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1 Introduction

Consider the following treasure-hunting problem. There is a cluster of islands, in one (and

only one) of which a treasure is buried. The problem is to discover which of the islands hides

this treasure, and also where exactly in the island, or how deep underground, the treasure is

buried. This is a standard search problem. But now imagine that an explorer can organize

multiple expeditions to multiple locations at once. There is a cost to exploring each island, but

simultaneous expeditions can cover more ground faster.

This version of the treasure-hunting problem has at least two different applications: research

and team recruiting.

A researcher has a conjecture for a new theoretical result. If the conjecture is true, and if she

can provide a proof, she can write a paper with her result. If the conjecture is false, and she

produces a counterexample, she can write a different paper with the “modified conjecture,” or

perhaps a (shorter) paper with the counterexample. She can divide her time between trying to

come up with a proof and trying to come up with a counterexample; but she can also use part

of her research funds to hire a research assistant to work on the counterexample while she works

on the proof, or viceversa. Here, the two tasks represent the different islands, while the option

of simultaneous expeditions is represented by hiring the assistant.

Alternatively, a lab is conducting clinical research on different new treatments for a disease.

Each of the treatments is based on different hypotheses regarding the cause of the disease. The

lab director can have her staff experiment on one treatment, or she can hire additional researchers

and have different teams working side by side on different treatments. This way, the successful

treatment may be identified faster; but the additional researchers must be compensated for their

work. Finding the treasure here is identifying the right treatment, and the cost of multiple

expeditions is the cost of hiring the additional researchers.

Similarly, a principal is recruiting agents from a pool of job applicants. The different agents

come from opposing schools or training, and there is uncertainty about which of their profiles

is better suited to the company’s operation. The principal is interested in identifying the “star

candidate.” To get data on their performance, the candidates have to be hired. The firm can

hire one candidate at a time, or can hire multiple candidates at once. The different agents are

represented by the different islands; the “treasure” is the star applicant; and the cost of exploring

is the agents’ wage.

The present paper studies such experimentation problems, where a decision maker faces a

finite set of tasks or projects (research projects, treatments, job applicants). Successes arrive over

time according to a known Poisson process, but there is uncertainty as to which one of the projects

can produce these successes. One and only one of the projects is fruitful. Thus, the projects are

negatively correlated: A success from one is conclusive evidence that the others cannot produce

value. Over any time interval, the decision maker can choose any subset of projects to work on,

including the empty set (namely, not working at all). She bears a (constant) flow cost for each

project undertaken, and she only observes successes for those projects selected.
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While the problem can be formulated for an arbitrary number of finitely many projects, at

such level of generality it becomes intractable. Thus, most of the analysis in this paper focuses

on the case of two projects (as in the example of academic research).

The basic results when simultaneous experimentation is allowed are summarized as follows:

(a) If the costs of the projects are low and/or the arrival rates are sufficiently high relative to

the discount rate, the decision maker begins with both projects at once when her prior is diffuse.

If, instead, her prior assesses that one project is sufficiently likely to be the fruitful one, she begins

with that project alone. If enough time passes and she meets with no success, she takes on both

projects simultaneously once she becomes sufficiently unsure about the state; she never abandons

one project for the other.

(b) But if the costs of the projects are high, and if the discount rate is high (or the arrival

rate is low), she either does no research at all — if her prior is sufficiently diffuse — or she

works on one project only — if the prior that said project is the fruitful project is high enough

—, abandoning research if, after a while, she does not meet with success.

(c) Imagine the researcher, if she conducts both projects at once and success is achieved,

cannot tell which project was responsible for the success. The manager of a consulting firm may

observe whether a team of experts collectively meets their clients’ needs, but not exactly how

much each of the experts contributes individually. For low costs and high discount rate, the

decision maker starts with both projects if her prior is diffuse. Now, however, if she starts on a

singleton, she sticks to the singleton for longer. If the costs are too high relative to the arrival

rate, or if the discount rate is sufficiently low, she only experiments on singletons: Information

can only come from singletons, which are cheaper than simultaneous experimentation.

(d) Of the two basic projects, one must eventually succeed; in this sense, they are “collectively

safe.” Sometimes, a researcher may also have other, separate projects to work on, projects that

may fail. The decision maker postpones starting on these collectively-safe projects in favor of a

riskier one if she is sufficiently optimistic about this third project, the less optimism required the

more uncertainty there is about the two original projects.

The decision maker experiments simultaneously on both projects when she is sufficiently

uncertain about the state. In this sense, there is “more experimentation” for mid-range beliefs,

when information is the most valuable. This stands in (apparent) contrast with Moscarini and

Smith (2001), who find that experimentation “accelerates” as the decision maker becomes more

confident.

Moscarini and Smith (2001) assume that the cost of “experimentation” — in their model,

buying signals and delaying final, irreversible choices — is strictly increasing and strictly convex.

Moreover, observations and posteriors obey a diffusion process, so they always change gradually

over time. Thus, experimentation is more costly when it takes longer for the posterior to reach

decision thresholds. The same is true in the present paper: Experimentation is more costly

when it has the smallest impact on beliefs. However, the flow cost of undertaking each project

is constant, and observing an arrival from a Poisson process produces jumps in the posterior
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rather than gradual changes; thus, experimentation has the smallest impact on beliefs when the

posterior is already close to the extremes.

While Moscarini and Smith (2001) represent experimentation as a type of Wald sequential

hypothesis-testing problem, I represent experimentation as a bandit problem — here, a Poisson

bandit with correlated arms.1 Not being restricted to choosing at most a single arm at a time, it

is in fact a multi-choice bandit problem. A special class of such problems is studied in Bergemann

and Välimäki (2001). A decision maker faces countably many arms, and can choose up to some

fixed number of them at a time, at no additional cost. A generalization of the Gittins index2

applies if the arms are independent, ex-ante identical, and there are (countably) infinitely many

of them; however, Bergemann and Välimäki (2001) show by example that this solution fails if

there are only finitely many arms.

In Francetich and Kreps (2014), we study the following variation of the present multi-choice

bandit problem. A finite set X of “tools” is given. Each time period t = 0, 1, . . ., a decision maker

chooses a “toolkit” Kt ⊆ X to carry for that period. Each tool x ∈ X has a “rental” cost cx > 0 and

value on date t given by vt(x), where the process {vt ∈ RX
+}t∈N is independent and identically

distributed according to some unknown distribution. On each date t, the decision maker only

observes the values vt(x) for those x that are in the toolkit she has selected, Kt. As a bandit

problem with non-independent arms, we cannot enlist the Gittins index, and the problem can

become intractable. At this level of generality, the best we can hope for — aside from asymptotic

results —, and the subject of Francetich and Kreps (2014), is to investigate the performance of

various decision heuristics. We borrow from the machine-learning literature in computer science

and operations research, which is concerned with developing algorithms that “perform well” in

bandit problems.3 But one can imagine special and restricted formulations of this problem that

are amenable to analytical solution, and the present paper provides one such formulation; this

allows us to build up our intuition regarding solutions to the more general problem.

While the spirit of the problem studied in this paper is closely related to Francetich and Kreps

(2014), the formal techniques employed borrow heavily from Keller and Rady (2010) and Klein

and Rady (2011), who study strategic experimentation with Poisson and exponential bandits,

respectively. In Keller and Rady (2010), each player has an identical copy of a bandit with one

risky arm and one safe arm; in Klein and Rady (2011), the risky arms of each player’s bandit are

negatively correlated across players. These players can choose only one arm at a time, but they

can learn from each other. Like the decision maker in the present paper, they have more than

one source of information. However, to them, this “extra” information is public and free; our

decision maker can only exploit her additional source of information — choosing more than one

1In terms of behavior, the Wald approach decouples payoffs and learning, but makes decisions irreversible. In
the bandit approach, choices yield both information and payoffs (assessed on the basis of said information), and such
choices are typically reversible. I consider some very special forms of irreversibility in sections 4 and 6.

2See, for instance, Gittins and Jones (1974); Whittle (1980); Weber (1992).
3References to this literature are provided in Francetich and Kreps (2014). Part of this literature provides algo-

rithms even for problems where the arms of the bandit are statistically independent under the prior, so that the Gittins
index can be applied; this is because the computation of the index is typically complex as a practical matter.
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arm at a time— by means of payoff-relevant actions, so she faces a different trade-off.

Nonetheless, the baseline problem of our decision maker can be mapped to the benchmark

problem of the social planner in Klein and Rady (2011). From the point of view of this planner,

our two projects are the two agents; our cost of undertaking the projects is the opportunity

cost of having the agents neglect their safe arms; and, since actions and outcomes are public,

simultaneous experimentation amounts to assigning both agents to their corresponding risky

arms. Thus, the results in section 3 have exact parallels to results in Klein and Rady (2011), and

the analysis in the later sections constitutes an extension of their efficiency benchmark.

The rest of the paper is organized as follows. Section 2 describes the basics of the formal

framework. Section 3 analyzes the optimal research strategy. Section 4 analyzes the case when

choices must be nested, while section 5 discusses the case of “imperfect monitoring” of successes,

namely, when successes from simultaneous experimentation cannot be attributed to individual

projects. Section 6 discusses the problem of more than two projects. Finally, section 7 concludes.

Proofs are relegated to the appendix, as is the extension of the analysis in section 3 to the case of

asymmetric research costs.

2 The Model

There is a finite set of n tasks or “projects” X = {x0, . . . , xn−1} on which a decision maker

(henceforth, DM) can experiment. The DM allocates her time between the different subsets of

X, representing research agendas. The set of allocations of a divisible unit of time between

the subsets of X is A := S2n−1, the (2n − 1)-dimensional simplex. Given some labelling of the

elements of the power set of X, 2X = {Aj ⊆ X : j = 0, . . . , 2n − 1}, the j-th component αj of vector

α ∈ A denotes the fraction of time spent on Aj.

There is a (flow) research cost c > 0 to undertaking each project; this cost represents, for

instance, wages or fees. Successes yield a gross reward of 1, and they arrive over time for project

i = 0, . . . , n − 1 according to a Poisson processes with arrival rate λI(ω = ωi), where I(∙) is

the indicator function, λ > c is the known arrival rate, and ω ∈ Ω := {ω0, . . . , ωn−1} is the ex-

ante unobserved state of nature. In words, it is known that one and only one of these projects is

profitable to undertake, and exactly how profitable it is, but there is uncertainty as to which one

is the profitable one.4 Payoffs are discounted at the subjective rate ρ > 0.

The DM starts with a prior π0 over the states of nature; this prior is a point in Π := Sn−1, the

(n − 1)-dimensional simplex. If π ∈ Π represents the beliefs of the DM, her expected immediate

4A more flexible specification would allow for Ω = Sn−1 and for arrival rates given by λωi for project i, where
(ω0, . . . , ωn−1) is now a vector of probabilities. Under this alternative specification, successes arrive at rate λ and are
“allocated” to project xi with probability ωi, independently of past arrivals and allocations; this yields a partitioning
of the Poisson process of successes. But this additional flexibility comes at the cost of slowing down the learning
process, without providing significant new insights. An arrival for a project ceases to be conclusive evidence that
the project is the superior one. Instead, we would assess a project to be superior by observing a sufficiently larger
frequency of arrivals for it relative to the other projects; a single observation of success no longer suffices.
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payoff from experimenting on subset A ⊆ X for a time interval of length Δ > 0 is:

λΔ
n−1

∑
i=0

πi I(xi ∈ A) − cΔ#A.

In addition, she observes whether any successes arrive over Δ for each of the projects x ∈ A. In

particular, by working on a single project, she cannot distinguish between the event of an arrival

for one of the other projects and the event of failure of arrival altogether. Figure 1 summarizes

ex-post payoffs and data collected under each of the possible choices in the case n = 2.

Let πt = (π0,t, . . . , πn−1,t) denote the period-t posterior. At any moment, observing an arrival

makes the posterior jump to 1 for the successful project and to 0 for the rest. By spending time

on all projects, either nothing new is learned, or the model uncertainty is resolved immediately.

(a) DM works on no projects (b) DM works on project x0 alone

(c) DM works on project x1 alone (d) DM works on both projects

Figure 1: DM’s observations and payoffs under each of her possible choices.
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This is due to the symmetry in arrival rates; the event of failure of arrival is equally likely for all

of the projects. This would not be the case if different projects had different arrival rates in their

corresponding state: Failure of arrival over a given interval of time would speak louder about

more productive projects than about less productive ones.5

The more interesting dynamics take place when the DM spends time on non-empty proper

subsets of X, namely, when she works on some but not all projects. Given α ∈ A, let αi denote

the fraction of time spent on project i, be it exclusively or as part of a larger set of projects:

αi = ∑j:xi∈Aj
αj. If no arrival results over [t, t + Δt), the posterior for project xi is:

πi,t+Δt =
πi,te−αiλΔt

πte−αiλΔt + 1 − πt
.

As Δt shrinks, we obtain:

π̇i,t = −αiλπi,t(1 − πi,t).

While working unsuccessfully on some but not all projects, the DM becomes progressively pes-

simistic about them while progressively optimistic about the neglected ones. See Figure 2.

The environment is stationary, and the state variable of the problem is the belief of the DM,

π ∈ Π. Let w : Π → R denote the (optimal, average) value function; w satisfies the Bellman

equation:

w(π) = max
α∈A

{
2n−1

∑
j=0

αj

(

λΔ
n−1

∑
i=0

πi I(xi ∈ Aj) − cΔ#Aj +
EAj,π [C(w,∇w, π̃)]

ρ

)}

,

(a) DM works on A = {x0} (b) DM works on A = {x0, x1}

Figure 2: Evolution of posteriors when the DM works on the projects in set A ⊆ X.

5Nonetheless, this case is similar to the case where bad projects have non-zero arrival rates; for a brief discussion
on the latter, see footnote 4.
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where C is the continuation value of the problem, and it depends on the distribution of posteriors

and on the value function and its gradient.

Henceforth, consider the case n = 2. In this case, we can represent beliefs by a single number

in [0, 1], the belief that ω = ω0. We can also label the sets of projects so that, for α ∈ A, α0

represents the fraction of time spent on {x0}, α1, the fraction of time devoted to {x1}, and α2, the

fraction of time spent on both, namely, on simultaneous research. The Bellman equation becomes:

w(π) = max
α∈A

{

α0

[

λπ − c +
λπ (w (1) − w(π)) − λπ(1 − π)w′(π)

ρ

]

+ α1

[

λ(1 − π) − c +
λ(1 − π) (w (0) − w(π)) + λπ(1 − π)w′(π)

ρ

]

+α2

[

λ − 2c +
λ (λ − c − w(π))

ρ

]}

.

Since the expression in braces in the Bellman equation is linear in α, optimal strategies will

involve spending the full unit of time on the most promising set of projects, except perhaps at

indifference points. Because of the stationarity of the problem, in looking for optimal strategies,

we may restrict attention to stationary strategies, namely, strategies that recommend sets of projects

as a function of beliefs.

By virtue of the next theorem, we shall focus on cutoff strategies in the sequel; these are

stationary strategies with the following properties:

• If the strategy recommends {x1} for some π ∈ [0, 1], then it also recommends {x1} for any

π′ ∈ [0, π);

• If the strategy recommends {x0} for some π ∈ [0, 1], then it also recommends {x0} for any

π′ ∈ (π, 1].

Theorem 1 (Cutoff strategies). Let α∗ : [0, 1] → A be an optimal stationary strategy. Then, α∗ is a

cutoff strategy.

3 Optimal Multi-Choice Strategy

The problem that our DM faces departs from standard multi-armed bandit problems in two

ways. First, x0 and x1 are negatively correlated: A success for one project is conclusive evidence

that the other is unproductive. Second, the DM is not restricted to choosing at most a single

project at a time; hence, she faces a multi-choice multi-armed bandit problem. The multi-choice

feature allows the DM to accumulate more data by experimenting with both projects simultane-

ously, while the correlation feature allows her to learn about both projects from the outcomes of

any single one of them.
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This multi-choice problem can be reinterpreted as the social-planner benchmark problem in

an environment of strategic experimentation. The DM is the social planner; the different projects

the DM can undertake are the different agents or players, each endowed with a single project of

their own. If information about actions and outcomes is public, then the social planner learns

from observing the agents just as much as our DM learns from working on her projects.

Thus, the baseline problem of our DM working on up to 2 projects can be mapped into

the social-planner’s problem in Klein and Rady (2011). While the results in this section can be

borrowed from Klein and Rady (2011), further details and proofs are provided in the appendix,

both for the sake of completeness and to be used as inputs in the proofs of results in the later

sections.

To characterize the optimal strategy, we distinguish two different parameter regimes.

Case 1 (Costly research). ρ(2c − λ) > λ(λ − c);

Case 2 (Beneficial research). ρ(2c − λ) ≤ λ(λ − c).

Under costly research, we have that research is expensive, namely λ < 2c, so simultaneous research

is not profitable ex post; its only rationale is information. But information is not valuable to an

impatient DM, one with ρ > λ(λ−c)
2c−λ . Conversely, we have beneficial research if research is cheap,

λ ≥ 2c, or if the DM is patient, namely, if ρ ≤ λ(λ−c)
2c−λ .

These two cases correspond to the cases of low, intermediate, and high stakes in Klein and

Rady (2011).6 With the lump sum from an arrival normalized to 1, and with s denoting the flow

payoff from the safe arm, the case of low stakes in Klein and Rady (2011) can be rewritten as

ρ(2s − λ) > λ(λ − s); this is exactly the inequality in case 1, with s playing the role of c. Figure 3

portrays the partition of the space of “objective parameters” {(λ, c) ∈ R2
+ : λ > c} — excluding

the “subjective” parameter ρ — according to whether they correspond to costly or beneficial

research.

Let π, π ∈ (0, 1), π ≥ π, be cutoffs such that the DM chooses {x1} for π < π and {x0} for

π > π. Optimal cutoffs are identified by means of the value-matching (VM) and smooth-pasting

(SP) conditions. The (VM) conditions say that, at the cutoffs, the DM must be indifferent between

the two corresponding recommendations from either side of the cutoffs. The (SP) conditions say

that, at the cutoffs, the marginal value of learning from the corresponding recommended actions

must be equal. Without these conditions, the DM would be switching actions “too early” or “too

late.”

The (VM) conditions are:

Condition (VM). w(π) = w(π) =

{
0 if ∅ is prescribed for π ∈ (π, π),

λ − c − ρc
λ+ρ if X is prescribed for π ∈ (π, π).

6I thank Sven Rady for bringing this to my attention.
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Figure 3: Objective-parameter space for a fixed ρ = ρ0. The colored portion of the graph represents the
parameter space for the problem. The yellow region represents cheap research. The middle curve is the
level curve of the threshold λ(λ − c) = ρ0(2c − λ). In the green region, research is expensive but ρ = ρ0 is
“patience enough.” These two regions combined represent case 2; the blue region represents case 1.

Regardless of whether ∅ or X is recommended for intermediate beliefs, the (SP) conditions are:

Condition (SP). w′(π) = w′(π) = 0;

recall that there is no learning either from ∅ or from X.

The next result is the counterpart of Propositions 1 and 2 in Klein and Rady (2011).

Theorem 2 (Optimal strategy). The optimal strategy, α∗, is as follows. Under case 1,

α∗(π; λ, c) =






(0, 1, 0) π ∈
[
0, π1

]
,

(0, 0, 0) π ∈
(

π1, π1
)

,

(1, 0, 0) π ∈
[
π1, 1

]
,

(1)

where π1 := λ−c
λ

λ+ρ
λ+ρ−c ∈

(
0, 1

2

)
and π1 := 1 − π1; under case 2,

α∗(π; λ, c) =






(0, 1, 0) π ∈
[
0, π2

)
,

(0, 0, 1) π ∈
[
π2, π2] ,

(1, 0, 0) π ∈
(
π2, 1

]
,

(2)

where π2 := λ+ρ
λ+ρ+c

c
λ ∈

(
0, 1

2

)
and π2 := 1 − π2.

Figure 4 portrays the dynamics of experimentation under the optimal strategy in Theorem 2.

A sufficiently impatient DM who is unsure about the state of nature, one whose prior falls in
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(a) Belief dynamics under strategy (1) (b) Belief dynamics under strategy (2)

Figure 4: Belief dynamics under the optimal strategy

the mid range
(

π1, π1
)

, “gives up” if research is expensive; learning is simply too costly. If she

is sufficiently confident in a project, the DM starts by working on it exclusively. If this project

proves successful, then it is kept forever thereupon. While no arrivals occur for this project, the

DM becomes progressively more pessimistic about it and progressively more optimistic about

the other one. However, her posterior does not reach the point of being “optimistic enough” to

switch to the other project: Eventually, her lost confidence leads her to drop the initial project

and give up altogether, never giving the other project a chance.

If research is beneficial, and if her prior falls in the mid range
[
π2, π2], the DM starts by

working on simultaneous research. Otherwise, she starts working on a single project. Like

before, while working on a single project unsuccessfully, she gradually becomes pessimistic about

it and optimistic about the other one. But now, eventually, she takes on the other project as well,

without setting the “failing” project aside — despite the higher cost and the negative correlation. The

intuition is that simultaneous research gives the DM a better sense of why it is that she has been

failing: Is the problem that the project is bad, or that she needs to work on it for a bit longer?

Compare this to the benchmark case where the DM is restricted to focusing on at most one

project at a time. In Klein and Rady (2011), this would amount to preventing one agent to

experiment if the other is experimenting. This constraint is only binding in case 2.

Theorem 3 (Single-choice benchmark). Assume that the DM can work on at most one project at a time.

Under case 2, the optimal strategy, α0, is given by:

α0(π; λ, c) :=






(0, 1, 0) π ∈
[
0, 1

2

)
,

(
1
2 , 1

2 , 0
)

π = 1
2 ,

(1, 0, 0) π ∈
(

1
2 , 1
]

.

(3)
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To the right of 1/2, the DM experiments on project x1; while unsuccessful, her posterior

gradually increases. To the left of 1/2, instead, the posterior gradually decreases. If we specify

that the DM should choose x1 at the cutoff, we run into the following problem: The posterior is

strictly increasing at 1/2, but it switches sign and becomes strictly decreasing above 1/2.

To obtain a well-defined path of posteriors, beliefs must freeze at the cutoff 1/2.7 A way

to achieve this is to recommend the DM to split her time between x0 and x1. By dividing the

intensity of experimentation equally between the two projects, beliefs (virtually) freeze at the

threshold unless and until an arrival is observed: The gradual pessimism from working unsuc-

cessfully on one project half of the time is compensated by the gradual pessimism from working

unsuccessfully on the other project the other half of the time.

4 Nested Choices

In section 3, the DM has the option to take on a previously ignored project, and to resume

work on a project that has been previously tried out and put aside. However, it may be that such

projects “disappear”: A research project that is set aside may be scooped by another researcher;

an overlooked applicant or a dismissed employee may find another job and exit the market. In

this section, I consider the extreme case where choices must be nested, so once a project is ignored

or discarded it can never be chosen. This restriction introduces an option value to holding on to

projects beyond what a less-restricted DM would consider optimal.

Now, the state space keeps track not only of the beliefs of the DM, but also of her feasible

set of choices. For simplicity of the discussion, I restrict the DM to spending the entirety of each

time interval on a single set of projects; that is, I consider the restricted action space Ar := {α ∈

{0, 1}3 : α0 + α1 + α2 ≤ 1}.

Let wr : [0, 1] × 2X → R represent the restricted value function. Clearly, wr(π, ∅) = 0. The

Bellman equation for wr(π, {x1}) is:

wr(π, {x1}) = max {0, wr(π, {x1}) + [λ(1 − π) − c

+
λ

ρ
(1 − π)

(
λ − c − wr(π, {x1}) + π(1 − π)wr ′(π, {x1})

)
− wr(π, {x1})

]

ρdt

}

;

either wr(π, {x1}) = 0, or wr(π, {x1}) solves the same differential equation as w does in section

3 (namely, equation 7 in the appendix). Looking for a cutoff strategy, the same (VM) and (SP)

conditions relating the choice of {x1} and the choice of the empty set apply. Thus, we have:

wr(π, {x1}) =






λc
λ+ρ π

(
ψ(π)
ψ(π1)

)− ρ
λ

+ λ(1 − π) − c π ∈ [0, π1],

0 π ∈ (π1, 1].
(4)

7Klein and Rady (2011) define a strategy to be admissible if, starting from any prior, the strategy yields a well-
defined path of posteriors t 7→ πt.
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The same argument applies to wr(π, {x0}), leading to:

wr(π, {x0}) =






0 π ∈ [0, π1),

λc
λ+ρ (1 − π)

(
ψ(π)
ψ(π1)

) ρ
λ

+ λπ − c π ∈ [π1, 1].
(5)

Finally, for wr(π, X), we have:

wr(π, X) = max {wr(π, {x0}), wr(π, {x1}),
(

λ − 2c +
λ(λ − c − wr(π, X))

ρ
− wr(π, X)

)

dt + wr(π, X)
}

.

As before, we look for an optimal cutoff strategy. Assume that ρ(2c − λ) ≤ λ(λ − c); hence,

π1 ≥ 1/2 ≥ π1. (The case π1 < π1 is handled similarly.) On [0, π1),

wr(π, X) = max

{

wr(π, {x1}),

(

λ − 2c +
λ(λ − c − wr(π, X))

ρ
− wr(π, X)

)

dt + wr(π, X)
}

.

We look for a cutoff π ∈ (0, π1) such that wr(π, {x1}) = λ − c − ρc
λ+ρ . Similarly, on (π1, 1],

wr(π, X) = max

{

wr(π, {x0}),

(

λ − 2c +
λ(λ − c − wr(π, X))

ρ
− wr(π, X)

)

dt + wr(π, X)
}

,

and we seek an analogous cutoff π ∈ (π1, 1) for wr(π, {x0}).

The existence of these cutoffs is established in Lemma A2 in the appendix. The remaining

details of the optimal strategy are provided in the following theorem.

Theorem 4 (Nested choices). There exist two unique cutoffs denoted by πN ∈ (0, min{π1, π1}),

πN ∈ (max{π1, π1}, 1) such that the optimal strategy when choices must be nested, αN, is as follows:

• αN(π, ∅; λ, c) = (0, 0, 0);

• αN(π, {x1}; λ, c) =

{
(0, 1, 0) π ∈

[
0, π1

]
,

(0, 0, 0) π ∈
(
π1, 1

]
;

• αN(π, {x0}; λ, c) =






(0, 0, 0) π ∈
[
0, π1

)
,

(1, 0, 0) π ∈
[
π1, 1

]
;

• Under case 1, αN(π, X; λ, c) is as in (1) in Theorem 2;

• Under case 2, αN(π, X; λ, c) =






(0, 1, 0) π ∈
[
0, πN

)
,

(0, 0, 1) π ∈
[
πN , πN

]
,

(1, 0, 0) π ∈
(

πN , 1
]

.
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At the outset, the feasible set for the DM is all of X. If research is expensive, a sufficiently

impatient DM behaves as her unrestricted counterpart does. However, under cheap research

or sufficient patience, the DM has to be more certain about the state to go with a singleton: If

ρ(2c − λ) ≤ λ(λ − c), then πN < π1 ≤ π2 ≤ π2 ≤ π1 < πN . Intuitively, by starting with a

singleton, she is giving up the option value of being able to switch to the other project at a later

point in time — after having gathered more information.

5 Imperfect Monitoring of Successes

The basic setup assumes that the DM can observe from which project successes come when

doing simultaneous research. In other words, she can “monitor” progress on both projects closely

and identify the source of a success when they are simultaneously undertaken. In recruiting, it

may be the case that the output of a team can only be measured with respect to the team, and the

individual contributions of the team members cannot be readily assessed. This section considers

the case where the DM, when doing simultaneous research, can only observe the occurrence of

arrivals but not their “precedence.”

Figure 5 describes ex-post payoffs to the DM and the data she now gathers from simulta-

neous research. In this variation of the problem, simultaneous research is as uninformative as

performing no research whatsoever; the only difference between the two is that the former yields

an immediate payoff of λ − 2c. To learn about the state, the DM must give individual projects a

chance to stand on their own. Unlike under the main specification, “experimentation” now entails

focusing on singletons.

The relevant cases of costly versus beneficial research are now as follows.

Case 3 (Costly research). ρ(λ − 2c) > λc;

Figure 5: Observations and payoffs from simultaneous research under imperfect monitoring.
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Case 4 (Beneficial research). ρ(λ − 2c) ≤ λc.

Under case 3, we have that λ > 2c, so research is cheap, and ρ > λc
λ−2c , so the DM is impatient.

Thus, the temptation to forgo information and exploit the projects simultaneously is high. Under

case 4, either research is expensive, or the DM is sufficiently patient. Thus, working on a single

project is an appealing proposition. Notice that case 4 is consistent both with cases 1 and 2: c

may be high or ρ may be low. Figure 6 is the counterpart of Figure 3.

The next theorem presents the optimal strategy under imperfect monitoring of successes.

Theorem 5 (Imperfect monitoring). The optimal strategy under imperfect monitoring of successes,

α∗IM, is as follows. Under case 3,

α∗IM(π; λ, c) =






(0, 1, 0) π ∈
[
0, π IM

)
,

(0, 0, 1) π ∈
[
π IM, π IM

]
,

(1, 0, 0) π ∈
(

π IM, 1
]

,

(6)

where π IM := λ+ρ
ρ+c

c
λ ∈

(
0, 1

2

)
and π IM := 1 − π IM. Under case 4, α∗IM is equal to (1) if −λ(λ − c) >

ρ(λ − 2c) (case 1) and to (3) if −λ(λ − c) ≤ ρ(λ − 2c) (case 2).

If research is cheap, an impatient DM engages in simultaneous research and enjoys a constant

expected payoff when she is sufficiently unsure about the state; not appreciating the additional

information, she is not willing to give up the higher instant surplus to learn about the projects.

Conversely, when λ < 2c, research is too expensive for the DM to ever want to undertake both

projects at once. The same is true if they are cheap but the DM is sufficiently patient: While

simultaneous research may be attractive, more so is the information that only singletons can

Figure 6: Objective-parameter space for a fixed ρ = ρ0 under imperfect monitoring.
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provide. Under case 4/2, she never gives up; under case 4/1, however, she gives up after having

worked on a single project unsuccessfully for a sufficiently long time.

6 More Than Two Projects

Thus far, the DM has been given only two projects to choose from, each of which is equally

appealing in its corresponding state. There are two related complications to generalizing the

analysis in these directions. With n projects, the total number of possible sets of projects to

undertake is 2n. Thus, the size of the choice set grows exponentially in n. At the same time,

even under the extreme negative-correlation specification, the state space — the simplex of pos-

teriors — is multidimensional. Thus, the Bellman equation and (SP) conditions involve partial

differential equations, and “cutoffs” are surfaces rather than points.

These limitations, both computational and technical, are severe. Nonetheless, the analysis of

the case n = 2 suggests the structure of the solution to the more general problem. But before

discussing this further, the next subsection analyzes a problem with three projects and a different

correlation structure: Two negatively-correlated projects as before, and a third, independent and

riskier one.

6.1 A Third, Risky Project

Imagine that the DM has a third project on which she can work. If this third project is

productive, its arrival rate is higher than that of the other two. But this new project may be

unproductive, while one of the original two projects is certainly productive; this new project may

never flourish, while one of the others eventually will. For simplicity, I assume that this third

project is “incompatible” with the other two in the sense that it requires the full attention of the

DM while she is working on it; and that it must be forsaken once ignored or abandoned. Thus,

the problem is to determine for how long to experiment on the riskier project, if at all, before

switching to one or both of the original two.

The set of projects is now X = {x0, x1, y}. The DM allocates her time between the different

subsets of {x0, x1} and {y}. Undertaking the new project involves a flow cost of cy > 0. There is a

new state of nature, θ ∈ {0, 1}, the realization of which is unobserved; the new project produces

successes at a rate λyθ, where λy is known, and λy > λ. Thus, the DM knows that, if this new

project proves successful, it is more appealing than any of the others; otherwise, she is better off

with the original ones.

Let μ ∈ [0, 1] denote the assessment of the DM that θ = 1; μ0 ∈ [0, 1] denotes the correspond-

ing prior. Immediate rewards are λyμ − cy. Representing separate projects, I assume that ω and

θ are independent. Thus, since the DM updates her beliefs about each state from independent

data, the posteriors are also independent. In the event of an arrival from y, the posterior on θ = 1

jumps to 1; after spending a fraction γ ∈ [0, 1] of time on {y} without observing any success, her

posterior on θ = 1 gradually decreases according to μ̇t = −γλyμt(1 − μt).
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Under irreversibility, once the DM switches away from y, she is back to the problem analyzed

in section 3; she divides her time among x0, x1, or both, according to the corresponding optimal

strategy, and she enjoys a continuation payoff of w(π) if π is the posterior that ω = ω0 at the

time of switching. Thus, while she has not yet switched away from y, the Bellman equation for

the new value function wy is:

wy(π, μ) = max

{

w(π), λyμ − cy +
λyμ

(
wy (π, 1) − wy(π, μ)

)
− λyμ(1 − μ)w′

y2(π, μ)

ρ

}

.

Consider a strategy such that, for each π ∈ [0, 1], there is some μ(π) ∈ [0, 1] such that the

DM starts by working on project y if μ ≥ μ(π), and follows the optimal strategy among {x0, x1}

otherwise. The (VM) and (SP) conditions are:

Condition (VM). wy

(
π, μ(π)

)
= w(π) for all π ∈ [0, 1].

Condition (SP). w′
y2

(
π, μ(π)

)
= 0 for all π ∈ [0, 1].

Combining these two conditions gives

μ(π) =
ρ

λy

w(π) + cy

λy + ρ − w(π) − cy
.

Theorem 6 (Third project). The optimal strategy consists of starting on {y} provided that μ0 ≥ μ(π0),

and sticking to it while the posterior (π, μ) satisfies μ ≥ μ(π); if μ < μ(π), switch to the optimal strategy

of Theorem 2 on the set {x0, x1}.

Figure 7 represents the threshold μ(π). If the DM is sufficiently sure about ω, she has to be

sufficiently confident that θ = 1 to start on project y. While experimenting unsuccessfully on y,

her beliefs about θ = 1 gradually decline. If a success occurs before she switches, however, she

learns that θ = 1, and sticks to y thereupon. If she is unsure about ω, she works on project y for

a wider range of beliefs on θ: If she switches to the original projects, she will work on both x0

and x1 at once and bear a higher total research cost, or give up altogether.

6.2 More Than 2 Projects: a Conjecture and Beyond

Even under the extreme negative-correlation structure, the problem becomes intractable very

quickly for n > 2. Nonetheless, the analysis of the 2-project problem suggests the following

conjecture for the optimal strategy for the full problem.
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Figure 7: Cutoff μ(π). Above the cutoff, the optimal strategy recommends {y}; below the cutoff, it
recommends following the optimal strategy for {x0, x1}.

Conjecture. We partition the parameter space into n regions on which only up to k = 1, . . . , n out of the

n projects are undertaken at a time. If the DM is sufficiently confident in a project, she starts working on

it exclusively. And she progressively takes on one additional project at a time as she becomes gradually

pessimistic.

Figure 8 represents this conjecture for the case n = 3, when research is beneficial enough that

up to all 3 projects are undertaken.

(a) Conjectured strategy (b) Belief dynamics under the conjectured strategy

Figure 8: Conjecture for n ≥ 3
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Consider the path of posteriors depicted in panel 8b. The prior falls in the region where the

DM starts working on x0 alone. While working unsuccessfully on it, her posterior starts moving

towards the northwestern yellow region; eventually, she takes on project x2 as well. Continued

failure now pushes the posterior gradually in the direction of the x1 corner; when beliefs are in

the frontier of the two yellow regions, the DM holds on to x0 and splits her time between x1

and x2 as in the manner of strategy (3). Eventually, if no successes are observed, she becomes

sufficiently unsure and takes on all three projects.

Figure 9 represents the conjecture when the DM takes on at most two projects — panel 9a —

and at most one project — panel 9b — at a time.

As a means to overcome the technical and computational limitations of larger problems,

Francetich and Kreps (2014) explores heuristics. This paper looks at a larger class of multi-choice

experimentation problems and investigates the performance of a variety of heuristic decision

rules. In the paper, we provide theoretical results about the long-run performance of different

heuristics (as in the manner of the literature on bandit learning algorithms); but our main interest

is in how the heuristics perform for discount factors that are bounded away from 1, where both

the future and the present effectively matter.

Giving up hope of being able to characterize optimal research strategies, the kinds of ques-

tions that we can address are, for instance, in which kinds of environments simple or standard

heuristics perform well or poorly, and what kind of desiderata they satisfy.

What we see in test-problem simulations is that more simple-minded heuristics—those that

ignore any prior information the decision maker might have and just use empirical evidence—

take much too long (at these discount rates) to make good decisions; for such heuristics, quick-

and-sloppy decisions are surprisingly better than slow-and-careful decisions. Among the more

sophisticated heuristics that make use of prior information, the winner is usually the one-period-

(a) At most two projects undertaken at once (b) At most one project undertaken at once

Figure 9: Conjecture for n ≥ 3, continued
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look-ahead heuristic (based on approximate dynamic programming), so even a limited amount

of foresight can lead us a long way.

When projects are negatively correlated, their failure to produce breakthroughs is informative

about other projects. As a result, provided that research is not costly, the DM never gives up a

failing project unless and until uncertainty is resolved. Now, for richer correlation structures,

failures on some projects may teach us little or nothing about other projects. Thus, the DM

may want to discard some failing projects even before uncertainty is resolved. Herein lies a key

difficulty in richer problems: While it is easy for the decision maker to avoid ending end up with

too many projects on her table (bad projects tried infinitely often will be eventually identified as

such), it is hard to prevent giving up valuable projects prematurely. So, it can pay to combine

a short-listing rule with periodical re-evaluation of past cuts, in case some good project was not

given the chance it deserved.

7 Conclusion

This paper analyzes the experimentation problem faced by a decision maker who can work

on multiple projects at once over time. One and only one of these projects can produce successes,

but the decision maker does not know ex-ante which one. To learn about the projects, she may

work on one at a time, exploiting their correlation, or on multiple projects at once, gathering

more data albeit at a higher cost.

Due to technical and computational issues, most of the analysis focuses on the case of two

projects. If experimentation is cheap, or if she is sufficiently patient, the decision maker starts by

working on both projects at once if she is sufficiently uncertain about the state of nature; more

so if projects ignored or discarded can be scooped. Working on both projects at once, she can

identify the profitable one as soon as the first breakthrough occurs, learning nothing new in the

meantime — lack of success on both projects is a “neutral” event.

If she is sufficiently sure about a project, she starts working on it exclusively. As long as

she encounters no success, she becomes gradually pessimistic. Eventually, once she becomes

sufficiently unsure, she takes on the other project as well. While bad news about one project is

good news about the other one, the lack of success leaves her unsure about which project is better,

rather than confident enough in the neglected one. At this point, she works on both projects at

once until her uncertainty is resolved.

If costs are high and the decision maker is sufficiently impatient, she eventually gives up

if there are no arrivals. In this case, the neglected project is never given a chance: Before her

posterior reaches a level where it would be optimal to work on it, it reaches a level of uncertainty

such that neither project is worth pursuing any further.

When the projects cannot be “individually monitored” unless they are studied in isolation,

the only way for the decision maker to learn is to stick to singletons, to test the projects “on their

own.” In this case, it is the impatient decision maker the one who works on both projects at once
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when experimentation is cheap; she is not willing to give up the higher immediate surplus to

learn about the state of nature.

The structure of the problem studied here is extremely simple. However, while some exten-

sions are feasible, such as allowing for “interior” states 0 < ω < ω < 1, the problem can become

intractable or far too cumbersome very quickly. Allowing for a richer set of projects or of states

would certainly be interesting, but it requires expanding the size of the problem and the dimen-

sionality of the state space.8 Thus, for a richer discrete-time problem in a similar vein, Francetich

and Kreps (2014) explores heuristics.

A very different but interesting extension is motivated by the recruiting example. The re-

searcher is a principal who can hire multiple agents at once, and there is uncertainty about the

dexterity or productivity of the job applicants. But imagine these agents must exert unobserv-

able effort to produce output or breakthroughs. Now, we have a moral-hazard problem: For poor

performance to be informative of productivity, rather than being simply a reflection of shirking,

wages and compensations must incentivize the agents to work hard. The cost of experimentation

is the cost of incentivizing the agents to put in the target effort, which determines the quality

of information. The novel questions here are How much effort should the agents be induced

to exert, that is, how much data does the principal want to collect, and how should the labor

contracts be designed to provide the right incentives?

Notice that this problem is different from standard problems of delegating experimentation;

it is rather an experimentation problem with endogenous costs of experimentation, given by the

costs of providing incentives, and with the quantity of information also given endogenously by

the target level of effort. This is the subject of ongoing work.
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A Proofs

Proof of Theorem 1. It is well known that the value function in Bayesian control problems is

convex (see Nyarko, 1994 for the discrete-time case). Since w(0) = w(1), convexity means that

w is U-shaped. Therefore, we can find 0 < π ≤ π < 1 such that w is non-increasing on

[0, π], constant on [π, π], and non-decreasing on [π, 1]. Higher values of π are good news for

project x0 and bad news for x1. Thus, the non-increasing portion of w corresponds to beliefs that

recommend {x1}, while the non-decreasing region, to beliefs that recommend {x0}.

In what follows, consider strategies α(∙; λ, c) : [0, 1] → A with the following properties:

• There is some π ∈ (0, 1) such that, for all π ∈ [0, π), α(π; λ, c) = (0, 1, 0);

• There is some π ∈ (0, 1), π > π, such that, for all π ∈ (π, 1] , α(π; λ, c) = (1, 0, 0).

On (0, π), we have:

−λπ(1 − π)w′(π) + (ρ + λ(1 − π))w(π) = λ(1 − π)(ρ + λ − c) − ρc. (7)

This equation is similar to equation (1) in Keller and Rady (2010). Up to a constant of integration

C1, the solution to this differential equation is w(π) = C1πψ(π)−
ρ
λ + λ(1 − π)− c. On (π, 1), we

have:

λπ(1 − π)w′(π) + (ρ + λπ)w(π) = λπ(ρ + λ − c) − ρc. (8)

This equation is almost identical to equation (1) in Keller and Rady (2010); up to a constant of

integration C0, the solution is w(π) = C0(1 − π)ψ(π)
ρ
λ + λπ − c. We pin down π, π, C1, and C0

by means of the (VM) and (SP) conditions.
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For α(π; λ, c) = (0, 0, 0) for all π ∈ (π, π), the (VM) and (SP) conditions lead to π =
λ−c

λ
λ+ρ

λ+ρ−c ∈ (0, 1), π = 1 − π ∈ (0, 1), C1 = λc
λ+ρ ψ(π)

ρ
λ , and C0 = C1ψ(π)−2 ρ

λ . We have that

π > π if and only if ρ(2c − λ) > λ(λ − c), namely, under case 1. Thus, we identify the following

value function:

w(π) =






λc
λ+ρ π

(
ψ(π)
ψ(π)

)− ρ
λ

+ λ(1 − π) − c π ∈ [0, π];

0 π ∈ (π, π);

λc
λ+ρ (1 − π)

(
ψ(π)
ψ(π)

) ρ
λ

+ λπ − c π ∈ [π, 1].

(9)

For α(π; λ, c) = (0, 0, 1) for all π ∈ (π, π), we have:

π =
λ + ρ

λ + ρ + c
c
λ
∈ (0, 1), π = 1 − π ∈ (0, 1),

C1 = λc
λ+ρ ψ(π)

ρ
λ +1, and C0 = C1ψ(π)−2( ρ

λ +1). Notice that π ≥ π if and only if we have that

ρ(2c − λ) ≤ λ(λ − c), namely, under case 2. The value function is now:

w(π) =






λcψ(π)
λ+ρ π

(
ψ(π)
ψ(π)

)− ρ
λ

+ λ(1 − π) − c π ∈ [0, π);

λ − c − ρc
λ+ρ π ∈ [π, π];

λc
(λ+ρ)ψ(π) (1 − π)

(
ψ(π)
ψ(π)

) ρ
λ

+ λπ − c π ∈ (π, 1].

(10)

Finally, in the single-choice benchmark and under case 2, setting π = π = 1/2, we have:

w(π) =






(λ)2

λ+2ρ πψ(π)−
ρ
λ + λ(1 − π) − c π ∈

[
0, 1

2

]
;

(λ)2

λ+2ρ (1 − π)ψ(π)
ρ
λ + λπ − c π ∈

(
1
2 , 1
]

.
(11)

Lemma A1. The functions w : [0, 1] → R in (9), (10), and (11) are continuously differentiable, strictly

decreasing below π (1/2 for (11)), and strictly increasing above π (1/2 for (11)).

Proof. We prove the lemma for (9); the other cases are analogous. Continuous differentiability

follows from value matching and smooth pasting. On [0, π),

w′(π) =
λcψ(π)
λ + ρ

(
ψ(π)
ψ(π)

)− ρ
λ λ(1 − π) + ρ

λ(1 − π)
− λ <

λcψ(π)
λ + ρ

λ(1 − π) + ρ

λ(1 − π)
− λ = 0.

Finally, on (π, 1],

w′(π) = −
λc

(λ + ρ)ψ(π)

(
ψ(π)
ψ(π)

) ρ
λ λπ + ρ

λπ
+ λ > −

λc
(λ + ρ)ψ(π)

λπ + ρ

λπ
+ λ = 0.

This concludes the proof.

Proof of Theorem 2. Consider case 1, ρ(2c − λ) > λ(λ − c). We want to verify that w in (9)
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solves the Bellman equation on page 8. To this end, define:

R0
w(π) : = λπ − c +

λπ [λ − c − w(π)] − λπ(1 − π)w′(π)
ρ

;

R1
w(π) : = λ(1 − π) − c +

λ(1 − π) [λ − c − w(π)] + λπ(1 − π)w′(π)
ρ

.

We must check the following conditions:

a). On
[
0, π1

)
, R1

w(π) > max
{

R0
w(π), 0, λ − c − ρc

λ+ρ

}
;

b). On
(

π1, π1
)

, 0 > max
{

R0
w(π), R1

w(π), λ − c − ρc
λ+ρ

}
;

c). Finally, on
(

π1, 1
]
, R0

w(π) > max
{

R1
w(π), 0, λ − c − ρc

λ+ρ

}
.

Notice that, under case 1, λ − c − ρc
λ+ρ < 0.

a). Start with π ∈ (0, π1). Using (7), we can write R1
w(π) − R0

w(π) as:

R1
w(π) − R0

w(π) = λ(1 − 2π) +
λ(1 − 2π) [λ − c − w(π)] + 2λπ(1 − π)w′(π)

ρ

= λ −
(λ + 2ρ) [λ − c − w(π)]

ρ

> λ −
(λ + 2ρ)

[
λ − c − w(π1)

]

ρ

= λ −
(λ + 2ρ)

ρ
(λ − c) > 0,

where the first strict inequality follows from the fact that w is strictly decreasing on [0, π1).

Similarly,

R1
w(π) = λ(1 − π) − c +

λ(1 − π) [λ − c − w(π)] + λπ(1 − π)w′(π)
ρ

= λ(1 − π) − c − [λ − c − w(π)] + λπ = w(π) > w(π1) = 0.

b). Next, consider π ∈
(

π1, π1
)

. In this region, w(π) = w′(π) = 0. Now,

R0
w(π) = λπ

(
ρ + λ − c

ρ

)

− c < λπ1
(

ρ + λ − c
ρ

)

− c = 0;

R1
w(π) = λ(1 − π)

(
ρ + λ − c

ρ

)

− c < λ
(

1 − π1
)(ρ + λ − c

ρ

)

− c = 0.

c). Finally, for π ∈
(

π1, 1
]
, using (8), we have:

R0
w(π) − R1

w(π) = λ(2π − 1) +
λ(2π − 1) [λ − c − w(π)] − 2λπ(1 − π)w′(π)

ρ
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= λ −
λ + 2ρ

ρ
[λ − c − w(π)]

> λ −
λ + 2ρ

ρ

[
λ − c − w

(
π1
)]

= λ −
(λ + 2ρ)

ρ
(λ − c) > 0,

where the (first) strict inequality follows because w is strictly increasing on this region; and:

R0
w(π) = λπ − c +

−ρ(λ − c − w(π)) + λρ(1 − π)
ρ

= w(π) > w
(

π1
)

= 0.

Consider the case ρ(2c − λ) < λ(λ − c). To verify w in (10) solves the Bellman equation,

define:

R2
w(π) : = λ − 2c +

λ [λ − c − w(π)]
ρ

.

By assumption, R2
w(π) > 0 for all π ∈ [0, 1]. We must check that:

a). On (0, π2), R1
w(π) − R0

w(π) > 0 and R1
w(π) − R2

w(π) > 0.

b). On (π2, π2), R2
w(π) − R0

w(π) > 0 and R2
w(π) − R1

w(π) > 0.

c). Finally, on (π2, 1), R0
w(π) − R1

w(π) > 0 and R0
w(π) − R2

w(π) > 0.

a). Start with π ∈ (0, π2). The first inequality in 1 is established in the same way as before. As

for the second,

R1
w(π) − R2

w(π) = c −
(λ + ρ) [λ − c − w(π)]

ρ
> c −

(λ + ρ)
[
λ − c − w(π2)

]

ρ
= 0.

b). Next, take π ∈ (π2, π2). Now,

R2
w(π) − R0

w(π) = λ(1 − π)
λ + ρ + c

λ + ρ
− c > λ(1 − π2)

λ + ρ + c
λ + ρ

− c = 0;

R2
w(π) − R1

w(π) = λπ
λ + ρ + c

λ + ρ
− c > λπ2 λ + ρ + c

λ + ρ
− c = 0.

c). Finally,

R0
w(π) − R2

w(π) = −[λ(1 − π) − c] −
λ(1 − π) [λ − c − w(π)] + λπ(1 − π)w′(π)

ρ

= c −
(λ + ρ) [λ − c − w(π)]

ρ

> c −
(λ + ρ)

[
λ − c − w(π2)

]

ρ
= 0.
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This concludes the proof.

Proof of Theorem 3. The proof that w in (11) solves the Bellman equation is analogous to the

counterpart proof for w in (9); further details are omitted. Under case 2, the DM cannot profit

from giving up, as w(π) ≥ w(1/2) ≥ 0 if ρ(2c − λ) ≤ λ(λ − c).

Lemma A2. There exists a unique πN ∈
(

0, min
{

π1, π1
})

such that:

λc
λ + ρ

πN



 ψ(πN)

ψ
(

max
{

π1, π1
})





− ρ
λ

+ λ(1 − πN) − c = λ − c −
ρc

λ + ρ
;

similarly, there exists a unique πN ∈
(

max
{

π1, π1
})

, 1 such that:

λc
λ + ρ

(1 − πN)



 ψ(πN)

ψ
(

min
{

π1, π1
})





ρ
λ

+ λπN − c = λ − c −
ρc

λ + ρ
.

Proof. Consider the case ρ(2c − λ) ≤ λ(λ − c); the other case is handled analogously. Define the

following function h : [0, 1] → R, given by:

h(x) :=
λc

λ + ρ
x

(
ψ(x)

ψ (π1)

)− ρ
λ

+ λ(1 − x) − c − (λ − c) +
ρc

λ + ρ
.

By Lemma A1, h is differentiable and strictly decreasing on
[
0, π1

)
. Moreover, this function

satisfies:

h(0) =
ρc

λ + ρ
> 0;

h
(

π1
)

<
λc

λ + ρ
π1 + λπ1 − c − (λ − c) +

ρc
λ + ρ

= 0.

Thus, there exists a unique x∗ ∈
(

0, π1
)

such that h(x∗) = 0. A similar argument as above

establishes that there exists a unique x∗∗ ∈
(
π1, 1

)
such that g(x∗∗) = 0, where g : [0, 1] → R is

given by:

g(x) :=
λc

λ + ρ
(1 − x)



 ψ(x)

ψ
(

π1
)





ρ
λ

+ −c − (λ − c) +
ρc

λ + ρ
.

Set πN = x∗ and πN = x∗∗.

Proof of Theorem 4. There is nothing to show if the feasible set is the empty set. The portions of

the theorem corresponding to singletons being the feasible sets follow as in the proof of Theorem

2. (The only difference is that, here, we do not need to worry about having π1 < π1; the two
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cutoffs apply to different states.) As for the last two cases, it suffices to compare the value

functions in (9) and (10) to the value corresponding to simultaneous research. Start with the

case ρ(2c − λ) ≤ λ(λ − c). We have π2 > π1; thus, on [0, π1], w(π) − (λ − c) + ρc
λ+ρ = h(π),

where h is as in the proof of Lemma A2. Thus, for all π < πN , w(π) > λ − c − ρc
λ+ρ . Similarly,

on [π1, 1], we have w(π) − (λ − c) + ρc
λ+ρ = g(π), and (the proof of) Lemma A2 establishes that

w(π) > λ − c − ρc
λ+ρ for all π > πN . Finally, if λ(λ − c) < ρ(2c − λ), the desired result follows

from the fact that λ − c − ρc
λ+ρ < 0.

Proof of Theorem 5. The (SP) and (VM) conditions for strategies recommending simultaneous

research for mid-range beliefs lead to π = λ+ρ
ρ+c

c
λ ∈ (0, 1) and π = 1 − π. We have π > π if and

only if ρ(λ − 2c) > λc. The solution candidate in this case is:

w(π) =






λ(λ−c)
λ+ρ π

(
ψ(π)
ψ(π)

)− ρ
λ

+ λ(1 − π) − c π ∈ [0, π);

λ − 2c π ∈ [π, π];
λ(λ−c)

λ+ρ (1 − π)
(

ψ(π)
ψ(π)

) ρ
λ

+ λπ − c π ∈ (π, 1].

The proof that this function solves the Bellman equation is entirely analogous to the correspond-

ing proof in Theorem 2. The argument for the case ρ(λ − 2c) ≤ λc is analogous to the argument

behind Theorems 2 and 3; notice that:

w

(
1
2

)

=
λ(ρ + λ − c) − 2ρc

λ + 2ρ
≥ λ − 2c

if and only if −λ(λ − c) ≤ ρ(λ − 2c) ≤ λc, while w(1/2) < 0 if and only if −λ(λ − c) >

ρ(λ − 2c).

Proof of Theorem 6. On the region of the state space where the DM experiments with y, we

have:

wy(π, μ) = λyμ − cy +
λyμ

(
wy (π, 1) − wy(π, μ)

)
− λyμ(1 − μ)w′

y2(π, μ)

ρ
.

By assumption, wy (π, 1) = λy − cy. Thus, w(π, μ) = C(π)(1 − μ)ψ(μ)
ρ

λy + λyμ − cy, where C(∙)

is some continuously differentiable function. From the (VM) and (SP) conditions, we find

μ(π) =
ρ

λy

w(π) + cy

λy + ρ − w(π) − cy

and C(π) = λy

λy+ρ ψ
(

μ(π)
)− ρ

λy . The value function of the proposed strategy is:

wy(π, μ) =






w(π) μ < μ(π);

λy

λy+ρ (1 − μ)
(

ψ(μ)
ψ(μ(π))

) ρ
λy + λyμ − cy μ ≥ μ(π).
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Fix π ∈ [0, 1]. By the same argument as in Lemma A1, wy(π, μ) is strictly increasing in μ on

[μ(π), 1], and attains the value w(π) at μ = μ(π). Thus, this function attains the maximum in

the Bellman equation.

B Asymmetric Costs

This section of the appendix discusses the case where the projects have different costs. Let

c0, c1 > 0 denote the research costs of x0, x1, respectively; assume that c1 < c0 < λ.

The value function of the cutoff strategy that recommends giving up for mid-range beliefs is:

w(π) =






λc1
λ+ρ π

(
ψ(π)
ψ(π1)

)− ρ
λ

+ λ(1 − π) − c1 π ∈
[
0, π1

)
;

0 π ∈
[
π1, π1

]
;

λc
λ+ρ (1 − π)

(
ψ(π)

ψ(π1)

) ρ
λ

+ λπ − c0 π ∈
(

π1, 1
]

;

(12)

now,

π1 =
λ + ρ

λ

λ − c1

λ + ρ − c1
, π1 =

ρc0

λ(λ + ρ − c0)
.

We have that π1 > π1 if and only if:

λ <
ρ

λ + ρ

λ + ρ − c1

λ + ρ − c0
c0 + c1;

this condition reduces to λ(λ − c) < ρ(2c − λ) (case 1) when c0 = c1 =: c, and it is satisfied if the

costs are sufficiently high and the DM is sufficiently impatient.

The counterpart of (10) is:

w(π) =






λc0ψ(π)
λ+ρ π

(
ψ(π)
ψ(π)

)− ρ
λ

+ λ(1 − π) − c1 π ∈ [0, π2);

λ − c1 −
ρc0

λ+ρ + λ(c1−c0)
λ+ρ π π ∈ [π2, π2];

λc1
(λ+ρ)ψ(π) (1 − π)

(
ψ(π)
ψ(π)

) ρ
λ

+ λπ − c0 π ∈ (π2, 1];

(13)

now,

π2 =
λ + ρ

λ + ρ + c1

c0

λ
, π2 =

(λ + ρ)(λ − c1) + λc0

λ(λ + ρ + c0)
.

We have that π2 ≥ π2 if and only if:

λ(λ − c1) + λc0

[
c1 − c0

λ + ρ + c1

]

≥ ρ

[
λ + ρ + c0

λ + ρ + c1
c0 + c1 − λ

]

.
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This condition reduces to case 2, λ(λ − c) ≥ ρ(2c − λ), when c0 = c1 =: c, and holds if the costs

are sufficiently low or if the DM is sufficiently patient. The function is non-negative provided

that its minimizer, which falls in the range (π2, 1], is at least at large as ρc0
λ(λ+ρ−c0)

= π1.

Lemma B1. The function w : [0, 1] → R given in (13) is continuously differentiable and satisfies

w′(π) < λ(c1−c0)
λ+ρ on [0, π2) and w′(π) > λ(c1−c0)

λ+ρ on (π2, 1].

Proof. Continuous differentiability follows from value matching and smooth pasting. On [0, π2),

w′(π) =
λc0ψ(π2)

λ + ρ

(
ψ(π)
ψ(π2)

)− ρ
λ
(

1 +
ρ

λ(1 − π)

)

− λ

<
λc0ψ(π2)

λ + ρ

(

1 +
ρ

λ(1 − π2)

)

− λ =
λ(c1 − c0)

λ + ρ
;

on (π2, 1],

w′(π) = −
λc1

(λ + ρ)ψ(π2)

(
ψ(π)

ψ(π2)

) ρ
λ (

1 +
ρ

λπ

)
+ λ

> −
λc1

(λ + ρ)ψ(π2)

(

1 +
ρ

λπ2

)

+ λ =
λ(c1 − c0)

λ + ρ
.

This concludes the proof.

Under symmetric costs, the case π2 < π2 corresponds to the case π1 > π1. This need not be

the case under asymmetric costs. A sufficient condition for such correspondence is the following:

c0 > λ
λ + ρ

λ + 2ρ
; c1 >

λ + ρ

ρ
(λ − c0).

These conditions state that, while both costs must be lower than λ, they should not be “too low.”

Theorem B1 (Asymmetric costs). Assume that c0 > λ
λ+ρ
λ+2ρ and c1 > λ+ρ

ρ (λ − c0). If

λ(λ − c1) + λc0

[
c1 − c0

λ + ρ + c1

]

< ρ

[
λ + ρ + c0

λ + ρ + c1
c0 + c1 − λ

]

,

the optimal strategy is the same as in (1), with π1 = λ+ρ
λ

λ−c1
λ+ρ−c1

and π1 = ρc0

λ(λ+ρ−c0)
. If

λ(λ − c1) + λc0

[
c1 − c0

λ + ρ + c1

]

≥ ρ

[
λ + ρ + c0

λ + ρ + c1
c0 + c1 − λ

]

,

and if the minimum of (13) is at least as high as:

(λ + ρ)(λ − c1)(λ + ρ + c1) − λc0(c0 − c1) − ρc0(λ + ρ + c0)
(2ρ + λ)(λ + ρ + c0)

≥ 0,
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the optimal strategy is given by (2), with π2 = λ+ρ
λ+ρ+c1

c0
λ and π2 = (λ+ρ)(λ−c1)+λc0

λ(λ+ρ+c0)
.

Proof. Start with the portion of theorem regarding the counterpart of Theorem 2. Some special

care needs to be taken compared to the argument behind Theorem 2, as the value function is

non-monotonic on (π2, 1]. Define:

R0
w(π) : = λπ − c0 +

λπ [λ − c0 − w(π)] − λπ(1 − π)w′(π)
ρ

;

R1
w(π) : = λ(1 − π) − c1 +

λ(1 − π) [λ − c1 − w(π)] + λπ(1 − π)w′(π)
ρ

;

R2
w(π) : = λ − c0 − c1 +

λ [λ − c1 − π(c0 − c1) − w(π)]
ρ

.

We must check the following conditions:

a). On [0, π2), R1
w(π) − R0

w(π) > 0 and R2
w(π) − R1

w(π) < 0.

b). On (π2, 1], R1
w(π) − R0

w(π) < 0 and R2
w(π) − R0

w(π) < 0.

c). Finally, on (π2, π2), R2
w(π) − R0

w(π) > 0 and R2
w(π) − R1

w(π) > 0.

a). Start with π ∈ (0, π2); the counterpart of (7) is

−λπ(1 − π)w′(π) + [λ(1 − π) + ρ]w(π) = λ(1 − π)(ρ + λ − c1) − ρc1.

Proceeding as in the symmetric case, we can write:

R1
w(π) − R0

w(π) = λ + c0 + c1 −
(λ + 2ρ) [λ − w(π)]

ρ
+

λc1 + λπ(c0 − c1)
ρ

.

By Lemma B1, as c0 > c1, the right-hand side of the equation above is strictly decreasing in π

(despite the last term being strictly increasing in π). In this case,

R1
w(π) − R0

w(π) > λ + c0 + c1 −
(λ + 2ρ)

[
λ − w(π2)

]

ρ
+

λc1 + λπ2(c0 − c1)
ρ

= w(π2);

by assumption, w(π2) > 0. Next, take:

R1
w(π) − R2

w(π) = c0 −
(λ + ρ)(λ − c1 − w(π)) − λπ(c0 − c1)

ρ
.

From Lemma B1, it follows that the right-hand side is strictly decreasing in π. Thus,

R1
w(π) − R2

w(π) > c0 −
(λ + ρ)(λ − c1 − w(π)) − λπ(c0 − c1)

ρ
= 0.
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b). Next, consider π ∈ (π2, π2). Here, we have:

R2
w(π) − R0

w(π) = λ(1 − π)
λ + ρ + c0

λ + ρ
− c1 > λ(1 − π2)

λ + ρ + c0

λ + ρ
− c1 = 0;

R2
w(π) − R1

w(π) = λ
λ + ρ + c1

λ + ρ
π − c0 > λ

λ + ρ + c1

λ + ρ
π2 − c0 = 0.

c). Finally, take π ∈ (π2, 1]; (8) is now λπ(1 − π)w′(π) + (ρ + λπ)w(π) = λπ(ρ + λ − c0) − ρc0.

We have:

R0
w(π) − R1

w(π) = λ + c0 − c1 −
λ + 2ρ

ρ
[λ − c1 − w(π)] +

λ(c0 − c1)
ρ

π.

Unlike in the symmetric case, this expression is not monotonic over the range (π2, 1]. However,

if w0 denotes the minimum of w, we have:

R0
w(π) − R1

w(π) > λ + c0 − c1 −
λ + 2ρ

ρ
[λ − c1 − w0] +

λ(c0 − c1)
ρ

π2;

by assumption, this last expression is non-negative. As for R0
w(π) − R1

w(π), we have:

R0
w(π) − R2

w(π) = c0 −
ρ + λ

λ
(λ − c1 − w(π)) +

λ

ρ
(c0 − c1)π.

By Lemma B1, this expression is indeed strictly increasing in π; hence,

R0
w(π) − R2

w(π) > c0 −
ρ + λ

λ
(λ − c1 − w(π2)) +

λ

ρ
(c0 − c1)π2 = 0.

As for the rest of the proof, it remains to check that R1
w(π) > 0 on [0, π1), that R0

w(π) > 0 on

(π1, π1), and that R0
w(π), R1

w(π) < 0 on (π1, 1]. The argument here is completely analogous to

the symmetric case, since the regions on which the value function is strictly decreasing, constant,

and strictly increasing, correspond to the ranges over which the strategy recommends choosing

{x1}, ∅, and {x0}, respectively. Further details are omitted.

The lower bound on the minimum, which is non-negative in the corresponding case of low

costs or sufficient patience, helps handle the non-monotonicity of the value function on the range

in which the optimal strategy recommends {x0}. In the case where research is expensive and

the DM is sufficiently impatient, this lower bound is negative, while the corresponding value

function has 0 as its minimum. In this case, the additional condition is redundant.9

9No such additional condition is needed under symmetric costs.
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