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Abstract. In deciding whether to join a coalition or not, an agent must con-
sider both i) the expected power of the coalition and ii) her position in the vertical
structure within the coalition. We establish the existence of a positive relationship
between the degree of inequality in remuneration across ranks within coalitions and
the number of coalitions to be formed endogenously in stable systems. An inherent
feature of such coalitions is that they are mixed and balanced, rather than segre-
gated, in terms of members abilities. When the surplus of a coalition is assumed to
be linear in its relative power conditional on its size, we also establish the existence
of stable systems and characterise them fully: a system is stable if and only if all
coalitions are of an efficient size and every agent is paid her marginal contribution.
(JEL Codes: C71, D71)

Keywords: Stable systems, Abilities, Hierarchy, Cyclic partition.

1 Introduction

Circumstances abound in which individual agents interact via the organisations they
choose to belong to. From each agent’s perspective, the consequences of joining
one organisation or another are determined by (i) the outcome resulting from the
interaction between the organisation she chooses to join and its rival organisations,
and (ii) the effect of that outcome on her within the organisation. The latter aspect
is likely to be determined by the internal structure of the organisation and her
position in it.
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In a political setting, for example, politicians form parties and members of each
party decide on the party line and on the campaign strategy, given the perception
of their strengths and the opponents’ characteristics. The election outcome will be
determined by the kinds of parties formed and their relative strengths. Finally, the
members of the winning party will be allocated a role depending on their relative
positions within the party, which will shape their payoffs. Similar descriptions apply
to the world of gangs and their members and to entrepreneurial organisations, to
name a social and a business example, respectively. In these situations, the agents’
ranks within the organisation appear to be an important factor in determining their
final payoffs.1

Understanding what determines the number and composition of coalitions (e.g.,
party systems, market concentration, economic and political integration) has been
a recurrent focus in many strands of literature (discussed below), but, to the best
of our knowledge, no systematic work has examined the relationship between such
horizontal segmentation incentives and the vertical structure within each endogenous
organisation. We believe, especially in contexts in which the relevant agents are
heterogeneous in ability, that studying the interplay of these two dimensions could
be very insightful. As ability differentials among agents increase, would there be
more or less competition (in terms of the number of rival organisations to be formed)
and would the organisations become more or less segregated? Are there general
connections between endogenous meritocracy and the degree of competition? This
paper develops a cooperative game theoretical framework to address such questions
in an institution-free environment and provides some robust answers.2

The relevant players in our analysis are all those agents who participate in choos-
ing which coalitions to form, merge with or split from.3 The first key assumption
of our model is that the relevant agents have heterogeneous observable abilities,
and the total surplus of a coalition depends positively both on its size, and on the
aggregate ability of its members, called its power. Second, we assume that each
endogenous coalition has a vertical structure, in which the coalition members are
ranked, or assigned to different tasks of rankable importance, and payoff shares

1Our model and results will relate more to the formation of competing parties, firms or gangs,
than to the formation of clubs and jurisdictions, given that typically models on the latter are about
sorting or matching preferences (for example on local public goods) and do not focus on vertical
differentiation among agents.

2The limited literature on party formation focuses almost exclusively on the incentives that
different institutional systems provide to form parties to represent different (horizontal) segments
of the voters’ population, whereas the impact of the internal organisation of parties on the stability
of different party systems has rarely been studied (as a notable exception, see Persico et al., 2008).
Intuitively, the choice between becoming the leader of a new party or remaining at a lower rank
of an existing party must depend on how the different ranks are treated.

3In each application there could be other agents such as voters (in the political application),
consumers (in the industrial organisation application) and victims (in the criminal organisations
application) who do not directly engage in such decisions.
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are non-decreasing in rank. Given a distribution of agents’ abilities and a surplus
function for all possible coalitions, in line with standard core-stability, we define
a system – a partition of agents into coalitions and an imputation rule of how to
share the surplus among members for each coalition – as being stable if there is no
deviating coalition where every member fares better than in the payoff distribution
of the original system.

The most robust result of our analysis is that the more equally shared is the
surplus across ranks internally, i.e., the lower is the vertical inequality, the smaller
is the number of rival organisations that can be sustained in a stable partition of
the relevant agents. To be more precise, focusing attention on “symmetric” stable
systems in which all coalitions within each system adopt the same imputation rule
of sharing their surplus across members of different ranks, Theorem 1 establishes
that if one symmetric stable system exhibits a more equal sharing rule than another,
then the former system consists of fewer coalitions. This result is then extended to
non-symmetric stable systems and to environments with finite but large populations
(under some technical assumptions).

When the surplus of a coalition is assumed to be linear in its power (i.e., when
the power and the size of the coalition enter multiplicatively in the surplus func-
tion), we also establish the existence of stable systems and fully characterise them:
A system is stable if and only if all coalitions are of an efficient size and every
agent is paid her marginal contribution (unless the population size falls short of the
efficient coalition size, in which case a suitably modified result is obtained). We
then consider a heuristic subclass of environments in which agents’ ability levels are
distributed geometrically, and show that a system is stable if and only if the agents
are partitioned into cyclic coalitions which are coalitions composed of equidistant
agents in their ability ordering.

Our paper highlights several features of the endogenous formation of rival organ-
isations that are novel relative to the existing literature on coalition formation: (1)
the more unequal is the allocation of payoffs, the more fragmented will be the rival
organisations to be formed; (2) organisations of different internal norms may coexist;
and (3) organisations tend to consist of members from widely dispersed ability lev-
els. The last feature, in particular, contrasts starkly with the segregation outcomes
that are prevalent in the literature on some other types of group formation, such
as the important literature on clubs and jurisdictions providing local public goods,
preluded by Tiebout (1956).4

4A chronological sequence of formal advancements in that literature can be found in Ellickson
(1973), Westhoff (1977), Wooders (1978), Guesnerie and Oddou (1981), Greenberg and Weber
(1986), Demange (1994), Konishi, Le Breton and Weber (1998), Ellickson et al (1999), Casella
(2001), Jehiel and Scotchmer (2001), and Zame (2009). These studies differ from ours in that
different jurisdictions provide different local public good quantities and the endogenous coalitions
do not play a constant sum game. Moreover, typically agents are not differentiated in terms of
ability.
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The literature on social classes (Akerlof, 1997), partnerships (Farrell and Scotch-
mer, 1988), hedonic games (Banerjee, et al., 2001; Bogomolnaia and Jackson, 2002;
Le Breton, et al., 2008; Watts, 2007), social status (Milchtaich and Winter, 2002),
and organisation (e.g., Demange 2004; Garicano and Rossi-Hansberg, 2006; and an
earlier work on firm formation by Legros and Newman, 1996), is all related in a
broad sense to what we do, but our approach is distinguished from these studies
in the following respect: agents of vertically differentiated abilities compete to form
endogenous coalitions with attractive counterparts through a mutually favourable
surplus sharing rule. Thus, agents potentially face a dilemma between teaming up
with more able people for a more powerful coalition and teaming up with less able
people for a higher internal rank. Damiano, et al. (2010) consider a similar tension
but in a setting where agents decide which one to join from a fixed set of coalitions,
motivated by contexts different from ours.5 Watts (2007), on the other hand, ana-
lyzes two separate settings, one in which agents desire to team up with higher ability
members (under the “average quality payoff”), and an opposite one in which they
desire to team up with lower ability members (under the “big fish payoff”).

Piccione and Razin (2011) study coalition formation in partition function games,
in which an agent’s social ranking is determined lexicographically, first by the “power
relation” between the coalitions formed, then by her ability within the relevant
coalition. The core is empty in this setting if the size dictates the power relation of
coalitions. For this reason, they define a recursively stable solution concept, yielding
existence and characterisation results in the spirit of our non-segregation results. A
more recent paper, Barbera, et al. (2014), studies a particular case of our linear
surplus function, with size entering as a step function. In this context they show that
meritocratic sharing norms in some coalitions can coexist with egalitarian norms in
others. Two additional differences relative to this work are that we allow for all
possible sharing rules (in addition to the two they focus on) and that we do not
impose any tie-breaking rule. Our analysis shows that the only sharing rule that
survives in this case is the meritocratic one (cf. footnote 13).

The current paper also makes a conceptual contribution to political economy, and
in particular to the literature on party formation, showing that even with similar
institutions and preferences, different party systems can be stable, depending on the
parties’ internal organisations.6 For more distantly related work on trade alliance

5In Damiano, et al. (2010), agents of different abilities choose between two organisations of a
fixed capacity of measure 1, when the agent’s utility increases both in the average ability of the
organisation (peer effect) and in her internal ranking (pecking order effect). If the value of each
coalition is a function of the average ability of agents, they obtain some degree of segregation of
ability types, with a larger overlap when the pecking order effect is stronger. Their results apply
to very different contexts, such as students’ choices among a fixed set of universities, rather than
endogenous formation of organisations.

6On the importance of party formation and pre-election coalition formation across systems, see,
e.g., Levy (2004), Morelli (2004) and Bandyopadhyay, Chatterjee and Sjöström (2010). See also
Dhillon (2005) for a survey.
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formation, see, e.g., Yi (1996) and Casella and Feinstein (2002).
We adopt a cooperative approach in which individual agents can coordinate

on a deviation as a group.7 Hence, parties, firms, teams or gangs are more natural
types of coalitions that fit our analysis than are countries/jurisdictions where agents
individually decide whether to move in or out, such as in Jehiel and Scotchmer
(2001).

In hedonic games coalitional deviations are allowed, but agents’ payoffs are de-
termined by the composition of their own coalition only. In our game the agents’
utility depends on the rank and the degree of vertical inequality in the coalition,
as well as on the aggregate strength of the coalition, so it is not a proper hedonic
game.8 Our model can also be viewed as generalising Gamson games (see, e.g., Le
Breton, et al., 2008): in this special class of hedonic games the total cake goes to the
coalition that has more than half of the total talent, whereas our analysis includes
settings where coalitions fight over market shares or power shares, with no magic
value given to passing a 50% threshold.

The paper is organised as follows. Section 2 describes the general model, speci-
fying the class of environments for which our general results can be proved. Section
3 establishes as generally as possible that if a stable system exhibits a higher level of
vertical inequality than another, then the former must consist of a (weakly) larger
number of competing coalitions than the latter. Section 4 focuses attention on envi-
ronments in which a coalition’s surplus is linear in its power, confirms the existence
and provides a full characterisation of stable systems, and then presents illustra-
tions of all stable systems for the special case that agents’ abilities are geometrically
distributed and coalitions choose a single parameter imputation rule that captures
the common payoff inequality between any two adjacent ranks. Section 5 offers
concluding remarks.

2 Model

Consider an economy with a large population Ω = {1, 2, · · · , N} consisting of N
agents of heterogeneous ability. For expositional ease, we conduct our analysis
primarily for the limit case of N → ∞, i.e., with countably infinite agents or Ω =
N, but also discuss how the results are extended to the case of a large but finite
number of agents. Each agent i ∈ Ω has an observable ability ai > 0 (which
could be political ability, market ability, or criminal ability, etc., depending on the

7See, e.g., Aumann and Drèze (1974) for an early study on the cooperative stability of coalition
structures.

8When we fix the degree of vertical inequality and impose the ability ranking assumption, our
game is hedonic. However, generally it does not satisfy known conditions for existence of a core,
namely, balancedness (Scarf, 1967) and top-coalition property (Banerjee et al, 2001), neither in a
finite setting nor when naturally extended to an infinite setting.
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application). Agents are indexed according to their ability, with the convention
that ai > ai+1 for all i. (The main results straightforwardly extend to the case that
ai ≥ ai+1 at a cost of expositional complication, the details of which are omitted
here.) We assume that the agents’ abilities add up to a finite number, which we
normalise to 1, i.e.,

∑
i∈Ω ai = 1.

We postulate that the total surplus S(Z) of a coalition Z ⊂ Ω of agents de-
pends both on the “coalitional productivity/power”, p(Z) =

∑
i∈Z ai, and the

size/cardinality of the coalition, |Z|:

S(Z) = s(p(Z), |Z|)

where s : [0, 1]× R→ R is a C2 function such that

v < s1(p, q) < v̄, s2(p, q) > 0, s22(p, q) < 0, s(0, q) = 0 and lim
q→∞

s(1, q) <∞ (1)

with 0 < v < v̄ <∞, where sj represents the partial derivative of s with respect to
the j-th argument for j = 1, 2, and s22 the relevant second partial derivative. Hence,
the positive effect of a coalition’s power on its surplus is bounded below and above;
the effect of size is positive but concave and vanishes eventually. We extend s to
coalitions of an infinite size by defining s(p,∞) = limq→∞ s(p, q) for all p ∈ [0, 1].

A population, Ω, the agents’ ability levels, and a surplus function s, specify an
“environment” in which agents may form coalitions endogenously and share sur-
pluses within coalitions. Below we define a stable outcome of such a process.

Each coalition being formed, Z ⊂ Ω, will adopt an imputation rule, denoted by
f : Z → [0, 1], that specifies for each member i ∈ Z a fraction f(i) of the total
surplus, S(Z), to be allocated to that member. Note that

∑
i∈Z f(i) = 1. Thus, the

payoff of agent i ∈ Z is
ui(Z, f) = f(i) · S(Z). (2)

A system is a pair (π, ρ) where π = {Z1, · · · , ZK} is a partition of agents in Ω
into coalitions and ρ is a function that maps each coalition Zk ∈ π to an imputation
rule of that coalition. We adopt the convention that the coalitions are labelled
according to the order of ability of the most able member of each coalition. That
is, min{i|i ∈ Zk} < min{i|i ∈ Zk′} if k < k′.

A system (π, ρ) is stable if there does not exist a deviationD ⊂ Ω that is profitable
relative to the system (π, ρ) in the sense that

ui(D, f) ≥ ui(π(i), ρ(π(i))) ∀i ∈ D 6= ∅

for some imputation rule f that D may adopt, where π(i) is the coalition Zk ∈ π
such that i ∈ Zk, and the inequality is strict for some i ∈ D.

In terms of interpretation, the coalition’s power, p(Z), and its size, |Z|, represent
the quality and quantity, respectively, of the human resources available within an
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organisation for its operation. For an organisation to function properly, typically
various distinct tasks need to be performed. The property that the surplus increases
in |Z| as well as in p(Z) reflects that not only these tasks are better performed by
more able agents, but there are also some benefits from specialisation (although
they diminish as the coalition grows in size). As such, an agent’s contribution to a
coalition depends on its size and power. In a stable system, as we will see, every
agent’s compensation should be commensurate with what she contributes to the
coalition’s total surplus, for there to be no profitable deviation.

We are interested in whether and how the endogenous level of inequality in
compensation within a coalition is related to the structure of endogenous coalitions
(also called organisations for their implicit assignment of tasks to agents of different
ability levels). To facilitate exposition, we introduce the notion of the “rank” of
members of an organisation according to their compensation, i.e., the agent who gets
paid the most within an organisation is ranked first, and so on. This is consistent
with the usual notion of rank, provided that agents are paid in line with their
contributions and high rank individuals are responsible for more important tasks
with greater expected impacts. Arbitrary ranking is allowed among the agents who
get paid the same within an organisation, as it is inconsequential in our analysis.

Note from (1) that a more able member of an organisation makes a larger contri-
bution to the total surplus. Consequently, it is intuitively appealing that members’
ranks in compensation coincide with their ranks in ability within an organisation.
Indeed, it is innocuous to restrict our attention to stable systems with such a prop-
erty according to the next lemma, for the purpose of characterising the number and
composition of coalitions in stable systems. The lemma establishes that, even if rel-
ative payoffs are not tied to relative abilities explicitly, they are tied endogenously
due to competition among rival coalitions. We note that this result holds regardless
of the cardinality of Ω.

Lemma 1 Suppose a system (π, ρ) is stable and the imputation rule f of a coalition
Z ∈ π ranks its members differently from their ability ranking. The system continues
to be stable when the imputation rule of Z is modified in such a way that the agent
whose ability rank is r ∈ N in Z gets the r-th highest compensation according to f ,
that is, the agent whose ability rank is r in Z gets

fr · S(Z) where fr = max
x
{x ∈ [0, 1] |#{i ∈ Z : f(i) ≥ x} ≥ r}.

Proof. Suppose that there is a stable system (π, ρ) described in the lemma. Consider
an arbitrary pair of agents in Z, say i and j where i < j, but j is ranked above i in
terms of compensation. This can happen in one of the following two ways.

First, if f(i) = f(j) yet j is ranked above i because any ranking is allowed
among equally paid members, then simply reverse their rankings. Then, the modified
system is stable because every agent gets the same utility in both systems.
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Second, if f(i) < f(j) then modify f by swapping f(i) and f(j), so that i is paid
more than j in the “new system.” To verify that the new system is stable by way
of contradiction, suppose to the contrary that it is not stable. Then, a profitable
deviation D, with a deviation imputation rule fD, exists that includes either i or
j. If D included only i, then the same D with fD would be profitable relative to
the original system as well, because i is paid less in the original system than in the
new system. If D included only j, then D and fD, with j replaced by i, would be
profitable relative to the original system, because i in the original system is paid
the same as j in the new system (and S(D) increases when j ∈ D is replaced by
i). If D included both i and j, then the same D and fD with fD(i) and fD(j)
swapped, would be profitable relative to the original system, because i (j) in the
original system is paid the same as j (i) in the new system.

By sequentially swapping f(i) and f(j) if i < j but f(i) < f(j) for members i
and j in Z, we can construct a new stable system with the same partition π where
the agent whose ability rank is r ∈ N in Z gets the r-th highest compensation
according to its imputation rule, thereby completing the proof.9

In light of this lemma, we take it for granted in what follows that any stable
system satisfies the property that the internal ranking of members induced by the
imputation rule coincides with their ability ordering within the organisation, which
we refer to as the “ability ranking” property. Hence, we may represent an imputation
rule of a coalition Z ⊂ Ω by a vector

f = (f1, f2, · · · ) ∈ [0, 1]|Z|

where fr is the fraction of the surplus rewarded to the agent, say i ∈ Z, who is
ranked r-th in Z according to ability. Note that

∑|Z|
r=1 fr = 1.

We measure inequality within an organisation by the ratios of the payoff each
rank gets relative to that one rank above gets, i.e., fr+1/fr for r = 1, 2, · · · .

3 General Results

Our core results concern the relationship between internal inequality and an endoge-
nous stable coalition structure, in particular, the number of coalitions that emerge
and their compositions. It proves useful to start with the cases in which the degrees
of internal inequality can be compared easily between systems. Specifically, first we
consider “symmetric systems” in which the imputation rules of all coalitions within

9To be fully precise, there is a technical complication due to the possibility that one may not
finish the swapping process in finite steps when there are infinite instances of “reversed” ranking
initially. However, this proof is sufficient for our results because the proofs of Theorems 1 and 2
only require coincidence of compensation ranking and ability ordering for the M most able agents
for some large M <∞.
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a system exhibit identical levels of inequality in the following sense: for each rank
r = 1, 2, · · · , the ratio fr+1/fr is the same across all coalitions whenever well-defined.
Note that the actual values of fr differ across coalitions of different sizes. Nonethe-
less, we can denote the imputation rule component of a symmetric system (π, ρ)
simply by the imputation rule of the coalition of the largest size, say f , with the
interpretation that for a coalition Zk ∈ π of a smaller size, say L, the imputation
rule is the truncation of f up to the first L entries as fractions to the sum of them.
Later, we explain how our results are extended beyond symmetric systems.

Fix an environment, i.e., a population Ω, a specification of agents’ abilities, and
a surplus function s. Consider two symmetric systems, denoted by F = (πF , ρF )
and G = (πG, ρG). Let f = (f1, f2, · · · ) and g = (g1, g2, · · · ) denote, respectively,
the imputation rule of the largest size coalition in F and G. We say that F is less
equal than G if

fr+1

fr
≤ gr+1

gr
∀r = 1, 2 · · · (3)

whenever both ratios are well-defined, with at least one strict inequality. We now
state our first general result. For brevity, we use SSS as the acronym for “stable
symmetric system” in the sequel.

Theorem 1 Suppose there are two SSS’s in an environment with |Ω| =∞ and

lim sup
n→∞

an+1

an
< 1. (4)

If one system is less equal than the other, then the former consists of a weakly larger
number of coalitions than the latter.

Even though there exist ability distributions with a finite sum that fail the con-
dition (4), it is satisfied by a large class of ability distributions, including geometric
distributions, i.e., an = αn for any α ∈ (0, 1). In addition, (4) is a sufficient (rather
than necessary) condition, so the result may hold even when it is not satisfied.

Here we briefly outline the basic arguments underlying this result (and defer
a formal proof to the Appendix). Consider two stable symmetric systems, F and
G, the former less equal than the latter. For each rank r, consider the truncated
coalitions of F and G consisting of those members who are originally ranked r or
below in their respective coalitions. By (3), as r gets large, the fractions of the total
surplus that the members of these truncations collectively receive in the original
coalitions dwindle more rapidly in the less equal system, F . In addition, what they
receive collectively is in line with what they contribute collectively, for otherwise
there would be an incentive either for the original coalition to sever the truncation
or for the truncation to deviate by separating out. Since what they contribute
collectively is essentially proportional to the sum of their abilities, ability ranking
implies that this sum shrinks more rapidly in F as r increases than it does in G.
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This means that ability level tends to shrink more rapidly as descending down the
rank in coalitions of F , which would not be possible if there were fewer coalitions
in F than in G. The logic outlined above carries a further implication that non-
segregation is an inherent feature of stable systems, that is, rival coalitions consist
of agents whose ability levels are interspersed over a wide range.

This logic does not hinge on the condition that F and G are symmetric sys-
tems. Therefore, it is straightforward to verify that the same result extends to
non-symmetric stable systems, F = (πF , ρF ) and G = (πG, ρG), by modifying the
definition of being a less equal system as follows: Let (fk1 , f

k
2 , · · · ) = ρF (Yk) be

the imputation rule of a coalition Yk ∈ πF , and let (g`1, g
`
2, · · · ) = ρG(Z`) be the

imputation rule of a coalition Z` ∈ πG. Then, F is less equal than G if

max
{k|Yk∈πF }

fkr+1

fkr
≤ min
{`|Z`∈πG}

g`r+1

g`r
∀r = 1, 2 · · · (5)

So far, for analytic ease, we have considered a countably infinite population of
agents (|Ω| =∞) and established a positive relationship between internal inequality
and the number of coalitions to be formed. We now show that this relationship
continues to hold when there are a large but finite number of agents under some
technical conditions, which basically stipulate that the positive power effect on the
surplus increases for coalitions of sufficiently small power ((6) below), whereas the
positive size effect on the surplus vanishes sufficiently rapidly for coalitions of large
sizes ((7) below). To formalise this, we fix a surplus function s(·, ·) and a distribution
of abilities for a countably infinite population, called a “meta-environment.” Then,
we consider “finite environments” consisting of the first N agents of this population,
for various N <∞.

We first formalise, in Lemma 2, the condition on the increasing power effect for
coalitions of sufficiently small power and its implications. Then, we state our general
result for large but finite populations in Theorem 2.

Lemma 2 Consider a meta-environment that satisfies

s11(p, q) ≥ 0 ∀p ∈ (0, p̄) ∀q > 0, for some p̄ > 0. (6)

(a) In any stable system of any finite environment, there is at most one coalition
whose strength is less than p̄/2, which we call a “frivolous coalition” (if it exists).
(b) For any integer q, there is N(q) such that in any stable system of any finite
environment of size N > N(q), every non-frivolous coalition has at least q members.

Proof. (a) Any two coalitions of power less than p̄/2 each, say Z and Z ′ if they exist,
would produce, if merged, a total surplus that exceeds the sum of their respective
surpluses, i.e., S(Z ∪ Z ′) > S(Z) + Z(Z ′) owing to (6) and s2(p, q) > 0 from
(1). Thus, it would constitute a profitable deviation for them to merge (with an
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appropriate imputation rule). Therefore, at most one coalition may have power less
than p̄/2 in any stable system.

(b) Given a fixed integer q, if there exists a stable system with a non-frivolous
coalition whose size is q′ < q, then the contribution an agent makes by joining this
coalition is at least c = minp∈[p̄/2,1](s(p, q

′+1)−s(p, q′)) > 0 regardless of the agent’s
ability. Thus, all agents in other coalitions should get a payoff no less than c (for
otherwise it would constitute a profitable deviation for an agent getting paid less
than c in some other coalition to join this coalition). This is impossible for large
enough N because the possible total surplus in this environment is bounded above
by (1).

Theorem 2 Consider two imputation rules f and g in a meta-environment that
satisfies (4), (6) and

lim
n′→∞

inf
n>n′

an+1

an
> lim

q→∞
sup
p

s(p, q + 2)− s(p, q + 1)

s(p, q + 1)− s(p, q)
, (7)

where f is less equal than g. There exists an integer λ that satisfies the following
property: For any sufficiently small ε > 0 there is an integer N(ε) such that in any
finite environment of size N > N(ε),

(i) any SSS with f as its imputation rule consists of at least λ coalitions, not
counting the coalition with power less than ε if it exists, and

(ii) any SSS with g as its imputation rule consists of at most λ coalitions, not
counting the coalition with power less than ε if it exists.

Condition (7) means that eventually the coalition size effect on the surplus di-
minishes more rapidly than the agent’s ability. This seems a reasonable assumption,
given that in most organisations and activities the returns to size eventually decrease
strongly. In this case, the theorem establishes that a less equal stable system con-
sists of at least as many coalitions as a more equal stable system does, as long as
the population is large enough, ignoring “frivolous” coalitions of negligible power,
which can be interpreted as the residual agents who wish, but are unable, to grow
to a larger, proper coalition.

The relationship between intra-coalition inequality and the structure of a stable
partition is obtained for quite general environments in this section, and thus is
applicable broadly so long as stable systems exist. However, it is difficult to fully
characterise the circumstances under which stable systems exist and their precise
structure when they do, because these characterisations depend on the details of the
environment, such as the ability distribution and the shape of the surplus function.
In the next section we address these questions in the class of environments in which
the surplus of a coalition increases linearly with its power.
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4 When surplus is linear in power

In this section we consider an environment in which the surplus of a coalition Z ⊂ Ω
is linear in its power conditional on its size. That is,

S(Z) = p(Z) · ζ(|Z|) where ζ ′(q) > 0 and ζ(|Ω|) = 1. (8)

Note that ζ(|Ω|) = 1 is a normalisation for expositional convenience.
We start with the case of a countably infinite population. Note that in this case

it would constitute a profitable deviation for any coalition of a finite size, say Z1, to
merge with any other coalition, say Z2, because

p(Z1 ∪ Z2)ζ(|Z1 ∪ Z2|) > p(Z1)ζ(|Z1|) + p(Z2)ζ(|Z2|) (9)

as p(Z1 ∪ Z2) = p(Z1) + p(Z2) and ζ(|Z1 ∪ Z2|) ≥ ζ(|Zi|) for i = 1, 2, where the
inequality is strict for at least one i. In other words, the marginal contribution of
each coalition to the total surplus of the merged coalition is larger than its original
surplus, strictly for coalitions of any finite size. Therefore, every coalition must be
of an infinite size in any stable system. Furthermore, as the marginal contribution of
each agent i to any coalition of an infinite size is ai · ζ(∞) = ai, every agent must be
paid at least her ability in any stable system. This is because if any agent were paid
less than her ability, some other agent should be paid more than her ability in the
same coalition and thus, it would be profitable for the coalition to expel the latter
agent and share the saved excess payment among the remaining members. By the
same token, no coalition may pay any member more than her marginal contribution.
Therefore, in any stable system every agent’s payoff is equal to her ability, or her
maximum possible marginal contribution to a coalition and, conversely, any such
system is stable because no profitable deviation exists when everyone is paid their
maximum possible marginal contribution, as summarised in the next result.10

Proposition 1 If (8) holds and |Ω| = ∞, then a system is stable if and only if
every coalition is of an infinite size and every agent’s payoff is equal to her ability.

In the case of a finite population, on the other hand, (8) implies that (9) holds
for any two coalitions in a system and, consequently, that any stable system consists
of a grand coalition, Ω. Thus, the grand coalition constitutes a stable system if it
pays the agents their marginal contributions, which are equal to their abilities (due
to the normalisation that ζ(|Ω|) = 1), or sufficiently close to those levels so that no
group of agents may form a profitable deviation, as stated below.

Proposition 2 If (8) holds and |Ω| <∞, then a system is stable if and only if (i)
it consists of a grand coalition and (ii) for any subset D of agents S(D) is no more
than the sum of their payoffs in the system.

10We use “marginal contribution” of an agent i to mean her contribution to the total surplus as
a member of the coalition Z she belongs to, i.e., ai · ζ(|Z|) rather than S(Z)− S(Z \ {i}).
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The result that stability requires a grand coalition in finite populations stems
from the assumption of strictly increasing surplus in coalition size, i.e., ζ ′(q) >
0 of (8). If we modify this assumption so that the surplus ceases to increase in
coalition size after a certain level,11 then stable systems for large finite populations
are characterised analogously to Proposition 1 above, as stated below.

Proposition 3 Suppose that (8) holds with the modification that ζ ′(q) > 0 for q <
M ∈ N and ζ(q) = 1 for q ≥ M . If |Ω| > M then a system is stable if and only if
every coalition is of size M or larger and every agent’s payoff is equal to her ability.

Proof. Consider a system in the environment presumed in the Proposition. If any
coalition, say Z, is of a size less than M , then (9) holds for any other coalition
Z ′ in the system and thus, Z ∪ Z ′ would constitute a profitable deviation. Hence,
any stable system must consist of coalitions of size M or larger. If any agent, say
i, gets a payoff less than ai in such a system, then she would benefit by joining
another coalition, if exists, because her marginal contribution to that coalition is
ai. If there is only one coalition, then there must exist another agent, say j, who
gets paid more than her ability and it would be profitable for the coalition to expel
j and share the saved excess payment because the total surplus would decrease
only by aj given |Ω| > M . Therefore, every agent i gets a payoff of ai in any stable
system. Conversely, if every agent i gets a payoff of ai in a system, then no profitable
deviation exists because ai is the maximum possible marginal contribution of agent
i to any coalition, and therefore the system is stable. This completes the proof.

Fully flexible negotiation of the intra-coalition division of surplus implies that
efficiency is achieved in stable systems and that each agent’s payoff is equal to her
maximum possible marginal contribution. In the environments considered in this
section, stable systems always exist and admit a complete characterisation, besides
exhibiting the relationship delineated in the previous section between intra-coalition
inequality and the number of coalitions in the stable systems.

For the sake of providing a clear illustration, in the remaining part of this section
we present a heuristic class of environments where the agent’s ability is distributed
according to a geometric distribution and coalitions are restricted to choose an
imputation rule that can be represented by a single parameter depicting the payoff
ratio between any two consecutively ranked members.12,13

11In line with the power in politics interpretation, this case of flat ζ after a threshold size is
reminiscent of the party formation problem, where each party will have exactly as many members
or candidates as there are posts in a majoritarian government plus patronage system.

12Any two systems can be compared unambiguously in terms of internal inequality under this
restriction.

13 Barbera, et al. (2014) study stable organisational structures in a related model where each
coalition is restricted to choose by voting (hence, dictated by the median ability member) be-
tween two imputation rules, namely, the meritocratic rule, according to which the agents get
their marginal contribution, and the egalitarian rule, according to which everyone gets the same
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4.1 Geometric ability distribution and single parameter im-
putation rule

Consider a countably infinite population and a geometric distribution of abilities:

ai = (1− a)ai−1 for i ∈ N, where a ∈ (0, 1). (10)

Here a reflects the degree of ability differential across agents. Note that multiplica-
tion by (1− a) is for normalisation to 1 of the sum of abilities of all agents.

We now capture the vertical inequality of payoffs across ranks with a single
parameter ρ, termed the imputation ratio, which is the ratio of the surplus share of
any coalition member relative to that of the member occupying the rank immediately
above.14 Specifically, each coalition Z is assumed to choose an imputation ratio
ρ ∈ (0, 1) as its imputation rule, that is, fr+1/fr = ρ for all r = 1, 2, · · · , |Z| − 1.
Note that a lower ρ corresponds to greater inequality.

We retain the assumption that every coalition adopts ability ranking, which is
innocuous for our purpose of characterising stable systems because Lemma 1 applies
straightforwardly to the current environment as well. Then, denoting the rank of
agent i in a coalition Z by ri(Z), the expected utility of agent i in Z is

ui(Z, ρ) =
S(Z) · ρri(Z)−1

1 + ρ+ · · ·+ ρ|Z|−1
=

S(Z)(1− ρ)ρri(Z)−1

1− ρ|Z|
(11)

= S(Z)(1− ρ)ρri(Z)−1 if |Z| =∞.

Thus, every agent should decide which coalition to join not only on the basis of the
coalition’s power, p(Z), but also on the basis of her expected rank in the coalition,
ri(Z), and the vertical inequality, ρ.

We now represent a system as (π, ~ρ) consisting of a partition π = {Z1, · · · , ZK}
of Ω into K coalitions, and a K-vector ~ρ = (ρ1, · · · , ρK) that specifies one imputa-
tion ratio ρk ∈ (0, 1) for each coalition Zk ∈ π. Note from (8) that the marginal
contribution of an agent i to a coalition’s total surplus is ai = (1− a)ai−1 when she
joins a coalition of an infinite size. As before, a key observation here is that every
agent can obtain this level of payoff. Formally,

share. They also obtain non-segregated groups and the coexistence of different reward norms
(meritocratic and egalitarian groups) as inherent features of stable structures. Their modelling of
coalitional production is a limit case of (8) where ζ(·) jumps from 0 to 1 at a certain threshold
size. If coalitions were allowed to choose from unrestricted imputation rules, therefore, the logic
behind Proposition 3 would imply that, unlike their results, stable structures always exist and are
meritocratic. (This is the case in the absence of their tie-breaking rule which stipulates that if
an agent gets the same payoff from two coalitions then she prefers the one with a higher average
ability. If the tie-breaking rule is imposed on our setting when ζ(·) jumps from 0 to 1 at a certain
threshold size, then a stable system does not exist unless the total number of agents is an integer
multiple of the threshold size.)

14In the political economy literature it is very common to simplify the distributive views using
a single parameter, such as the preferred tax rate in a linear tax system.
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Lemma 3 If an agent i’s payoff in a system (π, ~ρ) is strictly less than (1− a)ai−1,
then the system is not stable.

Proof. Let j1 be the agent whose payoff in the system (π, ~ρ) is strictly lower than
(1 − a)aj1−1. Find a sufficiently low ρ′ > 0 such that u′ = (1 − ρ′)(1 − a)aj1−1

exceeds her payoff in (π, ~ρ). For each r = 2, 3, · · · , one can find an agent, say jr,
whose payoff in the system (π, ~ρ) falls short of u′ · (ρ′)r−1, maintaining the feature
that jr < jr+1. This is because there exists an agent i, where i is arbitrarily large,
whose payoff is arbitrarily low in the system either because her rank is arbitrarily
low in an infinite coalition, or in the case that there is no coalition of an infinite
size, because she is in a coalition of arbitrarily small power. Then, the deviation
D′ = {j1, j2, · · · } with the imputation ratio ρ′ is profitable because agent jr would
have a payoff of (1 − ρ′)(1 − a)(

∑∞
n=1 a

jn−1)(ρ′)r−1 > u′ · (ρ′)r−1. This proves that
(π, ~ρ) is not stable.

Lemma 3 implies that, in any stable system, agent i’s payoff is at least (1−a)ai−1.
In fact, it is equal to (1−a)ai−1 in any stable system because the maximum possible
surplus in the whole economy is S(Ω) = (1 − a)

∑∞
i=1 a

i−1. This further implies
that any coalition Z in a stable system must generate a total surplus of S(Z) =
(1− a)

∑
i∈Z a

i−1, which is possible only if it is of an infinite size.
The specific partition structure defined below turns out to be crucial. A coalition

Z is “K-cyclic” if it consists of every K-th agent starting from a certain agent k, i.e.,
Z = {k, k +K, k + 2K, k + 3K, · · · }. A “K-cyclic partition” is πcK = {Z1, · · · , ZK}
where each Zk is K-cyclic starting from agent k for k = 1, 2, · · · , K.

A “symmetric K-cyclic system” (πcK , ρ) where πcK is the K-cyclic partition and
ρ = (aK , · · · , aK), clearly delivers every agent a payoff that is equal to her ability
and thus, constitutes a stable system. In fact, the same conclusion holds so long
as each coalition of a system is K-cyclic with an imputation ratio ρ = aK for some
integer K, where the value of K may vary across coalitions. We refer to such a
system as a “generalised cyclic” system. For example, in the symmetric 4-cyclic
system, if Z1 and Z3 merge to form a 2-cyclic coalition and adopt an imputation
ratio of a2, then the new system is a generalised cyclic system.

The next result establishes that a system is stable if and only if it is of this kind.
Therefore, organisations with varying norms of internal inequality coexist in a stable
system. Moreover, the more unequal internal norms a system displays across the
board, the larger is the number of competing organisations that have emerged in the
system and the more widely dispersed are the agents’ abilities within organisations.

Proposition 4 A system (π, ~ρ) is stable if and only if it is a generalised cyclic
system. Furthermore, agent i’s payoff in any stable system is (1− a)ai−1.

Proof. We have already shown that agent i’s payoff is equal to (1 − a)ai−1 in any
stable system. It is clear from (8) and (10) that this is possible for a coalition only
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if it is K-cyclic and its imputation ratio is aK for some K ≥ 1. This proves that if
a system is stable then it is a generalised cyclic system. Conversely, any generalised
cyclic system is stable because the surplus of any deviation is no more than the sum
of the abilities of the deviating members, so no beneficial deviation exists.

4.2 Stable partitions under a fixed imputation ratio ρ

In this section we study the stability of partitions in the special case in which ρ
is exogenously given (and hence ρ must be respected even in deviations). This
environment can be interpreted as a short-run model in which the organisational
structure may not be changed quickly due to some institutional reasons.15 In a
political context, for example, even though a party’s probability of winning depends
on the abilities of the politicians involved, once a party gains power and the various
offices have to be filled, at that point the relative payoffs of the various party mem-
bers depend on their assigned ranks (from president to secretary and so on), and
these relative and absolute payoffs take the form of pre-specified rank-dependent
remunerations.

The main result of this section is that given a ∈ (0, 1), if a stable partition exists
for any ρ, it is unique and is a K-cyclic partition for some integer K that decreases
in ρ, as specified below. Since lower ρ represents higher inequality, this reflects a
positive relationship between the vertical inequality and the number of coalitions to
be formed endogenously.

Proposition 5 Suppose that all coalitions adopt a given imputation ratio ρ ∈ (0, 1).
Then, the K-cyclic partition πcK is stable if and only if

aK ≤ ρ <
aK−1

1 + aK−1 − aK
. (12)

Furthermore, if a partition is stable for any (a, ρ), it is a K-cyclic partition for some
integer K and it is the unique stable partition given (a, ρ). The fraction of ρ values
specified by (12) relative to aK ≤ ρ < aK−1 approaches 1 as K →∞.

Proof. See Morelli and Park (2011), an earlier version of this paper.

Figure 1 illustrates the areas of the parameter values (a, ρ) ∈ (0, 1)× (0, 1) that
satisfy (12) and thus, support stable K-cyclic partitions. Between the area for a
stable K-cyclic partition and that for a stable (K − 1)-cyclic partition, there is an
area with no stable partition. The fraction of this latter area, relative to the area
for a stable K-cyclic partition, converges to 0 as K →∞.

15We share the view that “often, the rewards from joint effort are shared according to rather
rigid rules,” as conveyed, e.g., by Farrell and Scotchmer (1988) who, focusing on partnerships,
analyse the implications of the equal sharing rule on the size of partnerships and welfare.
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5 Concluding Remarks

In this paper, we have demonstrated some insightful and robust connections be-
tween vertical inequality within coalitions and the endogenous formation of coalition
structures. In order to best emphasise the connection, we have first established the
positive correlation between vertical inequality and the number of organisations for
general environments, i.e., for a large class of surplus functions and distributions of
ability, and then confirmed the existence of (and provided tight characterisations
of) stable outcomes for surplus functions that increase linearly in coalitional power.

Even though our theoretical framework and results are not directly usable for
normative analysis, it is important to remark that our results on the relationship
between vertical inequality and number of competing organizations can also enter
policy or regulation debates. For example, in the recent discussion about the pros
and cons of imposing less inequality in pay structures within certain kinds of firms,
nobody has mentioned an implication of such a restriction that could emerge from
our analysis, namely that such a restriction could lead to greater concentration in
the industry.

One limitation of our model is that the value of a coalition does not depend on
the partition of the rest of the agents. This limitation may not be critical when
coalitions are expected to be of similar strengths such as in our cyclic partitions. In
other contexts, however, it may be important for the value of a coalition to reflect
the way that other coalitions are composed. In plurality rule elections, for example,
it makes a big difference for a coalition expecting 30% of the votes whether the
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remaining 70% is divided into 7 small parties of 10% each or two parties of 35%
each. An extension of the model in which the relative power of any coalition depends
not only on the ability of its members but also on some other relevant dimension is
in our future research agenda.

We note that our cooperative game theoretic results have the potential to be
implemented and extended in a dynamic setting such as the one introduced by Ace-
moglu, Egorov and Sonin (2008), since the lack of commitment that constitutes their
main tenet is also conceptually or implicitly assumed in our core-like cooperative
logic. A dynamic stability analysis could therefore constitute the natural next step
for this line of research.

In future research it would also be useful to analyse the realistic extension in
which abilities are more than one dimensional, to see for example whether stable
systems with more groups tend to have a different sorting of ability compositions
relative to systems with less competition. In other words, with more than one di-
mensions of ability and some standard assumption of complementarities or team
production, both the distribution of surplus across hierarchical levels and the rela-
tionship with equilibrium sorting of groups are important.

A few remarks about the potential empirical relevance of our findings are in order:
In the literature on the number of political parties, for example, the leading hypothe-
ses elaborated and tested have all to do with the electoral formula (Duverger’s law
and Duverger’s hypothesis), but it is well documented that even after controlling for
the electoral formula the number of parties of different countries varies enormously
(think of India and the United States in the set of countries using a majoritarian
system and Ireland and Italy within the set of countries using a more proportional
system). Within each set of countries with homogeneous electoral institutions, one
could in principle verify whether vertical inequality across the major ranks of each
party is indeed higher in countries with a larger number of stable parties. Similarly,
dividing the US production of goods and services according to several categories,
one could evaluate income distribution across ranks in each industry or category and
determine if higher hierarchical inequality is correlated with a lower concentration
in the sector. However, it is beyond the scope of this paper to determine whether
appropriate data exist and to test the prediction while properly controlling other
relevant cultural and economic differences across countries/sectors, which we leave
for future research.
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APPENDIX

We start with two preliminary results. An SSS (π, ρ) is also represented by (π, f)
where f = (f1, f2, · · · ) is the imputation rule of the largest size coalition in π.

Lemma 4 In any SSS for an environment with |Ω| =∞, every coalition has count-
ably infinite members.

Proof. To reach a contradiction, suppose there is a finite coalition, say Z1, in an SSS
(π, f). Note that for any j 6∈ Z1 we have s(p(Z1 ∪ {aj}), |Z1|+ 1)− s(p(Z1), |Z1|) >
s(p(Z1), |Z1|+ 1)− s(p(Z1), |Z1|) > s(p(Z1), |Z1|)s2(p(Z1), |Z1|+ 1) > 0 by (1), i.e.,
s(p(Z1 ∪{aj}), |Z1|+ 1)− s(p(Z1), |Z1|) exceeds a positive number independently of
aj.

If there is an infinite coalition, say Zk ∈ π, since limr→∞ fr = 0, there exists j ∈
Zk such that agent j’s payoff in the system (π, f) is arbitrarily small, in particular,
strictly smaller than δ = s(p(Z1∪{aj}), |Z1|+1)−s(p(Z1), |Z1|). So, agent j would be
better off by joining Z1 if paid δ and thus, D = Z1∪{j} would constitute a profitable
deviation because it would not make any member of Z1 worse off, contradicting the
supposed stability of the partition. If all coalitions of π are finite, on the other
hand, there are infinitely many coalitions and consequently, there is a coalition of
arbitrarily small power, say Z ′ ∈ π, such that the payoff of any agent j ∈ Z ′

is smaller than s(p(Z1 ∪ {aj}), |Z1| + 1) − s(p(Z1), |Z1|), leading to an analogous
contradiction that Z1 ∪ {j} would be a profitable deviation.

Lemma 5 Let ({Z1, Z2, · · · , ZK}, f) be an SSS (where K =∞ is allowed).

(a) p(Zk) > p(Zk+1) for all k = 1, 2, · · · , K.

(b) If k < k′, the member of Zk at rank r is at least as able as the member of Zk′
at the same rank for every r = 1, 2, · · · .

Proof. (a) Suppose to the contrary that p(Zk+1) ≥ p(Zk) for some k. Let ik and
ik+1 be the most able member of Zk an Zk+1, respectively. Then, the deviation
D =

(
Zk+1\{ik+1}

)
∪ {ik} with the imputation rule f would be profitable because

(i) ik < ik+1 so that p(D) > p(Zk+1) ≥ p(Zk), and (ii) every member in D retains
the same rank as in the original system.

(b) Suppose to the contrary that the rank r member of Zk, say j, is less able
than the same rank member of Zk′ , say i, for some r. Consider the lowest such
r. Since p(Zk) > p(Zk′) by part (a), the deviation D =

(
Zk \{j}

)
∪ {i} with the

imputation rule f would be profitable because (i) p(D) > p(Zk) > p(Zk′), and (ii)
every member in D retains the same rank as in the original system.

Proof of Theorem 1. Consider two SSS’s, F and G, in an environment that satisfies
(4). Assume ability ranking in both F and G by Lemma 1. Recall from Lemma 4
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that all coalitions are of an infinite size. Let f = (f1, f2, · · · ) and g = (g1, g2, · · · )
be, respectively, the common imputation rule of F and G.

Suppose, to the contrary, that F is less equal than G, yet F consists of K
coalitions denoted by Y1, · · · , YK , while G consists of L > K coalitions denoted by
Z1, · · · , ZL. For each integer r, let Yk|r be the subset of Yk consisting of all agents
ranked r or below in Yk, for every k = 1, · · · , K; Similarly, let Z`|r be the subset of
Z` consisting of all agents ranked r or below in Z`, for every ` = 1, · · · , L.

First, we establish that

p(Yk|r)
p(Z`|r)

is bounded above for every (k, `) ∈ {1, · · · , K} × {1, · · · , L}. (13)

To show this, observe that stability of F implies for each rank r:

(i) For the subset Yk|r to not constitute a profitable deviation together with some
imputation rule (e.g., keep the payoff ratio between any two agents in Yk|r the
same as in F ), we need s(p(Yk),∞) · (

∑∞
j=0 fr+j) ≥ vp(Yk|r) by (1);

(ii) Let Y 1
k |r ⊂ Yk|r denote the subset consisting of every other member of Yk|r

starting from the most able member. For the subset Yk \ Y 1
k |r to not con-

stitute a profitable deviation together with some imputation rule, we need
that what Y 1

k |r collectively gets in Yk is no more than what it contributes, i.e.,
s(p(Yk),∞) ·(

∑∞
j=0 fr+2j) ≤ s(p(Yk),∞)−s(p(Yk \Y 1

k |r),∞) ≤ v̄p(Y 1
k |r) where

the last inequality follows because s1(·, ·) is bounded above by v̄.

(iii) Similarly, letting Y 2
k |r = Yk|r \ Y 1

k |r, for the subset Yk \ Y 2
k |r to not constitute

a profitable deviation together with some imputation rule, we need that what
Yk|2r collectively gets in Yk is no more than what it contributes, i.e., s(p(Yk),∞)·
(
∑∞

j=0 fr+2j+1) ≤ s(p(Yk),∞)− s(p(Yk \ Y 2
k |r),∞) ≤ v̄p(Y 2

k |r).

Combining the inequalities from (ii) and (iii),16 we get s(p(Yk),∞) · (
∑∞

j=0 fr+j) ≤
v̄p(Yk|r). Together with the inequality from (i), we deduce further that∑∞

j=0 fr+j

v̄
≤ p(Yk|r)
s(p(Yk),∞)

≤
∑∞

j=0 fr+j

v
. (14)

Analogous arguments for G establishes∑∞
j=0 gr+j

v̄
≤ p(Z`|r)
s(p(Z`),∞)

≤
∑∞

j=0 gr+j

v
. (15)

Since (3) implies that (
∑∞

j=0 fr+j)/(
∑∞

j=0 gr+j) < 1 for sufficiently large r, (14) and
(15) establish (13).

16Note that we do not obtain the same condition by by requiring Yk \ Yk|r to not constitute a
profitable deviation, because |Yk \ Yk|r| <∞.
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Now, for each r, let ik(r) ∈ Ω be the rank r agent in Yk, and define i(r) =
min{i1(r), i2(r), · · · , iK(r)} and ī(r) = max{i1(r), i2(r), · · · , iK(r)}. Similarly, let-
ting j`(r) be the rank r agent in Z`, define j(r) = min{j1(r), j2(r), · · · , jL(r)} and
j̄(r) = max{j1(r), j2(r), · · · , jL(r)}. Then, Lemma 5 (b) implies that

i(r) < rK ≤ ī(r) and j(r) < rL ≤ j̄(r),

which in turn imply that j̄(r)− i(r) > (L−K)r so that j̄(r)− i(r)→∞ as r →∞.
By (4), one can find α such that lim sup an+1

an
< α < 1 and, consequently, an+1

an
< α

for all sufficiently large n. Then, for sufficiently large r, we would have
∑

i∈Yk|r ai >

ai(r) and
∑

i∈Z`|r ai < aj̄(r)/(1−α) for k = 1 and ` = L by Lemma 5 (b), contradicting

(13) because aj̄(r) < ai(r)α
j̄(r)−i(r) so that p(Yk|r)/p(Z`|r) > (1 − α)ai(r)/aj̄(r) >

(1− α)/αj̄(r)−i(r) →∞ as r →∞.

Proof of Theorem 2. We assume ε < p̄/2 below where p̄ is as in (6). Then, by
Lemma 2 (a), each SSS may have at most one frivolous coalition and consequently,
there may be no more than κ = 2/p̄+ 1 coalition in any SSS.

Fix a pair of integers K and L such that 0 ≤ K − 1 < L ≤ κ. For each N ∈ N
find all SSS’s (if exist), FN = (πNf , f) and GN = (πNg ,g) where πNf consists of K
coalitions denoted by Y N

1 , · · · , Y N
K , while πNg consists of L coalitions denoted by

ZN
1 , · · · , ZN

L , including the frivolous ones. If, for any such pair of K and L, there
does not exist any SSS with f or g as its imputation rule for all sufficiently large N ,
then the Theorem holds trivially. Hence, assume otherwise in the remainder of this
proof.

The key step of the proof is the following result:

[*] There do not exist two sequences Nn → ∞ and N ′n → ∞ for which one can
find two sequences of SSS’s, (FNn)n and (GN ′n)n, with the following property:

The limits limn→∞ p(Y
Nn
k ) and limn→∞ p(Z

N ′n
` ) exist for all k = 1, 2, · · · , K

and ` = 1, 2, · · · , L, and furthermore,

K∗ = #{k| lim
n→∞

p(Y Nn
k ) > 0} < L∗ = #{`| lim

n→∞
p(Z

N ′n
` ) > 0}. (16)

To prove this, suppose to the contrary that two sequences (FNn)n and (GN ′n)n
exist with the above property. By Lemma 2, K∗ ∈ {K − 1, K} and L∗ ∈ {L −
1, L}. By convention of indexing coalitions, limn→∞ p(Y

Nn
k ) > 0 precisely for k =

1, · · · , K∗, and limn→∞ p(Z
N ′n
` ) > 0 precisely for ` = 1, · · · , L∗.

If K∗ = K − 1, for any integer r, there is n(r) large enough so that the most
able member of the weakest coalition Y Nn

K is weaker than aK∗r for all n ≥ n(r), and
thus,

i(r) = min{i|i is rank r agent in some coalition in FNn} ≤ K∗r
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for all n ≥ n(r). This inequality holds straightforwardly when K∗ = K as well. In
addition, by an analogous reasoning,

j̄(r) = max{j|j is rank r agent in Z
N ′n
` for some ` ≤ L∗} ≥ L∗r

for all N ′n. Since there is α such that lim sup an+1

an
< α < 1 for all large n by (4), we

can find subsequences (F N̂r) and (GN̂ ′r)r such that p(Y N̂r
k |r) > ai(r) with i(r) ≤ K∗r

for some Y N̂r
k , k ≤ K∗, and p(Z

N̂ ′r
` |r) < aj̄(r)/(1 − α) with j̄(r) ≥ L∗r for some

Z
N̂ ′r
` , ` ≤ L∗, where Z|r denotes the the subset of a coalition Z consisting of all

members of Z ranked r or below. Note that k = 1 and ` = L∗ by Lemma 5. Since,
aj̄(r) < ai(r)α

j̄(r)−i(r) and j̄(r)− i(r) ≥ (L∗−K∗)r →∞ as r →∞ by (16), it further

follows that p(Y N̂r
1 |r)/p(Z

N̂ ′r
L∗ |r) > (1− α)/αj̄(r)−i(r) →∞ as r →∞.

Next, for Y N̂r
k |r not to constitute a beneficial deviation in F N̂r , we need

s(p(Y N̂r
k ), |Y N̂r

k |) · (
|Y N̂r

k |∑
j=r

fj)
/

(

|Y N̂r
k |∑
j=1

fj) ≥ vp(Y N̂r
k |r) ∀r. (17)

For each i ∈ ZN̂ ′r
` |r, consider the potential deviation Z

N̂ ′r
` \{i}. For this not to be

beneficial, we need s(p(Z
N̂ ′r
` ), |ZN̂ ′r

` |) · gi/(
∑|ZN̂′r

` |
j=1 gj) ≤ s(p(Z

N̂ ′r
` ), |ZN̂ ′r

` |) − s(p(Z
N̂ ′r
` \

{i}), |ZN̂ ′r
` |−1) = s(p(Z

N̂ ′r
` ), |ZN̂ ′r

` |)− s(p(Z
N̂ ′r
` \{i}), |Z

N̂ ′r
` |) + s(p(Z

N̂ ′r
` \{i}), |Z

N̂ ′r
` |)−

s(p(Z
N̂ ′r
` \ {i}), |Z

N̂ ′r
` | − 1) < v̄ai + s(p(Z

N̂ ′r
` \ {i}), |Z

N̂ ′r
` |)− s(p(Z

N̂ ′r
` \ {i}), |Z

N̂ ′r
` | − 1).

Summing the final inequality over all i ∈ ZN̂ ′r
` |r, we get

s(p(Z
N̂ ′r
` ), |ZN̂ ′r

` |) · (
|ZN̂′r

` |∑
j=r

gj)
/

(

|ZN̂′r
` |∑
j=1

gj) (18)

< v̄p(Z
N̂ ′r
` |r) +

∑
i∈ZN̂′r

` |r

(
s(p(Z

N̂ ′r
` \ {i}), |Z

N̂ ′r
` |)− s(p(Z

N̂ ′r
` \ {i}), |Z

N̂ ′r
` | − 1)

)
.

At this point, observe that |ZN̂ ′r
` | → ∞ as r → ∞, because otherwise, i.e., if

|ZN̂ ′r
` | is bounded above as r → ∞, then the marginal contribution of joining the

coalition Z
N̂ ′r
` would be bounded away from 0 while the lowest payoff among all

agents vanishes as r → ∞ so that it would be a beneficial deviation for the lowest

paid agent to join Z
N̂ ′r
` . By taking a subsequence if necessary, we may assume that

|ZN̂ ′r
` | > r(M + 1) for any finite integer M . In particular, denoting supremum of

the fraction on the RHS of (7) by ξq for each q, set M to be an integer such that
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the product of any consecutive M − 2 values, ξj+1 · · · ξj+M−2, is less than αL/2 for
sufficiently large j. Then, we have

Mr = max{n ∈ N|n ≤ |ZN̂ ′r
` |/r} > M and hr = |ZN̂ ′r

` | − rMr < r. (19)

Now, we prove that the distance between j̄(r) and the most able rank r agent in

GN , denoted by j(r), is bounded above. To see this, first observe that j(r) ∈ ZN̂ ′r
1

and j̄(r) ∈ ZN̂ ′r
L∗ by Lemma 5. For {j(r)} not to be a beneficial deviation, the payoff

to j(r) in Z
N̂ ′r
1 should be no less than vp({aj(r)}). For Z

N̂ ′r
L∗ \ {j̄(r)} not to be a

beneficial deviation, the payoff to j̄(r) in Z
N̂ ′r
L∗ should be no more than v̄p{aj̄(r)}) for

large enough r. Therefore, if j̄(r) − j(r) → ∞ as r → ∞, as it would follow that
aj(r)/aj̄(r) →∞ as r →∞, we would have established that the payoff ratio between

j(r) and j̄(r) must explode as r → ∞. But, this is impossible as the following
calculation shows:

gr · s(p(ZN̂ ′r
1 ), |ZN̂ ′r

1 |)

(
∑|ZN̂′r

1 |
j=1 gj)

/
gr · s(p(ZN̂ ′r

L∗ ), |ZN̂ ′r
L∗ |)

(
∑|ZN̂′r

L∗ |
j=1 gj)

→ s(p(Z
N̂ ′r
1 ),∞)

s(p(Z
N̂ ′r
L∗ ),∞)

∈ (0,∞) as r →∞.

This establishes that j̄(r)− j(r) is bounded above, say by B.

Then, because j(r) ≤ Lr, it follows that p(Z
N̂ ′r
L∗ |r) > aLr+B and consequently,

p(Z
N̂ ′r
L∗ |r) ≥ φαLr for all large enough r for some φ > 0 because lim inf an+1

an
> 0 by

(7). Hence,

∑
i∈ZN̂′r

L∗ |r

s(p(Z
N̂ ′r
L∗ \ {i}), |Z

N̂ ′r
L∗ |)− s(p(Z

N̂ ′r
L∗ \ {i}), |Z

N̂ ′r
L∗ | − 1)

p(Z
N̂ ′r
L∗ |r)

≤
|ZN̂ ′r

L∗ | · ξ1 · · · ξ|ZN̂′r
L∗ |−2

φαLr
× sup

p

(
s(p, 2)− s(p, 1)

)
=

(hr +Mr)ξ1ξ2 · · · ξhr+Mr

φαL
× (hr + 2Mr)ξhr+Mr+1 · · · ξhr+2Mr

(hr +Mr)αL
× · · ·

×
(hr + rMr)ξhr+(r−1)Mr+1 · · · ξhr+rMr−2

(hr + (r − 1)Mr)αL
× sup

p

(
s(p, 2)− s(p, 1)

)
→ 0 as r →∞.

The convergence ensues because i) (hr+Mr)ξ1ξ2 · · · ξhr+Mr is bounded,17 ii) hr+r′Mr

hr+(r′−1)Mr

is bounded above by 2 for r′ ≥ 2, and iii)
ξhr+(r′−1)Mr+1···ξhr+r′Mr−2

αL < 1
2

for all large

17This is because for any β ∈ (0, 1), we have nβn = β(2β)(3β/2) · · · (nβ/(n− 1))→ 0 as n→∞
as n/(n− 1)→ 1.
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r′ by definition of Mr. and iv) supp
(
s(p, 2) − s(p, 1)

)
is bounded above by (1).

Therefore, from (18) we deduce that s(p(Z
N̂ ′r
L∗ ), |ZN̂ ′r

L∗ |) · (
∑|ZN̂′r

L∗ |
j=r gj)/(

∑|ZN̂′r
L∗ |

j=1 gj) <

(v̄ + η)p(Z
N̂ ′r
L∗ |r) for some η > 0.

Together with (17), we further deduce that

p(Y N̂r
1 |r)

p(Z
N̂ ′r
L∗ |r)

<
(v̄ + η) · s(p(Y N̂r

1 ), |Y N̂r
1 |) · (

∑|Y N̂r
1 |

j=r fj) · (
∑|ZN̂′r

L∗ |
j=1 gj)

v · s(p(ZN̂ ′r
L∗ ), |ZN̂ ′r

L∗ |) · (
∑|Y N̂r

1 |
j=1 fj) · (

∑|ZN̂′r
L∗ |

j=r gj)

.

The RHS of this inequality is bounded because (
∑|Y N̂r

1 |
j=r fj)/(

∑|ZN̂′r
L∗ |

j=r gj) is bounded

above contradicting the earlier finding that p(Y N̂r
1 |r)/p(Z

N̂ ′r
L∗ |r) → ∞. This proves

[*].
Finally, to prove the Theorem, suppose to the contrary that there does not exist

an integer λ that satisfies the properties (i) and (ii) stated in the Theorem. Note
that the property (i) holds trivially when λ = 1; and that if (i) holds for some λ > 2
then so it does for λ−1. Hence, let λ̄ be the maximum value of λ for which (i) holds,
which must exist due to Lemma 2. This would mean that for any sufficiently small
ε, an SSS can be found for arbitrarily large N such that its imputation component
is f and it consists of exactly λ̄ coalitions, not counting the coalition with power less
than ε.

Then, by supposition that the Theorem is false, property (ii) does not hold for
λ̄, i.e., for arbitrarily small ε, an SSS can be found for arbitrarily large N such that
its imputation component is g yet it consists of strictly more than λ̄ coalitions, not
counting the coalition with power less than ε. Consider such a sequence εn → 0 as
n → ∞ and for each εn find such an SSS GN ′n with a frivolous coalition whenever
possible. Note that if GN ′n is without a frivolous coalition for some n, then so is GN ′n

for all larger n.
Similarly, for each εn find an SSS FNn such that its imputation component is

f and it consists of exactly λ̄ coalitions, not counting the coalition with power less
than εn. Again, find such an SSS FNn with a frivolous coalition whenever possible.
Note that if FNn is without a frivolous coalition for some n, then so is FNn for all
larger n. This would mean that we can find two sequences of SSS’s (FNn)n and
(GN ′n)n that satisfies the property stated in [*], with K∗ = λ̄, a contradiction.
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