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1 Introduction

Anger can shape economic outcomes. Consider three cases:

Case 1: In 2015 Turing Pharmaceuticals raised the price of Daraprim, a thera-
peutic drug, from $12 to $750 per dose. The company was subsequently accused of
price gouging. Should Turing have considered the consequences of customer anger
before determining the new price for the drug?

Case 2: When local football teams favored to win instead lose, the police get
more reports of husbands assaulting wives (Card & Dahl 2011). Do unexpected
losses spur vented frustration?

Case 3: Following the sovereign debt crises that began in 2009, some EU countries
embarked on austerity programs. Was it because citizens lost benefits that some
cities experienced riots?

Pricing, domestic violence, political landscapes: these are important themes, and we pro-
pose that others (involving—say—recessions, contracting, arbitration, terrorism, road rage, or
support for populist political candidates) could plausibly be imagined. However, to carefully
assess the impact of anger on social and economic interactions, one needs a theory that pre-
dicts outcomes based on the decision-making of anger-prone individuals and that accounts for
strategic considerations. We develop such a theory.

Insights from psychology about the triggers and repercussions of anger are evocative. The
behavioral consequences of emotions are called “action tendencies,” and the action tendency
associated with anger is aggression and the urge to retaliate. Angry players may be willing to
forgo material gains to punish others, or be predisposed to aggression when this serves as a
credible threat. But while insights of this nature can be gleaned from psychologists’ writings,
their analysis usually stops with the individual rather than going on to assess overall economic
and social implications. We take the basic insights about anger that psychology has produced
as input and inspiration for our theory.1

We study the strategic interaction of decision makers who become angry when they are
frustrated.2 Frustration occurs when someone is unexpectedly denied something he or she
cares about. We assume that people are frustrated when they get less material rewards than

1The psychology literature is huge. A source of inspiration is International Handbook of Anger (Potegal et
al. 2010) offering a cross-disciplinary perspective reflecting “affective neuroscience, business administration,
epidemiology, health science, linguistics, political science, psychology, psychophysiology, and sociology” (p. 3).
The absence of “economics” in the list may indicate that our approach is original!

2A large body of work in psychology connects frustration, anger, and aggression, beginning with Dollard
et al. (1939). See, for example, Averill (1982), Berkowitz (1989), and the (op. cit.) Handbook, especially the
chapters by Lewis, Wranik & Scherer, and Berkowitz.
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expected.3 They then become hostile towards whomever they blame. Because a player’s
frustration depends on his beliefs about others’ choices, and the blame a player attributes to
another may depend on his beliefs about others’ choices or beliefs, all our models find their
intellectual home in the framework of psychological game theory; see Geanakoplos, Pearce &
Stacchetti (1989) and Battigalli & Dufwenberg (2009) (B&D).

In our model, initially expected material payoffs are the reference point to which outcomes
are compared to generate frustration. This modeling choice mirrors that of several other
behavioral models, including Kőszegi & Rabin’s (2006, 2007) model of reference-dependent
preferences, guilt aversion (Dufwenberg 2002, Battigalli & Dufwenberg 2007), and earlier
models of disappointment aversion (Bell 1985, Loomes & Sugden 1986). While this approach
may not incorporate every aspect of frustration discussed in the psychology literature, it is
consistent with a broad range of behavioral phenomena, allowing for frustration and anger to
be belief-dependent and capturing the stylized fact that costly punishment involves violations
of consequentialism (e.g. Falk et al. 2003, 2008).

There are a number of ways to model the assignment of blame.4 We present three ap-
proaches that result in distinct utility functions. Players motivated by simple anger (SA)
become generally hostile when frustrated. In contrast, those motivated by anger from blam-
ing behavior (ABB) or anger from blaming intentions (ABI) are more discriminating, asking
who caused, or who intended to cause, their frustration. SA captures the well-known psycho-
logical phenomenon of displaced aggression, where an angry person takes out frustration
on a blameless bystander.5 However, for some authors, blame or other-responsibility is a
prerequisite for anger.6 ABB and ABI are consistent with this view.

We develop and apply a modeling framework in which players have beliefs about both
others’ beliefs and actions as well as their own actions. In any game form first-movers are never
frustrated, and therefore behave (at the root) as if to maximize their material payoffs given
their beliefs. We define and establish the existence of a notion of sequential equilibrium (SE)
that adapts to our framework the one developed in B&D. In pure-strategy sequential equilibria,
frustration arises only off the equilibrium path, and furthermore, in generic perfect information
game forms, there is always an equilibrium with anger that is realization-equivalent to the
material-payoff equilibrium, though anger may also result in additional equilibria. In two-
player leader-follower games, followers with SA, ABB, or ABI always do at least as well,

3That frustration depends on expectations is well supported in the psychology literature, e.g. Berkowitz
(1978, p. 697): “Unlike deprivations, frustrations can only be surprising (to a greater or lesser extent). People
who do not expect to reach their goals are not anticipating the pleasure these goals would bring. Their hopes
are not dashed if they have no hopes.” Our focus on material rewards is admittedly restrictive. See the
Discussion in Section 7.

4See e.g. Alicke (2000), Battigalli & Dufwenberg (2007), and Halpern (2016, Chapter 6).
5See Marcus-Newhall et al. (2000).
6See e.g. the chapter by Wranik & Scherer in the (op. cit.) Handbook.
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materially, as players who are not anger-prone. Taking into account that evolutionary pressure
is driven by material payoffs (e.g., Buss 2016), this result is consistent with the work of Sell,
Cosmides, & Tooby (2009), who argue that anger is the result of a process of natural selection
for behaviors that resolve bargaining conflicts in favor of the anger-prone individual. We
also formally develop the notion of a threat in order to provide a partial characterization of
SE with anger: the presence of threats allows anger-prone followers to obtain more than in
the material-payoff equilibrium and give less to the leader, while their absence implies that
equilibria with SA, ABB, or ABI are equivalent to the material payoff equilibrium.

SE requires that each player i is certain and never changes his mind about the true beliefs
and plans, hence intentions, of his coplayers. We find this feature questionable, and therefore
we also develop a notion of polymorphic sequential equilibrium (PSE), where players correctly
anticipate how others behave on average, yet different (epistemic) types of the same player
may have different plans in equilibrium. In a PSE, once an agent observes some moves of
coplayers, he makes inferences about their intentions. We show that in leader-followers games
with SA, ABB, or ABI, an SE involving non-degenerate behavioral strategies of the leader
will correspond to a PSE where the leaders strategy is purified.

We show via examples how our models can encapsulate Cases 1 and 2 above (for Case 3,
cf. Passarelli & Tabellini 2017). Case 1 is captured by an ultimatum minigame, where SA and
ABB allow for a pure SE involving rejection of the greedy offer, and all our concepts allow
for an SE where rejection occurs with positive probability. Case 2 is modeled with SA in an
example that we call “Hammering one’s thumb.”7 In contrast, incorporating notions of blame
into our analysis of this situation via either ABB and ABI eliminates displaced aggression.

Finally, we illustrate how the effects of anger are sensitive to assumptions about how rapidly
the reference expectation that determines frustration is updated. We show that our model
can be interpreted either via the notion of “fast play,” where the reference belief is fixed at
the initial history, or “slow play,” where the reference expectation changes each period. Slow
play formalizes the phenomenon of cooling-off, whereby anger subsides over time (Grimm &
Mengel, 2011; Oechssler et al., 2015).

A small literature examines the role of anger in economic behavior. Selten (1978) discusses
the implications of the frustration-aggression hypothesis of Dollard et al. (1939) for behavior in
the chain store game, though he does not develop a formal model.8 Other earlier work exploring
the role of anger in solving commitment problems includes Hirshleifer (1987), Frank (1988),

7The example is inspired by Frijda (1993), who says “Many experiences or responses of anger... are elicited
by events that involve no blameworthy action” and suggests that simple frustrations such as “one’s car refusing
to start, finding one’s bicycle has a flat tyre, rain on the fifth day of one’s holiday after four previous days of
rain... hitting one’s head on the kitchen shelf, dropping a needle for the third time in a row” or “hammering
one’s thumb” may result in anger. He goes on to say that “the target of anger may be a person who has fallen
ill on the day of one’s party, or one who just happened to be present when a plan failed.”

8The chain store stage game is strategically equivalent to the ultimatum minigame.
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and Elster (1998). Most recent studies are empirical or experimental, indicative of hostile
action occurring in economic situations, based on either observational data or experimental
data.9 A few studies present theories different from ours, including Rotemberg (2005, 2008,
2011), Brams (2011), Winter (2014), Winter et al. (2016), Akerlof (2016), and Passarelli
& Tabellini (2017). We compare and contrast our approach with these and with models of
distributional preferences and reciprocity in Section 6.

Our approach differs from the previous literature in that we do not start with data, but
with notions from psychology which we incorporate into general games, and we are led to
use assumptions which differ substantially from previous theoretical work. We develop most
of our analysis for a two-stage setting described in Section 2. Section 3 defines frustration,
blame, anger, and utility. Section 4 examines equilibria. Section 5 generalizes our approach to
multistage games and develops notions of fast and slow play. Section 6 compares our approach
to other related models. Section 7 concludes. Proofs are collected in the Appendix.

2 Preliminaries

In this section we develop a framework well-suited to the study of frustration, anger and
blame. We first describe the rules of interaction (the game form), then first- and second-order
conditional belief systems that concern a player’s system of beliefs regarding the behavior and
beliefs of others, as well as about own actions which we refer to as a player’s plan.

2.1 Game form

Consider a finite two-stage game form describing the rules of interaction and the consequences
of players’ actions. The set of players is I. To ease notation, we assume that all players take
actions simultaneously at each stage. Thus, nodes are histories h of action profiles at = (ati)i∈I ;
h = ∅ is the empty history (the root), h = (a1) a history of length one, which may be terminal
or not, and h = (a1, a2) a history of length 2, which is terminal. H is the set of nonterminal
histories and Z is the set of terminal histories (end nodes). The set of feasible actions of i
given h ∈ H is Ai(h). This set is a singleton if i is not active given h. Thus, for all h ∈ H,
I(h) = {i ∈ I : |Ai(h)| > 1} is the set of active players given h. In a perfect information
game, I(h) is a singleton for each h ∈ H. We omit parentheses whenever no confusion may
arise. For example, we may write h = a1 instead of h = (a1), and h = (a1

i , a
2
j) if i (resp. j) is

the only first (resp. second) mover. Finally, we let A(h) = ×i∈IAi(h) and A−i(h) = ×j 6=iAj(h).

9See Anderson & Simester (2010) and Rotemberg (2005, 2011) on pricing; Card & Dahl (2011) and Munyo &
Rossi (2013) on violence; Carpenter & Matthews (2012), Gurdal et al. (2014), Gneezy & Imas (2014), Persson
(2018), van Leeuwen et al. (2018), Aina et al. (2018), and Dufwenberg et al. (2018a,b) for experiments.
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The material consequences of players’ actions are determined by a profile of monetary payoff
functions (πi : Z → R)i∈I . We say that a perfect information game has no relevant ties if
distinct terminal histories yield different payoffs for the player who is active at the longest
common prefix.10 For two-stage games, this means that different actions of the first mover
lead to different material payoffs for the first mover, and different actions of a second mover
lead to different material payoffs for this second mover.11 This completes the description of
the game form, if there are no chance moves.

If the game contains chance moves, we augment the player set with a dummy player c
(with c /∈ I), who selects a feasible action at random. Thus, let Ic = I ∪ {c}, and the sets
of first and second movers may include c: I(∅), I(a1) ⊆ Ic. If the chance player is active at
h ∈ H, its move is described by probability mass function σc(·|h) ∈ ∆(Ac(h)).

The following example, to which we will return in our discussion of blame, is here employed
to illustrate our notation:

{a,b}

(4, 4, 1)

(5, 5, 2)

(5, 5, 2)

p

(4, 4, 1) (6, 0, 0)

(U,R)

(D,R)

(U,L)

(D,L)

N P

Figure A. Asymmetric punishment.

Example 1 Ann and Bob (a and b in Fig. A) move simultaneously in the first stage. Penny
the punisher (p) may move in the second stage; by choosing P she increases πa and decreases

10See Battigalli (1997). It can be checked that the no-relevant-ties (NRT) property is generic with respect
to material payoff functions π ∈ RZ×I : the closure of the set of π that do not satisfy NRT has Lebesgue
measure 0 in RZ×I .

11Who is the second mover may depend on the action of the first mover.
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πb. Profiles of actions and monetary payoffs are listed in players’ alphabetical order. We have:

H = {∅, (D,L)} , Z = {(U,L), (U,R), (D,R), ((D,L), N) , ((D,L), P )} ,

I(∅) = {a, b}, I ((D,L)) = {p},
Aa(∅) = {U,D}, Ab(∅) = {L,R}, Ap ((D,L)) = {N,P}. N

2.2 Beliefs

It is conceptually useful to distinguish three aspects of a player’s beliefs: beliefs about co-
players’ actions, beliefs about co-players’ beliefs, and the player’s plan, which we represent
as beliefs about own actions. Beliefs are defined conditional on each history. Abstractly
denote by ∆−i the space of co-players’ beliefs (the formal definition is given below). Player i’s
beliefs can be compactly described as conditional probability measures over paths and beliefs
of others, i.e., over Z ×∆−i. Events, from i’s point of view, are subsets of Z ×∆−i. Events
about behavior take form Y × ∆−i, with Y ⊆ Z; events about beliefs take form Z × E∆−i ,
with E∆−i ⊆ ∆−i.

12

Personal histories To model how i determines the subjective value of feasible actions, we
add to the commonly observed histories h ∈ H also personal histories of the form (h, ai), with
ai ∈ Ai(h). In a game with perfect information, (h, ai) ∈ H ∪Z. But if there are simultaneous
moves at h, then (h, ai) is not a history in the standard sense. As soon as i irreversibly chooses
action ai, he observes (h, ai), and can determine the value of ai using his beliefs conditional
on this event (i knows in advance how he is going to update his beliefs conditional on what he
observes). We denote by Hi the set of histories of i—standard and personal—and by Z(hi) the
set of terminal successors of hi.

13 The standard precedence relation ≺ for histories in H ∪ Z
is extended to Hi in the obvious way: for all h ∈ H, i ∈ I(h), and ai ∈ Ai(h), it holds that
h ≺ (h, ai) and (h, ai) ≺ (h, (ai, a−i)) if i is not the only active player at h. Note that h ≺ h′

implies Z(h′) ⊆ Z(h), with strict inclusion if at least one player (possibly c) is active at h.

First-order belief systems For each hi ∈ Hi, player i holds beliefs αi(·|Z(hi)) ∈ ∆ (Z(hi))
about the actions that will be taken in the continuation of the game. The system of beliefs
αi = (αi(·|Z(hi)))hi∈Hi must satisfy two properties. First, the rules of conditional probabilities

12∆−i turns out to be a compact metric space. Events are Borel measurable subsets of Z ×∆−i. We do not
specify terminal beliefs of i about others’ beliefs, as they are not relevant for the models in this paper.

13That is, Hi = H ∪ {(h, ai) : h ∈ H, i ∈ I(h), ai ∈ Ai(h)}. The definition of Z(hi) is standard for hi ∈ H;
for hi = (h, ai) we have Z(h, ai) =

⋃
a−i∈A−i(h)

Z (h, (ai, a−i)).
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hold whenever possible: if hi ≺ h′i then for every Y ⊆ Z(h′i)

αi(Z(h′i)|Z(hi)) > 0⇒ αi (Y |Z(h′i)) =
αi(Y |Z(hi))

αi(Z(h′i)|Z(hi))
. (1)

We use obvious abbreviations to denote conditioning events and the conditional probabilities
of actions: for all h ∈ H, a = (ai, a−i) ∈ Ai(h)× A−i(h),

αi(a|h) = αi (Z(h, a)|Z(h)) ,

αi,i(ai|h) =
∑

a′−i∈A−i(h)

αi(ai, a
′
−i|h),

αi,−i(a−i|h) =
∑

a′i∈Ai(h)

αi(a
′
i, a−i|h).

Note that αi,i(ai|h) = αi (Z(h, ai)|Z(h)), and that (1) implies αi (a
1, a2|∅) = αi (a

2|a1)αi(a
1|∅).

With this, we can write in a simple way our second requirement, that i’s beliefs about the
actions simultaneously taken by the co-players are independent of i’s action: for all h ∈ H,
i ∈ I, ai ∈ Ai(h), and a−i ∈ A−i(h),

αi,−i(a−i|h) = αi,−i(a−i|h, ai). (2)

Properties (1)–(2) imply

αi(ai, a−i|h) = αi,i(ai|h)αi,−i(a−i|h).

Thus, αi is made of two parts, what i believes about own behavior and about the behavior of
others. The array of probability measures αi,i ∈ ×h∈H∆ (Ai(h)) is—technically speaking—a
behavior strategy, and we interpret it as the plan of i. The reason is that the result of i’s
contingent planning is precisely a system of conditional beliefs about what action he would
take at each history. If there is only one co-player, also αi,−i ∈ ×h∈H∆ (A−i(h)) corresponds
to a behavior strategy. With multiple co-players, αi,−i corresponds instead to a “correlated
behavior strategy.” Whatever the case, αi,−i gives i’s conditional beliefs about others’ behavior,
and these beliefs may not coincide with the plans of others. We emphasize: a player’s plan
does not describe actual choices, actions on the path of play are the only actual choices.

A system of conditional probability measures αi = (αi(·|Z(hi)))hi∈Hi satisfying (1)–(2)
is a first-order belief of i; let ∆1

i denote the space of such. It can be checked that ∆1
i is

a compact metric space, hence the same holds for ∆1
−i = ×j 6=i∆1

j , the space of co-players’
first-order beliefs profiles.
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Second-order belief systems Players do not only hold beliefs about paths, they also hold
beliefs about the beliefs of co-players. In the following analysis, the only co-players’ beliefs
affecting the values of actions are their first-order beliefs. Therefore, we limit our attention
to second-order beliefs, i.e., systems of conditional probability measures (βi(·|hi))hi∈Hi ∈
×hi∈Hi∆

(
Z(hi)×∆1

−i
)

that satisfy properties analogous to (1)–(2).14 First, if hi ≺ h′i then

βi(h
′
i|hi) > 0⇒ βi (E|h′i) =

βi (E|hi)
βi(h′i|hi)

(3)

for all hi, h
′
i ∈ Hi and every event E ⊆ Z(h′i) × ∆1

−i. Second, i’s choice cannot influence
co-players’ first-order beliefs and simultaneous choices, so i’s beliefs satisfy an independence
property:

βi (Z (h, (ai, a−i))× E∆|(h, ai)) = βi (Z (h, (a′i, a−i))× E∆|(h, a′i)) , (4)

for every h ∈ H, ai, a
′
i ∈ Ai(h), a−i ∈ A−i(h), and event E∆ ⊆ ∆1

−i about co-players’ first-order
beliefs. The space of i’s second-order beliefs is denoted by ∆2

−i.
It can be checked that given βi ∈ ∆2

i and αi (Y |hi) = βi
(
Y ×∆1

−i|hi
)

for all hi ∈ Hi and
Y ⊆ Z, we obtain a system αi satisfying (1)–(2), i.e., an element of ∆1

i . This αi is the first-
order belief implicit in βi. Whenever we write in a formula beliefs of different orders for i, we
assume that αi is derived from βi, otherwise beliefs of different orders would not be mutually
consistent. Also, we write initial beliefs omitting the empty history, as in βi (E) = βi (E|∅)
or αi(a) = αi(a|∅), whenever this causes no confusion.

Conditional expectations Let ψi be any real-valued measurable function of variables that
i does not know, e.g., the terminal history or the co-players’ first-order beliefs. Then i can
compute the expected value of ψi conditional on any history hi ∈ Hi by means of his belief
system βi, denoted E[ψi|hi; βi]. If ψi depends only on actions, i.e., on the path z, then
E[ψi|hi; βi] is determined by the αi derived from βi, and we can write E[ψi|hi;αi]. In particular,
αi gives the conditional expected material payoffs:

E[πi|h;αi] =
∑
z∈Z(h)

αi(z|h)πi(z),

E[πi| (h, ai) ;αi] =
∑

z∈Z(h,ai)

αi(z|h, ai)πi(z)

for all h ∈ H, ai ∈ Ai(h). E[πi|h;αi] is what i expects to get conditional on h given αi,
which also specifies i’s plan. E[πi|(h, ai);αi] is i’s expected payoff of action ai. If ai is what

14We use obvious abbreviations, such as writing h for event Z(h)×∆1
−i, whenever this causes no confusion.
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i planned to choose at h, αi,i(ai|h) = 1, and then E[πi|h;αi] = E[πi| (h, ai) ;αi]. For initial
beliefs, we omit h = ∅ from such expressions; in particular, i’s initially expected material
payoff is E[πi;αi].

Table 1 summarizes our modeling setup.

Notation Terminology
i ∈ I players
h ∈ H non-terminal, or partial histories
I(h) ⊆ I set of active players at h
t ∈ {1, 2} stages, or periods
Ai(h), A(h), A−i(h) set of actions and action profiles at h
ati action of i in stage t
at (at−i) action profile (of others) in stage t
σi(a

t
i|h) behavior strategies

z ∈ Z terminal histories
Z(h) terminal successors of h
πi : Z → R monetary payoff function of i ∈ I
αi, α−i, α First-order beliefs and belief profiles
βi, β−i, β Second-order beliefs and belief profiles

Table 1. Elements of the two-stage game form.

3 The frustration-aggression hypothesis, anger, and blame

3.1 Frustration

Anger is triggered by frustration. While we focus on anger as a social phenomenon—frustrated
players blame, become angry with, and care for the payoffs of others—our account of frustra-
tion refers to own payoffs only. In Section 7 (in hindsight of definitions to come) we discuss
this approach in depth.

We define player i’s frustration at history h, given his first-order belief system αi as

Fi(h;αi) =

[
E[πi;αi]− max

ai∈Ai(h)
E[πi|(h, ai);αi]

]+

,

where [x]+ = max{x, 0}. In words, frustration is given by the gap, if positive, between i’s
initially expected payoff and the currently best expected payoff he believes he can obtain.
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Diminished expectation—E[πi|h;αi] < E[πi;αi]—is only a necessary condition for frustration.
For i to be frustrated it must also be the case that i cannot close the gap.

At the root, frustration must always be zero, because nothing has yet happened and so
expectations cannot be diminished:

Remark 1 For every player i ∈ I and system of first-order beliefs αi ∈ ∆1
i , frustration must

equal 0 at the initial history h = ∅, since (1) and (2) imply

E [πi;αi] =
∑

a1i∈Ai(∅)

αi,i
(
a1
i |∅
)
E
[
πi|a1

i ;αi
]
≤ max

a1i∈Ai(∅)
E
[
πi|a1

i ;αi
]

.

Frustration is possible at the end nodes, but can’t influence subsequent choices as the game
is over. One might allow the anticipation of frustration to be felt at end nodes to influence
earlier decisions; however, the assumptions we make below rule this out. In our 2-stage setting,
all behaviorally relevant frustration occurs in the second stage and is given by

Fi(a
1;αi) =

[
E[πi;αi]− max

a2i∈Ai(a1)
E[πi|(a1, a2

i );αi]

]+

.

3.2 Simple Anger

Preferences over actions at a given node depend on expected material payoffs and frustration.
A frustrated player is motivated to hurt others, if this is not too costly (cf. Dollard et al. 1939,
Averill 1983, Berkowitz 1989). We consider different versions of this frustration-aggression
hypothesis related to different cognitive appraisals of blame. In general, player i moving at
history h chooses action ai to maximize the expected value of a belief-dependent “decision
utility” of the form

ui (h, ai; βi) = E [πi| (h, ai) ;αi]− θi
∑
j 6=i

Bij (h; βi)E [πj| (h, ai) ;αi] , (5)

where αi is the first-order belief system derived from second-order belief βi, and θi ≥ 0 is a
sensitivity parameter. Thus, Bij (h; βi) ≥ 0 measures how much of i’s frustration is blamed on
j, and the presence of E [πj| (h, ai) ;αi] in the formula translates this into a tendency to hurt
j.

We assume that
Bij(h; βi) ≤ Fi(h;αi). (6)

Therefore, first-movers behave at the root (given their beliefs) as if they are motivated only
by material self-interest, because there is no frustration in the first stage:
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Remark 2 The decision utility of a first-mover coincides with expected material payoff:

ui (∅, ai; βi) = E[πi|ai;αi].

When i is the only active player at h = a1, he determines the terminal history with his
choice ai = a2, and decision utility has the form

ui (h, ai; βi) = πi (h, ai)− θi
∑
j 6=i

Bij (h; βi) πj (h, ai) .

We assume throughout that players’ utilities are commonly known among them. This is
partly a modeling choice made for reasons of analytical tractability, but we note that the
approach is supported by recent intriguing experimental evidence reported by van Leeuwen
et al. (2018). They find that (pre-play) “facial cues provide a credible signal of destructive
behavior,” and that subjects are to a degree capable of recognizing such “angry buttons.”

Our most rudimentary hypothesis, simple anger (SA), is that i’s tendency to hurt others
is proportional to i’s frustration. SA is unmodulated by the cognitive appraisal (i.e., personal
interpretation) of blame, so Bij (h; βi) = Fi(h;αi):

uSAi (h, ai;αi) = E [πi| (h, ai) ;αi]− θi
∑
j 6=i

Fi(h;αi)E [πj| (h, ai) ;αi] . (7)

a

(2, 2) b

(0, 0) (3, 1)

f g

n y

Figure B. Ultimatum Minigame.

We first demonstrate our model via the ultimatum minigame in Fig. B (Gale et al., 1995).
The game is a simplified version of the ultimatum game of Guth et al. (1982), and it has
the same strategic structure as the stage game of Selten’s (1978) chain-store game. As noted
by Gale et al. (p. 76), models such as ours which imply that players will reject unfair offers
in the ultimatum minigame “provide a possible resolution of the chain-store paradox that
applies even in the case when there is just one potential entrant.” Selten also considers that
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frustration and aggression may be relevant. Finally, vis-á-vis Case 1 in Section 1, the setup
can also be interpreted as representing a monopoly seller (Ann) who can offer Bob either a
high or a low split of the gains from trade.

Example 2 (Ultimatum Minigame) Ann and Bob (a and b in Fig. B) negotiate: Ann can
make a fair offer f , which is automatically accepted, or a greedy offer g, which Bob accepts
or rejects. His frustration following g is

Fb(g;αb) = [(1− αb(g)) · 2 + αb(g)αb(y|g) · 1− 1]+ .

Therefore

uSAb (g, n;αb)− uSAb (g, y;αb) = 3θb [2 (1− αb(g)) + αb(g)αb(y|g)− 1]+ − 1.

For Bob to be frustrated he must not expect g with certainty. If frustrated, the less he
expects g, and—interestingly—the less he plans to reject, the more prone he is to reject once
g materializes. The more resigned Bob is to getting a low payoff, the less frustrated and prone
to aggression he is. Furthermore, it is readily seen from the example how our model can
generate non-consequential behavior. Holding beliefs and other payoffs constant, increasing
Bob’s payoff from f will lead to greater frustration after g, and so increases the disutility
Bob receives from Ann’s material payoff. This makes rejection (punishment of Ann) more
attractive to Bob. N

Note that, in the example, when Bob rejects it is because he is truly angry and prefers
n to y. He is not trying signal his type to Ann in order to deter her from choosing g in the
future, marking a difference with reputational models. Indeed, in the example there is no
future behavior for Bob to influence.

Under SA a frustrated player goes after others rather indiscriminately. The word “rather”
is justified because, as regards targets of aggression, our modeling of SA restricts attention to
co-players, implicitly saying that persons who are not represented in a game are not targets.
So the modeler has a responsibility to represent the appropriate environment. If another
individual is a potential target (e.g. Bob’s wife in addition to Ann), that person should be
included (e.g. as a dummy player). The exact determination regarding whom to include in
the description of the strategic environment is an empirical question. We have the qualitative
idea that SA allows for innocent targets, and this is what we model. Future research may
generate more nuanced insights.

We now move to consider models where targets of aggression must be less innocent than
under SA.

12



3.3 Anger from blaming behavior (ABB)

Action tendencies may depend on a player’s cognitive appraisal of how to blame others. When
a frustrated player i blames co-players for their behavior, he examines the actions chosen in
stage 1, without considering others’ intentions: How much i blames j is defined by a continuous
blame function that specifies blame Bij(a

1;αi) that depends on αi (but not βi) such that

Bij(a
1;αi) =

{
0, if j /∈ I(∅),
Fi(a

1;αi), if {j} = I(∅).
(8)

Eq. (8) is a complete specification of the ij-blame function if there is only one first mover;
with two or more first movers, the second part is irrelevant, and the first just give a necessary
condition. In particular, if j is not active in the first stage, he cannot be blamed by i. If j
is the only active player, he is fully blamed.15 We consider below specific forms of Bij(h;αi)
that satisfy (6) and (8). With this, i’s decision utility with anger from blaming behavior
(ABB) is

uABBi (h, ai;αi) = E [πi| (h, ai) ;αi]− θi
∑
j 6=i

Bij(h;αi)E [πj| (h, ai) ;αi] .

c

(2, 2) a

(1, 2) (0, 0)

G B

N T

(1− ε) (ε)

Figure C. Hammering one’s thumb.

Example 3 (Inspired by Frijda 1993) To illustrate the difference between SA and ABB,
consider Fig. C. Andy the handyman (a) uses a hammer. His apprentice, Bob (b), is inactive.
On a bad day (determined by chance, c) Andy hammers his thumb and can then take it out
on Bob, or not. Assuming αa(B) = ε < 1/2, we have

Fa(B;αa) = (1− ε) · 2 + εαa(N |B) · 1− 1 > 0.

15Recall that I(h) is the set of active players at h, possibly including chance. For example, I(∅) = {c} in
the game form of Fig. C.
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With SA and with θa sufficiently high, on a bad day Andy chooses T in a fit of displaced
aggression. But, since Bob is passive, with ABB Andy chooses N regardless of θa. N

Next, we contrast two specific functional forms for ABB.

Could-have-been blame When frustrated i considers, for each j, what he would have
obtained at most, in expectation, had j chosen differently:

max
a′j∈Aj(∅)

E
[
πi|(a1

−j, a
′
j);αi

]
.

If this could-have-been payoff is more than what i currently expects (that is, E[πi|a1;αi]), then
i blames j, up to i’s frustration (so (6) holds):

Bij(a
1;αi) = min

{[
max

a′j∈Aj(∅)
E
[
πi|(a1

−j, a
′
j);αi

]
− E[πi|a1;αi]

]+

,Fi(a
1;αi)

}
. (9)

(9) satisfies (8), in particular implying that j cannot be blamed if he is not active in the first
stage (cf. the multi-stage extension of could-have-been blame in Proposition 7 below).

Example 4 Consider Penny at a1 = (D,L) in Fig. A. Her could-have-been payoff—wrt both
Ann and Bob—is 2 ≥ E[πp;αp], her updated expected payoff is E[πp|(D,L);αp] ≤ 1, and her
frustration is [E[πp;αp]− 1]+. Therefore

Bpa((D,L);αp) = Bpb((D,L);αp) =

min
{

[2− E[πp|(D,L);αp]]
+ , [E[πp;αp]− 1]+

}
= [E[πp;αp]− 1]+ ,

i.e., each of Ann and Bob is fully blamed by Penny for her frustration. N

Blaming unexpected deviations When frustrated after a1, i assesses, for each j, how
much he would have obtained had j behaved as expected:∑

a′j∈Aj(∅)

αij(a
′
j)E
[
πi|(a1

−j, a
′
j);αi

]
,

where αij(a
′
j) is the marginal probability of a′j according to αi. With this, the blame formula

is
Bij(a

1;αi) =
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min


 ∑
a′j∈Aj(∅)

αij(a
′
j)E
[
πi|(a1

−j, a
′
j);αi

]
− E[πi|a1;αi]

+

,Fi(a
1;αi)

 . (10)

If j is not active in the first stage, we get

Bij(a
1;αi) = min

{[
E[πi|a1;αi]− E[πi|a1;αi]

]+
,Fi(a

1;αi)
}

= 0;

since j cannot have deviated, he cannot be blamed. If, instead, only j is active in the first
stage, then ∑

a′j∈Aj(∅)

αij(a
′
j)E
[
πi|(a1

−j, a
′
j);αi

]
=

∑
a′∈A(∅)

αi(a
′)E [πi|a′;αi] = E [πi;αi] ,

and (10) yields full blame on j:

Bij(a
1;αi) = min

{[
E[πi;αi]− E[πi|a1;αi]

]+
,Fi(a

1;αi)
}

= Fi(a
1;αi).

Therefore, like blame function (9), also (10) satisfies (8).
If a1

j is what i expected j to do in the first stage (αij(a
1
j) = 1) then

Bij(a
1;αi) = min

{[
E[πi|a1;αi]− E[πi|a1;αi]

]+
,Fi(a

1;αi)
}

= 0;

j did not deviate from what i expected and is not blamed by i, marking a contrast to “could-
have-been” blame (9).

Example 5 Suppose that, in Fig. A, Penny is initially certain of (U,L): αp(U,L) = 1 and
E[πp;αp] = 2. Upon observing (D,L) her frustration is Fp((D,L);αp) = [E[πp;αp]− 1]+ = 1.
Using eq. (10), at a1 = (D,L), Penny fully blames Ann, who deviated from U to D. Since∑

a′a∈Aa(∅)

αpa(a
′
a)E

[
πp|(a1

−a, a
′
a);αp

]
= πp(U,L) = 2,

Penny’s blame of Ann equals Penny’s frustration

Bpa((D,L);αp) = min
{[

2− E[πp|a1;αp]
]+
, 1
}

= 1.

Penny does not blame Bob, who played L as expected. To see this, note that after (D,L)
Penny assesses how much she would have obtained had Bob behaved as expected:∑

a′b∈Ab(∅)

αpb(a
′
b)E
[
πp|(a1

−b, a
′
b);αp

]
= E[πp|(D,L);αp]
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and
Bpb((D,L);αp) = min

{
[E[πp|(D,L);αp]− E[πp|(D,L);αp]]

+ , 1
}

= 0,

in contrast to could-have-been blame under which Penny fully blames Bob (Example 4). N

In two-player games with a single leader and a single follower SA and ABB (both forms)
are behaviorally equivalent (see Remark 4). However, in games with more than two followers,
with chance moves, or with an inactive player in the second stage, SA and ABB give different
predictions about behavior. We return to this issue and derive formal results in Section 4.3.

Next, we consider a more nuanced notion of blame, where players are concerned with their
co-players’ intentions, and preferences therefore depend upon second-order beliefs.

3.4 Anger from blaming intentions (ABI)

A player i prone to anger from blaming intentions (ABI) asks himself, for each co-player
j, whether j intended to give him a low expected payoff. Since such intention depends on
j’s first-order beliefs αj (which include j’s plan, αj,j), how much i blames j depends on i’s
second-order beliefs βi, and the decision utility function has the form (5).

The maximum payoff that j, initially, can expect to give to i is

max
a1j∈Aj(∅)

∑
a1−j∈A−j(∅)

αj,−j(a
1
−j)E

[
πi|
(
a1
j , a

1
−j
)

;αj
]

.

Note that

max
a1j∈Aj(∅)

∑
a1−j∈A−j(∅)

αj,−j(a
1
−j)E

[
πi|
(
a1
j , a

1
−j
)

;αj
]

≥
∑

a1∈A(∅)

αj(a
1)E

[
πi|a1;αj

]
= E [πi|αj] ,

where the inequality holds by definition and the equality is implied by the chain rule (3). Note
also that αj(·|a1) is kept fixed under the maximization; we focus on what j initially believes
he could achieve, taking the view that at the root he cannot control a2

j but predicts his choice
in stage 2. We assume that i’s blame of j at a1 equals i’s expectation, given βi and conditional
on a1, of the difference between the maximum payoff that j can expect to give to i and what
j actually plans/expects to give to i, capped by i’s frustration:

Bij(a
1; βi) = (11)
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min

E

max
a1j

∑
a1−j

αj,−j(a
1
−j)E

[
πi|
(
a1
j , a

1
−j
)

;αj
]
− E[πi;αj]

∣∣∣∣∣∣ a1; βi

 ,Fi(a1;αi)

 ,

where αi is derived from βi. The expression is nonnegative as per the previously highlighted
inequality. Now, i’s decision utility after h = a1 is

uABIi (h, ai; βi) = E [πi| (h, ai) ;αi]− θi
∑
j 6=i

Bij(h; βi)E [πj| (h, ai) ;αi] ,

with Bij(a
1; βi) given by (11).

Example 6 Return to Fig. B. The maximum Ann can expect to give Bob is 2, independently
of αa. Suppose Bob, upon observing g, is certain Ann planned to offer g with probability
p < 1: βb(αa(g) = p|g) = 1. Also, Bob is certain after g that Ann expected him to accept with
probability q: βb(αa(y|g) = q|g) = 1. Finally, suppose Bob initially expected to get the fair
offer (αb(f) = 1), so his frustration after g is Fb(a

1;αb) = 2− 1 = 1. We get

Bba(g; βb) = min {2− [2(1− p) + qp], 1} = min {p(2− q), 1} .

If p is low enough, or q high enough, Bob does not blame all frustration on Ann. She gets
some credit for initial intention to choose f with probability 1−p > 0, and the credit depends
on q. N

4 Equilibrium analysis

While in this paper we depart from traditional game-theoretic analysis in using belief-dependent
decision utility, our analysis is otherwise traditional. We adapt B&D’s sequential equilibrium
(SE) concept.16 For simplicity, we consider a complete information framework where the rules
of the game and players’ (psychological) preferences are common knowledge.17 We interpret
an SE as a profile of strategies and beliefs representing a “commonly understood” way to play
the game by rational (utility maximizing) agents. Our approach allows us to investigate the

16B&D extend Kreps & Wilson’s (1982) classic notion of SE to psychological games; here we consider
the version (B&D, Section 6) for preferences with own-plan dependence and “local” psychological utility
functions. A more subtle difference with B&D is that they assume to be common knowledge that players
behave as planned, whereas we separate plans from behavior, and let the consistency of behavior with plan be
a rationality condition.

17For an equilibrium analysis of incomplete-information psychological games see Attanasi, Battigalli &
Manzoni (2016); for a non-equilibrium analysis see Battigalli, Charness & Dufwenberg (2013).
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implications of our belief-dependent utility model within a standard framework. This is a
choice of focus more than an endorsement of SE as a solution concept.18

The definition of SE requires that each player always holds correct beliefs about the systems
of first-order conditional beliefs of others. This implies that each player is always certain about
the plans and intentions of co-players, and never changes his mind about them, as deviations
from the plans ascribed to other players are interpreted as unintentional mistakes. This feature
of SE—which is questionable even in standard games—appears even more extreme in psyh-
cological games, where players’ utility may depend on the plans and intentions of co-players.
Therefore, we also explore a generalization of SE—polymorphic sequential equilibrium—that
allows for meaningful updating about the intentions of others.

The rest of this section is organized as follows: ?? provides a general analysis of SE in
psychological games; 4.2 analyzes SE in games with anger prone players; 4.3 focuses on threats
and anger in leader-follower games; 4.4 extends the analysis to polymorphic SE.

4.1 SE definition

The SE concept gives equilibrium conditions for infinite hierarchies of conditional probability
systems. In our particular application, utility functions only depend on first- or second-
order beliefs, so we define SE for assessments comprising beliefs up to only the second order.
Since, technically, first-order beliefs are features of second-order beliefs (see Section 2), we
provide definitions that depend only on second-order beliefs, which give SEs for games where
psychological utility functions depend only on first-order beliefs as a special case. Finally,
although so far we have restricted our analysis of frustration and anger to two-stage game
forms, our abstract definitions of equilibrium for games with belief-dependent preferences
(and the associated existence theorem) apply to all multistage game forms.

Fix a game form and decision utility functions ui(h, ·; ·) : Ai(h)×∆2
i → R (i ∈ I, h ∈ H).

This gives a psychological game in the sense of B&D (Section 6). An assessment is a profile
of behavior strategies and beliefs (σi, βi)i∈I ∈ ×i∈I(Σi × ∆2

i ) such that Σi = ×h∈H∆ (Ai(h))
and σi is the plan αi,i entailed by second-order belief βi:

σi(ai|h) = αi,i(ai|h) = βi
(
Z(h, ai)×∆1

−i|h
)

(12)

for all i ∈ I, h ∈ H, ai ∈ Ai(h). Eq. (12) implies that the behavior strategies contained in
an assessment are implicitly determined by players’ beliefs about paths; therefore, they could

18SE requires that each player i is certain and never changes his mind about the true beliefs and plans,
hence intentions, of his co-players. We find this feature questionable. B&D (Sections 2, 5) argue that, with
belief-dependent preferences, alternatives to SE like rationalizability, forward induction, and self-confirming
equilibrium are even more plausible than with standard preferences.
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be dispensed with. Yet, we follow B&D and make behavior strategies explicit in assessments
only to facilitate comparisons with the refinements literature.

Definition 1 An assessment (σi, βi)i∈I is consistent if, for all i ∈ I, h ∈ H, and a =
(aj)j∈I ∈ A(h),

(a) αi(a|h) =
∏

j∈I σj(aj|h),

(b) marg∆1
−i
βi(·|h) = δα−i,

where αi is derived from βi and δα−i is the Dirac probability measure that assigns probability
1 to the singleton {α−i} ⊆ ∆1

−i.

Condition (a) requires that players’ beliefs about actions satisfy independence across co-
players (on top of own-action independence), and—conditional on each h—each i expects each
j to behave in the continuation as specified by j’s plan σj = αj,j, even though j has previously
deviated from αj,j. All players thus have the same first-order beliefs. Condition (b) requires
that players’ beliefs about co-players’ first-order beliefs (hence their plans) are correct and
never change, on or off the path. Thus all players, essentially, have the same second-order
beliefs (considering that they are introspective and therefore know their own first-order beliefs).
These conditions faithfully capture the “trembling-hand” interpretation of deviations implicit
in Kreps & Wilson’s (1982) original definition of SE: if player i observed deviations from the
plans α−i he ascribes to his co-players (according to his second-order beliefs βi), instead of
changing his mind about the co-players’ plans, he would conclude that they made mistakes in
carrying out their plans, but such mistakes are independent across nodes and the probability
that they will occur in the future is negligible.

Definition 2 An assessment (σi, βi)i∈I is a sequential equilibrium (SE) if it is consis-
tent and satisfies the following sequential rationality condition: for all h ∈ H and i ∈ I(h),
Suppσi(·|h) ⊆ arg maxai∈Ai(h) ui(h, ai; βi).

It can be checked that this definition is equivalent to the traditional one if players have stan-
dard preferences, i.e., with a profile of utility functions (vi : Z → R)i∈I such that ui(h, ai; βi) =
E[vi|(h, ai);αi].19 A special case is the material-payoff game, where vi = πi for each i ∈ I.

Remark 3 Every material-payoff game with perfect information and no relevant ties has a
unique SE, which is in pure strategies and can be computed by backward induction.

19According to the standard definition of SE, sequential rationality is given by global maximization over
(continuation) strategies at each h ∈ H. By the One-Shot-Deviation principle, in the standard case this is
equivalent to “local” maximization over actions at each h ∈ H.
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As is known from previous work,20 with psychological utilities uniqueness of equilibrium
with deterministic plans may fail even in game forms with perfect information and with no
relevant ties. The examples in Section 4.2 illustrate this for the case of anger-prone players.
On the other hand, existence is guaranteed under mild conditions.

Theorem 1 If ui(h, ai; ·) is continuous for all i ∈ I, h ∈ H and ai ∈ Ai(h), then there is at
least one SE.

B&D prove a version of this existence result where first-order beliefs are modeled as belief
systems over pure strategy profiles. Our setting adds personal histories, and here first-order
beliefs are modeled as beliefs about paths. Given those modifications, the “trembling-hand”
technique used in B&D’s Theorem 9 can be applied to establish the general existence of
psychological sequential equilibria in our framework. We omit the details.21

What we said so far about equilibrium does not assume specific functional forms. From
now on, we focus on uSAi , uABBi , and uABIi . Since frustration and blame are continuous in
beliefs, decision utility is also continuous, and we obtain existence in all cases of interest:

Theorem 2 Every game with SA, ABB, or ABI has at least one SE.

4.2 Properties and examples

Next, we derive some general properties of how decision-makers with SA, ABB, or ABI behave.
First, in pure-strategy SE’s, players are never frustrated on the equilibrium path:

Proposition 1 Let (σi, βi)i∈I be an SE assessment of a game with SA, ABB, or ABI; if a
history h ∈ H has probability 1 under profile (σi)i∈I , then

Fi(h
′;αi) = 0 and Suppσi(·|h′) ⊆ arg max

a′i∈Ai(h′)
E[πi| (h′, a′i) ;αi]

for all h′ � h and i ∈ I, where αi is derived from βi. Therefore, an SE strategy profile of a
game with SA, ABB, or ABI with randomization (if any) only in the last stage is also a Nash
equilibrium of the agent form of the corresponding material-payoff game.

To illustrate, in Fig. B, (f, n) can be an SE under ABB, and is a Nash equilibrium of the
agent form with material-payoff utilities.22 With (counterfactual) anger, n becomes a credible
threat. Proposition 1 also holds for the multistage extension of Section 5.

Recall that two assessments are realization-equivalent if the corresponding strategy
profiles yield the same probability distribution over terminal histories:

20See Geanakoplos, Pearce & Stacchetti (1989) and B&D.
21A similar technique is used in the proof of Proposition 2 (first part) in the appendix.
22In the agent form of a game, each h where player i is active corresponds to a copy (i, h) of i with strategy

set Ai(h) and the same utility function as i.
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Proposition 2 In every perfect-information (two-stage) game form with no chance moves
and no relevant ties, the unique material-payoff equilibrium is realization-equivalent to an SE
of the psychological game with ABI, ABB, or—with only two players—SA.

The material-payoff SE of a perfect-information game must be in pure strategies (see
Remark 3). By Proposition 1, players must maximize their material payoff on the path even
if they are prone to anger. As for off-equilibrium path decision nodes, deviations from the
material-payoff SE strategies can only be due to the desire to hurt the first-mover, which can
only increase his incentive to stick to the material-payoff SE action.

It is quite easy to show by example that without perfect information, or with chance
moves, a material-payoff SE need not be equivalent to an SE with frustration and anger.
The same holds for some multistage game forms (cf. Section 5). Disregarding chance moves,
randomization, and ties, the common feature of material-payoff SE that are not realization-
equivalent to SE with frustration and anger is this (see Fig. A and Ex. 8 below): Start
with a material-payoff SE and add anger to decision utility; now, at an off-path node after
Ann deviates, frustrated Penny wants to hurt Bob, which implies rewarding Ann; this makes
it impossible to incentivize both Ann not to deviate and Penny to punish Bob after Ann’s
deviation.

We next illustrate via examples how the SE concept works and how SA, ABB, and ABI may
alter material incentives and produce different predictions. We begin with the “Hammering-
one’s-thumb” game which provides an example of displaced aggression: Under SA, Ann may
take out her frustration on Bob if θa is sufficiently high, while ABB (both forms) and ABI
preclude her from behaving aggressively towards Bob, as he is blameless.

Example 7 Consider Fig. C. With uABBa (either version), or uABIa , Andy will not blame
Bob so his SE-choice is N . But with uSAa Andy may choose T . Recall that Fa(B;αa) =
2(1− ε) + εαa(N |B)− 1, so the more likely Andy believes it to be that he will take it out on
Bob, the less he expects initially and the less frustrated he is after B. Yet, in SE, the higher
is θa the more likely Andy is to take it out on Bob: Andy’s utility from N and T is

uSAa (B,N ;αa) = 1− θa[2(1− ε) + εαa(N |B)− 1] · 2,

uSAa (B, T ;αa) = 0− θa[2(1− ε) + εαa(N |B)− 1] · 0 = 0.

Sequential rationality of SE implies that one possibility is αa(N |B) = 1 and uSAa (B,N ;αa) ≥
uSAa (B, T ;αa), implying θa ≤ 1

2(1−ε) . Another possibility is αa(N |B) = 0 and uSAa (B,N ;αa) ≤
uSAa (B, T ;αa), implying θa ≥ 1

2(1−2ε)
. I.e., if Andy is sufficiently susceptible to SA, on bad

days he takes his frustration out on Bob. If θa ∈ ( 1
2(1−ε) ,

1
2(1−2ε)

), we can solve for an SE where

uSAa (B,N ;αa) = uSAa (B, T ;αa) and αa(N |B) = 1
2εθa
− 1−2ε

ε
∈ (0, 1).
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The final case, where θa ∈ ( 1
2(1−ε) ,

1
2(1−2ε)

), illustrates how we cannot take for granted the

existence of an SE in which players use deterministic plans (a point relevant also for uABBi or
uABIi in other games). Here this happens with a single active player, highlighting that we deal
with a psychological game, as this could not be the case in a standard game. N

The next two examples highlight difference between ABB and ABI.

Example 8 Consider Fig. A. Can material-payoff equilibrium outcome (U,L) be part of an
SE? The answer is yes under ABI and the blaming-unexpected-deviations version of ABB. To
see this note that as first movers Ann and Bob act as-if selfish (as they are not frustrated;
see Remarks 1 and 2). Hence, they would deviate if they could gain materially. In the SE,
they would expect 5 if not deviating, making Ann the sole deviation candidate (she would get
6 > 5 were Penny to choose P ; for Bob, 5 is the best he can get). But Ann deviating can
be dismissed since if (D,L) were reached Penny would not blame Bob (her only punishable
co-player) under either relevant blame function, so she would choose N (regardless of θp).
Under SA and the could-have-been version of ABB, however, it may be impossible to sustain
an SE with (U,L); at (D,L) Penny would blame each of Ann and Bob (as explained). By
choosing P she hurts Bob more than she helps Ann and would do so if

uABBp ((D,L), P ;αp) > uABBp ((D,L), N ;αp)

⇐⇒

0− 6θpBpa((D,L);αp) > 1− 8θpBpa((D,L);αp).

The rhs of the last inequality uses Bpb((D,L);αp) = Bpa((D,L);αp). Since Bpa((D,L);αp) =
Fp((D,L);αp) = 1 > 0, Penny would choose P if −6θp > 1− 8θp ⇐⇒ θp > 1/2, so Ann would
want to deviate and choose D. N

Example 9 Consider Fig. B. By Proposition 2, every utility function discussed admits (g, y)
as an SE, regardless of anger sensitivity. To check this, just note that, if Bob expects g, he
cannot be frustrated, so—when asked to play—he maximizes his material payoff. Under SA
and ABB (both versions), (f, n) qualifies as another SE if θb ≥ 1/3; following g, Bob would
be frustrated and choose n, so Ann chooses f . Under ABI (f, n) cannot be a SE. To verify,
assume it were, so αa(f) = 1. Since the SE concept does not allow for players revising beliefs
about beliefs, we get βb(αa(f) = 1|g) = 1 and Bba(g; βb) = 0; Bob maintains his belief that
Ann planned to choose f , hence she intended to maximize Bob’s payoff. Hence, Bob would
choose y, contradicting that (f, n) is an SE. Next, note that (g, n) is not an SE under any
concept: Given SE beliefs Bob would not be frustrated and hence choose y. The only way to
observe rejected offers with positive probability in an SE is with non-deterministic plans. To
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find such an SE, note that we need αa(g) ∈ (0, 1); if αa(g) = 0 Bob would not be reached and
if αa(g) = 1 he would not be frustrated, and hence, he would choose y. Since Ann uses a
non-degenerate plan she must be indifferent, so αb(y) = 2/3, implying that Bob is indifferent

too. In SE, Bob’s frustration is
[
2 (1− αa(g)) + 2

3
αa(g)− 1

]+
=
[
1− 4

3
αa(g)

]+
, which equals

his blame of Ann under SA and ABB. Hence we get the indifference condition

1− θb
[
1− 4

3
αa(g)

]+

· 3 = 0− θb
[
1− 4

3
αa(g)

]+

· 0

⇐⇒

αa(g) =
3

4
− 1

4θb
,

where θb ≥ 1/3. The higher is θb the more likely Bob is to get the low offer, so Bob’s initial
expectations, and hence his frustration and blame, is kept low. Under ABI we get another
indifference condition:

1− θbBba(g; βb) · 3 = 0− θbBba(g; βb) · 0
⇐⇒

1− θb min

{
1− 4

3
αa(g),

4

3
αa(g)

}
· 3 = 0.

The left term in braces is Bob’s frustration, while

4

3
αa(g) = 2−

[
2(1− αa(g)) +

2

3
αa(g)

]
is the difference between the maximum payoff Ann could plan for Bob and the actual one.
The first term is lower if αa(g) ≥ 3/8; if, with that, we can solve the equation, we duplicate
the SA/ABB-solution; this is doable if θb > 1/3. If θb ≥ 2/3, with ABI, there is a second
non-degenerate equilibrium plan with αa(g) ∈ (0, 3

8
) where αa(g) = 1/4θb; to see this, solve the

ABI indifference condition assuming 4
3
αa(g) ≤ 1− 4

3
αa(g). This SE exhibits starkly different

comparative statics: The higher is θb, the less likely Bob is to get a low offer and the less he
blames Ann following g in light of her intention to choose f with higher probability. N

The reason why (f, n) in Example 9 cannot be an SE under ABI is that if Bob initially
expects Ann to choose f , and she doesn’t, so that Bob is frustrated, then he would rate her
choice an unintended mistake and not blame her. We emphasize that this is due to assumptions
that underlie the SE concept, i.e., the “trembling-hand” interpretation of deviations, not to
the formulation of ABI utility. According to our notion of polymorphic sequential equilibrium
(Section 4.4), Bob may revise his belief about Ann’s plan.

23



4.3 Threats and anger in leader-follower games

We now analyze the effect of frustration, anger, and blame in two-stage leader-follower game
forms with perfect information, a class that includes the ultimatum game, the chain store
game (Selten 1978), and the “pure threats game” of Klein & O’Flaherty (1993, Fig. 2). In
such games there are two players, and only one is active in each stage. In the first stage the
leader (denoted by `) is active. In the second stage, the follower (denoted by f) is active.
Thus, the leader does not move in stage 2, the follower does not move in stage 1, and there is
no third party. Formally:

Definition 3 A game form is called a leader-follower game if H = {∅}∪A (∅), I = {`, f},
I(∅) = {`}, and I(a1) = {f} or I (a1) = ∅ for every a1 ∈ A (∅).

Condition H = {∅} ∪A (∅) of this definition says that no action of the leader terminates
the game. This simplifies the exposition and is without loss of generality, because the follower’s
set of feasible actions may be a singleton after some a1, in this case I (a1) = ∅. For example,
we interpret the Ultimatum Minigame of Fig. B as a game form where the responder is forced
to accept the fair offer.

In leader-follower games both versions of ABB are behaviorally equivalent to SA. Formulae
(9) and (10) each credit the full frustration on the first-mover of a leader-followers game,
because each satisfies (8). Full blame for the follower’s frustration is assigned to the leader.
Let us write ui,θi to make the dependence of ui on θi explicit; then (8) implies:

Remark 4 In leader-follower games, SA and ABB coincide, i.e., uSAi,θi = uABBi,θi
for all θi.

a

(2, 2, 0) b

(0, 0, 0) (3, 1, 0) (3, 1,−x)

f g

n y y′

Figure D. Ultimatum Minigame with a bystander.

With more followers, or an inactive player, Remark 4 may not hold, as shown next:
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Example 10 Consider the extension of the ultimatum minigame in Fig. D. The game adds
a third player, Darryl (d, because we leave c for chance), whose payoffs are represented by
the third element in the payoff vectors. It also adds an alternative way for Bob to accept by
choosing y′ which punishes Darryl by amount x. If Ann chooses g, assuming αb(g) = ε, we
have

Fb(g;αb) = (1− ε) · 2 + ε
(
αb(y|g) + αb(y

′|g)
)
· 1− 1 > 0.

With SA and θb > 0, if x > 3, after g Bob chooses y′ in another example of displaced
aggression. But, since Darryl is passive and does not move in the first stage, with ABB Bob
does not blame Darryl, and Bob is indifferent between y and y′, regardless of θb. N

In leader-follower games, our model captures an important aspect of the psychology of
anger. Sell et al. (2009) argue that anger “is produced by a neurocognitive program engineered
by natural selection to use bargaining tactics to resolve conflicts of interest in favor of the
angry individual.” We argue that our approach is consistent with this view. First note that
our complete-information analysis assumes that the leader knows how anger-prone the follower
is. This is a good approximation for interactions between agents who know each other well,
and also a good approximation of face-to-face interactions, given that humans are good at
reading facial cues to infer personality traits such as trait-anger (van Leeuwen et al. 2018).
With this, our models predict that in leader-follower game forms anger-prone followers will
obtain at least as large a material payoff as self-interested ones. In our evolutionary past,
higher material payoffs meant longer survival and better access (for males) to sexual partners,
both of which yield higher reproduction rates (e.g., Buss 2016). Hence, we argue that our
approach supports the claim of Sell et al.

Proposition 3 In every leader-follower game form with no relevant ties, the expected material
payoff of the follower in any SE with SA, or ABB, or ABI is at least as large as the material
payoff of the follower in the unique material-payoff SE.

To see why this is the case, consider an SE of the psychological game that yields a different
expected material payoff to the follower than the material-payoff equilibrium. Since a first
mover cannot be frustrated, all the actions chosen by the leader with positive probability in
this SE must maximize his expected material payoff. Thus, if in this SE the leader deviates
from the material-payoff equilibrium action, it must be the case that he correctly expects this
action to be “punished” by the follower with a deviation from the follower’s material-payoff
maximizing reply. This in turn requires that the follower is frustrated by the material-payoff
equilibrium action of the leader, hence, that his expected payoff in this SE is higher than in
the material-payoff equilibrium.

In games forms with more than two followers, Proposition 3 need not hold. For example,
there may exist equilibria where one follower behaves as-if self-interested, while the other is
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frustrated by the material-payoff equilibrium outcome. This can result in the first follower
getting less than in the material-payoff equilibrium as shown by the following example.

Example 11 Consider the game in Fig. E. The leader, Ann, chooses between Left (l) and
Right (r). In the left subgame Bob chooses between the payoff profile (7, 1, 3) and 0 for all
players. In the right subgame Darryl chooses between the payoff profile (6, 2, 2) and 0 for all
players. The material-payoff SE is (l, y, y′) and in this equilibrium Darryl gets 3. However,
with SA, ABB, or ABI, for sufficiently large values of θb and for all θd ≥ 0, the strategy profile
(r, n, y′) can also be an SE. To see this note that if Ann deviates to l, Bob will be frustrated,
and if θb is large enough Bob will choose n after l. In this equilibrium Darryl gets 2, a payoff
smaller than in the material payoff equilibrium. N

a

b d

(0, 0, 0) (7, 1, 3) (0, 0, 0) (6, 2, 2)

l r

n y n′ y′

Figure E. A game with two followers.

Next, we demonstrate that our models of anger are behaviorally relevant only in the
subclass of leader-follower games involving threats. As above, consider a leader-follower game
form with no relevant ties. In these games the leader has a unique best response to each pure
strategy sf ∈ ×a`∈A`(∅)Af (a`) of the follower. We let

r` (sf ) = arg max
a`∈A`(∅)

π`(a`, sf (a`))

denote this best response. Let (ā`, s̄f ) = (r` (s̄f ) , s̄f ) denote the unique material-payoff SE,
where s̄f is the material equilibrium pure strategy of the follower. Note also that, by the
no-relevent-ties assumption, for every pure strategy of the follower, the leader has a unique
best response. With this, we can define a threat as a strategy of the follower that penalizes
the leader for playing the material payoff SE strategy:

Definition 4 In any leader-follower game form with no relevant ties, a threat of player f is
a strategy ŝf such that
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1. A deviation to the threat from the material-payoff SE strategy by the follower harms the
leader: π`(ā`, ŝf (ā`)) < π`(ā`, s̄f (ā`)).

2. The best response to the threat benefits the follower compared to the material-payoff SE:
let â` = r` (ŝf ), then πf (â`, ŝf (â`)) = πf (â`, s̄f (â`)) > πf (ā`, s̄f (ā`)).

Our definition of a threat is inspired by but differs from that of Klein & O’Flaherty, who
focus on multi-stage games with pure-strategy material-payoff equilibria. Note that the threat
must be costly to implement along the path of the material payoff SE, because — by condition
1 — it differs from the unique material best response. Thus, the above conditions incorporate
the notion of a threat that would not be credible if the follower were known to be a material
payoff maximizer. The paradigmatic example of a game form with threats is the Ultimatum
Game: indeed, the strategy of rejecting the greedy offer in the Ultimatum Minigame of Figure
B is a threat.

We can use the conditions in Definition 4 to (partially) characterize the SE behavior of
anger-prone followers:

Proposition 4 In every leader-follower game form with no relevant ties where the follower’s
has a threat, there exists an SE of the psychological game with SA/ABB (when the anger
sensitivity parameter is sufficiently large) such that

1. The follower’s strategy is a threat.

2. The leader does not play his material-payoff SE action.

3. The follower’s material payoff is strictly greater than in the material-payoff SE.

The proof of Proposition 4 (see the Appendix) involves demonstrating that the consis-
tent assessment where the follower plays a given threat (and the leader best responds to the
threat) is sequentially rational when the follower is sufficiently prone to anger, and therefore
it constitutes an SE with SA and ABB. This construction does not work with ABI for the
reasons explained in Example 9 about the Ultimatum Game: under the “trembling-hand”
interpretation of deviations inherent in the SE concept, a deviation from the action â` that
the follower wants to induce is interpreted by him as unintentional, so that he does not blame
the leader and the threat is not credible.

The next proposition shows that, if the game form does not include a threat, then the
follower behaves as-if self-interested in every pure SE:

Proposition 5 In every leader-follower game form with no relevant ties and without threats,
every pure SE of the psychological game with SA/ABB or ABI is realization equivalent to the
material-payoff SE.
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To illustrate, anger is not relevant in the trust game of Berg et al. (1995) (and the mini-
trust game in B&D’s Fig. 1). In general, behavioral patterns that require players to place
positive weight on a co-player’s material payoff cannot be explained via anger.

4.4 Polymorphic sequential equilibrium (PSE)

Suppose a game is played by agents drawn at random and independently from large popu-
lations, one for each player role i ∈ I. Different agents in the same population i have the
same belief-dependent preferences,23 but they may have different plans, hence different beliefs
about paths, even if their beliefs agree about the behavior and beliefs of co-players −i. In
this case, we say that the population is “polymorphic.” Once an agent observes some moves
of co-players, he makes inferences about their intentions.

Let λi be a finite support distribution over Σi×∆2
i , with Suppλi = {(σt1i , βt1i ), (σt2i , βt2i ), ...},

where ti = t1i , t
2
i , ... is an index we refer to as “type” of i.24 We interpret λi as a statistical

distribution of plans and beliefs of agents playing in role i.25 With a slight abuse of notation,
we let λi(ti) denote the fraction of agents in population i with plan and beliefs (σti , βti). Also,
we denote by

Ti(λi) = {ti : (σti , βti) ∈ Suppλi}

the set of possible types of i in distribution λi, and we write T−i(λ−i) = ×j 6=iTj(λj) for the set
of profiles of co-players’ types.

Let us take the perspective of an agent of type ti who knows that the distribution over
co-players’ types is λ−i =

∏
j 6=i λj and believes that the behavior of each tj is indeed described

by tj’s plan σtj (in principle, ti may otherwise believe that tj behaves differently from his plan).
Then it is possible to derive the conditional probability of a type profile t−i given history h.
Given that beliefs satisfy independence across players (everybody knows there is independent
random matching), the distribution is independent of ti and can be factorized. In the current

23Recall that we are not modelling incomplete information.
24These are “types” in the sense of epistemic game theory (e.g., Battigalli, Di Tillio & Samet 2013).
25The marginal of λi on Σi is a behavior strategy mixture (see Selten 1975).
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two-stage setting we have λ−i(t−i|∅) =
∏

j 6=i λj(tj) and

λ−i(t−i|a1) =

∏
j 6=i σtj(a

1
j)λj(tj)∑

t′−i∈T−i(λ−i)
∏

j 6=i σt′j(a
1
j)λj(t

′
j)

=

∏
j 6=i σtj(a

1
j)λj(tj)∏

j 6=i
∑

t′j∈Tj(λj)
σt′j(a

1
j)λj(t

′
j)

=
∏
j 6=i

σtj(a
1
j)λj(tj)∑

t′j∈Tj(λj)
σt′j(a

1
j)λj(t

′
j)

.

for all t−i and a1, provided that
∑

t′j
σt′j(a

1
j)λj(t

′
j) > 0 for each j 6= i. Letting

λj(tj|a1) =
σtj(a

1
j)λj(tj)∑

t′j∈Tj(λj)
σt′j(a

1
j)λj(t

′
j)
,

we get

λ−i(t−i|a1) =
∏
j 6=i

λj(tj|a1).

We say that λj is fully randomized if σtj is strictly positive for every type tj ∈ Tj(λj). If
each λj is fully randomized, then, for all h ∈ H, λ−i(·|h) is well defined, with λ−i(t−i|h) =∏

j 6=i λj(tj|h) for all t−i ∈ T−i(λ−i).

Definition 5 A polymorphic assessment is a profile of finite support probability measures
λ = (λi)i∈I ∈ ×i∈I∆(Σi ×∆2

i ) such that, for every i ∈ I and ti ∈ Ti(λi), σi,ti is the behavior
strategy obtained from βti as per (12). A polymorphic assessment λ is consistent if there is
a sequence (λn)∞n=1 of polymorphic assessments converging to λ such that, for all j ∈ I and
n ∈ N, λnj is fully randomized, and
(a-p) for all h ∈ H, a ∈ A(h), and ti ∈ Ti(λni ),

αnti,−i(a−i|h) =
∏
j 6=i

∑
tj∈Tj(λnj )

σntj(aj|h)λnj (tj|h),

(b-p) for all h ∈ H and ti ∈ Ti(λni ),

marg∆1
−i
βnti(·|h) =

∑
t−i∈T−i(λn−i)

λn−i(t−i|h)δαnt−i
,

where, for all j ∈ I, tj ∈ Tj(λnj ) and n ∈ N, αntj is the first-order belief system derived from
βntj .
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Condition (a-p) extends independence condition (a) of Definition 1 to the multiple-types
setting. Condition (b-p) implies that, conditional on the co-players’ types, everyone has correct
beliefs about the others’ beliefs, including their plans. Yet uncertainty about co-players’ types
allows for uncertainty and meaningful updating about such beliefs. Conditions (a-p) and
(b-p) imply that different types of the same player share the same beliefs about co-players,
but may have different plans. Definition 5 thus is a minimal departure from the notion of
consistent assessment, allowing for uncertainty and meaningful updating about the plans,
hence intentions, of co-players.

Definition 6 A polymorphic assessment λ is a polymorphic sequential equilibrium (PSE)
if it is consistent and satisfies the following sequential rationality condition: for all h ∈ H,
i ∈ I, and ti ∈ Ti(λi),

Suppσti(·|h) ⊆ arg max
ai∈Ai(h)

ui(h, ai; βti).

Remark 5 Every SE is a degenerate (or monomorphic) PSE. Therefore, Theorem 1 implies
that, if every decision-utility function ui(h, ·; ·) (i ∈ I , h ∈ H) is continuous, then there is at
least one PSE. In particular, every game with SA, ABB, or ABI has at least one PSE.

Finally, we demonstrate how the PSE alters predictions in the Ultimatum Minigame and
in leader-followers games more generally.

Example 12 Consider again Figure B. If |Suppλi| = 1 for all i, then our results for the
SE analysis still hold as a special case of the more general PSE analysis. Interesting new
possibilities arise with multiple epistemic types for Ann. Recall that, in the SE with SA/ABB
utility functions and non-degenerate plans (Example 9) we had αa(g) = 3

4
− 1

4θb
(with θb > 1/3)

to keep Bob indifferent. Suppose instead there are two types of Ann (so |Suppλa| = 2), with
a fraction of 3

4
− 1

4θb
of them planning to choose g while the others plan for f . There is a

corresponding PSE where (naming Ann’s types by planned choice) Suppλa = {(f, βf ), (g, βg)},
αf (y|g) = αg(y|g) = αb(y|g) = 2/3, and this holds for also for ABI, not only SA and ABB.
The first-order belief of type f of Ann, αf , is derived from βf , etc. Bob initially believes
Ann is either an f - or a g-type, assigning probability λg = 3

4
− 1

4θb
to the latter possibility.

After action g he ceases to assign positive probability to being matched with an f -type,
assigning instead probability 1 to the g-type, a form of updating about Ann’s intentions
implied by consistency (Definition 5). This inference makes ABI work as ABB (and SA).
Bob’s frustration is as in Example 9, so equal to his blame of Ann for each blaming function.
Again Bob is indifferent between y and n, and sequentially rational if αb(y|g) = 2/3. Condition
αf (y|g) = αg(y|g) = 2/3 implies both types of Ann are indifferent, hence sequentially rational.
Thus, starting with the non-degenerate SE under ABB (and SA) we obtain a PSE, under every
blaming function, where Ann’s plan is purified. N
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The insight of the previous example can be generalized to all leader-followers games,
i.e., games with one leader and one of more followers, who move simultaneously:26

Proposition 6 Consider a leader-followers game and an arbitrary parameter profile (θi)i∈I .
Every SE with decision-utility functions (uABBi,θi

)i∈I [or (uSAi,θi)i∈I ] where the behavioral strategy
of the leader has full support corresponds to a PSE with decision-utility functions (uABBi,θi

)i∈I
[or (uSAi,θi)i∈I ] and also (uABIi,θi

)i∈I where the leader is purified.

5 Multistage extension

In a multistage game form, a (nonempty) nonterminal history is a sequence of action profiles,
h = (a1, ..., at) where t ≥ 1. As in the two-stage case, we assume that actions are observable;
hence, every non-terminal history is public. Our notation for the multistage setting is essen-
tially the same as before. The set of sequences observable by player i also includes personal
histories of the form (h, ai): Hi = H ∪ {(h, ai) : h ∈ H, ai ∈ Ai(h)}.

A belief system for i over paths and beliefs of others is an array of probability measures
βi = (βi (·|hi))hi∈Hi satisfying (3) and (4), which apply to the multistage setting as well. Also
the notation on beliefs is as before: αi ∈ ∆1

i , βi ∈ ∆2
i , and αi is the first-order belief system

derived from βi when they appear in the same formula. Therefore, the definition of SE from
Section 4 can be applied without modifications, and Theorem 2 implies the existence of SE
with SA, ABB, or ABI in the multistage setting.

We distinguish two extreme scenarios according to the behaviorally relevant periodization:
In the slow-play scenario, stages correspond to periods, and player i’s reference expectation
to determine frustration at the beginning of period (stage) t + 1 is given by his belief at the
beginning of period t. In the fast-play scenario, the game’s different stages occur in the same
period and the relevant reference expectation of i in stage t is given by his initial belief (at
the root).27 In either case, we maintain the assumption that blame is continuous in beliefs,
capped by frustration, and equal to frustration in the case of SA.

5.1 Slow play

We start with this scenario because it allows for a relatively simple extension of the two-stage
setting, with initial beliefs replaced by one-period-lagged beliefs: For any non-terminal history

26It can be checked that the thesis of Remark 4—that SA is equivalent to both versions of ABB—also holds
for games with more than one follower.

27Applications may involve intermediate cases, as in alternating-offer bargaining models where a period
comprises two stages. The two extremes convey the main ideas.
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of the form h = (h̄, a) the frustration of i conditional on h given αi is

Fi (h;αi) =

[
E[πi|h̄;αi]− max

ai∈Ai(h)
E[πi| (h, ai) ;αi]

]+

.

(When h̄ = ∅ and h = a1, we are back to the two-period formula.) The decision utility of
action ai ∈ Ai(h) has the general form (5), where the blame functions Bij (h; βi) are of the
SA, ABB, or ABI type. Specifically: Bij (h; βi) = Fi (h;αi) for SA, whereas the could-have-
been blame, blaming deviations, and blaming intentions can be defined with straightforward
adaptations of (9), (10), and (11) respectively; therefore we omit the details.

This extension of the two-stage setting has the stark feature that past frustrations do not
affect current behavior. (A more nuanced version of the model might feature a decaying effect
of past frustrations.)

A detail in modeling game forms becomes relevant in the slow play scenario: We have to
explicitly allow for non-terminal histories after which no player (not even chance) is active,
such as history g in Fig. F. At such histories there is only one feasible action profile, as each
player has only one feasible action, to wait. In the two-periods setting this detail is irrelevant:
If nobody is active at the root, play effectively starts (and ends) in the second period; if
nobody is active at a1, it can be modeled as a terminal history. With more than two periods,
having to wait may affect behavior.

a

• •

b b

(2, 2) (0, 0) (3, 1)

w w

f g

y n y

t = 0

t = 1

t = 2

t = 3

Period 1

Period 2

Period 3

Figure F. Ultimatum Minigame with delayed reply.
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Example 13 Consider Fig. F. Suppose that Bob initially expects f with positive probability.
In period 2, after g, he is frustrated; however he cannot hurt Ann immediately because he has
to wait. In period 3, Bob’s lagged expectation has fully adapted, and he is not frustrated.
According to our slow-play model, the frustration experienced by Bob in period 2 does not
affect his decision utility in period 3: Bob “cools off” and behaves as-if selfish.28 Therefore
the unique SE of the game is (g, w, y), where w denotes waiting. N

5.2 Fast play

All stages now belong to the same period, and i’s frustration at h given αi is calculated with
reference to initial expectations, as in Section 3:

Fi(h;αi) =

[
E[πi;αi]− max

ai∈Ai(h)
E[πi|(h, ai);αi]

]+

.

This implies that there cannot be any cooling off due to reference-point acclimatization. For-
mally, histories where nobody (not even c) is active play no role and therefore can be deleted
from the game form without affecting the analysis, unlike with slow play. For example, in the
fast-play scenario, game form of Fig. F is equivalent to the one of Fig. B.

With this, the fast-play frustration formula can be plugged into the SA decision utility
function (7). As for the ABB decision utility, property (8) of Bij extends to the multistage
setting as follows:29

Bij(h;αi) =

{
0, if j /∈ I(h′) for all h′ ≺ h,
Fi(a

1;αi), if {j} = I(h′) for all h′ ≺ h.
(13)

In words, i cannot blame j if j was never active in the past, and j is fully blamed if he was
the only active player. An extension of could-have-been blame satisfies this property:

Bij(h;αi) = min

{[
max

h′≺h,a′j∈Aj(h′)
E
[
πi|(h′, a′j);αi

]
− E[πi|h;αi]

]+

,Fi(h;αi)

}
. (14)

We can follow a similar logic to extend ABI.

Proposition 7 If Bij is defined by (14), then it satisfies (13).

We now illustrate our definition, elucidating a modeling choice:

28See e.g. Grimm & Mengel (2011) and Oechssler et al. (2015) for experiments.
29Recall that (8) is a necessary condition that blame must satisfy on top continuity in beliefs (which guar-

antees existence of equilibria), it is not a full specification of the blame function for all game forms. This holds
a fortiori for the extension given here.
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Figure G. Multistage Ultimatum featuring Zoë.

Example 14 Consider the game form in Fig. G (material payoffs are in alphabetical order).
If Zoë chooses In, then Ann and Bob interact in an ultimatum minigame, but Zoë may
instead exercise outside options and play (Out, x) or (Out, y). Zoë’s payoffs equal Bob’s,
except following (Out, y) where a payoff transfer from Ann to Bob occurs, relative to (Out, x).
Can strategy profile (In-x, f, n) be an SE under ABB? Given equilibrium beliefs, this is the
case if 0−θb ·1·0 ≥ 1−θb ·1·3, or θb ≥ 1/3. The calculation involves Bob blaming Ann, not Bob
blaming Zoë, because if Zoë switched from In to Out (thus implementing (Out, x) instead of
In) this would not improve Bob’s payoff. This reflects a non-obvious modeling choice: Our
definition assesses blame on the basis of single-agent deviations from the realized path, but if
Bob alternatively assessed blame on the basis of multi-agent deviations, including off-realized-
path deviations, he would consider that Zoë could have played (Out, y). She would then have
increased Bob’s payoff from 1 to 2, preventing his frustration of 1. If Bob’s blame of Zoë were
thus 1, then (In-x, f, n) would be an SE under ABB if 0− θb · 1 · 0 ≥ 1− θb · 1 · 3− θb · 1 · 1,
or θb ≥ 1/4 6= 1/3. (This also shows that SE under ABB is not invariant with respect to
coalescing sequential moves.) Finally, note that also (In-y, f, n) is an SE under ABB in the
fast-play scenario for θb ≥ 1/4, because at (In, g) Zoë would be blamed for not switching to
Out (implementing (Out, y)); but it is an SE under ABB in the slow-play scenario for larger
parameter values, θb ≥ 1/3, because Bob would be frustrated only in the third period, after
(In, g), and Zoë—who played in the first—could not be blamed. N
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The single- vs. multi-agent deviation issue illustrated here can arise also in two-stage
games (with simultaneous moves), but the point is clearer, and perhaps more relevant, with
more than two stages. In the example, we described our favored formulation as a “non-obvious
modeling choice,” and we close this section by thrice defending it: It harmonizes well with
how we define rational play, where players optimize only locally (although in SE they predict
correctly and choose as planned). The (hinted at) alternative definition would be formally
convoluted. It is an open issue which formulation is empirically more relevant; for now, we
stick with what is simpler.

5.3 Counterfactual anger and unique SE in hold-up

Anger, and in fact emotions more generally, can shape behavior without occurring. If anger is
anticipated, this may steer behavior down alternative paths (cf. Proposition 1). We already
saw examples, e.g., (f, n) may be an SE in the Ultimatum Minigame, alongside (g, y). Our
next example highlights how there may be circumstances where the SE is unique and has that
property. It also illustrates a difference between fast and slow play.

b

( 3
2 ,

3
2 ) a

(2, 2) b

(0, 0) (3, 1)

` r

f g

n y

Figure H. Hold-up.

Example 15 Modify the Ultimatum Minigame by adding an initial move for Bob, as in Fig.
H, to get an illustration of a hold-up problem (cf. Dufwenberg, Smith & Van Essen 2013).30

30Bob and Ann face a joint business opportunity worth (2, 2) via path (r, f); however, r involves partnership-
specific investment by Bob, which Ann can exploit choosing g (reneging), etc. As always, we list payoffs by
alphabetical order of players: (πa, πb).
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Under fast play, for each utility function seen so far,31 if θb > 2/3, there is a unique SE: Bob
uses plan (r-n), Ann plans for f . To verify this, the key step is to check that if Bob plans for
(`, y) and Ann for g this is not an SE; if Bob initially expects $1.5, off-path at (r, g), he would
be frustrated and deviate to n. N

With slow play, by contrast, with θb > 2/3, there are multiple SE, exactly as in the Ultima-
tum Minigame. In particular, both (r-n, f) and (`-y, g) are SE; in the latter, Bob’s updated
expected payoff after (counterfactual) action r is only $1, hence he cannot be frustrated by g.

6 Comparison with other models

We shall now compare and contrast the behavioral predictions resulting from frustration and
anger with other models of strategic and social behavior. We first consider distributional
preferences, which transform material payoffs at terminal histories but which otherwise retain
the standard assumption that choices depend solely on their consequences in terms of material
payoffs. We then discuss models of reciprocity, and some alternative approaches to modeling
anger.

6.1 Distributional preferences

Like anger, models of distributional preferences such as inequality aversion (e.g. Fehr &
Schmidt 1999, Bolton & Ockenfels 2000) predict costly punishment. However, a number of
studies demonstrate that the decision to engage in costly punishment depends upon both pay-
offs reached at terminal histories as well as payoffs from unreached histories.32 Our approach
can captures this non-consequentialist aspect of behavior, while distributional preferences can-
not. For example, in the ultimatum minigame of Fig. B, Bob’s decision to reject the greedy
offer may depend upon not only the payoffs from accepting or rejecting the offer, but also
upon the payoff that Ann could have given Bob had she chosen the fair offer. Holding payoffs
and other beliefs constant, our models predict that Bob will be more likely to reject the greedy
offer when either he assigns higher probability to receiving the fair one, or when the fair payoff
is increased. In general, distributional preferences cannot capture behavioral patterns which
depart from consequentialism, while our models can.

The models in this paper assume that players care only about material payoffs and anger,
disregarding distributional considerations. We do so to highlight the effects of frustration,
blame, and anger on behavior in strategic interaction. However, real-world decision makers

31Except the blaming-unexpected-deviations version of ABB, which we did not define explicitly for fast play.
32See e.g. Brandts & Solá (2001), Charness & Rabin (2002), Nelson (2002), Falk et al. (2003, 2008), Sutter

(2007).
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may have a mixture of material, distributional, and psychological motivations (e.g. Falk &
Fischbacher 2006). Although we do not pursue the modeling of distributional concerns, doing
so might involve straightforward modifications of our material payoff function. We leave this
for future work.

6.2 Reciprocity

Negative reciprocity à la Rabin (1993), Dufwenberg & Kirchsteiger (2004), and Falk & Fis-
chbacher (2006) joins anger as a motivation that can trigger hostility. Also like anger, negative
reciprocity can result in non-consequential behavior, but anger and negative reciprocity differ
in key ways. The following sketched comparison is with Dufwenberg & Kirchsteiger’s notion
of sequential reciprocity equilibrium (SRE; refer to their article for formal definitions).

In the Hammering one’s thumb game (Fig. C), Andy may take it out on Bob if he is
motivated by simple anger. Were he motivated by reciprocity, this could never happen: Bob’s
kindness, since he is a dummy-player, equals 0, implying that Andy chooses as-if selfish.
Reciprocity here reflects intuitions similar to the ABI concept, but that analogy only carries
so far, as we show next.

Reciprocity also allows for “miserable equilibria,” where a player reciprocates expected
unkindness before it occurs. For example, in the Ultimatum Minigame of Fig. B, (g, n)
may be a SRE. Ann makes offer g despite believing that Bob will reject; given her beliefs
about Bob’s beliefs, Ann perceives Bob as seeing this coming, which makes him unkind, so
she punishes by choosing g. Such self-fulfilling prophecies of destructive behavior have no
counterpart under any of our anger notions. Since Ann moves at the root, Remarks 1 and 2
demonstrate that she cannot be frustrated, and hence chooses as-if selfish.33 By Propostion
1, sacrificing material payoff to harm a co-player never occurs on the path of a pure-strategy
SE with ABB, ABI, or (in two-player games) SA.

So under our definition, anger is “hot”: in pure-strategy SE’s, angry players do not expect
to sacrifice to harm others. In addition, the cooling-off effects discussed earlier (Section 5)
have no counterpart in reciprocity theory, which makes the same prediction in Figs. B and F.
Reciprocal players do not cool off. “La vengeance est un plat qui se mange froid.”

6.3 Other models of anger

Card & Dahl (C&D) and Kőszegi & Rabin (K&R) C&D show that reports of domes-
tic abuse go up when football home teams favored to win lose. They argue that this is in line

33Another example is the hold-up game of Fig. H. We gave conditions where (r-n, f) was the unique SE. If
Ann and Bob were reciprocal, (`-n, g) and (r-n, g) could be SRE, with miserable interaction, respectively, off
and on the equilibrium path.
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with K&R’s (2006, 2007) theory of expectations-dependent reference points. K&R model the
loss felt when a player gets less than he expected, which one may think of as a form of disap-
pointment with negative valence (cf. Bell 1985, Loomes & Sugden 1986). However, K&R do
not model other-regarding preferences directly: they focus on the consequences of their model
for individual decisions. Our models study the social consequences of frustration: frustration
results in lower weights on coplayer payoffs, and hence encourages costly punishment. Our
simple anger model and the example of hammering-one’s thumb encapsulates C&D’s result.

A key difference between this paper and K&R is that in their work anticipation of the
negative valence of future frustrations influences decision utility. Our decision makers are
influenced by past frustrations, rather than future ones. Important modeling details then
distinguish how we define frustration and how K&R define loss (e.g., how we cap frustration
using the highest attainable payoff).

Rotemberg In a series of intriguing papers, Rotemberg explores how consumer anger shapes
firms’ pricing (2005, 2011), as well as interaction in ultimatum games (2008). He proposes
(versions of) a theory in which players are slightly altruistic, and consumers/responders also
care about their co-players’ degrees of altruism. Namely, they abruptly become angry and
punish a co-player whom they come to believe has an altruism parameter lower than some
threshold. “One can thus think of individual i as acting as a classical statistician who has a
null hypothesis that people’s altruism parameter is at least as large as some cutoff value. If
a person acts so that i is able to reject this hypothesis, individual i gains ill-will towards this
person” (Rotemberg 2008, p. 464).

Rotemberg shows how his model impressively captures the action in his data sets. It is
natural to wonder whether our approach, which is structured very differently from his (e.g.,
we make no reference to altruism), could achieve that too. As regards behavior in ultimatum
(and some other) games, there is already some existing evidence that is consistent with our
approach; see the discussion regarding experiments below. Regarding pricing, we leave for
empirical economists the task of exploring the topic.

Winter, Brams Winter (2014) and Winter et al. (2016) model anger and other emotions
in games with a version of the indirect evolutionary approach:34 Like us, Winter et al assume
that preferences over outcomes are “emotional” and endogenous, but we differ in the way we
model emotions and make them endogenous. We assume that emotions depend on endogenous
beliefs, while Winter et al model the rest points of an adaptation process of belief-independent
preferences. Brams (2011) studies anger in sequential interactions by modeling players who
take turns changing the state of a 2 × 2 payoff matrix and receive payoffs at the end of the

34See, for example, Güth & Kliemt (1988).
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game. However, like Winter’s, his model of anger is independent of beliefs, while we argue
that beliefs are central to emotions.

Akerlof Akerlof (2016) models anger in a 2-person Bayesian game where the first mover
decides whether or not to follow a rule, and the second mover decides whether or not to
punish the first mover. In the model, Player 1’s compliance with the rule is motivated by a
sense of duty. Player 2 may be sensitive to anger from noncompliance if she thinks that a
“reasonable person,” modeled as a person with similar preferences to Player 2, would comply
with the rule. Similarly to Rotemberg, Akerlof motivates costly punishment via preferences
over others’ types. In contrast, we assume that anger and aggression arise from frustration
and payoff expectations. Both Rotemberg’s and Akerlof’s approach begin with norms about
behavior, and condition anger upon violation of those norms. In contrast, we develop models
that reflect the psychology of frustration and anger.

7 Discussion

Incorporating the effects of emotions in economic analysis is a balancing act. One wants
to focus on sentiments that make empirical sense, but human psychology is multi-faceted
and there is no unambiguous yardstick. Our chosen formulation provides a starting point for
exploring how anger shapes interaction, and experimental or other evidence will help to assess
empirical relevance and suggest revised formulas. We conclude by discussing sundry topics
that may help gain perspective on, build on, or further develop our work.

Frustration Consider substituting E[πi;αi] − E[πi|a1;αi] for Fi(a
1;αi) of Section 3. This

alternative would measure i’s actual diminished expectations at a1, unlike Fi(a
1;αi) which

reflects diminished expectations relative to what i believes is the most he can get (which we
think of as the adequate way to represent the unexpected unavailability of something cared
about). To appreciate how dramatically this change would impact behavior, consider a two-
player common-interest game: Ann chooses Out or In; in the former case the game ends with
payoffs (1, 1), in the latter case Bob chooses between (0, 0) and (2, 2). Mutatis mutandis, for
high enough θb, with the alternative, under SA and ABB, there is an SE where Ann chooses
Out and Bob would go for (0, 0). Following In, Bob would be frustrated because he (so-to-say)
sees himself as locked-in with his stage-2 planned action. Our formulation of Fi(a

1;αi) rules
that out.

Take a binary gamble where with probability p > 0 Ann wins $x > 0, and otherwise gets
$0. Her frustration, using our definition, equals her initial expectation: p · x. This embodies
strong implications for how frustrations compare across contexts, e.g. the frustration of a
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highly expected failure to win the state lottery versus that of some unlikely small loss. We
are agnostic as regards empirical relevance, but alert the reader to the issue.35

The psychological evidence (cited in Section 1) says a player becomes frustrated when his
goals are unexpectedly thwarted. We addressed but one aspect: own material rewards. Cases
1-3 indicate broad applied potential. Yet our focus is restrictive, as one may imagine other
sources of frustration:

Case 4: In 2007 Apple launched its iPhone at $499. Two months later they
introduced a new version at $399, re-priced the old model at $299, and caused
outrage among early adopters. Apple paid back the difference. Did this help long
run profit?

Case 5: The 2008 TARP bank bail-out infuriated some US voters. Did this ignite
Tea Party/Occupy-Wall Street movements?

In case 4, an early adopter is frustrated because he regrets he already bought, not because
new information implies his expected rewards drop. In case 5, even an activist who is materially
unaffected personally may be frustrated because of unexpected perceived unfairness. These
examples are not exhaustive; further sources of frustration may e.g. involve shocks to self-
esteem.36 Techniques analogous to those we have developed may be applicable in these cases,
but going in these directions is left for future research.

As regards the effects of frustration, we considered changes to a player’s utility but ne-
glected other plausible adjustments. Gneezy & Imas report data from an intriguing experiment
involving two-player zero-sum material payoff games. In one game players gain if they are
strong, in another if they are smart. Before play starts, one subject may anger his opponent
and force him to stay in the lab to do boring tasks. A thus frustrated player’s performance is
enhanced when strength is beneficial (possibly from increased adrenaline flow), but reduced
when cool logic is needed (as if an angered player becomes cognitively impaired). Our ap-
proach can capture the first aspect, but not the second: We can let consequences of actions
depend also on beliefs (e.g., because emotions affect strength or speed; cf. Rauh & Seccia
2006); this ultimately translates into belief-dependent utility (or cost) of actions. However, to
model the second effect, we would need a theory of endogenous cognitive abilities.

Valence and action-tendency Psychologists classify emotions in multiple ways. Two
prominent aspects are valence, the intrinsic pleasantness or aversiveness of an emotion, and

35The example involves one-player with a dummy-choice only to facilitate the frustration-calculation; inter-
esting testable implications obviously arise more generally, e.g. in modified versions of the hammering one’s
thumb game.

36See Baumeister et al. (1996) for an interesting discussion linking (threatened) self-esteem and violence.
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action-tendency, or how behavior is shaped as the emotion occurs. Both notions have
bearing on anger. For example, most psychologists believe anger has negative valence (see,
e.g., Harmon-Jones & Sigelman 2001, p. 978). Perhaps such considerations steer people to
avoid frustrations, say by not investing in the stock market. That said, the distinguishing
feature of anger that psychologists stress concerns its action-tendency of aggression, not its
valence. In developing our theory, we have exaggerated this, abstracting away from frustration
avoidance, while emphasizing frustration-induced aggression. This is reflected in the decision
utility functions, which are shaped by current frustration, but not by the anticipation of the
negative valence of future frustrations.37

Blame We explored various ways a player may blame others, but other notions are conceiv-
able. For example, with anger from blaming behavior i’s blame of j depends on what i believes
he would truly get at counterfactual histories, rather than the most he could get there. We
view this modeling choice as reflecting local agency; i’s current agent views other agents of i
as uncontrollable, and he has no direct care for their frustrations. Another example relates to
how we model anger from blaming intentions: i’s blame of j depends on βi, his second-order
beliefs. Recall that the interpretation concerns beliefs about beliefs about material payoffs,
not beliefs about beliefs about frustration, which would be third- rather than second-order
beliefs. Battigalli & Dufwenberg (2007), in a context which concerned guilt rather than anger,
worked with such a notion.

Our blame concepts one way or another assess the marginal impact of others. For example,
consider a game where i exits a building while all j ∈ I\{i}, unexpectedly to i, simultaneously
hurl buckets of water at i, who gets soaked. According to our approach, i cannot blame any j
as long as there are at least two hurlers. One could imagine that i alternatively blames, say,
all the hurlers on the grounds that they collectively could thwart i’s misery, or that i splits
the blame among all hurlers. Halpern (2016, Chapter 6) explores such issues and develops a
model that assigns positive blame even when outcomes are overdetermined.

People may also blame others in unfair ways, e.g. nominating scapegoats. Our notions
of SA and ABB may embody such notions to some degree. However, it has not been our
intention to address this issue systematically.

Several recent experiments explore interesting aspects of blame (Bartling & Fischbacher
2012, Gurdal et al. 2014, Celen et al. 2017). We emphasize that our focus on blame is
restricted to its relation to frustration, not on reasons besides frustration that may lead people

37In previous work we modeled another emotion: guilt (e.g., Battigalli & Dufwenberg 2007, Chang et al.
2011). To gain perspective note how our approach to anticipation of valence and action-tendency was then
reversed. Guilt has valence (negative!) as well as action-tendency (say to engage in “repair behavior”; see,
e.g., Silfver 2007). In modeling guilt we highlighted anticipation of its negative valence while neglecting
action-tendency.

41



to blame each other.38

Anger management People aware of their inclination to be angry may attempt to manage
or contain their anger. Our players anticipate how frustrations shape behavior, and they
may avoid or seek certain subgames because of that. However, there are interesting related
phenomena we do not address: Can i somehow adjust θi say by taking an “anger management
class?” If so, would rational individuals want to raise, or to lower, their θi? How might that
depend on the game forms they play? These are potentially relevant questions related to how
we have modeled action-tendency. Further issues would arise if we were to consider aspects
involving anticipated negative valence of future frustrations, or bursts of anger.

Experimental testing Our models tell stories of what happens when anger prone players
interact. It is natural to wonder about empirical relevance. Experiments may shed light.

A few studies that measure beliefs, emotions, and behavior together provide support for
the notion that anger and costly punishment result from outcomes which do not meet ex-
pectations. Pillutla & Murnighan (1996) find that reported anger predicted rejections better
than perceived unfairness in ultimatum games. Fehr & Gächter (2002) elicit self-reports of the
level of anger towards free riders in a public goods game, concluding that negative emotions
including anger are the proximate cause of costly punishment.

Other studies connect unmet expectations and costly punishment in ultimatum games.
Falk et al. (2003) measure beliefs and behavior in ultimatum minigames; higher proportions
of rejections of disadvantageous offers when responders’ expected payoffs are higher, consistent
with our models.39 Schotter & Sopher (2007) measure second-mover expectations, concluding
that unfulfilled expectations drive rejections of low offers. Similarly, Sanfey (2009) finds that
psychology students who are told that a typical offer in the ultimatum game is $4-$5 reject
low offers more frequently than students who are told that a typical offer is $1-$2.

A series of papers by Frans van Winden and coauthors records emotions and expectations
in power-to-take games (which resemble ultimatum games, but allows for partial rejections).40

Second-mover expectations about first-mover “take rates” are key in the decision to destroy
income, and anger-like emotions are triggered by the difference between expected and actual
take rates. The difference between actual and reported “fair” take rate is not significant in

38For example, Celen et al. (2014) present a model where i asks how he would have behaved had he been
in j’s position and had j’s beliefs. Then i blames j if j appears to be less generous to i than i would have
been, and may blame j even if i is not surprised/frustrated. Or imagine a model where players blame those
considered unkind, as defined in reciprocity theory, independently of frustration.

39See the data in Fig. 2 and Table 1 of their paper. Brandts & Solá (2001) find similar behavioral results
(see Table 1). Compare also with our discussion of Example 3 in Section 3.2.

40Bosman & van Winden (2002), Bosman et al. (2005), Reuben & van Winden (2008).
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determining anger, suggesting that deviations from expectations, rather than from fairness
benchmarks, drive anger and the destruction of endowments.

Apropos the cooling off effects discussed in Section 5, Grimm & Mengel (2011) run ul-
timatum games that force some responders to wait ten minutes before making their choice.
Without delay, less than 20% of low offers were accepted while 60–80% were accepted if the
acceptance decision were delayed.

A literature in neuroscience connects expectations with social norms to study the neural
underpinnings of emotional behavior. In Xiang et al. (2013), subjects respond to a sequence
of ultimatum game offers whilst undergoing fMRI imaging. Unbeknownst to subjects, the
experimenter controls the distribution of offers in order to manipulate beliefs. Rejections
occur more often when subjects expect higher offers. The authors connect norm violations
(i.e., lower than expected offers) with reward prediction errors from reinforcement learning,
which are known to be the computations instantiated by the dopaminergic reward system.
Xiang et al. note that “when the expectation (norm) is violated, these error signals serve as
control signals to guide choices. They may also serve as the progenitor of subjective feelings.”

It would be useful to develop tests specifically designed to target key features of our theory.
For example, which version—SA, ABB, ABI—seems more empirically relevant, and how does
the answer depend on context (e.g., is SA more relevant for tired subjects)? Some insights
may again be gleaned from existing studies. For example, Gurdal et al. (2014) study games
where an agent invests on behalf of a principal, choosing between a safe outside option and
a risky alternative. If the latter is chosen, then it turns out that many principals punish
the agent if and only if by chance a poor outcome is realized. This seems to indicate some
relevance of our ABB solution (relative to ABI). That said, Gurdal et al.’s intriguing design
is not tailored to specifically test our theory (and beliefs and frustrations are not measured).

A few recent studies are directly motivated by our work. Persson (2018) presents a test of
simple anger. He explores the Hammering one’s thumb game, and documents that frustrations
occur much as predicted and yet no punishments occur. His results thus favor ABB or ABI
over SA in that context. More recently, we have ourselves begun to study our models in the
laboratory: Aina et al. (2018) devise tests that manipulate the responder’s payoff from the
proposer’s outside option in mini-ultimatum games, and Dufwenberg et al. (2018a,b) test
predictions that link anger to verbal promises & threats; in each case supporting evidence is
reported.

Our models are abstractions. We theorize about the consequences of anger while neglecting
myriad other obviously important aspects of human motivation (say altruism, warm glow,
inequity aversion, reciprocity, social status, or emotions like guilt, disappointment, regret, or
anxiety). Our models are not intended to explain every data pattern, but rather to highlight
the would-be consequences of anger, if anger were the only form of motivation at play (in
addition to concern for material payoffs). This statement may seem trivially obvious, but
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it has subtle implications for how to evaluate experimental work. Experimental data may
find that one of the forms of motivation that our theory abstracts away from affects subjects’
choices. However, to reject our theory, it may be more relevant to ask if behaviors that are
in fact driven by anger (as measured by, e.g., emotion self-reports, physiological activity, or
both, as in Chang et al. 2011) diverge from our predictions. If they were, that might indicate
that our theory could benefit from revision.

Applications Formulating, motivating, and elucidating the key definitions of our models
is more than a mouthful, so we have not taken this paper in the direction of doing applied
economics. Make no mistake about it though, the hope that our models will prove useful
for such work has been a primary driving force. Our psychologically grounded models of
frustration, anger, and blame may shed light on many of the themes (e.g. pricing, violence,
politics, recessions, haggling, terror, and traffic) that we listed at the start of this paper. We
hope to do some work in these directions ourselves.

A Appendix

This appendix contains proofs of the results stated in the main text.

A.1 Preliminaries

To ease exposition, some of the key definitions and equations contained in the main text are
repeated below.

For each topological space X, we let ∆(X) denote the space of Borel probability measures
on X endowed with the topology of weak convergence of measures. Every Cartesian product of
topological spaces is endowed with the product topology. A topological space X is metrizable
if there is a metric that induces its topology. A Cartesian product of a countable (finite, or
denumerable) collection of metrizable spaces is metrizable.

∆1
i ⊆ ×hi∈Hi∆ (Z(hi)) is the set of first-order beliefs: the set of αi = (αi (·|Z(hi)))hi∈Hi

such that:

• for all hi, h
′
i ∈ Hi, if hi ≺ h′i then for every Y ⊆ Z(h′i)

αi(Z(h′i)|Z(hi)) > 0⇒ αi (Y |Z(h′i)) =
αi(Y |Z(hi))

αi(Z(h′i)|Z(hi))
; (15)

• for all h ∈ H, ai ∈ Ai(h), a−i ∈ A−i(h) (using obvious abbreviations)

αi,−i(a−i|h) = αi,−i(a−i|h, ai). (16)
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∆2
i ⊆ ×hi∈Hi∆

(
Z(hi)×∆1

−i
)

—where ∆1
−i = ×j 6=i∆1

j— is the set of second-order beliefs,
that is, the set of βi = (βi(·|hi))hi∈Hi such that:

• if hi ≺ h′i then

βi(h
′
i|hi) > 0⇒ βi (E|h′i) =

βi (E|hi)
βi(h′i|hi)

(17)

for all hi, h
′
i ∈ Hi and every event E ⊆ Z(h′i)×∆1

−i;

• i’s beliefs satisfy an own-action independence property:

βi (Z (h, (ai, a−i))× E∆|(h, ai)) = βi (Z (h, (a′i, a−i))× E∆|(h, a′i)) , (18)

for every h ∈ H, ai, a
′
i ∈ Ai(h), a−i ∈ A−i(h), and (measurable) E∆ ⊆ ∆1

−i. The space
of second-order beliefs of i is denoted ∆2

−i.

Note that (16) and (18) are given by equalities between marginal measures (on A−i(h) and
A−i(h)×∆1

−i respectively).

Lemma 1 For each player i ∈ I, ∆2
i is a compact metrizable space.

Proof Let Θ be a non-empty, compact metrizable space. Lemma 1 in Battigalli & Sinis-
calchi (1999) (B&S) establishes that the set of arrays of probability measures (µ(·|hi))hi∈Hi ∈
×hi∈Hi∆ (Z(hi)×Θ) such that

hi ≺ h′i ∧ µ(h′i|hi) > 0⇒ µ (E|h′i) =
µ (E|hi)
µ(h′i|hi)

is closed. Note that, in the special case where Θ is a singleton, each ∆ (Z(hi)×Θ) is iso-
morphic to ∆ (Z(hi)); hence, the set of first-order beliefs satisfying (15) is closed. Letting
Θ = ∆1

−i, we obtain that the set of second-order beliefs satisfying (17) is closed.
Since ×hi∈Hi∆ (Z(hi)) is a compact subset of a Euclidean space and eq. (16) is a closed

condition (equalities between marginal measures are preserved in the limit), Lemma 1 in B&S
implies that ∆1

i is a closed subset of a compact metrizable space. Hence, ∆1
i is a compact

metrizable space.
It is well known that if X1, ..., XK are compact metrizable, so is ×Kk=1∆(Xk) (see Aliprantis

& Border 2006, Theorem 15.11). Hence, by Lemma 1 in B&S, the set of second-order beliefs
satisfying (17) is a closed subset of a compact metrizable space. Since eq. (18) is a closed
condition (equalities between marginal measures are preserved in the limit), this implies that
∆2
i is compact metrizable. �
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Lemma 2 For each profile of behavioral strategies σ = (σi)i∈I there is a unique profile of
second-order beliefs βσ = (βσi )i∈I such that (σ, βσ) is a consistent assessment. The map
σ 7→ βσ is continuous.

Proof Write Pσ(h′|h) for the probability of reaching h′ from h, e.g.,

Pσ(a1, a2|∅) =

(∏
j∈I

σj(a
1
j |∅)

)(∏
j∈I

σj(a
2
j |a1)

)
.

Define ασi as ασi (z|h) = Pσ(z|h) for all i ∈ I, h ∈ H, and z ∈ Z. Define βσi as βσi (·|h) =
ασi (·|h) × δασ−i for all i ∈ I, h ∈ H. It can be checked that (1) βσi ∈ ∆2

i for each i ∈ I, (2)
(σ, βσ) is a consistent assessment, and (3) if β 6= βσ, then either (a) or (b) of the definition
of consistency is violated. It is also apparent from the construction that the map σ 7→ βσ is
continuous, because σ 7→ ασ is obviously continuous, and the Dirac-measure map α−i 7→ δα−i
is continuous. �

Lemma 3 The set of consistent assessments is compact.

Proof Lemma 1 implies that ×i∈I(Σi ×∆2
i ) is a compact metrizable space that contains

the set of consistent assessments. Therefore, it is enough to show that the latter is closed. Let
(σn, βn)n∈N be a converging sequence of consistent assessments with limit (σ∞, β∞). For each
i ∈ I, let αni be the first-order belief derived from βni (n ∈ N ∪ {∞}), that is,

αni (Y |h) = βni (Y ×∆1
−i|h)

for all h ∈ H and Y ⊆ Z(h). By consistency, for all n ∈ N, i ∈ I, h ∈ H, a ∈ A(h), it holds
that

• (a.n) αni (a|h) = βni
(
Z(h, a)×∆1

−i|h
)

=
∏

j∈I σ
n
j (aj|h),

• (b.n) marg∆1
−i
βni (·|h) = δαn−i , where each αnj is determined as in (a.n).

Then,

α∞i (a|h) = β∞i
(
Z(h, a)×∆1

−i|h
)

=
∏
j∈I

σ∞j (aj|h)

for all i ∈ I, h ∈ H, a ∈ A(h). Furthermore, marg∆1
−i
β∞i (·|h) = δα∞−i for all i ∈ I and h ∈ H,

because αn−i → α∞−i and the marginalization and Dirac maps βi 7→marg∆1
−i
βi and α−i 7→ δα−i

are continuous. �
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A.2 Proof of Proposition 1

Fix i ∈ I arbitrarily. First-order belief αi is derived from βi and, by consistency, gives the
behavioral strategy profile σ. Therefore, by assumption each h′ � h has probability one under
αi, which implies that E[πi|h′;αi] = E[πi;αi], hence Fi(h

′;αi) = 0. Since blame is capped
by frustration, ui(h

′, a′i; βi) = E[πi|h′;αi]. Therefore, sequential rationality of the equilibrium
assessment implies that Suppσi(·|h′) ⊆ arg maxa′i∈Ai(h′) E[πi| (h′, a′i) ;αi]. If there is random-
ization only in the last stage (or none at all), then players maximize locally their expected
material payoff on the equilibrium path. Hence, the second claim follows by inspection of the
definitions of agent form of the material-payoff game and Nash equilibrium. �

A.3 Proof of Proposition 2

Let (σ̄, β̄) =
(
σ̄i, β̄i

)
i∈I be the SE of the material-payoff game, which must be in pure strategies

(Remark 3). Fix decision utility functions ui(h, ai; ·) of the ABI, or ABB kind, and a sequence
of real numbers (εn)n∈N, with εn → 0 and 0 < εn <

1
maxi∈I,h∈H |Ai(h)| for all n ∈ N. Consider

the constrained psychological game where players can choose mixed actions in the following
sets:

Σn
i (h) = {σi(·|h) ∈ ∆(Ai(h)) : ‖σi(·|h)− σ̄i(·|h)‖ ≤ εn}

if h is on the σ̄-path, and

Σn
i (h) = {σi(·|h) ∈ ∆(Ai(h)) : ∀ai ∈ Ai(h), σi(ai|h) ≥ εn}

if h is off the σ̄-path. By construction, these sets are non-empty, convex, and compact. Since
the decision utility functions are continuous, and the consistent assessment map σ 7−→ βσ is
continuous (Lemma 2), the correspondence

σ 7−→ ×h∈H ×i∈I arg max
σ′i(·|h)∈Σni (h)

∑
ai∈Ai(h)

σ′i(ai|h)ui(h, ai; β
σ
i )

is upper-hemicontinuous, non-empty, convex, and compact valued; therefore (by Kakutani’s
theorem), it has a fixed point σn. By Lemma 3, the sequence of consistent assessments(
σn, βσ

n)∞
n=1

has a limit point (σ∗, β∗), which is consistent too. By construction, σ̄(·|h) =

σ∗(·|h) for h on the σ̄-path, therefore (σ̄, β̄) and (σ∗, β∗) are realization-equivalent. We let ᾱi
(respectively, α∗i ) denote the first-order beliefs of i implied by (σ̄, β̄) (respectively, (σ∗, β∗)).

We claim that the consistent assessment (σ∗, β∗) is an SE of the psychological game with
decision utility functions ui(h, ai; ·). We must show that (σ∗, β∗) satisfies sequential ratio-
nality. If h is off the σ̄-path, sequential rationality is satisfied by construction. Since σ̄ is
deterministic and there are no chance moves, if h is on the σ̄-path (i.e., on the σ∗-path) it

47



must have unconditional probability 1 according to each player’s beliefs and there cannot be
any frustration; hence, ui(h, ai; β

∗
i ) = E[πi|h, ai;α∗i ] (i ∈ I) where α∗i is determined by σ∗.

If, furthermore, it is the second stage (h = ā1, with σ̄(ā1|∅) = 1), then —by construction—
E[πi|h, ai;α∗i ] = E[πi|h, ai; ᾱi], where ᾱi is determined by σ̄. Since σ̄ is an SE of the material-
payoff game, sequential rationality is satisfied at h. Finally, we claim that (σ∗, β∗) satisfies
sequential rationality also at the root h = ∅. Let ι(h) denote the active player at h. Since
ι(∅) cannot be frustrated at ∅, we must show that action ā1 with σ̄(ā1|∅) = 1 maximizes his
expected material payoff given belief αι(∅). According to ABB and ABI, player ι(a1) can only
blame the first mover ι(∅) and possibly hurt him, if he is frustrated. Therefore, in assessment
(σ∗, β∗) at node a1, either ι(a1) plans to choose his (unique) payoff maximizing action, or he
blames ι(∅) strongly enough to give up some material payoff in order to bring down the payoff
of ι(∅). Hence, E[πι(∅)|a1;α∗ι(a1)] ≤ E[πι(∅)|a1; ᾱι(a1)] (anger). By consistency of (σ∗, β∗) and

(σ̄, β̄), α∗ι(a1) = α∗ι(∅) and ᾱι(a1) = ᾱι(∅) (cons.). Since (σ∗, β∗) is realization-equivalent (r.e.) to

(σ̄, β̄), which is the material-payoff equilibrium (m.eq.), for each a1 ∈ A(∅),

E[πι(∅)|ā1;α∗ι(∅)]
(r.e.)
= E[πι(∅)|ā1; ᾱι(∅)]

(m.eq.)

≥

E[πι(∅)|a1; ᾱι(∅)]
(cons.)

= E[πι(∅)|a1; ᾱι(a1)]
(anger)

≥

E[πι(∅)|a1;α∗ι(a1)]
(cons.)

= E[πι(∅)|a1;α∗ι(∅)].

This completes the proof for the ABB and ABI cases. If there are only two players, then we
have a leader-follower game and SA is equivalent to ABB, so (σ∗, β∗) is an SE in this case too.
�

A.4 Proof of Proposition 3

Recall that ` and f respectively denote the leader and the follower and that, by convention, the
leader has no terminating action. By Remark 3, we obtain the unique and pure material-payoff
SE strategy pair, viz. (σ̄`, σ̄f ), by backward induction: for each a` ∈ A` (∅), let

s̄f (a`) = arg max
af∈Af (a`)

πf (a`, af )

denote the material best reply of f to a` (unique by assumption); then

∀a` ∈ A` (∅) , σ̄f (s̄f (a`) |a` ) = 1,

σ̄`

(
arg max

a`∈A`(∅)
π` (a`, s̄f (a`)) |∅

)
= 1. (19)
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Let (ā`, s̄f ) denote this pure-strategy equilibrium. We must prove that E [πf ; β] ≥ πf (ā`, s̄f (ā`))
for every SE assessment (σ, β).

Now, fix arbitrarily an SE (σ, β), thus, by consistency, σ is derived from the first-order
beliefs implied by β. Observe that

∀a` ∈ A` (∅) \{ā`}, E [π`|a`; β]
(anger)

≤ π` (a`, s̄f (a`))
(m.eq.)
< π` (ā`, s̄f (ā`)) . (20)

The first inequality holds because either f—upon observing a`—is angry enough to deviate
from his material-payoff maximizing action s̄f (a`) and punish `, or he replies with s̄f (a`);
the second inequality holds because (ā`, s̄f ) is the unique material-payoff equilibrium. Since
in every equilibrium the leader, who cannot be frustrated, maximizes his expected material
payoff, it must be the case that either (i) σ` (ā`|∅) = 1, or (ii) E [π`|ā`; β] < π` (ā`, s̄f (ā`)),
otherwise eq. (20) implies that he would choose ā` with probability 1. In case (i), f cannot be
frustrated after ā`; hence, σf (s̄f (ā`) |ā`) = 1, σ` (ā`|∅) = 1, and the equilibrium payoff of f is
πf (ā`, s̄f (ā`)), the same as in the material-payoff equilibrium. In case (ii), σf (s̄f (ā`) |ā`) < 1,
that is, f is not choosing his material-payoff maximizing action s̄f (ā`) because he is frustrated.
Therefore,

E [πf ; β]− πf (ā`, s̄f (ā`)) = E [πf ; β]− max
af∈Af (ā`)

πf (ā`, af ) = Ff (ā`;α) > 0,

where α is derived from β. Thus, in each case E [πf ; β] ≥ πf (ā`, s̄f (ā`)). �

A.5 Proof of Proposition 4

Recall that (ā`, s̄f ) denotes the (necessarily pure) material-payoff SE strategy pair of a leader-
follower game form with no relevant ties. Let ŝf be a threat as per Definition 4 and let â`
denote the (necessarily unique) best response of the leader. We first construct a consistent

assessment
(
σ̂, β̂

)
such that the leader plays â` and the follower responds to â` with ŝf (â`),

then we show that
(
σ̂, β̂

)
is sequentially rational.

Let σ̂ be such that σ̂` (â`) = 1, σ̂f (ŝf (â`) |â`) = 1, let β̂ = βσ̂ denote the second-order
beliefs profile consistent with σ̂ (see Lemma 2); similarly, we let α̂ denote the first-order beliefs
consistent with such σ̂ (and β̂). The first part of the proof only relies on the on-path features
of σ̂. Then we complete the construction. By Condition 2 of Definition 4,

E [πf ; α̂f ] = πf (â`, ŝf (â`)) = max
af∈Af (â`)

πf (â`, af ) > max
af∈Af (ā`)

πf (ā`, af ) = πf (ā`, s̄f (ā`)).

Therefore, the follower’s threat ŝf materially best responds to â`, and his frustration after the
material-payoff SE action ā` is strictly positive under such beliefs:

Ff (ā`; α̂f ) = E [πf ; α̂f ]− max
af∈Af (ā`)

πf (ā`, af ) = πf (â`, ŝf (â`))− πf (ā`, s̄f (ā`)) > 0.
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By Remark 4, frustration and blame coincide under ABB, as they do by definition for SA:
Ff = Bf , because frustration is fully blamed on the leader. Therefore, there are a sufficiently
high parameter value θf > 0 and an action ãf such that

ãf ∈ arg max
af∈Af (ā`)

{πf (ā`, af )− θfBf (ā`; α̂f ) π` (ā`, af )}

and

π` (ā`, ãf ) ≤ π`(ā`, ŝf (ā`))
(C1)
< π`(â`, ŝf (â`)),

where the latter inequality follows from Condition 1 of Definition 4 (note: ãf may differ from
ŝf (ā`) because a frustrated follower may want to punish the leader more than ŝf does).

With this, we complete the construction of σ̂f (hence of β̂ = βσ̂ and α̂) on top of
σ̂f (ŝf (â`) |â`) = 1 as follows:

σ̂f (ãf |ā`) = 1,

and
suppσ̂f (·|a`) ⊆ arg max

af∈Af (a`)
{πf (a`, af )− θfBf (a`; α̂f ) π` (a`, af )}

for all the other actions a` ∈ A` (∅) \ {â`, ā`}. Since the follower with such beliefs is not
frustrated after the candidate equilibrium action â` of the leader, the construction implies
that σ̂f satisfies sequential rationality.

We conclude proving that â` is a (material) best response for the leader. For every a` ∈
A` (∅), we have

E [π`|â`; α̂`]
(constr.)

= π` (â`, ŝf (â`))
(C2)
=

π` (â`, s̄f (â`))
(C2)
> π` (ā`, s̄f (ā`))

(m.eq)

≥

π` (a`, s̄f (a`))
(anger)

≥ E [π`|a`; α̂`] ,

where the first equality holds by construction, the second equality and the first inequality
follow from Condition 2, and the last two inequalities follow from the fact that (ā`, s̄f ) is the
material-payoff SE, and that the reply the follower under σ̂ must give (weakly) less to the
leader than the material-payoff SE, as an angry follower may trade off some of his material
payoff (maximized at af = s̄f (a`)) to make the leader’s payoff lower than π` (a`, s̄f (a`)). �

A.6 Proof of Proposition 5

Let σ̂ = (â`, ŝf ) be a pure SE strategy pair with SA/ABB or ABI of a leader-follower game
with no relevant ties, and let α̂ denote the corresponding profile of first-order beliefs. First
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note that the consistency condition of SE implies that deviations from â` would be rated by
f as unintended mistakes, hence f would not be angry. Therefore, there the pure SE with
ABI is unique and it coincides with σ̂. Next we consider SA/ABB and we prove the result
by contraposition, that is, we show that if path (â`, ŝf (â`)) differs from the material-payoff
equilibrium path (ā`, s̄f (ā`)), then there is a threat.

As the leader cannot be frustrated at the root, and the follower cannot be frustrated
after â`, which is expected with probability 1, we must have â` = r` (ŝf ) and ŝf (â`) =
arg maxaf∈A(â`) πf (â`, af ) = s̄f (â`). Suppose (â`, ŝf (â`)) 6= (ā`, s̄f (ā`)). Then â` 6= ā` and

π` (â`, s̄f (â`)) = π` (â`, ŝf (â`)) > π` (ā`, ŝf (ā`)) , (21)

because â` = r` (ŝf ). On the other hand, since (ā`, s̄f ) is the unique material-payoff equilibrium

π` (â`, s̄f (â`))
(m-eq)
< π` (ā`, s̄f (ā`)) .

Therefore,
ŝf (ā`) 6= s̄f (ā`) = arg max

af∈A(ā`)
πf (ā`, af ) ,

that is, the follower is not choosing his material-payoff best response. This can happen in an
SE with SA/ABB only if the follower is frustrated after āf , that is,

Ff (ā`; α̂f ) = πf (â`, ŝf (â`))− max
af∈Af (ā`)

πf (ā`, af ) = πf (â`, ŝf (â`))− πf (ā`, s̄f (ā`)) > 0.

Taking into account that ŝf (â`) = s̄f (â`), this shows that Condition 2 of Definition 4 of threat
holds. Furthermore, the material-payoff SE condition for the leader and (21) yield

π`(ā`, s̄f (ā`))
(m-eq)

≥ π` (â`, s̄f (â`))
(21)
= π` (â`, ŝf (â`))

(21)
> π` (ā`, ŝf (ā`)) .

Therefore Condition 1 holds as well. �

A.7 Proof of Proposition 6

As above, we denote the leader by ` = ι(∅). Let (σi, βi)i∈I be an SE under ABB/SA with pa-
rameter profile (θi)i∈I , and suppose that the leader’s strategy has full support: Suppσ`(·|∅) =
A`(∅). Construct a polymorphic consistent assessment λ̄ as follows: For each follower i,
Ti(λ̄i) = {ti} (a singleton) and

(
σ̄ti , β̄ti

)
= (σi, βi). For the leader (`), T`(λ̄`) = A`(∅), and,

for each type a`, σ̄a`(a`|∅) = 1 and ᾱa`(·|a1) =
∏

i∈I σi(·|a1) for all non-terminal a1, where ᾱa`
is the first-order belief derived from β̄a` . By construction, each type of leader is indifferent,
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because the leader (who acts as-if selfish, cf. Remark 2) is indifferent in the original assess-
ment (σi, βi)i∈I . As for the followers, they have the same first-order beliefs, hence the same
second-stage frustrations as in (σi, βi)i∈I . Under ABB/SA, blame always equals frustration
in leader-followers games. As for ABI, Bayes’ rule implies that, after observing a1 = aι(∅),
each follower becomes certain that the leader indeed planned to choose a` with probability
one, and blame equals frustration in this case too. Therefore, the incentive conditions of the
followers hold in λ̄ as in (σi, βi)i∈I for all kinds of decision utility (ABI, ABB, SA) under the
same parameter profile (θi)i∈I . �

References

[1] Aina, C., P. Battigalli, and A. Gamba (2018): “Frustration and Anger in the
Ultimatum Game: An Experiment,” IGIER working paper 621.

[2] Akerlof, R. J. (2016): “Anger and Enforcement,” Journal of Economic Behavior &
Organization, 126, 110-124.

[3] Alicke, M. D. (2000): “Culpable Control and the Psychology of Blame,” Psychological
Bulletin, 126, 556.

[4] Aliprantis, C. R. and K. C. Border (2006): Infinite Dimensional Analysis. Berlin:
Springer-Verlag.

[5] Anderson, E. and D. Simester (2010): “Price Stickiness and Customer Antagonism,”
Quarterly Journal of Economics, 125, 729–765.

[6] Arnold, M. B. (1960): Emotions and Personality. New York: Columbia University
Press.

[7] Attanasi, G., P. Battigalli, and E. Manzoni (2016): “Incomplete Information
Models of Guilt Aversion in the Trust Game,” Management Science, 62, 648 - 667.

[8] Averill, J. R. (1982): Anger and Aggression: An Essay on Emotion New York:
Springer-Verlag.

[9] Bartling, B. and U. Fischbacher (2012): “Shifting the Blame: On Delegation and
Responsibility,” Review of Economic Studies, 79, 67–87.

[10] Battigalli, P. (1997): “On Rationalizability in Extensive Games,” Journal of Eco-
nomic Theory, 74, 40-61.

52



[11] Battigalli, P., G. Charness, and M. Dufwenberg (2013): “Deception: The Role
of Guilt,” Journal of Economic Behavior & Organization, 93, 227–232.

[12] Battigalli, P., A. Di Tillio, and D. Samet (2013): “Strategies and Interactive
Beliefs in Dynamic Games,” in D. Acemoglu, M. Arellano, E. Dekel (eds.) Advances in
Economics and Econometrics: Theory and Applications, Tenth World Congress, Vol. 1
Economic Theory (Econometric Society Monographs No. 49), Cambridge: Cambridge
University Press, 391–422.

[13] Battigalli, P. and M. Dufwenberg (2007): “Guilt in Games,” American Economic
Review, Papers and Proceedings, 97, 170–176.

[14] Battigalli, P. and M. Dufwenberg (2009): “Dynamic Psychological Games,” Jour-
nal of Economic Theory, 144, 1–35.

[15] Battigalli, P. and M. Siniscalchi (1999): “Hierarchies of Conditional Beliefs and
Interactive Epistemology in Dynamic Games,” Journal of Economic Theory, 88, 188–230.

[16] Baumeister, R. F. and B. F. Bushman (2007): “Angry Emotions and Aggressive
Behaviors,” G. Steffgen and M. Gollwitzer (Eds.) Emotions and Aggressive Behavior,
Cambridge, MA: Hogrefe, 61–75.

[17] Baumeister, R. F., L. Smart, and J. M. Boden (1996): “Relation of Threatened
Egotism to Violence and Aggression: The Dark Side of High Self-Esteem,” Psychological
Review, 103, 5–33.

[18] Bell, D. (1985): “Disappointment in Decision Making under Uncertainty,” Operations
Research, 33, 1–27.

[19] Berg, J., J. Dickhaut, and K. McCabe (1995): “Trust, Reciprocity, and Social
History,” Games and Economic Behavior 10, 122–142.

[20] Berkowitz, L. (1978): “Whatever Happened to the Frustration-Aggression Hypothe-
sis?,” American Behavioral Scientist, 21, 691–708.

[21] Berkowitz, L. (1989): “Frustration-Aggression Hypothesis: Examination and Refor-
mulation,” Psychological Bulletin, 106, 59–73.

[22] Bolton, G. E., and A. Ockenfels. (1989): “ERC: A Theory of Equity, Reciprocity,
and Competition,” American Economic Review, 90, 166–193.

[23] Bosman, R., M. Sutter, and F. van Winden (2005): “The Impact of Real Effort
and Emotions in the Power-to-take Game,” Journal of Economic Psychology, 26, 407–429.

53



[24] Bosman, R. and F. van Winden (2002): “Emotional Hazard in a Power-to-take
Experiment,” Economic Journal, 112, 147–169.

[25] Brandts, J., and C. Sola (2001): “Reference Points and Negative Reciprocity in
Simple Sequential Games,” Games and Economic Behavior, 36, 138-157.

[26] Buss, D. (2016): Evolutionary Psychology. The New Science of the Mind, New York:
Routledge (5th edition).

[27] Brams, S. (2011): Game Theory and the Humanities: Bridging Two Worlds, Cambridge,
MA: MIT Press.

[28] Card, D. and G. Dahl (2011): “Family Violence and Football: The Effect of Un-
expected Emotional Cues on Violent Behavior,” Quarterly Journal of Economics, 126,
103–143.

[29] Carpenter, J. and P. Matthews (2012): “Norm Enforcement: Anger, Indignation
or Reciprocity,” Journal of the European Economic Association, 10, 555–572.

[30] Celen, B., A. Schotter, and M. Blanco (2017): “On Blame and Reciprocity: An
Experimental Study,” Journal of Economic Theory, 169, 62–92.

[31] Chang, L., A. Smith, M. Dufwenberg, and A. Sanfey (2011): “Triangulating
the Neural, Psychological, and Economic Bases of Guilt Aversion,” Neuron, 70, 560–572.

[32] Charness, G., and M. Rabin (2002): “Understanding Social Preferences With Simple
Tests, ” The Quarterly Journal of Economics, 117, 817-869.

[33] Dollard, J., L. Doob, N. Miller, O. Mowrer, and R. Sears (1939): Frustration
and Aggression. New Haven, NJ: Yale University Press.

[34] Dufwenberg, M. (2002): “Marital Investment, Time Consistency and Emotions,”
Journal of Economic Behavior and Organization 48, 57–69.

[35] Dufwenberg, M. and G. Kirchsteiger (2004): “A Theory of Sequential Reci-
procity,” Games and Economic Behavior, 47, 268–298.

[36] Dufwenberg, M., F. Li, and A. Smith (2018a): “Promises and Punishment,” un-
published manuscript.

[37] Dufwenberg, M., F. Li, and A. Smith (2018b): “Threats,” unpublished manuscript.

54



[38] Dufwenberg, M., A. Smith, and M. Van Essen (2013): “Hold-up: With a
Vengeance,” Economic Inquiry, 51, 896–908.

[39] Elster, J. (1998): “Emotions and Economic Theory, ” Journal of Economic Literature,
36, 47-74.

[40] Falk, A. and U. Fischbacher (2006): “A Theory of Reciprocity,” Games and Eco-
nomic Behavior, 54, 293–315.

[41] Falk, A., E. Fehr, and U. Fischbacher (2003): “On the Nature of Fair Behav-
ior,”Economic Inquiry, 41, 20-26.

[42] Falk, A., E. Fehr, and U. Fischbacher (2008): “Testing Theories of Fairness—
Intentions Matter,”Games and Economic Behavior, 62(1), 287-303.

[43] Fehr, E. and S. Gaechter (2002): “Altruistic Punishment in Humans,” Nature, 415,
137–140.

[44] Fehr, E. and K. M. Schmidt (1999): “A Theory of Fairness, Competition, and
Cooperation,” The Quarterly Journal of Economics, 114, 817-868.

[45] Frank, R. H. (1988): Passions Within Reason: The Strategic Role of the Emotions.
Chicago: W.W. Norton & Co.

[46] Frijda, N. H. (1986): The Emotions. Cambridge: Cambridge University Press.

[47] Frijda, N. H. (1993): “The Place of Appraisal in Emotion,” Cognition and Emotion,
7, 357–387.

[48] Gale, J., K. G. Binmore, and L. Samuelson (1995): “Learning to be Imperfect:
The Ultimatum Game,” Games and Economic Behavior, 8, 56–90.

[49] Geanakoplos, J., D. Pearce, and E. Stacchetti (1989): “Psychological Games
and Sequential Rationality,” Games and Economic Behavior, 1, 60–79.

[50] Gneezy, U. and A. Imas (2014): “Materazzi Effect and the Strategic Use of Anger in
Competitive Interactions,” Proceedings of the National Academy of Sciences, 111, 1334–
1337.

[51] Grimm, V. and F. Mengel (2011): “Let Me Sleep on It: Delay Reduces Rejection
Rates in Ultimatum Games,” Economics Letters, 111, 113–115.

55
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