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Abstract

We consider a decision maker who ranks actions according to the smooth ambiguity

criterion of Klibano¤ et al. (2005). An action is justi�able if it is a best reply to some

belief over probabilistic models. We show that higher ambiguity aversion expands the

set of justi�able actions. In turn, this implies that higher ambiguity aversion expands

the set of rationalizable actions of a game. Our results follow from a generalization of

the duality lemma of Wald (1949) and Pearce (1984).

1 Introduction

In this paper we consider a decision maker (DM) who ranks alternatives under uncertainty.

The DM holds subjective beliefs over a set of probabilistic models � � �(S), where S is

a set of states of nature, or actions of an opponent in a game. We assume that the DM

ranks choices according to the smooth ambiguity criterion of Klibano¤ et al. (2005). With

this, we show that higher ambiguity aversion expands the set of actions that are best replies

to at least one belief; for brevity, we call such actions �justi�able.�Empirically, they are

the actions that an outside observer can infer as possible from the knowledge of the DM

attitudes toward uncertainty. Our result shows that such inference becomes rougher as

ambiguity aversion increases. In turn, this implies that higher ambiguity aversion expands

the set of rationalizable actions of a game, where the rationalizability concept is modi�ed

�First draft: September 2014. We thank Nicodemo De Vito, Amanda Friedenberg, and Jonathan Wein-

stein for their comments. Pierpaolo Battigalli acknowledges the �nancial support of ERC (grant 324219),

Simone Cerreia-Vioglio and Fabio Maccheroni of MIUR (PRIN 20103S5RN3_005), and Massimo Marinacci

of AXA Research Fund.
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to take into account ambiguity attitudes. We derive our result from a generalization of the

duality lemma of Wald (1949) and Pearce (1984) that should be of independent interest.

Another consequence of the same duality lemma is that, under ambiguity neutrality,

higher risk aversion expands the set of justi�able actions, and hence the set of rationalizable

actions in a game. This risk version of our result was independently obtained by Weinstein

(2013) for subjective expected utility maximizers in �nite games.1 For expositional purposes

and to exploit economies of scope, we present the results about comparative risk aversion

and comparative ambiguity aversion jointly.

The result is not intuitively obvious. Indeed, if the DM deems possible very di¤erent

probabilistic models, then higher ambiguity aversion increases the attractiveness of �safe�

actions whose objective expected utility is somewhat low for each model, but does not change

much with the model. Given the same belief over probabilistic models, actions that give

high expected utility for some models and low expected utility for other models become

instead less attractive. Yet, an increase in ambiguity aversion cannot make such actions

unjusti�able, because � regardless of ambiguity attitudes� they can always be justi�ed by

extreme beliefs assigning high probability to models under which they yield high objective

expected utility.

This comparative statics result is analogous to another result of ours, which also relies on

the smooth ambiguity criterion: higher ambiguity aversion expands the set of self-con�rming

equilibria (Battigalli et al., 2015). However, as argued in the discussion (Section 5), the

similarity between these results is only super�cial, because they rely on di¤erent assumptions

about the decision or game problem and have very di¤erent explanations.

The rest of the paper is structured as follows. Section 2 presents the decision criterion we

use. Section 3 contains our main results, whose implications for rationalizability are explored

in Section 4. Our �ndings are discussed in Section 5 where we also brie�y discuss alternative

decision models (e.g., preferences representable by quasiconcave functionals). All proofs are

relegated in Section 6, where we state and prove the abstract version of the duality lemma

of Wald (1949) and Pearce (1984) that underlies our analysis.

2 Criterion

We consider a standard decision problem under uncertainty with action space A, state space

S and payo¤ function r : A� S ! R. We assume that A and S are separable metric spaces
and r is continuous in each component and bounded. The payo¤ function may be interpreted

as the composition of a consequence function, or game form, g : A� S ! C, where C is the

consequence space, and a von Neumann-Morgenstern utility function u : C ! R, that is,
r = u � g. For interpretational and expositional purposes, we assume that consequences are

1We thank Amanda Fridenberg for letting us know about this work.
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monetary, i.e., C � R.
Let � be a nonempty closed subset of the collection�(S) of all Borel probability measures

� on the state space, each � being interpreted as a possible stochastic model for states.2

Actions are ranked by the smooth ambiguity criterion V�;r : A��(�)! R given by

V�;r (a; �) = ��1
�Z

�

�

�Z
S

r (a; s)�(ds)

�
� (d�)

�
where � : co Im r ! R is strictly increasing and continuous, and � is a subjective probability
measure on the posited set of stochastic models �.3 Function � is also known as the second-

order utility because it can be interpreted as the �utility of objective expected utility.�When

� is the identity, the criterion reduces to standard subjective expected utility, i.e.,

VId;r(a; �) =

Z
�

Z
S

r (a; s)�(ds)� (d�) =

Z
S

r (a; s)��(ds),

where, for any (measurable) event E � S, ��(E) =
R
�
�(E)�(d�) is the predictive probabil-

ity of E induced by �. Function � captures the DM�s attitudes toward ambiguity, whereas

r = u � g captures attitudes toward risk.
As a matter of interpretation, we emphasize that A represents the set of all feasible

choices, possibly including some choices that yield an objectively random outcome for at least

one state. In Subsection 3.5, we demonstrate how our framework can formally encompass

this possibility.4 Here, we only clarify our methodological position: it may be the case that

not all randomizations are either feasible or credibly implementable. In particular, choosing

an action according to the realization of a random variable is a credible �randomization�

only if the actions with positive probability are optimal in A.

3 Main results

3.1 Justi�ability

De�nition 1 The collection of justi�able actions for ambiguity attitudes � and risk atti-
tudes r given � is

J�;r (�) = fa 2 A : 9� 2 �(�) ;8a0 2 A, V�;r(a; �) � V�;r (a
0; �)g :

In words, J�;r(�) is the collection of all actions that are best replies, according to V�;r,
to some belief � over �.5

2In this presentation of the results, to �x ideas the reader can think of all sets de�ning the decision

problem as �nite. In Section 6, we prove our results in the general setting.
3Here co Im r is the smallest closed interval that contains the image Im r of the payo¤ function r.
4See also Section 3.3 in Marinacci (2015).
5The terminology is inspired by Milgrom and Roberts (1991). Lehrer and Teper (2011) have introduced
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3.2 Risk attitudes

We �rst consider higher risk aversion in the subjective expected utility case. In our monetary

setup, r0 =  �r = ( �u)�g, with  concave, continuous, and strictly increasing, is the payo¤
function of a more risk averse DM. The following proposition says that, assuming ambiguity

neutrality (� = Id), a more risk averse DM has more justi�able actions. We denote by �s
the Dirac probability measure supported by state s.

Proposition 1 Let S be compact and f�sgs2S � �. If r0 =  � r for some concave, contin-
uous, and strictly increasing function  : co Im r ! R, then JId;r(�) � JId;r0(�).

Example 1 Consider the following game form with monetary consequences:

g : s0 s00

t 0 1

m 1
3

1
3

b 1 0

(1)

Suppose the DM is a subjective expected utility maximizer (� = Id). If the DM is risk

neutral (r = g), action m is unjusti�able: for every belief � 2 �(�), indeed

VId;g(m;�) =
1

3
<
1

2
� max fVId;g(b; �); VId;g(t; �)g = max f��(s0); 1� ��(s

0)g .

If � contains the two Dirac measures �s0 and �s00, i.e., S is embedded in �, then JId;g(�) =
ft; bg. In particular b (resp., t) is a best reply to � if and only if ��(s0) � 1=2 (resp.,

��(s
0) � 1=2). Now suppose that the DM is risk averse, with a power utility function

u�(c) = c1=� (where � � 1 parametrizes risk aversion). Then, the payo¤ function is r� = u��g
and

JId;r�(�) =

8<: ft; bg, � < ��,

ft;m; bg, � � ��,

where �� = log2 3 solves u�(g(m)) = 1=2. The collection of justi�able actions thus expands as

� increases. Note, however, that the sets of beliefs justifying the risky actions b and t shrink

as soon as � increases above the threshold.6 Also note that the assumption f�sgs2S � � is
needed. Otherwise, assuming that � is compact, either VId;r�(b; �) = ��(s

0) or VId;r�(t; �) =

��(s
00) would be bounded below 1 whereas VId;r�(m;�) = (1=3)

1=� ! 1 as � ! +1. N

a new class of �justi�able preferences�under uncertainty. The connection with our notion of justi�ability is,

however, limited: ours is just the old best-reply-to-some-belief concept, applied here to the smooth ambiguity

model.
6We comment in more detail on this for the analogous case of increasing ambiguity aversion.
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3.3 Ambiguity attitudes

Next we consider a change in ambiguity attitudes. The following proposition says that a more

ambiguity averse DM has a larger set of justi�able actions. As argued in the Introduction,

the result is not intuitively obvious. Note that the hypothesis of � being compact is weaker

than the hypothesis, made in the previous proposition, of S being compact.

Proposition 2 Let � be compact. If �0 = ' � � for some concave, continuous, and strictly
increasing function ' : co Im�! R, then J�;r(�) � J�0;r(�).

Example 2 Consider again the game form (1) and suppose, just for simplicity, that the DM
is risk-neutral, i.e., r = g, and � = f�s0 ; �s00g. Let ��(x) = x1=�, where � � 1 parametrizes
ambiguity aversion. Then, it can be shown that the belief � that maximizes V��;g(m;�) �
max fV��;g(t; �); V��;g(b; �)g satis�es � (�s0) = � (�s00) = 1=2 (cf. Battigalli et al. 2015,

Lemma 6). With this, calculations similar to those of Example 1 yield

J��;r(�) =

8<: ft; bg, � < ��,

ft;m; bg, � � ��,

where �� = log2 3 solves �� (g(m)) = 1=2. The collection of justi�able actions thus ex-

pands as � increases. Note, however, that the sets of beliefs justifying ambiguous actions

b and t shrink : In fact, V��;g(m;�) = 1=3 regardless of �, whereas V��;g(b; �) = �� (�s0)

and V��;g(t; �) = �� (�s00) is strictly decreasing in �; as � increases above the threshold ��,

the probability � (�s0) must increase to make b a best reply, and similarly for t (see Figure

1). On the horizontal (resp., vertical) axis we report the second-order utility of objective

expected utility given model �1 = �s0 (resp., �2 = �s00). As ambiguity aversion increases, the

expected utility vector corresponding to action m shifts North-Eastward. N
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Figure 1. As � increases, the sets of beliefs justifying b and t shrink.

In sum, higher aversion to either ambiguity or risk (under ambiguity neutrality) expands

the collection of justi�able actions. As for the set of beliefs justifying any action, we can

only say that, if it is not empty, an increase in risk or ambiguity aversion cannot make it

empty. Propositions 1 and 2 are purely comparative results that do not require either risk

or ambiguity aversion (i.e., the functions r and � are not assumed to be concave).

The proof is based on an abstract version of the duality lemma of Pearce (cf. Pearce

1984, Lemma 3) presented in Section 6, which is a version of the classic Complete Class

Theorem of Wald (see, e.g., Wald, 1949, Theorem 2.2).

3.4 Extreme ambiguity attitudes: a discontinuity

As ambiguity aversion becomes higher and higher, i.e., as ��00=�0 " +1, we have larger and
larger collections J�;r(�) of justi�able actions. It is natural to wonder how this property
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relates with the well known fact (Klibano¤et al., 2005, p. 1867) that in this case the criterion

V�;r (a; �) tends to the maxmin criterion V1;r (a; �) = min�2supp�
R
S
r (a; s)�(ds), a version

of the classic criterion of Gilboa and Schmeidler (1989). Denote by

J1;r(�) = fa 2 A : 9� 2 �(�) ;8a0 2 A, V1;r(a; �) � V1;r (a
0; �)g

the collection of actions that are maxmin justi�able. Let
[
�2�

J�;r(�) be the collection of

all actions that are justi�able with the smooth ambiguity criterion, for some � 2 �, where
� is the collection of continuous and strictly increasing real-valued functions on co Im r.

Interestingly, despite the continuity in value, the next two examples show that none of the

inclusions
[
�2�

J�;r(�) � J1;r(�) and J1;r(�) �
[
�2�

J�;r (�) holds in general.7 We begin by

showing that the latter inclusion may fail.

Example 3 Given 0 � " < 1, consider the payo¤ function:

r : s0 s00

t 0 1

m " "

b 1 0

Suppose f�sgs2S � � where � is �nite. We have m 2 J1;r(�) for each " � 0. Moreover, if
" > 0 there exists � 2 � such that m 2 J�;r(�). However, if " = 0 there is no such �. This
shows that the inclusion J1;r(�) �

[
�2�

J�;r(�) may fail. N

Next we show that, quite surprisingly, also the converse inclusion may fail.

Example 4 Consider the payo¤ function:

r : s0 s00

t 0 1

h c0 c00

m " "

b 1 0

Assume � = f�s0 ; �s00g and, wlog, c0 � c00. If c0 = " = 1=3 < c00 < 1, it is easy to check

that m 2 J1;r (�) but m 62
[
�2�

J�;r (�). This con�rms the �nding of the previous, simpler,

example. More interesting, assume 0 � c0 < " < 1=2 � c00 < 1 � c0 + c00. For concreteness,

7For a characterization of the set
[
�2�

J�;r(�) see Subsection 5.2.
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set c0 = 2=7, " = 1=3 and c00 = 6=7. If the DM is ambiguity neutral, � = Id, action h is

justi�able. For, if � 2 �(�) is the uniform belief � (f�s0g) = 1=2 = � (f�s00g), then

VId;r (h; �) =
4

7
>
1

2
= VId;r(t; �) = VId;r(b; �) >

1

3
= VId;r(m;�).

Hence, h 2 JId;r (�) and so, by Proposition 2, h 2 J�;r (�) for all concave � 2 �. On the
other hand, h 62 J1;r (�). For, any � 2 �(�) has to be in one of the following three cases:

(i) supp� = f�s0g: we have

V1;r (b; �) = 1 >
1

3
= V1;r (m;�) >

2

7
= V1;r (h; �) > 0 = V1;r (t; �) :

(ii) supp� = f�s00g: we have

V1;r (t; �) = 1 >
6

7
= V1;r (h; �) >

1

3
= V1;r (m;�) > 0 = V1;r (b; �) :

(iii) supp� = f�s0 ; �s00g: we have

V1;r (m;�) =
1

3
>
2

7
= V1;r (h; �) > 0 = V1;r (t; �) = V1;r (b; �) :

Points (i)-(iii) show that h 62 J1;r (�), i.e., for each � 2 �(�) action h is never op-
timal (hence, justi�able) for the maxmin criterion V1;r. We conclude that the inclusion[
�2�

J�;r (�) � J1;r (�) fails. N

Summing up, the previous two examples show that there are actions that are justi�able

under the maxmin criterion V1;r but not under any smooth ambiguity criterion V�;r with

� 2 �, as well as actions that are justi�able under all smooth ambiguity criteria with

concave � 2 � but not under the maxmin criterion. The continuity in value, as ambiguity
aversion becomes higher and higher, does not translate at all in a continuity of the associated

collections of justi�able actions. As is well known, best reply correspondences need not be

lower hemicontinuous. Here we have a more dramatic continuity failure, with neither upper

nor lower hemicontinuity.8

We close by establishing some su¢ cient conditions that restore continuity. Some ter-

minology: �0 � � means that �0 is more concave than �, i.e., �0 = f � � for some

strictly increasing and concave f ; moreover, for each a 2 A we denote by B�;r (a;�) =
f� 2 �(�) : 8a0 2 A; V�;r (a; �) � V�;r (a

0; �)g the collection of beliefs that make a a best
reply, given � and r.

Proposition 3 Let � be compact. Then
8A similar discontinuity holds under risk, though we omit details for brevity.
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(i) J1;r (�) �
[
�2�

J�;r (�) if A is �nite and, for each � 2 �(�), the set argmina2A V1;r (a; �)

is a singleton.

(ii)
[
�2�

J�;r (�) � J1;r (�) if, for each �nite chain �m � � � � � �1 in � and for each a 2 A,

we have
m\
i=1

B�i;r (a;�) 6= ; whenever B�1;r (a;�) 6= ;.

3.5 Risk and ambiguity

If we enrich the setup with randomized consequences, we can consider cases where risk

attitudes are immaterial and only ambiguity aversion is relevant. In this richer setup, the

payo¤ function may be interpreted as r (a; s) =
P

c2C u (c) g (a; s) (c), where �0(C) is the

set of simple lotteries and g : A � S ! �0(C) is a stochastic consequence function that

associates lotteries to action-state pairs. Thus, each action a corresponds to the Anscombe-

Aumann act g (a; �) : S ! �0(C). The set of actions A allows for all the randomizations

that are feasible under the commitment technology of the DM.

This richer setup helps disentangle, conceptually and formally, the e¤ects of risk aversion

and of ambiguity aversion. In particular, when the consequence space is binary, i.e., C =

fc0; c1g, risk attitudes are mute, but ambiguity attitudes may still be important.9 The

following example shows a case where only ambiguity attitudes matter for justi�ability.

Example 5 Consider the following game form with binary consequence space C = f0; 1g
and stochastic monetary consequences:

g : s0 s00

t �0 �1

m 2
3
�0 +

1
3
�1

2
3
�0 +

1
3
�1

b �1 �0

Here risk attitudes do not matter. In particular, set u(0) = 0 and u(1) = 1, so that r is given

by the game form (1), and let ��(x) = x1=�, where � � 1 parametrizes ambiguity aversion.
Also, assume that S is embedded in �. As in Example 2, the belief � that maximizes

V��;g(m;�)�max fV��;g(b; �); V��;g(t; �)g

satis�es � (�s0) = � (�s00) = 1=2 and

J��;r(�) =

8<: ft; bg, � < ��,

ft;m; bg, � � ��,

9Game forms with stochastic consequences and only two monetaty prizes have been implemented in some

laboratory experiments precisely for this reason. See Roth and Malouf (1979), the survey by Roth (1995),

and references therein.
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where �� = log2 3. N

By allowing for a stochastic consequence function we can encompass within our frame-

work the possibility that the DM can commit to objective randomizations. Such feasible

randomizations can be represented as elements of A.

Example 6 Suppose we enrich game form (1) by allowing the DM to irreversibly delegate

the �nal choice to a random device, which selects t or b with objective probability 1=2. Then

the stochastic consequence function is

g : s0 s00

t �0 �1

m � 1
3

� 1
3

b �1 �0

t1
2
b 1

2
�0 +

1
2
�1

1
2
�0 +

1
2
�1

(2)

where t1
2
b denotes the 50:50 randomization. (In this new decision problem the degree of

ambiguity aversion does not a¤ect the set of justi�able actions. In particular, the set is

J�(�) =
�
t; b; t1

2
b
	
for each concave � if � is symmetric and the DM is risk neutral.) N

Furthermore, we note that any decision problem with a stochastic consequence function

g : A � S ! �0(C) and a set of possible stochastic models � � �(S) can be represented

by an equivalent decision problem with modi�ed state space �S and model space �� � �
�
�S
�
,

and deterministic consequence function �g : A� �S ! C.

Example 7 Consider game form (2) and �x � � �(fs0; s00g). Then, in the equivalent
decision problem we let

�S = fs0; s00g � f00; 01; 10; 11g ;

�g s0; 00 s0; 01 s0; 10 s0; 11 s00; 00 s00; 01 s00; 10 s00; 11

t 0 0 0 0 1 1 1 1

m 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

b 1 1 1 1 0 0 0 0

t1
2
b 0 0 1 1 0 1 0 1

and
�� =

�
�� 2 �

�
�S
�
: 9� 2 �;8(s; x) 2 �S; ��(s; x) = 1

4
�(s)

�
.

With this, for every model �� 2 ��, the objective expected utility of actions is the same as

with (2) and � =margS�� 2 �. N
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Finally, it is known that when all randomizations are feasible ambiguity attitudes do not

a¤ect the set of justi�able actions as noted, for example, by Kuzmics (2015) in a decision

theoretic setting.10

4 Rationalizability

The previous analysis has implications for rationalizability in games. Speci�cally, in games

with complete information, higher risk or ambiguity aversion expands the set of rationalizable

outcomes. In fact, consider a game with ambiguity attitudes G(�; r) =


I; (Ai; �i; ri)i2I

�
,

where, for each i 2 I, Ai is a compact metric space, ri : Ai�A�i ! R is (jointly) continuous,
�i : co Im ri ! R is strictly increasing and continuous, r = (ri)i2I , and � = (�i)i2I . To

provide an appropriate notion of rationalizability with general attitudes toward ambiguity

we have to specify a scenario for this game. For illustration purposes, we assume that

each i is a population with a continuum of identical agents, who may �however � hold

di¤erent beliefs.11 Agents from each population are drawn and matched at random to play

game G(�; r), which is commonly known. As we allow for ambiguity aversion, we also

assume that feasible randomizations, if any, are already accounted for as elements of each

Ai, possibly reinterpreting ri(ai; a�i) as the (objectively) expected utility of i given (ai; a�i)

(see Subsection 3.5). With this, rationalizable actions can be de�ned as follows: for each

i 2 I, A0i (�; r) = Ai and

Ani (�; r) = J�i;ri

 O
j 6=i

�(An�1j (�; r))

!
,

for each n 2 N.12 To ease interpretation, consider the case of �nite action sets. Rationality
implies that an action ai can be played by a positive fraction of agents in population i if and

only if ai 2 J�i;ri

 O
j 6=i

�(Aj)

!
. If, on top of this, everyone believes in rationality, then ai

10For informal consideration of the same sort see Rai¤a (1961). Instead, for similar results and consid-

erations involving game theoretic solution concepts, see Proposition 3 of Battigalli et al. (2013) and the

discussions in Battigalli et al. (2015), Klibano¤ (1996), and Lo (1996).
11Alternatively, we could have considered the opposite scenario whereby I is the �xed set of agents/players.

In this case, from the point of view of each i 2 I, the set of possible stochastic models is isomorphic to a
subset of A�i. The analysis is simpler, ambiguity aversion is still relevant, and results are similar. We refer

to the population game scenario in the text because we �nd it more e¤ective to illustrate the application of

the comparative statics result.
12
O
j 6=i
�(Aj) denotes the set of product measures on �j 6=iAj , which contains all the Dirac measures on

�j 6=iAj .
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can be played by a positive fraction of agents if and only if

ai 2 J�i;ri

 O
j 6=i

�

 
J�j ;rj

 O
k 6=j

�(Ak)

!!!
= J�i;ri

 O
j 6=i

�(A1j(�; r))
!
,

and so on.

This can be expressed with the justi�cation-operator language of Milgrom and Roberts

(1991): For every closed (hence compact) Cartesian subset C = �i2ICi � �i2IAi, let

J�;r(C) = �i2IJ�i;ri

 O
j 6=i

�(Cj)

!
:

Standard arguments show that, under the compactness and continuity assumptions of this

subsection, J�;r is a monotone self-map on the collection of the non-empty and closed (hence

compact) Cartesian subsets of �i2IAi. Then An(�; r) = Jn�;r(�i2IAi) is non-empty and com-
pact for each n 2 N. The set of rationalizable action pro�les is A�(�; r) =

T
n2N

Jn�;r(�i2IAi).

Again by standard arguments, A�(�; r) is also non-empty, and it is the largest compact
Cartesian subset C such that C � J�;r(C).

Say that G(Id; r0) exhibits more risk aversion than G(Id; r) if there are pro�les of concave,

continuous and strictly increasing transformations ( i : co Im ri ! R)i2I such that r0i =  i�ri
for each i 2 I. Similarly, G(�0; r) exhibits more ambiguity aversion than G(�; r) if there are
pro�les of concave, continuous and strictly increasing transformations ('i : co Im�i ! R)i2I
such that �0i = 'i ��i for each i 2 I. Given the properties of the justi�cations operators J�;r
(with continuous � and r), Propositions 1 and 2 imply the sought-after property that higher

risk or ambiguity aversion expands the set of rationalizable outcomes.

Corollary 1 If G(Id; r0) exhibits more risk aversion than G(Id; r), thenA�(Id; r) � A�(Id; r0).
If G(�0; r) exhibits more ambiguity aversion than G(�; r), then A�(�; r) � A�(�0; r).

Example 8 Consider the following two-person game form with monetary consequences:

g1; g2 : b0 b00

a0 0, 1 1, 0

a00 1
3
,0 1

3
,1

a000 1, 1 0, 0

Let r�;1 = g
1
�
1 and ��;1(r) = r1=�, �2 be continuous and strictly increasing, r2 = u2 �g2 for any

continuous and strictly increasing u2 (the risk and ambiguity attitudes of player 2 are imma-

terial). We speci�cally consider the rationalizability correspondences � 7! A�(��;1; �2; g1; r2)
and � 7! A�(Id; �2; r�;1; r2) for � � 1. Note that every action of player 2 is a best response
to some belief, and the set of rationalizable actions of player 2 is fb0; b00g if a00 is justi�able
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for player 1, and fb0g if a00 is unjusti�able. In the latter case, the only rationalizable action
of player 1 is a000, the best reply to b0. With this, the calculations of Examples 1 and 2 imply

A�(��1; �2; g1; r2) = A�(Id; �2; r�;1; r2) =

8<: f(a000; b0)g, � < ��,

A1 � A2, � � ��.

N

5 Discussion

We discuss the related literature and brie�y consider the case of incomplete information

about ambiguity attitudes.

5.1 Related literature

A super�cial analogy First we compare with Battigalli et al. (2015) and explain the

di¤erence. In that paper we proved that higher ambiguity aversion expands the set of self-

con�rming equilibria, a steady-state phenomenon resulting from the strong discipline on

beliefs that the notion of self-con�rming equilibrium imposes by requiring their consistency

with the long-run data that agents observe in recurrent interaction. Speci�cally, assuming

that each agent observes at least his realized payo¤ in each play, self-con�rming equilibrium

actions are perceived as unambiguous best replies by players, whereas unused alternatives are

typically perceived as ambiguous. Therefore, holding beliefs �xed, an increase in ambiguity

aversion leaves the value of self-con�rming actions unaltered but decreases the value of unused

alternatives. This implies that, for each equilibrium action, the set of con�rmed beliefs

justifying it expands as ambiguity aversion increases. All this stands in sharp contrast with

the justi�ability result of the present paper: Here we are not trying to characterize steady-

state actions; hence, feedback is irrelevant and beliefs are not restricted by experience (in

games, rationalizable beliefs are restricted by strategic thinking). Therefore, a justi�able

action may well be perceived as ambiguous. In this case, as ambiguity aversion increases,

the set of beliefs justifying this action typically shrinks, as demonstrated by our examples.13

Criterion As explained above, our work builds on the choice model of Klibano¤ et al.

(2005) and the duality lemma of Wald (1949) introduced back into game theory by Pearce

(1984). We use the smooth ambiguity model for two reasons. (i) It is portable, i.e., it

parametrizes personality traits that agents are supposed to exhibit in any decision problem:

13The failure of the inclusion
[
�2�

J�;r (�) � J1;r (�) further exempli�es how feable is the connection with

Battigalli et al. (2015), where the set of smooth self-con�rming equilibria is included in the set of maxmin

ones.
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risk attitudes given by the von Neumann-Morgenstern utility function u and ambiguity

attitudes given by the second-order utility function �. Such personality traits can be assumed

to be constant across decision, or game situations; state spaces and beliefs, on the other hand,

change according to the situation. (ii) Under this model an increase in ambiguity aversion

is represented by a concave strictly increasing transformation of �, which by a fortuitous

coincidence (see Remark 1 in the appendix) allows to rely on the general version of the

duality lemma.

As for (i), we can think of alternative models sharing the same properties of portability

(see, for example, eq. (13) of Battigalli et al., 2015). But we feel that the smooth ambiguity

model � among the known models of decision making under ambiguity� is the one where

these features are most evident. As for the possibility to extend our comparative statics result

(point ii), it may be natural to consider the class of preferences that can be represented by

quasiconcave utility functionals on RS. But such extension does not hold. In fact, the
criterion V1;r of Subsection 3.4 belongs to this class and is more ambiguity averse than V�;r
for any concave �. Yet, action h in Example 4 is justi�able for criterion V�;r, but not for the

more ambiguity averse criterion V1;r.

Weinstein (2013) The paper most related to ours is Weinstein (2013). Our paper can

be seen as a generalization and extension of his, independent, comparative statics result (his

Proposition 1). It is a generalization because he considers �nite games, while we allow for

a continuum of actions and states. It is also an extension because, by assuming ambiguity

neutral players, he can only study the e¤ect of increasing risk aversion, whereas we allow for

non-neutral ambiguity attitudes and study the e¤ect of increasing ambiguity aversion.

Other papers Other papers in the literature analyzed notions of justi�ability, or ratio-

nalizability with non-neutral attitudes toward ambiguity. Ghirardato and Le Breton (2000)

characterize actions that are best replies to some possibly non-additive belief under the

Choquet expected utility criterion of Schmeidler (1989). Epstein (1997) analyzes rationaliz-

ability under several criteria, including the Choquet criterion of Schmeidler (1989) and the

maxmin criterion of Gilboa and Schmeidler (1989). In any case, to the best of our knowl-

edge, ours is the �rst work reporting a result on comparative ambiguity and justi�ability (or

rationalizability).

5.2 Incomplete information about ambiguity attitudes

The set of justi�able actions can be determined if the ambiguity attitudes of the DM are

known. Therefore, in Section 4 we are able to apply our comparative statics result to

rationalizability in games with complete information, i.e., games where the game form and

players personality traits are commonly known. What if ambiguity attitudes (of others)
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are unknown? Our comparative statics result suggests answers for the case where only

an upper bound on ambiguity attitudes is known (in games, commonly known). To focus

on ambiguity aversion, we assume for simplicity that there is (common knowledge of) risk

neutrality; thus, r is the monetary payo¤ function. Recall that � denotes the set of �second-

order utility functions,�that is, the continuous and strictly increasing real-valued functions

with domain [min r;max r]. Fix a concave function �� 2 �, and let �� � � denote the set

containing �� and every other second-order utility function � such that �� is a concave and

strictly increasing transformation of �. Under our assumptions on A, S and �, Proposition

2 implies J��;r(�) =
S
�2��
J�;r(�). Of course, the same result holds when we consider any class

of second-order utility functions parametrized by a measure of ambiguity aversion less than

or equal to an upper bound. Thus, when only an �upper bound� �� on ambiguity aversion is

known (in games, commonly known) our results apply to changes in ��.

What if it is only known that ambiguity aversion is �nite, but it can be arbitrarily high?

How can we characterize the set of actions that are justi�able for at least one second-order

utility function � 2 �? Though outside the scope of the present paper, we expect that it
is possible to adapt results from Boergers (1993) and Weinstein (2013) to provide a kind of

dominance characterization. In particular, suppose for simplicity that A and � are �nite.

Adapting a result proved for the case of risk by Boergers (1993), one can show that an action

a is justi�able for some second-order utility function � a 2
S
�2�
J�;r(�)� if and only if a is

not purely weakly dominated on any subset of �, that is, for each ; 6= �̂ � � there is no

â 2 A with

8� 2 �̂; R(â; �) � R(a; �) and 9� 2 �̂; R(â; �) > R(a; �);

where R(â; �) is the expected payo¤ of â under stochastic model �. Adapting a result of

Weinstein (2013, Proposition 3), such set of undominated actions is the limit of the justi�able

set J�;r(�) as ambiguity aversion goes to in�nity. In the parametrized decision problem of

Example 3, this set is ft; bg if " = 0, because in this case m is weakly dominated by t and b

on �, strictly dominated by b on each nonempty subset �̂ � �nf�s00g, and strictly dominated
by t on each nonempty subset �̂ � �nf�s0g.

6 Proofs and related material

6.1 Abstract Pearce-Wald lemma

Fix two nonempty subsets A1 and A2 of a Hausdor¤ locally convex topological vector space.

Let Bi = coAi and �Bi = coAi denote respectively the convex hull of Ai and its closure, for

i = 1; 2.
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Given F : B1 � �B2 ! R, we say that a�1 2 A1 is dominated if and only if

9a1 2 A1;8a2 2 A2; F (a�1; a2) < F (a1; a2),

otherwise we say that a�1 is undominated; we say that a
�
1 is co-dominated if and only if

9b1 2 B1;8a2 2 A2; F (a�1; a2) < F (b1; a2) ,

otherwise we say that a�1 is co-undominated.

Lemma 1 Suppose that:

(i) A2 is closed and �B2 is compact;

(ii) F is quasiconcave and upper semicontinuous on B1;

(iii) F is a¢ ne and continuous on �B2.

An element a�1 2 A1 is co-undominated only if there exists some b2 2 �B2 such that a�1 2
argmaxa12A1 F (a1; b2). The converse is true if F is a¢ ne on B1.

Of course, condition (i) implies that A2 (a subset of �B2) is compact. In many examples,

condition (i) is equivalent to the compactness of A2.14 Condition (ii) is satis�ed if F is

concave and upper semicontinuous on B1.

Proof. First note that, since A2 is compact, there exists a function ��2 : �B2 ! �(A2) (the

set �(A2) here denotes the set of all regular Borel probability measures) such that

� (b2) =

Z
A2

� (a2) ��2(b2) (da2)

for all continuous and a¢ ne � : �B2 ! R.15 Moreover, by de�nition of convex hull, there is a
function �1 : B1 ! �(A1) such that

b1 =
X
a12A1

a1�1(b1) (a1) :

(Only if) Suppose that a�1 is co-undominated. We must show that there exists b
�
2 2 �B2

such that F (a�1; b
�
2) � F (a1; b

�
2) for all a1 2 A1. De�ne the function h : B1 � �B2 ! R by

h(b1; b2) = F (a�1; b2)� F (b1; b2).

Since a�1 is co-undominated, for each b1 2 B1 there exists a
b1
2 2 A2 such that F (a�1; a

b1
2 ) �

F (b1; a
b1
2 ), that is, h(b1; a

b1
2 ) � 0. We can conclude that

8b1 2 B1, max
b22 �B2

h(b1; b2) � h(b1; a
b1
2 ) � 0:

14Consider, e.g., quasi-complete locally convex topological spaces (p. 61, Holmes, 1975).
15See Propositions 1.2 and 4.5 of Phelps (1966). For later use, we �nd it convenient to denote ��2 this map.
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In turn, this yields infb12B1 maxb22 �B2 h(b1; b2) � 0. Given the properties of F , the function
h satis�es all the assumptions of the Sion Minimax Theorem (Corollary 3.3 of Sion, 1958),

namely, h is quasiconvex and lower semicontinuous on B1, as well as a¢ ne and continuous

on �B2. This implies that

max
b22 �B2

inf
b12B1

h(b1; b2) = inf
b12B1

max
b22 �B2

h(b1; b2) � 0.

By choosing b�2 2 argmaxb22 �B2 (infb12B1 h(b1; b2)), we have that

0 � inf
b12B1

h (b1; b
�
2) = inf

b12B1
(F (a�1; b

�
2)� F (b1; b

�
2)) ;

thus, F (a�1; b
�
2) � F (a1; b

�
2) for each a1 2 A1.

(If) Suppose that F is also a¢ ne on B1. By way of contraposition, suppose that a�1 is

co-dominated, that is, there exists b1 2 B1 such that

8a2 2 A2; F (a�1; a2) < F (b1; a2) =
X
a12A1

F (a1; a2)�1 (b1) (a1) :

We must show that for each b2 2 �B2 there exists some a
b2
1 2 A1 such that F

�
ab21 ; b2

�
>

F (a�1; b2). Fix b2 2 �B2 arbitrarily. Since a�1 is co-dominated by b1, integrating over A2 and

by using the maps �1 and ��2, we obtain

F (a�1; b2) =

Z
A2

F (a�1; a2)��2(b2) (da2) <

Z
A2

 X
a12A1

F (a1; a2)�1 (b1) (a1)

!
��2 (b2) (da2)

=
X
a12A1

�Z
A2

F (a1; a2)��2(b2)(da2)

�
�1(b1)(a1) =

X
a12A1

F (a1; b2)�1(b1)(a1).

If ab21 2 argmaxa12supp �1(b1) F (a1; b2), then F (ab21 ; b2) �
P

a12A1 F (a1; b2)�1(b1)(a1) > F (a�1; b2).

�

6.2 Randomization

Now let A1 and A2 be two separable metric spaces. Denote by �0 (Ai) the collection of

all simple Borel probability measures, and by �(Ai) the collection of all Borel probability

measures on Ai. Given a function f : A1 � A2 ! R, say that a�1 2 A1 is dominated under

randomization if and only if

9�1 2 �0 (A1) ;8a2 2 A2; f(a�1; a2) <
X
a12A1

f(a1; a2)�1(a1).

Otherwise, we say that a�1 is undominated under randomization.

At this level of generality, the separable metric space spaces A1 and A2 are not required

to be subsets of some Hausdor¤ locally convex topological vector space. Denote by Bi the
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Borel �-algebra of Ai. In this framework, we can identify each element a of Ai with the

Dirac �a at a. The set of Dirac probability measures is a subset of the space of all Borel

countably additive measures of bounded variation ca (Ai;Bi) which, when endowed with the
w�-topology � (ca (Ai;Bi) ; Cb (Ai)), is a Hausdor¤ locally convex topological vector space.
SinceAi is a separable metric space, the set of corresponding Dirac probabilities is also closed.

Under this identi�cation, Bi corresponds to the set �0 (Ai) of all probability measures on Ai
with �nite support, while �Bi corresponds to the set �(Ai) of all Borel probability measures

on Ai. The set �Bi is compact if and only if Ai compact.16 Finally, note that if any of the two

sets A1 and A2 is �nite, then it is a separable metric space once endowed with the discrete

metric; moreover, if both are �nite, then f is continuous in each component and bounded.

In what follows, with a small abuse of notation, we will denote by Ai both the original

set Ai and the set of corresponding Dirac probability measures. Also, we will denote the

elements of B1 and �B2 with the letter � rather than b to stress that we interpret them as

probability measures.

Corollary 2 Let A1 and A2 be two separable metric spaces. If

(i) A2 is compact;

(ii) f is continuous on A1 and A2 and bounded;

then, an element a�1 2 A1 is undominated under randomization if and only if there exists

�2 2 �B2 = �(A2) such that a�1 2 argmaxa12A1
R
A2
f(a1; a2)�2 (da2).

Proof. De�ne F : B1 � �B2 ! R by

F (�1; �2) =

Z
A2

 X
a12A1

f (a1; a2) �1 (a1)

!
�2 (da2) .

It is routine to check that the function F is a¢ ne and continuous in each component. Given

our identi�cations, a�1 2 A1 is undominated under randomization if and only if �a�1 is co-

undominated. By Lemma 1, the statement follows. �
Set

Jf =
�
a1 2 A1 : 9�2 2 �(A2) ;8a01 2 A1,

Z
A2

f(a1; a2)�2 (da2) �
Z
A2

f(a01; a2)�2 (da2)

�
:

Say that a function f : A1 � A2 ! R is nice (resp., semi-nice) when any a1 2 A1 is

undominated under randomization if and only if (resp., only if) a1 2 Jf . Corollary 2

establishes conditions for niceness.
16See Chapter 15 of Aliprantis and Border (2006) for all the above notions.
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Corollary 3 Let f; h : A1 �A2 ! R be, respectively, nice and semi-nice. If h = ' � f , with
' : co (Im f)! R concave and strictly increasing, then Jf � Jh.

Proof. Let �a1 2 Jf . Since f is nice, �a1 is undominated under randomization. Hence, since
' is concave and strictly increasing, this implies that

8�1 2 �0 (A1) ;9a2 2 A2; f(�a1; a2) �
X
a12A1

f(a1; a2)�1(a1) � '�1

 X
a12A1

(' � f) (a1; a2)�1(a1)
!

that is,

8�1 2 �0 (A1) ;9a2 2 A2; (' � f) (�a1; a2) �
X
a12A1

(' � f) (a1; a2)�1(a1).

Since h = ' � f is semi-nice, this implies �a1 2 Jh. �

6.3 Proofs of Propositions 1 and 2

First observe that, since S is a separable metric space, also �(S) is a separable metric space

(once endowed with the Prohorov metric). We denote by B its Borel sigma-algebra. Given
a set � 2 B, we denote by Bj� the relative Borel sigma-algebra and by �(�) the collection
of all Borel probability measures � : Bj� ! [0; 1]. We endow �(�) with the w�-topology.

�(�) is compact if and only if � is w�-compact in �(S).

Proof of Proposition 1. Let A1 = A, A2 = S, f = r, and h = r0 =  � r. By Corollary 2
and given the properties of A, S, r, and  , it is immediate to see that f and h are nice. By

Corollary 3 and since  is concave and strictly increasing, we have that Jf � Jh. Finally,
since � � f�sgs2S, we can conclude that JId;r (�) = Jf and Jh = JId;r0 (�). Therefore,
JId;r (�) � JId;r0 (�). �
Proof of Proposition 2. De�ne R (a; �) =

R
S
r (a; s)�(ds) for all a 2 A and � 2 �. Note

that R is continuous in each component and bounded. Let A1 = A, A2 = �, f = � � R,
and h = �0 � R = (' � �) � R = ' � f . By Corollary 2 and given the properties of A, �,
R, and � and ', it is immediate to see that f and h are nice. By Corollary 3 and since '

is concave and strictly increasing, we have that Jf � Jh. By construction, we have that
J�;r (�) = Jf and Jh = J�0;r (�). Therefore, J�;r (�) � J�0;r (�). �

Remark 1 To invoke the abstract Pearce-Wald lemma, in the proof of Proposition 2, from a
decision theoretic viewpoint, we consider randomized actions �1 on A as ex-ante randomiza-

tions rather than the more customary ex-post randomizations a la Anscombe and Aumann.

Such ex-ante randomizations are merely ancillary analytical objects. Formally, in our proofs

the value of a randomized action �1 is

��1

 X
a2A

Z
�

�

�Z
S

r (a; s)�(ds)

�
� (d�) �1 (a)

!
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rather than

��1

 Z
�

�

 X
a2A

Z
S

r (a; s)�(ds)�1 (a)

!
� (d�)

!
:

Conceptually, we reiterate that DM can only choose in A, which encompasses any feasible

randomization. It is a fortuitous coincidence that the smooth model permits this treatment

of randomized actions that allows to exploit the abstract Pearce-Wald lemma. This is in

contrast to what happens with the maxmin criterion (see Subsection 3.4).

6.4 Proof of Corollary 1

We give the proof for the case of comparative ambiguity aversion. Recall that we are as-

suming that, for each i 2 I, Ai is a compact metric space and ri is (jointly) continuous on

Ai � A�i. Suppose that G(�0; r) exhibits more ambiguity aversion than G(�; r). For each

closed (hence compact) Cartesian subset C � �j2IAj and each i 2 I, the assumptions of

Proposition 2 apply with A = Ci and � =
O
j 6=i

�(Cj), which are both compact; therefore

J�;r(C) � J�0;r(C). In particular,

J1�;r(�i2IAi) = J�;r(�i2IAi) � J�0;r(�i2IAi) = J1�0;r(�i2IAi).

Suppose, by way of induction, that Jn�1�;r (�i2IAi) � Jn�1�0;r (�i2IAi). By monotonicity of

J�;r (�) and Proposition 2

Jn�;r (�i2IAi) = J�;r
�
Jn�1�;r (�i2IAi)

�
� J�;r

�
Jn�1�0;r (�i2IAi)

�
� J�0;r

�
Jn�1�0;r (�i2IAi)

�
= Jn�0;r (�i2IAi) :

Therefore, for each n 2 N, An(�; r) � An(�0; r), and

A�(�; r) =
\
n2N

An(�; r) �
\
n2N

An(�0; r) = A�(�0; r).

Taking into account that � =
O
j 6=i

�(Cj) contains all the Dirac probability measures on C�i,

the proof for the case of comparative risk aversion is analogous, with Proposition 1 in the

role of Proposition 2. �

6.5 Proof of Proposition 3

(i) Consider a� 2 J1;r (�). There exists � 2 �(�) such that for each a 2 An fa�g

min
�2supp�

Z
S

r (a�; s)� (ds) > min
�2supp�

Z
S

r (a; s)� (ds) : (3)

Consider the sequence of functions (�n)n2N de�ned as �n (t) = �e�nt for all n � 1 and for
all t 2 R. It is immediate to see that

8n 2 N, ��1n
�Z

�

�n

�Z
S

r (a�; s)� (ds)

�
� (d�)

�
� min

�2supp�

Z
S

r (a�; s)� (ds) :

20



On the other hand, by (3) for each a 2 An fa�g there exists na � 1 such that, for each

n � na,

min
�2supp�

Z
S

r (a�; s)� (ds) > ��1n

�Z
�

�n

�Z
S

r (a; s)� (ds)

�
� (d�)

�
� min

�2supp�

Z
S

r (a; s)� (ds) :

Since A is �nite, let �n = maxa2Anfa�g na. It follows that for each a 2 An fa�g

��1�n

�Z
�

��n

�Z
S

r (a�; s)� (ds)

�
� (d�)

�
� min

�2supp�

Z
S

r (a�; s)� (ds)

> ��1�n

�Z
�

��n

�Z
S

r (a; s)� (ds)

�
� (d�)

�
;

proving that a� 2 J��n;r (�) and, thus, the statement. (ii) Consider a� 2
[
�2�

J�;r (�). It

follows that there exists �� 2 � and � 2 �(�) such that V��;r (a�; �) � V��;r (a; �) for all a 2 A.
De�ne �n = 'n � �� such that 'n (t) = �e�nt for all n � 1 and for all t 2 R. By Proposition
2, B�n;r (a�;�) 6= ; for all n � 1. By the �nite intersection property of compact sets, we can

conclude that there is �� 2
1\
i=1

B�i;r (a�;�). It follows that V�n;r (a�; ��) � V�n;r (a; ��) for all

n � 1 and for all a 2 A. By passing to the limit, for each a 2 A

V1;r (a
�; ��) = min

�2supp ��

Z
S

r (a�; s)� (ds) = lim
n
V�n;r (a

�; ��)

� lim
n
V�n;r (a; ��) = min

�2supp ��

Z
S

r (a; s)� (ds) = V1;r (a; ��) ;

proving that a� 2 J1;r (�). �
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