07) (-0.21) (-0.57) (-1.16) (-1.85) (-2.32) (-2.26) (-1.64) (-0.78) (-0.27) (-0.07)

Adj.R2 [0.21] [0.51] [1.08] [2.45] [4.57] [8.36] [12.55] [11.57] [6.63] [3.46] [2.56] [ 2.47]

Table 3: Simulation under the null of scale-dependent predictability. The relation is
at scale j∗ = 6. We simulate excess market returns (y) and market variance (x) under the

assumption of predictability at scale j∗ = 6. We simulate x
(j)
t = ρjx

(j)

t−2j
+ ε

(j)
t for j = 6 and

x
(j)
t = ε

(j)
t otherwise. We implement 500 replications. We set T = 1024. For each regression, the

table reports OLS estimates of the regressors, Newey-West t-statistics with 2*(horizon-1) lags in
parentheses and adjusted R2 statistics in square brackets. Panel A: We run linear regressions (with
an intercept) of h-period continuously compounded excess market returns on h-period past realized
market variances. Panel B: contemporaneous aggregation. We run linear regressions (with an
intercept) of h-period continuously compounded excess market returns on h-period realized market
variances.

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00
(0.01) (-0.03) (0.04) (0.06) (0.03) (0.01) (0.01) (0.02) (0.00) (-0.06) (-0.08) (-0.07)

Adj.R2 [0.14] [0.29] [0.74] [1.48] [1.70] [1.96] [1.78] [1.94] [2.26] [2.08] [2.34] [2.24]

Table 4: Simulation under the null of ABSENCE of scale-dependent predictability. We
simulate excess market returns (y) and market variance (x) under the assumption of no predictabil-

ity. We simulate x
(j)
t = ρjx

(j)

t−2j
+ εt,j for j = 6 and x

(j)
t = ε

(j)
t otherwise. We implement 500

replications. We set T = 1024. We then run linear regressions (with an intercept) of h-period
continuously compounded excess market returns on h-period past realized market variances. For
each regression, the table reports OLS estimates of the regressors, Newey-West t-statistics with
2*(horizon-1) lags in parentheses and adjusted R2 statistics in square brackets.
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Panel A: yt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t -0.00 -0.01 -0.02 -0.07 -0.15 -0.22 -0.21 -0.08 0.14 0.35 0.49 0.58
(-0.01) (-0.09) (-0.21) (-0.61) (-1.21) (-1.63) (-1.48) (-0.54) ( 1.05) ( 2.92) (4.43) ( 5.39)

Adj.R2 [ 0.20] [ 0.45] [ 1.01] [ 2.17] [ 4.51] [7.57] [7.38] [3.78] [5.40] [15.39] [27.94] [37.25]

Panel B: yt+1,t+h = αh + βhxt+1,t+h + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt+1,t+h 0.00 0.00 -0.00 -0.01 -0.02 -0.04 -0.06 -0.10 -0.15 -0.19 -0.24 -0.27
(0.04) (0.01) (-0.03) (-0.08) (-0.14) (-0.28) (-0.48) (-0.74) (-0.97) (-1.20) (-1.44) (-1.64)

Adj.R2 [0.24] [0.58] [1.20] [2.30] [3.30] [4.40] [5.55] [6.87] [8.21] [9.66] [11.46] [13.33]

Table 5: Simulation under the null of scale-dependent predictability. The relation is
at scale j∗ = 7. We simulate excess market returns (y) and market variance (x) under the

assumption of predictability at scale j∗ = 7. We simulate x
(j)
t = ρjx

(j)

t−2j
+ ε

(j)
t for j = 7 and

x
(j)
t = ε

(j)
t otherwise. We implement 500 replications. We set T = 1024. For each regression, the

table reports OLS estimates of the regressors, Newey-West t-statistics with 2*(horizon-1) lags in
parentheses and adjusted R2 statistics in square brackets. Panel A: We run linear regressions (with
an intercept) of h-period continuously compounded excess market returns on h-period past realized
market variances. Panel B: contemporaneous aggregation. We run linear regressions (with an
intercept) of h-period continuously compounded excess market returns on h-period realized market
variances.
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Panel A: (rt+1,t+h − rft) = αh + βhvt−h+1,t + εt+h

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

vt−h+1,t 0.22 0.12 -0.14 0.01 0.37 0.57 0.72 1.01 1.36 1.52
(1.02) (0.41) (-0.50) (0.04) (1.19) (1.68) (2.18) (3.38) (5.72) (7.46)

R2(%) [0.68] [0.31] [0.48] [0.01] [3.86] [10.00] [15.69] [27.14] [43.16] [50.43]

Panel B: r
(j)

t+2j
− rf (j)

t+2j
= βjv

(j)
t + εt+2j

Time-scale j
1 2 3 4

v
(j)
t 0.56 -0.20 0.40 1.50

[-1.21 3.12] [-1.89 2.96] [-1.90 4.05] [0.18 2.96]

R2(%) [0.85] [2.64] [2.83] [74.35]

Panel C: v
(j)

t+2j
= ρjv

(j)
t + εt+2j

Time-scale j
1 2 3 4

v
(j)
t -0.16 -0.07 0.06 0.05

[-0.37 0.06] [-0.32 0.18] [-0.30 0.39] [-0.25 0.36]

R2(%) [8.20] [7.81] [20.63] [15.97]

Table 6: Market Volatility. Panel A: We run linear regressions (with an intercept) of h-period
continuously compounded market returns on the CRSP value-weighted index in excess of a 1-year
Treasury bill rate on h-period past market variance. For each regression, the table reports OLS
estimates of the regressors, Hansen and Hodrick corrected t-statistics in parentheses. Panel B:
results of componentwise predictive regressions of the components of excess stock market returns on
the components of market variance. Panel C: estimation results of the multiscale autoregressive
system. For each level of persistence j ∈ {1, . . . , 4}, we run a regression of the market variance

component v
(j)

t+2j
on its own lagged component v

(j)
t . For each regression, the table reports OLS

estimates of the regressors, highest posterior density region with probability .95 (under a mildly
informative prior) in parentheses and adjusted R2 statistics in square brackets. The sample is
annual and spans the period 1930-2012. For the translation of time-scales into appropriate range
of time horizons refer to Table 1.
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Panel A: (rt+1,t+h − rft) = αh + βhvt−h+1,t + εt+h

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

vt−h+1,t 1.38 1.50 0.51 0.38 0.48 1.46 2.55 2.85 3.64 4.46
(1.03) (1.63) (0.61) (0.40) (0.38) (1.26) (2.59) (2.67) (3.77) (5.09)

R2(%) [1.46] [3.41] [0.64] [0.45] [0.72] [7.19] [22.34] [25.84] [38.81] [53.39]

Panel B: r
(j)

t+2j
− rf (j)

t+2j
= βjv

(j)
t + ε

(j)

t+2j

Time-scale j
1 2 3 4

v
(j)
t 1.84 -6.47 -1.07 3.51

[-1.16 5.57] [-3.06 4.15] [-2.10 4.44] [0.33 4.95]

R2(%) [6.31] [15.13] [3.98] [82.96]

Panel C: v
(j)

t+2j
= ρjv

(j)
t + ε

(j)

t+2j

Time-scale j
1 2 3 4

v
(j)
t -0.12 0.11 -0.03 0.18

[-0.27 0.16] [-0.05 0.33] [-0.15 0.12] [0.03 0.35]

R2(%) [4.90] [10.17] [22.51] [49.85]

Table 7: Consumption Volatility. Panel A: We run linear regressions (with an intercept) of
h-period continuously compounded market returns on the CRSP value-weighted index in excess
of a 1-year Treasury bill rate on h-period past consumption variance vt−h,t. For each regression,
the table reports OLS estimates of the regressors, Hansen and Hodrick corrected t-statistics in
parentheses. Panel B: results of componentwise predictive regressions of the components of excess
stock market returns on the components of consumption variance v2

j,t. Panel C: estimation results
of the multiscale autoregressive system. For each level of persistence j ∈ {1, . . . , 4}, we run a

regression of the consumption variance component v
(j)

t+2j
on its own lagged component v

(j)
t . For

each regression, the table reports OLS estimates of the regressors, highest posterior density region
with probability .95 (under a mildly informative prior) in parentheses and adjusted R2 statistics
in square brackets. The sample is annual and spans the period 1930-2012. For the translation of
time-scales into appropriate range of time horizons refer to Table 1.
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Panel A1 - Data: rt+1,t+h = αh + βhπt−h+1,t + εt+h

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

πt−h+1,t 0.43 0.02 0.11 0.65 0.99 1.23 1.14 1.08 1.15 1.11
(0.57) (0.05) (0.22) (3.41) (5.34) (5.82) (4.73) (3.30) (3.60) (2.68)

R2(%) [0.81] [0.00] [0.15] [6.53] [15.43] [27.54] [28.42] [27.62] [31.40] [28.24]

Panel A2 - Simulation: rt+1,t+h = αh + βhπt−h+1,t + εt+h

Horizon h (in months)
1 2 3 4 5 6 7 8 9 10

πt−h+1,t -0.04 -0.23 -0.52 -0.50 0.07 0.77 1.19 1.36 1.26 0.98
(-0.18) (-1.04) (-2.08) (-1.91) (0.30) (3.15) (4.83) (5.30) (4.96) (3.87)

Adj.R2 [0.13] [1.33] [5.50] [5.21] [1.17] [10.98] [24.66] [31.35] [26.50] [16.64]

Panel B: r
(j)

t+2j
= βjπ

(j)
t + ε

(j)

t+2j

Time-scale j
1 2 3 4

π
(j)
t 0.48 -0.09 2.47 -0.21

[-1.13 2.99] [-1.47 2.60] [0.04 4.42] [-1.26 1.13]

R2(%) [0.99] [8.19] [30.63] [39.96]

Panel C: π
(j)

t+2j
= ρjπ

(j)
t + ε

(j)

t+2j

Time-scale j
1 2 3 4

π
(j)
t -0.22 0.11 0.13 -0.28

[-0.35 0.10] [-0.15 0.45] [-0.19 0.55] [-0.39 0.31]

R2(%) [7.30] [1.66] [2.68] [28.63]

Table 8: Stock market return and inflation. Panel A: We run linear regressions (with
an intercept) of h-period continuously compounded nominal stock market returns rt+1,t+h on h-
period past realized inflation. We consider values of h equal to 1 − 10 years. For each regression,
the table reports OLS estimates of the regressors, Hansen and Hodrick corrected t-statistics in
parentheses and adjusted R2 statistics in square brackets. Panel B: scale-wise predictive regressions

of the components of nominal excess stock market returns on the components of inflation π
(j)
t .

Panel C: For each scale j ∈ {1, . . . , 4}, we run a regression of the inflation rate π
(j)

t+2j
on its own

lagged component π
(j)
t . For each regression, the table reports OLS coefficient estimates of the

regressors, highest posterior density region with probability .95 (under a mildly informative prior)
in parentheses and adjusted R2 statistics in square brackets. The sample is annual and spans the
period 1930-2012. For the translation of time-scales into appropriate range of time horizons refer
to Table 1 Panel A. 38



Panel A: rt+1,t+h = αh + βh∆hπt−h+1,t + εt+h

Horizon h (in months)
1 2 3 4 5 6 7 8 9 10

∆hπt−h+1,t 0.11 0.15 -0.67 -1.22 -0.39 0.65 1.16 1.32 1.23 0.99
( 0.31) ( 0.58) (-2.49) (-4.93) (-1.63) ( 1.80) ( 4.30) ( 4.43) ( 4.33) ( 3.85)

Adj.R2 [0.27] [ 0.48] [ 7.27] [23.79] [ 2.98] [ 3.90] [21.36] [28.09] [24.40] [16.16]

Panel B: rt+1,t+h = αh + βh∆hπt−h+1,t + εt+h

Horizon h (in months)
1 2 3 4 5 6 7 8 9 10

∆hπt−h+1,t -0.66 0.37 -0.32 -1.59 -0.25 0.25 0.50 0.80 1.04 1.45
(-0.83) (0.45) (-0.45) (-2.73) (-0.41) (0.44) (0.84) (1.43) (2.47) (5.53)

Adj.R2 [0.39] [0.33] [0.37] [8.84] [0.26] [0.40] [2.07] [6.52] [12.82] [27.53]

Table 9: Forward on past differenced backward. Panel A: simulation We simulate market

returns and inflation under the assumption of predictability at scale j∗ = 3. We simulate x
(j)
t =

ρjx
(j)

t−2j
+ εt,j for j = 3 and x

(j)
t = εt,j otherwise. We implement 500 replications. We set T = 128.

Panel B: data. We run linear regressions (with an intercept) of h-period continuously compounded
nominal market returns on h-period past differenced inflation. For each regression, the table reports
OLS estimates of the regressors, Newey-West t-statistics with 2*(horizon-1) lags in parentheses and
adjusted R2 statistics in square brackets.
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Panel A: rft+1,t+h = αh + βhπt−h+1,t + εt+h

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

πt−h+1,t 0.37 0.44 0.50 0.61 0.70 0.73 0.73 0.70 0.66 0.61
(2.92) (2.49) (2.57) (2.83) (2.97) (3.04) (3.06) (3.14) (3.20) (3.12)

R2(%) [20.76] [24.07] [26.36] [32.36] [37.31] [39.72] [38.64] [35.29] [30.95] [25.53]

Panel B: rf
(j)

t+2j
= βjπ

(j)
t + εt+2j

Time-scale j
1 2 3 4

π
(j)
t -0.01 -0.09 0.18 -0.05

[-0.12 0.11] [-0.30 0.13] [-0.36 0.82] [-0.76 0.79]

R2(%) [0.04] [10.84] [13.24] [1.38]

Panel C: π
(j)

t+2j
= ρjπ

(j)
t + εt+2j

Time-scale j
1 2 3 4

π
(j)
t -0.22 0.11 0.13 -0.28

[-0.35 0.10] [-0.15 0.45] [-0.19 0.55] [-0.39 0.31]

R2(%) [7.30] [1.66] [2.68] [28.63]

Table 10: Risk-free rate and inflation. Panel A: We run linear regressions (with an intercept)
of h-period continuously compounded nominal risk-free rate rft+1,t+h on h-period past realized
inflation. We consider values of h equal to 1− 10 years. For each regression, the table reports OLS
estimates of the regressors, Hansen and Hodrick corrected t-statistics in parentheses and adjusted
R2 statistics in square brackets. Panel B: results of componentwise predictive regressions of the
components of nominal risk-free rate on the components of inflation πj,t. Panel C: estimation
results of the multiscale autoregressive system. For each level of persistence j ∈ {1, . . . , 4}, we

run a regression of the inflation rate π
(j)

t+2j
on its own lagged component π

(j)
t . For each regression,

the table reports OLS coefficient estimates of the regressors, highest posterior density region with
probability .95 (under a mildly informative prior) in parentheses and adjusted R2 statistics in square
brackets. The sample is annual and spans the period 1930-2012. For the translation of time-scales
into appropriate range of time horizons refer to Table 1 Panel A.
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APPENDIX – FOR ON-LINE PUBLICATION

A Multiscale vs. standard Wold decomposition

We begin with

xt =
J∑
j=1

∞∑
k=0

aj,kε
(j)

t−k2j
,

where we let
aj,k =

〈
xt, ε

(j)

t−k2j

〉
.

Consider, now, the time window [t− 6, t] and J = 2. We have

xt =a1,0ε
(1)
t + a1,1ε

(1)
t−2 + a1,2ε

(1)
t−4 + a1,3ε

(1)
t−6

a2,0ε
(2)
t + a2,1ε

(2)
t−4 + aJ,0ε

(J)
t + . . .

If

ε
(j)
t =

∑2j−1−1
i=0 εt−i −

∑2j−1−1
i=0 εt−2j−1−i√

2j
,

then

a1,0 =
〈
xt, ε

(1)
t

〉
=
ψ0√

2
− ψ1√

2

a1,1 =
〈
xt, ε

(1)
t−2

〉
=
ψ2√

2
− ψ3√

2

a1,2 =
〈
xt, ε

(1)
t−4

〉
=
ψ4√

2
− ψ5√

2

a1,3 =
〈
xt, ε

(1)
t−6

〉
=
ψ6√

2
− ψ7√

2

a2,0 =
〈
xt, ε

(2)
t

〉
=
ψ0

2
+
ψ1

2
− ψ2

2
− ψ3

2

a2,1 =
〈
xt, ε

(2)
t−4

〉
=
ψ4

2
+
ψ5

2
− ψ6

2
− ψ7

2

aJ,0 =
〈
xt, ε

(J)
t

〉
=
ψ0

2
+
ψ1

2
+
ψ2

2
+
ψ3

2
+
ψ4

2
+
ψ5

2
+
ψ6

2
+
ψ7

2
,

where we let
ψj = 〈xt, εt−j〉 .
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Finally, note that

ψ0

(
1√
2
ε

(1)
t +

1

2
ε

(2)
t +

1

2
ε

(J)
t

)
= ψ0εt

ψ1

(
− 1√

2
ε

(1)
t +

1

2
ε

(2)
t +

1

2
ε

(J)
t

)
= ψ1εt−1

ψ2

(
1√
2
ε

(1)
t−2 −

1

2
ε

(2)
t +

1

2
ε

(J)
t

)
= ψ2εt−2

ψ3

(
− 1√

2
ε

(1)
t−2 −

1

2
ε

(2)
t +

1

2
ε

(J)
t

)
= ψ3εt−3

ψ4

(
1√
2
ε

(1)
t−4 +

1

2
ε

(2)
t−4 +

1

2
ε

(J)
t

)
= ψ4εt−4

ψ5

(
− 1√

2
ε

(1)
t−4 +

1

2
ε

(2)
t−4 +

1

2
ε

(J)
t

)
= ψ5εt−5

ψ6

(
1√
2
ε

(1)
t−6 −

1

2
ε

(2)
t−4 +

1

2
ε

(J)
t

)
= ψ6εt−6

ψ7

(
− 1√

2
ε

(1)
t−6 −

1

2
ε

(2)
t−4 +

1

2
ε

(J)
t

)
= ψ7εt−7,

which yields the standard Wold Decomposition:

xt = ψ0εt + ψ1εt−1 + ψ2εt−2 + . . .

B A primer on multiresolution analysis

In this section we provide a primer on multiresolution analysis (MRA). The fundamental idea behind
MRA is to analyze data at different scales or resolutions. Here we assume for convenience that the
original data lie in the space V0.

9 For each vector space, there is another vector space of higher scale
(or lower resolution) Vj . Each vector space contains all vector spaces that are of lower resolution.
Also, for each vector space Vj , there is an orthogonal complement called Wj+1 = Vj − Vj+1 and the
basis function for this new space is the wavelet. Hence, we can define the coarse and detail spaces
as (V1,W1), (V2,W2), . . ., i.e., increasing the index in the V -spaces is equivalent to coarsening the
approximation to the data.

Now, we can represent a data series which lies in V0 by projecting it onto the detail spaces Wj .
In particular, we define the multiresolution decomposition of a series using

1. π(J), i.e., the coarsest scale

2. π(J−1) = π(J) + x
(J)
t

3. and, in general, π(j−1) = π(j) + x
(j)
t ,

where π(j) ∈ Vj and x
(j)
t ∈Wj . The decomposition takes the form:

{π(J), x
(J)
t , x

(J−1)
t , . . . , x

(j)
t , . . . , x

(1)
t }.

9For example if we have a deterministic signal of length 8 we can assume V0 to be R8
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At high frequencies, the wavelet is able to focus on short-lived phenomena, e.g., singularity
points, whereas at low frequencies the wavelet has a large time-support allowing it to identify long,
periodic fluctuations. This is a useful property for economic and financial systems in which variables
may operate on a variety of time-scales simultaneously and in which, as discussed in the main text,
the relation between variables may be different across time-scales. In the next subsection we look
at how wavelet transforms can be formulated in terms of matrices and operators.

B.1 Expansion of a random process in a wavelet basis

This section explains the structure of wavelet algorithms using linear algebra. We work in discrete
time and assume the following random process10 ω(t) = {ω0, ω1, ω2, ω3}, where - for simplicity - we
can assume:

ωi =

{
1, with probability p

−1, with probability 1− p
.

The goal is to expand the process into V 2 ⊕W 2 ⊕W 1. The coefficients of the original signal are
the coefficients of the process ω(t) expanded in V 0, i.e.

〈
ω, φ0

0

〉
= ω0,

〈
ω, φ0

1

〉
= ω1,

〈
ω, φ0

2

〉
= ω2,〈

ω, φ0
3

〉
= ω3. The basis vectors of V 0 are translations of the Haar mother scaling function which

has been dilated so that each basis function has a support equal to 1/4.
The first step is to expand ω(t) into V 1 ⊕W 1. We carry out the matrix multiplication

W1 = T1ω(t),

where

T1 =
1√
2


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

 .

The first two rows correspond to the basis vectors φ1
0 and φ1

1 spanning V 1. The last two rows
correspond to the basis vectors ψ1

0 and ψ1
1 spanning W 1. The matrix multiplication yields two

averages

π
(1)
1 =

(ω0 + ω1)√
2

,

π
(1)
3 =

(ω2 + ω3)√
2

,

and two wavelet coefficients

δ
(1)
1 =

(ω0 − ω1)√
2

,

δ
(1)
3 =

(ω2 − ω3)√
2

.

10Note that we assume the length (dimension) of the signal to be 2j for some positive integer j. This assumption
simplifies the analysis. The procedure can be generalized to any finite data series.
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Hence, the process expanded into V 1 ⊕W 1 becomes

ω(t) = π
(1)
1 φ1

0 + π
(1)
3 φ1

1︸ ︷︷ ︸
V 1

+ δ
(1)
1 ψ1

0 + δ
(1)
3 ψ1

1︸ ︷︷ ︸
W 1

.

In the next step, we expand the process into V 2 ⊕W 2 ⊕W 1. We carry out another matrix multi-
plication

W2 = T2W1

where

T2 =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

 .

Note that the identity matrix is in the bottom left side of T2. This is because we already have the

random coefficients for the basis vectors of W 1 and, therefore, only the averages (π
(1)
1 , π

(1)
3 ) become

inputs for the next step. Alternatively, combining with the previous step:

W2 = T2T1ω(t),

where

T2T1 =


1
2

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2

1√
2
− 1√

2
0 0

0 0 1√
2
− 1√

2

 .

Notice that the first row corresponds to the basis vector φ2
0 spanning V 2, while the second row

corresponds to the basis vector ψ2
0 spanning W 2. Eventually, the process expanded into V 2⊕W 2⊕

W 1 becomes:

ω(t) = π
(2)
4 φ2

0︸ ︷︷ ︸
V 2

+ δ
(2)
4 ψ2

0︸ ︷︷ ︸
W 2

+ δ
(1)
1 ψ1

0 + δ
(1)
3 ψ1

1︸ ︷︷ ︸
W 1

,

where the average and the wavelet coefficients are given by

π
(2)
4 =

∑3
i=0 ωi
2

δ
(2)
4 =

(ω0 + ω1)/
√

2− (ω2 + ω3)/
√

2√
2

.

More generally, if the data set x0 = {x0,k}T−1
k=0 contains T elements, then the recursive iterations

would continue until a single average is calculated. Indeed, the matrix is first applied to the original,
full-length data vector. Then, the vector is smoothed and the matrix applied again. This process

would replace the original data set ofN elements with an average π
(J)
T , which we define as the smooth

component, followed by a set of wavelet coefficients DJ ≡ {δ(J)
k }k, δ

(J−1) ≡ {δ(J−1)
k }k, . . . , δ(1) ≡

{δ(1)
k }k, which make up the detail components. In the end, the discrete wavelet transform of the
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sequence x0 can be represented as:

x0 → {π(J), δ(J), . . . , δ(j), . . . , δ(2), δ(1)}. (B.1)

C Understanding two-way aggregation

C.1 Dynamics of time-scale components

Assume the following component (or detail) dynamics for j = j∗, where j∗ ∈ {1, . . . , J}:

y
(j)

t+2j
= βjx

(j)
t (C.1)

x
(j)

t+2j
= ρjx

(j)
t + σjεt+2j (C.2)

For j = 1, . . . , J , with j 6= j∗, we have

y
(j)
t = 0, (C.3)

x
(j)
t = 0. (C.4)

Assume - for conciseness - that T = 16, j∗ = 2, and J = 3. Arrange the details of x as follows:

π
(3)
8 π

(3)
16

x
(3)
8 x

(3)
16

x
(2)
8 x

(2)
16

x
(2)
4 x

(2)
12

x
(1)
8 x

(1)
16

x
(1)
6 x

(1)
14

x
(1)
4 x

(1)
12

x
(1)
2 x

(1)
10


(C.5)

and, analogously, for the details of y. Consider the following isometric transform matrix:

T (3) =



1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8
− 1√

8
− 1√

8
− 1√

8
− 1√

8
1
2

1
2 −1

2 −1
2 0 0 0 0

0 0 0 0 1
2

1
2 −1

2 −1
2

1√
2
− 1√

2
0 0 0 0 0 0

0 0 1√
2
− 1√

2
0 0 0 0

0 0 0 0 1√
2
− 1√

2
0 0

0 0 0 0 0 0 1√
2
− 1√

2


. (C.6)
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To reconstruct the time series xt, we run through each column of the matrix (C.5) and, for each
column, we perform the following operation:

X
(3)
8 =



x8

x7

x6

x5

x4

x3

x2

x1


=
(
T (3)

)−1



π
(3)
8

x
(3)
8

x
(2)
8

x
(2)
4

x
(1)
8

x
(1)
6

x
(1)
4

x
(1)
2


(C.7)

and

X
(3)
16 =



x16

x15

x14

x13

x12

x11

x10

x9


=
(
T (3)

)−1



π
(3)
16

x
(3)
16

x
(2)
16

x
(2)
12

x
(1)
16

x
(1)
14

x
(1)
12

x
(1)
10


. (C.8)

We do the same for the details of yt. The matrix
(
T (3)

)−1
takes the following form:

(
T (3)

)−1
=



1√
8

1√
8

1
2 0 1√

2
0 0 0

1√
8

1√
8

1
2 0 − 1√

2
0 0 0

1√
8

1√
8
−1

2 0 0 1√
2

0 0
1√
8

1√
8
−1

2 0 0 − 1√
2

0 0
1√
8
− 1√

8
0 1

2 0 0 1√
2

0
1√
8
− 1√

8
0 1

2 0 0 − 1√
2

0
1√
8
− 1√

8
0 −1

2 0 0 0 1√
2

1√
8
− 1√

8
0 −1

2 0 0 0 − 1√
2


. (C.9)
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Using the dynamics of the state (C.2), (C.7) and (C.8), we obtain

X
(3)
16 =



x16 = x
(2)
16 /2

x15 = x
(2)
16 /2

x14 = −x(2)
16 /2

x13 = −x(2)
16 /2

x12 = x
(2)
12 /2

x11 = x
(2)
12 /2

x10 = −x(2)
12 /2

x9 = −x(2)
12 /2


(C.10)

and

X
(3)
8 =



x8 = x
(2)
8 /2

x7 = x
(2)
8 /2

x6 = −x(2)
8 /2

x5 = −x(2)
8 /2

x4 = x
(2)
4 /2

x3 = x
(2)
4 /2

x2 = −x(2)
4 /2

x1 = −x(2)
4 /2


. (C.11)

C.2 Aggregation

C.2.1 Fitting an AR(1) process to the regressor

We fit an AR(1) process to xt:
xt+1 = ρ̃xt + εt+1.

From (C.10) and (C.11), it is easy to see that, for j∗ = 2:

ρ̃ =
1− ρj∗

4
.

For a more general j∗, i.e., if the process for xt is given by (C.2) and (C.4), then

ρ̃ =

1 + 1 + . . .︸ ︷︷ ︸
2j∗−1−1

−1 + 1 + 1 + . . .︸ ︷︷ ︸
2j∗−1−1

−ρj∗

2j∗
.

This result clarifies the relation between scale-wise persistence (ρj∗) and persistence in calendar
time (ρ̃). If ρj∗ <

1
5 , then ρ̃ > ρj∗ for all j∗. However, as j∗ grows large, ρ̃ approximates 1. In

other words, the largest the driving scale, the largest the calendar-time correlation irrespective of
the actual scale-wise correlation.
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C.2.2 Two-way (forward/backward) regressions

Let us construct the temporally-aggregated series

yt+1,t+h =
h∑
i=1

yt+i

and run the forward/backward regression

yt+1,t+h = β̃xt−h+1,t + εt+1,t+h,

where xt+1,t+h is defined like yt+1,t+h. For h = 4, and using (C.1) and (C.3) together with (C.10)
and (C.11), we have

y13,16 = 0 x13,16 = 0

y12,15 = (−y(2)
16 + y

(2)
12 )/2 = β

(
−x(2)

12 + x
(2)
8

)
/2 x12,15 = (−x(2)

16 + x
(2)
12 )/2

y11,14 = −y(2)
16 + y

(2)
12 = β

(
−x(2)

12 + x
(2)
8

)
x11,14 = −x(2)

16 + x
(2)
12

y10,13 = (−y(2)
16 + y

(2)
12 )/2 = β

(
−x(2)

12 + x
(2)
8

)
/2 x10,13 = (−x(2)

16 + x
(2)
12 )/2

y9,12 = 0 x9,12 = 0

y8,11 = (−y(2)
12 + y

(2)
8 )/2 = β

(
−x(2)

8 + x
(2)
4

)
/2 x8,11 = (−x(2)

12 + x
(2)
8 )/2

y7,10 = −y(2)
12 + y

(2)
8 = β

(
−x(2)

8 + x
(2)
4

)
x7,10 = −x(2)

12 + x
(2)
8

y6,9 = (−y(2)
12 + y

(2)
8 )/2 = β

(
−x(2)

8 + x
(2)
4

)
/2 x6,9 = (−x(2)

12 + x
(2)
8 )/2

y5,8 = 0 x5,8 = 0

y4,7 = (−y(2)
8 + y

(2)
4 )/2 = β

(
−x(2)

4 + x
(2)
0

)
/2 x4,7 = (−x(2)

8 + x
(2)
4 )/2

y3,6 = −y(2)
8 + y

(2)
4 = β

(
−x(2)

4 + x
(2)
0

)
x3,6 = −x(2)

8 + x
(2)
4

y2,5 = (−y(2)
8 + y

(2)
4 )/2 = β

(
−x(2)

4 + x
(2)
0

)
/2 x2,5 = (−x(2)

8 + x
(2)
4 )/2

y1,4 = 0 x1,4 = 0.

Thus, regressing yt+1,t+4 on xt−3,t yields β̃ = β with R2 = 100%. Hence, when scale-wise pre-
dictability applies to a scale operating between 2j

∗−1 and 2j
∗
, maximum predictability upon two-

way aggregation arises over an horizon h = 2j
∗
. In our case, j∗ = 2 and h = 4. Consider, for
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example, an alternative aggregation level: h = 2. We have

y15,16 = y
(2)
16 = βx

(2)
12 x15,16 = x

(2)
16

y14,15 = 0 x14,15 = 0

y13,14 = −y(2)
16 = −βx(2)

12 x13,14 = −x(2)
16

y12,13 = (−y(2)
16 + y

(2)
12 )/2 = β(−x(2)

12 + x
(2)
8 )/2 x12,13 = (−x(2)

16 + x
(2)
12 )/2

y11,12 = y
(2)
12 = βx

(2)
8 x11,12 = x

(2)
12

y10,11 = 0 x10,11 = 0

y9,10 = −y(2)
12 = −βx(2)

8 x9,10 = −x(2)
12

y8,9 = (−y(2)
12 + y

(2)
8 )/2 = β(−x(2)

8 + x
(2)
4 )/2 x8,9 = (−x(2)

12 + x
(2)
8 )/2

y7,8 = y
(2)
8 = βx

(2)
4 x7,8 = x

(2)
8

y6,7 = 0 x6,7 = 0

y5,6 = −y(2)
8 = −βx(2)

4 x5,6 = −x(2)
8

y4,5 = (−y(2)
8 + y

(2)
4 )/2 = β(−x(2)

4 + x
(2)
0 )/2 x4,5 = (−x(2)

8 + x
(2)
4 )/2

y3,4 = y
(2)
4 = βx

(2)
0 x3,4 = x

(2)
4

y2,3 = 0 x2,3 = 0

y1,2 = −y(2)
4 = −βx(2)

0 x1,2 = −x(2)
4 ,

where we use the implied dynamics for x, see equations (C.10) and (C.11), and the equivalent
ones for y together with (C.1) and (C.2). The regression of yt+1,t+2 on xt−1,t yields (based on a
fundamental block of four elements):

β̃ =
Cov(y15,16, x13,14) + Cov(y13,14, x11,12)

V ar (x10,11) + V ar (x11,12) + V ar (x12,13) + V ar (x13,14)

=
−βV ar

(
x

(2)
12

)
ρ− βV ar

(
x

(2)
12

)
V ar

(
x

(2)
12

)
+ V ar

(
x
(2)
16
2

)
+ V ar

(
x
(2)
12
2

)
−

Cov
(
x
(2)
16 ,x

(2)
12

)
2 + V ar

(
x

(2)
16

)
= −2β

(1 + ρj)

5− ρj

and, hence, an inconsistent slope estimate. This estimate could have a changed sign (with respect
to β) and be drastically attenuated. In fact, β̃ = 0 if ρj = −1 and β̃ = −β if ρj = 1.

C.2.3 Contemporaneous aggregation

We now run the contemporaneous regression

yt+1,t+h = β̃xt+1,t+h + εt+1,t+h.
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For h = 4, the relevant 4-term block contains terms like:

yt+1,t+h = β(−x(2)
12 + x

(2)
8 )/2

xt+1,t+h = (−x(2)
16 + x

(2)
12 )/2

By taking covariances we obtain

β̃ = β

(
−Var(x

(2)
12 ) + ρj Var(x

(2)
12 )− ρ2

j Var(x
(2)
12 ) + ρj Var(x

(2)
12 )
)

Var(x
(2)
16 ) + Var(x

(2)
12 )− 2cov(x

(2)
16 , x

(2)
12 )

= β

(
−1 + 2ρj − ρ2

j

)
2(1− ρj)

= −β (1− ρj)
2

.

Again, β̃ 6= β. Its sign is also incorrect. We note that, in this case, β̃ = 0 if ρj = 1 and β̃ = −β if
ρj = −1. The R2 is equal to

R2 =
β̃2 Var

(
−x(2)

12 + x
(2)
8

)
β2 Var

(
−x(2)

12 + x
(2)
8

) =

(
1− ρj

2

)2

.

The larger ρj , the smaller the R2, and the more attenuated towards zero β̃ is.

C.2.4 Two-way (forward/backward) regressions on differences

Consider the regression

yt+1,t+h = β̃ (xt−h+1,t − xt−2h+1,t−h) + εt+1,t+h.

Using the same methods as before, one can show that, if h = 2:

β̃h=2 = −β
2

and R2
h=2 =

1

2

[7 + ρj ]

[5− ρj ]
.

If h = 3:

β̃h=3 = β

[ [
9
4 −

5
4ρj
]

9− 15
2 ρj + 1

2ρ
2
j

]
and R2

h=3 =

[ [
9
4 −

5
4ρj
]

9− 15
2 ρj + 1

2ρ
2
j

]2
[
9− 15

2 ρj + 1
2ρ

2
j

]
3− 2ρj

.

If h = 1:

β̃h=1 =
β

2

[
1 + 3ρj
3 + ρj

]
and

R2
h=1 =

1

4

[
1 + 3ρj
3 + ρj

]2 [3 + ρj
2

]
.
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Hence, when scale-wise predictability applies to a scale operating between 2j
∗−1 and 2j

∗
, two-way

aggregation on differences, rather than on levels, would yield - at h = 2j
∗−1 - a slope coefficient

whose sign is the opposite of the true sign. In our case, j∗ = 2 and h = 2. As shown, β̃h=2 = −β
2 .

We note that R2
h=2 = 1 if ρj = 1. Also, R2

h=2 reaches a minimum value of 0.5 for ρj = −1. Hence,
the magnitude of the coefficient of determination is sizeable in correspondence with h = 2. In
addition, R2

h=2 > R2
h=1 and R2

h=2 > R2
h=3 for all ρ, thereby determining tent-shaped behavior of

the R2s around h = 2.

D Predicting long-run variance

Bandi and Perron (2008) find that, in spite of its predictive ability for long-run (i.e., forward-
aggregated) excess market returns, long-run past (backward-aggregated) variance does not predict
its future values. As emphasized by Bandi and Perron (2008), if taken literally, this result would
contradict classical economic logic behind predictability. Why is realized variance aggregated over
a certain horizon not predictable? We provide a justification based on measurement error.

In Section 5.1 we simulated models in which realized variance was characterized by autoregressive
components at scales j∗ = 6 or j∗ = 7, respectively. Let us now focus on the variance dynamics
given these specifications. Table D.1–Panels A and B report simulation results from running linear
regressions of h-period realized market variances. We regress h-period future variance v2

t+1,t+h =∑h
i=1 v

2
t+i−1,t+i on h-period past variance v2

t−h+1,t =
∑h

i=1 v
2
t−i+1,t−i, i.e.,

v2
t+1,t+h = ρhv

2
t−h+1,t + εt,t+h, (D.1)

when the underlying data generating processes have predictable scales at j∗ = 6 or j∗ = 7. It is
readily verified that both of these scales generate spurious negative predictability upon aggrega-
tion with (approximate) peaks corresponding to the upper bound of the corresponding interval of
frequencies.

Thus, empirical evidence of some (negative) long-run variance predictability appears to be an
additional diagnostic for the proposed data generating process relying on details. Having made this
point, we note that the findings in Table D.1–Panel A and Table D.1–Panel B are at odds with the
findings in Table D.2.11

Next, we show that this apparent contradiction is easily re-solved by taking into account mea-
surement error generated by heterogeneity in the levels of persistence. More explicitly, we evaluate
the effect on the dynamics of aggregated variance of the presence of uncorrelated predictable com-
ponents at different frequencies. To this extent, we simulate variance according to the following
specifications:

v
2(j)

k2j+2j
= ρjv

2(j)

k2j
+ ε

(j)

k2j+2j

with j = j∗ ∈ S = {7, 9} and

v
2(j)

k2j+2j
= ε

(j)

k2j+2j

for j /∈ S, j = 1, . . . , J = 9, where corr(ε
(j′)
t′ , ε

(j
t )) = 0 ∀t, j, t′, j′ with t′ 6= t and j′ 6= j. Hence, we

now consider a variance process generated by two autoregressive details, one at scale 7 and one at

11Table 9 of Bandi and Perron (2008) also report estimates from a linear regression of realized variance on itself h
periods in the past. Bandi and Perron (2008) show that “the autocorrelations become quickly statistically insignificant
with the level of aggregation” and conclude that “realized variance is virtually uncorrelated in the long run.”
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Panel A - case j∗ = 6: xt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t 0.24 0.13 0.06 -0.26 -0.43 -0.47 -0.48 -0.48 -0.49 -0.49 -0.48 -0.48
(5.30) (2.10) (0.66) (-2.56) (-4.04) (-4.57) (-3.68) (-3.80) (-4.34) (-3.96) (-4.04) (-3.59)

Adj.R2 [5.89] [2.16] [1.19] [7.78] [18.99] [23.20] [24.95] [24.64] [25.28] [25.67] [24.18] [24.82]

Panel B - case j∗ = 7: xt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t 0.31 0.24 0.22 -0.00 -0.19 -0.32 -0.40 -0.44 -0.45 -0.46 -0.46 -0.47
(6.89) (4.02) (2.77) (-0.06) (-1.62) (-2.52) (-2.91) (-3.12) (-3.31) (-3.36) (-3.28) (-3.16)

Adj.R2 [9.77] [6.37] [5.80] [1.38] [5.09] [12.03] [18.10] [20.59] [21.67] [22.67] [24.06] [25.61]

Table D.1: Simulation under the null of scale-dependent predictability. We run linear
regressions of h-period realized market variances xt+1,t+h on h-period past realized market variances
xt−h+1,t. We implement 500 replications. We set T = 1024. For each regression, the table reports
OLS estimates of the regressors, Newey-West t-statistics with 2*(horizon-1) lags in parentheses and

adjusted R2 statistics in square brackets. Panel A: We simulate x
(j)
t = ρjx

(j)

t−2j
+ ε

(j)
t for j = 6

and x
(j)
t = ε

(j)
t otherwise. Panel B. We simulate x

(j)
t = ρjx

(j)

t−2j
+ ε

(j)
t for j = 7 and x

(j)
t = ε

(j)
t

otherwise.

Horizon h (in months)
1 2 3 4 5 6 7 8 9 10

v2
t−h,t 0.47 0.34 0.33 0.28 0.21 0.20 0.23 0.20 0.13 0.05

(5.05) (4.08) (2.46) (1.83) (1.37) (1.06) (1.15) (0.99) (0.70) (0.26)

Adj.R2 [17.35 ] [13.08] [10.39] [6.53] [4.31] [4.83] [6.73] [4.67] [1.73] [0.19]

Table D.2: Market Volatility. We run linear regressions of h-period realized market variances
v2
t+1,t+h on h-period past realized market variances v2

t−h+1,t. The table reports OLS estimates of
the regressors, Hansen and Hodrick corrected t-statistics in parentheses. The sample is annual
and spans the period 1930-2012. For the translation of time-scales into appropriate range of time
horizons refer to Table 1.
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scale 9.
Table D.3–Panel C reports the results. Comparing these findings with the ones in Table D.1-

Panel B, we note that the effect of adding an additional predictable detail (relatively close to the
permanent one) is two-fold. First, the autoregressive coefficient at horizon h = 120 is no longer
significant and aggregate “realized variance is virtually uncorrelated in the long run,” even though
two autoregressive details are truly present. Second, the t-statistics and the R2 for very short
horizons, namely 3 months and 6 months, are now higher and significant.

This said, the previous conclusions about long-run predictability continue to hold. Earlier, we
postulated a predictable relation between returns and realized variance only at scale j∗ = 7. In
other words, the variance process had only one predictable component. We now consider a case in
which there are two details of the variance process which are not white noise (j = {7, 9}). However,
we continue to impose that the only relevant predictability relation between returns and variance
occurs at j∗ = 7. Thus, we assume

r
(j)

k2j ,k2j+2j
=

{
v

2(j)

k2j
if j = 7,

u
(j)
t otherwise .

Results are reported in Table D.3–Panel A. We confirm the findings of the previous section, namely
the relation at scale j∗ = 7 implies a spike in the slope estimates, t-statistics, and R2s at the horizon
h = 120. Compared to Table 5–Panel A, we note that, when the variance process is characterized
by two autoregressive components, Table D.3–Panel A shows that the estimated (upon aggregation)
predictive relation is softened but continues to remain significant.

E Computation of the Highest Posterior Density Intervals

Consider, again, the linear regression model:

y
(j)

k2j+2j
= βjx

(j)

k2j
+ ε

(j)

k2j+2j
.

Suppose that the coefficient βj can lie anywhere in the interval (−∞,∞). A 95% credible interval
for βj is any interval [a; b] so that:

p(a ≤ βj ≤ b | y(j)) =

∫ b

a
p(βj | y(j))dβj = 0.95.

To choose among the infinite number of credible intervals, it is common to select the one with the
smallest area. In the standard Normal example, [−1.96; 1.96] is the shortest credible interval. This
is the Highest Posterior Density Interval (HPDI). Each table presents 95% HPDIs in addition to
point estimates. In simple words, the researcher is 95% sure that βj lies within the HPDI.

Given the structure of the above regression, we employ a Normal-Gamma prior (i.e., the product
of a Gamma and a conditional Normal) for βj and h = 1

σ2 :

βj , h ∼ NG(β, V , s−2, ν).

We use under-bars (e.g., β) to denote the parameters of the prior density and over-bars (e.g., β)
to denote the parameters of the posterior density. The marginal posterior distribution for βj is a
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Panel A: yt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t -0.00 -0.01 -0.02 -0.09 -0.19 -0.26 -0.23 -0.09 0.11 0.28 0.39 0.43
(-0.01) (-0.10) (-0.25) (-0.69) (-1.34) (-1.80) (-1.59) (-0.61) ( 0.81) ( 2.23) ( 3.27) ( 3.94)

Adj.R2 [0.17] [0.38] [0.86] [2.03] [4.62] [8.07] [7.83] [3.73] [4.72] [13.01] [22.75] [28.79]

Panel B: yt+1,t+h = αh + βhxt+1,t+h + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt+1,t+h 0.00 0.00 -0.00 -0.01 -0.02 -0.04 -0.06 -0.10 -0.13 -0.16 -0.19 -0.21
(0.05) (0.02) (-0.02) (-0.08) (-0.15) (-0.28) (-0.45) (-0.69) (-0.89) (-1.10) (-1.30) (-1.48)

Adj.R2 [0.21] [0.51] [1.06] [2.09] [3.09] [4.02] [4.95] [6.07] [7.26] [8.56] [10.12] [11.86]

Panel C: xt+1,t+h = αh + βhxt−h+1,t + εt+h

Horizon h (in months)
3 6 12 24 36 48 60 72 84 96 108 120

xt−h+1,t 0.24 0.15 0.17 0.20 0.15 0.03 -0.05 -0.07 -0.07 -0.07 -0.09 -0.12
(5.27) (2.46) (2.21) (1.84) (1.16) (0.19) (-0.37) (-0.54) (-0.59) (-0.60) (-0.66) (-0.78)

Adj.R2 [7.35] [3.78] [3.20] [3.40] [6.79] [7.71] [8.52] [8.61] [8.08] [7.32] [6.39] [5.31]

Table D.3: Simulation under the null of scale-dependent predictability. The relation is at
scale j∗ = 7. Two persistent components in the regressor. We simulate excess market returns
(y) and market variance (x) under the assumption of predictability at scale j∗ = 7. We simulate

x
(j)
t = ρjx

(j)

t−2j
+ ε

(j)
t for j = 7, 9 and x

(j)
t = ε

(j)
t otherwise. We implement 500 replications. We

set T = 1024. For each regression, the table reports OLS estimates of the regressors, Newey-West
t-statistics with 2*(horizon-1) lags in parentheses and adjusted R2 statistics in square brackets.
Panel A: We run linear regressions (with an intercept) of h-period continuously compounded
excess market returns on h-period past realized market variances. Panel B: contemporaneous
aggregation. We run linear regressions (with an intercept) of h-period continuously compounded
excess market returns on h-period realized market variances. Panel C: . We run linear regressions
of h-period realized market variances xt+1,t+h on h-period past realized market variances xt−h+1,t.
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t-distribution:
βj | y(j) ∼ t(β, s2V , ν).

The prior hyper-parameter values are s−2 = 1
var(y) , ν = 3, and β = 1. Since

var(βj) =
νs2

ν − 2
V ,

setting var(βj) = 10 for both risk-return trade-offs and Fisher effects implies a choice of V as well.
We use the same prior density for all scales j = 1, . . . , J .

We wish to attach little weight on to the prior. We do so by setting ν to a value which is
considerably smaller than the number of observations N . Since, in the case of the risk-return trade-
offs, N = 64, setting ν = 3 is relatively uninformative. We also attach a large prior variance to
each of the regression coefficients. Because var(βj) = 10, we are giving an approximately 95% prior
probability to the region [−2

√
(10), 2

√
(10)] for βj , which translates into a wide interval.

Overall, the selected prior is considerably less informative than the data. This can be seen from
figure E.1 (i.e., the prior p.d.f. is more dispersed than the likelihood) - both for the case of stock
returns and consumption risk - see Figure 1(a) - and for the case of nominal stock returns and
inflation - see Figure 1(b).

(a) Prior and posteriors for market returns and
consumption volatility

(b) Prior and posteriors for nominal market re-
turns and inflation

Figure E.1: The figure displays the marginal prior (dashed line) and posteriors for βj . Panel A
displays the case for the excess stock market returns and consumption risk at scale j = 4, and Panel
B the relation between of nominal stock returns and inflation at scale j = 3.

In order to construct HPDIs for the Autoregressive AR(1) model for the variance, i.e.,

v
2(j)

k2j+2j
= ρjv

2(j)

k2j
+ ε

(j)

k2j+2j

we assign prior distributions as follows:

• ρj ∼ 2φ− 1, where φ ∼ Beta(a, b)

• h = 1/σj ∼ Gamma(s−2, ν)

55



Again, we set uninformative priors. Naturally, the parameter ρj should be less than 1 in order for
the process to be stationary. We use the beta distribution (which is, however, more informative than
the uniform distribution)12 and choose a = 5 and b = 2. We run a Random Walk Chain Metropolis-
Hastings algorithm with 20,000 iterations to estimate the mean-reverting AR(1) model. We select
independent normal proposal distributions to sample candidate points for the parameters. We
choose the variance-covariance matrix of the multivariate Normal so that the acceptance probability
tends to be neither too high nor too low. In particular, we make sure that the average acceptance
probability is in the region 0.2 to 0.5.

F Data

The empirical analysis in Sections 4, and 6 is conducted using annual data on consumption, inflation,
stock returns, and short-term interest rates from 1930 to 2012, i.e., the longest available sample. We
take the view that this sample is the most representative of the overall high/medium/low-frequency
variation in asset prices and macroeconomic data.

Aggregate consumption is from the Bureau of Economic Analysis (BEA), series 7.1, and is
defined as consumer expenditures on non-durables and services. Growth rates are constructed by
taking the first difference of the corresponding logarithmic series. Our measure of consumption
volatility is based on modeling consumption growth as following an AR(1)-GARCH(1,1), as in
Bansal, Khatchatrian, and Yaron (2005).

For yearly inflation, we use the seasonally unadjusted CPI from the Bureau of Labor Statistics.
Yearly inflation is the logarithmic (December to December) growth rate in the CPI.

We use the NYSE/Amex value-weighted index with dividends as our market proxy, Rt+1. Return
data on the value-weighted market index are obtained from the Chicago Center for Research in
Security Prices (CRSP). The nominal short-term rate (Rf,t+1) is the annualized yield on the 3-
month Treasury bill taken from the CRSP treasury files.

The h-horizon continuously-compounded excess market return is calculated as rt+1,t+h = ret+1 +
. . .+ret+h, where ret+j = ln(Rt+j)− ln(Rf,t+j) is the 1-year excess logarithmic market return between
dates t+ j − 1 and t+ j, Rt+j is a simple gross return, and Rf,t+j is a gross risk-free rate (3-month
Treasury bill).

The market’s realized variance between the end of period t and the end of period t+n, a measure
of integrated volatility, is obtained by computing

v2
t,t+n =

tD∑
d=t1

r2
d,

where [t1, tD] denotes the sample of available daily returns between the end of period t and the end
of period t+ n, and rd is the market’s logarithmic return on day d.

12It is known that U[0,1] is equivalent to Beta(1,1). The latter has values in the range of (0,1) with mean and
standard deviation of 0.5 and 0.289, respectively.
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