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Choosing a Good Toolkit:
An Essay in Behavioral Economics
Alejandro Francetich and David M. Kreps 1

Incomplete draft—September 2014 2

Abstract: The problemof choosing an optimal toolkit day after day, when there is uncertainty
concerning the value of different tools that can only be resolved by carrying the tools, is
a multi-armed bandit problem with nonindependent arms. Accordingly, except for very
simple specifications, this optimization problem cannot (practically) be solved. Decision
makers facing this problem presumably resort to decision heuristics, “sensible” rules for
deciding which tools to carry, based on past experience. In this paper, we examine and
compare the performance of a variety of heuristics, some very simple and others inspired by
the computer-science literature on these problems. Some asymptotic results are obtained,
especially concerning the long-run outcomes of using the heuristics, hence these results
indicate which heuristics do well when the discount factor is close to one. But our focus is
on the relative performance of these heuristics for discount factors bounded away from one,
which we study through simulation of the heuristics on a collection of test problems.

1. Introduction
When building models of interesting real-world phenomena, applied economic theorists are

limited in what they can do; the word tractable is often applied as justification for models that are
otherwise less than fully credible. Tractability is perhapsmost often cited because, having posed
an economic model, the model builder wants to solve for an equilibrium. But tractability can
enter in a more subtle fashion: Economists stay away from situations in which they are unable
to find the optimal solution to individual maximization problems that they would otherwise set
for agents within their models. The inability to solve these maximization problems need not kill
off all theorizing: Although it is doubtful that any economist could solve the sort of dynamic
optimizationproblems required of agents in, say, dynamic versions of general equilibrium theory,
this hasn’t stopped theorists from proving that, with really smart agents who can solve those

1 Assistance from David Aldous, Lanier Benkard, Hans Föllmer, Michael Harrison, Guido Imbens, Daniel Russo,
and Benjamin Van Roy, as well as comments by seminar participants at Stanford University and Bocconi University, are
gratefully acknowledged, as is the financial support of ERC Advanced Grand 32419 and the Stanford Graduate School
of Business. This paper extends results obtained in Chapter 3 of the Ph.D. thesis of the first author.

2 This draft is complete as far as theoretical developments are concerned. We are still working on the simulation of
test problems. See the discussion in Section 6 for our current status.
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problems andwith dynamically completemarkets, the equilibria that emerge are Pareto efficient.
But, when we want to characterize the solutions to problems posed for agents in our models, we
are often limited by what we can solve.

This limitation applies to problems that otherwise are everyday problems facing real eco-
nomic agents. For instance, imagine an agent who must, on a daily basis, fill up her toolkit
prior to departing for work. Very concretely, think of a plumber who must decide which tools
and spare parts to load on her truck. With a lot of experience, the plumber will have a pretty
good idea which tools and spare parts are likely to be useful (hence included) and which not
(hence excluded). But this experience may be limited for tools and parts that, in the past, have
not been carried. Insofar as the decision maker, to learn how useful a particular tool might be
(relative to other tools), must have some experience with that tool, she may decide to carry tool
X, to learn more about it. When carrying tool X has an incremental cost, the problem becomes a
multi-armed bandit problem of exploration (carry tools to learn about them) versus exploitation
(don’t pay the cost of a tool that, based on current information, you believe is unlikely to be of
much use.)

Of course, plumbers have a wealth of experience to draw upon, theirs and that of their peers,
so stocking their toolkits (or trucks) may not pose much of a problem. But, in other contexts,
this issue is real and pertinent. Consider, for instance, a professional services firm. The manager
of the firm must decide on whom to employ to meet the challenges that arise from day to day. Is
Expert A going to be worth his salary? That can be a difficult question, if to learn how useful A
will be, the manager needs to have A on staff. Or think of a sports team, say, the relief pitching
staff on a baseball team. Should pitcher B be kept on the roster? How effective will B be in
particular situations? How often will situations in which B is more useful than C, D, and E
occur?

To give a precise formulation of the problem (as we’ll see, one of many possible), imagine
a decision maker (her) who must choose at each date t = 0, 1, . . . a subset of tools to have on
hand. The universe of possible tools is a finite set X ; we let Kt ✓ X denote the toolkit she
chooses at date t . The value of each tool at date t is given by the random function vt : X ! R+ .
(We specify the stochastic structure of the sequence of vectors {vt; t = 0, 1, . . .} two paragraphs
hence.) A gross benefit function U : (R+)X ! R+ is given; the decision maker’s gross benefit
at time t from toolkit Kt is then given by

U
�
(vt(x) · 1Kt(x))x2X

�
,

where 1Kt is the usual indicator function. That is, the overall gross value of the toolkit is a
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function of the values of the various tools, where a tool that is not in the toolkit is taken to have
value zero. 3 To have a very specific example to think about, suppose that U (v) := maxx2X v(x).
Hence, if the decisionmaker is carrying toolkit Kt at time t , her gross benefit is maxx2Kt vt(x) ;
it is as if, at each date, only one tool out of the toolkit is used, the tool with the highest vt -value.

The function U gives the gross benefit as a function of the vt -values of tools in the toolkit;
the decision maker must pay a price for the tools she keeps available. So, her net benefit (given
her choice of Kt and the realized values of the tools vt ) is

W (vt,Kt) := U
�
(vt(x) · 1Kt(x))x2X

�
�

X
x2Kt

cx,

where cx can be thought of as the rental cost of tool x . The decision maker’s problem is to
choose her toolkits dynamically to maximize the sum of the discounted (at some discount rate
� 2 (0, 1)) expected values of W (vt,Kt) .

The problem becomes a multi-armed bandit problem when we finish the formulation as
follows:

1. We imagine that thedecisionmaker assesses the sequence {vt; t = 0, 1, . . .} as exchangeable;
that is, it is i.i.d. up to an unknown distribution. Assume that the unknown distribution is
drawn from a finite collection of probability distributions {µi; i = 1, . . . I} , where µi is a
simple (finite-support)probabilitydistributionon (R+)X . Let ⇡0 denoteher prior assessment
concerning which of µ1 through µI is correct.

2. We further assume that, at date t , the decision maker only observes the values of vt(x) for
those x that are in the toolkit she selects, Kt. Hence, in choosing her toolkit, she must
weigh both the short-run benefit each tool provides and, for later purposes, the information
it provides (both, in expectation) against the rental cost of the tool. That is, the “arms” in
this bandit problem are the various subsets K of X.

While this is a multi-armed bandit problem, it is not of the variety of bandit problems that
we know how to solve. The well-known Gittins Index solution works if and only if the “arms”
of the bandit are statistically independent; learning about the distribution of returns from one
arm provides no information about any other arm. In this formulation, we lose independence
on two grounds. First, the formulation does not assume that the various components of the
random vector vt are independent of one another. That wouldn’t be entirely natural in this

3 The dot in vt(x) · 1Kt (x) may confuse you. This does not denote the dot product of two X -dimensional vectors.
Rather, it is the X -dimensional vector formed by taking the product of corresponding components of each.
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setting: If, say, the tools include a selection of wrenches, then learning about the value of one
wrench might provide valuable information about the value of wrenches in general. And, more
fundamentally, as the “arms” are subsets of X , learning about the distributions of (vt(x))x2K

provides information about (vt(x))x2K0 if K and K0 have nonempty intersection.
One might hope that, while the Gittins Index cannot be applied to this problem, the literature

on bandit problems gives a solution. Perhaps it does, but we have not found a general solution.4

Solutions can be found for special cases: For instance, suppose W is linear and the values of
the various tools are independent. Then the problem decomposes into a collection of simple
two-arm bandits, where in each subproblem, one of the arms—the don’t-carry-this-tool arm—
gives a certain return of zero. Or, to take a significantly more difficult special case, Francetich
(2014) solves a problem in this spirit where there are two tools, only one of which is useful at
all (although the decision maker doesn’t know a priori which one it is), and information about
the usefulness of a tool while it is being carried arrives according to a Poisson process.

Of course, the problem is generally solvable in theory, using the methods of dynamic pro-
gramming. But this is “in theory.” Those methods are not practical in any but the simplest
parameterizations of this problem. Nonetheless, real economic agents face problems with this
structure (or variations of this structure) all the time, they make decisions, and they live with the
consequences. How? Presumably, they employ heuristics or rules of thumb (or just “go with
their gut”).5 6

Economists and economics have, we assume, an interest in decision making of all sorts in
economic contexts. The problem described is an economic context, even a common economic
context. But how should we approach the modeling and analysis of decision making in this
context, whenwehaveno ideawhat is theoptimal solution? This paper suggests someapproaches
to this which come down to: Identify likely and/or common heuristic decision rules, and employ
both deductive analysis and simulations to see how they perform, relative to one another. (We’d
like to know how they perform relative to the optimal solution but, since we don’t know what is
the optimal solution in most cases, we can’t do this.)
4 Indeed, the sizable literature on bandit-learning, to which we will later refer, indicates that the broader community

of Operations Research and Computer Science scholars have no solutions, in general.
5 Hence the title of this paper is not Choosing the Best Toolkit, but instead Choosing a Good Toolkit.
6 The book and, later, movie Moneyball, concerning the management of the Oakland A’s baseball team by General

Manager Billy Beane, is filled with decision making of this sort. Traditional baseball selection processes, which are
denigrated in the book andmovie, select players to be drafted by “how they look” rather than “how they perform”; Beane,
the story goes, does better by looking at performance data. And, at one point, Beane advocates a simple linear heuristic:
A line-up is judged by the sum of the on-base-percentages of its constituent parts. That may be a more sophisticated
heuristic than “how the players look,” and the thesis of the book and movie is that it proved to be a much more successful
heuristic. But it is still, surely, a heuristic.
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We emphasize likely and/or common as a modifier for the sort of heuristics in which we
are interested; we are as interested in learning when a seemingly plausible heuristic performs
poorly as we are in finding the “best performing” heuristic. A sizable literature in computer
science/operations research—referred to as the bandit-learning literature—concerns decision
heuristics for decision making in multi-armed bandit problems:7 8 These heuristics are on the
high end of sophistication9—it is telling that they refer to their procedures as algorithms rather
than heuristics—and, as such, are less likely to be employed by most economic decisionmakers.
That said, when we get (in Section 5 of this paper) to heuristics that employ the prior assessment
of the decision maker, we organize our discussion of categories of prior-based heuristics in a
manner suggested by this literature.

To anticipate the obvious criticism of our research agenda: This program, when and if
carried out, settles nothing. Our analytic results are weak; the simulation results will depend
on the specific parameterizations that we simulate; and there is no sense in which we study the
space of all tractable heuristic decision rules. But—our rebuttal of this criticism—to the extent
that problems of this sort are economically common and even significant, gaining even limited
knowledge of the performance of some heuristics can help us improve our understanding of both
how to deal with such problems and (the limitations of) how real-life economic agents deal with
them. Roughly speaking, when employing standard economic theory, economists have traded
off breadth of the problems they consider against tractability of those problems, with virtually
all the weight on tractability. (Hence, the “it settles nothing” criticism applies equally well to
these programs.) We believe that this is the wrong weighting and that the mode of analysis
here—despite its manifest flaws—is one way to achieve a better balance.

Of course, this approach belongs to behavioral economics. Much of the recent activity in
behavioral economics has centered on issues of changing tastes and ambiguity; here tastes do
not change and nothing is ambiguous; the issue is instead “computational complexity.” This is
not the first paper to explore decision heuristics. The idea that decision makers are unable to
perform necessary computations required for full or hyper-rationality and instead behave in a
boundedly rational fashion is generally attributed to Simon (1959), who wrote extensively on
the subject (Simon 1979, 1982a, 1982b, 1997). Baumol and Quant’s (1964) discussion of rules

7 Even when the “arms” of the bandit are statistically independent under the prior, so that the Gittins Index can be
applied, the computation of the indices is sufficiently complex so that, as a practical matter, heuristics may be employed.
This literature, though, looks at quite general bandit problems.
8 The paper in this literature that is closest to what we do here is Ryzhov and Powell (2008); this paper explicitly

concerns the sort of “toolkit” bandit problem with which we deal, albeit for a somewhat different formulation.
9 See, for instance, Russo and Van Roy (2014) for the “latest word” in sophistication.

5



of thumb and Radner’s (1975) discussion of satisficing are other seminal references. More recent
work includes Roth and Erev (1998), Lettau and Uhlig (1999), Rustichini (1999), and Easley
and Rustichini (2005).

In multi-person settings, the complexity that prevents hyper-rational choice can arise from
the fact that others are simultaneously learning and acting, hence the true environment inhabited
by agents is not stationary. Agents may nonetheless attempt to “learn” about their environment
using amodel (necessarily incorrectly specified) that presumes stationarity; literatures that follow
this pattern include learning rational expectations equilibria (Blume and Easley 1982, Bray
1982, Sargent and Marcet 1989) and learning in (repeated) games (Milgrom and Roberts 1991,
Fudenberg and Kreps 1993, Kalai and Lehrer 1993, Fudenberg and Levine 1998).

The paper is organized as follows: A variety of formulations are discussed, then some limited
analytical results (dealing mostly with the cases � near zero or near one) are provided. Several
simple heuristics for the problem are proposed; first we examine some that rely exclusively on
the empirical data (that is, that are independent of the prior assessment of the decision maker),
and then some that employ that prior assessment. Then we move to simulations, to get a sense
of how well the heuristics we propose perform.

2. Formulation

Many of the basic elements of the problem formulation have already been given, but to
reiterate:

• A decision maker (she) must, at each date t = 0, 1, . . . , choose a subset Kt from a given
finite set X of tools.

• The values of the tools x 2 X at date t are given by the random vector vt 2 (R+)X , with the
x th component of vt denoted by vt(x) . The sequence of random vectors {vt 2 (R+)X ; t =
0, 1, 2, . . .} is i.i.d. with (unkown to the decision maker) distribution µT . The decision
maker begins with a (strictly positive) prior over the distribution µT ; that is, her initial
assessment is that the vector sequence has an exchangeable distribution. We assume that the
support of µT is finite and, moreover, that the decision maker’s prior assessment on µT is
that it is drawn from a finite family of finite-support distributions {µi; i = 1, . . . , I} , with ⇡0i
denoting her initial assessment that µT is, in fact, µi . We assume that the µi are distinct;
that is, the distribution of the vector vt under one µi is different from the distribution under
each other µj . (This is w.l.o.g.; if some µi ⌘ µj , the decision maker could simply combine
them.) We assume that the “objectively correct” distribution µT is one of the µi .
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• If the decision maker chooses toolkit Kt ✓ X at date t , her payoff in that period is

W (vt,Kt) := U
�
(vt(x) · 1Kt(x))x2X

�
�

X
x2Kt

cx,

where U : (R+)X ! R+ is a nondecreasing function, (vt(x) ·1Kt(x))x2X is the vector from
(R+)X whose x th component is vt(x) if x 2 Kt and is 0 if x 62 Kt , 10 and cx 2 R++ is
the (strictly positive) cost of having tool x in the date-t toolkit. The assumption that U is
nondecreasing means that a higher value of a tool cannot decrease the overall value of the
toolkit; combined with the application of U to the “censored” vector (vt(x) · 1Kt(x))x2X ,
it means that a tool not in the toolkit contributes zero (the lowest possible value of vt(x)) to
U .

Wewill in placesmake assumptions about additional properties of U ; themost important
such assumption is that U is sub-modular. A specific functional form for U that we will
use in examples is

UMAX(v) = max
x2X

v(x);

we also write WMAX(v,K) for the W function corresponding to UMAX , which is

WMAX(v,K) = max
x2K

v(x)�
X
x2K

cx.

Note that UMAX is indeed submodular as a function on RX
+ .

• The decision maker would like to choose toolkits K0,K1, . . . in a manner that makes the
expected discounted sum of her period-by-period payoffs as large as possible, discounting
with discount factor � per period. Note our phrasing “would like”; when we finish the
problem formulation in a moment, it will be in a manner that makes the problem too difficult
to solve completely, so the usual formulation “the decision maker chooses her toolkits to
maximize the expectation of her discounted sum of period-by-period payoffs” is, in general,
impossible to fulfill.

The key element in our problem formulation is the answer to the question: In period t , if
the decision maker chooses toolkit Kt , what does she learn about the realization of the vector
10 Again, the dot in (vt(x) ·1Kt (x))x2X is not a dot product but instead the x -component-by-x -component product
of vt(x) and the indicator function of the set Kt .
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vt ? If, for instance, she learns the full realized value of vt , then the problem collapses; based
on what she has observed so far, she updates after each date her (current) posterior ⇡t over the
{µi} and chooses the myopically optimal toolkit for next period. Under these informational
conditions, in which her choice of toolkit has no impact on what she learns (indeed, in any
formulation of information that has this feature), the problem becomes (relatively) simple and,
certainly, solvable.

Our interest is instead in formulations in which her choice of Kt affects what and howmuch
she learns about vt . (Hence, in the usual manner of multi-armed bandit problems, she has an
exploration–exploitation dilemma.) There are many ways this could happen; we will assume
for this paper the following:

At date t , if the decision maker chooses Kt , she observes the vector
�
vt(x) · 1Kt(x)

�
x2X

.
Or, in words, she observes the immediate values of the tools she carries but not those that
she chose not to carry.

This does not imply that she learns nothing about the values of tools that she is not carrying.
We have not precluded that the values of different tools are dependent, hence (for instance)
observing the value of a four-inch wrench that she is carrying may tell her something about the
value of a six-inch wrench that she has not chosen, this time. The informational assumption
given is about what she observes.

And, it should be noted, this assumption may be fairly optimistic. Consider the specific
functional form UMAX : The decision maker, upon seeing the value of the tools in her toolkit,
employs the one tool that provides the greatest immediate value. This implies that she observes
how valuable each tool in her toolkit would be if employed. A more realistic formulation would
be that she observes an estimate of how valuable each tool in her toolkit would be and chooses
the one that seems like it would be best. 11 But even our “optimistic” formulation about what
she observes renders the problem too complex for solution.

One can impose on this formulation some further structural elements that might be useful.
To give an example, suppose that the universe of tools X is partitioned into categories of tools;
being very specific, suppose the elements of X are lawyers in a law partnership, partitioned into
lawyers to litigate cases XL , tax-law specialists XT , contract-law specialists XC , and so forth.
Suppose in each period, the partnership must deal with a single case that requires no more than
one litigator, one tax-law specialist, and so forth. This suggests both some natural functional

11 Well, not quite. If her initial observations are not conclusive, her choice of which tool to employ would have to
take into account the value of further information gained for the one tool that is employed.
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forms for W and some natural constraints on the toolkits (now staff lawyers) Kt that the firm
chooses at each date to have available. We will not attempt to exploit such structural elements
in this paper (except for the single-tool-used structure implicit in UMAX ); but we do want to
acknowledge the possibilities.

Some preliminary notation
Throughout, � denotes the simplex of probability distributions over the set {µ1, . . . , µI} ,

with ⇡ denoting a typical element of � and ⇡i denoting the probability of µi according to ⇡ .
Of course, the decision maker’s prior assessment ⇡0 is a member of � .

For each ⇡ 2 � , wewrite w(⇡,K) for
PI

i=0 ⇡iEi[W (v,K)] , where Ei denotes expectation
(over the v vector) according to the probability distribution given by µi . That is, w(⇡,K) is
the (subjective) expected current-period net payoff to the decision maker if she chooses toolkit
K , when ⇡ is her assessment over which µi is µT . We let w⇤(⇡) denote maxK✓X w(⇡,K) ,
or the myopically optimal expected immediate payoff she can achieve when ⇡ is her current
assessment. And we let K⇤(⇡) denote the collection of toolkits that achieve the maximum in
w⇤(⇡) . (Since the number of toolkits is finite, the maximum is achieved: K⇤(⇡) is never empty,
although it may contain the empty set as a member.) For ⇡ that assigns probability one to µi ,
write wi(K) in place of w(⇡,K) , w⇤i in place of w⇤(⇡) , and K⇤i in place of K⇤(⇡) .

Finally, let iT denote the index i such that µT = µi , K⇤ denote K⇤iT , and w⇤ denote w⇤iT .
(Note that i⇤,K⇤, and w⇤ are all random from the perspective of the decision maker.)

Three genericity conditions and a special case
In various propositions to follow, we sometimes assume one or more of three “genericity”

conditions on the data of the problem.

Condition A. For each i = 1, . . . , I , K⇤i is singleton, with K⇤
i denoting its single member.

Condition B. For every pair i, j = 1, . . . , I such that i /= j , and for each K ✓ X other than
K = ; , wi(K) /= wj(K) .

ConditionC. Forany twohypotheses µi and µj such that i /= j and forany toolkitK 2 K⇤i[K⇤j ,
the distribution of W (v,K) under µi is different from its distribution under µj

Condition A is not very severe; if some K⇤i contains more than one toolkit, and if x is a tool
in one member of K⇤i but not in other members of K⇤i , then a slight perturbation in the cost cx

will pare down K⇤i . But Conditions B and C are not as innocuous as they may at first seem; they
will (generally) fail to hold in the special case of “independent tools”:
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In this special case, for each individual tool x , there is a finite list {⇢x
1 , . . . , ⇢

x
I(x)} of possible

probability laws for v(x) and, for each ⇢x
i , a prior probability ⇡0,xi that ⇢x

i is indeed true. The
number of “full hypotheses” µi is

Q
x2X I(x) , where a given µi corresponds to a selection of

one ⇢x
i for each x 2 X , with prior probability the product of the prior probabilities of the pieces

that make up µi . In this special case, observing v(x) for a given tool x generates no information
about the probability law governing v(x0) for x0 /= x ; hence the tools are “independent.” Of
course, this doesn’t make the arms of the multi-armed bandit independent, since arms of the
bandit are toolkits, and two toolkits whose contents overlap are not independent in this sense.

And in this special case, if the K in Condition B or C that is in question is less than all of
X , and if some x 2 X \ K has I(x) > 1, then the condition fails: The choice of probability
law for this x gives different hypotheses µi and µj for which the corresponding distributions
of W (v,K) are identical, hence their expected values wi(K) and wj(K) are the same.

3. Some Theoretical Results
While the decision problem we have posed is, in general, too difficult to solve analytically

(except in special and/or very simple cases), some theoretical results can be provided. None of
these results are particularly original, but they are worth stating.

Proposition 1. An optimal strategy to the problem posed exists.

The problem as formulated is an infinite-horizon dynamic programming problem, with bounded
immediate rewards and discounting. Our assumptions that the decision makers’s prior has finite
support, as does the distribution of values of tools under every µi , guarantee that, for a given
prior, only countablymany “states” of the problemcan be reached,whichmoots any concerns one
might have about measurability of value functions.12 Since the set of tools is finite, a conserving
strategy at every decision pointmust exist, which is then optimal (Kreps 2013, PropositionA6.7).

Proposition 2. Consider the following strategy. At dates t = 1, 2, 22, 24, . . . , the decision maker
chooses as her toolkit all of X . At all other dates, she chooses for Kt any toolkit K 2 K⇤(⇡t) ,
where ⇡t is her (Bayesian) posterior assessment on which of the µi is µT , based on all the
information she has collected up to date t . 13 Then, almost surely (relative to both her initial
subjective assessment and the “objectively correct distribution”), her posterior assessment over
the µi will converge to a point mass on µT , and (hence) she eventually chooses a toolkit from K

12 Francetich (2013, Theorem 3.2) extends this result.
13 At date 0, she employs her prior.
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from K⇤ for all dates t except for those t that are of the form 2n . Hence the Cesàro averages
of her per-period payoffs almost surely converge to w⇤ . 14

Readers familiar with the literature on multi-armed bandits will recognize this as a standard
result. If the decision maker is interested in optimizing her average (expected) reward rather
than a discounted sum of rewards, then she can adopt any strategy that (a) samples every “arm”
infinitely often, using the data so generated to learn (almost surely) the expected return from each
arm, while (b) choosing whichever arm is myopically optimal based on information gathered so
far a proportion of the time that approaches one. In our specific problem, choosing the toolkit X
infinitely often generates all the information needed; the decision maker’s posteriors will almost
surely converge to a point mass concentrated on µT . Therefore, almost surely, she eventually
picks some K from K⇤. 15

Proposition 2 provides the following immediate corollary:

Corollary to Proposition 2. Write u?(�,⇡0) for the optimal expected value attained by the
decision maker in the problem with discount factor � , as a function of � and the decision
maker’s prior ⇡0 ; that is, u?(�,⇡0) is the maximized value of the (subjective) expectation ofP1

t=0 �
tW (vt,Kt), where we maximize over all feasible strategies for choosing toolkits by the

decision maker. Then,

lim
�"1
(1� �)u?(�,⇡0) =

IX
i=1

⇡0iw
⇤
i .

In words, the normalized expected discounted optimal value (as a function of � ) approaches
what the decision maker expects to get if someone tells her at the outset which µi is µT , and
she then chooses an optimal toolkit (for all time) given that information.

The proof is immediate: The optimal value at a given � is at least as large as the expected
value from following the strategy of Proposition 2. And, as � approaches 1, the (normalized)
expected value from using the strategy in Proposition 2 is, by Proposition 2, established to be
w⇤i if µT is µi . Since

P
i ⇡0iw

⇤
i is an obvious upper bound on the decision maker’s feasible

expected (normalized) payoff, we have the corollary.
The Corollary tells us what happens for � close to one. At the other end of the spectrum,

when � is close to zero, the decision maker roughly behaves myopically; at each date, she picks

14 The Cesàro averages of her payoffs are the time-averages:
PT

t=0
W (vt, Kt) /(T+1).

15 A formal proof of the proposition is given in the appendix.
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whichever toolkit provides the best immediate expected return, given her current beliefs about
which of the µi is µT . Note that this does not mean that she picks some (myopically optimal
relative to ⇡0 ) toolkit and sticks with it forever; she may well gather information that changes
her assessment of which toolkit is myopically best. And this is only a rough characterization
because it doesn’t account for ties in which toolkit is best; when there is a tie, ties are broken
based on the information the different toolkits provide. To give a precise statement, one shows
that the strategy choose for Kt some member of K⇤(⇡t) is and, in current-value terms, remains,
✏-optimal for a given ✏ > 0, for all � sufficiently close to zero.16

Despite these theoretical results, our interest is not in the case of � close to one or to zero. For
fixed � 2 (0, 1), a third “asymptote” concerns what happens as t approaches infinity. Readers
familiar with standard (independent-arm) multi-armed bandit problems will know that the “typ-
ical” behavior in such problems is that, at some point, the decision maker stops experimenting
and moves to a regime of pure exploitation, choosing one and only one option—the option that
is myopically optimal—for the rest of time. This is true in our problem if Conditions A and B
hold.

Proposition 3. If Conditions A and B hold, with probability one (under either the decision-
maker’s subjective probability or the “objective” truth µT ), the decision maker will, from some
time on, choose the same bundle repeatedly, and this bundle will be and remain her myopic
optimum. Moreover, if this bundle is not ; , the decision maker will asymptotically learn which
µi is the true µT (almost surely).

The detailed proof is left to the appendix, but the idea is easily given. On the event where the
decision maker doesn’t choose the ; (only) past some finite date T , she must choose some
one of the nonempty toolkits, call it K0 , infinitely often. Computing the long-run average (per
period) net return of K0 when chosen will a.s. converge to its expected value under the reigning
distribution, which is wiT (K0) . Condition B guarantees that this identifies µiT = µT . And
then, as the decision maker becomes more and more certain about µT , Condition A guarantees
that she does best always to choose the toolkit that is (uniquely) myopically optimal for µT .

Since Condition B is somewhat unnatural (e.g., in the case of independent tools), we would
like to get the conclusion of Proposition 3 under less restrictive conditions. Suppose we assume
that for any two distinct toolkits K and K0 and for any of the hypotheses µi , we have wi(K) /=

16 The strategy of choosing the myopically best toolkit for her initial ⇡0 forever is, for any ✏ > 0 , ✏ -optimal for all
sufficiently small � , but only in terms of the initial expected value.
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wi(K0) . 17 Then if K and K0 are both selected infinitely often with positive probability, on
that event the decision maker would learn (by computing averages in the fashion of the proof of
Proposition 3) the values of wi(K) and wi(K0) , for whichever is the true µi . It would seem
that one could then show that, as the time parameter grows, choosing whichever of K or K0

gives a smaller expected immediate reward is suboptimal. But we have not tried to push through
the details of this conjecture.

4. Four Prior-Free Heuristics
We divide the heuristics we present into two groups: heuristics that employ the decision

maker’s prior assessment ⇡0 and the properties of the µi , and those that ignore all these things
and are based solely on what the decisionmaker observes empirically. Please note that the literal
meaning of “prior free” suggests that the decision maker ignores ⇡0 , but it does not preclude
that, for instance, she immediately discards a tool that, under any hypothesis µi , generates value
far less than its cost. We are using a very broad definition of prior free; the decision maker
bases her decisions solely on data she observes and not on any initial structural information she
might possess. In this sense, it might be more accurate to call these heuristics naive or even very
naive. 18

The four heuristics we propose have the following basic structure. The decision maker
starts out with an initial toolkit K0 , which is X ; that is, she carries all the tools. After some
(deterministic) period of time T1 has elapsed, she evaluates her situation on the basis of evidence
so-far accumulated and drops some of the tools, leaving herself with K1 := KT1 . She sticks
with K1 until some second (still) deterministic time T2 , at which point she re-evaluates her
situation and, perhaps, drops some further tools so that, moving forward, she carries K2 ; she
continues this cycle of observation and winnowing of her toolkit, with subsequent “decision
dates” labelled T2, T3, . . . and toolkits K3,K4, . . . . 19 Note that in these heuristics, tools are
dropped from consideration and never “come back”; that is, Kn ✓ Kn�1 for all n . Needless
to say, a good case can be made for heuristics more sophisticated than these, especially where
available evidence indicates that a tool that was dropped at, say, Tn because some other tool
seemed superior, might later be resurrected if that other tool, per further evidence, is shown to
be worse. But the four heuristics of this section are too simpleminded to consider bringing tools

17 This is a stronger form of Condition A, which concerned uniqueness of (only) the optimal toolkits for each µi .
18 While it may seem silly to consider these types of heuristics, it should be noted that in both the learning-rational-
expectations-equilibria and learning-to-play-games literature, referenced earlier, are entirely prior-free in just this sense.
So there is plenty of precedent for heuristics that are so naive.
19 Beingvery pedantic: Kt is the toolkit chosen at date t , while Kn is the toolkit chosen fromdate Tn until Tn+1�1 .

13



back.
Looking at heuristics with this structure, it remains to specify:

• the evaluation dates T1, T2, . . . (with T0 := 0);

• how information is processed or evaluated; and

• the decision rule by which tools are eliminated.

The four heuristics differ in terms of the unit of analysis when it comes to evaluation: The
first two evaluate individual tools, while the second two evaluate toolkits. Although it may
seem obvious to the reader that, given the context of this problem, toolkits should be the unit of
analysis, because of potential complementarities between tools (or the substitution of one tool
for another), a particularly naive decision maker, faced with a particular tool and the question,
“Should I put this tool in my kit?,” might answer this question by answering the question, “What
has this tool contributed in the past?” This immediately gives our first heuristic, which works
only for the case where U = UMAX .

The Pay-for-Itself Heuristic. For the case U = UMAX : At each time Tn , for each tool x 2
Kn�1 , let

G(x) :=
Tn�1X

t=0

vt(x) · 1vt(x)=max{vt(x0);x02Kt} � Tncx.

And let Kn := {x 2 Kn�1 : G(x) � 0} , for the G function computed at that date. 20 Or, in
words, we ask for each remaining tool x , has the gross value accrued from holding x justified
the price that has been paid (Tncx ) for keeping x in the toolkit? If so, continue to hold x . If
not, drop it.

We confess that this heuristic is something of a strawman: A little thought should convince
you that it is anything but reasonable.21 One obvious problem is that, in computing G(x) ,
we have not taken into account the possibility that, at a particular date t , vt(x) = vt(x0) =

20 The notation G(x) is used as short-hand for the evaluation measure of x ; this measure depends, of course, on the
sequence of toolkits {Kt; t  Tn � 1} as well as the realizations up to time Tn � 1 of the valuation vectors vt . We
suppress this dependence in our notation.
21 Despite its flaws,whichwedescribemomentarily, we are told by colleagueswho specialize inmanagerial accounting
that this sort of evaluation criterion is in common use. Those colleagues could not, however, provide a textbook refer-
ence that recommends this heuristic. So insofar as it is a heuristic in use, it may simply be the product of sloppy thinking.
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maxx002Kt vt(x00) , for two different tools x and x0 . In such circumstances, either x or x0

would be tool chosen, but not both; however, the computation of G(x) gives both x and x0

“credit” in all such circumstances.
We could avoid this difficulty by assuming that there is probability zero that two tools tie

for “best,” however this points us in the direction of much more significant weaknesses in this
heuristic, which we illustrate with the following two caricature examples.

Example 4.1. Suppose X = {x, x0} ; vt(x) = 10 and vt(x0) = 9, both with certainty, under
µT ; 22 cx = 5 and cx0 = 3; and U = UMAX . When we go to compute G(x) at date T1 , it
is positive and equal to 5T1 , since up to time T1 we carry both x and x0 , and x is the tool
employed every time. Meanwhile G(x0) = �3T1 at T1 ; since x0 has never been employed, it
fails the pay-for-itself test miserably. And, hence, in implementing this heuristic, the decision
maker would drop x0 at T1 and persevere with the toolkit {x} forever more. Of course, this
is the wrong decision to take: The optimal toolkit in this caricature is {x0} . The heuristic is
flawed in that it pays no attention to alternatives to the “best” tool in any situation, where “best”
is determined with regard to the gross payoff. This is appropriate, of course, in making the daily
decision which tool in the toolkit to use; the rents have been paid and so are sunk costs. But in
terms of assessing the “value” of each tool going forward, it is very much the wrong thing to do.

Example 4.2. As in Example 4.1, X = {x, x0} and U = UMAX . The costs are cx = 2 and
cx0 = 3, and the distribution of the vector v = (v(x), v(x0)) under µT is that v = (10, 9) with
probability 1/2 and = (9, 10) with probability 1/2. Suppose T1 is large enough so that, at every
evaluation stage, the frequencies of the two possible observations of v are close to 1/2. Then
G(x) ⇡ 5 � 2 = 3, while G(x0) ⇡ 5 � 3 = 2. Both tools always appear to be paying for
themselves, so both are always kept, for average payoffs per period of 10� 5 = 5. But carrying
tool x alone would give average payoffs per period of 9.5� 2 = 7.5, which (clearly) is better.
The problem is the same: The decision maker should be looking at alternatives to carrying a
given tool (or set of tools) and asking, “Does this improve matters?” In this heuristic, nothing of
that sort is considered.

These caricature examples show us how to proceed. If the decision maker is evaluating a
particular tool x , the question she should answer is, “Would I be better off with or without x?”

The Incremental-Contribution Heuristic.23 At time Tn , for any subset L ✓ Kn�1 and for any
22 It might be worth pointing out that, in terms of the performance of prior-free heuristics, only µT matters. The full
range of hypotheses and the decision maker’s prior over these hypotheses play no role.
23 While the Pay-for-Itself Heuristic was defined only for the special case U = UMAX , this heuristic can be defined
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x 2 L , define the (empirical) incremental contribution of x to L by

I(x,L) := 1
Tn

Tn�1X
t=0


W
�
vt, L

�
�W

�
vt, L \ {x}

��
. (4.1)

(The notation here suppresses the dependence of the function I on the date Tn , the history of
values {vt; t = 0, . . . , Tn� 1} , and the toolkit Kn�1 .) At date Tn , temporarily set L0 = Kn�1

and compute I(x,L0) for each tool x 2 L0 . If all tools x 2 L0 have I(x,L0) � 0 , then let
Kn = Kn�1 = L0 and proceed to Tn+1 . But if I(x,L0) < 0 for some x 2 L0 , then select some
x 2 L0 which has minimal I(x,L0)—denote it by x0—and let L1 = L0 \ {x0} . Calculate the
values I(x,L1) for each x 2 L1 : If I(x,L1) � 0 for all x 2 L1 , set Kn = L1 and proceed
to Tn+1 , but if I(x,L1) < 0 for some x 2 L1 , form L2 by dropping from L1 some x—call
it x00—that minimizes I(x,L1) . Continue in this fashion, either finding some Lm for which
I(x,Lm) � 0 for all x 2 Lm , at which point Kn is set to be Lm , or dropping (one at a time)
every tool originally in Kn�1 , in which case Kn is set to be ; .

There are several things to note about this heuristic and the way in which it has been defined:

1. Unlike the pay-for-itself heuristic, this tool-based heuristic typically involves multiple re-
computations of the “value” of a tool. The idea here is: In computing I(x,L) , we are asking
whether the decision maker is better off with x or not, where the not-x alternative is, the
decision maker keeps everything else in L . Because the not-x alternative is everything
else in L , if we drop a tool x , we keep, at least temporarily, everything else, and then
recompute incremental contributions. In Example 4.1, for instance, at time T1 , the average
incremental contribution of x is �4. And the average incremental contribution of x0 is
�3. If the heuristic called for immediate dropping of any tool with a negative incremental
contribution, both tools would be dropped, even though this toolkit (K = ;) is the worst of
all four possibilities. To avoid this, the heuristic drops one tool at a time and then reconsiders
whether there are other candidates for dropping.

2. And, for Example 4.1, the heuristic gets it right. In the first iteration at time T1 , I(x,X) =
�4 and I(x0,X) = �3, so tool x is dropped. And then the decision maker recomputes
I(x0, {x0}) , which now equals 6, so it is kept.

More generally, but still in the realm of caricatures, suppose that U = UMAX and v

has a degenerate distribution under µT ; that is, v(x) = vx for some strictly positive vx

for general U . But see the discussion following: This heuristic makes the most sense when U is submodular.
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with probability 1. The right thing to do, of course, is to choose some tool that maximizes
vx�cx . And that is what this heuristic chooses. In any “iteration” of the computations done
at date T1 , all tools except the tool with maximal vx (of those still in contention) have �cx

for their incremental contribution. Suppose x⇤ is among the tools that maximize vx � cx ;
can x⇤ be eliminated in any of these iterations? There are two possibilities:

a. Suppose in some iteration, vx⇤ is the largest v of those remaining. Then, in this iteration,
I(x⇤) = vx⇤ � vx0 � cx⇤ , where x0 is the tool with the second largest vx of those
remaining. Tool x⇤ is then eliminated only if vx⇤�vx0�cx⇤  �cx0 (as, otherwise, x0

would be eliminated instead). But, if this inequality holds, then vx⇤ � cx⇤  vx0 � cx0 .
Since x⇤ was chosen to maximize vx � cx , this means that x0 is equally good as x⇤ ,
and if x⇤ is eliminated on this iteration, then x0 remains to take its place.

b. Suppose that vx⇤ is not one of the largest. Then, on this iteration, I(x⇤) = �cx⇤ . Let
x0 be any x of those remaining that has the largest vx . Then, I(x0) = vx0 � vx00 � cx0 ,
where x00 is a remaining tool with second largest vx . Hence, I(x0)  vx0 � vx⇤ � cx0 .
Now, if x⇤ is eliminated in this iteration, I(x0) � I(x⇤) , so vx0 � vx⇤ � cx0 � �cx⇤ ,
or vx0 � cx0 � vx⇤ � cx⇤ , and while x⇤ might be eliminated, x0 then remains, and x0

is another tool that (amongst all tools in X ) maximizes vx � cx .

The point is, if there is a unique x that maximizes vx � cx , it must survive all iterations;
if more than one x achieves this maximum, one of those maximizing x must survive every
iteration. And, in each iteration, until a single tool remains, some toolmust have a negative I ,
the cycle of iterations at time T1 must result in a single x remaining (which must, therefore,
be a maximizer of vx � cx ), or no x remains (which happens if the maximized value of
vx � cx < 0).

3. Going back to this heuristic applied to Example 4.1, we’ve already observed that when time
T2 rolls around, the average incremental contribution of x0 is computed to be 6, and tool
x0 is kept. An important point about the heuristic in general is made here: In computing
I(x) , we compute going back to time 0 the time-average incremental gross contibution of
x relative to whatever set of tools Lm remains. In terms of ease of implementation, one
might think instead of keeping a running sum of the incremental contributions of x , where
at date t we compute this relative to Kt . That is, in place of the summands in the definition
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of I(x) , imagine we used


W
�
vt,Kt

�
�W

�
vt,Kt \ {x}

��
. (4.2)

This would make life easier when it comes to implementation, but in the caricature, it could
lead to the wrong answer: If, say, 3T1 > T2 , this alternative method of evaluating each tool
would, at time T2 , lead the decision maker to compute

I(x0) = 1
T2


T1 · 0 + (T2 � T1) · 9

�
� 3 = 9 · T2 � T1

T2
� 3 < 0,

and so she would drop tool x0 .

4. The function UMAX has the property that, for any vector of values vt , the contribution of
tool x to the overall gross payoff does not increase as the toolkit K gets larger or, putting it
a bit more intuitively, tool x can only become more valuable as the number of tools still in
consideration gets smaller, assuming that x remains in the toolkit. Hence, for U = UMAX ,
computing I(x) as in the definition of the heuristic, with Kn�1 , always gives a higher net
incremental value to x than we would get if instead we computed gross incremental contri-
butions using (4.2). And, more generally, for UMAX , as tools are successively eliminated at
any time Tn , the tools that remain will (only) see their I (weakly) increase.

For more general U , the construction of the heuristic makes sense if this property—that
each tool makes a (weakly) larger incremental contribution the smaller is the set of (other)
tools still in the toolkit—holds; then a tool whose I is positive at some stage (and so is not
a candidate for being dropped) will not later become a candidate for dropping, unless and
until we receive more evidence that the tool is not as good as was assessed based on prior
evidence. In symbols, the desired property is: For any tool x , any value-of-tools vector
v 2 RX , and any two toolkits K and K0 such that x 2 K0 ✓ K ,

W
�
v,K

�
�W

�
v,K \ {x}

�
 W

�
v,K0��W

�
v,K0 \ {x}

�
. (4.3)

Observe that if W , regarded as a function on (R+)X , is submodular, then (4.3) holds.

The following example shows one way in which this heuristic is flawed:

Example 4.3. In this example, U = UMAX and X = {x, x0, x00} . Under µT , there are two
possible values for the vector v : (v(x), v(x0), v(x00)) = (9, 0, 10) and = (0, 9, 10), each with
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probability 1/2. The costs of x , x0 , and x00 are, respectively, 3, 3, and 5. Suppose T1 is large
so that, with high probability, the decision maker observes (approximately) T1/2 value vectors
(9, 0, 10) and T1/2 vectors (0, 9, 10). The net incremental contributions computed in the first
iteration are approximately �3, �3, and �4, respectively. Therefore, in the first iteration of
computations at T1 , assuming “representative data,” tool x00 is dropped. In the next iteration
(still at date T1 ), the incremental contributions of x and x0 are approximately 1.5 apiece; the
decision maker will stick with {x, x0} , for a payoff of 3 per period. Assuming that the data she
accumulates continues to be close to the underlying distribution (which, of course, is likely),
she will stick with {x, x0} forever. But this is suboptimal: The toolkit {x00} yields a per-period
payoff of 5.

The problem is evident. The incremental-contribution heuristic asks “how much is lost or
gained if one tool is dropped and all the rest are maintained?”24 The example, though, is one
where the finding the best toolkit requires an answer to the question, “How much is lost or
gained if several tools at once are discarded?” Rather than evaluating individual tools and their
net contribution, perhaps the decision maker should choose for her unit of analysis the toolkit.
This suggests the following kit-level heuristic.

The Simple Set-Based Heuristic. At time Tn , when the set of tools carried from date Tn�1

until date Tn � 1 is Kn�1 , compute for each L ✓ Kn�1 the value V (L) defined as

V (L) := 1
Tn

"
Tn�1X

t=0

W
�
vt, L

�#
.

The decisionmaker then chooses for Kn whichever subset L ✓ Kn�1 maximizes V (L) (choos-
ing randomly if there is a tie). Described in words, the decision maker evaluates each subset
L of Kn�1 (including Kn�1 itself) according to the empirical average payoff L would have
provided from time 0 to the present moment, and she chooses to continue with whichever subset
L looks best so far.

It is worth noting that this heuristic, relative to the incremental-contribution heuristic, involves a
lot of evaluations at the dates T1, T2, . . . . If (say) X contains ` tools, then at the first evaluation,

24 This problem requires at least three tools. Francetich (2013) proves that if X consists of only two tools, and if U
is submodular, the incremental-contribution heuristic provides the optimal toolkit with probability approaching one as
T1 approaches infinity.
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at date T1 , the decisionmaker is evaluating 2`�1 toolkits. In comparison, with the incremental-
contribution heuristic, at date T1 , the decision maker must evaluate ` tools in the first stage,
then `� 1 in the second stage (still at date T1 ), and so forth (until all remaining tools provide a
nonnegative incremental contribution), for a maximum number of evaluations of `(` + 1)/2.

The obvious tension in the simple set-based heuristic (and in the incremental-contribution
heuristic) involves the amount of data thatmust be accumulated before decisions aremade. From
the perspective of obtaining accurate data (data that match the distribution µT ), one presumably
wishes T1 to be large. But large T1 means carrying—and paying for—all the tools in X , which
(we later see) will give poor overall performance for � much less than 1. It would be preferable
to discard tools quickly that, based on the evidence accumulated, provide little chance of being
part of the optimal toolkit while, at the same time, delaying the decision to discard a tool for
whom the evidence is not so strong. In the world of prior-free heuristics, something like the
following is suggested:

Set a threshold probability ✏ > 0 . At date Tn (where you should think of these evaluation times
coming close together, perhaps even with Tn = n):
1. For each L ✓ Kn�1 , compute V (L) as in the simple set-based heuristic.
2. For each pair of toolkits L and L0 , both subsets of Kn�1 , such that V (L) > V (L0) , conduct

a paired-sample, difference-of-means test on the data sets

{W (vt, L); t = 0, . . . , Tn � 1} and {W (vt, L
0); t = 0, . . . , Tn � 1} ,

where we match the data point in the first set for a specific t with the t th data point in the
second set. If the critical p-value (one-sided) for this difference-of-means test is less than
✏ , say that L0 is statistically dominated by L .

3. After all such tests have been run, discard any tool x that belongs (only) to toolkits that are
statistically dominated by some other toolkit.

The idea is straightforward: A tool is discarded as soon as the evidence accumulated indicates
that each toolkit to which it belongs is “unlikely” to be the best toolkit. One might worry that
elements of a toolkit K00 are discarded because K00 is statistically dominated by some toolkit
K0 , when somemembers of K0 are discarded on similar grounds. But for somemembers of K0

to be discarded, K0 must be statistically dominated by some K , and since the binary relationship
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“statistical domination” is transitive, 25 this means that K00 must be statistically dominated by
some toolkit all of whose members remain after this period’s discards are made.

We imagine this heuristic applied without much time between revision periods. But, as
presented here (and even with the optional part 4), it involves a significant number of computa-
tions. A simpler-to-implement version of this would be to identify the toolkit L with the best
performance so far and compare all other toolkits with this toolkit’s performance. When it comes
to simulating the heuristics, this is what we will use:

A Difference-of-Means, Set-Based Heuristic. Set a threshold probability ✏ > 0 . At dates
t = 2, 3, 4, . . .:
1. Find the toolkit L ✓ Kt�1 that gives the highest value of V (L) . Call this toolkit L⇤ .

(Although it can make a difference in step 2, choose L⇤ arbitrarily if there are ties.)
2. For all L ✓ Kt�1 , performa paired-sample, difference-of-means-test, comparing themeans

of {W (vt, L⇤); t = 0, . . . , t�1} and {W (vt, L); t = 0, . . . , t�1} . Say that L is dominated
if the critical p-value for the difference is less than ✏ .

3. Let Kt be the union over all L ✓ Kt�1 that are undominated in step 2. 26

Two desirable qualitative properties of these heuristics
The acid test of these heuristics (and others) is how well they perform on a collection of

test problems, using Monte Carlo simulation. We will report some simulation results later in
this paper, but before doing so and before suggesting some prior-based heuristics, we look at a
couple of seemingly desirable qualitative properties that they might satisfy.

The first concerns what happens when T1 is chosen to be very large. Having T1 large seems
a sensible parametric choice for our four heuristics as the discount factor � approaches 1, as large
T1 means gathering a lot of information before making any decisions that eliminate tools. The
information is very likely to be “accurate,” in the sense that the observed empirical frequency
matches µT and so we ask of each of the heuristics: Suppose the empirical frequency at T1

25 This fact does not appear in the textbooks we have consulted, but it is nonetheless true and easy to prove once you
note that the sample standard deviation of the sum of two (paired) data samples is less than or equal to the sum of the
sample standard deviations of the two. We are grateful to Guido Imbens for pointing this out to us.
26 In the simulations we later run, the discreteness of our test problems will present a problem: Sample standard
deviations will often be 0 (because the observations, especially early on, may be identical. If W (vt, L⇤)�W (vt, L) is
constant (and strictly positive) in t when we go to apply this heuristic, we adopt the convention that L⇤ dominates L in
the sense of step 2. More generally, the classical difference-of-means tests we implement in this heuristic are formally
justified for the case of Normally distributed variates and informally by an appeal to the Central Limit Theorem. For, say,
t = 2 , with our discrete test problems, any appeal to the CLT is somewhat silly, rendering this heuristic (as implemented)
unsophisticated, to say the least.
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matches precisely µT and remains consistent with µT at each subsequent decision point (that
is, for those tools that are kept). In such ideal conditions, does the heuristic lead to an optimal
choice of toolkit?

For both tool-based heuristics, we already know from our examples that the answer is No.
For the simple set-based heuristic, the answer to this question is obviously yes. If the

empirical frequencies of the vt vectors precisely match µT , then the heuristic identifies the (or,
if there are ties, an) optimal toolkit. For the difference-of-means, set-based heuristic, the answer
is almost yes. It is yes if Condition A holds; then, with a large enough T1 , every toolkit but the
(uniquely) optimal toolkit will be statistically dominated by the optimal tookit (for any ✏ > 0,
although “large enough” T1 will depend on the choice of ✏). If more than one toolkit is optimal
under µT , however, the decisionmaker couldwell wind up holding the union of all such toolkits.

The second desirable property is built out of the observation that, for each of these heuristics,
the sets of tools in successive toolkits are ordered by set inclusion: Tools leave the toolkit, never
to return. Since there are only finitely many tools, along any sample path of observations, there
is a smallest took-kit that, past some point, is carried forever, although this final toolkit might
be the empty set.

Hence, along each sample path, the decision maker eventually learns the distribution of
(v(x)) for those x in this final toolkit. While abandoning tools means that no further data about
the distribution of v(x)’s of dropped tools may be gathered, we would at least like to know that,
in the long run, the final toolkit, which we denote by K̂ , 27 is at least as good as any proper
sub-kit K0 ⇢ K̂ (with probability one).

For the simple set-based heuristic, the answer is obviously yes. If a sub-kit K0 is strictly
better, the strong-law says that the empirical-frequency-based computation of its net value will
(with probability one) exceed that of K̂ , and then the heuristic will move off from K̂ , contra-
dicting the assumption that K̂ was the final toolkit. Similar logic implies that the answer is
yes for the difference-of-means heuristic, if Condition A holds. But if there is more than one
optimal toolkit under µT , the decision maker could end with their union, which is strictly worse
than any of the optimal toolkits.

For the Pay-for-Itself heuristic, the answer is no. Example 4.2 applies: The heuristic retains
both x and x0 (assuming data are close to the probabilities under µT ), while either single-tool
sub-kit is better than the toolkit {x, x0} .

As for the incremental-contribution heuristic, the answer is also no, for general U .

27 Note, please, that K̂ can be random; we know there is a final toolkit along each sample path, but that final toolkit
may be different depending on the sample path.
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Example 4.4. X = {x, x0, y, y0} . Under µT , the distribution of the v vector (in the order
x, x0, y, y0 ) is (10, 10, 0, 0) with probability 1/2 and (0, 0, 10, 10) with probability 1/2. Costs
are cx = cx0 = cy = cy0 = 3. And

U
�
v(x), v(x0), v(y), v(y0)

�
= max

�
min{v(x), v(x0)},min{v(y), v(y0)}

 
.

We assert that, under the incremental-contribution heuristic, a decisionmaker who has empirical
frequencies that match (or come close to) µT will keep K = {x, x0, y, y0} . The incremental
contribution of x is 2; dropping x means the loss of 10 half the time, or 5 on average, more
than the 3 saved in costs. Since the problem is symmetric in all four tools, the same is true of
x0 , y , and y0 . So, starting with all four tools, none is ever dropped according to this heuristic.
However the per-period payoff is 10 � 12 = �2; obviously, the empty subset is better, as are
both {x, x0} and {y, y0} .

However, this function U does not satisfy property (4.3):

Proposition 4. Suppose that U satisfies property (4.3). Fix a (nonempty) toolkit K . If, under
the distribution of v vectors given by µT , some proper sub-kit K0 ⇢ K gives higher per-period
payoffs than does K—that is, wiT (K0) > wiT (K)—then, for data samples that are close to
matching in frequencies the distribution given by µT , some tool x 2 K must have strictly
negative incremental contribution. Hence, for almost every sample path, 28 if K̂ is a “final
toolkit” along that sample path under the incremental-contribution heuristic,

wiT (K̂) � wiT (K0) for all K0 ✓ K̂.

We provide a detailed proof in the appendix. But the idea is easy to relate: (1) If, relative to a
toolkit K and a tool x 2 K , I(x,K) � 0 under some data set, then (using that data set) K has
a weakly higher (empirical average) net reward than does K \{x} : This is just a rearrangement
of the inequality I(x,K) � 0. And (2) if, for a given data set, I(x,K) � 0 for every x 2 K ,
then, for every sub-kit K0 ⇢ K and x 2 K0 , I(x,K0)� 0. (This is where (4.3) comes in.
Reducing the toolkit (weakly) improves the incremental contributions of x , along every sample
path.) Hence, for a given data set, if I(x,K) � 0 for every x 2 K , then the empirical average

28 “Almost every” here refers both to the decision maker’s initial prior and to the “objective” probability distribution
on sample paths generated by µT .
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net payoff from K , computed with the data set, is at least as large as for any proper subset of
K : Starting from K , sequentially delete elements until you reach the proper sub-kit. Assertion
(1) ensures that the empirical average net payoffs never increase, where (2) ensures the property
needed to apply (1) repeatedly, namely that the incremental contributions that begin nonnegative
remain so. And for a “final toolkit,” the data sample will, by the strong law of large numbers,
approach the probability distribution of µT .

5. Prior-Based Heuristics
The use of the decision maker’s prior assessment ⇡0—and the full probabilistic structure

implicit in the {µi}—provides significantly more scope for the design of seemingly sensible
heuristics. In fact, an active literature that spans the disciplines of computer science and opera-
tions research, going by the names bandit learning and online optimization, concerns a variety of
categories of heuristics (generally called algorithms in this literature), their asymptotic charac-
teristics, and their relative performance in test problems that often take the form of multi-armed
bandits. Borrowing in part from that literature, we present here a variety of prior-based heuristics.

A. Adaptive Myopia
To set a (seeming)baseline,webeginwith a heuristic that ignores the exploitation/exploration

dilemma: At each date, Kt is chosen tomaximize the immediate expected payoff. If information
happens to arrive, it is employed; the decision maker updates her prior and chooses at date t

based on her posterior. But she makes no active attempt to gain information.

Adaptive Myopia. At each date t , if (based on all information the decision maker has received
up to time t) the decision maker’s posterior assessment is ⇡t , she chooses Kt arbitrarily out
of K⇤(⇡t) .

B. Simulated annealing, ✏-greed, and variations
In this general category of heuristic, the decision maker “mostly” chooses whichever toolkit

is myopically optimal based on information received to date, but some (perhaps vanishingly
small) fraction of the time she experiments with other toolkits. A simple specific version of this
is the following:

Harmonic Sampling. At each date t , Kt is selected randomly: With probability t/(t + 1) ,
choose for Kt some myopically optimal toolkit K 2 K⇤(⇡t) (arbitrarily selected if there is
more than one); and with probability 1/(t + 1) , choose Kt = X .

Several remarks are worth making:
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1. The specific heuristic described allows for “experimentation” at every date, with vanishing
probability, but with probably that vanishes slowly enough so that, almost surely, X will
be chosen infinitely often. An alternative way to proceed, which has the same asymptotic
outcome, is to fix in advance some set of dates T ✓ {0, 1, . . .} with the property that

lim
⌧!1

#[T \ {0, . . . , ⌧}]
⌧

= 0,

where #[·] means the cardinality of the set inside the square brackets; then choose Kt = X

for t 2 T and choose the myopically optimal strategy at all dates in the complement of T .
This, recall, is the approach taken in the proof of Proposition 2.

2. We have included this heuristic as an example of a prior-based heuristic. The prior and
subsequent posteriors computed from the prior and available evidence are employed at those
dates where a myopically optimal toolkit is chosen, to determine which toolkit is optimal.
We could just as well have included variations of this heuristic as a prior-free heuristic,
if “myopic optimality” is computed on the basis of empirical frequencies of the various
components of the v vector, so long as we begin with at least one experimentation period.

3. In typical applications of simulated annealing to multi-armed bandit problems, when an
experiment is to be conducted, each arm is chosen with probability equal to one divided by
the number of arms. Because the choice of toolkit X generates all the information possible
in a given period, we don’t need to do this; all experiments in our heuristic involve choosing
Kt = X . But many variations are possible where we vary the “experimental toolkit” and
where we furthermore adjust the probability of experimentation with a specific toolkit to the
degree of uncertainty of its value and/or the promise of value that it holds.

The proof of Proposition 2 is easily amended to provide the following result:

Proposition5. If the decisionmaker employs the harmonic-samplingheuristic (or any alternative
for which the event {Kt = X infinitely often} has probability one), ⇡t converges to a degenerate
distribution with weight 1 on µT almost surely. Hence, for this specific heuristic (and any
alternative for which, almost surely, Kt = X infinitely often , but Kt is chosen from K⇤(⇡t) a
proportion of the time that approaches one), the Cesàro sums of W (vt,Kt) approach w⇤ with
probability 1.

A variation, called the ✏-greedy algorithm,29 experiments in every period with fixed prob-

29 See, for instance, Tokic and Palm (2011)
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ability ✏ > 0; i.e., the probability of experimentation in any one round does not vanish as time
passes.

C. Thompson Sampling

Thompson Sampling. For each i , fix (arbitrarily) some toolkit from K⇤i , which we denote
K⇤

i . 30 Then, at each date t , choose Kt randomly: With probability ⇡t
i , choose K⇤

i .

This heuristic was originally proposed in Thompson (1933) and, therefore, is almost certainly
the seminal heuristic of its general type.

An obvious variation on this heuristic is to take into account the possible gains from each
K 2 K⇤i : Choose from K⇤i at date t with probability proportional to ⇡t

i ⇥ (w⇤i + a) , for some
positive constant a . 31

The story that motivates this heuristic may seem a bit forced, but for what it is worth: At
date t , the decision maker believes that µT = µi with probability ⇡t

i . So she “simulates” which
hypothesis is true, selecting µi with its probability of being true, and then selects a best toolkit
according to the outcome of this simulation.

In general, Thompson sampling may not lead the decision maker to the truth. There are
two ways this can happen. First, suppose some toolkit K is optimal for both µi and µj and,
moreover, the distribution of {vt(x);x 2 K} is the same under µi and µj . (Some tool not in
K might satisfy our assumption that the overall distributions of v under different hypotheses
are different.) If µi and µj are the only two hypotheses, the decision maker always chooses
K and, of course, she is unable to learn which hypothesis is true. Second, suppose there are
two tools, X = {x, x0} , and two possibilties for µT : Under µ1 , vt = (vt(x), vt(x0)

�
= (7, 6) or

(3,4), each with probability one-half, while under µ2 , vt = (7, 4) or (3, 6), each with probability
one-half. The cost of each tool is 5. Suppose U = UMAX . Then both {x} and {x0} are optimal
under both hypotheses. If the decision maker implements Thompson sampling by choosing {x}
to be K⇤

1 and {x0} to be K⇤
2 , then she never learns anything about µ1 versus µ2 , because the

distribution of net per-period payoffs from {x} is the same under both hypotheses, and similarly
for {x0} . (The distribution of payoffs from {x} is different from that of payoffs from {x0}
under either hypothesis, however.)

Of course, in neither example does she care whether she learns the truth. So we still have
the possibility of proving for Thompson sampling the second part of Proposition 5. But to get

30 Fixing one K⇤
i from each K⇤

i simplifies the proof of Proposition 6, and so we do so. But we do not believe it is
necessary.
31 The constant a is included to deal with the possibility that K⇤

i = ; for some i .
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the first part, we need to rule out both sorts of examples.

Proposition 6. If Condition C holds and the decision maker employs the Thompson-sampling
heuristic (or its variation), then her posterior assessments ⇡t converge to a degenerate distri-
bution on µT almost surely. And even if Condition C does not hold, under Thompson sampling
(or the variation), the Cesàro sums of W (vt,Kt) approach w⇤ with probability one.

The proof is provided in the appendix.

D. Upper-Confidence-Bound Heuristics

Slightly bridled optimism. Fix some ✏ > 0 . Fix, for each i , some K 2 K⇤i , denoting this
choice by K⇤

i . 32 At time t with posterior ⇡t , let

m⇤(⇡t; ✏) := max{w⇤i ; i = 1, . . . , I,⇡t
i > ✏} and I⇤(⇡t; ✏) := {i : ⇡t

i > ✏, w⇤i = m⇤(⇡t; ✏)}.

For Kt , choose any member of K⇤
i for any i 2 I⇤(⇡t; ✏) .

In words, consider all the hypotheses µi that, per the current posterior, have probability more
than ✏ . (Call such hypotheses “plausible.”) Choose for the current toolkit any toolkit that is
myopically optimal for the plausible hypothesis that, if true, would give the highest per-period
net expected reward. This is the optimism part of the heuristic; the decision maker goes with
themost optimistic (plausible) scenario available, and sticks with that scenario until information
received suggests that some other (plausible) scenario gives a chance of doing better, which could
happen either because data indicate that the plausible hypothesis on which basis the toolkit was
selected is no longer plausible, or because some previously implausible hypothesis becomes (by
virtue of the data) plausible. “Slightly bridled” refers to the the plausibility restriction: There
must be a reasonable chance of the scenario, per information so far gathered (and the prior).

If it is unclear why we call this an upper-confidence-bound (UCB) heuristic, consider the
following prior-free heuristic (which is more typical of UCB heuristics/algorithms in the litera-
ture.)

A Prior-free UCB Heuristic. Fix some integer T > 0 , and choose Kt = X for all t < T . At
time T , compute for each toolkit K the sample average of the net payoff it would have provided,
denoted m(K, t) , and the sample standard deviation of those payoffs, s(K, t) , where the data

32 As in the case of Thompson sampling, this simplifies the proof of Proposition 7, although we believe Proposition
7 remains true without this.
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sample includes all periods up to t in which K or a superset of K was the chosen toolkit.
And, for some fixed parameter ↵ > 0 , in period t choose Kt as that toolkit that maximizes
m(K, t) + ↵s(K, t) .

This heuristic is an “upper-confidence-boundheuristic” in the following sense: Depending on the
value of ↵ , the closed interval

⇥
m(K, t)�↵s(K, t),m(K, t)+↵s(K, t)

⇤
is, in the usual fashion,

a classical-statistics confidence interval for the true average payoff that K will generate.33 So,
after an initial period of data collection, the heuristic chooses that toolkit the upper bound of
whose confidence interval is largest.

Slightly-bridled optimism, as defined, can be equivalently recast as follows, which comes
closer to the spirit of the prior-free UCB heuristic.34 (a) At time t and for the current posterior
⇡t , call µi a plausible hypothesis if ⇡t

i � ✏ . (b) For each toolkit K ✓ X (and, implicitly,
for the given posterior ⇡t ), define UCB(K) := max{w(⇡,K);⇡ puts weight only on plausible
hypotheses µi}. 35 (c) For Kt , choose a toolkit that maximizes the current values of UCB(K).

If ✏ is fixed, then (of course) this heuristic has a chance of, in the long run, winding up with
the “wrong” toolkit: Suppose, for instance, there are two tools, x and x0 , two hypotheses µ1

and µ2 , and U = UMAX . Suppose {x} is the optimal toolkit under µ1 and {x0} is optimal
under µ2 . Suppose that v(x) has the same degenerate distribution under both µ1 and µ2 , so
choosing {x} provides no information. And suppose that ⇡02 < ✏ . Then, {x} is chosen and
continues to be chosen—the posteriors are all identically ⇡0—despite the fact that there is prior
(and posterior) probability ⇡02 that this is the “wrong” toolkit.

And even if we wind up with the “right” toolkit, in some cases the decision maker can fail
to learn the truth. Consider the prior example but where {x} is the best toolkit under both
hypotheses. The decision maker starts (and ends) with the right toolkit, but she fails to learn
whether µT is µ1 or µ2 . 36 (And this can happen even though the distribution of v(x0) is
different under the two hypotheses about µT .) So, on both these grounds, we cannot duplicate
the conclusions of Propositions 5 or 6 for this heuristic. But, we can get something close.

33 A slightly more sophisticated version of this heuristic would have ↵ depend on the number of samples on which
basis m(K, t) and s(K, t) have been computed.
34 Benjamin Van Roy, who has been very helpful in acquainting us with the literature on bandit learning, suggested
in particular that we recast our heuristic in this fashion.
35 But while closer in spirit, this is not quite the same. A different UCB-style heuristic, which is very similar in spirit
to the prior-free version, is to evaluate, for each K , the full distribution of net returns it would generate under the current
posterior and then find the value that falls at, say, the 95th percentile of that distribution. Choose for Kt whichever K
has the largest 95th percentile value.
36 We are not asserting that she is at all troubled about this.
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Proposition 7. Fix a model and, in particular, fix some prior ⇡0 over the (fixed) set of hypotheses
{µ1, . . . , µI} . Let P (✏) denote the probability (with respect to the decision maker’s prior) of
the event

(
lim

T!1

1
T + 1

TX
t=0

W (vt,Kt) = w⇤
)

,

computed if the decision maker employs the slightly-bridled-optimism heuristic with threshold
probability ✏ . 37 Then lim✏#0 P (✏) = 1 .

The proof is given in the appendix.

In the heuristics so far described, the discount factor � is irrelevant to the decision maker’s
behavior. So, while Propositions 5, 6, and 7 can be interpreted as saying that these are “good”
heuristics for problems with � close to one (so that, asymptotically, all that matters is behavior
in the tail field of events), they say little about how well these heuristics do in terms of initial
expected discounted values, discounted at some fixed � < 1. To put it most starkly, if � = 0,
we know the answer, and none of these three heuristics (necessarily) comes anywhere close. By
continuity, the same is true for � in some neighborhood of zero.

Moreover, both Thompson sampling and slightly bridled optimism restrict the decision
maker to the use of toolkits that are optimal for some one of the µi . From the perspective of
getting a good expected discounted value for a specific � , this restriction can be ill-considered.
Two reasons why are provided in the following two simple examples.

Example 5.1. X = {x, x0, y} , cx = cx0 = 5 and cy = 3.9. There are two possibilities for
µT . Under the first, µ1 , v = (vx, vx0 , vy) = (14, 10, 12) with probability 0.9 and (10, 14, 12)
with probability 0.1, while under µ2 , v = (14, 10, 12) with probability 0.1 and (10, 14, 12) with
probability 0.9. The U function is UMAX . It is easy to compute that {x} is optimal under µ1

and {x0} is optimal under µ2 . Suppose the decision maker begins with ⇡0 = (0.5, 0.5). The
(strict) myopic best toolkit is K = {y} , so for � = 0, that is the optimal strategy. (Nothing is
learned, so the decision maker never moves from this toolkit.) By continuity of value functions
in � , this will remain the optimal strategy for � close to zero. For � sufficiently high, the optimal
strategy is to choose {x} when ⇡t

1 � 0.5 and to choose {x0} when ⇡t
1  0.5. (At ⇡t

1 = 0.5,

37 Note that as we shift ✏ , the random variables ⇡t and Kt , viewed as (random) functions on the state space, change,
since they depend on both the realization of the basic {vt} random process and decisions made by the decision maker.
Hence, it might be better to write ⇡t(✏) and Kt(✏) .
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both {x} and {x0} are optimal. And for the crucial value of � that separates the two regimes,
so is {y} .)

This example is simple enough so that the fully optimal solution (for all values of � and
priors ⇡0 ) can be computed via value iteration. The optimal strategy is time homogeneous; that
is, the (optimal) choice of toolkit at time t depends only on � and ⇡t

1 (the posterior probability
that µ1 is µT ): For � � 0.7641 (approximately), the decision maker should choose either {x}
or {x0} for all ⇡t , with {x} chosen if ⇡t

1 � 0.5. But for �  0.7641, there is a range of
posterior values (centered at 0.5 and larger the smaller is � ) for which it is optimal to choose
{y} . See Figure 1. It is perhaps worth observing that even if the decision maker begins with a
prior ⇡01 that makes, say, {x} the optimal initial toolkit, if � < 0.7641, it is possible that a “bad
draw” (v1(x) = 10) leads to a posterior such that the optimal choice for K1 is {y} , at which
point nothing more is ever learned, and {y} continues (forever) to be the optimal choice.
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Figure 1. The optimal strategy for Example 5.1

The point here should be obvious: In the example, toolkit {y} is, for some discount factors
and prior assessments, a good compromise toolkit, even though it is not part of the optimal toolkit
for either hypothesis. Thompson sampling and slightly bridled optimism give no consideration
to such a toolkit.
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Example 5.2. X = {x, x0, x00} , cx = cx0 = 5, and cx00 = 1.2. U is UMAX . There are
two possibilities for µT . Under the first, µ1 , v = (vx, vx0 , vx00) = (8, 1, 0.9) with probability
0.9 and = (8, 15, 1.1) with probability 0.1; under µ2 , v = (8, 1, 0.9) with probability 0.1 and
= (8, 15, 1.1) with probability 0.9. The optimal toolkit under µ1 is {x} , and {x0} is optimal
under µ2 . Hence, x00 is never part of a toolkit chosen by a decision maker using either the
Thompson-sampling or the slightly-bridled-optimism heuristic.

Indeed, x00 is never chosen by a decision maker for its immediate (myopic) value as a tool,
it is part of no toolkit in any K⇤(⇡) for any ⇡ . By itself (for the toolkit {x00}), it generates
negative immediate net payoffs; and in a toolkit with either x or x0 , its value is always less than
the value of the other available tool(s).

Yet, in the fully optimal solution to the problem (which we can derive by computational
methods, because the problem is so simple), {x00} is sometimes part of the optimal toolkit. As
in Example 5.1, the optimal choice of toolkit depends on the discount factor � and the posterior
⇡t
1 . For �  0.416 (approximately), an increasing, real-valued function ⇡⇤(�) with ⇡⇤(0) = 0.5
divides the space into two: For ⇡t

1  ⇡⇤(�) , choose {x0} , while for ⇡t
1 � ⇡⇤(�) , choose {x} .

For � � 0.416, the optimal choice of toolkit based on ⇡t is: choose {x0} if ⇡t
1  68/112;

choose {x, x00} if 68/112  ⇡t
1  ⇡⇤⇤(�) for some function ⇡⇤⇤(�) ; and choose {x} for

⇡t
1 � ⇡⇤⇤(�).
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Figure 2. The optimal strategy for Example 5.2
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The intuition here is straightforward: If ⇡t
1  0.5, the myopically optimal toolkit is {x0} .

Since this toolkit also provides as much or more information than any alternative, this is the
obvious choice. For ⇡t

1 > 0.5, the myopically optimal toolkit is {x} , but this provides no
information; therefore, for ⇡t

1 low enough (but greater than 0.5), it makes sense to choose a
toolkit that provides information; moreover, the greater is � , the more this information is worth,
so the greater is the range of ⇡t

1 for which it is best to choose a toolkit that provides information.
There is no point in carrying both x0 and x00 , since they provide the same information and
x0 dominates x00 for immediate purposes. But what about {x0} versus {x00} versus {x, x0}
versus {x, x00}? These all provide exactly the same information, so their relative values are
determined by the immediate net payoffs they generate. (That is, in Bellman’s equation, the
values of optimal continuation from all four are identical.) At this point, it is easy to compute
that, between the four, the best immediate expected value comes from {x0} if ⇡t

1  68/112 and
from {x, x00} if ⇡t

1 � 68/112. Finally, there is the cutoff value given by ⇡⇤(�) for �  0.416
and ⇡⇤⇤(�) for � � 0.416, where the immediate cost of information balances the future value
from having the information; these cutoff values can only be derived numerically. 38

So why is x00 sometimes chosen (along with x)? Because it is a cheaper way to get the
same information as is obtained from {x0} . And, if the decision maker is choosing to get that
information anyway, for ⇡t

1 � 68/112, {x, x00} is informationally equivalent to {x0} and is a
better toolkit in terms of immediate net expected payoffs. That is, x00 may seem a “useless” tool
in the sense that, on the job, it will never be used. But, it is a cheap source of information. The
first part of this—that it is useless in terms of immediate needs and so would not be chosen by a
decision maker who knows µT —is why it is part of no toolkit from any K⇤i and so is ignored
by both Thompson sampling and slightly bridled optimism. But the second part is why, when
the decision maker is trying to learn which µi is the truth, it may be a very useful tool to put
into her toolkit.

E. Approximate-dynamic-programming heuristics
These considerations lead to our final category of prior-based heuristics, based on the litera-

ture on approximate dynamic programming:39 The reason we look for heuristics is because the
dynamic programming problem that would give the full solution to our problem is too difficult
to solve. Approximate dynamic programming suggests ways in which the methods of dynamic
programming might be employed “partially” in such situations.
38 It is more accurate to say that we are unable to derive them except via computation. Note that � = 0.416 (approx-
imately) is where ⇡⇤(�) = ⇡⇤⇤(�) = 68/112.
39 See, for instance, Bertsekas (2012).
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Consider, for instance, the following: Define

u0(⇡) := w⇤(⇡)
1� �

.

This is the best the decision maker can do when her assessment is ⇡ , and she must choose one
toolkit that she will employ for the rest of time, no matter what (more) she may learn from it.
Define iteratively, for m = 1, 2, . . . ,

um(⇡) := max
K✓X

⇥
w(⇡,K) +E[�um�1(⇡̃0)]

⇤
,

where ⇡̃0 represents the random posterior the decision maker will assess on the basis of her prior
⇡ and information she receives in a single period from choosing K . Or, in words, um(⇡) is the
optimal value function derived from solving the m-step, finite-horizon, dynamic programming
problem, where the last decision taken is to choose whichever toolkit is myopically optimal
given the (then-held) posterior assessment and to stick with that choice for the rest of time. And
let K⇤m(⇡) be any toolkit that achieves the maximum in the definition of um(⇡) . (If there is a
tie for the best toolkit, an arbitrary selection should be made.)

By standard results in dynamic programming for this sort of problem (bounded per-period
rewards, discounted with � < 1), we know that um(⇡) converges, as m ! 1 , to the optimal
value function. And (as long as the selection made in the event of ties is made consistently) the
K⇤m(⇡) “settle down” to the optimal toolkit as a function of the posterior ⇡ . So, if we could
carry out these calculations for large m , there would be no point to this paper. But, instead, as m

grows large, for most problems of this sort, the computations become toomany and too complex.
So how about carrying out these computations for small m and doing what is recommended?

The myopia-shortly heuristic. Pick a (relatively) small positive integer m . At time t , when the
decision maker’s posterior is ⇡t , choose for Kt the toolkit K⇤m(⇡t).

By a relatively small m , we mean: m = 1 or, perhaps, 2. 40

It may be instructive to see what this heuristic generates (in terms of strategy) for our
examples. The myopia-shortly heuristic, because it uses an “underestimate” of the value of
information, will tend to favor strategies that expend fewer resources on obtaining information
than is optimal. In Example 5.1, for instance, the region of posteriors (for a given � ) for which
{y} is optimal should grow. This effect should be diminished the smaller is � ; the less the

40 In the terminology of approximate dynamic programming, this heuristic for m = 1 is a rollout strategy.
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future matters, the less an underestimate of the value of information should matter. So what do
we get in Example 5.1? In Table 1, we provide the {x0} to {y} cutoff-posterior values for the
optimal strategy and for the strategies derived from myopia-shortly with m = 1 and m = 2, for
� = 0.95, 0.9, 0.85, . . . , 0.5. (The cutoff posteriors between using {y} and {x} are symmetric.)
It is clear from the numbers that m = 1 provides a fairly good approximation to the optimal
solution, and m = 2 provides an extremely good approximation.

Discount 
factor

Optimal 
cutoff 

posterior

Cutoff 
posterior 
for m = 2

Cutoff 
posterior 
for m = 1

0.5 0.2452 0.245 0.245
0.55 0.2673 0.265 0.255
0.6 0.2983 0.295 0.283
0.65 0.3383 0.335 0.295
0.7 0.3934 0.385 0.315
0.75 0.472 0.465 0.345
0.8 0.5 0.5 0.385
0.85 0.5 0.5 0.475
0.9 0.5 0.5 0.5
0.95 0.5 0.5 0.5

Table 1. Comparing the optimal strategy in Example 5.1 with the strategies
derived by the myopia-shortly heuristic for m = 1, 2 .

And, doing a similar analysis forExample5.2, yields the following: Since the cutoff posterior
between choosing {x0} and {x00, x} is based entirely on immediate payoff considerations (the
information content of the two toolkits is the same), this cutoff is 68/112 for all m . The cutoff
that is sensitive to the level m is the cutoff-posterior between choosing {x00, x} and {x} alone;
this is where the value of information comes in. Table 2 provides the cutoffs for the optimal
strategy and for myopia shortly, for m = 1, 2, and for the same set of discount factors as in
Table 1.41 As with Example 5.1, we see that myopia-shortly for m = 1 provides a fairly good
approximation to the optimal strategy, and m = 2 provides a very good approximation. Even for
� = 0.95, the range of posteriors for which the optimal strategy and myopia shortly for m = 2
disagree is ⇡t

1 2 (0.971, 0.983). And, of course, over that range, the cost of a “mistake” is apt
to be small, since the value functions are, of course, very close to one another near the critical
cutoff levels.

41 The numbers in Tables 1 and 2 for n = 2 are derived numerically. Subject to roundoff in the numerical procedures,
they are accurate to three decimal places. For m = 1 , the cutoffs can be derived in closed form: For Example 5.1,
the formula is (50 � 5�)/(320 � 248�) for �  35/44 and min{0.5, (25-16�)/(160(1 � �))} for � � 35/44 . For
Example 5.2, the upper cutoff is 0.9� 3(1� �)/(14�) .
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Discount 
factor

Optimal 
cutoff 

posterior

Cutoff 
posterior 
for m = 2

Cutoff 
posterior 
for m = 1

0.5 0.706 0.704 0.686
0.55 0.751 0.749 0.725
0.6 0.791 0.788 0.757
0.65 0.825 0.822 0.785
0.7 0.856 0.853 0.808
0.75 0.884 0.88 0.829
0.8 0.91 0.905 0.846
0.85 0.934 0.928 0.862
0.9 0.962 0.952 0.876
0.95 0.983 0.971 0.889

Table 2. Comparing the optimal strategy in Example 5.2 with the strategies
derived by the myopia-shortly heuristic for m = 1, 2 .

The examples might lead the reader to be overly impressed with how well myopia-shortly
seems to do. But Examples 5.1 and 5.2 are, to some extent, “cooked’ to have this happen.
For one thing, the information imparted by different toolkits is simple: One tool provides no
information at all, and the other tools all provide the same information. And, for a second thing,
once the decision maker commits to getting information, the information in a single draw is
fairly decisive: From a prior of ⇡01 = 0.5, the first posterior is either 0.1 or 0.9. Suppose that
we keep the qualitative structure of Example 5.2, but instead of such decisive information, the
distribution of v under µ1 gives two values with (respective) probabilities 0.6 and 0.4, with the
reverse probabilities under µ2 . Then, one informative signal isn’t going to shift the prior by
much. To flesh this out:

Example 5.3. This example has the same structure as Example 5.2, but with the parameters
changed: X = {x, x0, x00} , cx = cx0 = 5, cx00 = 0.1. Under µ1 , v = (v(x), v(x0), v(x00)) =
(15, 10, 0.9) with probability 0.6 and = (15, 20, 1.1) with probability 0.4; under µ2 , the support
of v is the same, and the probabilities switch to 0.4 and 0.6, respectively. Therefore, K⇤

1 = {x}
and K⇤

2 = {x0} . U is UMAX.

The fully optimal strategy is depicted in the manner of Figures 1 and 2 in Figure 3. The
value of ⇡1 at which the decision maker shifts from {x0} to {x, x0} , assuming she wishes to
gather information at all, is ⇡1 = 11/20. And Table 3 gives the upper cutoff values for myopia
shortly, m = 1, 2.

While the myopia-shortly-derived strategies come close to matching the optimal strategies
for discount factors �  0.7 or so, they do less and less well as � approaches 1. In fact, for any
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Figure 3. The optimal strategy for Example 5.3

Discount 
factor

Optimal 
cutoff 

posterior

Cutoff 
posterior for 

m = 2

Cutoff 
posterior for 

m = 1
0.5 0.536* 0.536* 0.533*
0.55 0.543* 0.542* 0.538*
0.6 0.551 0.549* 0.543*
0.65 0.572 0.567 0.548*
0.7 0.595 0.586 0.558
0.75 0.618 0.604 0.567
0.8 0.644 0.622 0.575
0.85 0.693 0.639 0.582
0.9 0.758 0.658 0.589
0.95 0.863 0.677 0.595

Table 3. Cutoff values for Example 5.3, formyopia-shortly, m = 1, 2 . (When the cutoff value is less than
0.55 , it marks the cutoff between using {x0} and {x} . These are marked with asterisks. Values
greater than 0.55 are the cutoff values between using {x, x00} and {x} ; for all these parameters,
the strategy changes from {x0} to {x, x00} at ⇡t

1 = 0.55 .)

fixed prior ⇡0 , the optimal strategy for � close enough to 1 has K0 = {x, x00} , 42 But for m = 1
and for any prior ⇡01 > 0.6, and for m = 2 and any prior ⇡01 > 36/52, the decision maker is
told by the heuristic to choose K0 = {x} : The decision maker will not spend any resources
on gathering information if there is no chance that her posterior will land her in a region where
her final choice (that is, the once-and-for-all choice of a myopically opimal toolkit) is different
from what she would choose right now. And, in this example, she cannot reach a posterior

42 We know this from the corollary to Proposition 2.
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⇡t
1  0.5—where she would switch from {x} to {x0}—in one step if her prior is above 0.6 or
in two steps if her prior is above 36/52.

Hence, when information arrives “slowly,” but � is close to one, myopia-shortly for small
m is in danger of doing poorly. Compare with our other prior-based heuristics, all of which are
bound to do fairly well when � is close to one.

To be more systematic in comparing the performance of these different heuristics, we should
be comparing their performancequantitatively, on test problems. Sowe turn at last to simulations.

6. Simulations
To get an idea of how well these heuristics perform relative to one another, we resort to

simulations. All of the examples we will simulate are of a variety that might be called “small
support of v models.” We let V be the union of the supports of the vt vectors under the various
hypotheses; this sort of model is characterized by V being a relatively small set. The various
µi , then, are distinguished by their different probability distributions over V . We present the
basic data of such examples in tables such as Table 4a, using Example 5.1 as our example.

Recall that in Example 5.1, there are three tools, x , x0 , and y , and two hypotheses, µ1

and µ2 . The set V has two elements, (14, 10, 12) and (10, 14, 12). Under µ1 , the probability
that vt = (14, 10, 12) is 0.9; under µ2 , this probability is 0.1. The costs of the three tools
are, respectively, 5, 5, and 3.9. The prior probabilities of the two hypotheses are ⇡01 = 0.5
and ⇡02 = 0.5 Compare these numbers with Table 4a, and the format we employ for “small V
models” should be apparent.

x x' y μ1 μ2
v1 14 10 12 0.9 0.1
v2 10 14 12 0.1 0.9

prior 0.5 0.5
cost 5 5 3.9

Table 4a. The Data for Example 5.1.

The form of the function U and the discount factor � are not provided in Figure 4a. In all
our examples, U will be UMAX. For discount rates, we show results for � = 0.7, 0.8, and 0.9,
to see how the relative performance of the heuristics changes as the discount rate changes.

In all our simulations of these small V models, we simulate out to t = 64. Note that
0.965 = 0.00106; with the largest discount factor we investigate, stopping at t = 64 means that
we “miss” around one-tenth of one percent of the total weight given to outcomes. (For � = 0.8,
we are missing 5 ⇥ 10�7 , which is truly insignificant.) We simulate for a variable number of
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trials—this number will be reported with the data—where, on each trial, we simulate a selection
of which hypothesis is µT and then see how the decisionmaker fares under the various heuristics
as far as date t = 64.

We simulate nine different heuristics: (1) Pay-for-itself (PfI); (2) Incremental-Contribution
(IC); (3) Simple Set Based (SSB); (4) Different-of-Means, Set-Based (DoM); (5) Adaptive
Myopia (AdM) (6) Harmonic Sampling (HAR); (7) Thompson Sampling (THO); (8) Upper-
Confidence-Bound (UCB); and (9) Myopia-Shortly (MyS). Note that some of these heuristics
require parametric specification: In the first three, onemust specify the dates atwhich evaluations
take place. For DoM, the threshold critical probabilitymust be specified; recall that for DoM,we
always take Tn = 1 + n . 43 In UCB, the threshold probability ✏ must be specified. In MyS, the
horizon m must be specified; we found that implementing Myopia-Shortly for anything larger
than m = 1 very difficult (and time consuming) to do. Hence, in all cases, MyS refers to the
Myopia-Shortly heuristic with m = 1.

With regard to the first four heuristics, we always take Tn = Ln for some single parameter
L . 44 (We expect that these heuristics will “want” smaller L for smaller � , something we
investigate later.)

Hence, in reporting results, we follow the sort of data supplied in Table 4a with a second set
of “heuristics’ parameters” as in Table 4b. This gives L , the threshold mean difference in DoM,
and the threshold probability ✏ for UCB. We also give two benchmarks for comparison with
out simulation results: The Static Myopic Value is the per-period payoff that can be achieved by
choosing in each period a toolkit that is optimal for the initial prior ⇡0 . 45 And the Clairvoyance
Value is the average payoff that would be received (per period) if the decision maker, prior to
the selection of K0 , was told which hypothesis µi is µT , where the averaging is with respect
to the decision maker’s initial prior.

K (PfI, IC, SSB) 4
threshold critical probability (DoM) 0.05

threshold probability in UCB 0.05
Static Myopic Value 8.1
Clairvoyance Value 8.6

Table 4b. Heuristics’ Parameters and Benchmarks, Example 5.1

And, following all the model data and the heuristics parameters, we present the simulation
results.
43 We reiterate the point made in fn.26: For very small T , the “logic” of using a classical difference-of-mean test is
very strained in our test problems, because the Normal variates assumption on with such tests are built is a very poor
approximation to the actual situation.
44 Since we begin with T = 0 , this means we gather L periods of data and do evaluations, gather L more and
reevaluate, and so forth.
45 In comparison, Adaptive Myopia chooses toolkits adapting to any information that arrives.
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The most important data are the average performances, measured by normalized discounted
sums of payoffs, of each of the nineheuristics. By normalized discounted sums of payoffs, we
mean (1� �) times the simple discounted sum of payoffs, averaged over the trials. 46 To get a
sense of how much variation there are in these summary statistics, we also provide the sample
standard deviations in these normalized discounted sums of payoffs. Note that we have these
results for each of the nine heuristics, and for each of three discound rates. Hence the data appear
as in Table 4c, which gives the results for our simulations of Example 4.1, where we simulated
for 1000 trials. The average values of the normalized discounted sum of payoffs are provided
in each cell of the left-hand matrix, with the sample standard deviations on the right. 47 Because
this problem is simple enough so that we can compute the fully optimal strategy, we provide the
simulated results of applying the optimal strategy in a penultimate row. (As we move to more
complex examples, this row will be missing.)

Average performance Standard deviations
 0.7 0.8 0.9 0.7 0.8 0.9

PfI 2.085 3.503 5.584 0.243 0.344 0.374
IC 2.095 3.504 5.547 0.113 0.162 0.210

SSB 2.095 3.504 5.547 0.113 0.162 0.210
DoM 3.659 4.849 6.305 1.250 1.422 1.386
AdM 8.100 8.100 8.091 0 0 0.000
HAR 4.161 5.137 6.379 1.191 1.034 0.723
THO 7.893 8.087 8.307 0.810 0.628 0.402
UCB 7.661 7.906 8.201 0.996 0.752 0.458
MyS 8.1 8.1 8.344 0 0 0.384

Optimal Value 8.1 8.168 8.37

Table 4c. Average performance of the heuristics, for ⇡0 = (0.5, 0.5) , Example 5.1, 1000 trials.

While the data in Table 4c provide the “answer” to the question, How well do the various
heuristics do, measured by the decision maker’s objective function, on this specific problem?,

46 (1) In case it is not obvious: Normalizing in this fashion means that the normalized discounted sum of payoffs
is set on the scale of the (unnormalized) payoffs in each period. If, for instance, the decision maker chooses toolkits
that give a constant payoff of 9 (say) in each period, then the normalized, discounted sum of her payoffs will be 9.

(2) To reiterate, for � = 0.9 , because we stop at t = 64 , we are missing around 0.1% of the total value. If you
look at the simulation results for Example 5.1 as presented in Table 4c, you see average performance results for AdM
of 8.1 for � = 0.7 and 0.8, and 8.091 for � = 0.9 . In fact, AdM for this problem chooses toolkit {y} in all time
periods for this problem—this toolkit yields no information, so the prior never changes—and toolkit {y} gives a net
payoff of 8.1 in each period. Hence, the results for � = 0.9 would also be 8.1 if we went out enough time periods
(beyond t = 64), so that the “missing weight” was smaller. In reporting later results, we “round up” results reported for
� = 0.9 to get an even number, for any heuristic that chooses in amanner that gives the same, certain payoff in each period.
47 Note that some of the sample standard deviations are zero. For MyS at � = 0.5 and 0.7 , in particular, this happens
because the heuristic calls for the selection of {y} , which provides no information, in all periods (as does the optimal
strategy for these discount rates).
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there are other data we can and sometimes do report, to help gain insights into the data provided
in Table 4c. In particular, Table 4c indicates that the four prior-free heuristics do significantly
worse than the four prior-based heuristics, and more so the smaller is � . This happens because
the prior-free heuristics take a while to “get started”: PfI, IC, and SSB all carry Kt = X for
t = 0, 1, 2, and 3, and, for small � , the first three periods can represent a large share of the
whole payoff. DoM, with its first revision at t = 2, does better in this regard. (And note that, as
implemented, HAR begins with K0 = X with probability one.)

Table 4d gives us data relevant to this point. It reports the sample means and standard
deviations for “snapshots” of how the heuristics performed at times t = 1, 4, 8, 16, 32, and 64.
Note that all the heuristics except for MyS make choices of Kt in ways that have nothing to do
with � , so we can report snapshot results for these heuristics in a single line; the choice of Kt

for MyS does depend on � , so we have three lines in Table 4d for MyS, one for each value of � .

Average payoffs in period Standard deviations
t=1 t=4 t=8 t=16 t=32 t=64 t=1 t=4 t=8 t=16 t=32 t=64

PfI 0.100 8.336 8.545 8.546 8.584 8.548 0 1.580 1.308 1.273 1.222 1.267
IC 0.100 8.382 8.458 8.382 8.434 8.370 0 1.057 0.950 1.057 0.985 1.073

SSB 0.100 8.382 8.458 8.382 8.434 8.370 0 1.057 0.950 1.057 0.985 1.073
DoM 0.100 7.685 7.929 8.069 8.401 8.458 0 2.292 1.840 1.703 1.436 1.365
AdM 8.100 8.100 8.100 8.100 8.100 8.100 0 0 0 0 0 0
HAR 4.158 7.179 7.665 7.981 8.276 8.455 4.213 3.270 2.863 2.366 1.965 1.523
THO 7.964 8.496 8.628 8.564 8.592 8.556 1.753 1.328 1.162 1.247 1.211 1.257
UCB 6.984 8.492 8.644 8.560 8.592 8.556 2.001 1.333 1.140 1.252 1.211 1.257

MyS =0.7 8.100 8.100 8.100 8.100 8.100 8.100 0 0 0 0 0 0
MyS =0.8  8.100 8.100 8.100 8.100 8.100 8.100 0 0 0 0 0 0
MyS =0.9 8.248 8.492 8.644 8.564 8.592 8.556 1.564 1.333 1.140 1.247 1.211 1.257

Table 4d. Snapshot performance of the heuristics, for ⇡0
1 = 0.5 , Example 5.1.

It is worth noting that the column for t = 64 can be used to answer the question, Does the
heuristic get to the “right” toolkit by t = 64? More generally, the full table tells us (roughly)
how long it takes for a heuristic to get to the right toolkit (if it does). Recall that the clairvoyance
value in this example is 8.6; if the mean performance at t = 64 is close to this value, then we
know that (in most of the iterations of our simulation, at least) the heuristic got there. So, for
instance, by t = 64, all of the heuristics except for AdM and MyS for � = 0.7 and 0.8 seem
to be “getting to the right answer,” most of the time. There are a couple of fine points to make
about this:

1. “Getting it right” is not the same thing as being optimal. While MyS for � = 0.7 and 0.8
and AdM are furthest from “getting it right” by t = 64, in fact they are making precisely
the choices that the optimal strategy would make for these discount rates, namely to always
choose the uninformative toolkit {y} . That is, the optimal strategy for this problem and
those values of � would not “get it right,” either.
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2. Note that THO, UCB, and MyS for � = 0.9 have average payoffs in period 8 that exceed
the clairvoyance value of 8.6. Bear in mind that these are simulation results; even if, in the
1000 trials, in 500 trials µT was µ1 (and in the other 500 it was µ2 , in those cases where
µT = µ1 (so that, presumably, the heuristics are leading the decision maker to choose {x}),
more than 90% of the 500 may have drawn vx(8) = 14, giving a net payoff 9 from {x} at
t = 8.

Tables 5 and 6 present similar data for Examples 5.2 and 5.3, respectively. We continue to
see results similar to those for Example 5.1: THO, UCB, and MyS vie for the top spot. The
prior-free heuristics generally do worse than the prior-based heuristics, but this is largely due
to their poor performance early on. We know from the propositions that HAR, THO, and UCB
will all “get it right” in the end,48 while there is no guarantee of this for MyS; in fact, simple
calculations show that, regardless of � , in these examples there is positive probability that, when
µT = µ2 , MyS will at some point recommend the uninformative {x} , which traps the decision
maker. 49 There are no guarantees that the four prior-free heuristicswill get it right in the end and,
in fact, since they offer no way back once a tool is dropped, there must be positive probability
that the decision maker winds up with the wrong tool kit. But the simulation results suggest that
this doesn’t happen very often, for these problems.

The performanceofAdaptiveMyopia (AdM) for these two examples should be regardedwith
caution. At the outset, in each example, the toolkits {x} and {x0} tie for the myopic optimum.
The way the simulation program was written chooses {x} , which is (of course) uninformative.
Had {x0} been chosen instead, the performance of AdM would look significantly better. One
might think of a hybrid form of AdM that avoids this issue. But it is worth observing that if, say,
cx = 4.9999 instead of 5, AdM performs as indicated, while if cx = 5.00001, AdM does much
better. The performance of AdM, and also UCB (and, to a lesser extent, MyS), is not continuous
in the parameters, even if discontinuities in information flow are not at issue.50

To readers of this version of the paper: We are posting an incomplete version of this paper
because co-author Francetich is on the job market, and this work represents both an important
part of his Ph.D. thesis from 2013 and a significant portion of the work he has done during his
first post-doctoral year. We are currently engaged in creating, simulating, and analyzing more
complex test problems. The discussion to follow will give you an indication of what we have
found so far, as well as where we believe this research is going.

Tables 7 and 8 present the results of simulation of two more-complex problems.

48 For UCB, this isn’t certain for a given threshold probability.
49 In Example 5.3, recommends K0 = {x0} and continued use of {x0} , as long as the decision maker has at least as
many 20’s as 10’s. But if she ever sees more 10’s than 20’s—which happens with probability one if µT = µ1 and with
strictly positive probability (strictly less than one) if µT = µ2—MyS tells her to choose {x} .
50 Of course, discontinuities in information flows, caused by small changes in the v -vectors, can have discontinuous
impact on any of the prior-based heuristics.
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Snapshots of average payoffs (and standard deviations)---1000 iterations:
Average payoffs in period Standard deviations

t=1 t=4 t=8 t=16 t=32 t=64 t=1 t=4 t=8 t=16 t=32 t=64
PfI 0.293 5.408 5.638 5.670 5.750 5.520 3.502 4.361 4.168 4.109 4.026 4.164
IC 0.293 5.408 5.638 5.670 5.750 5.520 3.502 4.361 4.168 4.109 4.026 4.164

SSB 0.293 5.464 5.674 5.688 5.720 5.514 3.502 4.084 3.950 3.940 3.913 4.044
DoM 0.293 4.572 5.413 5.745 5.789 5.559 3.502 4.565 4.214 4.037 3.983 4.125
AdM 3 3 3 3 3 3 0 0 0 0 0 0
HAR 2.757 4.163 4.907 5.230 5.479 5.403 4.681 4.291 4.121 4.106 3.992 4.080
THO 3.861 4.778 5.289 5.492 5.716 5.541 4.872 4.514 4.352 4.244 4.008 4.139
UCB 2.986 5.415 5.723 5.758 5.828 5.604 7.003 4.328 4.021 3.979 3.917 4.069

MyS =0.7 5.296 5.163 5.408 5.485 5.513 5.331 4.297 4.105 3.885 3.829 3.811 3.925
MyS =0.8   5.296 5.163 5.408 5.485 5.513 5.331 4.297 4.105 3.885 3.829 3.811 3.925
MyS =0.9 5.296 5.163 5.408 5.485 5.513 5.331 4.297 4.105 3.885 3.829 3.811 3.925

Basic data: Performance levels---1000 iterations
Tools     Hypotheses Average performance Standard deviation

x x' y m1 m2  0.7 0.8 0.9 0.7 0.8 0.9
v1 8 1 0.9 0.9 0.1 PfI 1.512 2.415 3.726 2.954 2.931 2.928
v2 8 15 1.1 0.1 0.9 IC 1.512 2.415 3.726 2.954 2.931 2.928

prior 0.5 0.5 SSB 1.518 2.424 3.735 2.942 2.897 2.851
cost 5 5 1.2 DoM 2.525 3.311 4.298 3.100 3.082 3.005

AdM 3 3 3 0 0 0
Heuristics' Parameter and Benchmarks: HAR 2.668 3.265 4.058 3.082 2.985 2.860

K (PfI, IC, SSB) 4 THO 4.059 4.379 4.817 3.441 3.269 3.070
reshold critical probability (DoM) 0.05 UCB 4.098 4.525 5.033 4.632 4.115 3.517

threshold probability in UCB 0.05 MyS 4.539 4.805 5.076 4.077 3.675 3.245
Static Myopic Value 3 Optimal Value 4.644 4.925 5.31
Clairvoyance Value 5.8

Table 5. Simulation Results for Example 5.2.

Snapshots of average payoffs (and standard deviations)---1000 iterations:
Average payoffs in period Standard deviations

t=1 t=4 t=8 t=16 t=32 t=64 t=1 t=4 t=8 t=16 t=32 t=64
PfI 7.485 8.895 8.775 8.855 9.330 9.345 2.500 3.757 3.833 3.870 4.089 4.039
IC 7.485 10.530 9.990 10.110 10.370 10.230 2.500 4.115 4.149 4.148 4.133 4.143

SSB 7.485 10.215 10.075 10.095 10.335 10.195 2.500 2.947 2.954 2.954 2.936 2.949
DoM 7.485 9.031 8.999 9.303 9.864 10.060 2.500 3.391 3.459 3.530 3.602 3.614
AdM 10 10 10 10 10 10 0 0 0 0 0 0
HAR 8.898 9.675 9.819 9.904 10.246 10.193 3.285 2.807 2.631 2.615 2.422 2.345
THO 9.995 10.370 10.165 10.080 10.405 10.530 3.666 3.539 3.444 3.586 3.482 3.540
UCB 10.170 10.450 10.115 10.050 10.500 10.615 5.000 4.982 4.974 4.870 4.233 3.682

MyS =0.7 10.140 10.265 10.095 10.020 10.315 10.155 3.563 3.157 2.815 2.551 2.254 2.158
MyS =0.8 10.140 10.265 10.095 10.020 10.315 10.155 3.563 3.157 2.815 2.551 2.254 2.158
MyS =0.9 10.140 10.265 10.095 10.020 10.315 10.155 3.563 3.157 2.815 2.551 2.254 2.158

Basic data: Performance levels---1000 iterations
Tools     Hypotheses Average performance Standard deviation

x x' x'' m1 m2  0.7 0.8 0.9 0.7 0.8 0.9
v1 15 10 0.9 0.6 0.4 PfI 7.776 8.004 8.360 1.340 1.342 1.416
v2 15 20 1.1 0.4 0.6 IC 8.131 8.586 9.224 1.191 1.088 0.998

prior 0.5 0.5 SSB 8.114 8.571 9.222 1.153 0.989 0.803
cost 5 5 0.1 DoM 8.195 8.457 8.823 1.388 1.355 1.320

AdM 10 10 10 0 0 0
Heuristics' Parameters and Benchmarks: HAR 8.790 9.089 9.463 1.241 1.042 0.786

K (PfI, IC, SSB) 4 THO 10.116 10.112 10.101 1.518 1.252 0.948
hold critical probability (DoM) 0.05 UCB 10.130 10.121 10.105 2.261 1.886 1.437
threshold probability in UCB 0.05 MyS 10.15 10.16 10.16 1.942 1.504 1.02

Static Myopic Value 10 Optimal Value 10.067 10.09 10.152
Clairvoyance Value 10.5

Table 6. Simulation Results for Example 5.3.
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Basic data: Performance levels---1000 iterations
Tools     Hypotheses Average performance Standard deviation

1 2 3 4 5 m1 m2 m3  0.7 0.8 0.9 0.7 0.8 0.9
v1 25 0 14 6 9 0.4 0.25 0.1 PfI 1.557 2.679 4.292 2.812 2.612 2.414
v2 0 25 6 14 9 0.4 0.25 0.1 IC 1.712 2.942 4.695 2.568 2.153 1.682
v3 0 0 14 6 9 0.1 0.25 0.1 SSB 1.753 2.998 4.750 2.598 2.207 1.764
v4 0 0 6 14 9 0.1 0.25 0.7 DoM 0.982 1.446 2.283 2.651 2.408 2.161

prior 0.85 0.05 0.1 AdM 7.189 7.195 7.216 2.481 1.982 1.434
cost 6 6 4 4 2 HAR 3.707 4.581 5.739 2.873 2.494 1.924

THO 6.647 6.823 7.153 4.958 4.060 2.869
Heuristics' Parameters and Benchmarks: UCB 6.658 6.860 7.178 2.609 2.352 1.966

K (PfI, IC, SSB) 4 MyS 7.315 7.259 7.500 2.883 2.739 2.061
critical probability (DoM) 0.05

threshold probability in UCB 0.05
Static Myopic Value 7.127
Clairvoyance Value 7.99

Snapshots of average payoffs (and standard deviations)---1000 iterations:
Average payoffs in period Standard deviations

t=1 t=4 t=8 t=16 t=32 t=64 t=1 t=4 t=8 t=16 t=32 t=64
PfI 0.063 6.624 6.374 6.718 6.021 6.775 4.869 9.847 10.127 10.182 10.351 10.030
IC 0.063 7.123 7.176 7.472 6.748 6.940 4.869 7.302 7.494 7.110 7.118 6.776

SSB 0.063 7.357 7.132 7.559 6.800 6.978 4.869 7.787 7.824 7.665 7.597 7.283
DoM 0.063 1.828 2.708 3.826 4.218 5.132 4.869 7.620 7.890 8.186 8.325 8.154
AdM 7.344 7.262 7.261 7.315 7.340 7.413 3.925 5.288 5.356 5.269 5.164 5.06
HAR 4.100 6.325 6.775 7.359 7.317 8.288 6.640 8.041 8.529 8.353 8.731 8.167
THO 6.625 7.145 6.915 7.783 7.611 8.332 10.132 9.820 10.060 9.421 9.567 8.872
UCB 6.479 7.262 7.158 7.617 7.531 8.316 7.982 8.005 8.876 9.295 9.651 8.913

MyS =0.7 7.574 7.592 7.378 7.512 7.451 7.822 6.462 6.613 6.995 6.771 6.839 6.43
MyS =0.8  7.229 7.718 7.386 7.863 7.607 8.016 6.335 7.471 8.243 7.772 7.998 7.561
MyS =0.9 7.229 7.880 7.536 7.915 7.484 8.155 6.335 7.792 8.719 8.381 8.753 8.106

Table 7. Simulation Results for Example 6.1, a Three-hypothesis Example.

Basic data: Performance levels---1000 iterations
Tools Hypotheses Average performance Standard deviation

1 2 3 4 5 m1 m2 m3 m4  0.7 0.8 0.9 0.7 0.8 0.9
v1 25 0 14 6 9 0.4 0.25 0.15 0.2 PfI 2.376 3.275 4.653 4.714 4.382 4.167
v2 0 35 6 14 9 0.4 0.25 0.15 0.2 IC 2.823 4.017 5.785 4.524 3.970 3.350
v3 0 0 14 6 9 0.1 0.25 0.1 0.5 SSB 2.796 3.973 5.708 4.487 3.915 3.300
v4 0 0 6 14 9 0.1 0.25 0.6 0.1 DoM 1.962 2.397 3.339 4.158 3.672 3.253

prior 0.4 0.2 0.2 0.2 AdM 8.316 8.316 8.369 5.321 4.437 3.464
cost 6 6 4 4 2 HAR 4.802 5.647 6.782 4.630 4.012 3.285

THO 6.818 6.982 7.390 5.452 4.637 3.771
Heuristics' Parameters: UCB 5.646 6.021 6.819 7.725 6.502 5.007

K (PfI, IC, SSB) 4 MyS 8.438 8.511 8.708 4.897 4.088 3.332
critical probability (DoM) 0.05

threshold probability in UCB 0.05  
Static Myopic Value 8.46
Clairvoyance Value 9.7

Snapshots of average payoffs (and standard deviations)---1000 iterations:
Average payoffs in period Standard deviations

t=1 t=4 t=8 t=16 t=32 t=64 t=1 t=4 t=8 t=16 t=32 t=64
PfI 0.763 6.086 6.391 6.382 7.187 6.942 8.7154 12.539 11.823 11.643 11.184 11.020
IC 0.763 8.134 8.251 8.059 8.417 8.494 8.7154 10.418 9.711 9.697 9.029 8.732

SSB 0.763 7.953 8.242 7.871 8.204 8.364 8.7154 9.979 9.376 9.298 8.751 8.598
DoM 0.763 2.612 3.340 4.553 6.441 7.027 8.7154 9.610 9.417 9.585 9.595 9.652
AdM 7.968 8.299 8.381 8.256 8.633 8.711 11.522 9.6442 8.7515 8.3699 8.0433 8.0348
HAR 4.631 7.068 7.608 8.096 8.736 9.084 10.107 10.102 9.981 9.821 9.437 9.274
THO 6.026 7.183 7.438 7.622 8.636 9.257 11.250 11.502 10.927 10.601 10.352 10.089
UCB 4.505 6.353 7.042 7.785 8.867 9.259 15.305 12.976 12.062 10.635 9.296 9.769

MyS =0.7 7.990 8.750 8.592 8.358 9.134 9.224 9.815 10.081 9.9197 9.6415 9.3776 9.1672
MyS =0.8  7.990 8.679 8.634 8.476 9.071 9.251 9.815 9.8318 9.7092 9.7503 9.6718 9.4987
MyS =0.9 7.684 8.789 8.597 8.640 9.319 9.370 10.968 10.501 10.007 9.998 9.688 9.549

Table 8. Simulation Results for Example 6.2, a Four-hypothesis Example.
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1. The test problem depicted in Table 7, labelled Example 6.1, has three hypotheses (the
different µ’s); the problem in Table 8, labelled Example 6.2, has four. In our simulation
program, as currently written, four hypotheses is the most we can accomodate: For purposes
of runningMyS, beforewe begin to iterate in the simulation, we compute bestmyopic-choice
values for a grid of posteriors with fineness 0.01. That is, we find for every posterior of the
form (0.1n1, 0.1n2, . . .) the value of the (myopically) optimal kit, where ni ranges between
0 and 100 and i indexes the various µ’s. Since the probabilities must sum to 1, this means
that with I hypotheses, we need around 100I�1 optimizations conducted. For I = 3, this
is 10,000 optimizations; for I = 4, one million. We haven’t dared to try I = 5 on our local
desktops. (None of the other heuristics present much of a problem for large I .)

We use these values in MyS as follows: Given a “postion,” which is a current posterior,
we compute for each kit and each of the possible v vectors what the next posterior will
be. (Since different kits have different informational content, we must do this for each kit
separately.) And for the continuation value in the MyS calculation, we round each of these
“post-posteriors” down to the nearest 0.01 in all but the last component (which, of course,
is rounded up).

This, of course, is for the purpose of finding, given the current posterior, the “best”
kit under MyS. Note that in these more complex examples, MyS seems to be emerging
as the best of our heuristics, and increasingly so the more complex is the test problem.
We need to do a lot more simulations, but our working conjecture is that this will be true,
unless we construct a test problem with the objective of making one of the other heuristics
look good. The point here is that insofar as MyS looks better, perhaps a cruder form of
MyS—say, where we compute continuation values on a grid of fineness 0.1 and linearly
interpolate to get approximations to the “true” MyS continuation value—will continue to
produce recommendations that, when implemented, do nearly as well as MyS for a finer
grid. This is clearly a conjecture worth pursuing.

2. In Table 7, AdMdoes slightly better than doTHOandUCB; inTable 8, AdMdoes signicantly
better. (A back-of-the-envelope comparison of the mean performance levels, assuming
an equal sample standard deviations of 3.3, gives a Student’s t of 6.63 in comparing the
performance of AdMand THO, THObeing the closer to AdMof the two. Of course, a paired
sample test of the difference in means would be better, and we will conduct this. But with
a t of 6.63, it is pretty clear that AdM is beating the socks off of both THO and UCB. And,
recall, AdM is the heuristic based on a philosophy of, Just ignore the exploitation/exploration
dilemma and go for exploitation.

Now, it could be that although AdM is not “consciously” trying to gain information, in
this test problem, the information is coming in, nonetheless. So we redo the analysis of this
problem but with a prior assessment of (0.15, 0.25, 0.25, 0.35). For this prior, the initial best
tool-kit is {x5} , which provides no information. Hence, for this initial assessment, AdM
is providing no information at all. The deck, in other words, is stacked against AdM doing
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well.
The results are shown in Table 9.

Basic data: Performance levels---1000 iterations
Tools Hypotheses Average performance Standard deviation

1 2 3 4 5 m1 m2 m3 m4  0.7 0.8 0.9 0.7 0.8 0.9
v1 25 0 14 6 9 0.4 0.25 0.15 0.2 PfI 0.645 1.670 3.203 4.082 3.493 3.077
v2 0 35 6 14 9 0.4 0.25 0.15 0.2 IC 1.170 2.552 4.557 4.108 3.436 2.655
v3 0 0 14 6 9 0.1 0.25 0.1 0.6 SSB 1.193 2.588 4.598 4.056 3.348 2.551
v4 0 0 6 14 9 0.1 0.25 0.6 0.1 DoM 0.558 1.232 2.453 3.755 3.286 2.937

prior 0.15 0.25 0.25 0.35 AdM 7.000 7.000 6.993 0 0 0
cost 6 6 4 4 2 HAR 3.233 4.245 5.564 4.194 3.500 2.651

THO 5.914 6.045 6.372 3.865 3.153 2.369
Heuristics' Parameters: UCB 3.195 4.029 5.282 6.267 4.827 3.342

K (PfI, IC, SSB) 4 MyS 7.248 7.387 7.538 4.371 3.515 2.605
critical probability (DoM) 0.05

threshold probability in UCB 0.05
Static Myopic Value 7
Clairvoyance Value 8.34  

Snapshots of average payoffs (and standard deviations)---1000 iterations:
Average payoffs in period Standard deviations

t=1 t=4 t=8 t=16 t=32 t=64 t=1 t=4 t=8 t=16 t=32 t=64
PfI -1.234 4.784 5.188 5.245 5.608 5.945 8.372 11.434 10.773 10.306 9.584 9.371
IC -1.234 7.164 7.260 7.212 7.369 7.547 8.372 9.037 8.525 8.008 6.998 6.787

SSB -1.234 7.242 7.399 7.296 7.375 7.575 8.372 8.694 8.170 7.829 6.812 6.700
DoM -1.234 1.772 3.452 4.398 5.711 6.885 8.372 8.885 8.928 8.713 8.181 8.081
AdM 7.000 7.000 7.000 7.000 7.000 7.000 0 0 0 0 0 0
HAR 2.623 5.888 7.234 7.381 7.450 7.783 9.676 8.515 8.224 7.763 6.834 6.917
THO 5.518 5.833 6.697 7.114 6.888 8.173 8.636 8.666 8.487 8.826 8.469 8.343
UCB 0.870 5.119 6.648 6.875 7.405 8.284 15.010 10.470 8.940 7.699 6.971 7.759

MyS =0.7 6.432 7.476 7.793 7.677 7.522 7.859 8.800 7.573 7.309 6.822 6.172 6.258
MyS =0.8  6.432 7.489 7.916 7.771 7.481 7.754 8.800 7.600 7.454 7.068 6.274 6.323
MyS =0.9 6.432 7.513 7.891 7.740 7.581 7.988 8.800 8.080 7.672 7.239 6.582 6.515

Table 9. Simulation Results for Example 6.2 with a Different Prior

Once again, AdM is beating THO and UCB. And this time, it isn’t because AdM is
getting lucky in the information it accumulates. So, we hypothesize, it isn’t that AdM is
good, but that, for these parameters, THO and UCB are bad. They are bad in the sense
that they are taking too long to get the information, given the discount rates. The snapshots
confirm our earlier theoretical results; THO and UCB are getting the information eventually:
They are outperforming the other heuristics (includingMyS andAdM) in the later periods.51
So, perhaps, the way to improve their performance is to “speed them up.” In particular, it
might make sense to set the threshhold probability in UCB somewhat higher. We reran the
test problem of Table 9, but with a threshold probability for UCB of 0.1, and the average
performance of UCB improved from 5.28 (in Table 9) to 5.9. (We will continue to explore
this issue.)

3. Going back to Table 7, the snapshots indicate that the prior-free heuristics IC and SSB are
doing somewhat worse at dates 32 and 64 than they are doing at dates 16 and, perhaps,

51 The theory suggests that HAR will do likewise, eventually. But “eventually” for HAR, for this example, is later
than it is for THO and UCB.
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8. A potential weakness of these heuristics is that they give “no way back” once a tool
is discarded. So what we may be seeing in this simulation (to be investigated) may be an
instance of this weakness, where, at least some of the time, toolkits are shrinking too much.

The reader can no doubt see other hypotheses worthy of investigation via these simulations. So,
at this point, all we can do is say, Stay tuned.
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Appendix
In the proofs of some of the propositions, we employ a particular instantiation of the decision

maker’s probabilitymodel. The state space is, at a minimum, ⌦ := {1, . . . , I}⇥ ((R+)X ){0,1,...},
with typical element ! = (i, v0, v1, . . .) . Write ⌦i as the subset of ⌦ consisting of points whose
first component is i , and assign probability to ⌦ so that the probability of ⌦i is ⇡i and,
conditional on being in ⌦i , the probability distribution on the sequence {vt} renders these
vectors i.i.d. with distribution given by µi . Of course, the event µT = µi is, in this state space,
just ⌦i . When dealing with harmonic sampling and Thompson sampling, in which the decision
maker chooses Kt randomly, the “date t” component vt is supplemented by a uniform-[0, 1]
random variate, each such independent of all other sources of randomness, which can be used
to affect whatever randomized choices are needed.

We denote by P the probability of various events defined on ⌦ , according to the decision
maker’s subjective prior assessment, while Pi will denote probability conditional on the event
⌦i = {! : µT = µi}. We denote expectation with respect to P by E , and expectation with
respect to Pi by Ei . As long as P(⌦i) (which is ⇡0i ) is strictly positive, amaintainedhypothesis,
any statement that is true almost surely with respect to P is true almost surely with respect to
Pi . Conversely, any statement that is a.s. true with respect to each Pi is true P-a.s.

In what follows, we examine a number of random variables and random processes defined
on this state space. For instance, we often deal with the decision maker’s posterior assessment
⇡t , with i th component ⇡t

i . Note that the value of such random variables depends on ! , of
course, but also on the decision rule or heuristic the decision maker employs for choosing her
toolkits as a function of things she has observed.

The � -field generated by all information available to the decision maker after vt is realized
(and she observes as much of this as is provided given her choice of Kt ) will be denoted by
Ft+1 . Hence F0 is the trivial � -field, and ⇡t is Ft -measurable. But vt , or rather those parts of
vt that she observes, is only Ft+1 measurable. Of course, the filtration {Ft} is affected by her
choice of heuristic. Note that where she chooses Kt randomly, the choice of Kt is incorporated
in Ft+1 but, typically, not in Ft .

But, regardless of her heuristic or decision rule, relative to her subjective probability assess-
ment, her sequence of posteriors {⇡t} forms a vector martingale relative to the filtration {Ft} .
(This well-known result is a consequence of the law of iterated expectations.) Since it is bounded
below by 0 and above by 1, it converges to some ⇡1 P-a.s.: Letting F1 be the total of all
information she possesses, ⇡1 closes the martingale of posterior assessments.

There are two more general results that we will need.

Lemma 1. For each i = 1, . . . , I , the two (one-dimensional) stochastic processes {⇡t
i ; t =

0, . . . ,1} and {ln(⇡t
i ); t = 0, . . . ,1} are submartingales (for the filtration {Ft}) under the

probability measure Pi . (See Francetich and Kreps, 2014.)
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Lemma 2. If {⇣t; t = 0, 1, . . .} is a martingale with uniformly bounded increments, then

lim
t!1

1
t
⇣t = 0

almost surely. 52

The proof of Proposition 2
Let G1 be the sigma-field generated by the data received at dates 1, 2, 22, . . . only. (These

are the dates, recall, when the decisionmaker chooses Kt = X .) Of course, G1 is a sub-sigma-
field of F1 . Hence

P
⇥
{µT = µi}

��G1
⇤
= E

⇥
P[{µT = µi}|F1]

��G1
⇤
= E

⇥
⇡1i

��G1
⇤
.

But the nature of the information in G1 , combinedwith our assumption that the µi distributions
are all distinct, ensures that, almost surely,

P
⇥
{µT = µi}

��G1
⇤
=
⇢
1, on ⌦i, and
0, on the complement of ⌦i.

Since the values of ⇡1i must lie between zero and one, it must be that (a.s.)

⇡1i =
⇢
1, on ⌦i, and
0, on the complement of ⌦i.

Hence,

lim
t!1

⇡t
i =

⇢
1, on ⌦i, and
0, on the complement of ⌦i , P� a.s.

This ensures that along any sample path for which this convergence happens, if K 62 K⇤i , then
a time must come when (outside of dates of the form 2n ) K is no longer chosen; that is, along
almost every sample path belonging to ⌦i , for all large t not of the form 2n , Kt 2 K⇤i .

Write

1
T + 1

TX
t=0

W (vt,Kt) =
1

T + 1

TX
t=0

⇥
W (vt,Kt)� w(⇡t,Kt)

⇤
+ 1

T + 1

TX
t=0

w(⇡t,Kt).

52 See Neveu, (1975, Proposition VII-2-4).
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To complete the proof, we must show that the limit (in T ) of the left-hand side is w⇤ , almost
surely. We will do this by showing the limit of the first summation on the right-hand side is zero,
almost surely, while the limit of the second summation is w⇤ , also almost surely.

For the first summation, note that E[W (vt,Kt)|Ft] = w(⇡t,Kt) . Therefore, if we define
⇣T =

PT
t=0

⇥
W (vt,Kt)�w(⇡t,Kt)

⇤
, {⇣t, Ft+1} forms a bounded-increments martingale under

P . Apply Lemma 2.
As for the second summation, look (only) along sample paths for which the posteriors con-

verge. We know that along each such sample path that is in ⌦i , Kt 2 K⇤i eventually (in t),
for all t /= 2n . But then w(⇡t,K) converges (except for t = 2n ) to w⇤i . That is, for almost
every sample path, except for times t = 2n , w(⇡t,Kt) converges to w⇤ . Taking Cesàro sums
wipes out the effect of the terms in the sum for times t = 2n (the terms are uniformly bounded),
finishing the proof.

Concerning Proposition 3
There are two parts to the proof of the proposition. First, we show that, for each i , there

exists ✏ > 0 such that, if the decision maker’s posterior assessment ⇡t puts weight 1 � ✏ or
more on µT = µi , then the decision maker will optimally choose the single bundle K⇤

i 2 K⇤i at
date t ; Condition A ensures that K⇤i has but one bundle. Then, we show that if any bundle K0

is selected infinitely often, Condition B ensures that the decisionmaker’s posterior will converge
to the “truth”; that is,

lim
t!1

⇡t
i =

⇢
1, on ⌦i, and
0, on the complement of ⌦i.

These two together give the desired result.
For the first part, let B be an upper bound on the absolute value of the function w . Then, in

terms of future values, the best the decision maker can do relative to the worst that can happen
to her is bounded by 2B/(1 � �) . Suppose she reaches a point where her posterior assigns
probability 1� ✏ to µi being the truth, and (per Condition A) suppose that the (uniquely) best
toolkit K⇤

i for µi is � > 0 better under µi than is the second best toolkit under µi . Then,
by choosing any toolkit other than K⇤

i , she gives up an immediate expected return of at least
(1 � ✏)� � 2✏B , for a future gain that is bounded above by 2�B✏/(1 � �) . (Her expected
continuation value if she chooses any other toolkit is bounded above by what she would get if
she learns the true state with certainty, and her expected continuation value if she chooses K⇤

i

is bounded below by what she gets if she chooses K⇤
t for the rest of time. The bound given is

their difference, discounted by one period.) Hence, the net gain from choosing a bundle other
than K⇤

t is bounded above by

2�B✏

1� �
+ 2✏B � (1� ✏)� = ✏


2B + �(1� �)

1� �

�
� �.
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Hence, if

✏ <
�(1� �)

2B + �(1� �)
,

she is worse off for choosing something other than K⇤
i .

And for the second part, we repeat the argument given for Proposition 2, except now, if K0

is chosen infinitely often, we let ⌧n be the n th time that K0 is chosen and we let G1 be the
� -field generated by {W (v⌧n ,K0);n = 1, 2, . . .} . On the subspace ⌦i , the successive averages

1
n

nX
m=1

W (v⌧m ,K0)

converge almost surely to w(µi,K0) , and these are (by Condition B) different in different ⌦i ,
so the limiting average identifies a.s. (conditional on G1 ) which µi is the true µT (that is, to
which ⌦i the state ! belongs). Hence, on the event where K0 is chosen infinitely often, the
decision maker’s posterior converges to a point mass on the truth and, by the first paragraph, it
must be that K0 is the optimal bundle for whichever is the true µi and, moreover, that K0 must
eventually be the only toolkit that is chosen.

Proof of Proposition 4
For P-almost-every sample path of the {vt} process, for each K ✓ X ,

lim
T!1

1
T + 1

TX
t=0

W (vt,K) = w(µT ,K).

Note that this is about a fixed K and not Kt , so this is a direct consequence of DeFinetti’s
Theorem. Discard from ⌦ any sample paths for which this is not true for any K .

Hence, for every sample path for which some toolkit K̂ is the final toolkit, for every K ✓ K̂ ,
the empirically observed averages of W (vt,K) converge to w(µT ,K). Now suppose that for
some sample path along which K̂ is the final toolkit and for some Ǩ ✓ K̂ , w(µT , Ǩ) >
w(µT , K̂) . Then along this sample path, for all T sufficiently large

1
T

T�1X
t=0

W (vt, Ǩ) >
1
T

T�1X
t=0

W (vt, K̂). (A.1)
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In particular, this will be true for all Tn , for sufficiently large n . But it must also be true that,
for each x 2 K̂ ,

I(x, K̂) = 1
Tn

Tn�1X
t=0

⇥
W
�
vt, K̂

�
�W

�
vt, K̂ \ {x}

�⇤
� 0. (A.2)

Let x1, x2, . . . , xm be an enumerationof K̂\Ǩ , and temporarily letK(i) = K̂\{x1, . . . , xi} ,
for i = 1, . . . ,m , where we use K(0) for K̂ . Property (4.3) implies that for i = 1, . . . ,m� 1
and for all v ,

W
�
v,K(0)

�
�W

�
v,K(0) \ {xi+1}

�
 W

�
v,K(i)

�
�W

�
v,K(i) \ {xi+1}

�
,

so that (A.2) implies that, for all sufficiently large n and for i = 1, . . . ,m� 1,

1
Tn

Tn�1X
t=0

⇥
W
�
vt,K(i� 1)

�
�W

�
vt,K(i)

�⇤
� 0. (A.3i)

Sum up the inequalities (A.3i) for i = 1, . . . ,m , and you get

1
Tn

Tn�1X
t=0

⇥
W
�
vt,K(0)

�
�W

�
vt,K(m)

�⇤
� 0,

which can be rewritten

1
Tn

Tn�1X
t=0

W
�
vt, K̂

�
� 1

Tn

Tn�1X
t=0

W
�
vt, Ǩ

�
,

which contradicts (A.1)

Concerning Proposition 5.
The proof of Proposition 5 for any heuristic that chooses Kt = X for infinitely many t

(even if the times t for which this is so are randomly determined) requires only very slight
modifications from the proof of Proposition 2 given earlier, so we leave this to the reader.

Proof of Proposition 6.
Recall that Ft is the � -field generated by all information received up to and including

the observation of (any observed parts of) vt�1 , so that ⇡t is Ft -measurable. In Thompson
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sampling, Kt is chosen randomly (prior to the realization of vt ) based on ⇡t ; and we need to
extend the notation accordingly: Let Gt be Ft augmented by the choice of Kt , so that F0 is
the trivial � -field, G0 refines F0 , F1 refines G0 , and so forth.

Discard from ⌦ the null-set of sample paths for which the decision maker’s posteriors ⇡t

do not converge. Recall that ⇡1 denotes the limit of these posteriors and, as a random variable,
closes the martingale of posterior assessments.

We would like to conclude that ⇡1i = 1⌦i , but (of course) the examples given in the body of
the paper shows that this is not true in general; Proposition 6 asserts that this is true if Condition
C holds, but not (necessarily) otherwise.

Suppose that, for some i , ⇡1i /= 1⌦i . Since 0  ⇡1i  1, this implies that
R

⌦i ⇡1i (!)P(d!)
 P(⌦i) = ⇡0i , and since E[⇡1i ] = ⇡0i , this implies that for some j /= i (where j 2 {1, . . . , I}),
P{µT = µj and ⇡1i > 0} > 0. (There may be many such j .) Fix some j so that this is so.
Since, on the event {µT = µj and ⇡1i > 0} , K⇤

i is chosen with strictly positive probability
bounded away from zero for all dates sufficiently large (large enough so that ⇡t

i > ⇡1i /2, say),
K⇤

i will be chosen infinitely often for a.e. ! 2 P{µT = µj and ⇡1i > 0}. By the sort of
argument given in the proof of Proposition 2, then, the decision maker asymptotically learns
the full distribution of generated by K⇤

i on this event. Hence, on this event, the distribution
of W (v,K⇤

i ) must be the same under µj as under µi , for otherwise (on this event, which
is a subevent of ⌦j ), she would asymptotically come to realize that µT is not µi , and ⇡t

i

would asymptotically approach zero. This would contradict Condition C; if Condition C holds,
⇡1i = 1⌦i .

And what if Assumption C does not hold? Suppose that, for some ` , ⇡1` /= 1⌦` (so
Assumption C cannot hold). Then we know that there must be at least one j /= ` such that
P{µT = µj and ⇡1` > 0} > 0.

Define a binary relation � on {1, . . . , I} :

i � j if P{µT = µj and ⇡1i > 0} > 0.

Note that we allow j = i in this definition. And, in fact, it must be true that i � i : Lemma 1
given at the start of the Appendix states that, with respect to Pi , {⇡t

i ; t = 0, 1, . . .} is a closed
submartingale. Therefore, Ei[⇡1i ] � ⇡0i > 0, and so ⇡1i must be strictly positive with positive
probability on ⌦i .

Let �̄ be the transitive closure of � . For each i , let I(i) = {j : i �̄ j} and let ⇤i =
[j2I(i)⌦j . (Note that i 2 I(i) .) We assert that for each i ,

X
j2I(i)

E[⇡1j · 1⇤i] =
X

j2I(i)

⇡0j . (A.4)
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It is of course true that E[⇡1j ] = ⇡0j , since ⇡1 closes the martingale of posterior assessments.
The point is that for all j 2 I(i) , ⇡1j = 0 on the complement of ⇤i , so omitting the complement
of ⇤i in the integrals on the left-hand side loses nothing.

Interchange the summation and the integral on the left-hand side of (A.4):

E

2
41⇤i

X
j2I(i)

⇡1j

3
5 = X

j2I(i)

⇡0j .

Since E[1⇤i] =
P

j2I(i) ⇡
0
j , this implies that, for every i ,

X
j2I(i)

⇡1j = 1 a.e. on ⇤i. (A.5)

Now go back to any ` for which ⇡1` /= 1⌦` , and take any i /= ` such that ` � i . Apply
(A.5) for this specific i . Since ⇡1` > 0 with positive probability on ⌦i ✓ ⇤i , we conclude that
` 2 I(i) . Hence, for every i /= ` such that ` � i , there is a chain ` = `0 � i = `1 � `2 � . . . �
`m = `.

Consider any pair i and j , i /= j , such that i � j . We know from the last part of the
argument where we assumed that Condition C holds that the distribution of W (vt,K⇤

i ) under µi

must be the same as under µj . This implies that w⇤i = wj(K⇤
i ) and, of course, wj(K⇤

i )  w⇤j .
Applying this to the cycle created last paragraph, we have

w⇤` = wj(K⇤
` )  w⇤j  w⇤`1  . . .  w⇤i ,

and so we conclude all the weak inequalities must equalities. To summarize this part of the
argument:

If i � j or, equivalently, if P{µT = µj and ⇡1i > 0} > 0 , then w⇤i = wj(K⇤
i ) = w⇤j .

For the remainder of the proof, we suppose that µT is, in fact, µi : That is, we show what
happens on ⌦i , for arbitrary i .

Define random variables Yj(t) := 1{Kt=K⇤
j }W (vt,K⇤

j ) and Y (t) :=
PI

j=1 Yj(t) . That is,
Y (t) is the decision-maker’s actual net payoff in period t . The limit of the Cesàro sums of
the Y (t) (in which we are interested) is the sum of the limits of the Cesàro sums of the Yj(t) ,
assuming that they exist, so we’ll look at those.

The limit of the Cesàro sums of the Yj(t) , or limT!1
hPT

t=0 Yj(t)/(T + 1)
i
, is

lim
T!1

1
T + 1

TX
t=0

⇥
Yj(t)� ⇡t

jwi(K⇤
j )
⇤
+ lim

T!1

1
T + 1

TX
t=0

⇡t
jwi(K⇤

j ), (A.6)
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assuming both limits exist.
And, under Pi , they do (almost surely): To begin, compute

Ei ⇥Yj(t)� ⇡t
jwi(K⇤

j )
��Ft

⇤
=

Ei⇥1{Kt=K⇤
j }W (vt,K

⇤
j )� ⇡t

jwi(K⇤
j )
��Ft

⇤
=

Ei
h
Ei⇥1{Kt=K⇤

j }W (vt,K
⇤
j )|Gt

⇤���Ft

i
� ⇡t

jwi(K⇤
j ),

(A.7i)

because ⇡t is Ft -measurable and wi(K⇤
j ) is a (deterministic) scalar. Moreover, the event

{Kt = K⇤
j } is Gt -measurable, so the string of equalities in (A.7i) continues

= Ei
h
1{Kt=K⇤

j }E
i⇥W (vt,K

⇤
j )
��Gt

⇤���Ft

i
� ⇡t

jwi(K⇤
j ). (A.7ii)

Under Thompson sampling and on the event ⌦i , the value of vt is independent of all in-
formation in Gt and is distributed according to µi , so Ei[W (vt,K⇤

j )|Gt] = wi(K⇤
j ) . And

Ei[1Kt=K⇤
j
|Ft] = ⇡t

j . Hence, the expression in (A.7ii) is 0. But this implies that if we let
⇣T =

PT
t=0[Yj(t)� ⇡t

jwi(K⇤
j )] , {⇣T } is a martingale with bounded increments with respect to

Pi . Hence, Lemma 2 at the start of the Appendix ensures that the limit of the Cesàro sums of
{⇣T } is almost surely 0 (under Pi ).

Hence, we are left with

lim
T!1

1
T + 1

TX
t=0

⇡t
jwi(K⇤

j ).

We know that, for every sample path, the sequence ⇡t
j converges to ⇡1j . So along each sample

path, this Cesàro limit is just ⇡1j wi(K⇤
j ) .

If ⇡1j = 0, this is zero. If ⇡1j > 0, then we know from our earlier argument that (for almost
every sample path) wi(K⇤

j ) = w⇤i . And so, when we recompose the sum of these Cesàro sums
of the Yj(t) to find the limit of the Cesàro sums of the Y (t) , we get

lim
T!1

1
T + 1

TX
t=0

Y (t) = lim
T!1

1
T + 1

TX
t=0

IX
j=1

Yj(t) =
IX

j=1

⇡1j wi(K⇤
j ) = w⇤i .

Proof of Proposition 7.
(Having been very careful with the details in the proof of Proposition 6, we are a bit more

discursive in this proof.)
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Fix the ✏ hurdle rate and some i . (Assume that ✏ < 1/I , so the decision maker never finds
herself in a situation in which all hypotheses have been deemed to be implausible.) We will
discuss what happens on ⌦i or, equvalently, under Pi .

We know that the posteriors ⇡t converge to some ⇡1 , Pi -a.s.. Divide sample paths in ⌦i

into two events, those for which ⇡1i > ✏ , and those for which ⇡1i  ✏ .
On the first of these events, we assert that the limit of the Cesàro sums of payoffs converges to

w⇤ = w⇤i , P
i -a.s. (That is, the probability of this event under Pi is the same as the probability

of this event intersected with the event where the limit of the Cesàro sums of payoffs converges
to w⇤i .) Once we have shown this, we need only show that the probability of the complementary
event is bounded above by some estimate that goes to zero as ✏ goes to zero. Since the latter
step is easy, we do it first: Lemma 1 tells us that {ln(⇡t

i ); t = 0, 1, . . . ,1} is a submartingale
under Pi . Hence,

Ei⇥ ln(⇡1i )⇤ � ln(⇡0i ).
The integrand is bounded above by zero, so the integral over any subset of ⌦i must satisfy the
same inequality. Therefore,

Ei
h
ln(⇡1i )1{⇡1i ✏}

i
� ln(⇡0i ).

But an obvious upper bound on the left-hand side integral is Pi{⇡1i  ✏} ⇥ ln(✏) , and so we
have

Pi�⇡1i  ✏
 
 ln(⇡0i )

ln(✏)
,

which has limit 0 as ✏ # 0.
Now consider the event {⇡1i > ✏} . The only way in which the decision maker could fail

to be choosing K⇤
i eventually (for all t beyond a certain point) is if, for some j /= i , she is

choosing K⇤
j infinitely often. Suppose she is choosing K⇤

j infinitely often. For this to be true,
it must be that
1. ⇡1j � ✏ , for otherwise, past some point in time, µj will forever after be deemed implausible
and K⇤

j will not be a candidate for Kt , and
2. w⇤j � w⇤i , for otherwise, once ⇡t

i is greater than ✏ and remains there forever after, K⇤
j will

not be selected as K⇤
i offers a better (optimistic) prospect.

Now if K⇤
j is selected infinitely often, the decision maker sees infinitely many draws of

the random variable W (vt,K⇤
j ) . By computing sample means, she learns wi(K⇤

j ) , P
i -almost

surely. It can’t be that wi(K⇤
j ) < w⇤i  w⇤j , for the data would then tell her that µT is not

µj , and ⇡t
j would have to approach zero. Since wi(K⇤

j )  w⇤i , the only possibility is that
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wi(K⇤
j ) = w⇤i (and is equal to w⇤j , since otherwise the decision maker would recognize the

µT /= µj ).
But this says that any K⇤

j that is selected infinitely often produces, under Pi , the same
expected per period return as w⇤i . The argument used in the proof of Proposition 6 is then easy
adapted to show that the Cesàro sums of payoffs must have limit w⇤i .
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